Copy & Patch Just-in-Time Compilation for R
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binary: { /* omitted, see Figure (b) */ }

cutable code.
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translating R code into efficient native code, plemented optimizations, both adapted from re-

(b) Compiled executable code (d) Result after Copy-and-Patch
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minimalist strategy that trades heavy opti-
mizations for extremely fast compilation.
The goal is a prototype JIT compiler that in-
tegrates with R, builds on top of R, and elim-
inates its biggest drawback — making high-
performance R code practical in more inter-

The compilation pipeline. At build time, bytecode instructions are turned into stencils. At runtime, R’s compiler
produces bytecode, the matching stencils are selected, then copied and patched into a native function.
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specialization. OOPSLA Proc. doi: 10.1145/3428288.

is already proven in Lua and Python. Our
work applies it to R, which shares a similar
execution model.

Speedup comparison. The speedup is measured across 57 programs spanning from micro-benchmarks to
algorithmic problems and real-world applications. Every benchmark program was run 15 times, with the first 5
discarded as warmup runs. We compute the speedup by bootstrapping the ratio of mean values of benchmark
runtimes between the compiled code and the GNU R bytecode interpreter.
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Compiler for R. VMIL‘25 Proc. doi: 10.1145/3759548.3763370
(submitted for publication)

: . |
active and short-lived workloads. : z B mowveres | over GNU R and sub-millisecond compilation
2 . . P .
____________________ )& B RealThing | times, demonstrating that copy-and-patch is a
___________________ — |1 8 B shootout | fast, viable foundation for multi-tier compilation.
[ 2 W | .
| Copy-and-Patch | E T T T T T T T T T T T T T T T T T
. . . O ©BEEEEEEm 0t rtrrrerrerrrerrrrirrtrtrrtirrtrrrtibrrteritrtrrribirtrrriritrtrrrrll e ——————mm—mm— e ——— —— — —— — — —_
| Baseline JITs must compile quickly. Copy- | | a ) | [ |
| and-patch achieves this by reusing code in- | | = i | | Publication |
. . o b 1 b 1 | I I S I I S N U SN DU N N S SN N U N N SN N NN SN U NN AU SN NN NN N NN NN U N U N S U SN SN N N
| stead of generating it from scratch. Pro- | 8 IIIIIIIII.I || This oroject will be presented at the VMIL |
. ] — ti - 2 ....------- T P ——— '
: grams.l a(ﬁ bulit tfron% bstfnm(lis : :Emy t'p re- | | T —— | workshop (part of the SPLASH '25 conference |
0n = 0 0 = H 0O = =C 00 CT)G)NG)w>NG)==G)O>Nw(\3C0®G)®XN><(\I""CDO’)CDCDLC\I""<I'CUCD==ES>s"5'_'cg_|CI_‘J_9C\I . .
compuied tempates ol DytecHte ISuctions | | 8922983828852 2E0201288012328 ) 09 J 2223308 ,E22./89522%88855%, | In Singapore) [3], as well as to the R Develop- |
| with placeholders for runtime values like | 23R e I EE23 S 25888505280 S50 0555523888253 5E582885885 | | .\ |
| . | S SEZESE08ESBESExC s SuexS385 S5 8e5E00558g 829888 55875 ment Core Team in Vienna.
constantsorjumpta.rgets. | | 9”8%“’%&§> 8‘?’%%—%@%%% Eﬁ%g g o %3%“‘2(—%%%8 g E (_zh §*§C—% %‘—“E = | L _'|
| Because most work is already done ahead of | | = £E”56%F ©° B ° £ <S58 5838 3 8 g 2g g | T7mm 0T T T T T T T T
. . . . . > £ O © S o ©O = = c O
| time, compilation is extremely fast. Mainte- | | ° 8 g€ S g 8 88 % §s = B —
o o o O
| nance is also easy: once the stencil library | | . £ S8 g : | References
| exists, updates come for free. This approach | | Benchma‘;k . | 1] Fliickinger et al 2020 Contextual dispatch for function
| | |
| | |
| | |
| | |

I
| |
| |
| 2] Haoran Xu et al 2021. Copy-and-patch compilation. |
| OOPSLA Proc. doi: 10.1145/3485513 I
| |
| |

Source code available at https://github.com/PRIL.-PRG/rcp. The results presented in this poster incorporate improvements implemented after submission of the original project. See results in the full work for historical purposes.
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