

Remote Sensoric Detection of Human Vital Signs

Author: Jaroslava Schovancová Supervisor: RNDr. David Obdržálek, Ph.D.

Motivation & Problem

- Remote **breathing** assessment for **industrial** settings (e.g., CERN LHC tunnels) with slow responder access; wearables often impractical due to **data privacy**.
- Goal: Assess a prototype of the Fraunhofer FMCW radar RR detection vs. clothing, posture, distance, obstacles, and ambient noise.

Objectives

- Use 80 GHz FMCW radar to extract RR.
- Validate with PLUX chest belt (contact) and Baumer OM70 laser (non-contact).
- Study limits across postures, patterns, clothing, distance, occlusions.
- Fig.: 1) radar, 2) laser, 3) chest belt.

RR sensors

Methodology

- Multi-sensor sessions: Synchronized measurements with Fraunhofer 80 GHz FMCW radar, PLUX chest belt (contact), and Baumer OM70 distance laser (non-contact) for reference and validation.
- Models: Evaluated Constant False Alarm Rate (CFAR) peak detection, the industry standard in radar processing, and Continuous Wavelet Transform (CWT)-based detection as an exploratory method. Parameter scans assessed robustness across conditions.
- Scenarios: Tested under varied conditions including a person sitting or lying (back, side, stomach), different clothing, distances, and plexiglass obstruction.

Signal-processing pipeline

Side, front-facing

Lying on back

Sitting, plexiglass

Key Results – Overview

- Data acquisition: Synchronized datasets from Fraunhofer 80 GHz FMCW radar (prototype, undocumented), Baumer OM70 laser, and PLUX chest belt. Custom software implemented parametric RR models.
- Respiratory rate detection: Robust RR identified in several scenarios, showing feasibility despite environmental variability.
- Signal processing: Tuned thresholds, outlier filters, and alternative peak detection improved robustness.
- Application: Developed *HealthDetection-Sample*, packaged as a standalone containerized tool.
- Limitations:
- Environment: requires line of sight; obstacles reduce reliability.
- **Device**: radar needs active cooling.
- Human factors: diaphragm region most reliable; shallow/rapid breathing and motion problematic.
- Models: limited performance on highly volatile signals.
- Overall: FMCW radar is viable for remote RR detection; parametric models increase reliability within known limits.

Summary of detected respiratory rate by sensor.

Key Results – Recommendations

- Location: Thorax most stable across postures/clothing.
- Patterns: Normal/deep reliable; shallow/rapid weak.
- Range: Several meters; obstacles/plexiglass lower SNR.
- Models: CFAR/CWT consistent with calibration when well-tuned.

Applications & Impact

- Industrial safety: Remote checks in hazardous zones.
- Rescue robotics: Pre-arrival status for operators.
- Healthcare R&D: Basis for non-contact monitoring.

Contact & Code

Contact: https://www.linkedin.com/in/jaroslava-schovancova Thesis & Code: http://hdl.handle.net/20.500.11956/197054