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Abstract

Metabolomics seeks to identify and understand the small molecules
that drive biological systems, yet a large portion of these molecules
remain unknown. Tandem mass spectrometry (MS/MS) is the pri-
mary technology for identifying metabolite structures at scale, but the
process of interpreting spectra is often ambiguous and incomplete. As
a result, the majority of MS/MS data remains unannotated, leaving
much of the “dark metabolome” unexplored. While machine learning
has made progress in molecular annotation, current models typically
rely on a single stage of fragmentation (MS2), limiting their ability to
capture deeper structural information.

We propose a new direction: incorporating multi-stage MSn frag-
mentation data, where molecules are fragmented in successive rounds
to reveal deeper structural layers, to enhance molecular annotation.
To investigate this, we develop the first neural network models trained
on MSn spectra, combining graph neural networks with DreaMS, a
foundation model for mass spectral embeddings. We benchmark these
models on two key tasks: molecular structure retrieval from candidate
sets and de novo structure generation.

Our results show thatmulti-stage fragmentation improves retrieval
accuracy by up to 10x compared to MS2 alone. Furthermore, deeper
MSn levels produce richer and more informative spectral representa-
tions, as confirmed through centered kernel alignment (CKA) analy-
sis.

To support continued progress, we introduce MassSpecGymMSn,
the first open benchmark for MSn-based molecular annotation. It
includes 16,476 fragmentation trees (up to MS5), along with prepro-
cessing tools, and will be made publicly available to advance research
in this area.

Keywords

deep learning, mass spectrometry, benchmark, multi-stage mass spec-
trometry, dataset, metabolomics
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1 Introduction

Metabolomics is the comprehensive study of small molecules (metabo-
lites) present in biological and environmental samples. A primary goal
of metabolomics is to accurately determine the molecular structures
of these metabolites, as such information profoundly advances our
understanding of biochemical pathways [1], disease mechanisms [2],
environmental interactions [3], and drug development [4]. Mass spec-
trometry (MS), particularly tandem mass spectrometry (MS2), has
become a foundational tool in metabolomics research due to its un-
matched sensitivity and high-throughput capabilities [5, 6]. In MS2,
molecules are fragmented and the resulting fragment ions are mea-
sured, producing characteristic spectral “fingerprints” that enable
structural elucidation through comparison with reference databases
or expert interpretation.

Despite the proven capabilities of MS2, accurately interpreting
mass spectra remains highly challenging. Fragment ion patterns can
be ambiguous, subtle structural differences between isomers are easily
overlooked, and themajority ofMS2 spectra remain uninterpreted due
to the intrinsic complexity of the data. Recent studies estimate that only
about 1.8% of spectra in untargeted metabolomics experiments can be
confidently annotated [7], often referred to as the “dark metabolome”.
Furthermore, it is estimated that over 99% of the plant phytochemi-
cal space remains unexplored [8], highlighting the vast potential for
discovery in metabolomics. Efforts over several decades to improve
metabolite identification through computational methods, including
both rule-based [9] approaches and, more recently, machine learning
techniques [10, 11] have been significantly hindered by the lack of
standardized datasets and common evaluation protocols. Researchers
frequently rely on proprietary or fragmented spectral libraries, limit-
ing the development and fair comparison of new methodologies. This
shortage of publicly accessible benchmark datasets [12] has posed a
substantial barrier to innovation within computational metabolomics.

Another significant limitation has been the historical reliance on
single-stage fragmentation data (MS2). Standard metabolomics analy-
ses rarely exploit the full potential of modern instrumentation, which
allows multiple sequential rounds of fragmentation [5], termed multi-
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1. Introduction
stage MS MSn, extending beyond the typical MS2. MSn data offer
deeper structural insights by hierarchically fragmenting molecules,
where each stage generates fragments that can themselves be frag-
mented, producing detailed fragmentation trees. These trees can reveal
molecular substructures that often remain hidden when relying solely
on a single fragmentation event [13].

However, despite their theoretical advantages, multi-stage MS
data have historically been scarce and underutilized in untargeted
metabolomics [5]. The main barriers have been the increased com-
plexity, time, and resource demands associated with acquiring MSn
experiments. Moreover, public repositories predominantly contain
MS2 spectra [14], with virtually no multi-stage (MS3 or higher) data
available, limiting the scope of data-driven research. To address these
challenges, in Pluskal lab, we developed a high-throughput, high-
quality acquisition pipeline for MSn spectra, dramatically improving
the efficiency and scalability of multi-stage fragmentation data collec-
tion.

To investigate the value of multi-stage mass spectrometry MSn
data, this thesis introduces first deep learning approaches specifi-
cally tailored for multi-stage mass spectrometry. Neural networks
have demonstrated significant potential across various scientific do-
mains, including biology [15], chemistry [16], and computational sci-
ences [17], due to their ability to capture intricate patterns within data.
Central to this thesis is the development and deployment of graph neu-
ral networks [18], which model the hierarchical nature of MSn data.
Additionally, the thesis employs DreaMS [19], a transformer-based
foundation model pretrained on extensive MS2 spectra repositories, to
generate learned embeddings for spectra at all fragmentation stages.
Integrating DreaMS within multi-stage MS workflows marks a exten-
sion of foundation models beyond single-stage fragmentation data,
demonstrating their significant potential in enriching structural infor-
mation from mass spectrometry.

To facilitate neural network applications and foster reproducible re-
search, this thesis introduces MassSpecGymMSn, the first large-scale,
open-access benchmark dataset explicitly designed for multi-stage
MSn analysis. MassSpecGymMSn contains 183,294 spectra spanning
fragmentation levels up to MS5, covering 14,008 unique compounds,
the majority of which have not been previously measured. This bench-

2



1. Introduction
mark substantially expands the available mass spectrometry data,
offering machine learning ready MSn data that were previously un-
available to researchers. In addition, MassSpecGymMSn defines stan-
dardized challenges for molecule identification and de novomolecular
structure generation, with carefully designed dataset splits to prevent
information leakage.

Finally, by combining benchmarking, statistical testing, and neural
networks, this thesis provides the first study connecting multi-stage
MSn data with deep learning models and quantitatively evaluates
the value of multi-stage MSn data compared to conventional MS2
approaches.

1.1 Contributions

Our work presents the following key advancements toward establish-
ing the combination of multi-stage MSn data and artificial intelligence
as a new source of discovery in metabolomics:

• Development of the first neural network for multi-stage MSn
mass spectra:
We introduced graph neural networks (GNNs) designed specifi-
cally for multi-stageMSn data. These models represent spectra trees
as hierarchical fragmentation structure, resulting in a dramatic im-
provement of nearly 10x in molecular identification performance
compared to traditional MS2-based models.

• Introduction of the first open, large-scale MSn dataset, MassSpec-
GymMSn:
This benchmark contains over 183,000 spectra spanning fragmenta-
tion stages up to MS5, covering ~14,000 unique compounds, greatly
expanding publicly accessible mass spectrometry data previously
limited primarily to MS2.

• One of the first statistical analyses supporting MSn over MS2:
Weprovide some of the first quantitative and statistical evidence that
deeper MSn stages offer distinct advantages over MS2. Statistical
analyses show that each additional fragmentation stage uncovers
significant structural relationships not present inMS2 alone. Further

3



1. Introduction
examination of model internal representations reveals that models
trained on full MSn trees develop richer, higher-dimensional feature
spaces compared to those trained solely on MS2 data.

• Foundation model integration beyond MS2:
For the first time, we showed that DreaMS, a foundation model
trained solely on MS2 spectra, also produces meaningful embed-
dings for MSn data. Without ever seeing multi-stage spectra during
training, its embeddings still cluster MSn fragmentation stages in a
hierarchy that mirrors true substructure relationships. Downstream
models built on these embeddings consistently outperformed con-
ventional methods, underscoring both the surprising generalizabil-
ity of foundation models and their ability to enhance structural
insights in mass spectrometry.

• Proven compatibility and extensibility of MSn Data:
In our MassSpecGymMSn, both MS2 and MSn data can be used
together seamlessly. The benchmark is also designed for easy ex-
pansion, and we plan to add over two million spectra spanning
multiple collision energies in both positive and negative ion modes
in the near future.

• Facilitating broad community adoption:
By releasingMassSpecGymMSn and its associated tools as standard-
ized, reproducible open-source resources, we provide a benchmark
for fair method comparisons. This significantly lowers the barrier
to entry into computational metabolomics, promoting widespread
adoption and fostering collaboration across multiple research com-
munities at the intersection of mass spectrometry and machine
learning.

4



2 Theoretical background

2.1 Fundamentals of mass spectrometry

2.1.1 FromMS1 to MS2, foundations of mass spectrometry

Mass spectrometry (MS) is a powerful analytical technique that offers
high sensitivity and specificity, making it a vital tool in areas such as
drug discovery, environmental analysis, and proteomics. By accurately
measuring themass-to-charge ratio (m/z) and ion abundance,MSpro-
vides unique molecular fingerprints that are essential to identify and
quantify compounds in complex mixtures. In this context, the value
of m/z is defined as the mass of an ion divided by its charge, with ion
masses reported in daltons (Da), where one dalton is 1/12 of the mass
of a carbon-12 atom. This level of precision is complemented by the
inherent simplicity and speed of mass spectrometry (see Figure 2.1).
Unlike techniques such as X-ray crystallography, which often require
extensive sample preparation and prolonged data collection [20], MS
can be adapted for high-throughput analysis, providing rapid and
exact molecular identification.

Before analysis, sample preparation is essential to ensure both
high-quality and reliable results. Typically, the sample consists of a
complex mixture of analytes, from which only a subset is of primary
interest. Techniques such as chromatography are commonly used
to separate these mixtures, enhance sensitivity and selectivity, and
perform sample cleanup [22].

Following preparation, the analytes are introduced into a mass
spectrometer (see Figure 2.2), which comprises three main compo-
nents: an ionization source, a mass analyzer, and an ion detection system.
The process in a mass spectrometer begins with converting analytes
from their native state to gas-phase ions using soft ionization tech-
niques such as Electrospray Ionization (ESI) andMatrix-Assisted Laser
Desorption/Ionization (MALDI). These methods preserve the predomi-
nantly intact molecular ion by minimizing fragmentation [23], which
is essential for subsequent analysis. In this thesis, our data were ac-
quired using ESI ionization [5], whereby an electrical charge is im-

5



2. Theoretical background

Figure 2.1: The figure shows the molecular structure of Mevastatin,
a compound used in the prevention of cardiovascular diseases [21],
along with its exact molecular weight. Adjacent to it are three distinct
mass spectra, each generated from the same molecule under different
experimental conditions. The spectra differ significantly, showing how
experimental conditions affect fragmentation and spectral profiles.

parted to the analyte molecules, facilitating their manipulation within
an electromagnetic field.

Following ionization, the ions are introduced into the first mass
analyzer (MS1), where they are separated based on their m/z ratios.
Instruments such as time-of-flight (TOF), Orbitrap, and quadrupole
analyzers are commonly used at this stage. Although each analyzer
has its own strengths and limitations [24, 25], they all rely on elec-
tromagnetic principles, which typically deflect ions [26] according
to Fleming’s left-hand rule, to achieve separation. The primary pur-
pose of MS1 is to generate a spectrum of intact ions and select those

6



2. Theoretical background

Figure 2.2: The upper part of the image: a sample is collected from
an environmental source (e.g., a leaf) and introduced into the mass
spectrometer, where its unique m/z is recorded as a mass spectrum.
The lower part provides a magnified view of the instrument’s core
components. It depicts the ionization source, where the sample is
transformed into gas-phase ions, the ion optics that focus and direct
these ions, and the mass analyzer that separates them based on their
m/z values before detection

precursor ions of interest. However, MS1 only provides mass measure-
ments of intact ions and does not offer the structural details needed to
resolve isomeric compounds or elucidate complex molecular architec-
tures [27].

To address the limitations of mass measurement alone, the se-
lected precursor ions are subsequently transferred to the second mass
analyzer (MS2) for controlled fragmentation. In MS2, the isolated pre-
cursor ion is subjected to collision-induced dissociation (CID), where
it collides with an inert gas (such as helium or nitrogen) within a col-
lision cell. This collision converts kinetic energy into internal energy,
causing the ion to break into smaller, characteristic fragments [28].
The reproducibility of CID ensures that the resulting fragmentation

7



2. Theoretical background
patterns provide reliable fingerprints for structural elucidation and
isomer differentiation.

The final mass spectrum, whether fromMS1 or MS2, displays m/z
values along the horizontal axis, serving as unique identifiers for the
ions, and their corresponding intensities along the vertical axis, which
reflect ion abundance. Achieving high resolution and sensitivity at
each stage is crucial, as it allows for the detection of subtle differences
in fragment ions [29]. This precision effectively narrows the range of
potential structural candidates, consequently enhancing the reliability
of compound identification.

For clarity, this chapter focuses on the core functions of the MS1
andMS2 stages in tandemMSworkflows.WhileMS1 is responsible for
the generation and selection of intact ions based on their m/z ratios,
MS2 provides additional structural information through controlled
fragmentation. Although a wide variety of mass analyzers, ioniza-
tion methods, sample preparation techniques, and collision strategies
exist, our discussion has been streamlined to emphasize these funda-
mental principles, recognizing that each component must be carefully
optimized according to the specific analytical context [30].

2.1.2 Multi-stage fragmentation mass spectrometry

Multi-stage mass spectrometry (MSn1) builds on traditional tandem
mass spectrometry by iteratively fragmenting ions to reveal increas-
ingly detailed structural information. In a typical workflow, a com-
plex sample is first analyzed byMS1, which records themass spectrum
of intactmolecular ions. Once sufficient ion signal is acquired, a precur-
sor ion is isolated and fragmented, producing an MS2 spectrum that
contains the initial set of product ions. InMSn, selected fragments from
MS2 are subsequently isolated and subjected to further fragmentation,
generating an MS3 spectrum; this process can be repeated through
additional stages (see Figure 2.3). Each successive fragmentation stage
provides deeper insights into the molecular fragmentation process
and can subsequently lead to better compound identification [13, 31].

However, MS2 alone often leaves gaps in our understanding. Prod-
uct ions may result from intermediate rearrangements rather than

1. Here, n indicates the number of successive fragmentation stages.

8



2. Theoretical background

Figure 2.3: In multi-stage fragmentation, the selected precursor peaks
are isolated and subjected to fragmentation, generating product ions
that can serve as new precursor ions for further fragmentation.

direct fragmentation of the precursor, leading to unexplained sig-
nals even when the molecular structure is known. Subsequent MSn
fragmentation of selected product ions enables the reconstruction
of detailed fragmentation pathways by linking each fragment to its
originating precursor [5, 32]. This helps establish clearer structural
relationships within the molecule. These spectra can be integrated
into hierarchical fragmentation trees that reveal how molecular sub-
structures break down across levels. Crucially, MSn remains fully
compatible with standard MS2 workflows, extending them by adding
deeper layers of structural information. Despite these advantages,
over 95% of LC/MS fragmentation studies remain limited to MS2 [13],
underscoring the vast potential of broader MSn adoption.

9



2. Theoretical background
2.1.3 Compound identifications with multi-stage mass spectra

Although MS2 has proven effective, yet MSn introduces an element
of flexibility over conventional MS2 for resolving complex structural
challenges. Importantly, MSn offers significant advantages for the
dereplication of natural products23 by distinguishing closely related
isomers, a task thatMS2 alone cannot reliably achieve [34]. InMS2, the
absence of specific diagnostic ions prevents the clear differentiation
between 6-C and 8-C glycosidic flavonoids, even when differences
in ion-intensity ratios are observed [13, 31]. Establishing reliable dif-
ferentiation rules using only MS2 would require the acquisition and
computational analysis of an impractically large number of spectra.

In contrast, the MS3 stage reveals clear diagnostic ions that distin-
guish vitexin from isovitexin due tomarkedly different C-ring cleavage
mechanisms [31]. Remarkably, MS4 data can even provide the precise
position of the functional group. Besides facilitating the identifica-
tion of isomers, MSn has demonstrated its capability in identifying
larger, high-mass compounds, where assigning the correct structure
becomes combinatorially more challenging [35]. For example, twenty-
five citrus flavonoid O-diglycosides, complex molecules with masses
above 1000–1500 Da, were accurately identified by comparing experi-
mental MS3 spectra [13, 36]. This clearly demonstrates that relying
solely on MS2 spectra can make high-confidence identification of such
challenging molecules significantly more difficult.

Decide upon the definitive MS level for structural elucidation is
often challenging. Fabre et al. [37] demonstrated the power of MSn to
probe the fragmentation of flavonoid aglycones. Their study revealed
thatMS3 data could confirmproposed fragmentation pathways, distin-
guish characteristic neutral losses linked to specific substructures, and
provide enough detail to infer plausible fragment structures. However,
for some flavonoid aglycones, the information from MS3 was insuf-
ficient to conclusively elucidate the fragmentation mechanisms [13,
37]. In this diploma thesis, we construct of spectral trees up to the

2. Dereplication is the rapid identification of known compounds to avoid unneces-
sary characterization of previously described molecules.
3. These bioactive compounds, rich in structurally diverse secondary metabolites
with significant pharmacological potential, are crucial leads in drug discovery [33]
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2. Theoretical background
MS5 level, with the aim of overcoming challenging cases that remain
unresolved at lower fragmentation stages.

2.1.4 Algorithmic approach to spectra trees

Despite the relative scarcity of spectra trees, several algorithmic ap-
proaches have been developed to enhance spectral annotation by quan-
tifying tree similarity. One prominent method is the construction of
fragmentation trees, which assignmolecular formulas to individual spec-
tral peaks and link them in a hierarchy that reflects possible fragmen-
tation pathways. Fragmentation trees have been extensively applied to
MS2 data [9, 38], and extending them to MSn, where additional frag-
mentation stages offer more detailed insights, is expected to produce
trees that are chemically and physically more accurate [39]. Böcker
and colleagues further refined these methods for MSn data, showing
that including deeper fragmentation levels can reorder up to 25% of
the fragments [40], demonstrating for the first time the significant
benefit of MSn for improving tree quality [41].

Fragmentation trees also support tree alignment algorithms [6, 42,
43], allowing direct comparison of MS2 and MSn fragmentation pat-
terns within a unified framework. In addition, they serve as crucial
inputs for both forward tasks (predicting spectra from molecular
structures [44–46]) and reverse tasks (such as de novo molecular
generation [9, 10, 47, 48]), see Figure 2.4. This compatibility allows
seamless comparison of MS2 and MSn data, while directly benefiting
downstream structure prediction workflows.

In parallel, in silico generation approaches have been proposed to
address the limited coverage of experimental spectra [49–51], but these
are often hard to reproduce, outdated, or commercially restricted, and
have not gained wide adoption.

2.1.5 Reference libraries

Spectral libraries are constructed to compile extensive collections of
mass spectra that serve as references for identifying unknown com-
pounds [34, 52]. Yet, library matching often results in low annota-
tion rates, leaving many biomarkers and compounds uncharacterized,
even when using modification-aware algorithms [5, 53]. This shortfall
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2. Theoretical background

Figure 2.4: DiffMS [10] is the current state-of-the-art model for molec-
ular structure prediction from MS2 data. It uses fragmentation trees
from SIRIUS [9] tool to preprocess spectra, which improve predictive
accuracy.

is largely due to the limited availability of high-quality, open-access
databases, and the fact that over 95% of LC/MS fragmentation studies
are still performed at the MS2 level [13].

Open-accessMS2 libraries such asGNPS [14],MoNA[54],HMDB [55],
MassBank [56], NPLIB [57], and MassSpecGym [58] vary in both
scope and quality. The largest, GNPS, contains up to 322,000 spectra
and about 16,000 unique molecules. However, many spectra and com-
pounds in these databases overlap or are of varying quality. To address
this issue, MassSpecGym was developed to aggregate high-quality
MS2 data from GNPS, MoNA, and MassBank, as well as a subset of
the MS2 dataset used in this thesis. In contrast, proprietary libraries
like those from the National Institute of Standards and Technology
(NIST) [59], MzCloud [60], and METLIN [61], although more com-
prehensive (with NIST containing around 52,000 unique compounds),
have restricted access, limiting their utility for machine learning ap-
plications and broader scientific research.

In this diploma thesis, we focus onMSn data, a challenging domain
due to the more complex acquisition process and the limited number
of compounds covered. Open-access repositories such as MassBank
EU [56] and MoNA [54] offer fewer than 2,000MS(n>2) spectra. Sev-
eral smaller datasets have been generated in specific experimental
contexts [62–64], but these are scattered, and remain difficult to con-
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2. Theoretical background
solidate. The largest closed database, mzCloud [60], includes more
than 30,200 unique compounds [5], yet its restricted access and lack
of standardization limit its usability for machine learning research.

The challenge of compound identification is magnified by the
immense diversity of chemical space, estimated at up to 1060 small
molecules under 500 Da [65]. While large structure databases like CO-
CONUT [66], ChEMBL [67, 68], PubChem [69], and ZINC [70] cover
millions to billions of compounds, most lack corresponding spectral
data.

To address the significant shortage of high-quality, open-access
MSn data and provide a reproducible, efficient method for generating
such spectra, our colleagues led by Dr. Corinna Brungs assembled a
database comprising 30,008 unique compounds and 2,350,646 MSn
spectra (bothmerged and individual) [5]. This pioneering dataset was
generated in just 23 days using high-quality acquisitions at multiple
collision energies and in both positive and negative ion modes (see
Section 4.1). The goal was to expand open-access spectral libraries and
demonstrate a fast, reproducible technique for MSn data generation,
with all data and workflows made freely available to the community.

Building on this success, in this thesis we introduce MassSpec-
GymMSn, the first machine-learning–ready MSn database, which
contains multi-stage fragmentation spectra for 14,008 unique com-
pounds, totaling 183,294 spectra. We accompanied this resource with
an open-source preprocessing pipeline and usage guidelines tailored
for machine learning practitioners. We propose it as a foundation for
in silico generation tasks, with the potential to bridge the gap between
annotated spectra and compound identification, and to foster stronger
integration between the data science community and metabolomics.

2.2 Deep learning

The perceptron, introduced in 1957 by Frank Rosenblatt, is a binary
classifier that laid the groundwork for modern neural networks [71].
Unlike earlier binary models, the perceptron processes numerical
inputs, with each connection assigned a weight that can be adjusted
based on the data. Drawing inspiration from synaptic plasticity, the
biological process where the strength of connections between neurons
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2. Theoretical background
changes with experience [72], the perceptron adapts its weights to
effectively learn and classify patterns. This adaptive mechanism has
been central to developing advanced neural network architectures
and learning algorithms, leading to breakthroughs recognized by the
Nobel Prize in 2024 [73–75].

Deep learning extends this idea by stacking multiple layers, form-
ing multi-layer perceptron (MLP), and enabling the approximation
of complex, non-linear functions [76]. Given a set of input-output
pairs, the goal is to learn a parameterized function fθ that maps in-
puts x ∈ Rn to outputs y ∈ Rm, where n and m denote the dimen-
sions of the input and output spaces, respectively. The model aims
to predict outputs as close as possible to the true targets y, produc-
ing fθ(x) = ŷ ≈ y as an approximation.functions [76]. Given a set
of input-output pairs, the goal is to learn a parameterized function
fθ that maps inputs x ∈ Rn to outputs y ∈ Rm, where n and m de-
note the dimensions of the input and output spaces, respectively. The
model aims to predict outputs as close as possible to the true targets
y, producing fθ(x) = ŷ ≈ y as an approximation.

The function fθ is typically composed of simpler layers, each ap-
plying a linear transformation followed by a non-linear activation
function (e.g., ReLU). Formally:

ŷ = fθ(x) = f (L)(. . . f (2)( f (1)(x))) (2.1)

where f (l)(x) = σ(W(l)x + b(l)) (2.2)
Here, L is the total number of layers, f (l) denotes the transformation

at layer l. AndW(l) and b(l) represent trainable parameters, and σ is the
non-linear activation function. Those non-linear activation functions
are essential, without them, the network would collapse into a linear
model incapable of capturing complex patterns.

Training is necessary because neural networks initially start with
random weights, leading to inaccurate predictions. The training pro-
cess adjusts these parameters tominimize a defined loss functionL(θ),
which quantifies the error between predicted and actual outputs. Op-
timization is typically performed using stochastic gradient descent,
with the backpropagation algorithm efficiently computing gradients
by propagating errors backward through the network [75]. Iteratively
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2. Theoretical background
updating the parameters allows the network to learn meaningful rep-
resentations and improve predictive accuracy.

Beyond basic architectures, deep learning includes specialized
models tailored for particular data structures and tasks. In this thesis,
we utilize graph neural networks (GNNs) [18] and Transformers [77]
due to their proven effectiveness for specific modalities relevant to our
work.

Graph Neural Networks are a specialized class of neural networks
designed to process data represented as graphs. At the core of GNNs
is the message passing algorithm, which updates each node’s features
by aggregating information from its neighboring nodes [78]. This
process generates contextually rich representations for nodes and
edges, and consequently for the entire graph [79]. In our work, we
focus on obtaining graph-level representations of mass spectra trees,
where nodes correspond to measured spectra and edges represent the
hierarchy of fragmentation events.

Transformers [77] have become a cornerstone of modern AI, pow-
ering state-of-the-art models like ChatGPT [80] and Gemini [81]. They
have revolutionized sequence modeling by allowing every token in
an input sequence to interact directly with every other token. Unlike
earlier widely used approaches, such as recurrent or convolutional net-
works [82–84], that rely on local context or sequential processing, the
Transformer employs a global self-attention mechanism. This design
enables the efficient capture of long-range dependencies, originally
developed for natural language processing tasks, but it has since been
successfully applied to areas ranging from computer vision [85] to pro-
tein design [15, 86]. In this thesis, we implement Transformer models
for molecular structure generation based on mass spectra trees.
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3 Machine learning for mass spectrometry

3.1 Foundation models and DreaMS

Foundation models1 refer to large-scale neural networks pre-trained on
large, diverse datasets, which can then be fine-tuned for a wide array
of downstream tasks. This paradigm shift moves from developing
models tailored for a single specific problem to constructing general-
purpose data representations that capture underlying patterns across
domains. One well-known example today is in natural language pro-
cessing, where models BERT [87] or GPT [88] are pre-trained using
unsupervised or self-supervised techniques, enabling them to learn
rich syntactic and semantic structures directly from raw text without
explicit labels. These robust, high-dimensional representations can
subsequently be adapted for specific, fine-grained applications with
relatively limited additional training data [89] (see Figure 3.1).

Motivated by the success of foundation models in other fields, in our
lab, Bushuiev et al. developed DreaMS, a transformer-based founda-
tion model pre-trained on a vast corpus of unlabeled spectra. The key
idea is to learn high-dimensional representations of mass spectra from
millions of examples, enabling the model to capture generalizable
patterns in fragmentation events. DreaMS is pre-trained to simultane-
ously predict masked spectral peaks and chromatographic retention
orders from raw MS/MS data. Predicting missing peaks requires rec-
ognizing when a set of observed fragments implies the presence of a
specific hidden fragment, while predicting retention order demands
an understanding of molecular features that affect properties such as
polarity and size [91]. Through these pre-training tasks, the model
learns the underlying structural and fragmentation patterns, yielding
rich spectral embeddings that implicitly encode molecular structure.

The final DreaMS model is optimized for spectral similarity, ensur-
ing that spectra from chemically similar compounds cluster closely
in the latent embedding space. This provides a robust alternative
to traditional molecular networking approaches [92], which rely on
heuristics and often struggle to resolve subtle structural differences. In

1. Neural networks pre-trained on large, diverse datasets to learn general-purpose
representations.
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3. Machine learning for mass spectrometry

Figure 3.1: (a) Self-supervised learning on spectra, where masked
spectra serve as templates for DreaMS training. (b) UMAP projection
of DreaMS embeddings, illustrating the organization of the represen-
tation space by molecular formulas. (c) DreaMS (blue) outperforms
SIRIUS, current state-of-the-art, (pink, under two settings) in detect-
ing fluorinated molecules, achieving nearly two-fold higher precision.
(d) PCA [90] of selected precursor embeddings demonstrates linear
clustering by molecular structure, robust across different ionization
adducts and normalized collision energies [19].
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3. Machine learning for mass spectrometry

contrast, DreaMS leverages learned embeddings for more scalable and
accurate untargeted analysis. A notable demonstration of its utility
is in the detection of fluorinated compounds, DreaMS, when fine-
tuned, outperforms specialized tools like SIRIUS [9] in identifying
organofluorines2, see Figure 3.1. This generalizable framework en-
hances compound annotation and structure discovery, positioning
DreaMS as a strong foundation model for real-world mass spectrome-
try applications. In this thesis, we adopt it as one of the alternatives
for mass spectra encoding.

3.2 Murcko histogram and data splitting

Generalization beyond the training data is essential in machine learn-
ing, making data splitting a critical step in model development [76].
In molecular machine learning, datasets are typically partitioned into
training and validation sets using methods such as structure-disjoint
splitting3, scaffold-disjoint splitting [96, 97], or random sampling. How-
ever, when working with mass spectrometry data, these conventional
splitting strategies may inadvertently lead to information leakage
due to the intrinsic nature of fragmentation events [98].

Mass spectrometry datasets present unique challenges due to
collision-induced dissociation (CID)4. During CID, molecules fragment
into ions that often generate nearly identical spectra, even when subtle
structural differences exist. Additionally, minor variations, such as dif-
ferences in linker length, can yield similar fragmentation patterns [98].
These factors complicate the identification of truly novel structures in
the validation set, potentially leading to models that perform well on
validation data yet fail to generalize to new molecular structures (see
Figure 3.2).

One prevalent technique for splitting molecular data is scaffold-
disjoint splitting, typically implemented using Murcko scaffolds [99].
This approach reduces a molecule to its core structure by removing

2. Organofluorines a chemically important class that makes up over 30% of modern
pharmaceuticals and agrochemicals [93, 94]
3. Based on the first 14 characters of the InChIKey [95], which does not resolve
stereoisomers.
4. CID fragments ions by collisions with inert gas molecules, such as helium or
nitrogen.
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Figure 3.2: Adapted from Roman Bushuiev’s thesis [98], this figure
illustrates a critical challenge in mass spectrometry data splitting.
Molecules (a)–(d) share similar fragmentation patterns, evidenced
by peaks at m/z 177.0223 and 101.0163. Splitting fragments from these
nearly identical molecules between training and validation sets may
cause a model to learn trivial, non-generalizable features, leading
to overfitting. Encountering a new compound (e), which lacks the
nitrogenated Thiane ring, the model fails to extrapolate despite shared
spectral peaks.

side chains and retaining only the essential ring systems and link-
ers. While this method provides a binary classification, grouping
molecules as either similar or distinct, it has notable limitations, espe-
cially in the context of mass spectrometry. For example, minor varia-
tions such as differences in linker length can lead to different scaffold
assignments for otherwise highly similar molecules. This discrepancy
is particularly problematic when fragmentation patterns are nearly
identical despite structural variations [98].

To address these limitations, our lab introduced the concept of
Murcko histograms5. Unlike traditional scaffold-based methods that
assign a single label to a molecule’s core structure, Murcko histograms
provide a quantitativemeasure ofmolecular connectivity. In brief, after
computing the Murcko scaffold, the method records two key metrics
for each ring: the number of neighboring rings and the number of

5. Murcko histograms record, for each ring in the scaffold, the number of neighbor-
ing rings and the number of directly attached linker atoms, creating a connectivity
histogram.
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directly attached linker atoms. This process produces a histogram
that exhibits two important properties. First, it is invariant to linker
length, focusing instead on the connectivity between rings. Second,
it offers a quantitative similarity measure with a transitive property:
two molecules are considered similar if their histograms match or if
one histogram is a subhistogram of the other [98].

By grouping molecules based on these relaxed similarity criteria,
Murcko histograms effectively mitigate data leakage and reduce the
risk of overlapping fragmentation patterns between training and val-
idation sets. In this thesis, we employ Murcko histograms for data
splitting due to their ability to accurately group similar compounds
and their computational efficiency compared to alternatives such as
Maximum Common Edge Subgraph (MCES) [100].

3.3 Mass spectra benchmarks

Benchmarking is crucial for advancing machine learning approaches
toMS/MS spectrumannotation, as it establishes standardized datasets,
evaluation metrics, and data splitting protocols that ensure models
truly generalize rather than simply overfitting dataset-specific artifacts.
Previous efforts, such as the Critical Assessment of Small Molecule Iden-
tification (CASMI) challenges [101] and the MIST CANOPUS [102]
benchmark, have significantly contributed to molecular annotation
but exhibit limitations in several important aspects. For example, the
CASMI challenges comprise only a few hundred spectra and require
extensive expert preprocessing, factors that limit reproducibility and
rapid method development, with the most recent competition held
three years ago. Similarly, although MIST CANOPUS curated a bal-
anced dataset of approximately 9,000 molecules, its reliance on 2D
InChIKey–based splits often permits chemically similar molecules to
appear in both training and validation sets (see Section 3.2).

This initiative, led by our lab in collaboration with multiple inter-
national teams, addresses these limitations through the development
of MassSpecGym [58]. MassSpecGym provides the largest curated
collection of high-qualityMS/MS spectra (231,000 spectra linked to
29,000uniquemolecules) and introduces a rigorous data split based on
molecular MCES distances. This novel split minimizes the risk of near-
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duplicate or highly similar molecules appearing in both training and
test sets, as demonstrated by more realistic Tanimoto similarity [103]
distributions compared to conventional splits. Moreover, MassSpec-
Gym defines three distinct challenges: de novo molecule generation,
molecule retrieval, and spectrum simulation, with tailored evaluation
metrics such as Tanimoto similarity,MCES distance, and cosine similarity
for spectral predictions. By standardizing these tasks and providing a
machine learning–ready benchmark through user-friendly interfaces
(e.g., integrationwith PyTorch Lightning [104] andHugging Face [105]),
MassSpecGym bridges the gap between mass spectrometry and AI.

Motivated by the success of the original MassSpecGym, this the-
sis introduces MassSpecGymMSn, the first benchmark explicitly de-
signed for multi-stage MSn mass spectra, enabling next-generation
AI-driven discoveries in mass spectrometry, see Fig. 3.3. Our approach
retains the core functionality of MassSpecGym, and further improves
previous bottlenecks.

Figure 3.3: Standardized and reproducible benchmarks are essen-
tial for accelerating AI-driven discoveries. To support progress
in metabolomics and mass spectrometry, we introduce MassSpec-
GymMSn.
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4 MassSpacGymMSn: Dataset and benchmark
construction

4.1 Data acquisition and setup

In our lab, colleagues Brungs et al. introduced thefirst high-throughput
method for acquiringMSn trees alongwith an automatedworkflow for
extracting and building open MSn libraries. Using this approach, we
collected data from seven compound libraries, encompassing a total
of 37,829 compounds. Based on their InChIKey strings1 (which ac-
count for stereoisomers), 34,413 of these compounds represent unique
structures, while 2,250 compounds appear in multiple libraries. By
applying our acquisition pipeline to these 37,829 small molecules, we
obtained MSn spectra for 30,008 unique compound structures within
just 23 days in both positive and negative ion mode [5]. For compari-
son, previous high-throughput workflows acquired only MS2 spectra
at speed of ∼ 1, 000 compounds per week [106].

In total, our newMS library comprises 357,065 cleaned and derepli-
cated MS2 spectra (170,131 unmerged) and 2,350,646 MSn spectra
(1,366,639 unmerged). Merged spectra are pseudospectra that ag-
gregate individual spectra across collision energies or fragmentation
stages, see Figure 4.1b. The absence of spectra for some compounds
is likely due to insufficient ionization or low MS1 signal intensities
falling below the MSn threshold. In terms of chemical diversity, our
dataset includes nearly 22,700 compounds that are not present in
other major databases, and this helps expand the coverage of the mass
spectrometry measured chemical space of small molecules.

In our workflow, library generation begins with the collection and
preparation of samples from multiple compound libraries, followed
by database querying [107] to compile detailed metadata. These data
are then used to generate acquisition sequences for both positive and
negative ionization modes. We optimized a high-throughput flow
injection method that achieves a rectangular current intensity profile
over 1.5 minutes within a total analysis time of 3 minutes per sample.

1. The InChIKey encodes molecular structure and stereochemistry in a fixed-length
hashed string.
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4. MassSpacGymMSn: Dataset and benchmark construction

Figure 4.1: (a) Illustrates the generation of multi-stage MSn fragmen-
tation trees from molecular inputs. For each compound, a full MSn
tree is constructed by sequentially fragmenting ions across multiple
stages, resulting in a library of MSn spectra. (b) Shows the process of
spectra merging, where individual spectra acquired at different colli-
sion energies (e.g., 30 eV, 45 eV, and 60 eV) for the same compound
are combined into a single merged, or “pseudo” spectrum.

This setup supports acquisition up to the MS5 level, selecting up to
25 precursor ions (distributed as 5 for MS3, 10 for MS4, and 10 for
MS4) to yield a total of 75 spectra across three collision energies, see
Figure 4.2. Notably, only a subset of precursors triggers a full MSn
tree.

Themass spectrometer process is automated using robotic andEcho
liquid handling systems, whichmix and dilute up to ten compounds si-
multaneously. A data-dependent acquisitionmethod is employedwith
a 50% split between sampling and washout times. Data-dependent
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acquisition is an automated method where, following an initialMS1
scan, the instrument selects the most intense precursor ions, typically
the top five, that exceed a set intensity threshold for further fragmenta-
tion. These selected ions are then isolated and fragmented at multiple
collision energies to generate MS2 and subsequent MSn spectra, and
the process is iteratively repeated for deeper fragmentation levels,
ensuring that the most informative signals are systematically targeted.

Conventional liquid chromatography (LC) systems often fail to
provide sufficient time during the elution peak to accumulate strong
signals necessary for robust mass spectral tree acquisitions, which
can exacerbate noise issues [108]. To overcome this, our workflow
deliberately avoids the chromatography step, enhancing signal quality.

Figure 4.2: The figure illustrates the MSn tree data acquisition work-
flow as reported by Corrina et al. [5]. It shows that eachMS2 precursor
ion can trigger up to 75 scans. The legend: OT indicates Orbitrap, IT
stands for Ion Trap, and dd denotes data-dependent acquisition.

Once the raw data are acquired, they are imported into our auto-
mated mzMine [109] workflow, where mass detection, fragmentation
tree construction, and spectral annotation are performed. In this pro-
cessing stage, each complete MSn tree is generated in approximately
13 seconds. Quality control measures ensure that only high-quality,
matching spectra are exported along with their quality scores. All
scripts, acquisition methods, and protocols are open source and freely
available to the research community.
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Given the rapid and automated nature of our data acquisition
workflow, one might reasonably question whether the generated spec-
tra are truly reliable, especially since traditional methods typically
require much longer processing times. To address this concern, we
performed a validation using feature-based molecular networking
(FBMN) [110] on open-source libraries with GNPS [14]. Specifically,
when comparing Tanimoto similarity scores, 88% of all matches exhib-
ited high similarity values (≥ 0.85). Furthermore, using the maximum
common substructure metric (MCES) [100], where an edit distance of
less than 4 indicates near-identical fragmentation patterns, we found
that 94% of matches were either identical or highly similar. A recent in-
dependent study further confirmed our library’s quality by examining
compound and spectral metadata across public repositories, which
led to the removal of over 31,000 spectra each from GNPS, MoNA, and
MassBankEU, while our MSn library failed quality checks for only 58
entries [111].

In conclusion, our solution represents a paradigm shift in spectral
library construction. Every step of the process, from sample collec-
tion and preparation to data acquisition and automated processing,
is fully reproducible and open source, with all scripts, methods, and
workflows freely shared with the community. This is the first library
of its kind, and all raw data, compound metadata, and processing
parameters are transparently available. This resource is expected to ex-
pand the public repository of reference spectra and serve as a catalyst
for developing innovative computational tools and machine learning
models in metabolomics.

4.2 Implementation: Multi-stage MSn dataset

In this thesis, we extend the originalMassSpecGym benchmark [58],
which was focused on tandem MS2 spectra, into a new benchmark,
MassSpecGymMSn, designed to handle multi-stage mass spectrometry
MSn data (see Fig. 4.3). The MSn benchmark comprises 14,008 unique
molecules, 16,476 distinct mass spectra trees, and a total of 183,365
mass spectra acquired in positive ion mode. Spectra in this dataset
reach up to five fragmentation levels, offering richer structural in-
sights. To ensure reproducibility, the dataset includes standardized
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splits (see Section 3.2), defined challenges (see Section 4.4), and ac-
companying tutorials (see Section 6.4.6) for downstream use.

From an implementation perspective, we introduced several key
components and architectural improvements to support this extension.
Below, we summarize the main technical contributions that enable
efficient handling and modeling of hierarchical MSn data:
• Hierarchical graph representation

The core innovation is the reframing of MSn data as a hierarchi-
cal graph structure, where each spectrum tree captures successive
fragmentation events. This representation includes the initial MS2
spectrum (root) and all subsequent stages.

• Handling precursor m/z variations
Each node in the graph corresponds to a precursor ion with a de-
fined m/z value and its associated spectrum. To address small de-
viations in precursor m/z values, common due to instrument limi-
tations [5, 112], our implementation links child nodes based on the
closest available m/z match, with predefined maximum allowed
deviation.

• Dealing with missing mass spectra
To maintain structural integrity when some precursor spectra are
missing (due to low signal or shuffled entries in MGF2), we intro-
duce dummy placeholder nodes during tree construction. These are
updated once the corresponding spectra become available, while
preserving the overall fragmentation hierarchy.

• Efficient data handling and graph conversion
For efficient batching and model integration, we use PyTorch Light-
ning [114] for training orchestration. To enable seamless use in
graph neural network workflows, spectrum trees are converted into
PyTorch Geometric [115] data objects.

• Caching and multi-GPU optimization
To address performance bottlenecks in retrieval tasks, particularly
when processing large candidate sets of molecules, we implemented

2. Mascot Generic Format (MGF) is a common text-based format for storing mass
spectra [113].
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HDF5 [116]-based caching. Molecular transformations for all candi-
dates are precomputed and stored. This optimization is especially
critical when evaluating models against full candidate sets. Our
pipeline is optimized for multi-GPU systems, achieving over 10×
speed up on AMDMI250X and NVIDIA A100 hardware, see Fig-
ure A.1.

• Configurable spectrum featurization
We developed a flexible Spectrum Featurizer that abstracts the com-
plexity of mass spectra data processing (see Fig 4.3). This compo-
nent allows users to define feature extraction parameters through a
configuration file, specifying which attributes to extract and how
they should be encoded for downstream models.

Figure 4.3: The codebase of the benchmark consists of fundamental
bricks utilized for preprocessing, loading, training, and evaluation.
The user will mainly interact with mass spectra and molecules pro-
cessing pipelines, or in other words, input and output shaping. We
provide a main class for seamless model training and interaction that
handles all orchestrations.

4.3 Feature extraction

4.3.1 SMILES canonization

How best to represent molecules in a consistent and standardized way
has long been a question in chemoinformatics. One widely adopted
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option is the SMILES (Simplified Molecular Input Line Entry Sys-
tem) [117] format, which encodes chemical structures as ASCII strings.
Because a single molecule can be depicted using various valid SMILES
representations, depending on the starting point, atom ordering, stere-
ochemistry, and other factors, a unified representation is a highly
sought-after feature. Canonicalization processes convert diverse rep-
resentations into a unique, standardized form known as canonical
SMILES, (see Figure 4.4a).

To achieve uniformity across our pipeline, which includes can-
didate construction, de novo molecular generation, and other tasks,
we decided to use the PubChem API [69] for canonicalization, as
also used in MassSpecGym. In our evaluation, when comparing the
SMILES produced by PubChem canonicalizationwith those generated
using the RDKit3 method, only 64 out of 14,008 molecules yielded
matching representations.

During analysis of our current dataset, we discovered that only
6,427 out of 14,008 unique SMILES strings (based on exact string
matching) were already canonicalized. After applying the canonical-
ization procedure to the entire dataset, the total number of unique
SMILES remained unchanged at 14,008, and all molecular representa-
tions were successfully processed without any errors.

4.3.2 DreaMS embeddings

In this thesis, one of our objectives is to compare foundation model
embeddings with raw spectral representations on predictive tasks. To
achieve this, we employed the DreaMS foundation model developed
in our laboratory (see Figure 4.4b). We selected DreaMS for its ad-
vanced model architecture and user-friendly interface, in addition to
its rigorous data filtering and processing capabilities. The model lever-
ages the extensive MassIVE [119] library and its GNPS [14] subset, a
community standard for metabolite reference. This alignment is criti-
cal, as it ensures that the learned representations accurately capture
the chemical coverage of our dataset [120]. These advantages are the
primary reasons we chose this model over alternative options [121,

3. RDKit is an open-source library that provides a flexible framework for chemoin-
formatics [118].
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Figure 4.4: (a) Three SMILES representations: Original, PubChem
canonical, and RDKit canonical, along with 3D conformer and 2D
structure. (b) The DreaMS prediction pipeline: input precursor m/z
and spectrum produce an embedding. (c) Molecular fingerprint visu-
alization: structure (below) mapped to its 1024-dimensional finger-
print (middle), with activated features highlighted.

122]. The quality of the DreaMS model is further evidenced by its
successful publication in Nature Biotechnology.

We processed 183,365 multi-stage fragmentation spectra using the
DreaMS model. Although DreaMS was originally trained on pairs of
precursor m/z values and corresponding mass spectra rather than on
MSn data, we contend that its application remains valid because each
spectrum is acquired independently; product ions, in isolation, do not
inherently disclose their source [19]. While this approach may not be
fully optimal, it provides a useful means of integrating DreaMS into
our workflow, which we further evaluate in subsequent chapters. All
processing was performed on the RunPod GPU cluster using a single
NVIDIA H100 [123].

4.3.3 Molecular fingerprint

Molecular fingerprints are fixed-length vectors that encode the pres-
ence or frequency of chemical substructures within a molecule (see
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Figure 4.4c). By transforming each molecule into a high-dimensional
numeric representation, fingerprints capture subtle structural differ-
ences and enable rapid, quantitative comparison via similarity mea-
sures such as the Tanimoto similarity coefficient [103]. This makes
them ideal for tasks like database search, compound ranking, and
diversity analysis, where fast and meaningful measures of molecular
likeness are required.

In this thesis, we follow MassSpecGym and employ Extended-
Connectivity (Morgan) fingerprints [124, 125]. Each fingerprint is a
1024-bit vector generated with radius 2, where each atom’s local neigh-
borhood is iteratively hashed into integer identifiers. These vectors
form the basis for all similarity-driven retrieval and analysis described
in subsequent chapters.

4.4 Multi-stage spectra benchmark challenges

In this section, we define the main challenges addressed in our new
MassSpecGymMSn benchmarks. The first challenge is molecule re-
trieval, which involves identifying the correct molecular graph from
a chemical database based solely on a given multi-stage mass spectra
(see Fig. 4.5b). This task is critical for real-world applications that re-
quire detecting specific compounds, such as pesticides, environmental
pollutants, or other target substances, in a sample [58, 126].

The second challenge is de novo molecule generation, which in-
volves predicting a complete molecular graph directly from an MSn
spectra without relying on existing databases (see Fig. 4.5d). This
task is considerably more complex, as it requires constructing novel
molecular structures from inherently ambiguous spectral data, and
can be compared to the goal of AlphaFold [15, 58].

4.4.1 Formal definition of challenges

In multi-stage fragmentation experiments, the acquired data is repre-
sented as a graph rather than a single spectrum. We define the mass
spectra graph as GS = (VS, ES), where each node v ∈ VS is associated
with a mass spectrum X(v) ⊂ R+ × (0, 1]. Each spectrum X(v) is a
collection of two-dimensional points (m, I), where m denotes themass-
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Figure 4.5: Panel (a) shows the structure of 2-(naphthalen-2-
ylmethylamino)benzoic acid alongside its measured MSn spectrum.
Panel (b) depicts the retrieval pipeline, which takes the measured
MSn spectrum as input and outputs a predicted molecular fingerprint.
Panel (c) illustrates the candidate-matching step: all database finger-
prints are ranked by similarity to the prediction, with the top match
ideally corresponding to the correct molecule. Panel (d) outlines the
de novo prediction pipeline, where the measured MSn spectrum is
directly converted into the molecule’s SMILES representation. 31
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to-charge (m/z) value and I the corresponding normalized intensity
(with max{I : (m, I) ∈ X(v)} = 1). A directed edge (u, v) ∈ ES indi-
cates that the spectrum X(v) is generated from a precursor peak in
the parent spectrum X(u) by means of a fragmentation event. In this
structure, the root node corresponds to the initial precursor spectrum,
and the branching pattern of the graph captures the sequential nature
of multi-stage fragmentation.

Additionally, to spectra we define the molecular graph as ĜM =
(VM, EM), where the vertex set VM is composed of atoms selected
from a specified vocabulary of chemical elements4. Thus, VM ∈ VN,
where |VN| = N, and N is typically 118 or another number depend-
ing on the chosen subset. The edge set EM represents the chemical
bonds connecting these atoms, with each edge corresponding to one
of four bond types: single, double, triple, and aromatic [127]. Hence,
EM ∈ EM, where |EM| = 4, and M is determined by the molecular
connectivity. Note that the representation ĜM = (VM, EM) models
only the topological connectivity of the molecule. It deliberately omits
three-dimensional coordinate information, since the data provided by
MS2 spectra are generally insufficient for accurately predicting precise
molecular conformations [29, 58].

4.4.2 Molecular retrieval benchmark definition

In retrieval tasks, we obtain a candidate set of molecular graphs and
then rank them to identify the correct, or, at a minimum, the most
similar structure. Formally, given an input derived from the spectra
graph GS, the task is to order a candidate set C = {Ĝ(1)

M , Ĝ(2)
M , . . . , Ĝ(n)

M }
so that the correct molecular graph ĜM ∈ C appears at the top of the
ranking [58] (see Fig. 4.5c).

To standardize the evaluation, the candidate set is limited to at
most 256molecules per spectra graph. From the MS1 data or, equiv-
alently, from the spectra graph GS, we obtain the precursor mass of
the molecule. Therefore, we narrow the candidate pool by consid-
ering only those molecules whose molecular masses fall within an

4. For example, the periodic table of 118 elements or a restricted subset such as the
10 most common ones [48].
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acceptable experimental error range of the true precursor mass. This
constitutes the standard retrieval challenge.

As an additional bonus challenge, we refine the candidate set based
on molecular formula matching. In practice, chemical formulas can be
accurately inferred from MS1 data [128–130], providing reliable infor-
mation on the atomic composition. Consequently, the candidate set
C is restricted to include only those candidate molecular graphs Ĝ(i)

M
whose vertex set VM exactly corresponds to the known atomic com-
position of the true molecule ĜM [58]. Although we present this as a
bonus challenge, we acknowledge that accurately predicting chemical
formulas remains only partially solved.

We evaluate molecule retrieval using standard information re-
trieval metrics along with a measure of structural similarity between
the top retrieved candidate and the true molecule. Specifically, we
consider the following metrics:

• Hit Rate@k. For each test example, let Ck ⊂ C denote the set of
the top-k candidate molecular graphs ranked by the retrieval
model. The hit rate is defined as:

HitRate@k = 1{ĜM ∈ Ck},

where 1 is the indicator function that returns 1 if the true molec-
ular graph ĜM is present in Ck, and 0 otherwise. This value is
averaged across all test examples, yielding an overall score in
[0, 1], where 1 indicates perfect retrieval performance.

• MCES@1. To further evaluate retrieval quality, we compute the
maximum common edge subgraph (MCES) [100] distance between
the top-1 retrieved candidate Ĝ(1)

M and the true molecular graph
ĜM:

MCES@1 = MCES(Ĝ(1)
M , ĜM).

A value of 0 indicates that the top-1 candidate is structurally
identical to the true molecule, while larger values correspond to
lower structural similarity.

33



4. MassSpacGymMSn: Dataset and benchmark construction

4.4.3 De novo molecule generation definition

The de novo molecule generation challenge aims to predict a molec-
ular graph ĜM = (VM, EM) from the acquired multi-stage fragmen-
tation data encoded in the spectra graph GS (see Fig. 4.5c). In this
task, the spectra graph GS encapsulates the acquired MSn data, where
each node is associated with a mass spectrum X(v) ⊂ R+× (0, 1] and
directed edges denote fragmentation events.

Also, similar to the retrieval challenge, we define a bonus challenge
in which the chemical formula of the true molecule is provided as
input, thereby fixing the vertex set VM as the true molecular graph
ĜM = (VM, EM).

While each mass spectrum captures a measurement from a specific
compound, it provides only a partial view of the underlyingmolecular
structure. Consequently, multiple molecular graphs ĜM = (VM, EM)
may be consistent with the observed data. To account for this uncer-
tainty, we formulate the de novo generation task as predicting a set
of k candidate graphs ĜM,k = {Ĝ(1)

M , . . . , Ĝ(k)
M }, rather than a single

solution. These candidates can either be sampled randomly from a
model or selected as the top-k predictions from a larger set based on a
scoring function.

To evaluate de novo molecule generation, we definemetrics that assess
the similarity between the predicted candidates and the true molecule.
For each example, we first assess whether the true molecular graph
ĜM is among the top-k predictions in the candidate set ĜM,k. Given
the inherent challenge of predicting an exact molecular graph, we
further evaluate similarity using two complementary metrics:

• Top-k MCES. We compute the maximum common edge sub-
graph (MCES) [100] distance between the most similar candi-
date and the true molecular graph:

Top-k MCES = min
Ĝ(i)

M ∈ĜM,k

MCES(Ĝ(i)
M , ĜM).

A value of 0 indicates structural identity, while larger values
indicate lower similarity.

• Top-k Tanimoto Similarity.We compute the Tanimoto similarity
between the Morgan fingerprints of the predicted candidates
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and the true molecule:

Top-k Tanimoto = max
Ĝ(i)

M ∈ĜM,k

Tanimoto(Ĝ(i)
M , ĜM).

The Tanimoto score ranges from 0 to 1, with 1 indicating an exact
match.

These metrics are averaged across all test examples and evaluated
for k ∈ {1, 10}.

4.5 Preparation candidates set for retrieval task

In retrieval tasks, rather than generating an entire molecular graph
de novo, we obtain a candidate set C = {Ĝ(1)

M , Ĝ(2)
M , . . . , Ĝ(n)

M } that is
subsequently ranked so that the true molecular graph ĜM appears
at the top of the list (see Figure 4.6). Since chemical databases like
PubChem contain over 118 million molecules [5], evaluating every
candidate is impractical. Therefore, we restrict the candidate set to a
maximum of 256 molecules per spectra graph GS [58].

For constructing this candidate set, we adopt a hierarchical sam-
pling strategy similar to that described in the original MassSpecGym
paper [58]. At each sampling stage, candidates are filtered by enforcing
exact precursor mass matching within the acceptable measurement
error and, for the bonus challenge, by requiring an exact match of the
molecular formula (i.e., the candidate’s vertex set VM must exactly
correspond to the known atomic composition of the true molecule
ĜM; see Algorithm 1 for details). Initially, candidates are drawn from
a primary pool of one million biologically significant molecules [131].
If these criteria do not yield a complete set of 256 candidates, addi-
tional molecules are sampled from a secondary pool of four million en-
tries [102] and, if necessary, further supplemented from the broader
PubChem database. Importantly, the same filtering conditions are
strictly applied at every stage, and the correct query molecule is al-
ways ensured to be included in the final candidate set [58].
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Figure 4.6: Candidate molecule distribution and examples. Distri-
bution of candidate set sizes for two retrieval settings: standard chal-
lenge mass-based a) and formula challenge b). In our dataset, 72% of
molecules reach the full set of 256 mass-based candidates, and 98.5%
do so with formula-based filtering. c) An example molecule with 256
candidates in both settings. d–e) Ten randomly selected candidates
from each retrieval type for the molecule in c), with molecular weights
shown below.
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Algorithm 1 Candidate selection algorithm (reimplemented from
MassSpecGym [58])
Require: Query molecule q, kind of candidates kind ∈ {mass, formula}, ordered

list of databases D, max candidates N
Ensure: Candidate set C
1: C ← {q}
2: if |C| = N then
3: return C
4: for all Di ∈ D do
5: if kind = mass then
6: ε← mass(q)× 10× 10−6 ▷ 10 ppm window
7: C ← C∪{ c ∈ Di | |mass(c)−mass(q)| < ε∧ inchi2d(c) ̸= inchi2d(q) }
8: else if kind = formula then
9: C ← C ∪ { c ∈ Di | formula(c) = formula(q) ∧ inchi2d(c) ̸=

inchi2d(q) }
10: C ← C[: N] ▷ truncate to first N
11: return C

4.6 Exploratory data analysis

Exploratory data analysis (EDA) is essential for assessing data qual-
ity, uncovering underlying structures, and identifying potential in-
consistencies in our MSn fragmentation trees before proceeding to
downstream tasks (see Figure 4.7). In our dataset, we identified 14,008
unique SMILES representations corresponding to 16,476 fragmenta-
tion trees. During the construction process, we observed that 10unique
trees contained nodes with missing mass spectra, see Section 4.2. To
address these cases, we prunes branches containing such nodes, see
Fig. 4.7.

Additionally, analysis of unassigned spectra to trees from input
MGF files revealed that 71 spectra were not incorporated into any
tree. Investigation showed that the primary cause was missing MS2
(root) spectra, which prevented the proper assignment of subsequent
child nodes, an issue estimated to affect roughly 3 trees. A secondary
issue involved a disordered MGF file where spectra were presented
out of order, leading to incorrect tree construction. We decided to ex-
clude such spectra from further analysis to avoid expensive processing
workflow for these rare cases.
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Figure 4.7: Panel (a) shows a histogram of tree depths, where depth
0 represents an MS2 spectrum and depth 3 corresponds to an MS5
spectrum; notably, 514 trees contain only an MS2 spectrum, indicating
insufficient fragmentation. Panel (b) presents a histogram of the max-
imum branching factors in our MSn trees. For each tree, we recorded
the nodewith the highest number of children and binned the results by
branching factor; three trees include a node with 10 children. Panel (c)
provides a visualization of a tree with missing spectra; the zoomed-in
branch highlights a node that would be pruned if we remove missing
mass spectra while keeping the mass spectra tree.

We further examined discrepancies between the expected precur-
sor path masses and the actual measured ion masses [5, 112]; for more
explanation, refer to section Implementation 4.2 and specifically the
second and third points. The largest observed differencewas 0.0036621,
within our established threshold of 0.005, a value determined in con-
sultation with mass spectrometry experts.
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4.7 Reproducibility

4.7.1 Standardized split

Data splitting is one of the most critical factors affecting the per-
formance of our algorithms in real-world scenarios. To achieve a
fragmentation-aware split, we employ a Murcko histogram [98]-based
approach (see Section 3.2). We set a distance threshold of 3 for small
histograms and 4 for larger ones5, and the resulting split is computed
once and made available for reproducibility.

After constructing the histograms and assigningmolecules to train-
ing, validation, and test folds with an intended ratio of 80%, 10%, and
10%, respectively, some deviations are inevitable because we assign
whole sub-histogram groups. In our implementation, this approach
resulted in 10,539 molecules in the training fold, 1,749 in the validation
fold, and 1,708 in the test fold (see Table 4.1a).

To assess potential data leakage, we calculated the Tanimoto simi-
larity for each molecule in one split against all molecules in a different
split, selecting the closest match. As shown in Figure 4.8, the similarity
distribution is centered around 0.3–0.4, indicating minimal overlap
between the dataset splits.

Figure 4.8: This figure presents three histograms showing the molecu-
lar Tanimoto similarity distributions between different dataset splits,
indicating minimal data leakage and mirroring real-world scenarios
where analytes come from distinct chemical distributions. The left
panel compares the training and validation sets, the middle panel
shows the training and test sets, and the right panel displays the vali-
dation and test sets.

5. Thresholds chosen based on empirical analysis of histogram size distributions.
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Further to our examination of the data splits, it is essential to
consider potential biases inherent to mass spectrometry. Variability
in parameters such as ionization methods, adduct types, collision
energies [132], and molecular classes can significantly influence frag-
mentation patterns and spectral quality. To mitigate these risks, we
ensured that these keymetadata are evenly distributed (see Tables 4.1b
and 4.1c).

Table 4.1: Dataset splits: SMILES/spectra proportions, tree statistics,
and adduct abundances.

(a) Distribution of SMILES and spec-
tra

Fold SMILES Spectra

Train 0.753001 0.750667
Validation 0.124964 0.126240
Test 0.122035 0.123093

(b) Tree statistics for each dataset fold

Statistic Train Validation Test

Number of trees 12,536 1,952 1,988
Average depth 2.12 2.20 2.13
Avg. branching factor 4.32 4.59 4.53
Avg. precursor m/z 433.05 409.73 352.45
Avg. retention time (s) 75.82 76.01 72.39
Avg. nodes per tree 10.97 11.85 11.35

(c) Relative abundances of adduct
types (%)

Adduct Train Validation Test

[M + H]+ 82.17 86.42 83.95
[M + NH4]

+ 8.06 8.25 5.53
[M + H − H2O]+ 4.07 2.56 4.73
[M + Na]+ 2.43 1.64 2.82
[M]+ 2.21 0.77 2.36
[M + H − 2H2O]+ 0.94 0.26 0.55
[M − H2O]+ 0.12 0.10 0.05

To assess the distribution of chemical classes across our dataset
folds, we employed ClassyFire [133], a web-based tool that assigns
compounds to a detailed ChemOnt taxonomy. This taxonomy is orga-
nized hierarchically into Kingdom, SuperClass, Class, and SubClass
levels. For our analysis, we focused on the Class level [134, 135], which
comprises 764 distinct categories representing narrowly defined chem-
ical types based on structural features, of which 260 categories are
present in our dataset, see Fig. 4.9.

However, the official ClassyFire API proved unstable, frequently
failing during batch classification and limiting throughput. To over-
come these issues, as a subproject in this thesis, we developed Py-
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Figure 4.9: The figure illustrates that our data splitting achieves a
balanced distribution of chemical classes across the folds. It presents
a histogram of the 50 most common chemical classes as determined
by ClassyFire in our dataset, along with an “Other” bar aggregating
210 less common classes. Additionally, the histogram shows, for each
fold, the number of chemical classes that are exclusive to that fold and
the corresponding counts of molecules in those exclusive classes.

ClassyFire6, which builds upon the ClassyFire API while addressing
its limitations, and we provided it as fully open source.

6. An improved wrapper around the ClassyFire API, available on GitHub with
documentation, see Section 6.4.6.
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5.1 Retrieval models architectural details

We propose two main architectures for the retrieval task: one for the
standard and another for the bonus challenge, where the molecular
formula is known. In both cases, the model takes a mass spectra tree
as input and outputs a molecular fingerprint representing the target
molecule (see Fig. 4.5b). The backbone of the model is a graph neural
network (GNN), based on aGraphAttentionNetwork (GAT) [136],which
encodes the tree-structured input. Node embeddings are aggregated
via mean pooling, and a final skip connection integrates the original
features for enhanced prediction performance.

In other words, in our setup, each node of the tree is one mea-
sured spectrum (or its DreaMS embedding, see Fig. 5.1), and edges
indicate which precursor peak gave rise to which fragment spectrum,
see Fig. 2.3. A GNN processes this tree by letting each node gather
information from its neighbors: the GAT layer specifically learns to
weight messages from each neighbor according to their relevance
(“attention”) so that more informative fragments contribute more
strongly to the node’s new representation. After several such layers,
each node’s GNN embedding carries the local spectral features and
context from the surrounding fragmentation events. Because we ulti-
mately want a fixed-size fingerprint for the entire tree, we aggregate
all node embeddings into one summary vector (via mean pooling);
this ensures invariance to the number or order of nodes while preserv-
ing the overall mass spectra tree knowledge. Finally, a dense network
refines this summary into the predicted molecular fingerprint (see
Fig. 4.5).

In the bonus task, the architecture is extended to include an addi-
tional input branch that encodes the molecular formula. This formula
is processed using a multi-layer perceptron (MLP), and its output
is concatenated with the GNN-based spectral representation. The
merged representation is then passed through a skip connection block
to produce the final molecular fingerprint.

The formal description of both architectures is as follows:
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1. Graph attention encoding:
Each node v ∈ VS in the mass spectra tree GS = (VS, ES) is
encoded using a GAT layer:

hv = GAT
(
X(v), GS

)
∈ Rd,

where d is the shared hidden dimension preserved across model
and is crucial for the internal representation analysis in Sec-
tion 6.4.

2. Mean aggregation (standard and bonus):
Node embeddings are aggregated to form a graph-level repre-
sentation:

hGS =
1
|VS| ∑

v∈VS

hv ∈ Rd.

3. Formula branch (bonus task only):
The molecular formula, represented as a feature vector f ∈ Rd f ,
where each of the d f dimensions counts a specific atom type, is
encoded by a formula encoder:

h f = Eform( f ) ∈ Rdencoded formula .

4. Concatenation (bonus task only):
Spectra and formula representations are concatenated and lin-
early projected back to Rd:

hconcat = Π
[
hGS ∥ h f

]
∈ Rd.

5. Skip connection and fingerprint prediction:
We define

fskip : Rd MLP−−−→ RdF ,

The input vector in Rd is then passed through this MLP:

F̂ =

{
fskip

(
hGS

)
, (Standard)

fskip
(
hconcat

)
, (Bonus)

∈ RdF .
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Table 5.1 summarizes the hyperparameter configurations for our
retrieval task models, comparing two spectra processing variants,
binned spectra [137] and DreaMS [19], each implemented in both
standard and bonus settings. All hyperparameters were chosen based
on standard recommendation practices [76] and to support model
expressivity. Smaller models, or those trained with alternative loss
functions, failed to learn effectively and plateaued in performance
after just a few epochs.

In total, we evaluate four model variants. Our goal is to compare
the performance of models that only differ in their input representa-
tion, using either the commonly used binned spectra approach [137]
or the DreaMS [19] processed spectra, while keeping all other param-
eters constant. This isolates the impact of the input representation
on retrieval performance and assesses the benefit of incorporating
molecular formula information in the bonus models.

Table 5.1: Model configurations for the standard and bonus retrieval
tasks. Each model maps spectra trees to molecular fingerprints using a
GNN (GAT-based) backbone; bonus models include an extra formula
branch.

Hyperparameter
Binned spectra

Standard
Binned spectra

Bonus
DreaMS spectra

Standard
DreaMS spectra

Bonus

hidden dim 1024 1024 1024 1024
fp dim 2048 2048 2048 2048
input dim 4000 4000 1024 1024
dropout rate 0.2 0.2 0.2 0.2
bottleneck factor 1.0 1.0 1.0 1.0
num skipblocks 6 6 6 6
num gnn layers 3 3 3 3
gnn layer type GAT GAT GAT GAT
nheads 4 4 4 4
use formula false true false true
formula dim 0 64 0 64
loss cosine sim cosine sim cosine sim cosine sim

Legend: hidden_dim: Width of hidden layers; fp_dim: Size of fingerprint vector; input_dim: Node
feature dimension; dropout_rate: Dropout probability; bottleneck_factor: Compression ratio in
skip connections; num_skipblocks: Number of skip blocks; num_gnn_layers: Number of GNN layers;
gnn_layer_type: Type of graph conv.; nheads: Attention heads in GAT; use_formula: Formula branch
used; formula_dim: Formula embedding size; loss: Training objective.
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5.2 De novo models architectural details

In addition to the retrieval task, we implemented a de novo molecular
generation model. Unlike the retrieval models that use an MLP to
predict a molecular fingerprint, our de novo architecture employs an
autoregressive framework based on the Transformer model from “At-
tention Is All You Need” [77] to generate molecules as SMILES strings.

In this architecture, the input spectra tree is first processed by a
GAT [136] (see Section 5.1) to produce a conditional representation.
This representation is then used to condition a Transformer decoder
that predicts the SMILES sequence token by token. For the bonus
variant, we incorporate a molecular formula branch, similar to the
retrieval models, by concatenating its output with the spectra tree rep-
resentation before feeding it to the decoder. To handle the sequential
nature of SMILES generation, we apply standard sinusoidal positional
embeddings [87, 138] and employ byte pair encoding [139].

We refined the decoder by pretraining it on 2.6 million SMILES
strings drawn from two libraries of one million [131] and four mil-
lion [102] natural products and biologically significant molecules.
During this self-supervised [140] phase, we treated SMILES as a se-
quence prediction task: at each step, the decoder is fed the preced-
ing tokens and trained to predict the next token, using cross-entropy
loss [139] to measure errors. Further, we ensured no data leakage
occurred throughout the pretraining process by verifying that the
pretraining examples differed from those in the validation and test
splits (see Figure A.2).
The formal structure of both variants is as follows:

1. Graph attention encoding:
Each node v ∈ VS in the mass spectra tree GS = (VS, ES) is
encoded using a GAT layer:

hv = GAT
(
X(v), GS

)
∈ Rd,

where d is the shared hidden dimension preserved across model.
The graph-level embedding is obtained by mean pooling:

hGS =
1
|VS| ∑

v∈VS

hv ∈ Rd.
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2. Formula branch (bonus variant only):
The molecular formula is represented as a fixed-length vector
f ∈ Rd f and encoded by the same MLP:

h f = Eform( f ) ∈ Rdencoded formula .

3. Concatenation and encoder projection:
Concatenate and project back to Rd:

u =

{
hGS , (Standard)
Π
[
hGS ∥ h f

]
, (Bonus)

∈ Rd.

Then
z = fenc(u) ∈ Rd.

4. Transformer decoding:
The decoder generates the SMILES sequence autoregressively.
At step t, given previous tokens y<t and embeddings E(y<t), the
decoder computes:

dt = T
(
E(y<t), z

)
∈ Rd.

A linear layer maps dt to logits:
ℓt = Wout dt, Wout ∈ R|V|×dmodel ,

where |V| is the token vocabulary size in our experiments (all
set to 3000), and then we predict next–token:

p(yt | y<t, z) = softmax(ℓt).

During training, we employ cross-entropy loss between predicted
and target SMILES tokens. The pretrained decoder is frozen for the
first 5 epochs to allow the encoder to adapt its latent space. To generate
multiple candidates, we use beam search decoding [141].

Table 5.2 summarizes the hyperparameter configurations for our
de novomodels, comparing four variants, binned spectra, andDreaMS
inputs, each in standard and bonus settings. This design isolates the
impact of input representation and the addition of molecular formula
information while keeping other parameters constant. We chose the
parameters to match the dimensions of the retrieval model and the
overall count of trainable parameters.
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Table 5.2:Model configurations for the standard and bonus de novo
molecular generation tasks. All models generate structures from spec-
tra trees using aGNNencoder and transformer decoder; bonusmodels
may integrate molecular formula.

Hyperparameter
Binned spectra

Standard
Binned spectra

Bonus
DreaMS spectra

Standard
DreaMS spectra

Bonus

input dim 4000 4000 1024 1024
hidden dim 1024 1024 1024 1024
nhead 4 4 4 4
num gat layers 3 3 3 3
num gat heads 4 4 4 4
gat dropout 0.2 0.2 0.2 0.2
decoder layers 4 4 4 4
dropout rate 0.1 0.1 0.1 0.1
max tokens 200 200 200 200
temperature 1.0 1.0 1.0 1.0
use formula false true false true
formula dim 0 0 0 0
pretrained true true true true
freeze epochs 5 5 5 5
loss cross entropy cross entropy cross entropy cross entropy

Legend: input_dim: Dimensionality of node input features; hidden_dim: Width of internal hidden layers;
nhead: Number of attention heads in transformer decoder; num_gat_layers: Number of GAT encoder
layers; num_gat_heads: Attention heads per GAT layer; gat_dropout: Dropout rate in GAT encoder;
decoder_layers: Number of transformer decoder layers; dropout_rate: Dropout applied in decoder;
max_tokens: Maximum sequence length during generation; temperature: Sampling temperature for
decoding; use_formula: Whether molecular formula branch is used; formula_dim: Dimensionality
of formula embedding; pretrained: Decoder initialized from pretrained checkpoint; freeze_epochs:
Number of epochs decoder is frozen; loss: Objective function for training.

5.3 Experimental design

After constructing the fragmentation trees, establishing a leakage-free
split, and designing our model architectures, a natural question arises:
does multi-stage mass spectrometry offer benefits over conventional
MS1/MS2 approaches? While it may seem that all relevant ions are
captured at the MS2 level, low-intensity signals, often hard to distin-
guish from noise, can carry valuable information that conventional
analyses tend to underweight [19, 142, 143]. In contrast, multi-stage
mass spectra use data-dependent acquisition to measure signals of
interest, enhancing the visibility of these subtle yet potentially critical
features [5].

In this section, we design experiments to assess whether incor-
porating additional levels of mass spectra in a hierarchical manner
improves model performance. Our fragmentation trees consist of a
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root spectrum at the MS2 level, with deeper levels extending to MS5.
Accordingly, we define four distinct experiments: the first trains the
model using only MS2 data, the second incorporates both MS2 and
MS3 data, the third adds MS4, and the fourth includes MS5 as well
(see Figure 5.1).

For each experiment, we train the model from scratch while keep-
ing all experimental conditions, such as random weight initialization,
batch loading, and shuffling, unchanged. We want to ensure that
observed performance variations are predominantly attributable to
differences in the input data. In addition to varying the tree depth
(MS2 only; MS2–MS3; MS2–MS4; MS2–MS5), we consider two input
representations: raw binned spectra and DreaMS-processed spectra
(both in standard and bonus challenge). Overall, this framework yields
16 experiments for the retrieval task and 16 experiments for the de
novo generation task.

Figure 5.1: This figure demonstrates the transformation of raw spectra
trees into embedding-based representations using the DreaMS model
and the four hierarchical experimental conditions: training on MS2
only, progressively adding MS3, MS4, and MS5 levels. While DreaMS
operates on raw spectra with precise peak resolution, the comparative
experiments use binned spectra as an input representation.

5.4 Experimental setup and training environment

To ensure portability and reproducibility, we established a standard-
ized environment in which all implementations operate on the same
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software package. Training and data preparation are managed via
a YAML configuration file that contains all parameters necessary to
replicate the experimental conditions. All models were trained using
identical settings, as summarized in Table 5.3.

Table 5.3: Environment and training settings used across all experi-
ments.

Parameter Value

Batch size 32 (effective: 256)
Number of epochs 30
Optimizer Adam
Learning rate 0.0001
Weight decay 0.0001
GPU type AMD MI250X
Number of GPUs 8
Multi-node training strategy Distributed Data Parallel
Number of data loading workers 4

49



6 Experimental results and analysis

6.1 Retrieval models evaluations

6.1.1 Standard challenge

In this section, we evaluate our retrieval models on the standard chal-
lenge (see Section 4.4.2), comparing two spectral representations:
binned spectra and DreaMS embeddings.

Table 6.1 displays two metrics: Hit Rate@1 is the fraction of exam-
ples where the correct molecule tops the ranked list, and MCES@1
measures structural similarity via the size of the maximum common
edge subgraph, where 0 means identical molecule, for more detail,
see Section 4.4.

As shown in that Table 6.1, the best results with binned spectra
are achieved when the full fragmentation hierarchy (MS2–MS5) is
used. In contrast, for DreaMS embeddings, optimal performance
occurs with MS2-MS4, likely due to the fact that MS5 data is sparsely
represented in the dataset (see Section 4.6).

Across all metrics and both validation and test sets,DreaMS em-
beddings consistently outperform binned spectra. On the test fold,
the worst-performing model using binned spectra achieves a Hit
Rate@1 of 0.012, whereas DreaMS embeddings yield up to a 10-fold
improvement. Since binned spectra have been a dominant approach
for years [144], this underscores the untapped potential of multi-stage
MSn inputs. However, even these gains fall short of a ceiling, leaving
substantial room for future innovation.

Finally, learning curves (Figure A.3 for binned spectra and Fig-
ure A.4 for DreaMS) confirm stable training across 30 epochs, with no
signs of overfitting.

6.1.2 Bonus challenge

In this section, we evaluate the retrieval models on the bonus task,
where candidate molecules are restricted to those sharing the same
chemical formula as the query (see Section 4.4.2). As in the stan-
dard task, we compare two input representations, binned spectra and
DreaMS embeddings.
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Table 6.1: Retrieval performance (HR@1 ↑, HR@20 ↑, MCES@1 ↓)
for binned spectra and DreaMS embeddings across MS2–MS5 on
validation and test sets on standard challenge.

Binned spectra DreaMS embeddings

Set Stage HR@1 ↑ HR@20 ↑ MCES@1 ↓ HR@1 ↑ HR@20 ↑ MCES@1 ↓

Validation

MS2 0.022 0.133 21.439 0.031⋆ 0.171⋆ 19.784⋆

MS3 0.080 0.338 17.202 0.100⋆ 0.436⋆ 15.913⋆

MS4 0.084 0.378 16.888 0.116⋆† 0.463⋆† 15.810⋆†

MS5 0.088 0.388 16.747 0.100⋆ 0.433⋆ 15.978⋆

Test

MS2 0.012 0.114 18.903 0.018⋆ 0.153⋆ 18.317⋆

MS3 0.079 0.332 15.812 0.110⋆ 0.410⋆ 14.684⋆

MS4 0.090 0.382 15.204 0.112⋆† 0.450⋆† 14.502⋆†

MS5 0.091 0.385 15.160 0.103⋆ 0.413⋆ 14.732⋆

Legend: HR@1 = Hit Rate@1; HR@20 = Hit Rate@20; ↑ higher is better; ↓ lower is better; Bold = best
across MS2–MS5 for that representation; ⋆ = this representation outperforms the other at the same stage
and set; † = global best among both representations and all stages in that set.

Table 6.2 reports performance across validation and test sets and
highlights the best-performing configuration for each metric.

Table 6.2: Retrieval performance (HR@1 ↑, HR@20 ↑, MCES@1 ↓)
for binned spectra and DreaMS embeddings across MS2–MS5 on
validation and test sets on bonus challenge.

Binned spectra
DreaMS embeddings

Set Stage HR@1 ↑ HR@20 ↑ MCES@1 ↓ HR@1 ↑ HR@20 ↑ MCES@1 ↓

Validation

MS2 0.032⋆ 0.227 13.690 0.031 0.235⋆ 13.647⋆

MS3 0.045 0.299 13.043 0.064⋆ 0.366⋆ 12.506⋆

MS4 0.046 0.300 13.070 0.074⋆ 0.384⋆ 12.343⋆

MS5 0.046 0.300 13.100 0.075⋆† 0.396⋆† 12.211⋆†

Test

MS2 0.043⋆ 0.248 12.723 0.042 0.251⋆ 12.522⋆

MS3 0.068 0.323 11.857 0.091⋆ 0.383⋆ 11.244⋆

MS4 0.063 0.319 11.959 0.104⋆† 0.426⋆† 10.933⋆†

MS5 0.061 0.323 12.029 0.099⋆ 0.424⋆ 10.961⋆

Legend: HR@1 = Hit Rate@1; HR@20 = Hit Rate@20; ↑ higher is better; ↓ lower is better; Bold = best
across MS2–MS5 for that representation; ⋆ = this representation outperforms the other at the same stage
and set; † = global best among both representations and all stages in that set.

Overall, DreaMS embeddings outperform binned spectra on nearly
all metrics and depths. The only exception is a marginal difference at
Hit Rate@1 using MS2 data, where binned spectra slightly lead by less
than one-thousandth. In both representations, increasing fragmenta-
tion depth improves models performance.
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We also can spot distinctive patterns, models trained on fragmen-
tation depths up to MS4 outperform those trained on MS5. This drop
likely reflects GNN over-smoothing [145]: with only three layers and
input as a sparsely connected spectra tree, deeper fragmentation likely
yields homogenized node embeddings. Over-smoothing causes node
features to converge, degrading discriminative power, an effect even
stronger in the bonus task.

Finally, loss curves (Figure A.5 for binned spectra and Figure A.6
for DreaMS) show that training is stable over 30 epochs, with deeper
fragmentation consistently reducing loss and with no evidence of
overfitting.

6.2 De novo models evaluations

6.2.1 Standard challenge

In this section, we evaluate our de novo generation models under the
standard challenge (see Section 4.4.3). As with the retrieval task, we
compare two spectral representations, binned spectra and DreaMS
embeddings.

In de novo models analysis, we complement MCES with Tanimoto
similarity to capture broader structural agreement. It measures the
proportion of shared bits in binary fingerprints (see Section 4.3.3),
emphasizing substructure overlap over exact bondmatches. Therefore,
Tanimoto scores range from 0 to 1, where the lowest value means that
there are no shared features and one means identical fingerprint. We
computed Tanimoto on fingerprints of predicted versus ground-truth
molecules.

Table 6.3 reports model performance using MCES and Tanimoto
similarity for both top-1 and top-10 predicted structures.

The results show that moving from MS2 to deeper fragmentation
levels (MS3 and above) yields clear performance improvements, often
by several folds, across both metrics. However, in contrast to the re-
trieval task, the relative differences between models trained on deeper
MSn levels (e.g., MS3 vs. MS4 or MS5) are less pronounced. To inves-
tigate this, we examine internal model representations in Section 6.4,
where we identify an architecture bottleneck limiting how effectively
the generation models leverage multi-stage spectral information.
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Table 6.3: Performance of de novo generation models (MCES@1 ↓,
MCES@10 ↓, Tanimoto@1 ↑, Tanimoto@10 ↑) for binned spectra and
DreaMS embeddings across MS2–MS5 on validation and test sets on
standard challenge.

Binned spectra DreaMS embeddings

Stage MCES@1 ↓ MCES@10 ↓ T@1 ↑ T@10 ↑ MCES@1 ↓ MCES@10 ↓ T@1 ↑ T@10 ↑

Validation set
MS2 99.965⋆ 69.792⋆ 0.001 0.050⋆ 100.000 99.924 0.001 0.001
MS3 51.100⋆ 32.183⋆ 0.077 0.121 53.802 33.097 0.085⋆ 0.147⋆

MS4 54.138 31.197 ⋆† 0.074 0.125 48.234⋆† 31.237 0.097⋆† 0.155⋆†

MS5 52.336⋆ 31.484⋆ 0.076 0.124 57.666 36.757 0.077⋆ 0.139⋆

Test set
MS2 99.931⋆ 75.623⋆ 0.001 0.042⋆ 100.000 99.054 0.001 0.002
MS3 53.594 32.287 0.075 0.130 40.428⋆ 26.127⋆ 0.110⋆ 0.174⋆

MS4 57.002 31.034 0.072 0.133 37.659⋆† 24.727⋆† 0.119⋆† 0.184⋆†

MS5 55.145 31.385 0.075 0.132 43.898⋆ 27.160⋆ 0.106⋆ 0.174⋆

Legend: T = Tanimoto similarity; ↓ lower is better; ↑ higher is better; Bold = best across MS2–MS5 for
that representation; ⋆ = this representation outperforms the other at the same stage and set; † = global
best across both representations and all stages in that set.

Moreover, training loss curves (see Figures 6.3 and 6.3) show that,
unlike retrieval, deeper fragmentation does not significantly alter con-
vergence dynamics. Nonetheless, the consistent gains over MS2-only
baselines confirm the benefit of incorporating additional fragmenta-
tion stages for molecular structure generation.

6.2.2 Bonus challenge

In the bonus challenge for de novo generation, the molecular for-
mula is provided (see Section 4.4.3). We again evaluate two spectral
representations: binned spectra and DreaMS embeddings.

Across all fragmentation stages, DreaMS embeddings consistently
outperform binned spectra. However, unlike in the standard challenge,
the inclusion of deeper fragmentation levels (MS3-MS5) does not lead
to pronounced gains. This behavior is examined in Section 6.4, where
we show that generation models tend to focus heavily on the provided
molecular formula and underutilize MSn data.

As shown in Figures A.10 and A.9, the training loss remains stable
over 30 epochs, with no signs of overfitting. Including deeper fragmen-
tation stages does not significantly impact convergence, in contrast to
the retrieval setting.
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Table 6.4: Performance of de novo generation models (MCES@1 ↓,
MCES@10 ↓, Tanimoto@1 ↑, Tanimoto@10 ↑) for binned spectra and
DreaMS embeddings across MS2–MS5 on validation and test sets on
bonus challenge).

Binned spectra DreaMS embeddings

Stage MCES@1 ↓ MCES@10 ↓ T@1 ↑ T@10 ↑ MCES@1 ↓ MCES@10 ↓ T@1 ↑ T@10 ↑

Validation set
MS2 57.054 31.019⋆ 0.076 0.150 55.023⋆ 31.131 0.089⋆ 0.150
MS3 61.589 33.659 0.070 0.145 45.962⋆ 29.345⋆ 0.106⋆ 0.171⋆

MS4 54.420 30.774 0.083 0.156 44.916⋆† 28.167⋆† 0.110⋆† 0.177⋆†

MS5 58.674 31.123 0.075 0.152 47.231⋆ 29.095⋆ 0.103⋆ 0.171⋆

Test set
MS2 45.001 25.321 0.099 0.167 39.203⋆ 24.345⋆ 0.110⋆ 0.170⋆

MS3 51.953 26.844 0.088 0.164 37.001⋆ 23.017⋆ 0.123⋆ 0.190⋆

MS4 44.643 24.884 0.100 0.171 35.907⋆† 20.923⋆† 0.127⋆† 0.199⋆†

MS5 46.830 25.550 0.096 0.169 36.140⋆ 22.741⋆ 0.127⋆† 0.193⋆

Legend: T = Tanimoto similarity; ↓ lower is better; ↑ higher is better; Bold = best across MS2–MS5 for
that representation; ⋆ = this representation outperforms the other at the same fragmentation stage and
set; † = global best across both representations and all fragmentation stages in that set.

When evaluating the quality of generated molecular structures,
we observe that deeper fragmentation consistently improves perfor-
mance, confirming the potential of MSn data. However, there is still
substantial room for improvement in absolute terms, with the highest
Tanimoto similarity of ∼ 0.2, indicating limited structural overlap
between predicted and true molecules. Likewise, MCES scores hover
∼ 20, reflecting considerable deviation in atomic connectivity. These
observations hold across both the bonus and standard challenge, point-
ing to a general limitation for direct usage of models.

Still, these findings should be viewed as a promising first step. The
results highlight the richness and complexity of the MSn dataset and
offer a strong foundation for future improvements in model architec-
ture and training strategies.

6.3 Spectral similarity analysis across MSn levels

In addition to training our models, our structured MSn tree represen-
tations provide a foundation for a deeper investigation of mass spectra
relationships. In this section, we analyze the similarities between spec-
tra across different MSn levels using statistical tests to assess potential
hierarchical dependencies. Additionally, we compare the originalmass
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spectra with DreaMS-processed representations to estimate the extra
value of foundation models in mass spectrometry.

For our analysis, we extract pairs of nodes from our multi-stage
MSn trees. Each tree is structured such that the root is at the MS2
level (position 2), with subsequent nodes at MS3 (position 3) up to
MS5 (position 5). We then compare node pairs within the same tree
to assess the relationships between fragments originating from the
same precursor; for example, a pair labeled (2, 3) represents a direct
comparison between an MS2 spectrum and its immediate descendant
at the MS3 level. When comparing nodes from different fragmenta-
tion levels, we require that the higher-level node is part of a direct
lineage within the same branch. This approach preserves the inherent
hierarchical relationships between fragments originating from the
same precursor.

For same level comparisons, when a given level contains multiple
nodes within the same tree (e.g., (3,3) pairs), we sample all possible
intra-tree node pairs. However, since each tree contains only one MS2
node, (2,2) pairs must be collected from different trees1. For more
details, refer to Algorithm 2 and Figure A.11.

6.3.1 Hungarian similarity on raw spectra

The cosine score is used to quantify the similarity between two mass
spectra by optimally matching their peaks. For each pair of spectra,
potential peak matches are identified when the m/z ratios fall within a
tolerance of 0.12, and the Hungarian algorithm is then applied to solve
the peak assignment problem, ensuring an optimal alignment [111].
Using the constructed pairs, we measured the spectral similarity, and
the resulting cosine similarity distributions exhibit considerable het-
erogeneity (see Figure 6.1).

Notably, the frequency of node pairs varies substantially: the most
abundant are (4,4) pairs with 250,039 examples, while the least fre-
quent are (2–4,5) pairs with only 14,511 examples. To mitigate the
influence of more prevalent pairs on our statistical analysis, we ran-
domly downsampled each pair type to 14,511 examples.

1. To avoid bias, (2,2) comparisons are drawn randomly across trees while preserv-
ing sample size parity.
2. Based on typical instrument resolution.
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Algorithm 2 Constructing intra tree pairs
1: procedure ConstructHierarchicalPairs(T)
2: N ← BFS(T) ▷ Collect all nodes from tree T
3: for all n ∈ N do
4: D(n)← ComputeDescendants(n) ▷ Precompute descendants of n via

BFS
5: for i← 1 to |N| − 1 do
6: nA ← N[i]; msA ← GetMSLevel(nA)
7: for j← i + 1 to |N| do
8: nB ← N[j]; msB ← GetMSLevel(nB)
9: if msA = msB then ▷ Same-level: include all unique pairs
10: RecordPair(nA, nB)
11: else if msA < msB then ▷ Lower→higher: check descendant relation
12: if nB ∈ D(nA) then
13: RecordPair(nA, nB)
Helper functions: BFS(T): breadth-first search on tree T; ComputeDescendants(n):
Returns the set of descendants of node n; GetMSLevel(n): retrieve MS level from

metadata; RecordPair(nA, nB): store the pair (nA, nB).

All hierarchical pairs distribution comparisons

After downsampling,weperformed aKolmogorov–Smirnov (KS) test [146]
to evaluate the normality of the cosine similarity distributions. The KS
test compared each empirical distribution with a normal distribution.
The results indicate that none of the fragmentation levels relationships
exhibit a normal distribution.

We then performed Mann–Whitney U tests [147] to determine
whether the cosine similarity distributions differ significantly between
node pairs. The resulting p-values were minimal, and even after apply-
ing a strict Bonferroni correction [148] (adjusted α ≈ 0.001111 from
an initial 0.05), every pairwise comparison was statistically signifi-
cant. This indicates that each fragmentation level comparison yields a
distinctly different cosine similarity distribution.

Next, we computed the Rank-Biserial Correlation [149] to quantify
the effect size between the groups. The analysis yielded predominantly
moderate to high correlation values, indicating a strong effect and
confirming that the distributions of cosine similarity scores differ
markedly between the compared node pairs.

We further evaluated whether a parametric distribution could
model the cosine similarity scores. Using both the KS statistic and
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Figure 6.1: Cosine similarity distributions for node pairs (2,2), (2,3),
(3,4), and (4,5) extracted from MSn trees. Notably, (2,2) pairs have a
mean similarity of 0.023, while (4,5) pairs have a mean of 0.570. The
number of pairs varies significantly across these categories.

Akaike Information Criterion [150] (AIC), we compared candidate dis-
tributions: Normal, Exponential, Beta, Gamma, Log-Normal, Uniform,
Weibull (min), Weibull (max), Pareto, Student’s t, and Cauchy, but
found that none provided a dominant fit to the data.

Intra-group investigation

In our intra-group comparisons, we analyze the cosine similarity dis-
tributions for node pairs at the same fragmentation level, specifically,
(2,2), (3,3), (4,4), and (5,5) pairs. We employ the Kruskal–Wallis H-
test [151], a non-parametric method, to assess whether the similarity
score distributions differ significantly among these groups. The test
results confirm that not all groups share the same distribution.
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We computed the Spearman rank correlation [152] between hierarchy
levels and similarity scores to assess the presence of a monotonic
relationship. The analysis yielded a correlation coefficient of 0.368
(p < 0.001), indicating that higher hierarchy levels are generally
associated with increased similarity (see Fig. 6.2).

Inter-group investigation

In our inter-group analysis,we examined node pairs that spandifferent
fragmentation levels, namely (2,3), (2,4), (2,5), (3,4), (3,5), and (4,5).
We introduced a variable, the level difference, which quantifies the
absolute difference between the hierarchical positions of node pairs
(e.g., a (2,5) pair has a level difference of 3). We then examined how
this level difference relates to the cosine similarity scores between
spectra. Using Spearman’s Rank Correlation, we obtained a coefficient
of −0.639 (p < 0.001), indicating that as the level difference increases,
the spectral similarity tends to decrease significantly.

For further insight, we subdivided the inter-group comparisons
into two subsets based on the lower tree level. Subset 1, consisting
of pairs (2,4) and (3,4), exhibits a moderate negative correlation of
−0.550, while Subset 2, comprising pairs (2,5), (3,5), and (4,5), shows
a stronger negative correlation of −0.731. This analysis indicates that
as the level difference increases, the decline in cosine similarity be-
comes more pronounced, suggesting that greater differences in frag-
mentation depth result in more distinct mass spectra profiles (see
Fig. 6.2).

6.3.2 Cosine similarity on DreaMS embeddings

Weconducted the samemulti-stage hierarchical investigation ofDreaMS
embeddings, although originally trained onMS2 spectra, product ions
are acquired independently, making its application to multi-stage data
meaningful [13]. In contrast to the raw mass spectra, cosine simi-
larities on DreaMS embeddings are more concentrated and exhibit a
bell-shaped distribution across all levels of comparison (see Figures 6.3
and A.13).

As before, each pair type was randomly downsampled to 14,511
examples to mitigate frequency biases.
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Figure 6.2: Similarity measurements for both intra- and inter-group
comparisons. The left panel shows that spectra at deeper fragmenta-
tion levels exhibit higher cosine similarity, while the right panel indi-
cates that as the difference between fragmentation levels increases, co-
sine similarity declines more sharply. Specifically, spectra at fragmen-
tation depths 4 and 5 maintain a cosine similarity of ≈ 0.55, whereas
comparisons to the same compound’s spectra at stage 2 to 5 yield only
≈ 0.1.

All hierarchical pairs distribution comparisons

To mirror our analysis on raw spectra, we evaluated the distributional
characteristics of cosine similarity scores computed from DreaMS
embeddings.

First, the Kolmogorov–Smirnov (KS) test [146] revealed that none
of the fragmentation levels exhibited a normally distributed pattern
in their cosine similarity scores.

Next,Mann–Whitney U tests [147] were performed to compare the
distributions across different node pairs. The resulting p values were
minimal and almost all pairwise comparisons were statistically sig-
nificant. The only exceptions were the comparisons between (2, 4) vs.
(2, 5) and (3, 3) vs. (4, 4), which did not show significant differences.

Furthermore, the Rank-Biserial Correlation [149] analysis indicated
moderate to strong effect sizes, suggesting that distributions of cosine
similarities differ considerably.

Lastly, assessments using both the KS statistic and the Akaike Infor-
mation Criterion (AIC) [150] showed that none of the candidate para-
metric distributions (including Normal, Exponential, Beta, Gamma,
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Figure 6.3: The figure illustrates the cosine similarity distributions
for node pairs based on DreaMS embeddings. Unlike the raw spectra
distributions, these curves are more centered, exhibiting a bell-shaped
form. Similar to raw mass spectra, the skew toward higher similarity
with higher fragmentation depth is also observed.

Log-Normal, Uniform, Weibull, Pareto, Student’s t, and Cauchy) pro-
vided a dominant fit for the data.

Intra-group investigation

In our intra-group analysis usingDreaMS embeddings, theKruskal–Wallis
H-test [151] confirmed significant differences among groups, mirror-
ing the findings from analysis of raw spectra.

Furthermore, Spearman rank correlation [152] yielded a coefficient
of 0.529 (p < 0.001), compared to 0.368 (p < 0.001) with raw spectra.
As before, higher fragmentation levels are associated with increased
cosine similarity, an effect more pronounced in DreaMS embeddings.
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Inter-group investigation

Parallel to raw spectra, we applied Spearman’s Rank Correlation to the
DreaMS embeddings. The analysis produced a coefficient of −0.472
(p < 0.001), indicating that as the level difference increases, cosine
similarity tends to decrease. This negative correlation is slightlyweaker
than the −0.639 observed with raw spectra.

For further insight with DreaMS embeddings, we subdivided the
inter-group comparisons into two subsets. Subset 1, comprising pairs
(2,4) and (3,4), exhibits a moderate negative correlation of −0.490,
whereas Subset 2, consisting of pairs (2,5), (3,5), and (4,5), shows a
stronger negative correlation of −0.659. The cosine similarity declines
more sharply in Subset 2 as the level difference increases, consistent
with the pattern observed on raw spectra.

6.3.3 Comparison of raw spectra vs DreaMS spectra representation

To assess the ability of our spectral representations to capture molecu-
lar similarity, we constructed triplets for each molecule comprising
its raw MS2 spectrum, the corresponding DreaMS embedding, and the
molecular fingerprint.

We computed the cosine similarity for both the raw spectra and
the DreaMS embeddings and compared these distributions to the
Tanimoto similarity similarity distribution as a ground truthmeasure.
The results demonstrate that the cosine similarities obtained from
DreaMS embeddings align more closely with Tanimoto similarity,
whereas similarities on raw spectra are heavily skewed toward zero
(see Figure 6.4).

6.3.4 DreaMSMSn clustering

We further investigated the behavior of DreaMS embeddings on MSn
data using UMAP. UMAP projects high-dimensional data into a low-
dimensional space while preserving both local and global structures.
Surprisingly, the visualization reveals one dominant cluster along-
side several smaller peripheral clusters, which is notable given that
DreaMS was not explicitly trained on such spectra. When we colored
the clusters by fragmentation depth, we observed that most of the
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Figure 6.4: Comparison of raw spectra and DreaMS embeddings for
molecular similarity. Panel (a) shows the density distributions for Tani-
moto similarity (ground truth),Hungarian cosine similarity computed
from raw spectra, and cosine similarity based on DreaMS embeddings
across the entire dataset. Panel (b) displays scatter plots of eight uni-
formly distributed Tanimoto similarity bins (each consisting of 50
randomly sampled examples) with cosine similarity from raw spectra
on the vertical axis. Panel (c) presents the same binned sampling but
with cosine similarity based on DreaMS embeddings. Notably, while
the raw spectra cosine similarities in Panel (b) are heavily skewed
toward 0, the distribution in Panel (c) aligns much more closely with
the true Tanimoto similarity, highlighting the better performance of
DreaMS embeddings in capturing molecular similarity.

peripheral clusters predominantly consist of spectra from MS4 and
higher levels (see Figure 6.5).

Upon further analysis, we found that the peripheral clusters could
largely be distinguished by their spectral characteristics, specifically,
these spectra exhibit fewer peaks (≈ 5) and a lower average ion mass
(≈ 100 Da).

Whenwe filtered the data to include only spectra with fewer than 5
peaks and an average ion mass below 100 m/z, the clustering became
noticeably more granular. Each resulting cluster exhibited a homoge-
neous precursor mass, even though the mean precursor mass differed
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Figure 6.5: UMAP visualizations of MSn data using DreaMS embed-
dings. Panel (a) shows the UMAP projection for all data points, col-
ored by fragmentation level. Panel (b) presents the UMAP projection
for spectra filtered to include only those with at most 5 peaks, an
average m/z below 100, and a precursor m/z below 100, with points
colored by precursor m/z. This filtered view reveals distinct clusters
with homogeneous precursor masses, and we pick one for further
analysis.

between clusters. This consistency within clusters suggests that these
groups likely represent small fragments with similar properties, poten-
tially acting as fundamental building blocks of the original molecules
(see Figure 6.5).

To further test this hypothesis, we isolated a single cluster. The
spectra in this cluster demonstrated exceptionally high similarity: us-
ing the Hungarian cosine measure on raw spectra, similarity scores
ranged from 0.9 to 1.0, while DreaMS cosine similarity values were
between 0.8 and 1.0. Randomly selected examples within the cluster
showed near-identical spectral features (see Figure 6.6). These find-
ings strongly support that DreaMS is capable of capturing the subtle
nuances in MSn data that enable the formation of distinct, homoge-
neous clusters, a feature that is much more challenging to achieve
using raw spectra.
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Figure 6.6: Investigated cluster analysis from Figure 6.5. Panel (a)
displays the cosine similarity distribution computed on DreaMS em-
beddings, with scores predominantly above 0.8. Panel (b) shows repre-
sentative spectra randomly selected from the cluster, which are nearly
identical. Panel (c) presents the cosine similarity distribution based
on raw spectra using the Hungarian method, again with scores mostly
exceeding 0.8. In contrast, Panel (d) illustrates the Tanimoto similarity
distribution of the underlying molecules, with values falling below 0.2.
These findings indicate that, although the spectra within the cluster
exhibit high similarity, the corresponding molecules are chemically
diverse.

6.4 Internal representations and explainability

Throughout our experiments, we consistently observed two key trends:
(1) incorporating deeper MS levels as input enhances predictive ac-
curacy, and (2) spectra from higher fragmentation stages exhibit in-
creasing similarity. These findings suggest that the models may be
leveraging different internal mechanisms depending on the input
structure. Therefore, we employ representational similarity analysis to
investigate howdifferentMS-level inputs shape the hidden space of the
model. To isolate the effect of input types, all models were initialized
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identically and trained under the same conditions (see Section 5.1),
with input being the only varying factor.

Standard probes like Canonical Correlation Analysis (CCA) [153]
(and its orthogonally or scale-limited variants [154]) detect only lin-
ear overlaps and can miss critical geometric distinctions when layer
widths exceed sample sizes. As a result, these methods flatten criti-
cal distinctions, making them unsuitable for detailed representation
analysis in deep models [155].

To address the shortcomings of previous methods, we use Cen-
tered Kernel Alignment (CKA) [155], which uses representational-
similarity matrices to compare the geometry of activations rather than
raw feature vectors. CKA remains stable when feature dimensions
exceed the sample size3, and remain sensitive to principal variance
directions. Importantly, it is invariant only to orthogonal transforms
and uniform scaling.

We apply CKA to compare models trained with four distinct in-
put encodings across varying MSn tree depths. CKA is particularly
well suited for this setting: it enables us to quantify and visualize
how different spectral tree representations shape the internal repre-
sentation of learned features. To complement these insights, we also
perform eigenvalue analyses on the representation matrices to further
understand how variance is distributed within the learned spaces.

6.4.1 Analysis of CKA heatmaps on Retrieval challenge

To visualize how internal representations evolve across network depth
and input encoding, we re-implemented the original CKA frame-
work [157] and generated layer-by-layer heatmaps of representational
similarity (see Figure 6.7). For each model, we extracted activations
from every layer and applied global mean pooling ( max pooling, which
produced nearly identical results) to reduce each graph-structured
output into a fixed-size feature vector per example, necessary because
graph sizes vary across inputs. Then for each layer, we computed a
Radial Basis Function (RBF) kernel Gram matrix [158] to capture non-
linear relationships between examples, then applied CKA to assess
similarity between layers. We exclusively use examples from the test

3. This is achieved by normalization with the Hilbert–Schmidt independence crite-
rion, also known as the kernel-based conditional dependence measure [156].
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fold of our dataset. A CKA score close to 1 indicates that two layers or-
ganize the data similarly, CKA≈ 0 means orthogonal representations.

The resulting heatmaps (see Figure 6.7) are symmetric matrices
where each cell reflects the similarity between two layers. Off-diagonal
cells reveal how long feature subspaces persist through the network.

Similarity persists in the skip-connected dense block, whereas
graph layers remain largely unaligned (CKA ≈ 0). Within the dense
block, CKA decays with layer distance, but skip-connected pairs re-
main noticeably more similar than non-residual neighbors. This sug-
gests that skip connections help preserve feature subspaces across
depth, even as the network continues to refine them.

Notably, in the Standard challenge, models trained with only the
MS2 level (maximum fragmentation stage 0) produced significantly
more similar upper-layer representations, with CKA scores reaching
up to 0.7. In contrast, when deeper fragmentation trees were included,
maximum similarity dropped to approximately 0.25.

This pattern was much less pronounced in the Bonus challenge,
where similarity across depths remained more uniform.

In the GNN block, representation similarity was generally low and
inconsistent, perhaps influenced by the lack of soft pooling opera-
tions. However, the first GNN layer stood out as relatively more stable
across input encodings, consistently showing higher similarity than
the subsequent two layers.

Unlike prior vision-model studies [159, 160], our retrieval task
yields more diffuse CKA maps, reflecting the inherent complexity of
mass-spectral annotation and strictly unsolved problems.

6.4.2 Analysis of CKA heatmaps on De Novo challenge

We applied the same CKA pipeline (Section 6.4.1) to de novo models
(Section 5.2).

In de novo, decoder layers exhibit uniform CKA ≈ 0.7˘0.8 across
fragmentation depths, unlike Retrieval’s, where a high similarity value
was observed only on a model trained on MS2 (see Figure 6.7. We also
observe parallel similarity bands: heads at the same position across
layers align more strongly, though overall CKA decays with inter-layer
distance
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Figure 6.7: Intra-model CKA heatmaps for four models, each trained
on a different maximum fragmentation stage using the DreaMS spec-
trum representation for the Standard challenge. Each heatmap shows
pairwise representational similarity across layers, from input (bottom-
left) to output (top-right). To ensure comparability, each heatmap is
independently scaled to its own maximum CKA value, preventing
models with higher absolute similarity from overshadowing subtler
patterns in others. Pink regions highlight layer pairs with similarity
above 0.2, emphasizing moderately aligned representations while still
visualizing more nuanced differences that would otherwise be ob-
scured.
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In the graph attention encoder, we observe similar trends as in the
Retrieval challenge: the first GNN layer consistently shows the highest
similarity across input encodings, with CKA values reaching up to 0.2,
lightly higher than the ≈ 0.1 observed previously. Interestingly, we
also detect a modest degree of similarity in the deeper GNN layers,
which was largely absent in the Retrieval models.

As in Retrieval, the first GNN layer leads (CKA ≈ 0.2 vs. ≈ 0.1
before), but unlike Retrieval, deeper GNN layers now show a modest
residual similarity.

Similarly to retrieval, de novo CKA heatmaps remain low and
diffuse, with no apparent differences across the four fragmentation
stages (see Figure 6.8). The lack of pronounced similarity structure
may reflect the current task complexity and room for neural network
architectural improvements, which we further investigate in the fol-
lowing sections.

6.4.3 Retrieval model representation comparison with effective
rank

To probe how fragmentation depth and input encoding affect model
complexity, we computed each layer’s effective rank (See Figure 6.9),
revealing whether deeper spectra expand representational subspaces
or induce bottlenecks.

We formed per-layer activationmatrices (rows representing test ex-
amples and columns representing feature dimensions), subtracted col-
umnmeans, and performed principal component analysis (PCA) [90]
to obtain eigenvalues. We then summarized dimensionality via the
effective rank [161], where, e.g., a rank ≈ 2 indicates that two princi-
pal components capture nearly all variance from a 1,024-dimensional
layer.

First, we observe (see Figure 6.9) that GNNencoder leads in dimen-
sionality: binned-spectra models peak at ∼ 150 effective dimensions
in layer 1 and then collapse. DreaMS-based models decline gradually,
implying richer input subspaces that the graph layers retain better.

Second, adding any deeper stage (MS3–MS5) boosts effective rank
several-fold over MS2-only models, beyond MS3, the rank profiles
converge showing that the leap from two to three stages unlocks most
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Figure 6.8: Intra-model CKA heatmaps for four models trained on
different maximum fragmentation stages using the DreaMS spectrum
representation in the De Novo challenge. Each heatmap depicts pair-
wise representational similarity across layers, from input (bottom-left
corner) to output (top-right corner). To maintain comparability, each
heatmap is individually scaled to its own maximum CKA value. Pink
regions highlight layer pairs with similarity above 0.5, allowing visual-
ization ofmore nuanced differences thatwould otherwise be obscured.

69



6. Experimental results and analysis

complexity (noting uneven tree depths representation in the dataset,
see Section 4.6).

Finally, models trained on DreaMS embeddings consistently out-
rank binned spectra, and incorporating molecular formula in the
Bonus task further elevates effective rank in upper dense layers (Fig-
ure 6.9). These findings show that richer input encodings and deeper
fragmentation improve retrieval task metrics and drive networks to
occupy larger, dimensional feature subspaces.

Figure 6.9: Effective rank across model layers for four input repre-
sentations. Each subplot corresponds to a different combination of
task (Standard, right plots vs. Bonus challenge, left plots) and input
encoding (DreaMS spectra representation on top, binned spectra on
bottom). Within each plot, the x-axis represents network layers from
left to right, starting with the GNN input layers and ending with
the dense output layers. The y-axis shows the average effective rank
for each layer, indicating the intrinsic dimensionality of the learned
representation. Each line represents one of four models trained on a
different maximum fragmentation stage (MS2, MS3, MS4, MS5), with
individual points showing the average effective rank at each layer.
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6.4.4 De novo model representation comparison with effective rank

We applied the same effective-rank analysis to our de novo models
and trends in de novo are far more muted than in retrieval. DreaMS
models still outrank binned spectra, with a gentler decay through the
GNN encoder, but any gap between MS2 and deeper stage models
disappears.

All De Novo variants exhibit a severe bottleneck at the GNN encoder
to the Transformer decoder boundary (see Figure 6.10): effective rank
falls below ∼ 9 of 1,024 dimensions, compressing almost all informa-
tion into a tiny subspace before decoding. Such extreme compression
implies the decoder leans more on the decoder’s language modeling
and past tokens than on the encoded MSn structure.

6.4.5 Retrieval model representation comparison with top
eigenvectors similarity

Building on our effective-rank analysis (Section 6.4.3), we assessed
whether principal feature directions align acrossmodels by comparing
the top 30 eigenvectors per layer. For each model pair, we project one
set of eigenvectors into the other’s space and compute cosine similarities
(Fig. 6.11), revealing how input encoding and fragmentation depth
affect principal subspace preservation. Specifically, for each input
type: raw spectra± bonus and DreaMS± bonus, we pooledMS2-MS5
variants to obtain group level alignment profiles.

Our top-eigenvector analysis reveals several consistent trends. First,
the initial GNN layer aligns strongly (cosine ≈ 0.8) across all bench-
mark tasks, indicating a fragmentation depth agnostic feature extractor.
Beyond layer 1, alignment decays, but DreaMS models consistently
preserve higher similarity than binned spectra variants.

Second, the bonus challenge (incorporating molecular formula)
boosts alignment upon entering the upper dense network, especially
for binned-spectra models, which show the most significant gain. The
top eigenvalues of models trained on DreaMS embeddings gain less
(Fig. 6.11), suggesting they continue to be more influenced by includ-
ing more fragmentation stages.
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Figure 6.10: Effective rank across layers of the De Novo models for
both Standard (right) and Bonus (left) challenges, comparing DreaMS
(top) and binned-spectra (bottom) encodings. The x-axis spans layers
from the GNN encoder (left) through to the Transformer decoder
output (right), while the y-axis plots the average effective rank at
each stage. Each curve corresponds to a model trained on a different
maximum fragmentation depth (MS2–MS5).Note the steep collapse in
dimensionality at the encoder–decoder boundary for all fragmentation
levels and encodings, a bottleneck that forces nearly all information
into a minimal space before sequence generation.

6.4.6 De novo model representation comparison with top
eigenvectors similarity

Applying our top-eigenvector alignment analysis to the De Novo mod-
els (see Figure 6.11) reveals both familiar and distinct patterns com-
pared to retrieval. In the GNN encoder, layer 1 aligns at ≈ 0.7 across
inputs. Alignment then plummets, most sharply for binned spectra,
while DreaMS models sustain higher consistency deeper in the en-
coder.

However, at the encoder–decoder boundary, all models exhibit a re-
bound, with mean cosine scores climbing above 0.8 and remaining flat
throughout the Transformer decoder. This effect is most pronounced
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Figure 6.11: Group-wise alignment of the top-30 eigenvectors across
network layers. The figure consists of two panels: the top panel shows
Retrieval models, and the bottom panel shows De Novo models. Each
curve represents the average cosine similarity along with its standard
deviation, pooled across all fragmentation stages (MS2–MS5) for each
input type (raw spectra, raw + bonus, DreaMS embeddings, and
DreaMS + bonus). The x-axis indexes the network layers, progressing
from the GNN encoder (left) to the dense output layers (right) for Re-
trieval models, and from the GNN encoder through the Transformer
decoder for De Novo models. The y-axis reports the mean alignment
within each group. Continuous curves illustrate how principal sub-
spaces are preserved, or collapse, through the network under different
input conditions. 73
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in the binned spectra representation in the bonus challenge, where
alignment reaches nearly 1.0 across decoder layers, indicating that the
top-30 eigenvectors are virtually unchanged once decoding begins.

This rebound underscores the severe information bottleneck4 from
the effective-rank analysis: de novo models lean on the generative
decoder and, in bonus challenge, also on molecular formula knowl-
edge, over exploiting the MSn tree encoding. These findings highlight
opportunities for future improvement, particularly by encouraging
more effective use of MSn information within the de novo model
architecture.

Code, Data and Reproducibility

All code, data, and subprojects developed during this thesis are open-
source and freely available. The MassSpecGymMSn benchmark sup-
ports fully reproducible pipelines and is publicly accessible:
• Benchmark code & documentation:

github.com/Jozefov/MassSpecGymMSn
• Benchmark dataset on HuggingFace:

huggingface.co/datasets/Jozefov/MassSpecGymMSn
• Models & model pipelines examples:

github.com/Jozefov/PhantoMS
• Molecular class annotation with PyClassyFire:

github.com/Jozefov/PyClassyFire

4. As defined in Section 6.4.4
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7 Conclusions and Future work

In this work, we introduceMassSpecGymMSn, the first open, machine
learning ready benchmark built on multi-stage fragmentation MSn
data. Comprising 183,294 spectra across 14,008 unique compounds,
our resource fills a critical gap in computational mass spectrometry.
This unprecedented dataset captures fragmentation stages up to MS5,
whereas existing datasets are almost exclusively restricted to MS2.
Moreover, it predominantly covers compounds absent from any cur-
rent open or proprietary MS2 or MSn repository. Importantly, it sup-
ports reproducible machine learning research in mass spectrometry
by providing standardized retrieval and de novomolecular generation
challenges, with carefully controlled data splits to prevent informa-
tion leakage. Prior to this work, no publicly available MSn datasets of
comparable scale and quality existed.

Alongside this benchmark, we developed the first neural network
models specifically trained to operate onMSn spectra trees. Our Graph
Neural Network (GNN) encoders treat spectra not as flat collections
of peaks, but as true hierarchical structures, mirroring the sequential
fragmentation processes inherent to MSn experiments. To our knowl-
edge, this is the first time neural networks have been designed and
trained to exploit the full depth of multi-stage mass spectrometry data,
opening new analytical possibilities that were previously inaccessible.

In our study, we explored two distinct approaches to representing
MSn spectra. The first used a classical method, encoding each spec-
trum as a simple binned peak vector. The second applied the DreaMS
foundation model to generate dense, learned embeddings for each
spectrum. This setup enabled a direct comparison between traditional
handcrafted feature spaces and modern learned representations in
the context of MSn data. Importantly, our work marks a novel step
in extending foundation models beyond MS2, demonstrating their
potential to capture the deeper structure revealed by multi-stage frag-
mentation.

Our experiments show that adding even a single additional frag-
mentation stage, moving from MS2 to MS3, yields dramatic gains in
both retrieval and generation performance. In the standard retrieval
task, theHit Rate@1 jumps from 0.012 atMS2 to 0.079 atMS3, a 6.6-fold
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increase, and continues rising to 0.091 at MS5. When using DreaMS
foundation model embeddings, the improvement is even more strik-
ing: the Hit Rate@1 reaches 0.112 at MS4, representing a nearly 10x
increase over the MS2 baseline achieved with simple binned spectra.

Moreover, our detailed analysis of spectral similarities within MSn
trees confirms that each additional fragmentation stage reveals previ-
ously hidden, rich relationships. Comparing spectra similarities across
fragmentation stages using cosine similarity, we observe that the aver-
age similarity rises from just 0.02 for MS2–MS2 spectra pairs to 0.57 for
MS4–MS5 comparisons, highlighting a dramatic gain in shared struc-
tural information. Nonparametric tests, including the Mann-Whitney
U test and Kruskal-Wallis H test, further validate that each fragmenta-
tion stage contributes statistically distinct patterns, confirming that
deeper fragmentation adds new information. Spearman correlation
analyses additionally confirm a strong positive trend between frag-
mentation depth and spectral similarity. DreaMS embeddings mirror
these patterns, with similarity distributions becoming more tightly
centered and mean values rising from 0.13 at MS2 to 0.57 at MS5,
further capturing the unique and orthogonal information each deeper
fragmentation stage contributes.

Quantitative internal model analyses further reinforce the value
of MSn data. Centered Kernel Alignment (CKA) heatmaps, effec-
tive rank measurements, and top eigenvector alignments all confirm
that deeper fragmentation stages enrich the internal feature spaces of
neural networks. Models trained on MSn trees maintain richer, higher-
dimensional representations compared to models trained solely on
MS2 data.

Across both the standard and bonus retrieval challenges, models
built on DreaMS embeddings consistently outperformed those using
traditional binned spectra. At the MS3 level, for example, DreaMS
achieved a Hit Rate@20 of 0.410 compared to 0.338 for binned spectra,
representing a 23.5% relative improvement, along with lower molec-
ular structural distances. Critically, internal representation analyses
showed that models trained on DreaMS embeddings maintain high
internal consistency and dimensional richness across network layers,
whereas binned-spectra models degrade substantially after the initial
stages.
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Remarkably, we found that DreaMS embeddings, despite the foun-
dation model being trained only on MS2 data, naturally organize MSn
spectra into meaningful fragmentation-stage clusters without supervi-
sion. UMAP projections revealed a distinct central cluster of spectra
from early fragmentation stages, with peripheral clusters dominated
by MS4 and MS5, indicating that DreaMS embeddings inherently cap-
ture hierarchical substructures present in MSn data. This unexpected
generalization underscores the power of foundation models and high-
lights their potential for enabling deeper chemical understanding.

Altogether, this work establishes a new standard for computational
mass spectrometry. By providing the first large-scale, public MSn
benchmark and pioneering neural architectures designed to exploit
its full richness, we open new avenues for data-driven metabolomics.
In parallel, our laboratory developed a high-throughput experimen-
tal pipeline for multi-stage fragmentation measurements, achieving
unprecedented speed and quality in compound characterization. This
platform not only enabled the creation of MassSpecGymMSn but also
positions us to dramatically expand the availability of high-quality
MSn data in the near future. We aim to lower the barriers to entry for
the machine learning community, reducing the need for deep domain
expertise in mass spectrometry, and hope to spark broader interest
in MSn over MS2 data. Given that nearly 98% of currently measured
mass spectra remain unannotated [7] and often require extensive ex-
pert curation, MSn holds the promise to unlock new potential. With
MassSpecGymMSn, machine learning models, and experimental in-
novations developed alongside it, we lay the groundwork that may
catalyze the next generation of tools, tools as transformative for mass
spectrometry as AlphaFold has been for structural biology, reshap-
ing how mass spectra data are interpreted, modeled, and ultimately
driving the discovery of new metabolites.
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A An appendix

Figure A.1: The upper images illustrate an unoptimized computation
scenario for the retrieval task. The upper-left image shows a 30-epoch
run on 8 AMDMI250X GPUs, which took 220 minutes to complete;
the GPUs are frequently idle due to CPU-bound batch processing,
often showing 0% utilization. The upper-right image displays the
CPU usage measured during a separate 4-minute run under the same
conditions, demonstrating that 7 CPUs were constantly hitting 100%
utilization. In contrast, the lower images demonstrate the optimized
version, where GPU utilization consistently reaches 100% while CPU
usage remains minimal.
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Figure A.2: This figure presents the Tanimoto similarity distributions
formolecules used to train the de novo decoder, comparedwith the val-
idation and test folds obtained via a Murcko histogram stratified split.
Panels (a) and (b) represent molecules from a 1-million-compound
database, with (a) comparing train set to test set and (b) to the val-
idation set, while panels (c) and (d) show similar comparisons for
molecules from a 4-million-compound database. In total, 2.6 million
molecules form the training set, and here we confirm minimal data
leakage between the splits.
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Figure A.3: Training loss for retrieval, standard challenge with binned
spectra

FigureA.4:Training loss for retrieval, standard challengewithDreaMS
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Figure A.5: Training loss for retrieval, bonus challenge with binned
spectra

Figure A.6: Training loss for retrieval, bonus challenge with DreaMS
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Figure A.7: Training loss for de novo, standard challenge with binned
spectra

Figure A.8: Training loss for de novo, standard challenge with DreaMS
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Figure A.9: Training loss for de novo, bonus challenge with binned
spectra

Figure A.10: Training loss for de novo, bonus challenge with DreaMS
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Figure A.11: Illustration of the node pair extraction process frommulti-
stage MSn trees. Circled pairs indicate comparisons constructed from
the same tree between different fragmentation levels (e.g., a (2, 3) pair)
or within the same level (e.g., (5, 5) pairs). Note that, since each tree
contains only one MS2 node, (2, 2) pairs are assembled from nodes in
different trees.
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Figure A.12: Hungarian cosine similarity distribution on hierarchical
pairs.

Figure A.13: DreaMS cosine similarity distribution on hierarchical
pairs.

85



Bibliography

[1] DineshKBarupal et al. “MetaMapp:mapping andvisualizingmetabolomic
data by integrating information from biochemical pathways and
chemical and mass spectral similarity”. en. In: BMC Bioinformatics
13.1 (May 2012), p. 99.

[2] RimaKaddurah-Daouk andKRangaRamaKrishnan. “Metabolomics:
a global biochemical approach to the study of central nervous system
diseases”. en. In: Neuropsychopharmacology 34.1 (Jan. 2009), pp. 173–
186.

[3] Mark R Viant and Ulf Sommer. “Mass spectrometry based environ-
mental metabolomics: a primer and review”. en. In:Metabolomics 9.S1
(Mar. 2013), pp. 144–158.

[4] Aihua Zhang et al. “Mass spectrometry-driven drug discovery for
development of herbal medicine”. en. In: Mass Spectrom. Rev. 37.3
(May 2018), pp. 307–320.

[5] Corinna Brungs et al. “Efficient generation of open multi-stage frag-
mentation mass spectral libraries”. In: ChemRxiv (Oct. 2024).

[6] Ying Jin et al. “A new strategy for the discovery of epimediummetabo-
lites using high-performance liquid chromatography with high reso-
lution mass spectrometry”. en. In: Anal. Chim. Acta 768 (Mar. 2013),
pp. 111–117.

[7] RicardoRda Silva et al. “Illuminating the darkmatter inmetabolomics”.
en. In: Proc. Natl. Acad. Sci. U. S. A. 112.41 (Oct. 2015), pp. 12549–
12550.

[8] Chloe Engler Hart et al. “Defining the limits of plant chemical space:
challenges and estimations”. en. In:Gigascience 14 (Jan. 2025), giaf033.

[9] Kai Dührkop et al. “SIRIUS 4: a rapid tool for turning tandem mass
spectra into metabolite structure information”. en. In: Nat. Methods
16.4 (Apr. 2019), pp. 299–302.

[10] Montgomery Bohde et al. “DiffMS: Diffusion generation of molecules
conditioned on mass spectra”. In: arXiv [cs.LG] (Feb. 2025).

[11] Adam Hájek et al. “SpecTUS: Spectral Translator for Unknown Struc-
tures annotation from EI-MS spectra”. In: arXiv [cs.LG] (Feb. 2025).

86



BIBLIOGRAPHY
[12] mzCloud – Advanced Mass Spectral Database. https://www.mzcloud.

org/. Accessed: 2025-3-23.
[13] Arpana Vaniya and Oliver Fiehn. “Using fragmentation trees and

mass spectral trees for identifying unknown compounds inmetabolomics”.
en. In: Trends Analyt. Chem. 69 (June 2015), pp. 52–61.

[14] Mingxun Wang et al. “Sharing and community curation of mass
spectrometry data with Global Natural Products Social Molecular
Networking”. en. In: Nat. Biotechnol. 34.8 (Aug. 2016), pp. 828–837.

[15] John Jumper et al. “Highly accurate protein structure prediction with
AlphaFold”. en. In: Nature 596.7873 (Aug. 2021), pp. 583–589.

[16] Justin Gilmer et al. “Neural Message Passing for Quantum Chem-
istry”. In: arXiv [cs.LG] (Apr. 2017).

[17] Kurt Hornik et al. “Multilayer feedforward networks are universal
approximators”. en. In: Neural Netw. 2.5 (Jan. 1989), pp. 359–366.

[18] William L Hamilton. Graph representation learning. en. Synthesis lec-
tures on artificial intelligence and machine learning. Cham, Switzer-
land: Springer International Publishing, Sept. 2020.

[19] Roman Bushuiev et al. “Emergence of molecular structures from
repository-scale self-supervised learning on tandem mass spectra”.
In: ChemRxiv (Apr. 2024).

[20] John H Beale et al. “Successful sample preparation for serial crystal-
lography experiments”. en. In: J. Appl. Crystallogr. 52.Pt 6 (Dec. 2019),
pp. 1385–1396.

[21] Sepideh Amin-Hanjani et al. “Mevastatin, an HMG-CoA Reductase
Inhibitor, Reduces Stroke Damage andUpregulates Endothelial Nitric
Oxide Synthase in Mice”. In: Stroke 32.4 (Apr. 2001), pp. 980–986.

[22] Gary Siuzdak. Activity Metabolomics and mass spectrometry 2024 edition.
2025.

[23] Yan Wang et al. “A “soft” and “hard” ionization method for compre-
hensive studies of molecules”. en. In: Anal. Chem. 90.24 (Dec. 2018),
pp. 14095–14099.

[24] Mass Analyzers (Mass Spectrometry). en. https://chem.libretexts.
org/Bookshelves/Analytical_Chemistry/Supplemental_Modules_
(Analytical_Chemistry)/Instrumentation_and_Analysis/Mass_
Spectrometry/Mass_Spectrometers_(Instrumentation)/Mass_
Analyzers_(Mass_Spectrometry). Accessed: 2025-3-30. Oct. 2013.

87

https://www.mzcloud.org/
https://www.mzcloud.org/
https://chem.libretexts.org/Bookshelves/Analytical_Chemistry/Supplemental_Modules_(Analytical_Chemistry)/Instrumentation_and_Analysis/Mass_Spectrometry/Mass_Spectrometers_(Instrumentation)/Mass_Analyzers_(Mass_Spectrometry)
https://chem.libretexts.org/Bookshelves/Analytical_Chemistry/Supplemental_Modules_(Analytical_Chemistry)/Instrumentation_and_Analysis/Mass_Spectrometry/Mass_Spectrometers_(Instrumentation)/Mass_Analyzers_(Mass_Spectrometry)
https://chem.libretexts.org/Bookshelves/Analytical_Chemistry/Supplemental_Modules_(Analytical_Chemistry)/Instrumentation_and_Analysis/Mass_Spectrometry/Mass_Spectrometers_(Instrumentation)/Mass_Analyzers_(Mass_Spectrometry)
https://chem.libretexts.org/Bookshelves/Analytical_Chemistry/Supplemental_Modules_(Analytical_Chemistry)/Instrumentation_and_Analysis/Mass_Spectrometry/Mass_Spectrometers_(Instrumentation)/Mass_Analyzers_(Mass_Spectrometry)
https://chem.libretexts.org/Bookshelves/Analytical_Chemistry/Supplemental_Modules_(Analytical_Chemistry)/Instrumentation_and_Analysis/Mass_Spectrometry/Mass_Spectrometers_(Instrumentation)/Mass_Analyzers_(Mass_Spectrometry)


BIBLIOGRAPHY
[25] JohanViaene et al. “Comparison of a triple-quadrupole and a quadrupole

time-of-flightmass analyzer to quantify 16 opioids in human plasma”.
en. In: J. Pharm. Biomed. Anal. 127 (Aug. 2016), pp. 49–59.

[26] Jeffrey S Gaffney andNancy AMarley. “Chemical Measurements and
Instrumentation”. In: General Chemistry for Engineers. Ed. by Jeffrey S
Gaffney and Nancy A Marley. Elsevier, 2018, pp. 493–532.

[27] Youzhong Liu et al. “Mass spectrometry-based structure elucidation
of small molecule impurities and degradation products in pharma-
ceutical development”. en. In: Trends Analyt. Chem. 121.115686 (Dec.
2019), p. 115686.

[28] J L Holmes. “Metastable Ions”. In: Encyclopedia of Spectroscopy and
Spectrometry. Ed. by John C Lindon et al. Elsevier, 2017, pp. 797–802.

[29] Emma L Schymanski et al. “Identifying small molecules via high
resolution mass spectrometry: communicating confidence”. en. In:
Environ. Sci. Technol. 48.4 (Feb. 2014), pp. 2097–2098.

[30] Jurgen H Gross. Mass Spectrometry: A Textbook. en. 3rd ed. Cham,
Switzerland: Springer International Publishing, June 2017.

[31] P Waridel et al. “Evaluation of quadrupole time-of-flight tandem
mass spectrometry and ion-trap multiple-stage mass spectrometry
for the differentiation of C-glycosidic flavonoid isomers”. en. In: J.
Chromatogr. A 926.1 (Aug. 2001), pp. 29–41.

[32] Ying S Ting et al. “Automated lipid A structure assignment from
hierarchical tandemmass spectrometry data”. en. In: J. Am. Soc. Mass
Spectrom. 22.5 (May 2011), pp. 856–866.

[33] MohamedASalem et al. “Metabolomics in the context of plant natural
products research: From sample preparation to metabolite analysis”.
en. In:Metabolites 10.1 (Jan. 2020), p. 37.

[34] Niek F de Jonge et al. “MS2Query: reliable and scalable MS2 mass
spectra-based analogue search”. en. In:Nat. Commun. 14.1 (Mar. 2023),
p. 1752.

[35] Sebastian Böcker and Kai Dührkop. “Fragmentation trees reloaded”.
en. In: J. Cheminform. 8.1 (Feb. 2016), p. 5.

[36] Peiying Shi et al. “Characterization and identification of isomeric
flavonoid O-diglycosides from genus Citrus in negative electrospray
ionization by ion trap mass spectrometry and time-of-flight mass

88



BIBLIOGRAPHY
spectrometry”. en. In: Anal. Chim. Acta 598.1 (Aug. 2007), pp. 110–
118.

[37] Nicolas Fabre et al. “Determination of flavone, flavonol, and flavanone
aglycones by negative ion liquid chromatography electrospray ion
trap mass spectrometry”. en. In: J. Am. Soc. Mass Spectrom. 12.6 (June
2001), pp. 707–715.

[38] Lars Ridder et al. “Automatic compound annotation from mass spec-
trometry data using MAGMa”. en. In: Mass Spectrom. (Tokyo) 3.Spec
Iss 2 (July 2014), S0033.

[39] Florian Rasche et al. “Computing fragmentation trees from tandem
mass spectrometry data”. en. In:Anal. Chem. 83.4 (Feb. 2011), pp. 1243–
1251.

[40] Kerstin Scheubert et al. “Computing fragmentation trees frommetabo-
lite multiple mass spectrometry data”. en. In: J. Comput. Biol. 18.11
(Nov. 2011), pp. 1383–1397.

[41] Kerstin Scheubert et al. “Multiple mass spectrometry fragmentation
trees revisited: Boosting performance and quality”. In: Lecture Notes
in Computer Science. Lecture notes in computer science. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2014, pp. 217–231.

[42] Florian Rasche et al. “Identifying the unknowns by aligning fragmen-
tation trees”. en. In: Anal. Chem. 84.7 (Apr. 2012), pp. 3417–3426.

[43] Haiying Zhang et al. “Mass defect filter technique and its applications
to drug metabolite identification by high-resolution mass spectrome-
try”. en. In: J. Mass Spectrom. 44.7 (July 2009), pp. 999–1016.

[44] Samuel Goldman et al. “Generating molecular fragmentation graphs
with autoregressive neural networks”. en. In: Anal. Chem. 96.8 (Feb.
2024), pp. 3419–3428.

[45] Runzhong Wang et al. “Neural graph matching improves retrieval
augmented generation in molecular machine learning”. In: arXiv
[cs.LG] (Feb. 2025).

[46] Adamo Young et al. “FraGNNet: A deep probabilistic model for mass
spectrum prediction”. In: arXiv [cs.LG] (Apr. 2024).

[47] Richard Licheng Zhu and Eric Jonas. “Rapid approximate subset-
based spectra prediction for electron ionization-mass spectrometry”.
en. In: Anal. Chem. 95.5 (Feb. 2023), pp. 2653–2663.

89



BIBLIOGRAPHY
[48] Michael A Stravs et al. “MSNovelist: de novo structure generation

from mass spectra”. en. In: Nat. Methods 19.7 (July 2022), pp. 865–870.
[49] Michelle T Sheldon et al. “Determination of ion structures in struc-

turally related compounds using precursor ion fingerprinting”. en.
In: J. Am. Soc. Mass Spectrom. 20.3 (Mar. 2009), pp. 370–376.

[50] Jiarui Zhou et al. “HAMMER: automated operation of mass frontier
to construct in silico mass spectral fragmentation libraries”. en. In:
Bioinformatics 30.4 (Feb. 2014), pp. 581–583.

[51] Brandon Y Lieng et al. “Computational expansion of high-resolution-
MSn spectral libraries”. en. In:Anal. Chem. 95.47 (Nov. 2023), pp. 17284–
17291.

[52] Jennifer N Wei et al. “Rapid prediction of electron-ionization mass
spectrometry using neural networks”. en. In: ACS Cent. Sci. 5.4 (Apr.
2019), pp. 700–708.

[53] Wout Bittremieux et al. “Comparison of cosine, modified cosine, and
neutral loss based spectrum alignment for discovery of structurally
related molecules”. en. In: J. Am. Soc. Mass Spectrom. 33.9 (Sept. 2022),
pp. 1733–1744.

[54] MassBank of North America. en. https://mona.fiehnlab.ucdavis.
edu/.. Accessed: 2025-3-23.

[55] David S Wishart et al. “HMDB: the Human Metabolome Database”.
en. In: Nucleic Acids Res. 35.Database issue (Jan. 2007), pp. D521–6.

[56] Hisayuki Horai et al. “MassBank: a public repository for sharing
mass spectral data for life sciences”. en. In: J. Mass Spectrom. 45.7 (July
2010), pp. 703–714.

[57] Kai Dührkop et al. “Systematic classification of unknown metabo-
lites using high-resolution fragmentation mass spectra”. en. In: Nat.
Biotechnol. 39.4 (Apr. 2021), pp. 462–471.

[58] Roman Bushuiev et al. “MassSpecGym: A benchmark for the discov-
ery and identification of molecules”. In: Neural Inf Process Syst (Oct.
2024).

[59] Xi-WuZhang et al. “Mass spectrometry-basedmetabolomics in health
and medical science: a systematic review”. en. In: RSC Adv. 10.6 (Jan.
2020), pp. 3092–3104.

[60] mzCloud – Advanced Mass Spectral Database. https://www.mzcloud.
org/.. Accessed: 2025-3-23.

90

https://mona.fiehnlab.ucdavis.edu/.
https://mona.fiehnlab.ucdavis.edu/.
https://www.mzcloud.org/.
https://www.mzcloud.org/.


BIBLIOGRAPHY
[61] Carlos Guijas et al. “METLIN: A technology platform for identify-

ing knowns and unknowns”. en. In: Anal. Chem. 90.5 (Mar. 2018),
pp. 3156–3164.

[62] Hailong Zhang et al. “Congruent strategies for carbohydrate sequenc-
ing. 2. FragLib: an MSn spectral library”. en. In: Anal. Chem. 77.19
(Oct. 2005), pp. 6263–6270.

[63] Julio E Peironcely et al. “Automated pipeline for de novo metabolite
identification using mass-spectrometry-based metabolomics”. en. In:
Anal. Chem. 85.7 (Apr. 2013), pp. 3576–3583.

[64] Hiromi Ito et al. “In vitro and in vivo enzymatic syntheses and mass
spectrometric database for N-glycans and o-glycans”. en. In: Methods
Enzymol. 478 (2010). Ed. by Minoru Fukuda, pp. 127–149.

[65] Kim Kultima et al. “Development and evaluation of normalization
methods for label-free relative quantification of endogenous pep-
tides”. en. In: Mol. Cell. Proteomics 8.10 (Oct. 2009), pp. 2285–2295.

[66] Maria Sorokina et al. “COCONUT online: Collection of Open Natural
Products database”. en. In: J. Cheminform. 13.1 (Jan. 2021), p. 2.

[67] Mark Davies et al. “ChEMBL web services: streamlining access to
drug discovery data and utilities”. en. In: Nucleic Acids Res. 43.W1
(July 2015), W612–20.

[68] Barbara Zdrazil et al. “The ChEMBL Database in 2023: a drug dis-
covery platform spanning multiple bioactivity data types and time
periods”. en. In: Nucleic Acids Res. 52.D1 (Jan. 2024), pp. D1180–
D1192.

[69] Sunghwan Kim et al. “PubChem 2023 update”. en. In: Nucleic Acids
Res. 51.D1 (Jan. 2023), pp. D1373–D1380.

[70] John J Irwin et al. “ZINC20-A free ultralarge-scale chemical database
for ligand discovery”. en. In: J. Chem. Inf. Model. 60.12 (Dec. 2020),
pp. 6065–6073.

[71] Cornell Aeronautical. The perceptron: A probabilistic model for informa-
tion storage and organization in the brain. https://www.ling.upenn.
edu/courses/cogs501/Rosenblatt1958.pdf. Accessed: 2025-4-3.

[72] S J Martin et al. “Synaptic plasticity and memory: an evaluation of
the hypothesis”. en. In: Annu. Rev. Neurosci. 23.1 (2000), pp. 649–711.

91

https://www.ling.upenn.edu/courses/cogs501/Rosenblatt1958.pdf
https://www.ling.upenn.edu/courses/cogs501/Rosenblatt1958.pdf


BIBLIOGRAPHY
[73] Ben Li and Stephen Gilbert. “Artificial Intelligence awarded two

Nobel Prizes for innovations that will shape the future of medicine”.
en. In: NPJ Digit. Med. 7.1 (Nov. 2024), p. 336.

[74] J J Hopfield. “Neural networks and physical systems with emergent
collective computational abilities”. en. In: Proc. Natl. Acad. Sci. U. S.
A. 79.8 (Apr. 1982), pp. 2554–2558.

[75] David ERumelhart et al. “Learning representations by back-propagating
errors”. en. In: Nature 323.6088 (Oct. 1986), pp. 533–536.

[76] Ian Goodfellow et al. Deep Learning. en. MIT Press, Nov. 2016.
[77] Ashish Vaswani et al. Attention is all you need. https://proceedings.

neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-
Paper.pdf. Accessed: 2025-3-30.

[78] Jie Zhou et al. “Graph neural networks: A review of methods and
applications”. In: arXiv [cs.LG] (Dec. 2018).

[79] Federico Errica et al. “A fair comparison of graph neural networks
for graph classification”. In: arXiv [cs.LG] (Dec. 2019).

[80] Tom B Brown et al. “Language Models are Few-Shot Learners”. In:
arXiv [cs.CL] (May 2020).

[81] Gemini Team et al. “Gemini: A family of highly capable multimodal
models”. In: arXiv [cs.CL] (Dec. 2023).

[82] S Hochreiter and J Schmidhuber. “Long short-term memory”. en. In:
Neural Comput. 9.8 (Nov. 1997), pp. 1735–1780.

[83] Junyoung Chung et al. “Empirical evaluation of gated recurrent neu-
ral networks on sequence modeling”. In: arXiv [cs.NE] (Dec. 2014).

[84] Alex Krizhevsky et al. “ImageNet classification with deep convo-
lutional neural networks”. en. In: Commun. ACM 60.6 (May 2017),
pp. 84–90.

[85] Alexey Dosovitskiy et al. “An image is worth 16x16 words: Trans-
formers for image recognition at scale”. In: arXiv [cs.CV] (Oct. 2020).

[86] Zeming Lin et al. “Evolutionary-scale prediction of atomic-level pro-
tein structure with a language model”. en. In: Science 379.6637 (Mar.
2023), pp. 1123–1130.

[87] Jacob Devlin et al. “BERT: Pre-training of deep bidirectional Trans-
formers for language understanding”. In: arXiv [cs.CL] (Oct. 2018).

92

https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf


BIBLIOGRAPHY
[88] Alec Radford and Karthik Narasimhan. “Improving language under-

standing by generative pre-training”. In: (2018).
[89] Marius Mosbach et al. “On the stability of fine-tuning BERT: Miscon-

ceptions, explanations, and strong baselines”. In: arXiv [cs.LG] (June
2020).

[90] Hervé Abdi and Lynne J Williams. “Principal component analysis:
Principal component analysis”. en. In: Wiley Interdiscip. Rev. Comput.
Stat. 2.4 (July 2010), pp. 433–459.

[91] Marie-ClaireHennion et al. “Retention behaviour of polar compounds
using porous graphitic carbon with water-rich mobile phases”. en.
In: J. Chromatogr. A 712.2 (Oct. 1995), pp. 287–301.

[92] Allegra T Aron et al. “Reproducible molecular networking of untar-
geted mass spectrometry data using GNPS”. en. In: Nat. Protoc. 15.6
(June 2020), pp. 1954–1991.

[93] Yuta Ogawa et al. “Current contributions of organofluorine com-
pounds to the agrochemical industry”. en. In: iScience 23.9 (Sept.
2020), p. 101467.

[94] Rafal Mulka et al. “FluoBase: a fluorinated agents database”. en. In: J.
Cheminform. 17.1 (Feb. 2025), p. 19.

[95] Stephen R Heller et al. “InChI, the IUPAC International Chemical
Identifier”. en. In: J. Cheminform. 7.1 (May 2015), p. 23.

[96] Matthew C Robinson et al. “Validating the validation: reanalyzing a
large-scale comparison of deep learning andmachine learningmodels
for bioactivity prediction”. en. In: J. Comput. Aided Mol. Des. 34.7 (July
2020), pp. 717–730.

[97] Samuel Goldman et al. “Prefix-tree decoding for predicting mass
spectra from molecules”. In: arXiv [q-bio.QM] (Mar. 2023).

[98] RomanBushuiev. “Samořízené strojové učení pro interpretacimolekulárních
dat z hmotnostní spektrometrie”. PhD thesis. June 2023.

[99] G W Bemis and M A Murcko. “The properties of known drugs.
1. Molecular frameworks”. en. In: J. Med. Chem. 39.15 (July 1996),
pp. 2887–2893.

[100] Fleming Kretschmer et al. “Small molecule machine learning: All
models are wrong, some may not even be useful”. In: Bioinformatics
biorxiv;2023.03.27.534311v2 (Mar. 2023).

93



BIBLIOGRAPHY
[101] Emma L Schymanski et al. “Critical Assessment of Small Molecule

Identification 2016: automated methods”. en. In: J. Cheminform. 9.1
(Mar. 2017), p. 22.

[102] Samuel Goldman et al. “Annotating metabolite mass spectra with
domain-inspired chemical formula transformers”. In: Bioinformatics
biorxiv;2022.12.30.522318v1 (Dec. 2022).

[103] Darko Butina. “Unsupervised data base clustering based on daylight’s
fingerprint and tanimoto similarity: A fast and automated way to
cluster small and large data sets”. en. In: J. Chem. Inf. Comput. Sci. 39.4
(July 1999), pp. 747–750.

[104] William Falcon et al. PyTorchLightning/pytorch-lightning: 0.7.6 release.
2020.

[105] Thomas Wolf et al. “HuggingFace’s transformers: State-of-the-art
natural language processing”. In: arXiv [cs.CL] (Oct. 2019).

[106] Manfred Beckmann et al. “High-throughput, nontargeted metabolite
fingerprinting using nominal mass flow injection electrospray mass
spectrometry”. en. In: Nat. Protoc. 3.3 (2008), pp. 486–504.

[107] Adriano Rutz et al. “The LOTUS initiative for open knowledge man-
agement in natural products research”. en. In: Elife 11 (May 2022).

[108] David J Ashline et al. “Carbohydrate structural isomers analyzed by
sequential mass spectrometry”. en. In: Anal. Chem. 79.10 (May 2007),
pp. 3830–3842.

[109] Robin Schmid et al. “Integrative analysis of multimodal mass spec-
trometry data in MZmine 3”. en. In: Nat. Biotechnol. 41.4 (Apr. 2023),
pp. 447–449.

[110] Louis-Félix Nothias et al. “Feature-basedmolecular networking in the
GNPS analysis environment”. en. In: Nat. Methods 17.9 (Sept. 2020),
pp. 905–908.

[111] Niek F de Jonge et al. “ReproducibleMS/MS library cleaning pipeline
in matchms”. en. In: J. Cheminform. 16.1 (July 2024), p. 88.

[112] Kermit KMurray. “Resolution and resolving power inMass Spectrom-
etry”. en. In: J. Am. Soc. Mass Spectrom. 33.12 (Dec. 2022), pp. 2342–
2347.

[113] Eric W Deutsch. “File formats commonly used in mass spectrometry
proteomics”. en. In: Mol. Cell. Proteomics 11.12 (Dec. 2012), pp. 1612–
1621.

94



BIBLIOGRAPHY
[114] Adam Paszke et al. “PyTorch: An imperative style, high-performance

deep learning library”. In: arXiv [cs.LG] (Dec. 2019).
[115] Matthias Fey and Jan Eric Lenssen. “Fast graph representation learn-

ing with PyTorch Geometric”. In: arXiv [cs.LG] (Mar. 2019).
[116] Mike Folk et al. “An overview of the HDF5 technology suite and

its applications”. In: Proceedings of the EDBT/ICDT 2011 Workshop on
Array Databases. New York, NY, USA: ACM, Mar. 2011.

[117] David Weininger. “SMILES, a chemical language and information
system. 1. Introduction to methodology and encoding rules”. en. In:
J. Chem. Inf. Comput. Sci. 28.1 (Feb. 1988), pp. 31–36.

[118] Greg Landrum. RDKit. en. https : / / www . rdkit . org. Accessed:
2025-4-8.

[119] CCMS ProteoSAFe Workflow Input Form. https://massive.ucsd.edu.
Accessed: 2025-4-8.

[120] Fleming Kretschmer et al. “Coverage bias in small molecule machine
learning”. en. In: Nat. Commun. 16.1 (Jan. 2025), p. 554.

[121] Gabriel Asher et al. “LSM1-MS2: A foundation model for MS/MS,
encompassing chemical property predictions, search and de novo
generation”. In: ChemRxiv (June 2024).

[122] PRISM: A foundation model for life’s chemistry. en. https://enveda.
com/prism- a- foundation- model- for- lifes- chemistry/. Ac-
cessed: 2025-4-8.

[123] RunPod. RunPod - The Cloud Built for AI. en. https://www.runpod.
io/. Accessed: 2025-4-8.

[124] David Rogers and Mathew Hahn. “Extended-connectivity finger-
prints”. en. In: J. Chem. Inf. Model. 50.5 (May 2010), pp. 742–754.

[125] H L Morgan. “The generation of a unique machine description for
chemical structures-A technique developed at chemical abstracts
service”. en. In: J. Chem. Doc. 5.2 (May 1965), pp. 107–113.

[126] Beate I Escher et al. “Tracking complex mixtures of chemicals in our
changing environment”. en. In: Science 367.6476 (Jan. 2020), pp. 388–
392.

[127] Weihua Hu et al. “Open Graph Benchmark: Datasets for machine
learning on graphs”. In: arXiv [cs.LG] (May 2020).

95

https://www.rdkit.org
https://massive.ucsd.edu
https://enveda.com/prism-a-foundation-model-for-lifes-chemistry/
https://enveda.com/prism-a-foundation-model-for-lifes-chemistry/
https://www.runpod.io/
https://www.runpod.io/


BIBLIOGRAPHY
[128] Kai Dührkop and Sebastian Böcker. “Fragmentation trees reloaded”.

In: arXiv [q-bio.QM] (Dec. 2014).
[129] Shipei Xing et al. “BUDDY: molecular formula discovery via bottom-

up MS/MS interrogation”. en. In: Nat. Methods 20.6 (June 2023),
pp. 881–890.

[130] Tomáš Pluskal et al. “Highly accurate chemical formula prediction
tool utilizing high-resolution mass spectra, MS/MS fragmentation,
heuristic rules, and isotope pattern matching”. en. In: Anal. Chem.
84.10 (May 2012), pp. 4396–4403.

[131] Juan Carlos Alarcon-Barrera et al. “Recent advances in metabolomics
analysis for early drug development”. en. In: Drug Discov. Today 27.6
(June 2022), pp. 1763–1773.

[132] Seung Ha Lee and Dal Woong Choi. “Comparison between source-
induced dissociation and collision-induced dissociation of ampicillin,
chloramphenicol, ciprofloxacin, and oxytetracycline via mass spec-
trometry”. en. In: Toxicol. Res. 29.2 (June 2013), pp. 107–114.

[133] Yannick Djoumbou Feunang et al. “ClassyFire: automated chemical
classification with a comprehensive, computable taxonomy”. en. In:
J. Cheminform. 8.1 (Nov. 2016), p. 61.

[134] Kirill Degtyarenko et al. “ChEBI: a database and ontology for chemical
entities of biological interest”. en. In: Nucleic Acids Res. 36.Database
issue (Jan. 2008), pp. D344–50.

[135] Eoin Fahy et al. “Update of the LIPID MAPS comprehensive classi-
fication system for lipids”. en. In: J. Lipid Res. 50 Suppl.Supplement
(Apr. 2009), S9–14.

[136] Petar Veličković et al. “GraphAttentionNetworks”. In: arXiv [stat.ML]
(Oct. 2017).

[137] Armen G Beck et al. “Recent developments in machine learning for
mass spectrometry”. en. In:ACSMeas. Sci. Au 4.3 (June 2024), pp. 233–
246.

[138] Benyou Wang et al. “On Position Embeddings in BERT”. In: (Oct.
2020).

[139] Anqi Mao et al. “Cross-entropy loss functions: Theoretical analysis
and applications”. In: arXiv [cs.LG] (Apr. 2023).

[140] Linus Ericsson et al. “Self-supervised representation learning: Intro-
duction, advances and challenges”. In: arXiv [cs.LG] (Oct. 2021).

96



BIBLIOGRAPHY
[141] Markus Freitag and Yaser Al-Onaizan. “Beam search strategies for

Neural Machine Translation”. In: arXiv [cs.CL] (Feb. 2017).
[142] Pan Du et al. “Improved peak detection in mass spectrum by incor-

porating continuous wavelet transform-based pattern matching”. en.
In: Bioinformatics 22.17 (Sept. 2006), pp. 2059–2065.

[143] Kevin R Coombes et al. “Improved peak detection and quantification
of mass spectrometry data acquired from surface-enhanced laser des-
orption and ionization by denoising spectrawith the undecimated dis-
crete wavelet transform”. en. In: Proteomics 5.16 (Nov. 2005), pp. 4107–
4117.

[144] AdityaDivyakant Shrivastava et al. “MassGenie: A transformer-based
deep learningmethod for identifying smallmolecules from theirmass
spectra”. en. In: Biomolecules 11.12 (Nov. 2021), p. 1793.

[145] TKonstantin Rusch et al. “A survey on oversmoothing in graph neural
networks”. In: arXiv [cs.LG] (Mar. 2023).

[146] Frank J Massey join(’ ’. “The kolmogorov-smirnov test for goodness
of fit”. In: J. Am. Stat. Assoc. 46.253 (Mar. 1951), p. 68.

[147] Nadim Nachar. “The Mann-Whitney U: A test for assessing whether
two independent samples come from the same distribution”. In: Tutor.
Quant. Methods Psychol. 4.1 (Mar. 2008), pp. 13–20.

[148] Richard A Armstrong. “When to use the Bonferroni correction”. en.
In: Ophthalmic Physiol. Opt. 34.5 (Sept. 2014), pp. 502–508.

[149] Edward E Cureton. “Rank-biserial correlation”. en. In: Psychometrika
21.3 (Sept. 1956), pp. 287–290.

[150] Hamparsum Bozdogan. “Model selection and Akaike’s Information
Criterion (AIC): The general theory and its analytical extensions”.
en. In: Psychometrika 52.3 (Sept. 1987), pp. 345–370.

[151] Patrick E McKight and Julius Najab. “Kruskal-Wallis Test”. In: The
Corsini Encyclopedia of Psychology. Hoboken, NJ, USA: John Wiley &
Sons, Inc., Jan. 2010.

[152] Patrick Schober et al. “Correlation coefficients: Appropriate use and
interpretation”. en. In: Anesth. Analg. 126.5 (May 2018), pp. 1763–
1768.

[153] Bruce Thompson. “Canonical correlation analysis”. In:Reading and un-
derstandingMOREmultivariate statistics (pp. Ed. by LaurenceGGrimm.
Vol. 437. American Psychological Association, xiii, 2000, pp. 285–316.

97



BIBLIOGRAPHY
[154] Adriana Romero et al. “FitNets: Hints for thin deep nets”. In: arXiv

[cs.LG] (Dec. 2014).
[155] Simon Kornblith et al. “Similarity of neural network representations

revisited”. In: arXiv [cs.LG] (May 2019).
[156] Arthur Gretton et al. “Measuring statistical dependence with Hilbert-

Schmidt norms”. In: Lecture Notes in Computer Science. Lecture notes
in computer science. Berlin, Heidelberg: Springer Berlin Heidelberg,
2005, pp. 63–77.

[157] YuanLi. CKA-Centered-Kernel-Alignment: Reproduce CKA: Similarity of
Neural Network Representations Revisited. en.

[158] B Schh et al. “Comparing support vector machines with Gaussian
kernels to radial basis function classi”. In: (1997).

[159] Maithra Raghu et al. “Do Vision Transformers see like convolutional
neural networks?” In: arXiv [cs.CV] (Aug. 2021).

[160] Olga Russakovsky et al. “ImageNet large scale visual recognition
challenge”. en. In: Int. J. Comput. Vis. 115.3 (Dec. 2015), pp. 211–252.

[161] O Roy and M Vetterli. “The effective rank: A measure of effective
dimensionality”. In: Proc. Eur. Signal Process. Conf. EUSIPCO (Sept.
2007), pp. 606–610.

98


	Introduction
	Contributions

	Theoretical background
	Fundamentals of mass spectrometry
	From MS1 to MS2, foundations of mass spectrometry
	Multi-stage fragmentation mass spectrometry
	Compound identifications with multi-stage mass spectra
	Algorithmic approach to spectra trees
	Reference libraries

	Deep learning

	Machine learning for mass spectrometry
	Foundation models and DreaMS
	Murcko histogram and data splitting
	Mass spectra benchmarks

	MassSpacGymMSn: Dataset and benchmark construction
	Data acquisition and setup
	Implementation: Multi-stage MSn dataset
	Feature extraction
	SMILES canonization
	DreaMS embeddings
	Molecular fingerprint

	Multi-stage spectra benchmark challenges
	Formal definition of challenges
	Molecular retrieval benchmark definition
	De novo molecule generation definition

	Preparation candidates set for retrieval task
	Exploratory data analysis
	Reproducibility
	Standardized split


	Model architectures and experimental setup
	Retrieval models architectural details
	De novo models architectural details
	Experimental design
	Experimental setup and training environment

	Experimental results and analysis
	Retrieval models evaluations
	Standard challenge
	Bonus challenge

	De novo models evaluations
	Standard challenge
	Bonus challenge

	Spectral similarity analysis across MSn levels
	Hungarian similarity on raw spectra
	Cosine similarity on DreaMS embeddings
	Comparison of raw spectra vs DreaMS spectra representation
	DreaMS MSn clustering

	Internal representations and explainability
	Analysis of CKA heatmaps on Retrieval challenge
	Analysis of CKA heatmaps on De Novo challenge
	Retrieval model representation comparison with effective rank
	De novo model representation comparison with effective rank
	Retrieval model representation comparison with top eigenvectors similarity
	De novo model representation comparison with top eigenvectors similarity


	Conclusions and Future work
	An appendix
	Bibliography

