
Improving Side-Channel Resistance of Java Card Implementations

Author: Mgr. Veronika Hanulíková, Supervisor: doc. RNDr. Petr Švenda, Ph.D.

Faculty of Informatics, Masaryk University

} w��������
��
Æ������������ !"#$%&'()+,-./012345<yA|~ LxB{

Thesis Contributions
Java Card [1] applets are Java-based applications that are run in

the secure environment provided by smart cards. Still, these

devices remain susceptible to timing side-channel attacks ex-

ploiting execution time differences caused by variations in control

flow, memory access, or computations to leak sensitive informa-

tion. The thesis proposes a methodology for evaluation and de-

tection of timing leaks along with precise time profiling based

on Simple Power Analysis (SPA) for Java Card applets. Further-

more, it explores countermeasures for mitigating timing side-

channel on the Java Card platform, applied to the reimplementa-

tion of the JCMathLib library.

Timing Side-Channel on Java Card Platform
The Java Card applets are written in a subset of the Java pro-

gramming language. The instruction set in Java Card technology

is called bytecode, which is executed by the Java Card Virtual Ma-

chine (JCVM) [1].

Types of Timing Leaks on Java Card Platform

Java code level leakage: Leaks can originate from the Java

code structures used in the Java Card applet. The control

flow of the implementation can execute different sequences

of bytecode instructions based on the sensitive data,

resulting in execution time deviations.

Java bytecode level leakage: The leak is formed from the

bytecode instruction internally processed by the JCVM,

possibly depending on the data or the context of its

execution.

Hardware level leakage: Timing deviations can be formed

during the execution of native methods or low-level

instructions by the card’s embedded CPU.

The thesis targets Java code level leakage preventable by

constant-time programming techniques.

Java Card Time Profiling with JCProfilerNext
The JCProfilerNext [2] is an existing tool for profiling Java Card

applets. The measurements and visualizations provided by the

tool can be employed to evaluate potential side-channel leakage

on the card. The timing analysis of the applet relies on time mea-

surements obtained using a standard timer on the host PC con-

nected to the reader with the smart card.

Power Analysis for Time Profiling
The thesis introduces a new profiling mode for the JCProfilerNext

tool by integrating Simple Power Analysis (SPA). This approach

aims to reduce the impact of noise and measurement inaccura-

cies.

The SPA timer mode uses delimiters to separate individual oper-

ations within the applet. They are inserted between specific lines

of code in the measured Java Card applet method. These delim-

iters generate recognizable patterns in the power trace, allowing

for accurate automatic detection of their boundaries.

Figure 1. Power trace with delimiters in between operations with execution

times t1 and t2, captured via PicoScope 7 software [3].

The host PC communicates with the card via a LEIA board [4].

The LEIA board is connected to the PicoScope Oscilloscope [3].

JCProfilerNext establishes communication with the smart card us-

ing a custom Java driver. Then, it configures the relevant chan-

nels for power measurement and trigger synchronization. After

the trace is acquired, the SPA Cryptographic Operations Ex-

tractor [5] tool searches for the delimiters in the measured power

trace.

Fuzzing Applets for Leak Detection
Fuzzing is a dynamic testing technique that generates random

or malformed inputs to trigger unexpected behavior or reveal vul-

nerabilities of the tested code. The thesis employs the DifFuzz

tool [6], which enables the automatic detection of timing side-

channel leaks through differential fuzzing. The strategy com-

pares execution behavior across inputs, flags those causing dif-

ferent code paths, and reports them as potentially leaking.

Fuzzing of applets utilizes a Java Card Development Kit Simula-

tor [1] for running an applet on a host PC. The two-stage approach

uses an instrumented applet on the simulator to identify problem-

atic inputs that are subsequently tested on a physical smart card

for actual timing.

Proposed Methodology for Time Leakage

Evaluation of Java Card Applet

1. Code analysis assesses the implementation, locates

sensitive data handling, and defines potential problematic

methods.

2. Identification of potentially leaking inputs is done by

observing random data, performing manual analysis, or

differential fuzzing on the simulator.

3. Time profiling is performed using JCProfilerNext and SPA

timer mode on the physical card.

4. Statistical testing by the tlsfuzzer project [7] determines if

the implementation leaks timing information by comparing

distributions across input classes.

5. Leak quantification computes the amount of time leak in

data using the probability density function.

Java Card Constant-Time Implementation

Techniques
The techniques below introduced by the thesis present key strate-

gies for removing execution time dependencies on sensitive data

processed in code:

Bitwise operations are used to compare and combine the

outcomes of multiple operations using bit masks.

Conditional statements must be modified to perform

operations regardless of input.

Number of iterations in for and while constructs should not

depend on sensitive data.

Memory handling must be performed uniformly.

Error reporting should be handled with the return values

propagation, while exceptions can be used for unrecoverable

errors.

References
[1] Oracle Corporation. Java Card Platform. URL: https://www.oracle.com/java/java-card/.
[2] Lukáš Zaoral. “Automatic Performance Profiler for Security Analysis of Cryptographic Smart Cards”. Master’s

thesis. Brno: Masaryk University, Faculty of Informatics, 2023. URL: https://is.muni.cz/th/v7l30/.
[3] Pico Technology Ltd. PicoScope 4000 Series Programmer’s Guide. Revision 10. 2022. URL: https : / /

www . picotech . com / download / manuals / picoscope - 4000 - series - programmers -
guide.pdf.

[4] Ryad Benadjila et al. “LEIA: The lab embedded ISO7816 analyzer a custom smartcard reader for the Chip-

Whisperer”. In: SSTIC2019 (2019), p. 30.

[5] Martin Podhora. “Forensic profiles of certified cryptographic smartcards”. Master’s thesis. Brno: Masaryk

University, Faculty of Informatics, 2022. URL: https://is.muni.cz/th/huike/.
[6] Shirin Nilizadeh, Yannic Noller, and Corina S. Pasareanu. “DifFuzz: Differential Fuzzing for Side-Channel

Analysis”. In: 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE). 2019, pp. 176–

187. DOI: 10.1109/ICSE.2019.00034.
[7] tlsfuzzer: SSL and TLS Protocol Test Suite and Fuzzer. URL: https : / / github . com / tlsfuzzer /

tlsfuzzer.

This poster is adapted from the master’s thesis available at https://is.muni.cz/th/nfox2/, both licensed under CC BY-SA 4.0. hanulikova@mail.muni.cz

https://www.oracle.com/java/java-card/
https://is.muni.cz/th/v7l30/
https://www.picotech.com/download/manuals/picoscope-4000-series-programmers-guide.pdf
https://www.picotech.com/download/manuals/picoscope-4000-series-programmers-guide.pdf
https://www.picotech.com/download/manuals/picoscope-4000-series-programmers-guide.pdf
https://is.muni.cz/th/huike/
https://doi.org/10.1109/ICSE.2019.00034
https://github.com/tlsfuzzer/tlsfuzzer
https://github.com/tlsfuzzer/tlsfuzzer
https://is.muni.cz/th/nfox2/
https://creativecommons.org/licenses/by-sa/4.0/
mailto:hanulikova@mail.muni.cz

	References

