
Ř Compiler: https://github.com/reactorlabs/rir IT SPY 2025

Understanding Feedback Pollution in the R Programming Language

Ing. Filip Říha Supervisor: doc. Ing. Filip Křikava Ph.D.

Understanding Feedback Pollution in the R Programming Language

Ing. Filip Říha Supervisor: doc. Ing. Filip Křikava Ph.D.

Motivation

Many modern dynamic languages are executed on a virtual machine

(VM). To speed up the programs, VMs traditionally include Just-in-

Time (JIT) compilers, allowing them to improve the performance of

frequently executed pieces of programs by compiling them to native

code.

To further enhance performance, during the execution of unopti-

mized code (in the interpreter) VMs record information about the

runtime (called feedback, stored in a feedback vector composed

of slots), allowing them to predict future behavior. If the feedback

information is useful, the compiler speculates on it, leading to amore

optimized code if the assumption holds.

Let’s take the following JavaScript function:

function sum(vec) {
let acc = vec[0]
for (let i = 1; i < vec.length; i++) {

acc = acc + vec[i]
}
return acc

}

By calling

sum(rangeDouble(1, 1e8)) // Peak execution time: 100ms
we observe the type double. After a few invocations, a compilation

will be triggered, assuming the input is of type double. This allows

the JIT to generate optimized native code that approaches C code

performance.

If we then call

sum(rangeBigInt(1, 1e8)) // Peak execution time: 500ms
we update the observed types to both double and BigInt. The as-

sumption on the type is broken, thus a newnative version is compiled

with weaker assumptions, resulting in less optimized code.

Even if we call again

sum(rangeDouble(1, 1e8)) // Peak execution time: 500ms
we do not reach the previously observed performance – this is called

feedback pollution.

Goals

We look at feedback pollution in the context of R programming lan-

guage, a high-level programming language specialized for statistical

computing and data visualization.

More concretely, we analyze the pollution in the Ř Just-in-Time com-

piler, developed at CTU Prague and Northeastern University, Boston.

RecordingTool

In order to observe the behavior of Ř, we developed a tool for capturing and

recording various events happening in runtime. This resulted in a tool that

seamlessly integrates into the compiler, not impacting it at all if not required.

The result of a recording is illustrated graphically in figure 1. We can see the

function invocations, compilations, deoptimizations, and observed types.

Interpreter

Native Code

Time

Feedback Change [] [double]

Call sum(rangeDouble(1, 1e8)) sum(rangeDouble(1, 1e8))sum(rangeBigInt(1, 1e8))

compilation deopt compilation

[double, integer][double]

Figure 1: Graphical illustration of the recording tool result

Design Goals

• Capture the behavior of the compiler — function invocations, compilations,

deoptimizations, and feedback updates

•Minimize the impact on the compiler performance

• Keep the changes in the compiler code minimal

Assessment

The implementation is in less than 1700 lines of code, excluding blank lines

and comments.

Apart from 40 calls to the recording functions, no changes were implemented

in the compiler.

The tool needs to be explicitly enabled in compilation; otherwise, it has no

impact on the compiler and its performance.

Analysis of Feedback Pollution

This was the first usage of the recording tool, published in a 2024 VMIL paper.

(Krynski, Sebastián; Štěpánek, Michal; Říha, Filip; Křikava, Filip; Vitek, Jan.

Reducing Feedback Pollution. VMIL ’24. DOI: 10.1145/3689490.3690404.)

Research Question

How does feedback pollution manifest in R?

Methodology

We define a polluted feedback slot as a slot whose value at the point of com-

pilation has changed from previous compilation.

The experiment was run on Ř benchmarks and one real-life script.

Data was collected using the recording tool.

Results

Most functions compiled multiple times have about a quarter of slots pol-

luted. Pollution mostly manifests in polymorphic functions or in functions

that heavily use the global state.

Analysis of Feedback Usage

After observing that feedback can be polluted, our next step is to un-

derstand how the feedback is used in a compilation. The interpreter

spends significant time on recording runtime information in hopes

that it will make up for it by JIT compiling more optimized code. We

want to analyze whether this hypothesis is true and whether there

is room for improvement by reducing the amount of information

recorded.

These partial results are part of an upcoming publication.

Research Questions

RQ1: Howmuch of the recorded information is used?

RQ2: Why a slot is not used?

RQ3: How does pollution affect the slot usage?

Methodology

We define:

•non-empty slot – has at least one observation

• referenced slot – it is part of a compiled function

• read slot – the information is observed during compilation

•used slot – there is a speculation on this slot

The experiment was run on a few selected Ř benchmarks and one

real-life script.

Results

The usage of slots on average per compilation:

bo
un

ce_
no

na
mes_

sim
ple

(26
4 r

efe
ren

ced
 slo

ts)

man
de

lbr
ot

(35
8 r

efe
ren

ced
 slo

ts)

fle
xcl

ust
_no

_s4

(54
02

 re
fer

en
ced

 slo
ts)

vo
lca

no

(20
37

 re
fer

en
ced

 slo
ts)

bin
ary

tre
es_

na
ive

(10
70

 re
fer

en
ced

 slo
ts)

fan
nku

chr
ed

ux

(25
1 r

efe
ren

ced
 slo

ts)

fan
nku

chr
ed

ux
_na

ive

(24
4 r

efe
ren

ced
 slo

ts)

fas
ta_

na
ive

_2

(59
8 r

efe
ren

ced
 slo

ts)

kn
ucl

eo
tid

e

(14
93

 re
fer

en
ced

 slo
ts)

pid
igit

s

(57
10

 re
fer

en
ced

 slo
ts) tita

nic

(67
47

7 r
efe

ren
ced

 slo
ts)

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
 o

ut
 o

f r
ef

er
en

ce
d

0.78
0.84

0.61
0.55 0.57

0.7 0.72 0.74
0.71

0.61
0.66

0.72
0.8

0.58
0.54 0.52

0.65 0.66 0.68 0.68

0.59
0.63

0.17 0.16 0.16 0.17
0.11

0.08 0.07
0.13 0.12

0.23

0.12

% of non-empty slots % of read slots % of used slots

On average, a compilation uses 21% of non-empty slots. (RQ1)

The main reason for not using a slot is redundancy— it contains the

same information as some other slot. (RQ2)

Pollution of slots does not affect whether a slot is used, but it heavily

weakens the assumptions the compiler can make. (RQ3).

https://github.com/reactorlabs/rir
https://doi.org/10.1145/3689490.3690404

