Copy & Patch Just-in-Time Compilation for R

FACULTY
OF INFORMATION .. : e aru
TECHNOLOGY Author: Ing. Matej Kocourek | Supervisor: doc. Ing. Filip Krikava, Ph.D.

CTOINPRACUE " Faculty of Information Technology, Czech Technical University in Prague

binary: { /* omitted, see Figure (b) */ }

cutable code.

(] { : I o
MOtlvatlon I Practical exa.'InPIe [2] void [(uintptr t stack) { pc32Patches: { 14 /*binaryOffset*/, 19 /*binaryOffset*/ } I Evaluatlon
: : : | (a) A stencil in C has int Ihs = *(int*) (stack + [} ; sym32Patches: | . . . -
The R programming language is widely | placeholders for offsets, int rhs =[] ; {1 /*binaryOffset*/, 2 /*holeOrdinal*/ }, | The project was implemented in C, consisting of
: if (lhs <= rhs) { 8 /*bi ffset*/, 1 /*holeOrdinal*/ }, ' '
Ilsed for daIa science and research thanks tp | constants, and calls. (void) Cintpte +) O) (stack) s } © j *bﬁzggffzi; - ; *hgligidﬁzpf i | approximately 2,000 lines of code.
its expressive syntax, rich ecosystem of li- | (b) Compilation reveals e L intore 0 [) (stack) s { 19 /*binaryOffset*/, 3 /*holeOrdinal*/ } | Out of the 57 benchmarks, 47 are faster (fastest
braries, and accessibility. But R’s flexibility placeholder positions :) ' } | speedup 6.6x), 6 are on par, and only 4 are
. } symo4Patches: {} ’ ’ .
comes with a price: as an interpreted and : zn)n%fhme COde-t od | slower (slowest speedup 0.93x) than the inter-
highly dynamic language, it runs noticeabl \C) Lhese ale exACed 2y Stencil source in C ¢) Generated stencil header reter, with the average of 1.26x. The largest
1 h e 1) | into a header file. P ¢ J X s (1 9]
slower than many of its z}ternatlve.s, espe- | (d) At runtime, the en- — PV o e | speedups come from microbenc marks (_.9 x),
cially when compared against compiled lan- | gine copies the stencil |oxts 6xeo exco exee 6xeo 25: 41 39 85 08 00 00 00 cmp Seax, 0x8(%rl3) | but more complex benchmarks still benefit from
guages. . and patches the place- [Gi6r oxar oues oxer ocre oxee (3 | |28 OF 8F 0= 00 00 00 3g 40 |
R [1] is a project that tackles this problem by | holders to produce exe- | exeo e axff ocff ouft ST mp removed to talithrough) | |
| |

translating R code into efficient native code, plemented optimizations, both adapted from re-

(b) Compiled executable code (d) Result after Copy-and-Patch

I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
| the JIT, achieving 1.15x speedup. |
| These results are supported by a range of im- :
I |
I I
I I
I I
I I
I I
I I
I I
I I

minimalist strategy that trades heavy opti-
mizations for extremely fast compilation.
The goal is a prototype JIT compiler that in-
tegrates with R, builds on top of R, and elim-
inates its biggest drawback — making high-
performance R code practical in more inter-

The compilation pipeline. At build time, bytecode instructions are turned into stencils. At runtime, R’s compiler
produces bytecode, the matching stencils are selected, then copied and patched into a native function.

—
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
J

Conclusion

showing large performance gains over the R R R R R R R R R EE——————— J lated works and novel.
standard interpreter. Its weakness, howev- ———— N With the average compilation time of just 0.25
er, is compilation speed — too slow for use | | milliseconds, the compiler is several orders of
as a baseline just-in-time (JIT) compiler, | GNU R bytecode Extract Standalone Conerate | magnitude faster than the original R project and
which must work interactively, Compiling | interpryeter > isnt:tr:l?c?tligr;i > instruction functions [~ stencils 2| oonel ibrary | easily covers the requirement for a baseline JIT.
code in milliseconds and often multiple | Build time | Additionally, it can support collection of feed-
fimes during program execution. | L l .. | back information for heavier compilers, ready for
This work explores a different approach: us- | | Compile Copy | | integration in a teared execution model.
ing the Copy-and-Patch technique [2], a : " function > ovssode | Yeeede e T s T T ¥

|

|

|

|
| |
| We successfully implemented a baseline JIT for |
'R using copy-and-patch. Evaluaton on 57 |
: benchmarks shows a 1.26% average speedup :
| |
| |
| |

F—————————————————————————————
I SN I I B S B I S I SIS IS B I IS SIS B SIS B S B S B S B S I S D ——

specialization. OOPSLA Proc. doi: 10.1145/3428288.

is already proven in Lua and Python. Our
work applies it to R, which shares a similar
execution model.

Speedup comparison. The speedup is measured across 57 programs spanning from micro-benchmarks to
algorithmic problems and real-world applications. Every benchmark program was run 15 times, with the first 5
discarded as warmup runs. We compute the speedup by bootstrapping the ratio of mean values of benchmark
runtimes between the compiled code and the GNU R bytecode interpreter.

3] Matéj Kocourek et al 2025. Copy-and-Patch Just-in-Time
Compiler for R. VMIL‘25 Proc. doi: 10.1145/3759548.3763370
(submitted for publication)

: . |
active and short-lived workloads. : z B mowveres | over GNU R and sub-millisecond compilation
2 . . P .
____________________)& B RealThing | times, demonstrating that copy-and-patch is a
___________________ — |1 8 B shootout | fast, viable foundation for multi-tier compilation.
[2 W | .
| Copy-and-Patch | E T T T T T T T T T T T T T T T T T
. . . O ©BEEEEEEm 0t rtrrrerrerrrerrrrirrtrtrrtirrtrrrtibrrteritrtrrribirtrrriritrtrrrrll e ——————mm—mm— e ——— —— — —— — — —_
| Baseline JITs must compile quickly. Copy- | | a) | [|
| and-patch achieves this by reusing code in- | | = i | | Publication |
. . o b 1 b 1 | I I S I I S N U SN DU N N S SN N U N N SN N NN SN U NN AU SN NN NN N NN NN U N U N S U SN SN N N
| stead of generating it from scratch. Pro- | 8 IIIIIIIII.I || This oroject will be presented at the VMIL |
.] — ti - 2------- T P ——— '
: grams.l a(ﬁ bulit tfron% bstfnm(lis : :Emy t'p re- | | T —— | workshop (part of the SPLASH '25 conference |
0n = 0 0 = H 0O = =C 00 CT)G)NG)w>NG)==G)O>Nw(\3C0®G)®XN><(\I""CDO’)CDCDLC\I""<I'CUCD==ES>s"5'_'cg_|CI_‘J_9C\I . .
compuied tempates ol DytecHte ISuctions | | 8922983828852 2E0201288012328) 09 J 2223308 ,E22./89522%88855%, | In Singapore) [3], as well as to the R Develop- |
| with placeholders for runtime values like | 23R e I EE23 S 25888505280 S50 0555523888253 5E582885885 | | .\ |
| . | S SEZESE08ESBESExC s SuexS385 S5 8e5E00558g 829888 55875 ment Core Team in Vienna.
constantsorjumpta.rgets. | | 9”8%“’%&§> 8‘?’%%—%@%%% Eﬁ%g g o %3%“‘2(—%%%8 g E (_zh §*§C—% %‘—“E = | L _'|
| Because most work is already done ahead of | | = £E”56%F ©° B ° £ <S58 5838 3 8 g 2g g | T7mm 0T T T T T T T T
. > £ O © S o ©O = = c O
| time, compilation is extremely fast. Mainte- | | ° 8 g€ S g 8 88 % §s = B —
o o o O
| nance is also easy: once the stencil library | | . £ S8 g : | References
| exists, updates come for free. This approach | | Benchma‘;k . | 1] Fliickinger et al 2020 Contextual dispatch for function

I
| |
| |
| 2] Haoran Xu et al 2021. Copy-and-patch compilation. |
| OOPSLA Proc. doi: 10.1145/3485513 I
| |
| |

Source code available at https://github.com/PRIL.-PRG/rcp. The results presented in this poster incorporate improvements implemented after submission of the original project. See results in the full work for historical purposes.

https://doi.org/10.1145/3428288
https://doi.org/10.1145/3428288
https://doi.org/10.1145/3428288
https://doi.org/10.1145/3428288
https://doi.org/10.1145/3428288
https://doi.org/10.1145/3485513
https://doi.org/10.1145/3485513
https://doi.org/10.1145/3485513
https://doi.org/10.1145/3485513
https://doi.org/10.1145/3485513
https://doi.org/10.1145/3759548.3763370
https://doi.org/10.1145/3759548.3763370
https://doi.org/10.1145/3759548.3763370
https://doi.org/10.1145/3759548.3763370
https://doi.org/10.1145/3759548.3763370
https://doi.org/10.1145/3759548.3763370
https://doi.org/10.1145/3759548.3763370
https://github.com/PRL-PRG/rcp
https://github.com/PRL-PRG/rcp
https://github.com/PRL-PRG/rcp
https://github.com/PRL-PRG/rcp
https://github.com/PRL-PRG/rcp
https://github.com/PRL-PRG/rcp
https://github.com/PRL-PRG/rcp

	Slide 1

