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Abstract

This thesis focuses on multimodal named entity recognition (NER). It explains the

main issues in this domain, the common problems associated with natural language

processing and the motivation behind this task. It also presents three datasets from

this research field, two publicly available and one self-created. The first two of the

mentioned datasets were created by collecting tweets from the social media network

Twitter, while the third dataset was created from a collection of books on the history

of the Czech-German territory.

Most of the research in this area has focused exclusively on text modality. Multi-

modal recognition has recently gained popularity due to the large amount of data

and its availability. The aim of this work is to determine whether multimodal NER

would yield better results than unimodal one. Three unique neural network archi-

tectures have been proposed that use specificmodules to process text and image data.

A total of 23 unique topologies were developed for the experiments, mainly using

recurrent neural networks and transformer architecture. Large language models,

namely GPT-4o and Llama 3.1 were also used.

Experiments have shown that a multimodal processing can in fact improve perfor-

mance of recognition in some cases.

Abstrakt

Tato diplomová práce se zabývá multimodálním rozpoznáváním pojmenovaných

entit. Práce vysvětluje problematiku v této oblasti, časté problémy spojené při zpra-

cování přirozeného jazyka a také důvody, proč se touto úlohou zabývat. Dále před-

stavuje tři datové sady z této domény, dvě veřejně dostupné a jednu vlastnoručně

vytvořenou. První dvě zmíněné sady vznikly kolekcí tweetů ze sociální sítě Twitter,

třetí datová sada byla vytvořena ze souboru pěti knih o historii českoněmeckého

území.

Většina výzkumu v této oblasti se soustředila výlučně na textovou modalitu. Multi-

modální rozpoznávání nabývá v poslední době na popularitě, zejména díky velkému

objemu dat a jejich dostupnosti. Cílem této práce je zjistit, zda multimodální přístup

rozpoznávání pojmenovaných entit přinese lepší výsledky než jejich unimodální

zpracování. Jsou navrženy tři unikátní architektury neuronových sítí, které použí-

vají specializovanémoduly na zpracování textu a obrázků. Během této práce vzniklo

celkem 23 unikátních topologií, které používají zejména rekurentní neuronové sítě

a transformer architekturu. Použity byly také Velké jazykové modely, konkrétně

(ii)



GPT-4o a Llama 3.1.

Experimenty prokázaly, žemultimodální zpracování v některých případech pomůže

zvýšit úspěšnost rozpoznávání.

Keywords

natural language processing • named entity recognition • BERT • Llama 3.1 • ViT •

multimodal named entity recognition • python

(iii)



Acknowledgement

I would like to thank to my supervisor, Pavel Král Doc. Ing. Ph.D. for guidance,

general advice and regular communication during the development of this thesis.

(iv)



Contents

1 Introduction 1

2 Recognition of named entities 3
2.1 Named entities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Named Entity Recognition . . . . . . . . . . . . . . . . . . . . . . 4

2.2.1 BIO format . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.2 Rule-based method . . . . . . . . . . . . . . . . . . . . . . 6

2.2.3 Machine Learning Methods . . . . . . . . . . . . . . . . . 6

2.2.4 Statistical methods . . . . . . . . . . . . . . . . . . . . . . 7

2.3 NER challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Multimodal versus unimodal approach . . . . . . . . . . . . . . . 12

3 Relevant work 15
3.1 Named entity and relation extraction with multi-Modal retrieval . 15

3.2 ITA: Image-text alignments for multi-modal named entity recognition 17

3.3 Improving multimodal named entity recognition via entity span

detection with unified multimodal transformer . . . . . . . . . . . 18

4 Machine learning fundamentals 20
4.1 Basic building blocks . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1.1 Loss function . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1.2 Linear regression . . . . . . . . . . . . . . . . . . . . . . . 20

4.1.3 Logistic regression . . . . . . . . . . . . . . . . . . . . . . 21

4.2 Multilayer perceptron . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.3 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.3.1 Backpropagation . . . . . . . . . . . . . . . . . . . . . . . 24

4.3.2 Gradient descent . . . . . . . . . . . . . . . . . . . . . . . 26

4.3.3 Struggles of gradient based learning . . . . . . . . . . . . . 29

5 Neural network topologies 32
5.1 Convolutional neural network . . . . . . . . . . . . . . . . . . . . 32

1



Contents

5.1.1 Convolutional layer . . . . . . . . . . . . . . . . . . . . . . 33

5.1.2 Pooling layer . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.2 Recurrent neural network . . . . . . . . . . . . . . . . . . . . . . . 35

5.2.1 Long-Short Term Memory . . . . . . . . . . . . . . . . . . 36

5.3 Transformers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.3.1 General architecture . . . . . . . . . . . . . . . . . . . . . 39

5.3.2 Vision transformers . . . . . . . . . . . . . . . . . . . . . . 43

5.3.3 BERT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.3.4 Large language models and Llama 3.1 . . . . . . . . . . . . 45

6 Dataset 46
6.1 Twitter 2017 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.1.1 Dataset example . . . . . . . . . . . . . . . . . . . . . . . . 48

6.2 Twitter 2015 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.2.1 Dataset example . . . . . . . . . . . . . . . . . . . . . . . . 50

6.3 Twitter observations . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.4 Historical Czech-Bavarian multimodal NER dataset . . . . . . . . 51

6.4.1 Dataset construction . . . . . . . . . . . . . . . . . . . . . 52

7 Problem analysis and design 54
7.1 MNER requirements . . . . . . . . . . . . . . . . . . . . . . . . . 54

7.2 Modality modules . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

7.2.1 Text module . . . . . . . . . . . . . . . . . . . . . . . . . . 56

7.2.2 Vision module . . . . . . . . . . . . . . . . . . . . . . . . . 56

7.3 Dataset preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . 57

7.3.1 Preprocessing Twitter dataset . . . . . . . . . . . . . . . . 57

7.3.2 Mapping Twitter15 to Twitter17 . . . . . . . . . . . . . . 57

7.4 Fusion layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7.5 Classification head . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7.6 Activation functions . . . . . . . . . . . . . . . . . . . . . . . . . . 59

8 Implementation 62
8.1 ETL implementation . . . . . . . . . . . . . . . . . . . . . . . . . 62

8.1.1 Data processors . . . . . . . . . . . . . . . . . . . . . . . . 62

8.2 Multimodal models . . . . . . . . . . . . . . . . . . . . . . . . . . 64

8.2.1 Cross-attention model . . . . . . . . . . . . . . . . . . . . 64

8.2.2 Linear fusion model . . . . . . . . . . . . . . . . . . . . . 66

8.2.3 Partial prediction model . . . . . . . . . . . . . . . . . . . 68

8.3 Unimodal models . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

8.3.1 Text model . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2



Contents

8.3.2 Image model . . . . . . . . . . . . . . . . . . . . . . . . . 73

8.4 Training the models . . . . . . . . . . . . . . . . . . . . . . . . . . 74

8.4.1 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

8.4.2 Early stopping . . . . . . . . . . . . . . . . . . . . . . . . . 74

8.4.3 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

8.4.4 Schedulers . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

8.4.5 AdamW optimizer. . . . . . . . . . . . . . . . . . . . . . . 76

8.5 Storing and versioning of the models . . . . . . . . . . . . . . . . 77

8.6 The LLM problems . . . . . . . . . . . . . . . . . . . . . . . . . . 78

8.6.1 Quantization . . . . . . . . . . . . . . . . . . . . . . . . . 78

8.6.2 PEFT and LORA . . . . . . . . . . . . . . . . . . . . . . . 78

8.6.3 Stabling Llama . . . . . . . . . . . . . . . . . . . . . . . . 79

8.7 ChatGPT connector . . . . . . . . . . . . . . . . . . . . . . . . . . 79

8.8 Data annotation tool . . . . . . . . . . . . . . . . . . . . . . . . . . 80

8.8.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 80

9 Experiments 82
9.1 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

9.1.1 Problem with accuracy . . . . . . . . . . . . . . . . . . . . 82

9.1.2 F1 Score . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

9.1.3 Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

9.1.4 Recall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

9.1.5 Macro F1 Score . . . . . . . . . . . . . . . . . . . . . . . . 83

9.1.6 Micro F1 Score . . . . . . . . . . . . . . . . . . . . . . . . 83

9.2 Evaluation approach . . . . . . . . . . . . . . . . . . . . . . . . . . 84

9.3 Multimodal models . . . . . . . . . . . . . . . . . . . . . . . . . . 84

9.3.1 HiCBaM results . . . . . . . . . . . . . . . . . . . . . . . . 84

9.3.2 T15 results . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

9.3.3 T17 results. . . . . . . . . . . . . . . . . . . . . . . . . . . 89

9.4 Unimodal models . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

9.4.1 Image only models . . . . . . . . . . . . . . . . . . . . . . 90

9.4.2 Text only models . . . . . . . . . . . . . . . . . . . . . . . 90

10 Conclusion 93

List of Abbreviations 94

Bibliography 95

List of Figures 102

3



Contents

List of Tables 104

4



Introduction 1
Named entity (NE) recognition is a task in the domain of natural language process-

ing (NLP). Named Entity is a real world object which can be denoted with a proper
name such as people, organizations and more. Most of the research conducted in

this domain focused on a singular modality - text. This unimodal approach works

but does not handle ambiguitywell. For example a follow sentence,We visited Wash-
ington in spring.,Washington is denoted with a proper name therefore it is a named

entity. However is not clear if the sentence refers to the city or the person.

Multimodal approaches, i.e using more than one modality (text and image for this

thesis) offer a solution for this problem. Using additional modality, for example im-

age data, ambiguity can be mitigated. If the sample sentence mentioned would have

a picture of the city of Washington D.C. the ambiguity is solved.

The purpose of this master’s thesis is to identify if multimodal approaches are better

than unimodal. To achieve this goal a system for multimodal named entity recog-

nition with text and image modalities will be designed and implemented. For this

purpose a deep neural networks with Transformer based architecture, recurrent

neural networks and Large language models (LLM) will be used. Multimodal and

unimodal solutions will be compared with each other.

The structure of this thesis is following. First NER is introduced with historical evo-

lution in this task with common challenges and the difference between multimodal

and unimodal approach. Relevant work in the field of Multimodal named entity

recognition (MNER) is mentioned next. The fourth chapter dives deeply into mod-

ern machine learning and its fundamentals. The following chapters goes deeply into

concrete topology of neural networks that were used in conducted experiments.

Chapter 6 describes the statistics datasets that are used in the experiments. Two pub-

licly available, Twitter2015 and Twitter2017 and one manually created. The manual

creation of the dataset led to implementation of useful tool for parsing scanned pages

of books. Chapter 7 focuses on problem space of MNER. It states requirements for

MNER and proposes three distinct designs for viable system. It also delves deeply

into the complications associated with multimodal solutions and the challenges of

data preprocessing. Chapter 8 contains the architecture of proposed solutions. It

1



1 Introduction

also contains detailed information about used optimizer and scheduler and tool

for dataset creation. Chapter 9 describes metric used for evaluation of experiments.

Most importantly, this chapter contains the results achieved on mentioned datasets.

Chapter 10 contains conclusion and suggests further research and improvements

in this domain.
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Recognition of named
entities 2
The following chapter will briefly describe the motivation behind named entity

recognition. It will state what named entities are, more specifically what historical
named entities are. Various approaches on NER are described, notably statistical ap-

proachwithCRF andmachine learningmethods. Information retrieval ismentioned

as a use-case of NER. Lastly it will define the key difference between multi-modal

and unimodal recognition of said entities.

2.1 Named entities
Named entity (NE) is a real-world object which can be denotedwith a proper name. A
proper name is a noun that identifies a single entity and is used to refer to that entity

as distinguished from a common noun. For example the noun "Gates" refers to a

name, not "gates" as the structures or abstract terms. For more detailed description

of a NE refer to [1, 2].

This means that a NE can be used to retrieve information about a subject, place or a

person and "filter out" the unwanted documents. Named entities in text are shown

in Figure 2.1.

This masters thesis focuses on historical named entities. The named entities are

extracted from historical books.

3



2.2 Named Entity Recognition

Figure 2.1: Named entities recognized in text [3].

Named entities recognized in text with four predefined categories: Name, Date,
Designation, Subject.

2.2 Named Entity Recognition
Named entity recognition (NER) can be looked at as sequence labeling problem given

sequence input 𝑋 = (𝑥1, ..., 𝑥𝑛) the task is to predict 𝑌 = ( 𝑦1, ..., 𝑦𝑛) where 𝑥𝑖 is part
of a sequence (usually a single word) and 𝑦𝑛 is named entity.

NER corresponds to the identification of named entities in texts, generally of

the types Person, Organisation and Location. Such entities act as referential anchors
which underlie the semantics of texts and guide their interpretation [4]. Figure 2.2

shows overall architecture of an information retrieval system.

4



2.2.1 BIO format

Figure 2.2: Architecture of information extraction system [5].

In the first step, raw data is segmented into individual sentences which are further

processed in the second step, tokenization. The process of tokenization breaks the

sentences into individual words. The words are in the following step processed by part of
speech tagging (POS) which labels each word in a sentence with its corresponding part of

speech (noun, adjective, etc.). In the forth step, this preprocessed text is then searched for

named entities and the last step detects relationships between them and creates a

knowledge graph.

NER methods can be classified into :

• Rule-based Methods

• Statistical Methods

• Machine Learning Methods

• Hybrid Methods

2.2.1 BIO format
BIO

1
format is a tagging scheme used in NER to label tokens in a sequence. It stands

for:

• Begging - indicates the beggining of a named entity.

1
formally Inside–outside–beginning

5



2.2.2 Rule-based method

• Inside - indicates that the token is a named entity, but is not a first token.

• Outside - indicates that the token is not a named entity. This label is usually

denoted as OTHER.

For example a sentence Barack Obama was in Hawaii. in BIO format can be seen in

Table 2.1.

Table 2.1: BIO format

Token Label

Barack B-PERSON

Obama I-PERSON

was OTHER

in OTHER

Hawaii B-LOCATION

2.2.2 Rule-based method
This process is based on an expert creating a set of rules, ie. creating a formal grammar
[6] which will be able to recognize named entities in text.

Example of formal grammar is shown in Figure 2.3. The major disadvantage is
scaling and maintaining a robust set of rules.

Examples of this can be regular expression which are very efficient and finding "non-

complex" entities, for example for phone numbers.

^(\+\d{1,2}\s)?\(?\d{3}\)?[\s.-]\d{3}[\s.-]\d{4}$ this regular expression

will be able to find phone numbers in unstructured text, however finding complex

named entities, such as Person or Organization is next to impossible because of

ambiguity.

2.2.3 Machine Learning Methods
This method is very popular in modern day and age, especially after the "renaissance

era" that deep learning [7] started.

The process of machine learning in general consists of:

• Task description - The goal of the model, for example NER.

• Dataset - The data is a set of tuples {𝑥, 𝑦} where 𝑥 is the data itself (for

example sentence) and 𝑦 is the label for classification (for example named

entities in said the sentence).

• Classifier - A discriminative model that outputs probablity distribution of

𝑌 (classes) given 𝑋 (input data).

6



2.2.4 Statistical methods

Figure 2.3: Example of formal grammar that generates sentences [3].

• Training - The process of iterating over training data to train the model i.e.

acquire knowledge.

In this phase, the model performs classification with some numerically mea-

surable error. The main purpose of this process is tominimize this error (or
loss value) by adjusting parameters of the model via backpropagation [7].

• Validation - Subset of the dataset which is used to validate the performance

of the model. This can be used to stop the training process early if the model

is not learning or to tweak models hyper parameters (learning rate 𝛼, etc.) for

optimal performance.

• Inference - The process of using a trained model to make predictions or

decisions based on new, unseen data.

Neural networks (described in Chapter 4 and 7) utilize machine learning to ob-

tain knowledge. They are the only machine learning algorithm used in implemented

system with the exception of CRF.

2.2.4 Statistical methods
Transitioning from manual rules, statistical methods employ models like Hidden

Markov Models or Conditional Random Fields. They predict named entities based

on likelihoods derived from training data.

7



2.2.4.1 Generative and discriminative models

2.2.4.1 Generative and discriminative models

Generative models represent the relationship between observed data and classes

(i.e. the distribution of all possible pairs of 𝑋 and 𝑌 given model parameters 𝜃 )

𝑃 (𝑋, 𝑌 |𝜃). This can be used to generate various combinations (𝑋, 𝑌 ) for given 𝑋 ,
𝜃.

Discriminative models model conditional distribution of the output 𝑌 given 𝑋 as

an input and model parameters 𝜃 => 𝑃 (𝑌 |𝑋, 𝜃). This is what classifiers do. Note
that discriminative model can be derived from generative model, for more on that

refer to [8].

2.2.4.2 Hidden Markov Model

Hidden Markov Model (HMM) is a statistical model that assumes the presence of

hidden states governing the observable sequences.
In NER, the hidden states correspond to the entity tags (e.g., "B-PERSON" for the

beginning of a person’s name, "I-PERSON" for inside a persons name, "I-LOC" and

"B-LOCATION" equivalently for location.) and the observed data are the words in

the text.

For example a sentence: "John Doe lives in New York." is split into tokens:
[ John, Doe, Lives,in, New, York]

and the hidden states are:
[B-PERSON,I-PERSON,O,O,B-LOCATION,I-LOC].

HMMwould estimate the probability of this sequence by modeling:

• Transition Probabilities: The probability of moving from one tag to another

(e.g., from "B-PERSON" to "O").

• Emission Probabilities: The probability of a word being emitted from a spe-

cific tag (e.g., the word "John" given the tag "B-PERSON").

HMMworks well for sequential data but assumes that each tag only depends on
the previous tag and enforces 1:1 relation between 𝑋 and 𝑆. This assumption

is limiting when working with natural languages which are contextually dependent.

The other limitation lies in the transition probabilities. They are static.

Thismeans that the transition probability, for example: 𝑃 (𝑆1 |𝑆2)where 𝑆2 is adjective
and 𝑆1 is a noun, will not change throughout the sequence. This seems a little naive

and restrictive for NER. Due to all these problems, HMMwas not used in conducted

experiments. Figure 2.4 shows a structure of an HMM.

8



2.2.4.2 Hidden Markov Model

Figure 2.4: Hidden Markov Model structure [9].

𝑋1 to 𝑋3 are the observed data - words in sentence in case of NLP. 𝑆1 to 𝑆3 are the hidden

states. Nach arrow indicating transition from one node to another has a weight that

corresponds to the probability of this transition.

Arrow between S𝑖 and S𝑖+1 and its associated weight is called transition probability. Arrow
between S𝑖 and x𝑖 is called emission probability.

9



2.2.4.3 Conditional Random Fields

2.2.4.3 Conditional Random Fields

Conditional Random Fields (CRF) models the conditional probability of the label

sequence given the observation sequence, rather than joint probabilities. This dif-

ference in modeling is commonly expressed as discriminative model vs. generative
model.
The very general nature of a CRF eliminates restriction of an HMM but is more

computionaly expensive. This means the we can have relation between various hid-

den states 𝑆 and observed data 𝑋 and even between the hidden states themselves.

In Linear chain CRF [10] which is commonly used, only transitions between states

𝑌𝑖, 𝑌𝑖−1 are allowed. In [11] Laffety et. al define the probability of a particular label

sequence Y given observation sequence X to be a normalized product of potential

functions.

The probability can be expressed (simplified version by [10] but equivalent to the

one by Laffety et. al):

𝑃 ( 𝑦 |𝑋, 𝜃) = 1

𝑍(𝑋) exp(
𝑛∑︁
𝑖

∑︁
𝑗

𝜃 𝑗𝑓𝑗( 𝑦𝑖−1, 𝑦𝑖, 𝑋 , 𝑖))

where 𝜃 𝑗 is trainable weight for feature function 𝑓𝑗

𝑓𝑗( 𝑦𝑖−1, 𝑦𝑖, 𝑋 , 𝑖) is a concrete feature function with parameters:

• 𝑦𝑖−1 - previous hidden state

• 𝑦𝑖 - current state

• 𝑋 - the entire observed sequence

• 𝑖 - the position in the sequence

• 𝑍(𝑋) - the partition function that ensures the distribution sums to 1 over all

possible label sequences.

Two important observations:

1. The entire observed sequence 𝑋 impacts the predicted states 𝑌 .

2. The position 𝑖 in the sequence has impact as well.

Figure 2.5 shows the difference between HMM and Linear chain CRF connections.

10



2.3 NER challenges

Figure 2.5: Linear chain CRF and HMM.

With CRF the number of connections increased and 𝑋𝑖=1,..,𝑛 directly impact the hidden

state 𝑆𝑖.

For further details about CRF refer to [12, 13, 11].

2.3 NER challenges
While Named entity recognition is a powerful technique, it comes with challenges

and limitations. These include:

• Language-SpecificChallenges -NERperformance can vary across different

languages due to differences in grammar, syntax, and entity naming patterns.

• Ambiguity -Wordsmay represent different entities in different contexts (e.g.,

"Amazon" could be a company or a river)

11



2.4 Multimodal versus unimodal approach

• EntityVariability - Entitiesmay appear in different forms (e.g., "U.S.", "United

States", "USA").

These challenges are being tackled by new research and advancements in machine

learning. For further reading on this research refer to: [14, 15, 16] as only a few of

these challenges will be described for context.

Ambiguity can be reduced by using contextual models or additional modalities [17].

Image associated with some sentence can help with this problem on a condition

that the image is related to the text.

2.4 Multimodal versus unimodal approach
Multimodal models process data 𝑋 = (𝑥1, ..., 𝑥𝑖) where each 𝑥𝑖 is data sample of

different type. In this thesis the models are bimodal, they process textual and visual
data. Unimodal models process data 𝑋 = (𝑥).
Text models were traditionally used for NER. Modern approaches try to combine

multiplemodalities into onemodel for richer representation of the entities. For tasks

where visual information is relevant,multimiodal approach yields better results than

unimodal [18].

The topic of multimodal named entity recognition (MNER) is covered in [19].

Figure 2.6 shows a generic multimodal model, while Figure 2.7 shows unimodal

model.
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2.4 Multimodal versus unimodal approach

Figure 2.6: Multimodal model

Input Modality 1 is for example the text data. Input Modality 2 can be image data. Feature
Extraction is performed by models which extract information from raw data. Fusion Layer
is a layer that fuses together features from multiple modalities. This layer can be a simple

vector concatenation or more complex approach with concatenation and several layers for

further processing of the fused vector. Complexity of this layer depends on the use case.

Dense Layer is a fully connected layer (details in Chapter 4.2) which makes the final

prediction.
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2.4 Multimodal versus unimodal approach

Figure 2.7: Unimodal model

Purpose of the layers is them same as in Figure ??.
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Relevant work 3
This chapter briefly explain previous work on MNER.

3.1 Named entity and relation extraction
with multi-Modal retrieval

The goal of this article was to leverage relevant image information to improve per-

formance of NER and relation extraction (RE). This paper produced a framework

called MoRe.

"MoRe contains a text retrieval module and an image-based retrieval

module, which retrieve related knowledge of the input text and image

in the knowledge corpus respectively. Next, the retrieval results are sent

to the textual and visual models respectively for predictions. Finally, a

Mixture of Experts (MoE) module combines the predictions from the

two models to make the final decision" [20].

The last sentence in this citation is crucial; instead of fusing the modalities together

into one prediction, as shown in Figure 2.6, each model predicts named entities from
a givenmodality.MoEmodule is then trained to correctly combine these predictions

together for the optimal performance. Figure 3.1 shows this approach in a clear way.

MoE module accepts the conditional distribution from each modality, 𝑃𝜃𝑧 ( 𝑦 |𝑥, 𝐼, 𝑍𝑡)
for text and 𝑃𝜃𝑧 ( 𝑦 |𝑥, 𝐼, 𝑍𝐼) for images and makes the final prediction 𝑃 ( 𝑦 |𝑥, 𝐼)1.
The authors demonstrated through empirical evidence that integrating knowledge

from text-based and image-based retrieval modules significantly improves the per-

formance of MNER and RE tasks.

1𝑍𝑡 and 𝑍𝐼 is extracted knowledge from Text Retrieval System and Image Retrieval System

respectively which are concatenated with input sentence 𝑥.
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3.1 Named entity and relation extraction with multi-Modal retrieval

Figure 3.1: MoRe architecture [20].
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3.2 ITA: Image-text alignments for multi-modal named entity recognition

3.2 ITA: Image-text alignments for
multi-modal named entity recognition

The authors proposed ITA, Image-Text-Alignment framework.

ITA converts an image into visual contexts in textual space by multi-

level alignments [21].

They process the image and convert it to textual representation. The process is

shown in Figure 3.2. This approach removes the problem of working with raw

image data (pixels) in MNER but introduces problems with visual data processing.

This approach is fundamentally different from their later work [20] where they

opted to work with image data for disambiguation.

Figure 3.2: ITA architecture [21].

ITA aligns images into object tags, captions, and OCR text, treating them as visual context.

They are fused with input text and processed via transformer-based embeddings. The

cross-view alignment module minimizes the distribution gap between cross-modal and

text-only representations.

Workflow of ITA can be summarized as follows:

1. Object detector extracts object tag and corresponding image regions (orange

and red boxes in Figure 3.2).

2. Image captioning model predicts image captions (blue box).

3. OCR is used to read text in image (green box).
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3.3 Improving multimodal named entity recognition via entity span detection with unified
multimodal transformer

4. Input text and extracted visual context is passed through the network and

final prediction is made.

3.3 Improving multimodal named entity
recognition via entity span detection
with unified multimodal transformer

The authors propose a multimodal interaction module to obtain both image-aware

word representations and word-aware visual representations. Prior models gener-

ated word representation insensitive to the visual context. Another shortcoming

the authors noted is that there is no mechanism to correct bias introduced by the

image. This bias makes the model focus only on the main entity in the picture and

ignore the rest [22].

Unified Multimodal Transformer model was introduced to solve these issues. The

architecture is shown in Figure 3.3.

Figure 3.3: Unified Multimodal Transformer architecture [22].
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3.3 Improving multimodal named entity recognition via entity span detection with unified
multimodal transformer

Starting from the bottom, the model first extracts contextualized word representa-
tion and visual block representation from the input sentence and image respectively

using BERT and ResNet. On the right side of the architure, self attention layer is

used to extract textual hidden representations, denoted as 𝑟0, .., 𝑟𝑛+1. This represen-

tation is then used in the Multimodal Interaction Block together with visual block

to capture the cross modality dynamics, denoted as ℎ0, ..., ℎ𝑛+1. The cross modality

features are then passed to the CRF layer to produce label for each word.

To address the visual bias, a text-only module ESD (left side of the architecture) with

another CRF for span label prediction. A conversion matrix encodes dependency re-

lations between corresponding label dependencies from ESD to MNER, so that the

entity span prediction from ESD has influence on the final MNER label predicted

for each word [22].
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Machine learning
fundamentals 4
This chapter describes fundamental ideas behind machine learning.

4.1 Basic building blocks
The purpose of this section is to explain how (on the abstract level) any machine

learning model acquires knowledge in supervised learning environment. The fol-

lowing subsections introduce simple models on which these ideas can be described.

4.1.1 Loss function
Loss function is a function that maps an event to a real number representing a

cost associated with the event. In the training process the goal is to minimize this

function by adjusting model parameters 𝜃.

For linear regression an example of loss function can mean squared error (MSE).

𝐽 (𝜃) = 1

𝑛
×

𝑛∑︁
𝑖

(𝑌 𝑖 − 𝑌 𝑖𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑))
2

MSE is a smooth function. This means that it can be used as a part of backpropa-

gation. Generally, any function that is differentiable can be used as a loss function -

this is a strict requirement for backpropagation [23].

In this thesis, Negative Log Likelihood and Cross-entropy loss function will be used

[24].

4.1.2 Linear regression
Linear regression is a statistical model that assumes linear dependency between the

dependent variable 𝑌 and one or more
1
explanatory variable 𝑋 and is used to predict

continuous numerical values based on the input features.

Regression as amachine learning task is not related to this thesis, therefore it will not

1
when 𝑋 = (𝑥1, 𝑥2, 𝑥3, ..., 𝑥𝑛) the model is referred to as generalized linear model (GLM).
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4.1.3 Logistic regression

be explained it in detail. Themain distinction from classification is that the predicted

samples are not inherently discrete (as is always the case with classification). To

formally describe the difference, regression can be seen as:

𝑚𝑜𝑑𝑒𝑙(𝑋, 𝜃) => 𝑌 ∈ 𝑅
whereas classification can be seen as:

𝑚𝑜𝑑𝑒𝑙(𝑋, 𝜃) => 𝑌 ∈ 𝑁
where 𝜃 is model hypothesis (i.e. the parameters

2
). Model can be formally described

as:

𝑌 = 𝜃𝑇 × 𝑋 where 𝜃 = (𝜃03, 𝜃1, ..., 𝜃𝑛). How to correctly place the regressor into

given problem space is the task of least squares method ([25]).

Figure 4.1: Linear regression with a regressor [26].

Red points are the data samples, blue line is the regressor. MSE is used to find the optimal

position of the regressor.

4.1.3 Logistic regression
Logistic regression is a statistical model for binary classification tasks. The model

models log-odds of an event (dependent variable 𝑌 ) as linear combination of one or
more independent variables (𝑋 ).

An explanation of a logistic regression can begin with an explanation of the standard

logistic function. The logistic function is a sigmoid function (shown in Figure 4.2),

which takes input 𝑡 and outputs a value 𝑦 ∈< 0, 1 > [27]. This function can be used

to model probability of class 𝑌 for data sample 𝑋 .

Logistic regression model can be declared as: 𝑃 (𝑌 = 1|𝑋) = 𝜎 (𝜃𝑇 × 𝑋)
2
For linear regression its 2, 𝜃0 and 𝜃1, bias and slope respectively

3𝜃0 is a virtual parameter that is always equal to 1. It’s point is to align 𝑋 and 𝜃 for matrix

multiplication.
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4.2 Multilayer perceptron

𝜎 (𝑇) is a sigmoid function defined as:

𝜎 (𝑇) = 1

1 + 𝑒−𝑇

Figure 4.2: Sigmoid function [28]

By extending the regression models with a sigmoid function, these models can

now be used for classification. Sigmoid function compresses any real-valued output

into the range < 0, 1 > (probability distribution).

Activation functions are necessary not only to project values into probability distri-

bution but to introduce non-linearity to deep neural networks. Without activation

function any neural network could solve only linearly separable problems [29].

4.2 Multilayer perceptron
Linear regression with activation function on their own can only solve binary prob-

lems. For NLP and other fields this is not enough since the nature of the problems

is rarely binary. Multilayer perceptron (MLP) is a model which has:

• Input layer - takes input data and passes them into the first hidden layer.
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4.2 Multilayer perceptron

• Hidden layer - performs object representation.

• Output layer - predicts the final class.

MLP is a feedforward neural network, meaning that there are no cycles in the

graph (in contrast to recurrent neural networkswhich uses cycles). Furthermore,

the MLP showed in Figure 4.3 is a densemodel. This means that each neuron in a

layer 𝑖 recieves signal from each neuron in previous layer 𝑖 − 1.

Dense model captures complex nonlinear relationship between input 𝑥 and desired

output 𝑦. With that advantage it is necessary to state that they suffer more from

"learning" noise than sparse neural networks [30]. Forward pass in an MLP can be

formally expressed as:

ℎ1𝑖 = 𝜎
1(

𝑛∑︁
𝑗

𝜔1𝑖 𝑗 × 𝑥 𝑗 + 𝑏1𝑖 )

for input layer. ℎ1𝑖 refer to units in the first (input) layer, 𝜎 1 is activation function

of the first layer. The body of the activation function is a sum over all connections

(synapses) and their weights multiplied with the input data.

For hidden layer:

ℎ𝑘𝑖 = 𝜎
𝑘(

𝑛∑︁
𝑗

𝜔𝑘𝑖𝑗 × ℎ
𝑘−1
𝑖

+ 𝑏𝑘𝑖 )

The only difference is that instead of using raw input data 𝑥 𝑗, activation of pre-

vious layer ℎ
𝑘−1
𝑖

is used. For output layer the expression is the same; still a linear

combination of nonlinear output of previous layer with weights stored in synapses.
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4.3 Optimization

Figure 4.3: Forward pass in multilayer perceptron.

MLP with one input layer, denoted as 𝑥1, 𝑥2, one hidden layer with 3 neurons and one

output layer. This picture shows quite nicely that that a neuron is just a linear regression
and an activation function 𝜎 .

The forward pass produces desired output 𝑌 . In case of NER 𝑌 is a vector of

predicted entities.

4.3 Optimization
Optimizing the neural network is a key step in the training process. Without it, the

network would not gain knowledge from provided information.

4.3.1 Backpropagation
Backpropagation is the most common algorithm used in training phase to compute

gradient of a loss function for each layer with respect to the weights of the network
for a single input–output example. This computation is done from output layer to
input layer, one layer at a time to avoid redundancy.

The algorithm is often tightly coupled with another algorithm which is used to up-
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4.3.1 Backpropagation

date parameters, commonly stochastic gradient descent which is described further.

The algorithm can be broken down to these following steps:

1. forward pass - pass the input data 𝑋 to recieve output 𝑌𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑.

2. compute loss - compare 𝑌𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 with 𝑌𝑡𝑟𝑢𝑒 to compute loss value.

3. calculate gradients of the loss function with respect to each weight and bias

The gradient calculation uses chain rule for efficient computation. Since the gradi-

ents are calculated from output layer 𝐿 there is no need to compute gradients more

than once for each pass or to compute intermediate state. That is because layer 𝐿𝑖−1
only affects loss of layer 𝐿𝑖 and it does so linearly.
[31] describes the entire backpropagation process in detail.

𝐶𝑜𝑠𝑡 = 𝐶(𝑌, 𝑓 𝐿(𝜔𝐿 × 𝑓 𝐿−1(𝜔𝐿−1...𝑓 1(𝜔1 × 𝑋))))

The formula above computes the loss for one forward pass (given target value 𝑌 ).

This value is then propagated through the network to compute error of each neuron.

Error of output layer is computed as a partial derivative of the loss function with

regards to output layer:

𝑂𝑢𝑡𝑝𝑢𝑡𝐶𝑜𝑠𝑡 =
𝜕𝐶

𝜕𝑎𝐿

where 𝑎𝐿 is the output of the activation function in layer 𝐿. To compute error of

weights of previous (hidden) layer 𝐿 − 1:

𝜕𝐶

𝜕𝜔𝐿−1
=
𝜕𝐶

𝜕𝑎𝐿
× 𝜕𝑎𝐿

𝜕𝑧𝐿
× 𝜕𝑧𝐿

𝜕𝑎𝐿−1
× 𝜕𝑎𝐿−1

𝜕𝑧𝐿−1
× 𝜕𝑧𝐿−1

𝜕𝜔𝐿−1

this is the application of chain rule methodwhich propagates all the way to the input

layer. The weighted input of layer 𝐿 is denoted as 𝑧𝐿. Figure 4.4 visualizes backward

pass through one singular neuron. This backward pass computes gradient based on

the error of this neuron.

Gradients are used to adjust model parameters. This can be done for example with

gradient descent (GD) algorithm which will be explained further alongside with

some variations of GD, stochastic gradient descent (SGD) and AdamW. SGD and

primarily AdamW played immense part in conducted experiments. For more infor-

mation and properties of this algorithm refer to [23, 29].
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4.3.2 Gradient descent

Figure 4.4: Backward pass in neuron [32].

Notation is different, 𝑧 𝑗 is an activation function.

4.3.2 Gradient descent
The goal of this algorithm is to determine a set of parameters 𝜃 with minimal error

between the predicted 𝑌𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 and actual values 𝑌𝑡𝑟𝑢𝑒. This is accomplished by

computing the gradient of the loss function with respect to the model parameters

and updating the parameters accordingly.

Gradient of multi-variable function 𝐹 at point 𝜔𝑖 is a partial derivation with respect

to it’s input. This implies that 𝐹 or any loss function has to be smooth.

GD is based on an observation that 𝐹 (𝑥) decreases fastest if the negative value of
gradient Δ𝐹 (𝜔𝑖) is subtracted from 𝜔𝑖. This can be expressed as:

𝜔𝑖+1 = 𝜔𝑖 × −𝛼 × Δ𝐹 (𝜔𝑖)

This is the connection between gradient descent and backpropagation. Gradient

descent updates parameters of model with gradients computed by backpropagation

algorirthm. Parameter 𝛼 is called learning rate and needs to be set correctly.4 The
issues of gradient techniques are described further in the chapter.Figure 4.5 shows

gradient descent iterations and how the computed loss is smaller with each iteration

when 𝛼 is set correctly.Figure 4.5 visualizes gradient descent. The visualized loss

function is very simple - this "bucket" shape is ideal for GD algorithm because it can

reach global optima without getting stuck in any local optima. For further details

about this algorithm and it’s properties and prerequisites refer to [33].

4
There is no one single value that would be a perfect learning rate. This valuemust be empirically

chosen based on model’s architecture and loss function.
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4.3.2.1 Stochastic gradient descent

Figure 4.5: Gradient descent visualization [34].

Loss is sometimes refered to as "cost". As is this the case on this Figure.

4.3.2.1 Stochastic gradient descent

Gradient descent computes the gradient of the loss function 𝐹 (𝜃) with respect to

the parameters 𝜃 on the entire training dataset.

SGD performs a parameter update for randomly picked sample (𝑥𝑖, 𝑦𝑖) from train-

ing dataset [35]. This simplification is useful for datasets with large redundancy (low

variability) or volume
5
.

𝜔𝑖+1 = 𝜔𝑖 × −𝛼 × Δ𝐹 (𝜔𝑖; 𝑥𝑖, 𝑦𝑖)

This results in a faster (but not as smooth) convergence. This algorithm is also more

efficient with regards to computational power since it does not compute gradient

for all data points (𝑥𝑖, 𝑦𝑖). The difference in convergence is shown in Figure 4.6.

5
Training can become a bottlenck with GD. SGD can help with this.
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4.3.2.1 Stochastic gradient descent

Figure 4.6: Classical gradient descent (denoted as batch gradient descent) conver-

gence vs. SGD [36].
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4.3.2.2 Momentum

4.3.2.2 Momentum

Before delving into Adam and AdamW respectively it is important to mention mo-
mentum. As mentioned before, (S)GD suffer from getting "stuck" in local minima

and not being able to "climb" out. Another issue are saddle points [37]. These points

create plateaus where gradient updates are small.

Momentum speeds up converge and addresses the issue of oscillation around local

minima and compensates small gradient changes in saddle points. Classical momen-
tum [38] accumulates a decaying sum (with decay factor 𝜇6) of the previous updates

into a momentum vector 𝑚. This vector replaces the original gradient step. This

improvement changes the original equation to:

𝑚𝑖 = 𝜇 × 𝑚𝑖−1 − 𝛼 × Δ𝐹 (𝜔𝑖)

𝜔𝑖+1 = 𝜔𝑖 + 𝑚𝑖

4.3.2.3 Adam(W)

Momentum fixes some of the problems of GD, but there is one more. The learn-

ing rate. 𝛼 is set as a constant for all parameters of the models. In complex neural

network architecture, there is a need to change some parameters more than others

[39]. Very influential extension of SGD is Adam and AdamW respectively. For deep

explanation of Adam, refer to [40] as the algorithm will be explained very briefly

here.

Adam is an optimization algorithm that adapts the learning rate 𝛼 for each param-

eter 𝑜𝑚𝑒𝑔𝑎𝑖. It does this by computing momentum and running average of squared

gradients (RMSprop). The idea is that the momentum helps convergence and RM-
Sprop helps adapt each parameter’s learning rate. The issue with Adam itself is that

it couples regularization term (usually 𝐿2) to the loss function. Adding this term to

the loss affects the adaptive learning rates, which can hinder optimal convergence.

AdamW [41] is an improvement on Adam algorithm that decouples weight decay
(special form of 𝐿2 regularization) from gradient update.

4.3.3 Struggles of gradient based learning
Some common problems associated with GD were already mentioned in the op-

timization section (local minima, saddle points, ...). In this section the list will be

extended by other important ones which can occur.

6
How strongly should previous iteration contribute to current update.
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4.3.3.1 Overfitting and underfitting

4.3.3.1 Overfitting and underfitting

Overfitting is a state where the model is too complex for given a dataset [42] or too

many training iterations were performed. In other words, the model memorizes the

data set and is not able generalize. In practictal context, the model will perform very

well on training data but poorly on validation and evaluation data.

Underfitting occurs when mathematical model is not able to capture the underlying

data structure. This can happen if themodel itself is too simple and some parameters

that would be present in a correct model are missing [42]. These states can be seen

in Figure 4.7.

Figure 4.7: The various states of decision boundary [43].

Overfitting happens when the model memorizes the training dataset and is not able to

generalize. Underfitting happens when the model was no able to generalize from training

data. This means that the dataset either very poor in quality or the training was stopped

too early.

4.3.3.2 Dataset imbalance

A balanced dataset is characterized by a uniform distribution of class labels. In

reality, this is rarely the case. Dataset is imbalanced when one or more classes are

(significantly) underrepresented compared to others. This imbalance can lead to

a biased model. The classifier becomes overly tuned to the majority class and not

being able to capture the significant patterns in minority classes [44].

To combat this heavy class inbalance it is absolutely necessary to adjust gradient

computation. The more frequent the class, the less impact should it have in the

training. The formula to compute these weights is a heuristic inspired by [45]

𝑊𝑐 =
𝑁

(𝑚 × 𝑓 𝑟𝑒𝑞𝑐)
where 𝑐 is concrete class, 𝑁 is number of samples and 𝑓 𝑟𝑒𝑞𝑐 occurrence of 𝑐 in the

entire dataset. The result 𝑊 is a vector of weights for each individual class. This

vector is then used to adjust values of given gradients. Refer to [46] for different

methods.
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4.3.3.3 Exploding gradient and gradient clipping

4.3.3.3 Exploding gradient and gradient clipping

The exploding gradient problem is a challenge encountered during the training of

deep neural networks, particularly in the context of gradient-based optimization

methods [47]. In backpropagation, if the gradient values would be too large and they

would be propagated backwards to another layers that multiples them. This can lead

to a several issues:

• Numerical instability - the gradient value wont fit into classical 64 or even

128 bit variable, causing the model to diverge.

• Overshooting - with large updates the model might overshoot minima.

• Model divergence - the model might be updating weights too aggressively.

Any acquired knowledge to this point could be overwritten by large weight

update.

This problem often occurs for two reasons. Complex architecture of the model

and unbounded activation functions, such as ReLU, GeLU and others which are

commonly used.

Recurrent neural networks famously suffered from this issue (and from vanishing

gradient issue) - [48].

The solution to this problem (among other) is to clip gradients. The idea is extremely

simple and can be expressed as:

𝑔 =

{
clip if Δ𝐹 (𝜔𝑖) > clip

Δ𝐹 (𝜔𝑖) otherwise

where 𝑐𝑙𝑖𝑝 is a constant, for example 1.

4.3.3.4 Overwriting existing knowledge

This problem is very interesting and closely related to large weight updates. The

learning rate parameter 𝛼, even if set conservatively for given model architecture

(for example 1 × 10
−5
, can after few epochs be too large and may start to overwrite

existing knowledge in the network. This problem can be compensated by using so

called learning rate schedulers [49]; more on them in Sec. 8.4.4.

Another more robust approach is Elastic Weight Consolidation [50].
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Neural network
topologies 5
This chapter describes the topologies of neural networks which will be used in the

conducted experiments. It is focused on main ideas behind the topologies, not the

concrete implementation details of given models.

5.1 Convolutional neural network
Convolutional neural network (CNN) is a feedforward neural network that learns

features via kernel optimization. This network has been applied to process andmake

predictions from many different types of data including text, images and audio [7].

CNNs are tightly coupled with the term deep learning where each hidden layer

serves a different purpose. Stacked on each other, they perform a sophisticated

feature extraction. An example can be image processing. One convolutional layer

can specialize in edge detection. The following layer can specialize in face detection

(building from the extracted edges) and so on. CNN is comprised of three types of

layers:

• Convolutional layer - consists of kernels which are used to connect concrete
neurons to concrete regions of input signal.

• Pooling layer - simply perform downsampling along the spatial dimensional-

ity of the given input.

• Dense layer - works the same as in any other neural network.

These layers stacked together form a CNN [51] as shown in Figure 5.1.
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5.1.1 Convolutional layer

Figure 5.1: Convolutional neural network [52].

5.1.1 Convolutional layer
The layers parameters focus around the use of learnable kernels. When the data

arrives at a convolutional layer, the layer moves each filter across the spatial dimen-

sionality of the input.
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5.1.2 Pooling layer

Figure 5.2: Kernel demonstration [51].

Kernel moves along the input matrix and computes values for given areas (pooled vectors).

These kernels together with pooling layers are used to extract specific features (edges,

shapes etc).

A dimensionality after applying kernel is computed as:

𝑊 ′ =
𝑖𝑛𝑝𝑢𝑡_𝑠𝑖𝑧𝑒 − 𝑘𝑒𝑟𝑛𝑒𝑙_𝑠𝑖𝑧𝑒 + 2 × 𝑝𝑎𝑑𝑑𝑖𝑛𝑔

𝑠𝑡𝑟𝑖𝑑𝑒
+ 1

where 𝑖𝑛𝑝𝑢𝑡_𝑠𝑖𝑧𝑒 is a 2D vector of input dimension and kernel_size is a size of kernel.

If𝑊 ′
is not an integer the that means that stride was not set correctly. Padding is

used when the kernel "moves out" of input vector (usually the padding strategy is to

add spacce) and stride is the size of step on the input vector.

5.1.2 Pooling layer
There are usually two main pooling methods, average pooling andmax pooling. Pool-
ing layers are defined as a relatively small matrix with dimension (𝑤𝑖𝑑𝑡ℎ, ℎ𝑒𝑖𝑔ℎ𝑡),
for example (2, 2).
The matrix then travels around feature map computed by kernels and reduces di-

mensionalityby applying a reduction rule.

Max pooling would usemaximum pooling strategy. It picks the maximum value

from the (𝑤𝑖𝑑𝑡ℎ, ℎ𝑒𝑖𝑔ℎ𝑡) subspace while average pooling would take the average
value [53]. The difference in approach can be seen in Figure 5.3.
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5.2 Recurrent neural network

Figure 5.3: Pooling strategies.

5.2 Recurrent neural network
Recurrent neural networks (RNN) are feedforward neural networks augmented by

the inclusion of edges that span adjacent time steps, introducing a notion of time to

the model. Like feedforward networks, RNNs may not have cycles among conven-

tional
1
edges [54]. However, edges that connect adjacent time steps, called recurrent

edges, form cycles. This includes cycles of length one that are self-connections from

a node to itself across time [54]. These cycles are important as they represent "mem-

ory" of the network and allow it to process sequential data better than standard

feedforward neural networks.

RNN can be expressed by these two equations:
2
:

ℎ𝑡 = 𝑎(𝜔ℎ𝑥 × 𝑥𝑡 + 𝜔ℎℎ × 𝑥𝑡−1 + 𝑏ℎ)

𝑦𝑡 = 𝜎 (𝜔𝑦ℎ × ℎ𝑡 + 𝑏𝑦)

The first equation is the pass between recurrent layers (hidden states). ℎ𝑡 is a hidden

node value at time 𝑡, 𝑥𝑡 is the input at time 𝑡 and 𝜔ℎ𝑥 are the weights between

hidden node and input (i.e the synapse) and 𝜔ℎℎ is the recurrent connection. Activation
function 𝑎 can be any non-linear function. RELu, tanh or GELu are commonly used.

𝑏ℎ is the bias of hidden node ℎ. The second equation the activation of the neural

network.

RNNs suffer from a lot of problems. Gradient explosion was mentioned in Sec.

4.3.3.3. Another issue
3
is vanishing gradientwhich has the same cause but the gradient

value "vanishes" to 0. Vanilla RNNs are rarely used for any task and other, more

1
Recurrent edges span through different timesteps. Usually from timestamp 𝑡 to 𝑡 + 1. They do

not span in the same timestep 𝑡.
2
Recall linear regression and softmax; the equation is similiar but includes recurrent edges

3
For more information about the problems with RNNs check [55].
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5.2.1 Long-Short Term Memory

Figure 5.4: Unfolded RNN with connections [54].

The pink arrows recurrent connections between step 𝑡 = 1 and 𝑡 = 2.

robust variations are preferred, such as GRU [56] or LSTM [57] since they generally

perform better.

LSTM and its extension - BILSTM - will be mentioned further as it was used widely

in conducted experiments for sequence modeling. I will not mention GRU since it

was not used.

Figure 5.4 shows RNN and connections between layers.

5.2.1 Long-Short Term Memory
Long-Short Term Memory (LSTM) is a modern take on RNN architecture. In [57]

Hochreiter the memory cell, a unit of computation that replaces traditional nodes

in the hidden layer of a network. With these memory cells, networks are able to

overcome difficulties with encountered by earlier recurrent networks [54] - such as

vanishing gradient. Instead of ordinary nodes, LSTM replaces them with memory
cells denoted as 𝑐. These cells are nodes with self-connected recurrent edge of fixed
weight. This means that gradient can pass through these cells many times without

vanishing or exploding.

36



5.2.1.1 LSTM elements

5.2.1.1 LSTM elements

LSTMconsists of these elements (The notation uses vectors, meaning that 𝑔 contains

values of all input nodes in given layer.):

• Input node - this unit, denoted as 𝑔 takes activation of input layer 𝑥𝑡 and pre-

vious hidden state ℎ𝑡−1. This is nothing new from a standard RNN. Weighted

sum of these parameters is propagated forward to the network.

• Input gate - gating is a distinct feature of LSTM. Gate is a sigmoid unit that
takes input 𝑥𝑡 and ℎ𝑡−1. Gate has values between 0 and 1; if the value is 0 then

no flow is passed through. Gate value of 1 means that the entire flow is passed.

Value of input gate is further denoted as 𝑖.

• Internal state - this is node in every memory cell with linear activation func-

tion. This node has self-connected recurrent layer with fixed unit weight. This

state is updated as:

𝑠𝑡 = 𝑔𝑡 × 𝑖𝑡 + 𝑠𝑡−1

where 𝑠𝑡 is the internal state at time 𝑡, 𝑔𝑡 is the input node at time 𝑡, 𝑠𝑡−1 is the

internal state at time 𝑡 − 1.

• Forget gate - these gates 𝑓 were introduced as ameans of "flushing" the contents

of internal state. This is useful for long running networks as it can prevent

overfitting and other related issues. With these gates, the internal state is

updated as:

𝑠𝑡 = 𝑔𝑡 × 𝑖𝑡 + 𝑓 𝑡 × 𝑠𝑡−1

forget gate at time 𝑡 is denoted as 𝑓 𝑡 .

• Output gate - The value of memory cells is the value of internal state 𝑠 and the

value of output gate 𝑜 (computed from 𝑥𝑡 and ℎ𝑡−1). Value of hidden layer at 𝑡

is then computed as:

ℎ𝑡 = 𝜎 (𝑠𝑡) × 𝑜𝑡

where 𝜎 is an activation function, for example tanh. 𝑜𝑡 is the output gate at
time 𝑡.

LSTM memory cell with operations can be seen in Figure 5.5.
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5.2.1.2 Bidirectional LSTM

Figure 5.5: LSTM memory cell [58].

Memory cell, internal state is denoted as 𝑐.

5.2.1.2 Bidirectional LSTM

Enhancement of LSTMnetwork proposed in [59]. Information from future, 𝑡+1 and
past 𝑡−1 impacts the current input 𝑡. This is different fromprevious implementations

because only past information impacted current input. This trait is very useful for

sequence labeling tasks (such as NER) and NLP in general since it allows a model

to better understand language. BILSTM architecture can be seen in Figure 5.6.

Figure 5.6: Bidirectional LSTM [60].

The backward propagation adds context for better language understanding (in case of NLP).
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5.3 Transformers

5.3 Transformers
Transformer is a deep learning architecture that is based onmulti-head self-attention
mechanism. Self-attention idea was first proposed in [61].

Before delving deeper into transfomers, it is important to understand what is sub-

optimal with RNN’s. The sequential computations. Recall the hidden state ℎ𝑡 which

depends on ℎ𝑡−1 and so on. Although this problemhas been addressed by some clever

optimization techniques ([62, 63]) the sequential
4
nature remains. Transformers

process data in parallel. The last major architecture difference worth mentioning is

that transformers do not have recurrent edges meaning that they do not suffer from

related problems.

5.3.1 General architecture
Most competitive neural sequence transduction models have an encoder-decoder

structure. The encoder maps an input sequence of symbol representations 𝑥 =

(𝑥1, ..., 𝑥𝑛) to a sequence of continuous representations 𝑍 = (𝑧1, ..., 𝑧𝑛). Given 𝑍,
the decoder then generates an output sequence 𝑌 = ( 𝑦1, ..., 𝑦𝑚) of symbols one ele-

ment at a time. At each step the model is auto-regressive, consuming the previously

generated symbols as additional input when generating the next [61].

In simpler terms, encoder stack and the decoder stack each have their corresponding

embedding layers for their respective inputs 𝑋 and 𝑍. Finally, output layer generates

the final output 𝑌 .

Encoder
Encoder is composed of stack of 𝑁 identical layers. Each layer also has two sub-

layers with multi-head self-attention mechanism and feedforward neural network.

Each of the two sub-layers have a residual connection
5
with normalization. Func-

tion of encoder can be summarized [64] as this:

1. Self-attention layer computes relationship between all words

2. Feed forward network applies non-linear transformation

3. Apply residual connection and layer normalization for stabilization

Encoder only architecture (BERT specifically) is widely used in conducted experi-

ments for feature extraction of text features. Multi-head attention blocks were used

in proposed architecture in chapter 8 for fusing modalities.

Decoder
4
Meaning that to compute hidden state ℎ𝑡 , ℎ𝑡−1 needs to be computed first.

5
Residual connection is the technique used to retain information by skipping layers. For example

output of layer with residual connection can be computed as 𝑌 = ((𝜔𝑖 × 𝑋) + 𝑋) + 𝑏𝑖
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5.3.1 General architecture

The decoder is composed of a stack of 𝑁 identical layers. In addition to the two

sub-layers, which are identical to the sub-layers of encoder, the decoder inserts a

third sub-layer. This sub-layer performs multi-head attention over the output of the

encoder stack.

The attention layer which accepts output of the encoder stack is modified to pre-

vent positions from attending to subsequent positions. This means that output on

position 𝑖 is only affected by tokens less than 𝑖, i.e the tokens before the currently

predicted token. The encoder-decoder architecture can be seen in Figure 5.7.

40



5.3.1 General architecture

Figure 5.7: The Transformer - model architecture [61]. The left block represents

the encoder. Decoder is on the right.

Positional Encoding captures the location of each token in the sequence.

One pass through this encoder decoder outputs a probability distribution of next token in

the sequence.
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5.3.1.1 Tokenization and encoding

5.3.1.1 Tokenization and encoding

There are several ways for the tokenization, which can be as simple as space tok-
enization6 or more complex that rely on rules.
A commonly used tokenizer algorithm isByte-pair encoding introduced in [65] which
can operate on raw text input or it can be used with pre-tokenization. This input is

then used as an input to the encoder layer.

5.3.1.2 Attention, why it matters?

The purpose of attention block is to encode contextual information to tokens. In

other words, to encode token’s surroundings into the token.

Before contextual embedding (which is what BERT does for example) the domi-

nant representation of words wasword-embeddings, for example word2vec [66].

The main problem with word-embedding is that it ignores contextual information

(the meaning derived from words surrounding). In practice, this means that for the

sentence: "I left the house early and walked left to my favourite pub." the word left
will be represented by the same embedding.
Contextual representation (i.e attention based) fixes this problemby learning sequence-
level semantics by considering the sequence of all words in the document. In prac-

tice, this means that the word left would be represented by different embedding

due to the surroundings.

The authors of [61] define attention as:

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉 ) = 𝑠𝑜𝑓 𝑡𝑚𝑎𝑥(𝑄 × 𝐾𝑇

√
𝑑𝑘

) × 𝑉

where 𝑄, 𝐾, 𝑉 are calledQuery vector,Key vector, Value vector. Vectors 𝑄7
and

𝐾 are used to compute attention pattern. To breakdown the formula:

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑃𝑎𝑡𝑡𝑒𝑟𝑛 =
𝑄 × 𝐾𝑇

√
𝑑𝑘

computes the attention pattern, i.e how relevant the words are to each other (for

example adjectives are more relevant to nouns then verbs). 𝑑𝑘 is used for normal-

ization to prevent very high or low values. Attention values are then converted to

probabilities via softmax function, this ensures that all attention weights are in the
interval (0, 1) and introduces non-linearity.
Vector 𝑉 contains rich contextual information about the token and is multiplied by

6
Splitting the input into token by whitespaces. This of course has a lot of issue for exotic lan-

guages (Chinese) and does not handle punctuation well.

7
To compute vector 𝑄 and 𝐾 a transformation of original embedding is needed, such as: 𝑄 =

𝐸 ×𝑊𝑄 and 𝐾 = 𝐸 ×𝑊𝐾 where𝑊𝑄 and𝑊𝐾 are trainable weights. Same logic applies for 𝑉 .
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5.3.2 Vision transformers

attentions, 𝑠𝑜𝑓 𝑡𝑚𝑎𝑥(𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑃𝑎𝑡𝑡𝑒𝑟𝑛) × 𝑉 .
The vectors which are the results of this multiplication are then summed together

to produce the final attended representation.

5.3.2 Vision transformers
Transformers found widespread usage in NLP tasks. In [67] the authors experi-

mented with attention blocks for image processing. The authors replaced convolu-

tion layers (i.e kernels) with self-attention blocks which yielded competitive results

with other deep neural networks (such as ResNet [68]) while requiring fewer flops
8
.

In [69] vision transformer (ViT) was introduced as an alternative to CNN architec-

ture. The model follows encoder only architecture.
In Section 5.3.1 tokenization and encoding was mentioned which is required for

encoder layer. ViT uses tokenizer which splits the image into patches, a matrix with

shape:

𝑃𝑎𝑡𝑐ℎ = (𝑃, 𝑃, 𝐶)

where 𝑃 is the size of patch and 𝐶 is the number of channels. The patches do not
overlap. This patch is then flattened to a vector 𝑣𝑃×𝑃×𝐶 .
This vector is then used as an input to a trainable linear layer that projects in to

fixed-sized space. Output of this layer is a sequence of patch embedding which are

used in the encoder layer.

The architecture of ViT and the entire process described above can be seen in Figure

5.8.

8
Floating point operations per second
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5.3.3 BERT

Figure 5.8: Architecture of ViT [69].

As can be seen in the picture, the main task the authors solved is how to tokenize images for

transformer encoder. Otherwise the architecture of the encoder is similar to the one

presented in [61].

5.3.3 BERT
Bidirectional Encoder Representations from Transformers (BERT) was introduced

in [70]. It is designed to understand the context of words in a sequence by leveraging

the bidirectional capabilities of the Transformer architecture.

BERT uses a masked-language modeling (MLM) pretraining objective. To quote the

authors of [70]

"The masked language model randomly masks some of the tokens from
the input, and the objective is to predict the original vocabulary id of the
masked word based only on its context. Unlike left-to right language model
pre-training, the MLM objective enables the representation to fuse the left
and the right context, which allows us to pretrain a deep bidirectional Trans-
former."

Unlike previous unidirectional methods, BERT processes text bidirectionally (same

improvement as in the BILSTM architecture). This allows the model to understand

the full context of the sequence. BERT is an encoder-only9 transformer architec-

ture.

The differences which are needed to be point out from generic Transformer are:

9
same as ViT since both models are designed to understand context i.e extract features, not

generate sequences.
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5.3.4 Large language models and Llama 3.1

• Tokenization - BERT uses WordPiece [71] tokenizer to effectively represent

words.

• Embedding layer - alongside token embedding and positional embedding,

BERT utilizes a segmentation layer which is used to differentiate between seg-

ments in sentence. This enables the model to learn relationship between dif-

ferent parts of the sentence. The input embeddings are the sum of the token

embeddings, the segmentation embeddings and the position embeddings [70].

The encoder stack itself follows the design in Figure 5.7.

BERT was a core text module, specifically BERT-LARGE which has a context size

1080 (standard BERT has size of 768).

5.3.4 Large language models and Llama 3.1
Llama [72] is a Large Language Model. LLMs are transformer based models with

many (billions) parameters trained on massive corpora of texts. These models have

shown the ability to perform new tasks from textual instructions or from a few ex-

amples. These so called few-shot properties appear when scaling a model to sufficient

size [73].

This observation claims that scaling is everything. However in [74] this was adjusted

by a claim that smaller models (but still large enoughh) with more data samples

perform better than bigger models with fewer data samples
10
.

The main complexity in LLMs in general lies in their size and the trainig process,

neither is relevant to this thesis therefore it will not be explained; refer to [72] and

[75] for details.

Unlike BERT, Llama is a decoder only transformer, meaning that the primary objec-

tive of these model is to generate
11
tokens. Decoder-only models were not designed

for NER or other classification tasks, but it is possible to use them for such purposes.

10
[72] the authors also created several smaller models which perform very well.

11
Recall the purpose of discriminative and generative models 2.2.4.1
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Dataset 6
This chapters explores the datasets used for training and inference. It also provides

relevant statistics for design decision, be it in regards to neural network architecture

or data processing.

One of themain points of this thesis was to explore relevant datasets withhistorical
named entities. To the best of our knowledge no dataset matching this criteria is

available. We have looked for other datasets for MNER and found Twitter2017

[76] and Twitter2015[77]
1
. We have also created a custom dataset, HiCBaM, from

historical books.

6.1 Twitter 2017
Twitter 2017 (T17) is constructed from tweets on social media platform Twitter

(now X). Tweets are valuable for MNER because they can consist of text and images.

This dataset contains 9 distinct labels: B-PER, I-PER, B-MIS, I-MIS, B-ORG, I-ORG,
B-LOC, I-LOC, O2

. The dataset consists of 8576 tweets with 17496 unique tokens

and 24021 images. The dataset itself is split into three subsets: train, validation3, test.
Train subset contains 80% of the tweets and remaining 20% is split evenly amongst

validation and test. Label distribution in the entire dataset can be seen in Figure 6.1.

1
Both datasets are publicly available on github.

2
label "OTHER" - not an entity

3
This subset serves many purposes in machine learning, for example to stop training to prevent

overfitting and to tune hyperparameters.
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6.1 Twitter 2017

Figure 6.1: Twitter17 class distribution in the entire dataset.

As can be seen on the graph, the label distribution is imbalanced. Label O is heavily

represented while label I-ORG is rarely present.

The distribution in train, validation and test subsets can be seen in Table 6.1.

Table 6.1: T17 statistics for train, validation, and test subsets.

Train Validation Test

Tweets 6856 860 860

Tokens 74697 9596 8977

Unique Tokens 14899 3580 3576

Images 19177 2388 2456

Labels 74697 9596 8977

Entities 17520 1800 1441
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6.1.1 Dataset example

6.1.1 Dataset example
A data sample contains three parts. Text, annotated entities and image reference. An

example can look like this: HB local. We love freedom here in HB, B-LOC O O O O O
O O B-LOC and the image reference: 7196_0.jpg. The image can be seen in Figure

6.2.

Figure 6.2: Image associated with given tweet

In this example, the image itself carries no information related to Huntington Beach. It

looks like generic suburb in America.

6.2 Twitter 2015
Twitter 2015 (T15) preceded T17 but is constructed just the same with a few differ-

ence.

1. Data corruption - there are small hunders of tweets which refer to image that

is not present in the dataset. These tweets were not used in model training as

they are not multimodal.

2. T15 is larger and contains 10000 tweets.

3. Only 1 image is associated with each tweet.

4. MIS label from T17 is called OTHER. This means that there are two labels,

OTHER andOwhichmean different things. For sanity, allOTHER labels were

mapped toMIS in the preprocessing phase.
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6.2 Twitter 2015

There is one more small technical detail, the T17 is stored in json [78] format while

T15 in stored in conll [79] format. In the preprocessing phase, cconll format is

migrated to json.

T15 consists of 10000 tweets with 37106 unique tokens and 10000 images. The

dataset is also split into three parts: train, validation and test. The split ratio is

different from T17. Train subset contains 70% and remaining 30% is evenly split

between validation and test subsets. The label distribution in dataset can be seen in

Figure 6.3.

Figure 6.3: Twitter15 class distribution in the entire dataset.

Same as T17, this dataset suffers from huge class imbalance which needs to be addressed

while designing solution.

The distribution in train, validation and test subsets can be seen in Table 6.2.
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6.2.1 Dataset example

Figure 6.4: Image associated with given tweet.

Unsurprisingly the tweets are quite political.

Table 6.2: T15 statistics for train, validation, and test subsets.

Train Validation Test

Tweets 7 000 1 500 1 500

Tokens 105 542 22 699 22 238

Unique Tokens 22 262 7 430 7 414

Images 7 000 1 500 1 500

Labels 105 542 22 699 22 238

Entities 18 473 3 851 3 390

6.2.1 Dataset example
The format is the same as in T17: sentence, entities and image reference. Sample

from this dataset:

RT @ Mahaveerm _ : Pak is Home 2, O O O O O B-LOC O O O and the image
reference: 797970.jpeg. The image can be seen in Figure 6.4.
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6.3 Twitter observations

6.3 Twitter observations
The datasets are inbalancedwith "O" being the dominant class. This is to be expected.

Social media posts are very noisy. In Section 4.3.3.2 weight computation for classes

is mentioned to prevent overfitting which any model will be inclined to do.

Noise in text data can be addressed by stemming [80] and rule based text filtering.

Implementation of data transformation and potential downfalls of this approach

are mentioned in chapter 7.

All tweets are in English language so any language model does not need to be multi-

lingual.

The dataset split (80%− 10%− 10% train-validation-test) is peculiar. Test set usually

is not as big as validation set, a common split is (70% − 10% − 20%). This split per-

forms a more robust evaluation of model. in Figure ?? there are only 44 samples
4

of class I-ORG which will heavily impact computed metrics.

6.4 Historical Czech-Bavarian multimodal
NER dataset

This new dataset, in short denoted as HiCBaM (sometimes referred to as SOA),

was created from books with Czech-Bavarian theme. The concrete books used to

construct this dataset were:

• Heitmatbuch MARIENBAD Stadt und Land - a book about Mariánské Lázně.

• OrtschronikMaschowitz - a book about life in townsOrtschronik andMaschowitz.

• Heimat in Böhmem - book about Bohemia.

• Heimatbuch, subtitledGemeinde PlößmitWenzeldorf, Rappauf und Straßhütte

- local history of Wenzeldorf, Rappauf and Straßhütte.

• Heimatskunde politischen Bezirkes Falkenau - a book about political district

Falkenau.

The dataset was constructed from books provided by Porta fontium5
.

The construction of the dataset was done manually. Over 1000 pages were searched

for suitable data (image with a caption) for MNER dataset.

HiCBaM dataset contains 9 distinct labels: B-PER, I-PER, B-MIS, I-MIS, B-BUI6,
I-BUI, B-LOC, I-LOC, O.

4
This could be the reason why the authors in 3.1 pretrained model on custom dataset.

5https://www.portafontium.eu/
6
BUI stands for BUILDING.
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6.4.1 Dataset construction

HiCBaM consists of 254 sentences with 876 unique tokens and 254 images. The

dataset is split into three parts: train, validation and test. Train part contains 70% of

the data, validation contains 10% and 20% creates test part. The label distribution

in dataset can be seen in Figure 6.5.

Figure 6.5: HiCBaM class distribution in the entire dataset.

The distribution in train, validation and test subsets can be seen in Table 6.4.

Table 6.3: HiCBaM statistics for train, validation, and test subsets.

Train Validation Test

Sentences 228 26 51

Tokens 1 453 142 287

Unique Tokens 804 142 287

Images 228 26 51

Labels 1 453 187 411

Entities 775 94 216

6.4.1 Dataset construction
After searching through the books, a tool was created to convert snippets into data
line in the dataset. The dataset is stored in json format as T17 and T15.
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6.4.1 Dataset construction

Figure 6.6: Main screen of data annotation tool.

The arrows from top to left visualize workflow of the application. The UI is very raw.

The snippets have low resolution and are in hand-written German so the Optical

character recognition (OCR) [81] has to be very robust.

Two main OCR’s we have experimented with were Tesseract [82] and EasyOCR [83].

Tesseract performed poorly for provided snippets and EasyOCR had amazing per-

formance therefore it was chosen as a backbone of the application
7
. To connect a

user with OCR and a formatting tool to produce json lines a simple UI tool was

created to simplify this process. Data annotation tool is written using QT frame-

work with python flavour
8
to keep the solution lightweight. Architecture of Data

annotation tool is described in Chapters 7 and 8.

7
Further referred to in the text as "Data annotation tool".

8
pyqt6 https://www.pythonguis.com/
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Problem analysis and
design 7
This chapter describes several aspects of multimodal named entity recognition.

From design decisions regarding data preprocessing pipeline, neural network de-

sign and training loop setup. Furthermore the chapter describes encountered issues

of technical character and proposed solutions.

For implementation specifics, refer to Chapter 8.

7.1 MNER requirements
As mentioned in Sec. 2.4, MNER involves multiple modalities. This creates a re-

quirement that a system performing MNER must process text and image data.

There are two possible ways how to handle this situation. A monolith like design

(see Figure 7.1) where one module processes image and text data (this is the case of

GPT-4o [84]) or a modular solution (shown in Figure 7.2) with specialized modules,

which is used by authors of [20, 21, 22] and many more.

The benefit of the first approach is a tight fusion between text and image data. This

property can theoretically help with data disambiguation since the data from both

modalities are processed in the same module with no need to combine them later.

This comes with a high cost. Firstly, a specialized pre-trained modules can not be

used (like Llama, BERT, ViT). Secondly, any change in modality would make the

entire system obsolete due to the tight coupling of modalities.

Second approach with higher granularity does not suffer from above mentioned

problems. A system following this design has a crucial component, fusion layer (on
Figure 7.2 the fusion is a simple concatenation. Refer to Sec. 7.4 for complex fusion

strategies). This layer combines extracted features from text and image data. Using

this pattern enables the use of pre-trained large models for feature extraction which

is a massive advantage.

Both designs were used in experiments. GTP-4o hasmultimodal abilities. Themodel

is monolithic
1
and can be prompted to perform MNER. All other neural networks

1
GPT-4o is a monolith unlike GPT-4-Vision which is modular.
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7.1 MNER requirements

were implemented as amodular system. The design difference can be seen in Figures

7.1 and 7.2.

Figure 7.1: Monolith MNER system architecture.

Figure 7.2: Modular MNER system architecture.
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7.2 Modality modules

7.2 Modality modules
This section describes the design for each individual module. It also mentions im-

portant aspect of selected models which will have an impact on the overall results.

7.2.1 Text module
BILSTM, BERT

2
and Llama 3.1

3
are chosen as text modules in the proposed modu-

lar architecture.

BILSTM has shown a great success in NLP field and language understanding so it

sets a reasonable baseline for a text module. BILSTM architecture has been some-

what succeeded by transformers and BERT has become a go-to standard for text

feature extraction. BERT is also bidirectional which enables to perform rich feature

extraction.

LLMs like Llama and GPT are decoders and not encoders, but without language mod-
eling head they can be used for feature extraction. The models are massively larger

- BERT Large has 340 × 10
6
parameters while Llama 3.1 has 8 × 10

9
parameters.

However, Llama is not bidirectional and was fine tuned for text generation, not text
understanding like BERT. Because of that, BERT can still outperform Llama even

when the size difference is large.

T17 and T15 datasets are in English. HiCBaM dataset is in German. The sentences

are not morphologically complex since they originate from social media and image

captions.

7.2.2 Vision module
Image data from T15 and T17 are not always relevant to the text as people can add

any image to the tweets. HiCBaM dataset has images directly related to the text data.

The role of this module in the entire system is to provide additional features to help

with ambiguity problem but text module is still the dominant component.

Vision transformer and convolutional neural networks are the perfect adepts for

this role as they both process images but with a different approach.

Output of ViT are patch-wise
4
features. However, this output is not wanted as it

would enforce the text module to align with image features. Image features should

align with the text features. A pooled output (for example a mean across all patches)

is required to provide features for the image in its entirety. CNN does not have this

problem as it provides features for the entire image.

AlexNet CNN implementation provides a rich feature extraction on image data and

2
BERT Large specifically with 1024 hidden size.

3
Llama 3.1 8B is chosen due to hardware constraints.

4
For visualisation check Figure 5.8.
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7.3 Dataset preprocessing

just like ViT, it has the same requirement for input image, the (𝑤𝑖𝑑𝑡ℎ× ℎ𝑒𝑖𝑔ℎ𝑡) must

be of the size (224 × 224).

7.3 Dataset preprocessing
Both image modules have requirements for image dimensions - this is a require-

ments that needs to be addressed in preprocessing. Text data from tweets are very

noisy and containmeaningless symbols which can stripped to improve performance

of text module.

BERT and Llama are pretrained and use tokenizers to handle text data without any

preprocessing. Any stemming on the text data will be harmful. In contrast with

BILSTM where stemming will be helpful due to the fact that it reduces the vocabu-

lary size of the embedding layer.

This observation enforces one last constraint on the preprocessing, any processing

must be optional.

7.3.1 Preprocessing Twitter dataset
The Twitter15 and Twitter17 are similar so the preprocessing requirements are the

same.

Text filtering using rule-based methods, such as regular expressions is beneficial
since it removes some noise from the text. An example from T15 dataset here ??
there are "words" that carry no informational value: @, _, and 2, but are associated

with label (O). Removing them lowers the occurrence of dominant class 0 without
harming BERT’s or Llama’s performance. Both image modules in architecture (on

Figure 7.2) require resizing the images to (224 × 224) dimension. For GPT-4o no

preprocessing is needed.

7.3.2 Mapping Twitter15 to Twitter17
As mentioned in Sec. 6.2, T15 dataset is in conll format and not json. The class

naming is also a bit confusing.

During preprocessing it is suitable to map conll to json schema so a one singular

format is used throughout the system. Another quality of life change is to map class

B-OTHER to B-MIS since they represent the same objects and model can benefit

from transfer learning5 [85].
5
In this context that means to train the model on either T15 or T17 and use this model as a base

for finetuning on the other dataset.
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7.4 Fusion layer

7.4 Fusion layer
In modular system, fusion layer is a component that fuses (merges the distinct fea-

tures together to create one representation) text with image.

The two main approaches, linear concatenation and cross-attention fusion, used

in proposed architectures are mentioned in upcoming subsections. Linear fusion
layer is simple. Each module extracts features which are then concatenated (Con-
catenation layer can be see in Figure 7.2). This vector is then passed to dense layer
with activation function 𝜎 . Design of this fusion layer can be seen in Figure 7.3.

Figure 7.3: Linear fusion layer.

Attention based fusion layer is more complex. It extracts how does different

modalities attend to each other. For example to extract "Which part of image are

relevant to my text" and vice versa.

The attended features are then concatenated and passed to classification head. De-

sign of this layer can be seen Figure 7.4.
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7.5 Classification head

Figure 7.4: Cross attention based fusion.

7.5 Classification head
Classification head is a simple dense layer just the same as output layer mentioned

in Chapter 5.

In preliminary experiments, MoE was tried and did not work well. Dataset is not

large enough to train the module as a classification head like Wang et. al did in [20].

7.6 Activation functions
Activation functions are necessary for non-linear relationships between the layers.

For example in Sec. 7.4 a GeLU [86] activation function is used. This activation

function is preferred over ReLU for large models. ReLU does not activate neurons

under a threshold value.

The red "bubble" in the Figure 7.5 shows this difference in function behaviour. While

ReLU does not activate neurons values 𝑥 <= 0, GeLU does if they are close to 0.

This is beneficial for larger models. In the Figure 7.6 a derivation of the functions

is visualized. GeLU is smoother than ReLU which allows a more stable gradient

computation and weight updates via backpropagation.
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7.6 Activation functions

Figure 7.5: ReLU v. GeLU [87].

Figure 7.6: Derivation of GeLU and ReLU [87].

The red arrow points to a big difference in smoothness. ReLU is very steep which can harm

gradient based optimization, such as backpropagation for large models.
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7.6 Activation functions

However, ReLU is used as activation function in CNN.

Softmax [29] activation function has found an application in Partial prediction model
as a normalization element (see Sec. 8.2.3).
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Implementation 8
This chapter is focused on technical details and issues faced during implementation

of proposed solutions in the previous chapter.

It breaks down the concrete implementation of ETL [88] for data preprocessing and

loading using coroutines due to volume of the data. Implementation of proposed

architectures in previous chapter is described after that.

For comparison, unimodal (text only, image only) model is also implemented to ver-

ify that image data improve model’s performance. After that, training and inference
loops implementation is briefly mentioned since it contains some minor tweeks

worth mentioning alongside a variety of scheduler used for finetuning.
The last part focuses on technical difficulties faced with LLMs on premise and Chat-

GPT data access object (DAO) implementation.

8.1 ETL implementation
ETL designed in Chapter 7 is implemented as a asynchronous producer-consumer

solution using coroutines. The implementation itself has two variations, data loader
and data preprocessor. Both of these modules can use processor on image or text data.

Conceptually, data loader loads data from storage into memory and optionally per-

forms some processing (application of individual processors).Data preprocessor loads
the original dataset (T17, T15) and uses transformation

1
to convert it to "new" dataset

which is then stored on filesystem.

Figure 8.1 shows a preprocessor design and Figure 8.2 shows the loader.

8.1.1 Data processors
Data processor are a big part of ETL solution.

Processors are injected into Loader via constructor and are sequentially applied on
text, image or label data.

1
Both ViT and CNN have input layer with dimesion (224 × 224). Image processor is used to

resize images to this dimension.
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8.1.1 Data processors

Figure 8.1: Preprocessor.

T15 and T17 preprocessors both use processor to resize images. T15 also uses a label

mapping processor to convert "OTHER" entity class to "MIS".

HiCBaM dataset has no preprocessor since the dataset was constructed manually and

images were resized in the process.

Figure 8.2: Loader.

Loader has no inherit processor. For LSTM training a stemming data processor is used to

reduce the vocabulary size.
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8.2 Multimodal models

An UML digram (Attachment 10) shows class and module dependencies in more

detail.

8.2 Multimodal models
This section describes implementation of proposed architectures. BERT and ViT

are used as a text module and vision module. The embedding size from BERT and

ViT as shown in Figures have different differention dimension from other models.

Concretely, Llama has hidden size of 4096, LSTM 600 and CNN also has hidden

size of 4096.

The three models described are implemented as a solution for MNER. The models

share similarities, such as aggressive down-projections and activation functions, but

the core of the models i.e the fusion mechanism is different for each model.

8.2.1 Cross-attention model
The architecture of cross attention model is shown in Figure 8.3. The core idea

behind this model is to teach attention layers which part of text is relevant to which
part of image and vice versa. For example if there is a distinct feature in the text,

such as the word Obama and ex-president Obama is on the picture, the Text cross
attention layer should learn that.

Text module is implemented as Llama, BERT or BILSTM. Vision module is imple-

mented as CNNorVIT.Text hidden size dimension is 4096, 1024 and 1024 for Llama,

BERT and BILSTM respectively. Visual hidden size dimension is 768
2
for ViT and

4096 for CNN.

2
The features extracted by ViT are of dimension (𝑏𝑎𝑡𝑐ℎ, 16, 768) since ViT extract features for

each patch in image. This output is averaged over the second dimension to extract features for the

image as a whole.
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8.2.1 Cross-attention model

Figure 8.3: Cross attention model architecture.

Residual connections enrich the the attended features from attention layers. Element wise

addition is performed before the feature concatenation.
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8.2.2 Linear fusion model

8.2.2 Linear fusion model
The idea behind this architecture is simple. Combine extracted features from text
module and vision module with linear layers. The main idea behind this implementa-

tion is:

• Reduce embedding space - text projection and image projection layer reduce

the space from 𝑅ℎ𝑖𝑑𝑑𝑒𝑛_𝑠𝑖𝑧𝑒 to 𝑅ℎ𝑖𝑑𝑑𝑒𝑛_𝑠𝑖𝑧𝑒/2. This will force the model to choose

only the relevant extracted features from the original. space
3
.

• The features are then concatenated and passed into another linear layer, cre-

ating a non-linear transformation.

• The fused features create sequential data which are passed into single-layer

BILSTM which provides feature extraction in the fused space.

• CRF is used to compute loss value using negative log likelihood function.

Using aggressive down projection such as these via linear layers proved very effi-

cient for this task. CRF with performed generally better than cross-entropy loss in

conducted experiments for this architecture. The usage of BILSTM is not typical, it

helped with performance of this topology in a small way (roughly 2% on macro f1).
This might be due to the sequential nature of text data in the fused embedding.

The topology of this model can be seen in Figure 8.4.

3
hidden_size is different for text and image models.
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8.2.2 Linear fusion model

Figure 8.4: Linear fusion architecture.

Linear fusion might be misleading - the fusion itself is non-linear but is implemented using

dense layers, denoted as linear in pytorch.
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8.2.3 Partial prediction model

8.2.3 Partial prediction model
This architecture can be seen as two classifiers with simple dense layer on top for

final prediction. The idea is that text module and vision module both make a priori

predictions. These twopredictions are used by a dense layer for posteriori prediction.

The architecture of this model can be seen in Figure 8.5
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8.2.3 Partial prediction model

Figure 8.5: Partial prediction architecture
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8.3 Unimodal models

8.3 Unimodal models
To compare the proposed multimodal solution, experiments were conducted with

text-only and image-onlymodels.

8.3.1 Text model
NER is primarily a text-based task. Language models, such as BERT and Llama

should perform well even without additional features provided by vision module.
Transformer based solutions utilize CRF and BILSTM. The reasoning behind topol-

ogy design is the same as with multimodal topologies. Down-projection with GeLU

with the added "benefit" of not having to include a fusion mechanism to combine

modalities.

8.3.1.1 Transformer based

The topology shown in Figure 8.6 uses Llama and BERT as a text module. Llama

and BERT have their own tokenizer.
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8.3.1.1 Transformer based

Figure 8.6: Text only model architecture for transformer models.

The tokenizers of Llama and BERT have the same API but different outputs. This means

that stripping the extra cls tokens before making prediction is different for each model.

Everything else is shared.
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8.3.1.2 BILSTM based

8.3.1.2 BILSTM based

Only notable difference from transformer model is the tokenizer. LSTM’s tokenizer

maps individual words in sentence to embedding space. Token_count is therefore
always equal to the lenght of the sentence. The architecture is shown in Figure 8.7.

The notable difference in BILSTM solution is the tokenizer and the embedding layer.

As mentioned previously, text filtering is applied before using this text module. That

is because the embedding layer is a trainable associative map that perform projec-

tion of a word to embedding space. Reducing the size of vocabulary is therefore

benefitial for training.

Figure 8.7: Text only model architecture for BILSTM model.

The Embedding layer used in BILSTM module maps distinct words to embedding space.
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8.3.2 Image model

8.3.2 Image model
Implemented vision modules extract features of the image as a whole. Predicting

various labels from one or two image features is not expected to work well. Visual

module is used to extract features from the image which are then passed to up-
projection down-projection layer. This layer is primarily used as a trainable adapter.

This neural network architecture is shown in Figure 8.8

Figure 8.8: Image classifier with up-projection down-projection layer.

Image classifier uses cross entropy as a loss function.
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8.4 Training the models

8.4 Training the models
Training consisted of 3 main components:

• Model - the concrete model for training.

• Optimizer - a function that updates parameters of the model.

• Scheduler - a function that changes the learning rate 𝛼 during the training.

To breakdown the training algorithm i.e what each component does:

1. Text and image (if model is multimodal) data are passed forward through the

model. This computes the model prediction 𝑌𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑.

2. Loss value is computed using loss function with 𝑌𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 and 𝑌𝑡𝑟𝑢𝑒. Negative
log likelihood for modelswith CRF and cross entropy for models without the

CRF layer. This is the "error" of the model as a whole.

3. Gradients are computed using backpropagation algorithm and subsequently,

parameters are updated using the optimizer.

4. Scheduler is used to alter the learning rate.

These steps are performed for each data sample in the training subset. This iteration

over the entire training subset is performed 𝑁4
times or until early-stop condition is

met.

8.4.1 Validation
This subset is used to test if model is able to generalize during training. If the per-

formance is getting worse on the validation data (the data model has not seen) then

the model is clearly overfitting to the training set.

Another usage of this subset is to finetune hyperparameters of the model - for ex-

ample the learning rate 𝛼 and potentially to perform early stop if condition is met.

8.4.2 Early stopping
Early stopping is a technique that is used to stop the training if model is not getting

better for 𝑀5
epochs. A common practice is to stop model training if the loss value

increases 𝑀 times on the validation subset.

Experiments with this approachwere tried but they were unsatisfactory. ForMNER

4𝑁 is commonly called 𝑒𝑝𝑜𝑐ℎ.
5𝑀 is commonly called 𝑝𝑎𝑡𝑖𝑒𝑛𝑐𝑒.
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8.4.3 Inference

tasks, loss did not serve as a reliable indicator of model performance. The models

were performing worse on the main metric -macro f1 score- very quickly but the
overfitting which was the cause of that occurred was not as prevalent in loss. For
example, the model’s macro F1 score dropped from 75% to 70%, despite a lower loss
value.

Based on this observation an early stopping mechanism on the validation macro f1
score rather than loss was implemented and used.

8.4.3 Inference
Inference loop is generally the same as validation loop but serves a different purpose.

To verify real performance of the model. Parameters of the model are not updated

in this stage. The evaluation subset is usually bigger than validation set for a more

thorough evaluation.

8.4.4 Schedulers
Experiments with various schedulers were conducted. The two schedulers that per-

formedwell were:warm cosine restarts and plateau scheduler. Linear and cosine sched-
ulers were tried as well but they performed worse for every situation.

8.4.4.1 Warm cosine restart scheduler

Warm cosine restarts [89] is an extension of cosine scheduler. The idea is to reset

the learning rate 𝛼 to original value after a number of steps (usually denoted as 𝑇𝑖).

Before this reset, 𝛼 is being lowered after each step.

To express this more formally,

𝛼𝑡 = 𝛼𝑚𝑖𝑛 +
1

2

× (𝛼 − 𝛼𝑚𝑖𝑛) × (1 + cos(𝜋 × 𝑇𝑐𝑢𝑟

𝑇𝑖
))

Where 𝛼𝑚𝑖𝑛 is the lower bound of learning rate. 𝑇𝑐𝑢𝑟 is the current step and 𝑇𝑖 is the

total number of steps to be performed before restart.𝑇𝑖 value increases after restart.

These restarts are very beneficial since they allow the model to escape local minima.

This is exceptional for heavily imbalanced datasets such as T15 and T17.

The period between restarts increases after each restart. This prevents the model

from overwriting existing knowledge and thus avoids so called catastrophic forget-
ting.
The learning rate values through the training are visualised in Figure 8.9.
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8.4.4.2 Plateau scheduler

Figure 8.9: Warm cosine restarts.

𝑇_𝑚𝑢𝑙𝑡 is the factor by which 𝑇𝑖 is multiplied after each restart.

𝑇0 = 5, 𝑇_𝑚𝑢𝑙𝑡 = 2 and 𝛼𝑚𝑖𝑛 = 1 × 10
−6

with AdamW optimizer was used in

the experiments.

8.4.4.2 Plateau scheduler

Value 𝛼 is still getting lowered but by a constant value 𝑘 and only when plateau is

reached. Plateau is reached when a metric does not improve by a threshold value
after patience steps. This simple scheduler was used in conducted experiments since

it outperformed all the other schedulers and performed pretty much the same as

Warm cosine restart scheduler. The simplicity of this scheduler is the reason why it

was preferred.

8.4.5 AdamW optimizer.
As mentioned in Sec. 4.3.2.3, AdamW plays a vital role in training phase. The ex-

periments with SGD with Nesterov’s momentum were tried but the updates of

parameters were too slow.

Due to many complex components in the implemented models, mainly due to issues

tied with Llama 3.1 the setup of the optimizer is non-trivial. The best results were

achieved using setup in Table 8.1 for BERT and 8.2 for Llama 3.1.

The experiments were conducted with more aggressive learning rates for BILSTM

(text module) but they did not improve performance of the model so the same setup

as for BERT was used.
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8.5 Storing and versioning of the models

Table 8.1: BERT AdamW optimizer setup.

Component Learning rate 𝛼

BERT/BILSTM 8 × 10
−6

Visual module 8 × 10
−5

Fusion layer 5 × 10
−4

Inner BILSTM 3 × 10
−4

CRF 2 × 10
−4

Dense layers 1 × 10
−5

Stable fine-tuning of Llama is difficult as the model is very sensitive to (even small)

learning rate changes. The setup below works well and the model does not overfit.

Table 8.2: Llama 3.1 AdamW optimizer setup

Component Learning rate 𝛼

Llama 3.1 2 × 10
−5

Visual module 2 × 10
−5

Fusion layer 2 × 10
−5

Inner BILSTM 2 × 10
−5

CRF 2 × 10
−5

Dense layers 1 × 10
−5

8.5 Storing and versioning of the models
Models are implemented in python using pytorch library. Pytorch can save the entire

model into their custom pth format. However, this approach is not recommended

by the authors of the library and is marked as deprecated. The preferred way is to

store the state dictionary6, a data structure which maps a layer name to parameters

of the layer.

This approach has a very obvious benefit - it saves only the relevant information

after finetuning (the weights) and therefore fewer bytes are needed so it saves space.

The disadvatange however is the fact that the saved state dictionaries has to be

versioned along with the model architecture. If the architecture changes the state

dictionary can not be loaded. The layers of the model will not match stored layers

in the file.

This means that versioning scales very poorly since one has to use two different

6
As of writhing this thesis a RCE vulnerability was discovered for this approach.
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8.6 The LLM problems

tools and synchronize them. For example one can use GIT for versioning code and

a persistent storage, a filesystem with directory hierarchy that matches particular

branches or object storage, such as S3 with different bucket names.

GIT branches and filesystem hierarchy was used as a solution for the conducted

experiments.

8.6 The LLM problems
The problem with running LLMs locally is their size. Llama 3.1 uses float16 data
type which requires 2 bytes. With Llama 3.1 8B, to load the entire model requires

8 × 10
9 × 2 bytes, or 16 GB VRAM on GPU. Running instances of models with this

size (and 8 billion parameters is relatively small) is very expensive.

This problem can be mitigated using quantization and parameter efficient fine-tuning
(PEFT) using Low-Rank adaptation approach (LORA) [90] technique.

8.6.1 Quantization
Quantization [91] reduces the bit space of a model’s parameter from higher bit-

length (float32 - 32 bits) to lower bit-length (float16 - 16 bits or even float8). This

lowers the accuracy of the pretrained model due to the loss of data in reduction.

On the upside, this technique makes the models viable for finetuning locally on

reasonable hardware.

8.6.2 PEFT and LORA
PEFT is a framework for fine-tuning large pre-trained models by updating only

a small number of parameters. This makes training cheaper and faster. LORA is the

implementation of this concept that was used in conducted experiments.

What LORA does is relatively simple at its core but made possible due to several key

observations from the authors, which are described in [90].

Low-rank adaptation is a technique which breaks down one large matrix (in LLM

context the weights of layers) and expresses them using two matrices smaller (rank
decomposition) matrices.

For example, original matrix 𝐴 = (1024 × 1024) has to store a lot of numbers -

specifically 1048576. Most LLMs store their weights on 4 bytes, so that is 4194304

bytes, 4 GB, for just one layer.

What low-rank adaptation does is that it breaks down the original matrix and ex-

presses it as a multiplication of the smaller one. 𝐴1 = (32 × 1), 𝐴2 = (32 × 1)) are
the smaller matrices and their product has the same shape as the original matrix:

𝐴 = 𝐴1 × 𝐴𝑇
2
. Only 64 numbers need to be stored. This of course comes with the

cost of potential loss of accuracy.

78



8.6.3 Stabling Llama

"LoRA allows us to train some dense layers in a neural network indirectly by
optimizing rank decomposition matrices of the dense layers’ change during
adaptation instead, while keeping the pre-trained weights frozen."

[90].

LORA config used in conducted experiments with Llama 3.1 are listed in Table 8.3.

Table 8.3: Llama 3.1 LORA configuration.

Parameter Value

R 2

Lora 𝛼 16

Lora dropout 0.1

R is the rank of decomposition matrices. Lora 𝛼 is learning rate used to update

values in said matrices. Dropout is used for regularization.

8.6.3 Stabling Llama
Models are saved as a state dictionary as mentioned before. By using PEFT and

quantization the model after finetuning can not be saved and loaded as is. The

LORA layers first needs to be merged with the original model which can then be

stored.

An issue we have encountered with pytorch and peft, concretely pytorch version

2.5.1 and peft version 0.14.0, libraries is that the function which merges LORA

adapters to the original model simply does not work. After saving state dictionary

and subsequently loading it, the model does not retain any knowledge previously

learned.

8.7 ChatGPT connector
OpenAI offers an inference as a service. Their new

7
models have multimodal capa-

bility. Experiments were conducted using GPT-4o on T17 dataset to see how well

the models perform.

A connector using OpenAI’s sdk in python was implement to use the model. The

usage of SDK itself is relatively easy since the APIs are designed well. The only pre-
requisite for using the model is API key which has to be purchased.

The main issue with the model is its nature. Since GPTs are generative models, they

tend to generate text that was not present in the original prompt or use different

labels than allowed. The first error with extra words is relatively easy to solve by

7
At the time of writing, GPT-4o and 4o-mini

79



8.8 Data annotation tool

simply filtering them out. The second issue is more difficult to solve. The only rea-

sonable way to solve this issue is to re-prompt the model and tell it to fix the mistake

by using only allowed labels. But if it happens again, how many times should one

retry before "giving up"? Due to this potential "cycle of doom" any responses what

contained different labels were filtered out from the evaluation. These errors very

rarely, so from the 860 test samples a maximum of 10 were filtered out.

We have used this system (nowadays called develop) prompt:
"PerformMultimodalNamedEntityRecognition and returnonly these classes.:
B-PER, I-PER, B-MIS, I-MIS, B-ORG, I-ORG, B-LOC, I-LOC, O. Assign label
to every word in the sentence. Use json format with ’entities’ key for pre-
dicted classes."
The user prompt was the tweet itself with associated image.

8.8 Data annotation tool
The annotation tool is a desktop application built on top of Qt framework which

provides cross-platform abstraction layer. Python flavour of this framework was

selected for implementation to keep all the solutions in one language.

8.8.1 Architecture
The application is event driven. All desktop applications are powered using signals
(or messages on windows) on the OS level. That is why all reasonable frameworks

have very strong support for event driven approach.

The core of the application is a customclass, EventEmitterwhich serves as a lightweight

event bus. The provided API offers two functions:

• listen_to_channel(channel: string, callback: Callable(AbstractMessage)) - adds
a subscriber to channel

• emit_message_to_channel(channel: string, message: AbstractMessage) - AbstractMes-

sage is an interface. Currently, two implementations of this interface are pro-

vided, ByteMessage and StringMessage.

The main philosophy is that EventEmitter is injected to any component that needs

to communicate with other parts of the application. No direct communication be-

tween components should ever happen and components should not be dependent

on each other.

With this design pattern, EventEmitter becomes a single point of failure in the ap-

plication. The application is very small so scaling is not an issue there this does not

matter. Whatmatters a lot is that the messages are consumed on different thread,

a worker thread, rather than on main thread as that will lead to UI freezes with
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8.8.1 Architecture

computationally intensive tasks, such as OCR. A usage of this design is shown in

Figure 8.10. The main usecase of the application is to draw a bounding box on an

image which is then processed by OCR. Text retrieved by OCR is then rendered to

an input (as shown in Figure 6.6).

Figure 8.10: Component communication between input element, OCR and Im-

ageViewComponent throught channels.

The purple numbers around the text indicate the order of operations in the workflow.

Submit task is the process of submitting a function to a thread pool. Worker thread then

invokes the function.
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Experiments 9
This chapter contains the information on metric used for evaluation, the training

process itself and lastly the achieved results.

9.1 Metrics
This section breaks down the used metrics and reasoning behind using macro F1
score.

9.1.1 Problem with accuracy
For prediction systems, accuracy is a famously terrible metric. When one looks at

the formula:

Accuracy =
𝑌𝑡𝑟𝑢𝑒

𝑌𝑡𝑜𝑡𝑎𝑙

Where 𝑌𝑡𝑟𝑢𝑒 are all the correctly predicted labels during classification and 𝑌𝑡𝑜𝑡𝑎𝑙 are

all labels. A system that would for example predict only the majority class O, which
represents around 80% of T17 would have an Accuracy of 80%.

This leads to a false assumption that the system works well while it does not since

it never predicts any other class.

9.1.2 F1 Score
F1 score [92] fixes this issue. It is calculated as a harmonic mean of precision and

recall.
F1 = 2 × Precision × Recall

Precision + Recall

If precision or recall is low, the overall F1 score is low.
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9.1.3 Precision

9.1.3 Precision
Precision is the ratio of true positive predictions to the total number of positive

predictions made by the model. This measures how many of the predicted positive

instances are actually correct.

Precision =
True Positives

True Positives + False Positives

9.1.4 Recall
Recall is the ratio of true positive predictions to the total actual positives. It measures

how well the model identifies all relevant instances.

Recall =
True Positives

True Positives + False Negatives

9.1.5 Macro F1 Score
The Macro F1 Score is the unweighted mean of F1 scores calculated for each class.

Macro F1 treats all classes equally, regardless of their occurrence. For example in

Figure 6.1, class I-ORGwill have the same value as B-PER even when the occurrence

of B-PER is larger.

This fact makes Macro F1 Score a good metric for imbalanced sequence labeling

tasks, such as MNER.

Macro F1 =
1

𝑁

𝑁∑︁
𝑖=1

F1𝑖

where 𝑁 is the number of classes and F1𝑖 is the F1 score for class 𝑖.

9.1.6 Micro F1 Score
Micro F1 Score calculates the F1 score globally by aggregating the contributions of

all classes.

Micro Precision =

∑
TP∑

TP +∑
FP

Micro Recall =

∑
TP∑

TP +∑
FN

Micro F1 = 2 × Micro Precision ×Micro Recall

Micro Precision +Micro Recall

Micro F1 is actually equal to accuracy for tasks, where a sample belongs exactly

to one class. This is the case for MNER. Micro F1 is therefore not a good metric for

this task.
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9.2 Evaluation approach

9.2 Evaluation approach
Therefore, all the published results are evaluated using macro F1 score. There are
several valid ways how to compute macro F1 for (M)NER. First and the most strict

one is the token-wisemacro F1. The tokenizer splits the individual words in a sen-

tence to byte sequences. This means that the encoded sentence is longer than the

original one. The second step is to align labels i.e. assign a label of the original word

to each byte sequence originated from the word. For example a sentence:

Hello, Steven Wozniak! O B-PER I-PER
could be tokenized and aligned as:

He ll o , St ev en Woz ni ak! O O O O B-PER B-PER B-PER I-PER I-PER I-PER.
This is how F1 is computed and presented further.

The second approach is more relaxed. The idea is to strip the BIO format to the

core entity. B-PER, I-PER just becomes PER and so on. The evaluation using this

metric was performed and the results were better by roughly 4% but the stripping of

positional information from the labels is unwanted. The first evaluation approach

is used.

9.3 Multimodal models
This section summarizes the achieved results with the three proposed model archi-

tectures for multimodal NER.

9.3.1 HiCBaM results
The results are depicted in Table 9.1, divided by the model architecture. The model

architecture with ViT as Vision module outperforms the plain CNN. BERT being an

older and much smaller model than Llama still outperforms it (not to mention the

cost to run BERT vs Llama). This is surprising but understandable. BERT has bidirec-

tional capabilitywhich enhances feature extraction. The simplest Linear fusion model
(seen on Figure 8.4) perform very well and outperforms the other architectures. This

is also somewhat expected since the model is "simple" and simpler models generally

perform better on sparse data. BILSTM does not work very well in general. Using

pre-trained embedding vectors might improve the results but it is highly unlikely it

would achieve results close to BERT.
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9.3.1 HiCBaM results

Table 9.1: HiCBaM results.

Architecture Text+Vision module Macro F1 score

Cross attention model BERT+ViT 75.86%
BERT+CNN 68.17%

Llama+ViT 60.71%

Llama+CNN 58.97%

BILSTM+ViT 58.51%

BILSTM+CNN 54.26%

Linear fusion model BERT+ViT 77.20%
Llama+ViT 76.00%

Llama+CNN 73.65%

BERT+CNN 69.57%

BILSTM+CNN 54.38%

BILSTM+ViT 36.42%

Partial prediction model BERT+ViT 62.95%
Llama+ViT 55.11%

Llama+CNN 53.65%

BERT+CNN 40.45%

BILSTM+ViT 31.86%

BILSTM+CNN 21.21%

Figures 9.1, 9.2 and 9.3 below visualize the training process of the models with

the best performance on this
1
dataset. Cross attention model - BERT+ViT, Linear

fusion model - BERT+ViT and Partial prediction model - BERT+ViT respectively.

1
The training progress is similar for T15 and T17. Additional figures are therefore not included

for these datasets.
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9.3.1 HiCBaM results

Figure 9.1: Training process of Cross attention model - BERT+ViT.

Figure 9.2: Training process of Linear fusion model - BERT+ViT.
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9.3.2 T15 results

Figure 9.3: Training process of Partial prediction model - BERT+ViT.

9.3.2 T15 results
The results are in Table 9.2. Models with BERT as a text module achieve the best re-

sults. The results with BERT are comparable across all three network architectures.

Where BERT based neural nets are comparable, both Llama and BILSTM differ sig-

nificantly. Cross attention and Partial prediction architectures struggle with this

dataset. Linear fusion performs better but still not as good as BERT.

Attention layers in Cross attention model help BILSTMwith feature extraction and

performs significantly better than the other variants. It is worth nothing that Partial

prediction model does not work with BILSTM. The model underfits, i.e does not
learn anything.
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9.3.2 T15 results

Table 9.2: T15 results.

Architecture Text+Vision module Macro F1 score

Cross attention model BERT+ViT 75.93%
BERT+CNN 73.17%

Llama+CNN 58.84%

Llama+ViT 58.44%

BILSTM+ViT 35.53%

BILSTM+CNN 34.09%

Linear fusion model BERT+ViT 75.32%
BERT+CNN 74.61%

Llama+ViT 66.31%

Llama+CNN 65.98%

BILSTM+ViT 37.63%

BILSTM+CNN 33.82%

Partial prediction model BERT+ViT 74.93%
BERT+CNN 74.74%

Llama+CNN 56.61%

Llama+ViT 54.25%

BILSTM+ViT 12.77%

BILSTM+CNN 10.33%
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9.3.3 T17 results.

9.3.3 T17 results.
The results are depicted in Table 9.3.

The task of NER is difficult and T17 dataset is very noisy. State of the art
2
model,

GPT-4o-mini performs relatively poorly with only 54.31% macro F1 score. BERT

performs the best by a largemargin. CNNoutperforms ViT inmultiple cases. Partial

prediction architecture with BILSTM does not work on this dataset. The model

underfits. Learning rate 𝛼 was modified, both increased and decreased, but it did not

help with the training. Further optimization could solve this issue, but BILSTMdoes

not perform verywell on this task in general. This process would yield a diminishing

value.

Table 9.3: T17 results

Architecture Text+Vision module Macro F1 score

Cross attention model BERT+CNN 74.17%
BERT+ViT 72.63%

Llama+ViT 62.09%

Llama+CNN 62.39%

BILSTM+ViT 44.35%

BILSTM+CNN 40.42%

Linear fusion model BERT+ViT 74.35%
BERT+CNN 73.10%

Llama+ViT 68.26%

Llama+CNN 68.48%

BILSTM+ViT 40.06%

BILSTM+CNN 39.96%

Partial prediction model BERT+CNN 74.47%
BERT+ViT 73.20%

Llama+ViT 52.24%

Llama+CNN 55.55%

BILSTM+ViT 9.56%

BILSTM+CNN 15.21%

GPT-4o-mini 54.31%

2
At the time of writing this thesis
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9.4 Unimodal models

9.4 Unimodal models
The experiments were performed using the text-only and the image-only models

and serve the purpose of comparison with multimodal models.

9.4.1 Image only models
In these experiments, the text is disregarded and the entities are predicted only from

the image or images. As expected and as can be seen in Table 9.4, the image only

architecture does not work well for MNER.

Table 9.4: Image only results.

Dataset Model Macro F1 score

HiCBaM ViT 18.66%
CNN 4.5%

T15 ViT 10.08%
CNN 8.29%

T17 ViT 11.65%
CNN 10.27%

9.4.2 Text only models
Text only modality experiment represent a standard way of doing NER. It seems

that BERT is able to learn all the relevant information from text only and does not

benefit from additional modality in a significant way. The experiments with Llama

model are more interesting. Llama does not learn from the text data alone as well

as BERT and using image modality can help to improve performance. BILSTM un-

derperforms as a text only classifier across all three datasets but additional modality

also helps the model achieve better results. The results are still not breath taking.

9.4.2.1 HiCBaM results

The results of text only classification are depicted in Table 9.5. BERT model per-

forms very well over other models and is in fact better than multimodal solution. It

seems that BERT is able to learn all the relevant information from the text only and

on this particular dataset and using a vision module worsens the results.
When it comes to Llama and LSTM, both of these models benefit from image

modality. When comparing Text classifier - Llamamodel to the Linear fusion model-
Llama+ViT, the downgrade in performance is 16.33% which is significant. Same ap-

plies for BILSTM model, but the solution using BILSTM in general underperform.
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9.4.2.2 T15 results

Table 9.5: HiCBaM text results

Model Macro F1 score

Text classifier - BERT 80.94%
Text classifier - Llama 59.67%

Text classifier - BILSTM 23.73%

9.4.2.2 T15 results

The results of text only classification are displayed in Table 9.6. Compared to mul-

timodal solution, BERT performs the same. It is apparent that the model is able

to learn from text only data and does not benefit from additional modality when

it comes to this dataset. It is worth reminding, that only one image is associated

with each tweet whereas several words compose a tweet. This means that the text

modality is much bigger.

Llama based model performs better across the board without image model. This is

very interesting since the model does not learn from text as well as BERT does. It

was expected that the additional modality will help the model to perform better but

it is not the case. Simpler text model, BILSTM still benefits greatly from additional

modality.

Table 9.6: T15 text results.

Model Macro F1 score

Text classifier - BERT 75.68%
Text classifier - Llama 67.55%

Text classifier - BILSTM 42.10%

9.4.2.3 T17 results

The results of text only classification are displayed inTable 9.7.On this dataset, the re-

sults are more interesting. A multimodal model, Partial prediction model - BERT+ViT
outperforms a text only BERT. Although the difference is slight, it appears that the

image data which are present in bigger volume (recall that each tweet in this dataset

has associated 1 to 5 images) improve the overall performance. Llama benefits from

image modality even more. When it comes to Linear fusion model - Llama+ViT, the
performance on validation subset is better by 5.36%.
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9.4.2.3 T17 results

Table 9.7: T17 text results.

Model Macro F1 score

Text classifier - BERT 72.62%
Text classifier - Llama 69.05%

Text classifier - BILSTM 41.04%
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Conclusion 10
This thesis focused on the task ofmultimodal historical named entity recognition, ad-

dressing the integration of textual and visual information to enhance performance

of the system. Due to the lack of available datasets for this tasks HiCBaM dataset

was created from various historical books using a custom data parsing tool. Two

more datasets were used in conducted experiments, Twitter2017 and Twitter2015

for robust evaluation of implemented system.

Three architectures of neural networks were implemented - Cross attention, Linear
fusion and Partial predictionmodel with different fusion strategies. These solutions
can use various text modules and vision modules to extract information from text

and images. We leveraged this fact by using three text modules - BERT, Llama 3.1
8B and BILSTM and two vision modules - VIT and CNN.

To evaluate the benefit of multimodality, unimodal and multimodal configurations

were compared. The results demonstrate that multimodal systems can outperform
unimodal baselines, though not uniformly. Notably, on the Twitter2017 dataset, the

BERT+ViT Partial Prediction model consistently outperformed the unimodal

BERT-based approach. The experiments using state-of-the-art ChatGPT-4o-mini

with multimodal abilities were also conducted and results achieved were inferior to

the implemented solutions by a large margin.

Possible extension of this work is to experiment on different datasets or to perform

better data preprocessing of used datasets to improve performance. BERT and VIT

perform very well for the given task but all the solutions struggle with minority

classes. All the implemented models are modular, meaning that text and visualmod-

ules are easily replaceable by different or better model. HiCBaM dataset is small and

could be extended by processing more books to make it more robust. Lastly, the

custom data parsing tool ("Data annotation tool") developed during this project is

minimalistic; further improvements, particularly to the UI/UX, would significantly

increase its usability and value for future use.
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List of Abbreviations

Abbreviation Definition

LLM . . . . . . . . . . . . . . . . . . . Large Language Model

NE . . . . . . . . . . . . . . . . . . . Named entity

NER . . . . . . . . . . . . . . . . . . . Named entity recognition

NLP . . . . . . . . . . . . . . . . . . . Natural Language Processing

POS . . . . . . . . . . . . . . . . . . . Part of speech tagging

HMM . . . . . . . . . . . . . . . . . . . Hidden Markov Models

CRF . . . . . . . . . . . . . . . . . . . Conditional Random Fields

IE . . . . . . . . . . . . . . . . . . . Information extraction

IR . . . . . . . . . . . . . . . . . . . Information retrieval

MNER . . . . . . . . . . . . . . . . . . . Multimodal named entity recognition

RE . . . . . . . . . . . . . . . . . . . Relation extraction

MoE . . . . . . . . . . . . . . . . . . . Mixture of Experts

ITA . . . . . . . . . . . . . . . . . . . Image-Text-Alignment framework

MSE . . . . . . . . . . . . . . . . . . . Mean squared error

MLP . . . . . . . . . . . . . . . . . . . Multilayer perceptron

GD . . . . . . . . . . . . . . . . . . . Gradient descent

SGD . . . . . . . . . . . . . . . . . . . Stochastic gradient descent

RMSprop . . . . . . . . . . . . . . . . . . . Running average of squared gradients

LSTM . . . . . . . . . . . . . . . . . . . Long-Short Term Memory

CNN . . . . . . . . . . . . . . . . . . . Convolutional neural network

GPT . . . . . . . . . . . . . . . . . . . Generative pretrained transformer

RNN . . . . . . . . . . . . . . . . . . . Recurrent neural networks

BILSTM . . . . . . . . . . . . . . . . . . . Bidirectional Long-Short Term Memory

ViT . . . . . . . . . . . . . . . . . . . Vision transformer

T17 . . . . . . . . . . . . . . . . . . . Twitter17

T15 . . . . . . . . . . . . . . . . . . . Twitter15

OCR . . . . . . . . . . . . . . . . . . . Optical character recognition

ETL . . . . . . . . . . . . . . . . . . . Extract-Transform-Load

DAO . . . . . . . . . . . . . . . . . . . Data access object

PEFT . . . . . . . . . . . . . . . . . . . Parameter efficient fine-tuning

LORA . . . . . . . . . . . . . . . . . . . Low-Rank adaptation approach
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Attachment 1: User manual

Following chapter contains information on running the two main applications,

Multimodal-named-entity-recognition and Cutie_parser.

Multimodal-named-entity-recognition
To run the core of this thesis please follow this guide. A prerequisite for running

any of the application is a Hugging Face account. Skip the first section if you already

have an account.

Setting up Hugging Face account
Join the Hugging Face community here. After successful registration, confirm email.

With confirmed email, generate fine-grained access token. It is necessary to check

the

Read access to contents of all public gated repos you can access option.
The token is used for authentication and authorizationmeaning that it must be

a fine-grained token. Hugging Face uses Read/Write only for authorization. Save
this token.

Access to Llama 3.1 8B model
Request access to Llama model. This is needed otherwise Llama model will not

work in experiments.

Anaconda environment
For quality of life use Anaconda’s environments to avoid version war with old ver-

sions of python and libraries.

In the root directory of the application run

bash create_conda_env.sh

conda activate multimodal_named_entity
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pip3 install -r requirements.txt

Running the commands above should produce working environment with neces-

sary dependencies.

Downloading datasets
To follow the enforced archive structure, refer to directory Input_data. In the di-

rectory run the shell script:

bash download_dataset.sh

This will download and unzip Twitter17, Twitter15 and HiCBaM datasets.

Running preprocessor
Refer back to root directory of the application,Multimodal-named-entity-recognition.

In there, refer to src directory.

Run the shell script which runs the preprocessor bash preprocessor.sh

After the script is completed, a directory Multimodal-named-entity-recognition/dataset

will contain preprocessed datasets.

Running neural networks
In the root directory, paste your hugging face access token to token file. Beware

of extra \n character at the end of the token in the file. Any whitespace has to be

removed otherwise the authentication will fail.

To run all
1
the experiments, run the following command python3 experiments.py

Configuration file

If you wish to modify which experiments, modify the experiments_config.json

file. Refer to README.md in the same directory for description of attributes.

Cutie_parser
Running this application is much simpler. Refer to the main directory of the appli-

cation - Cutie_parser.
Run pip3 install -r requirements.txt

After all necessary dependencies are installed, run python3 main.py

The application accepts one argument input_dir which should be a directory with
images. Default value is the directory dummy_data located in the root folder of this

application with some sample images.

1
Runtime is roughly 8 days.
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