
Decision Trees for Multi-Environment
Markov Decision Processes
Author: Ing. Ladislav Dokoupil Supervisor: doc. RNDr. MilanČeška, Ph.D.

Motivation
Automated decision-making in uncertain environments is crucial for modern systems.
Markov Decision Processes (MDPs) provide a mathema�cal framework for modeling such
decisions. Many real-world systems exhibit parametric uncertainty or variable opera�ng
condi�ons, such as robots naviga�ng different environments or autonomous vehicles
adap�ng to changing condi�ons. Our goal is to create decision systems that are not only
correct across all these varia�ons but also compact and understandable by humans.

Current Approaches and Challenges
Exis�ng methods for crea�ng decision rules for families of related problems
o�en produce controllers that are:

Overly Conserva�ve: They are designed for worst-case scenarios, including
many unnecessary decision points.
Difficult to Understand: They are typically represented in tabular formats that
humans cannot easily interpret.
Redundant: Similar decision logic is duplicated across mul�ple controllers for
different scenarios.

Methodology

State Pruning Algorithms: We systema�cally eliminate irrelevant states and
ac�ons from ini�al controllers while preserving correctness guarantees across
all varia�ons.

Novel Problem Transforma�on: We transform the complex family problem
into a derived form that enables the applica�on of advanced synthesis tools,
genera�ng more compact controllers that remain robust.

Two-Level Decision Structure: We create a unified representa�on with two
components. One selects strategies based on environmental parameters,
the other determines ac�ons based on the selected strategy and current
state.

We developed a comprehensive framework for synthesizing
compact, understandable controllers for families of decision
problems:

Experimental Evaluation
We evaluated our approach on complex models with up to a million
varia�ons, each having thousands of states. These include robot
naviga�on, network protocols, and resource alloca�on scenarios. Our
experiments show:

Strategy Visualization

Robot naviga�ng a maze with variable obstacle posi�ons,
seeking to exit safely. (slippery environment)

Two-tree solu�on: le� tree selects strategy based on obstacles, right tree
determines ac�ons based on robot posi�on. (slippery environment)

For example, a robot naviga�ng terrain with eight possible obstacle layouts
requires just two compact decision trees instead of eight separate controllers,
making implementa�on feasible on resource-constrained devices.

y/x

1

1 2 3 4

2

3

4

y/x

1

1 2 3 4

2

3

4

y/x

1

1 2 3 4

2

3

4

Controllers up to 10× smaller than naive methods while maintaining
correctness guarantees.
Significant reduc�on in redundant decision logic.

OX={2}

OX=2,OY=2

True

OX=1,OY=2

False

x <= 1.5

right

True

OX <= 1.5

False

up

True

x <= 3.5

False

right

True

up

False

game
 abstraction

prune σagent

use
original σagent

derive MDP
+ dtNESt

policy set
Σ

candidate
mapping

tree

merging
families

single map
M ∪ σ → α dtControl

unified
policy tree

σagent
σenv

Per-subfamily operations Final controller

