
Copy & Patch Just-in-Time Compilation for R

Author: Ing. Matěj Kocourek | Supervisor: doc. Ing. Filip Křikava, Ph.D.

Faculty of Information Technology, Czech Technical University in Prague

[1] Flückinger et al. 2020 Contextual dispatch for function
specialization. OOPSLA Proc. doi: 10.1145/3428288.
[2] Haoran Xu et al. 2021. Copy-and-patch compilation.
OOPSLA Proc. doi: 10.1145/3485513
[3] Matěj Kocourek et al. 2025. Copy-and-Patch Just-in-Time
Compiler for R. VMIL‘25 Proc. doi: 10.1145/3759548.3763370
(submitted for publication)

References

The project was implemented in C, consisting of

approximately 2,000 lines of code.

Out of the 57 benchmarks, 47 are faster (fastest

speedup 6.6×), 6 are on par, and only 4 are

slower (slowest speedup 0.93×) than the inter-

preter, with the average of 1.26×. The largest

speedups come from microbenchmarks (1.91×),

but more complex benchmarks still benefit from

the JIT, achieving 1.15× speedup.

These results are supported by a range of im-

plemented optimizations, both adapted from re-

lated works and novel.

With the average compilation time of just 0.25

milliseconds, the compiler is several orders of

magnitude faster than the original Ř project and

easily covers the requirement for a baseline JIT.

Additionally, it can support collection of feed-

back information for heavier compilers, ready for

integration in a teared execution model.

Evaluation

Conclusion

The R programming language is widely
used for data science and research thanks to
its expressive syntax, rich ecosystem of li-
braries, and accessibility. But R’s flexibility
comes with a price: as an interpreted and
highly dynamic language, it runs noticeably
slower than many of its alternatives, espe-
cially when compared against compiled lan-
guages.
Ř [1] is a project that tackles this problem by
translating R code into efficient native code,
showing large performance gains over the
standard interpreter. Its weakness, howev-
er, is compilation speed — too slow for use
as a baseline just-in-time (JIT) compiler,
which must work interactively, compiling
code in milliseconds and often multiple
times during program execution.
This work explores a different approach: us-
ing the Copy-and-Patch technique [2], a
minimalist strategy that trades heavy opti-
mizations for extremely fast compilation.
The goal is a prototype JIT compiler that in-
tegrates with R, builds on top of Ř, and elim-
inates its biggest drawback — making high-
performance R code practical in more inter-
active and short-lived workloads.

Motivation

The compilation pipeline. At build time, bytecode instructions are turned into stencils. At runtime, R’s compiler
produces bytecode, the matching stencils are selected, then copied and patched into a native function.

Speedup comparison. The speedup is measured across 57 programs spanning from micro-benchmarks to
algorithmic problems and real-world applications. Every benchmark program was run 15 times, with the first 5
discarded as warmup runs. We compute the speedup by bootstrapping the ratio of mean values of benchmark
runtimes between the compiled code and the GNU R bytecode interpreter.

Copy-and-Patch
Baseline JITs must compile quickly. Copy-
and-patch achieves this by reusing code in-
stead of generating it from scratch. Pro-
grams are built from stencils — tiny pre-
compiled templates of bytecode instructions
with placeholders for runtime values like
constants or jump targets.
Because most work is already done ahead of
time, compilation is extremely fast. Mainte-
nance is also easy: once the stencil library
exists, updates come for free. This approach
is already proven in Lua and Python. Our
work applies it to R, which shares a similar
execution model.

Practical example [2].
(a) A stencil in C has
placeholders for offsets,
constants, and calls.
(b) Compilation reveals
placeholder positions
in machine code.
(c) These are extracted
into a header file.
(d) At runtime, the en-
gine copies the stencil
and patches the place-
holders to produce exe-
cutable code.

We successfully implemented a baseline JIT for

R using copy-and-patch. Evaluation on 57

benchmarks shows a 1.26× average speedup

over GNU R and sub-millisecond compilation

times, demonstrating that copy-and-patch is a

fast, viable foundation for multi-tier compilation.

Source code available at https://github.com/PRL-PRG/rcp. The results presented in this poster incorporate improvements implemented after submission of the original project. See results in the full work for historical purposes.

Publication
This project will be presented at the VMIL

workshop (part of the SPLASH '25 conference

in Singapore) [3], as well as to the R Develop-

ment Core Team in Vienna.

https://doi.org/10.1145/3428288
https://doi.org/10.1145/3428288
https://doi.org/10.1145/3428288
https://doi.org/10.1145/3428288
https://doi.org/10.1145/3428288
https://doi.org/10.1145/3485513
https://doi.org/10.1145/3485513
https://doi.org/10.1145/3485513
https://doi.org/10.1145/3485513
https://doi.org/10.1145/3485513
https://doi.org/10.1145/3759548.3763370
https://doi.org/10.1145/3759548.3763370
https://doi.org/10.1145/3759548.3763370
https://doi.org/10.1145/3759548.3763370
https://doi.org/10.1145/3759548.3763370
https://doi.org/10.1145/3759548.3763370
https://doi.org/10.1145/3759548.3763370
https://github.com/PRL-PRG/rcp
https://github.com/PRL-PRG/rcp
https://github.com/PRL-PRG/rcp
https://github.com/PRL-PRG/rcp
https://github.com/PRL-PRG/rcp
https://github.com/PRL-PRG/rcp
https://github.com/PRL-PRG/rcp

	Slide 1

