
Financial Impact of Ethereum Vulnerability Detectors

Smart contract exploits in decentralized finance continue to cause substantial losses, making
early, automated detection of risky patterns critical to user protection and trust. This work
examines how effective Ethereum vulnerability detectors are within the development lifecycle
and estimates their financial impact when applied at scale. The thesis studies the Wake
framework’s detectors, constructs a real-world mainnet dataset, evaluates detector findings
against value at risk, and designs an AI-assisted semantic detector that flags mismatches
between documentation and implementation. The core objective is to quantify the degree to
which static analysis can meaningfully reduce potential losses and reputational risks.

The analysis leverages Wake, a static analysis toolkit for Solidity that provides AST/IR
introspection, control- and data-flow utilities, and static analysis tools. The evaluation focuses
on impactful classes such as reentrancy, tx.origin misuse, unsafe delegatecall, and
unchecked ERC‑20 return values. A mainnet dataset of recent, active contracts was
compiled by filtering the DexScreener page for Ethereum (using trending and liquidity
thresholds) and retrieving verified sources from Etherscan; token value was approximated via
DexScreener for a practical total value locked (TVL) metric. On top of existing detectors, a
new AI-based documentation‑diff check compares NatSpec documentation to actual logic to
identify semantic inconsistencies that could mislead users, auditors, or integrators.

Motivation and Objectives

Methods and Dataset

Ing. Andrey Bortnikov, Faculty of Information Technology, Czech Technical University in Prague | Supervisor: Ing. Josef Gattermayer, Ph.D.

To align technical findings with real-world stakes, the study adopts a value-at-risk metric that
sums base-token TVL associated with high-impact findings while considering detector
confidence levels. One hundred contracts were analyzed in automated batches, with
normalized outputs to support aggregation and comparison. While no formal precision/recall
benchmarking is reported, the methodology emphasizes severity and confidence, prioritizing
clear, high-impact categories over low-signal patterns. The result is a pragmatic view of
potential exposure if high-severity weaknesses reach production unaddressed.

Model and Evaluation

Key results
1,120 total findings across
severities.
32 high‑impact reentrancy
instances.
Addressing flagged issues
corresponds to an estimated
potential exploit cost of
$2,701,486.78.

 “Classic” pitfalls remain dominant
drivers of risk and warrant
prioritized mitigation.

The documentation‑diff detector uses an LLM to identify semantic mismatches
between documentation and implementation, such as missing access-control details,
incomplete trading rules, or ambiguous economic logic. While categorized at
WARNING impact with MEDIUM confidence, correcting these gaps is associated with
an estimated $1,823,454.58 of protected value by reducing reputational and
operational risk. Representative cases include R0AR TOKEN $1,215,257.45, TORN
$298,700.15, and Meme Index $62,796.43, illustrating how clearer, truthful
documentation can prevent misaligned expectations and integration errors.

AI Detector (documentation-diff)

Application, Limits and Impact
For developers and projects, integrating these checks into IDEs and CI/CD pipelines
offers inexpensive, early feedback that can gate risky releases and focus fixes on
high‑value exposures. Auditors can use value-based summaries to focus on changes
with the highest financial impact. There are limits: the TVL-based metric doesn’t model
exploit likelihood, static analysis can produce false positives, and the dataset leans
toward recent, trending pairs. Despite these constraints, the results suggest that a
combined static and semantic approach can measurably reduce both the probability
and consequence of defects reaching production.

The results show that common detectors, especially when combined with
documentation‑aware semantic checks, can prevent multi‑million‑dollar losses
and strengthen user trust. Next, we should build labeled datasets to measure
precision and recall, widen detector coverage to more vulnerability classes and
chains, and improve the economic model to include likelihood, composability
effects, and on‑chain signals for calibration. The trajectory points to practical
gains from integrating static analysis and LLM‑based semantics into everyday
smart‑contract engineering.

Conclusions and Next Steps

