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Abstract: In this work we explore an automated remote sensoric detection of
human vital signs, using a frequency-modulated continuous-wave (FMCW) radar.
It can have a positive impact on CERN LHC Operations, potentially assisting the
remote Fire & Rescue service Operators in assessing health status of personnel
in need of their assistance.

We explore limitations of such a detection in industrial settings, focusing partic-
ularly on the respiratory rate. We have investigated the detection gain & success
w.r.t. different breathing patterns, human subject’s body position and distance
from the sensor, detection from different locations on the body, different subject’s
clothing, and different environmental conditions, including obstacles in the line
of beam. We discuss different data analysis approaches.

With the available sensor, we observed that the best detection capabilities were
with detection from the human subject’s thorax independent on the body posi-
tion, and on expected work clothing, with rather a not shallow and quick breath-
ing pattern, in distance of up to several meters and no physical obstacles in the
line of beam. We described several parametric models for respiratory rate detec-
tion with the radar. We described several parametric models for peak detection
in chest belt and distance laser data.
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Abstract: V této práci zkoumáme automatizovanou vzdálenou senzorickou de-
tekci lidských životńıch funkćı pomoćı radaru s frekvenčně modulovanou kon-
tinuálńı vlnou (FMCW). To může mı́t pozitivńı dopad na provoz LHC v CERNu,
a potenciálně pomoci vzdáleným operátor̊um služby hasičského a záchranného
sboru při hodnoceńı zdravotńıho stavu osob, které potřebuj́ı jejich pomoc.

Zkoumáme omezeńı takové detekce v pr̊umyslových prostřed́ıch, se zaměřeńım
zejména na dechovou frekvenci. Zkoumali jsme úspěšnost detekce v závislosti
na r̊uzných dechových vzorech, poloze těla lidského subjektu a vzdálenosti od sen-
zoru, detekci z r̊uzných mı́st na těle, r̊uzném oblečeńı subjektu a r̊uzných pod-
mı́nkách prostřed́ı, včetně překážek v linii paprsku. Diskutujeme r̊uzné př́ıstupy
k analýze dat.

S dostupným senzorem jsme pozorovali, že nejlepš́ı detekčńı schopnosti byly
při detekci z hrudńıku lidského subjektu nezávisle na poloze těla a na očekávaném
pracovńım oblečeńı, s ne př́ılǐs mělkým a rychlým dechem, ve vzdálenosti až
několika metr̊u a bez fyzických překážek v linii paprsku. Popsali jsme několik
parametrických model̊u pro detekci dechové frekvence radarem. Popsali jsme
několik parametrických model̊u pro detekci špiček v datech z hrudńıho pásu
a laseru měř́ıćıho vzdálenosti.
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Structure of this document
This work studies an automated remote sensoric detection of human vital signs,
with a Frequency-Modulated Continuous-Wave (FMCW) radar. The main ob-
jective is to assist a remote Operator in understanding whether a person, located
somewhere remote in an industrial settings, breaths, and how well the person
does so. We aim at remote sensoric detection of human vital signs, particularly
respiratory rate, with a FMCW radar, and use two other sensors for a calibration
of the radar measurement: a contact-based chest belt, and a contact-less distance
laser.

The structure of the document is following:

In Chapter 1 we describe the scenery of such a respiratory activity detection,
describe principles of radars, and highlight relevant contact-based and remote
detection methods.

In Chapter 2 we discuss privacy and ethical aspects of this work.

In Chapter 3 we propose how to approach the outlined challenge to achieve
the objectives, with the FMCW radar and two calibration sensors: from practical
ethical aspects of the work, through description of the strain-sensing method of
chest wall displacement that we use as one of the calibration measurements,
through practical aspects of data acquisition, discussing why our three-sensor
system does not have to be considered to be a distributed system, a brief overview
of signal processing approach, to a list of possible scenarios for our multi-sensor
measurement.

In Chapter 4 we summarize learning from the measurements with the FMCW
Fraunhofer 80 GHz radar, and in Chapter 5 we detail on radar signal analysis
approaches and results: we describe an application used for data acquisition,
troubleshooting of radar data acquisition and signal processing, we continue with
example of the signal processing cut flow, commence with description of an ap-
plication we developed to study limitations of the parametric model to describe
the respiratory rate detected from the radar signal, concluding with the overview
of results of the respiratory rate detection from the radar data.

In Chapters 6 and 7 we describe measurements and signal processing leading
to detection of respiratory rate, with the calibration sensors, the PLUX chest
belt, and the Baumer OM70 distance laser.

In Chapter 8 we discuss the achieved results. In Chapter 9 we discuss possible
directions to take to further expand on this work which are, however, beyond the
scope of this work.

In Chapter 10 we conclude the outcomes of this work.

11



12



1. Introduction
In this work we explore remote sensoric detection of human vital signs with a
FMCW radar. It originates as a R&D study with possible impact on Conseil
Européen pour la Recherche Nucléaire/European Organization for Nuclear Re-
search (CERN) Large Hadron Collider (LHC) Operations: we aim to automati-
cally detect a human respiratory detection in an industrial settings, e.g. the one
in the CERN LHC tunnel, with the radar sensor attached to a remotely-operated
mobile robot. We aim to detect the human respiratory rate with a FMCW radar,
and calibrate the radar detection with two other sensors: a contact-full chest belt,
and a contact-less distance laser.

This chapter aims to introduce the reader to various aspects of the remote
detection of human vital signs – in particular the respiratory rate – with a FMCW
radar.

In Section 1.1 we set the scene and describe the objectives of this work. Then,
Section 1.2 focuses on a brief description of principles of radars. Section 1.3
provides an overview of various aspects of the remote detection of human vital
signs, that has been leveraged for the detection with a FMCW radar described
in subsequent chapters.

1.1 Setting the scene
Imagine an environment with industrial settings, e.g. the one shown in Fig. 1.1,
with technicians, engineers and scientists working in spaces that are a con-
trolled environment, with a variety of possible safety challenges in terms of con-
fined spaces, ambient temperature and wide temperature gradients, noise, strong
(electro-)magnetic fields, high voltage electric circuits, atmosphere composition,
water vapour and other gas leaks, heavy machinery and equipment, fire hazard,
etc. where people work together in peace to push frontiers in fundamental science
research. Such is the environment one can encounter at CERN.

CERN keeps health and safety of its personnel as the highest priority, provides
safety training and governing procedures. The CERN Fire and Rescue Service
respond to any safety incidents on-site. As the CERN campus spans over several
sites around the LHC (the circumference of the LHC tunnel has 26,659 m), it can
take up to 22 minutes to reach the site of an incident.

The Organization explores ways to benefit from automating tasks which can
be automated, and leverages various robots with for sensoric monitoring of the
infrastructure, equipment, environment, and possibly the health of the personnel.

During the works in the challenging industrial settings environment outlined
above, members of personnel may trip and fall, e.g. as shown in Fig. 1.2, and
without checking their consciousness status and/or vitals, their colleagues (or
Fire & Rescue operators) do not know whether the fall was due to inattention
when one was thinking deeply and overlooked an obstacle, or because the person
lost consciousness. Either way, checking up on the person in need is in order, and
that may require checking their vitals.

During a cardiac arrest event every second counts, it is paramount to assess
the health status of the person as soon as possible and start providing measures

13



Figure 1.1: Simulation room to replicate the LHC tunnel environment, used for
development of robotic systems and for testing their functionality.

of first aid, whether as a bystander, or as a first responder professional. Having
means of remote health monitoring can help delivering help faster. A mobile
robot equipped with a sensor that can assist with a remote sensoric detection of
human vital signs is one of the means, and it is where this work comes into play.

Lately, many wearable/smart gadgets that can serve as personal health mon-
itors are available, but, unfortunately, are not suitable for the environment at
CERN, for reasons discussed further in Chapter 2. However, a mobile robot
equipped with sensors suits better to CERN needs.

There are dozens of mobile robots in the LHC tunnel for monitoring purposes
(of infrastructure and equipment), therefore equipping them or additional mobile
robots with a suitable sensor or a sensor set may bring benefits in terms of
remotely monitoring also vital signs of personnel in need, should the situation
require that. With a suitable equipment, in such a situation, a Fire & Rescue
operator would be able to remotely check and assess vital signs of a person,
notably the person’s respiratory rate, and communicate with other personnel on
the incident site, or with the dispatched Fire & Rescue unit.

Such a ”mobile robotic probe” can be equipped with a variety of sensors, not
only a FMCW radar, but also a IR camera to visualise temperature gradients
in the environment and their movement in time, a microphone for a possible
two-way communication.

Using a radar for health/vital signs monitoring is not a new concept, although
a different types (UWB radar, further discussed in Section 1.3) and in well defined,
static settings: a radar is fixed to a ceiling of a hospital room, directed downwards
to a hospital bed where a person is lying down (dressed in a thin hospital gown),
and their vital signs are remotely monitored.

Having a FMCW radar attached to a mobile robot and performing remote
detection of human vital signs in a very dynamic environment brings a completely

14



Figure 1.2: Simulation: A person fell in the tunnel, and now is laying down on
their side, with their legs directed towards the observer. The observer may be
e.g. a mobile robotic system equipped with a FMCW radar sensor.

different set of challenges: from aiming/targeting and detecting the human’s
position, through screening/hiding the respiratory activity through different types
of clothing, to detecting the respiratory rate from signal acquired by the radar
and its subsequent signal processing, that comprises from applying the suitable
model parameters to the signal processing (as we discuss throughout this work).

In this work we explore the limitations of a FMCW radar-equipped mobile
robot, for a remote detection of human vital signs, particularly the respiratory
rate, in an industrial settings environment. We are interested in parameters that
lead to successful signal gain and processing, and also in limitation of signal
acquisition and processing. We are interested in a real-world environment, in un-
derstanding the realistic limitations in terms of human’s body position, breath-
ing patterns, human’s clothing limitations, environmental conditions including
obstacles in the line of beam. The objective of this work is to understand the
limitations, to understand what to expect and manage our expectations, but not
bring up a product from a conceptual model to a complete production-ready final
product.

Let’s not get ahead of events – please accept our invitation to embark on a
journey of learning and exploring how technology can help humanity discover the
beauties of the Universe with the help of remote sensory robotics!

1.2 Radars
A RAdio Detection And Ranging (RADAR) [1] is a device used for radio-location
with radio waves to estimate a distance (ranging), angle (azimuth), and radial
velocity of objects with respect to the radar location.
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1.2.1 A FMCW radar fundamentals

Now introducing several terms to describe fundamentals [2] of a FMCW radar.

Chirp is a signal that a FMCW radar transmits. It is a frequency-modulated
sinusoid, where frequency increases linearly in time. Fig. 1.3 shows an amplitude-
time and frequency-time plots of a chirp. A chirp characteristics are the start
frequency fc, the bandwidth B, and the duration Tc.

(a) (b)

Figure 1.3: A representation of a FMCW radar chirp. a) the amplitude-time
plot, b) the frequency-time plot of a chirp.

Radar schema is depicted in Fig.1.4: a synthesizer generates a chirp, that is
transmitted by a Tx antenna and also sent to a mixer . The chirp is reflected
from an object and the reflected chirp is received by a Rx antenna and sent also
to a mixer. Mixer takes two inputs, from the Tx and Rx antennas, mixes them
and produces an instantaneous frequency (IF) signal that is analyzed further on.

Figure 1.4: A schema of a radar.
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Mixer is a device that mixes two input signals (Tx, Rx) into one output signal
(IF). Let the two input signals be

xTx = sin(ω1t + ϕ1), (1.1)
xRx = sin(ω2t + ϕ2). (1.2)

The output IF signal represents difference of IF frequencies of the two input
signals:

xIF = sin[(ω1 − ω2)t + (ϕ1 − ϕ2)]. (1.3)
Fig.1.5 shows frequency-time plots of the inputs, the Tx- and Rx-chirps, and

the resulting mixing output, the IF signal. The plot a) shows the Tx-chirp and the
reflected Rx-chirp. In case of a single object, the Rx-chirp is only a time-delayed
version of the Tx-chirp. Following (1.3), the resulting IF signal is a constant
frequency, as shown in plot b). Let S be the slope of the Tx-/Rx-chirps in the
frequency-time plot, and τ the time of round-trip between the radar and the
object. The frequency of the IF signal is then

Sτ = 2Sd/c, (1.4)

where d is the distance between the radar and the object, and c is the speed of
light in the environment (usually in the air).

Figure 1.5: Mixing of Tx and Rx signal into a IF signal. Top: the frequency-time
plot of the Tx-chirp and Rx-chirp; Bottom: the frequency-time plot of a IF signal
output.

IF signal analysis employs Fourier Transform, in particular fast Fourrier trans-
form (FFT), converting a time domain signal into the frequency domain. A si-
nusoid in the time domain transforms into a peak in the frequency domain, as
shown in Fig. 1.6.
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Figure 1.6: A Fourier transform of a sinusoid in the time domain (top) into a
peak/spike in the frequency domain (bottom). The top plot shows three signals:
The first signal (blue) corresponds to a sinusoid with frequency f1, the second
signal (red) corresponds to a sinusoid with frequency f2, and the third signal
(gray) is composed from the first two signals. A FFT applied converts time
domain signal to frequency domain. The first signal (blue) then shows a spike
at frequency f1, the second signal (red) shows spike at frequency f2, and the
composed third signal (gray) shows spikes at both frequencies {f1, f2} of its both
components.

A IF signal of a single object at a distance d from the radar is

xIF = A sin(2πfIFt + ϕIF), (1.5)

where

fIF = 2Sd/c, (1.6)
ϕIF = 4π∆d/λ, (1.7)

with λ being the wavelength of the chirp. As the phase of the IF signal is quite
sensitive to small changes in the range of the object, using radars for ranging
and hence, detecting movements of chest wall, is a suitable approach to remotely
detect vital signs: radar signal processing will help detect small chest wall dis-
placement changes and will highlight them with respect to other possible random
movements registered in the environment.
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1.2.2 Different types of radars
Based on the type of signal transmitted, four types [3] of radars are recognised:

• Continuous-Wave (CW) radars,

• pulsed, Ultra-Wideband (UWB) radars,

• Stepped-Frequency Continuous-Wave (SFCW) radars, and

• Frequency-Modulated Continuous-Wave (FMCW) radars.

Their features comparison is in Table 1.1. This work describes measurement
with a FMCW Fraunhofer 80 GHz radar (further described in subsection 1.3.3).
Despite a FMCW radar might be used for multi-object detection and range esti-
mation, it is essential to know a general area where the subject is, and for a vital
signs detection to target the area around diaphragm, as we discuss later in Chap-
ter 4. A study of breathing movements [4] is a great resource for understanding
the ability to detect respiratory rate.

Remote monitoring of respiratory rate

Method Multi-object
detection

Range
estimation

Power
consumption

FMCW Yes Yes High
CW No No Medium
SFCW Yes Yes Medium
UWB Yes Yes Low

Table 1.1: Comparison of methods of remote monitoring of respiratory rate.

1.3 Vital signs detection
This section outlines methods and tools for contact and remote vital signs detec-
tion, notably for respiratory rate (subsections 1.3.1 and 1.3.2). Subsection 1.3.3
describes sensors used for respiratory rate detection and measurement calibration,
and the data acquisition setup for these sensors in subsection 3.2.

1.3.1 Contact-based detection of respiratory rate
Discussing two groups of contact detection methods [3] for respiratory rate, com-
pared in in Table 1.2: methods sensing perception of breathing activity of the
human body (e.g. displacement of the chest wall), and methods comparing prop-
erties of inhaled and exhaled air (e.g. air composition, temperature, humidity).

A contact detection with piezo-electric resistive sensor was used to detect
respiratory rate through chest wall displacement, as an independent calibration
method to the remote detection of respiratory rate with the FMCW radar. The
sensor is further described in subsection 1.3.3.
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Contact-based respiratory rate monitoring

Mechanical displacement sensing of chest
Method Accuracy Long-term

monitoring
Caveats

Strain-based High Yes Probe tightly
attached

Impedance pneumography High Yes Motion artefact
effect

3D movement sensing Medium Yes Cost

Air based sensing
Method Accuracy Long-term

monitoring
Caveats

Air component High No Environment
effectsAir humidity High No

Air temperature High No –

Table 1.2: Comparison of methods of contact-based respiratory rate monitoring.

Chest wall displacement sensing method measures extension of the human
subject’s chest while breathing: during respiration the diaphragm contracts and
expands together with the rib cage and muscles, allowing the air enter and leave
the lungs. The activity of the diaphragm and respiratory muscles leads to dis-
placement of the chest, which expands up to 7.37 cm on the circumference [5].
Further details are provided in Secion 3.1.

Air composition-based method focuses on measuring level of CO2 in the air
that was inhaled (approximately 0.04 %) or exhaled (around 6 %, [6]). The differ-
ence in CO2 levels can be measured using chemical sensors (e.g. infrared or fiber
optics) to determine the respiratory rate, through the capnography technique.
There are two main capnography setups: the mainstream and the side stream
method. In the side stream approach measurement, the sensor and the main
processing units are placed away from the human. On the contrary, for the main
stream approach measurement, the sensor is located between the processing unit
and the sampling tube, which is attached to the facial area of the human with
a face mask. The main stream approach is faster and more accurate, however is
more expensive and can be inconvenient to the human subject, as the senor heats
up about 40 °C. The measurement of volume of expired CO2 over time resembles
a wave / sinusoidal shape, called a capnogram. The capnography measurement
is not comfortable for long-term monitoring, and can be sensitive to other air
components and also to ambient changes in humidity and temperature [7].

In this work we are targeting remote detection of respiratory rate as a non-
intrusive mean in general, therefore the face masks are not suitable for this ap-
proach as they are somewhat limiting person’s comfort. However, a CO2 detector
may be attached to a robotic arm and ”sniff” the environment in this way.
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Air temperature-based method concentrates on measuring the temperature
difference of the inhaled and exhaled air. The difference can be as high as 15 °C,
while for the ambient temperature of Ta = 23 °C it is rather within a 4 °C dif-
ference range [8], depending on the air humidity. The measurement is performed
with a temperature sensor attached to a face mask, temperature measurement is
converted to an electric signal (voltage or current difference), which is enhanced
by an analog interface. Then the signal is processed to provide a respiratory rate.
Possible sensors for this type of measurement are thermistors, thermocouples,
pyroelectric sensors or fiber optics sensors.

Air humidity-based method is similar to capnography method, determines
the respiratory rate through measurement of water vapor level of the inhaled and
exhaled air. The humidity of inhaled and exhaled air differs by approximately
20 % to 60 % [9]. The experimental setup for an air humidity-based method
is similar to that of air temperature-based measurement, while the sensor in
question is a humidity sensor of capacitive or resistive type.

1.3.2 Remote detection of respiratory rate
Remote detection of respiratory rate (and heart rate) can be performed with a
help of radars. Detection of vital signs with radars depends on the effect of radio
signal modulation. Schema of the vital signs detection is in Fig. 1.7. Radar emits
a signal through its transceiver, the signal travels through the environment to the
human subject, where it reflects. While a living human breaths, their chest wall
expands and contracts, which causes the radar signal modulation. The reflected
signal contains information about human’s respiratory and heart rate, together
with environmental and electronic noises. The signal is received through the
radar’s receiver. During the signal processing, removal of the noise occurs – more
details in section 3.3 – and clean human’s vital signs, the respiratory and heart
rates, are detected. Typically, the the power transmitted by the radar within a
two-meters distance does not exceed 12 dBm (less than that of a smartphone),
therefore these radars are safe. A more detailed discussion of four types of radars
for vital sign monitoring is in Section 1.2.

1.3.3 Sensors
A remote sensoric detection of respiratory rate in industrial settings with a
FMCW Fraunhofer 80 GHz radar is studied. In order to understand the lim-
itations of the setup, a series of calibration measurements has been performed,
where the radar respiratory detection has been augmented with a PLUX chest
belt measuring chest wall expansion, a Baumer laser device measuring distance,
and also by counting respirations. These simultaneous measurements help in as-
sessing how confident one can be with the data analysis package developed to
process the radar signal and detect respiratory rate.

FMCW Fraunhofer 80 GHz radar. The aim is to detect human respiratory
rate with a FMCW Fraunhofer 80 GHz radar [10], [11]. In Fig. 1.8 the radar is
depicted, a small bulb-like object, with less than 5 cm in any of the directions.
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Figure 1.7: Schema of a remote detection of respiratory rate with a radar, as
shown in Fig. 9 of [3]: a human subject’s respiratory activity is registered by
a FMCW radar, and recorded & processed in a computer.

The radar consists of two boards: a high-frequency front-end and an acquisition
back-end, that includes intermediate frequency pre-amplifier, an anti-aliasing low
pass filter and a 16-bit analog to digital converter with a sample rate of 1 MSa/s.
The radar can be connected to a computer through a standard USB cable, which
serves as both the power source and data link for the radar.

Bamuer OM70 distance laser. As one of the calibration measurements, a
Bamuer OM70 distance laser [12], shown in Fig. 1.9, has been used to measure
chest wall displacement of the human subject, and detect the respiratory activity
remotely also in this way. The laser device of class 1 emits light at λ = 660 nm,
and the device measures distance from a range of 150 mm to 1400 mm. A 3D
printed mount was used to fix the FMCW Fraunhofer 80 GHz radar and the
Bamuer OM70 distance laser together, to leverage the distance laser as a laser
pointer and a distance measure simultaneously, as well to be sure about the
direction of the radar’s peak beam.

PLUX chest belt. As another one of the calibration measurement, this time
a contact-based detection, a PLUX chest belt [13] has been used. It is shown in
Fig. 1.10. It is a piezo-electric strain-based sensor of chest wall displacement. It
was affixed the chest belt tightly to the human subject’s chest and ensured the
box with power source and bluetooth communication dongle do not limit human’s
comfort, that would effect their respiration.

Other possible sensors that could complement the vital signs measurement
with a FMCW radar, however are beyond the scope of this work and have not
been included in the measurements, are additional sensors for the vital signs
detection combination, e.g.
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Figure 1.8: FMCW Fraunhofer 80 GHz radar used to study remote sensoric
detection of respiratory rate.

• a microphone: since 2020, NASA’s Perseverance Rover is equipped with
two microphones [14], and they are successfully capturing sounds from the
activity of the Rover and other robotic systems on Mars [15], [16]. There-
fore, we may consider addition of such an additional sensor to a robotic
system carrying the FMCW radar to remotely detect human vital signs.

• a thermal infra-red camera [17] for thermal imaging: such a sensor can
provide additional information about the human subject and the ambient
environment, and possibly also about movements of the human subject,
which can be a beneficial source of information in case the detection of
vital signs does not succeed with the FMCW radar – the nature of human
subject’s clothing influences significantly the respiratory rate detection by
a FMCW radar, therefore it is paramount to have other alternative means
of detection at (a robotic) hand.
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Figure 1.9: Bamuer OM70 distance laser used to study remote sensoric detection
of respiratory rate.

Figure 1.10: PLUX chest belt used to study remote sensoric detection of respira-
tory rate.
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2. Privacy & ethics
This chapter aims to bring up various privacy and ethical aspects of the remote
detection of human vital signs.

Section 2.1 outlines privacy consideration for the remote detection of the hu-
man vital signs, detailing why a remote robotic sensor is more suitable than a
smart wearable gadget. Section 2.2 describes ethics considerations of an activity
that handles such a vital signs detection. Further practical aspects are discussed
in Section 2.3.

2.1 Privacy considerations

For over a better part of the past decade, there are many wearable/smart devices
on the market that can measure human vital signs in a contact manner, such as
smart watches or heart belts. These devices are fairly affordable (costing from
several tens Euros), one can monitor their vital signs (e. g. heart beat) with
them and fetch the information through a proprietary mobile application, export
less detailed data to perform data analytics, or share their activity performance
report with others.

One disadvantage of these smart devices deployed in an industrial settings is
privacy and protection of data. The vital signs data is collected by a proprietary
hardware, passed to a 3rd party (usually the manufacturer of the device) in a
detailed format, often including personal data about the vital signs, location
of the person, and are attached to a user account with another set of personal
information available.

Processing such an amount of personally identifiable information is not a
straightforward task, in terms of data privacy and protection, data processing,
information security, infrastructure, and legal point of view. It can often become
a nightmare that can result in high cost for the organization, outweighing the
possible benefits of monitoring health of the personnel in places that are difficult
to reach on a short notice.

Although in the majority of Europe, data protection is regulated by General
Data Protection Regulation (GDPR) [18], that is not the case in the international
organizations such as CERN. Nevertheless, data privacy and protection at CERN
is regulated by an Operational Circular [19], that lists duties and responsibilities
of a service manager in that area.

Wearing a smart device is a personal decision of each person, and it would
be quite difficult to mandate it and ensure safe and secure operation at scale to
monitor vital signs of all personnel. As discussed earlier, at the same time, being
able to spot a health emergency and dispatch a unit of first responders to a loca-
tion that is difficult to reach, while providing monitoring of vital signs remotely,
is a very useful capability, and therefore, studying potential and limitations of a
remote detection of human vital signs with help of a FMCW radar connected to
a mobile robot is the next best approach, viable in the legal framework of CERN.
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2.2 Ethics considerations

2.2.1 Objectives
The objective of this work is to explore and understand limitations of a FMCW
radar for a remote detection of human vital signs, namely respiratory rate (and
as a stretch goal possibly also heart rate), in industrial settings.

2.2.2 Environment
The R&D phase of the project is carried out in a way gentle to the environment.
An already assembled/existing radar sensor and other computer equipment has
been used, and a laboratory space leveraged to conduct the measurement. The
utilities consumption overhead is minimal, and consists of power consumption of
the radar sensor. We do not make use of any liquids or fossil fuels to directly
conduct the research, therefore we do not introduce any foreign agent into the
local environment. Local transportation of the equipment across the laboratory
is performed in an environment-friendly way (walking).

2.2.3 Stigmatisation & Exclusion, Malicious Exploitation
This research is inclusive, strongly supporting diversity of the CERN’s Member
of Personnel as one of the CERN’s core values. In fact, the core research team
represents women and men equally. The R&D phase of the project excludes
a malicious exploitation of the project, similarly the possible future production
phase will exclude it, based on CERN’s internal regulations.

2.2.4 Ethics Issues
This research project involves human participants, and involves non-invasive
physical intervention of human participants. The research project involves per-
sonal data collection and processing, including further processing of the collected
personal data in order to optimise the data analysis algorithms. This research
project does not involve human embryos / fetuses, human cells / tissues, nor
animals.

2.2.5 Data Privacy Protection and Security
The personal data collection and processing is carried out in a way compliant
with the CERN’s Operational Circulars, particularly Operational Circular No.
11 [19] and Operational Circular No. 5 [20]. The data is stored on facilities of the
Organization. Access to data is granted only to the core research team members,
in order to develop and optimise a SW package for data analysis.

2.2.6 Safety
The R&D phase of the project is carried out with safety in mind in every step
of the project. All members of the core research team have been trained in the
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basics of safety in the workplace. Additionally, a member of the core research
team has passed the CERN First Aider certification.

The laboratory environment (place where the measurement takes place) is
secured prior to commencing the measurements, and adapted as needed during
the experimentation sets, to assure safety of the personnel and equipment at all
times.

2.2.7 Risk / Benefit Assessment

The research involves minimal risk to participants:

• physical risk (e.g. pain, bruising and infection, muscle soreness and pain as
a consequence of exercise testing, health emergencies),

• psychological risk (e.g. stress associated with experiments and testing),

• social risk (e.g. invasion of privacy, loss of community standing),

• legal risk (e.g. criminal prosecution), and

• economic risk (e.g. loss of employment, loss of potential monetary gain).

The research provides no prospect of direct benefits to individual participants,
but likely will yield generalizable knowledge to further society’s understanding of
this remote detection technique.

2.3 Practical ethical aspects

2.3.1 Methodology

In the R&D setting employed in this work’s project, the radar is placed on a solid
surface, detecting human vital signs of up to two human test participants (the
core research team), in order to understand limitations of the detection (human
respiration observation, device capabilities, environment) and to develop a SW
package to perform the data analysis, possibly providing and comparing several
approaches to data processing.

In a possible future production setting, the FMCW radar is meant to be
mounted on an arm of a mobile robot. The robot would be controlled by a
remote operator, a member of a Fire & rescue team. The robot equipped with
a FMCW radar sensor would remotely monitor vital signs of personnel in an
emergency situation, e.g. in an accelerator tunnel.

2.3.2 Legislature & Jurisdiction

This research project is carried out at CERN, therefore it is governed by CERN’s
Operational and Administrative Circulars and regulations.
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2.3.3 Research Impacts
The impact of the R&D phase of the project results in understanding of limita-
tions of the FMCW radar w.r.t. the conditions of the industrial settings. The
following characteristics are considered to contribute to the “ambient environ-
ment” limitations:

• distance of the sensor from the human participant,

• direction focus of the sensor (including angular dependence of the radar
beam cone on the signal gain),

• obstacles around the human participant (notably along the line of sight),

• changes in the local atmosphere composition (e.g. smoke or dust dispersed
in the atmosphere),

• dependence of the sensor temperature on its operationality (and hence, a
need for an active cooling mechanism).

Additionally, dependence of the human vital sign detection on following con-
ditions is studied:

• clothing characteristics of the human participant (e.g. different upper body
clothing layers, such as a t-shirt, sweater, jacket),

• human participant body position (e.g. sitting / lying down, detection from
different parts of the body),

• human participant breathing patterns (e.g. standard breathing, fast or slow
breathing, shallow or deep inhalation, gasping).

Understanding these conditions and their impact is fundamental for devel-
opment of the SW package for data analysis, and interpretation of the detected
human vital signs.
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3. Solution proposal
This chapter proposes the approach to address objective of this work, i.e. to
detect human vital signs, namely respiratory rate, with a FMCW radar.

Practical aspects of ethical consideration of this work have already been de-
scribed in Section 2.3. Here in Sections 3.1 and 3.2 we describe data acquisition
techniques. Section 3.3 outlines the general data analysis flow for the measure-
ments with the three sensors, and later describe six different measurement sce-
narios in Section 3.4.

3.1 Strain-sensing of chest wall displacement
The most common methods of the chest wall displacement measurement are based
on strain sensing, transthoracic impedance sensing or impedance pneumography
and movement sensing using accelerometers, gyroscopes and magnetometers. The
strain-sensing method uses resistive, capacitive, inductive and fiber optic sensors
to measure the instantaneous change in strain. Piezo-resistive strain sensors, re-
ferred to as ”strain gauge” [21], change their shape when a physical displacement
is applied. The change of shape causes a change of their resistance values, mea-
sured with an electronic circuit depicted in Figure 3.1. The piezo-electric sensor
is embedded in a textile chest belt, attached to a human subject chest. The sen-
sor signal is read out to a analog interface for enhancement, then processed to
measure the respiratory rate.

Figure 3.1: Electronic circuit utilized in a measurement of a chest wall displace-
ment with a piezo-electric sensor, as shown in Fig. 5 of [3]: the signal from
piezo-electric sensor (part of the chest belt) is read out through an Analog Front
End (AFE), and then processed in a computer.

3.2 Data acquisition
The data will be acquired from the 3 sensors independently on each other, with
emphasis on time interval overlap in measurement in this distributed system. The
series of measurements will be performed in a controlled laboratory environment
with ambient temperature 20-23 °C.
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FMCW Fraunhofer 80 GHz radar data acquisition. For a remote de-
tection of respiratory rate, the radar will be mounted to a pad in the vicinity
of a data collection computer. Radar will be connected to the data collection
computer via a USB cable, providing power supply and data channel simultane-
ously. Without additional active cooling, the radar may overheat within 30-45
minutes of being plugged in the USB port, resulting in inability to temporarily
further acquire data. In such a situation, the radar will be unplugged for 10-15
minutes to cool it down in an ambient room temperature, and the measurements
will resume later. The radar data acquisition package is written in C++, based
on CERN Robotics Framework [22], leverages serial port communication for data
acquisition.

Bamuer OM70 distance laser data acquisition. For data acquisition, the
distance laser will be mounted to a pad with the radar, allowing for simultaneous
distance measurement directing to desired location. Laser will be connected to the
same data collection computer through a FTD 232 device USB cable. Although
the different models of the laser may be able to measure distances in a variety
of distance ranges, the one particular used allows to activate and leverage only a
single range of 0.15 m to 1.5 m. This distance will be sufficient for simultaneous
chest-distance and radar measurement, for larger distances only the laser pointer
functionality of the laser sensor will be used to direct the radar appropriately,
losing the distance measurement capability. The laser data acquisition package
is written in Python 3, benefiting from the PySerial [23] library.

PLUX chest belt data acquisition. The chest belt can connect to a data
collection computer via the Bluetooth interface. While the data acquisition from
the radar and the distance laser has been achieved on a computer running a LTS
flavor of Ubuntu Linux OS, attempts to connect the chest belt device on the
same box were not successful, therefore a Windows OS box will be used for the
chest belt data acquisition. The chest belt data acquisition package is written in
Python 3.

3.2.1 Synchronization of data sources
This work focuses on remote detection of respiratory rate with a FMCW radar.
For calibration of radar measurement (and radar signal processing) we will use
two other different sensors, and manual count of respirations per minute. Each
measurement will last 1 minute, the three sensors will be part of a very loosly
coupled distributed system. The radar and the laser will be connected to one
computer, and the chest belt to another computer. Although the sensors and
their computers constitute a distributed system, we do not need to apply complex
distributed systems algorithms to assure time synchronization in the system: the
important feature of the system is that the measurement period of 1 minute
is longer than the time of 1 respiration (a typical human respires between 10
and 16 times per minute), and very precise synchronization among the ”nodes”
is not needed: we need to match 1 minute interval with few seconds precision.
Additionally, we do not need a monolith program to acquire and process data
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from each sensor, and it is sufficient to have data acquisition and processing for
each sensor separately.

3.3 Signal processing: from measurement to de-
tection of respiratory rate

The FMCW and CW Doppler radars signal processing allows for respiratory rate
and heart rate extraction through time and frequency domain analysis. Peak de-
tection methods are used as a time-domain method to detect peaks in respiration
(and heart) signals. The FFT and statistical methods in time-domain data help
differentiate between time-varying and static signals [24].

The signal processing of a CW Doppler radar1 has been described in literature,
e.g. [25]. In short, data is acquired from the radar as a data frame, with 4096
channels per chirp, and time resolution of 50 ms, for period of 1 minute. The data
frame is passed through FFT to move to time-domain and to be able to further
detect peaks in the respiratory activity. The data is passed through a Kalman
filter to estimate the peaks. Then the peak outliers are removed by calculating
the variance of the radar data packet, and evaluating the outliers with respect to
the packet mean feature. The signal processing continues by removing variance
outliers, unwrap the phase of the processed signal, and concludes the search for
a respiratory rate with a series of forward and inverse FFTs.

Several situations have been encountered when the respiratory rate detection
from the radar signal was not successful, and attempted to adapt the signal
processing algorithm parameters to recover the respiratory rate from signal:

• Peak outliers removal: When the outliers used to be evaluated with respect
to the packet average feature, it was often impossible to detect respiratory
rate from the measurement. Therefore a decision has been made to evaluate
the outliers with respect to the packet mean feature.

• Shallow breathing or movement of the human subject during the data ac-
quisition: the respiratory rate detection approach is fragile with respect to
additional dynamics, and when either of the movement types is present,
it often results in inability to detect respiratory rate from the processed
signal, due to variance higher than a cut-off threshold that is imposed on
the data. An artificial experimentation with increasing the cut-off threshold
may be put in place, however, rapid movements may end up being the killer
parameter of the whole detection.

3.4 Multi-sensor measurements
With the 2 remote and 1 contact sensors a series of measurements has been
performed to understand the limitations of the setup, the environment, and also to
restrict areas on the human subject’s body that allow for a successful respiratory
rate detection.

1Principles of a FMCW and a CW Doppler radar signal processing are same.
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Measurements with the 3 sensors have been performed independently. Each
radar measurement collected data for 1 minute, and the focus of data analysis was
on time interval overlap of the 3 sensor measurements and the manual respiratory
rate count. Further describing the scenarios of respiratory rate detection that was
performed:

M01: 1D angular resolution spectrum. We would like to understand the
1D angular resolution spectrum of the radar, therefore we will perform a mea-
surement to attempt to understand the radar behavior when the direction of the
radar’s center beam differs by multiples of 5 ° steps.

M02: Subject lying down on their back. We would like to understand
how well / whether we can detect respiratory rate of the subject lying down on
the back, pointing the FMCW radar at different parts of the subject’s body, e.g.
head, shoulders, several chest locations, and hips and thighs. The distance of the
radar & laser from the subject will be fixed, in the range of 1.1 m to 1.5 m.

M03: Subject lying down on their side. We would like to understand how
well we can detect respiratory rate of the subject lying down on their side, either
facing the radar, or having the radar pointed at their back. While the subject
will be facing the radar, we will focus the measurement at the subject’s collar
bone, several locations on their chest, waist and hips. While detecting from the
person’s back, the measurements will direct radar to the person’s upper shoulders,
scapulas, several places on the chest around their diaphragm, and waist and hips.

M04: Subject lying down on their stomach. We would like to understand
how well we can detect respiratory rate of the subject lying down on their stomach,
turned with their side to the radar were detected. The radar will be directed from
the person’s side to locations on their shoulders, scapulas, rib cage line, waistline,
and hips.

M05: Subject sitting down, wearing a standard-issue work jacket. We
would like to understand how well we can detect respiratory rate of the subject
sitting down in a chair. The radar will be directed to the subject’s diaphragm
area.

M06: Subject sitting down, wearing a standard-issue work jacket, with
a plexi-glass in the line of beam. We would like to understand how well
we can detect respiratory rate of the subject sitting down in a chair similarly to
M05, but with a clear plexi-glass obstacle to the line of beam.
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4. Measurements with the radar
This Chapter describes several series of measurement that we performed in order
to understand the constraints of remote sensoric detection of human vital signs,
particularly the respiratory rate, with a FMCW radar.

Firstly, we show overview of respiratory rate (RR) detected by radar, counting,
chest belt and distance laser, with baseline parameters of the detection model,
in Section 4.1. Then we describe the initial get-to-know measurements in Sec-
tion 4.2, performed only with the radar. In the subsequent Sections 4.3 through
Section 4.8 we describe the measurements of scenarios M01 to M06 where we mea-
sured the RR with radar, and calibrated the measurement with other sensors in
parallel.

Considering the privacy nature of the data acquired with the FMCW radar,
the data cannot be included in the attachment folder.

4.1 Baseline detection overview
In Fig. 4.1 we present a baseline configuration of RR measurement with different
sensors: the radar, chest belt and distance laser. In addition, for measurements
with Measurement ID larger than 0035, we counted the RR during the data
acquisition. We will discuss the detection parameters with different sensors in
Chapters 5 – 7. From Fig. 4.1 and tables in this Chapter one can see that the
baseline detection method for the radar RR detection is not perfect: the Radar
RR data points are far away from the Counted RR data points and outside the
gray band, and that there are scenarios when we need to better understand the
limitations, to deliver a better detection model, discussed in Chapter 5.

Figure 4.1: Baseline comparison of detected RR with all sensors and all measure-
ments. We show the radar RR (red ×) and if available, counted RR (black ∗),
chest belt RR (blue ⋎), distance laser RR (green +). The gray band denotes a
band of ±3 respirations per minute around the counted RR data points.
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4.2 Initial get-to-know measurements
Initial set of measurements served to understand what we have at hands, in
terms of data acquisition from radar, and the radar signal processing. These
measurements are listed in Table 4.1, the Measurement IDs from 0001 to 0035 .
We performed these measurements only with the radar, we didn’t use any other
calibration measurement: we didn’t use any other sensing method, and we didn’t
count respirations during the measurement periods.

4.2.1 Experimental setup and environment effects
We performed a series of measurement, during the initial get-to-know phase only
with the Fraunhofer FMCW radar. The radar was situated on the ground (to-
gether with & in the vicinity of the read out laptop device) whenever the person
was laying on the ground e.g. as shown in Fig. 4.2, several meters away from the
person.

Figure 4.2: A person laying down on their back, with their legs directed towards
the observer. The observer may be e.g. a mobile robotic system equipped with a
FMCW radar sensor.

Effect of the body position. The person was situated in different positions:
sitting down, laying down on side or on back. The person was clothed in a T-shirt
or a working jacket. We also attempted to measure angular dependence of RR
detection. We tried to understand which are the locations on the person’s body
towards which we can point the radar and be able to detect RR with it. The most
suitable area is the surroundings of the diaphragm, from the front, back and side.
We tried also radial direction along legs, towards head/shoulders and confirmed
that those directions are not suitable for RR detection, as the diaphragm activity
is not detectable there.

Effect of the breathing speed & depth. We tried to understand what
breathing patterns we are able to detect, focusing on normal breathing with
RR 10-15 breaths per minute, and shalow quick breathing (e.g. while a person
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Initial get-to-know measurements

Measurement ID Comment
0001 Sitting
0002
0003 Sitting, in jacket
0004
0005 Sitting, in jacket, from side
0006 Laying down, on side, facing towards the radar
0007
0008 Laying down, on the back Issue detecting RR (variance)
0009
0010
0011 Laying down, on side, back

towards the radar0012
0013 Laying down, on side, head

radially towards the radar0014
0015 Laying down, on back,

shoulder radially towards the
radar

Issue detecting RR (variance)
0016
0017
0018
0019 Laying down, on back, legs

radially towards the radar0020 Radar 20 cm above ground, issue
detecting RR (variance)

0021 Radar 20 cm above ground
0022 Radar 20 cm above ground
0023 Radar 40 cm above ground, issue

detecting RR (variance)
0024 Radar 40 cm above ground
0025 Radar 40 cm above ground
0026 Sitting, angular dependence Direct beam (90 ◦)
0027 80 ◦, issue detecting RR (var.)
0028 70 ◦

0029 60 ◦, issue detecting RR (var.)
0030 Flat field measurement Radar pointed to the wall
0031 Sitting
0032
0033
0034
0035

Table 4.1: Measurements performed to gain initial understanding how the radar
works and what to expect.
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is performing a cardio-demanding activity) or simulated coughing/gasping (short
shallow breaths, e.g. situation prior to cardiac arrest or during seizure). We
confirmed that the RR detection works fairly well during the normal breathing
activity, and it is difficult and complex (due to volatile variance in the signal) for
the shalow quick breathing and coughing/gasping. Similar impossibility to detect
RR was observed when the person was moving (radially towards/away from the
radar) during the measurement period.

Effect of the clothing materials. We studied effect of clothing and its lay-
ering, ranging from a T-shirt, sweater, working jacket. We confirmed that the
closer the clothing was to the chest/stomach/diaphragm area, the better chances
to detect RR. If we use a clothing layer that does not fit the person – in terms
it is much larger and does not touch the diaphragm area – it screens away the
respiratory activity and we are not able to detect RR.

Effect of the radar operating temperature. We experimentally found out
that for a production use of the radar to detect RR in an industrial settings an
external active cooling mechanism would have to be introduced. For the mea-
surement, the radar was connected via a USB port to a read out computer. USB
provides both the serial communication and powers the sensor. After approxi-
mately 45 minutes of the radar measurement session, the data acquisition ceased
to work as the radar overheated (the radar’s base was hot, grabbing it by hand
was not very comfortable). We had to unplug the radar from the computer for
10-15 minutes and let it cool down, in order to be able to resume measurement
session.

4.2.2 Initial understanding summary
During these 35 measurements we gained confidence in the experimental setup,
and addressed a variance cut related issue (discussed later in Section 5.3). We
then were able to commence measure scenarios outlined in Section 3.4, using
multi-sensor measurement, with possibility to calibrate the radar measurements
and RR detection with counting, and with sensoric chest wall expansion mea-
surement with a chest belt and remotely with a distance laser.

4.3 Measurements of scenario M01

With the M01 measurement series we attempted to measure 1D spectrum of the
radar, to see a possible difference in gain. At first we intended to measure it with
a protractor and measure with 10 ◦ steps in the range of [40 ◦, 140 ◦] where 90 ◦

denotes a direct radial direction towards the subject sternum. With the first 3
measurements ranging from 80 ◦ to 100 ◦ we found out that we are not able to
realistically distinguish any gain difference with such a small angular step, that
our setting is not that precise.

Therefore, with the subject person sitting down (as shown in Fig. 4.3) we
embarked on a different approach, where we determined a plane going through
person’s chest, in the middle between diaphragm plane and shoulder. We noted
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Figure 4.3: A person sitting down, facing the observer.

Figure 4.4: Three sensors to detect and calibrate RR: (1) the FMCW Fraunhofer
80 GHz radar, (2) the Bamuer OM70 distance laser, and (3) the PLUX chest
belt.

several points in this plane, where zero was on the right side of the person’s rib
cage, 15 cm on top of the sternum location, and 30cm on the left side of the
person’s rib cage, moving with 5cm steps.

The first 11 measurements we performed only with the radar, and from the
measurement 0047 on we started using also the two calibration measurement
sensors, contact-full PLUX chest belt, and contact-less Baumer OM70 distance
laser, all three sensors are shown in Fig. 4.4. In addition, the subject person was
counting their breaths (in their mind) during the measurement, which provides
yet another mean of calibration. In total, we performed 35 measurements, listed
in Table 4.2.
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M01 measurements

Measurement ID Counted RR Comment
0036 14 90 ◦, distance ca 1.1 m
0037 15 80 ◦, distance ca 1.1 m
0038 14 100 ◦, distance ca 1.1 m
0039 13 0 cm from R side of the person
0040 14 5 cm
0041 12 10 cm
0042 11 15 cm (center of chest)
0043 13 20 cm
0044 12 20 cm again
0045 12 25 cm
0046 14 30 cm (L side of the person)
0047 13 15 cm (center)
0048 12 15 cm (center)
0049 12 10 cm
0050 12 5 cm
0051 13 0 cm
0052 13 20 cm
0053 13 25 cm
0054 14 30 cm
0055 13 15 cm
0056 – 10 cm. Didn’t count breaths.
0057 13 10 cm
0058 12 5 cm
0059 14 0 cm
0060 12 15 cm
0061 12 20 cm
0062 13 25 cm
0063 14 30 cm
0064 14 15 cm
0065 13 10 cm
0066 13 5 cm
0067 14 0 cm
0068 13 20 cm
0069 13 25 cm
0070 12 30 cm

Table 4.2: Measurements of scenario M01: the person is sitting down, we attempt
to measure the angular dependence.
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4.3.1 M01 understanding summary
During these 35 measurements we understood that small-step angular spectrum
measurement is not possible due to insufficient precision of the setup. We also
performed a series of measurement where we confirmed that pointing the radar
(with the distance laser pointer) to different places on person’s chest does not
lead to degradation in capabilities to detect RR.

4.4 Measurements of scenario M02

In the scenario M02 the subject person is laying down on their back, with their
side directed towards the observer, as shown in Fig. 4.5. We performed 8 mea-
surements (listed in Table 4.3) to attempt RR detection from different locations
along the person’s silhouette.

Figure 4.5: A person laying down on their back, with their side directed towards
the observer.

M02 measurements

Measurement ID Counted RR Comment
0071 Flat field measurement
0072 13 Pointing to R ear
0073 12 Pointing to R shoulder
0074 12 R shoulder again
0075 11 R chest, bottom of the rib cage
0076 11 R chest (same position)
0077 12 R chest + 5cm up closer to the front chest
0078 13 R waste line
0079 13 R thigh

Table 4.3: Measurements of scenario M02: the person is laying on their back.
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4.4.1 M02 understanding summary
During these 8 measurements we confirmed that the most suitable general area
from which we are capable detect RR with the baseline model parameters is the
diaphragm area and its surrounding (chest, stomach).

4.5 Measurements of scenario M03
In the scenario M03 the subject person is laying down on their side, with their
stomach or back directed towards the observer, as shown in Fig. 4.6. We per-
formed 12 measurements (listed in Table 4.4) to attempt RR detection from
different locations along the person’s rib cage.

Figure 4.6: A person laying down on their side, facing/rearing the observer.

M03 measurements

Facing the radar
Measurement ID Counted RR Comment

0080 14 R collar bone
0081 13 R chest
0082 12 R rib cage line
0083 12 R waist line
0084 11 R bottom stomach/hips

Back towards the radar
Measurement ID Counted RR Comment

0085 12 R back, stomach/hips
0086 13 R back, waist line
0087 12 R back, waist line to rib cage line
0088 12 R back, rib cage line
0089 12 R back, chest
0090 11 R back, scapulas
0091 12 R back, upper shoulders

Table 4.4: Measurements of scenario M03: the person is laying down on their side,
with their front or back towards the radar.
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4.5.1 M03 understanding summary
During these 12 measurements we confirmed that the diaphragm area and its
surrounding (chest, stomach) are great areas to detect RR, and didn’t observe
any issues with the RR detection.

4.6 Measurements of scenario M04
In the scenario M04 the subject person is laying down on their stomach, with
their side directed towards the observer, as shown in Fig. 4.7. We performed
5 measurements (listed in Table 4.5) to attempt RR detection from different
locations along the person’s rib cage.

Figure 4.7: A person laying down on their stomach, with their side directed
towards the observer.

M04 measurements

Measurement ID Counted RR Comment
0092 –
0093 14 L shoulders
0094 13 L scapulas
0095 13 L rib cage line
0096 12 L waist line
0097 11 L hips

Table 4.5: Measurements of scenario M04: the person is laying on their stomach.

4.6.1 M04 understanding summary
During these 5 measurements we measured respiratory rate of a person laying
down on their stomach. These measurements confirmed that the most reliable
detection of RR comes from the diaphragm area and its surrounding (chest, stom-
ach).
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4.7 Measurements of scenario M05
In the scenario M05 the subject person is sitting down, wearing a work jacket.
The measurements performed are listed in Table 4.6.

M05 measurements
Measurement ID Counted RR Comment

0098 17 center, diaphragm area
0099 15 center, diaphragm area again
0100 15 center, diaphragm, with plexi-glass
0101 – center, diaphragm, with plexi-glass
0102 15 center, diaphragm, with plexi-glass

Table 4.6: Measurements of scenario M05: the person is sitting down, dressed in
a work jacket.

4.7.1 M05 understanding summary
During these 5 measurements we studied how RR is detected when a person wears
a work jacket. We concluded that success of RR detection in M05 measurements
depends on how well the jacket fits the person’s diaphragm area.

4.8 Measurements of scenario M06
In the scenario M06 the subject person is sitting down and holding a plexi-glass
in front in the line of beam, as shown in Fig. 4.8, to study an effect of a possibly
transparent barrier. The measurements performed are listed in Table 4.7.

Figure 4.8: A person sitting down, facing the observer, holding a plexi-glass.

4.8.1 M06 understanding summary
From the 12 M06 measurements we conclude that the RR detection here is difficult,
due to refraction of the plexi-glass, which introduces highly dynamic signal.
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M06 measurements
Measurement ID Counted RR Comment

0104 12
0105 14
0106 14
0107 14
0108 12
0109 13
0110 13 Issue detecting RR (variance)
0111 – Issue detecting RR (variance)
0112 14 Issue detecting RR (variance)
0113 13
0114 13
0115 12

Table 4.7: Measurements of scenario M06: the person is sitting down, dressed in
a work jacket, with a plexi-glass in front in the line of beam.
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5. Radar signal processing

5.1 HealthDetectionSample application

CERN Robotic Framework. The CERN Robotics Framework [22] is a mod-
ular framework written in C++ for any robotic activity at CERN. One of its
modules is the HealthDetectionSample application, which encapsulates and
connects several other modules for data acquisition (serial communication), and
re-usable modules with algorithms, data structures and interfaces for signal pro-
cessing: e.g. module Radars with interfaces for communication with a radar
device, EventLogger for a generic application-wide logging functionality, Peak-
Detection, StateEstimator with Kalman filter, FFT, and the Constant False
Alarm Rate (CFAR) [26] algorithm. Its compilation configuration is done with
CMake [27], and compilation with make [28] with the gcc [29] compiler.

CERN Robotic Framework environment. The CERN Robotic Framework
applications run on boxes with Ubuntu Linux OS. To follow the computer secu-
rity guidelines, the OS has to be kept up-to-date with security patches, and from
time to time a new long-term support (LTS) version is released, and the CERN
Robotic Framework environment has to be brought up to the new standards,
making sure all the dependencies suit the dependency versions available in the
newer OS. For development and code commissioning purposes it is necessary to
have an environment, that 1) is well documented to reproduce, 2) can be acci-
dentally or on purpose trashed, 3) allows for commissioning of the code and the
environment (and if needed, versioning of devices tested). In order to benefit from
the CERN Robotic Framework package for data acquisition from a FMCW radar
and subsequent initial signal processing, we modified a relevant set of modules as
follows:

Standalone HealthDetectionSample application. In order to document the
dependencies, we dissected the HealthDetectionSample application from the
CERN Robotic Framework codebase. Due to several LTS and minor version
OS upgrades, this activity turned out very valuable, by shortening time needed
each time to bring the HealthDetectionSample environment up to the code.
Lastly, we containerized the development & commissioning activity environment,
configuring a Docker [30] container with a Dockerfile (listed in Section A.3),
and running it with Podman [31].

We modified the HealthDetectionSample application to allow both the real
time data acquisition from the radar, or the ”offline” rerun of the signal pro-
cessing from the radar raw data files, just with a change of command line input
parameters passed to the HealthDetectionSample binary.

In order to rapidly prototype possible variations in the parametric study of
signal processing parametric model, we implemented health detection applica-
tion in Python 3, to run the ”offline” signal processing of the radar data. We
describe the health detection application in Section 5.4.
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5.2 Troubleshooting related to the radar
In this Section we list several aspects of the environment and device setup that
we had to take into consideration in the HealthDetectionSample application
development, to address challenges encountered along the way.

5.2.1 Troubleshooting data acquisition
In Section 4.2.1 we described the effect of the radar operating temperature, where
we had to interrupt the measurement session after 45 minutes due to radar over-
heating.

In addition, initially the HealthDetectionSample application expected a
manual entry of SIGTSTP signal to even start the data acquisition. We have
eliminated that need, so that the measurement does not depend on yet another
person’s reaction time.

5.2.2 Troubleshooting signal processing
To allow evolution of signal processing variations, we introduced an option to
choose between data sources for signal processing: either read out real-time data
from the radar (and save those in a data file), or read already recorded radar data
from a file.

When developing parametric model for RR detection, we encountered sev-
eral caveats with the signal processing procedure, all related to peak detection
approaches. One caveat is related to the variance cut in outliers detection and
cleanup: the previously chosen threshold didn’t well describe data, therefore we
studied variance as one of the important parameters of our RR model.

We encountered a similar issue with peak detection with CFAR algorithm, and
besides studying effect of variations of CFAR algorithm parameters on RR de-
tection, we tried also an alternative with Continuous Wavelet Transform (CWT)
assisted peak detection. These changes are described in the following Sections.

5.3 Signal processing – cut flow
In this section we describe the radar signal processing cut flow, from the raw
data towards detected RR, on example of measurement 0047. The raw radar
data of measurement 0047 is shown in Fig. 5.1. Each measurement, a data
frame, contains data lines for Ramp Count = 1200 chirps, data line consists of
4000 integers with values in the range of approximately [-4500, +4500].

As it is challenging to visualize dynamics of numbers in Fig. 5.1, we plot also
a line-by-line difference of numbers in Fig. 5.2. Let us denote a[i, j] a cell at the
i-th row and the j-th column of data matrix of Fig. 5.1, and b[i, j] a cell at the
i-th row and the j-th column of data matrix of Fig. 5.2. They are connected as
follows:

b[i, j] = a[i + 1, j] − a[i, j] (5.1)

In Fig. 5.3 we plot occurrence distribution histograms of b[i, j] for each data line.
There we show also a distribution of max values per data line (black line).
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Figure 5.1: Signal processing flow: raw radar data. Each measurement consists of
1200 data lines (Ramp Count radar configuration option), each data line contains
4000 integers. The figure shows that data is consistent among data lines (vertical
axis), however there are numerical differences that the visualisation does not
show. From these numerical differences the respiratory rate is determined, but
they stay hidden to a naked eye.

Figure 5.2: Showing difference among radar data lines b[i, j] of Fig. 5.1.
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Figure 5.3: Occurrence distribution of b[i, j].

On our way to detect peaks, we apply FFT on the raw data and obtain a range
FFT matrix, with the same dimensions as the raw data frame. An example of a
data line is shown in Fig. 5.4.

Figure 5.4: Signal processing flow: FFT of raw radar data, a line of a range FFT
matrix.

Next we embark onto finding peaks in rows of the range FFT matrix. For
that we can use either a CFAR [26] algorithm or the CWT [32] approach. In such
a way, for each data line we get indexes of bins of the data line, where peaks are
identified, resulting in a peak matrix. Generally, we use only the first element of
the peak matrix, reducing it effectively to a peak vector. Several iterations of the
peak matrix are shown in Fig. 5.5: We show how the peak matrix looks like after
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identifying the peaks, then after applying Kalman filter, and then after removing
outliers.

Figure 5.5: Signal processing flow: peak matrix, after get peaks(), after Kalman
filter, after remove outliers().

The CFAR algorithm is used to set a dynamic threshold level to distinguish
between signal peaks and noise, based on the statistics of surrounding cells, en-
suring a constant false alarm rate. The three parameters we use to configure its
output are

• num train: number of training cells used to estimate the noise level. These
cells surround the cell under test but exclude the guard cells.

• num guard: number of guard cells around the cell under test, to avoid
including the target signal in the noise estimate.

• false alarm rate: desired false alarm rate, which determines the threshold
level.

For each data line of the range FFT matrix, CFAR find peaks algorithm avoids
evaluating a window without num side bins on both sides:

num side = (num train DIV 2) + (num guard DIV 2), (5.2)
window = data line[num side :

: length of the data line − num side] (5.3)
For every element in this window, we identify a bin max val pos, where there

is the highest value in the window. For this bin, we calculate a threshold α∗pnoise,
where

guard window min = max val pos − (num guard DIV 2) (5.4)
guard window max = max val pos + (num guard DIV 2) (5.5)

guard window = data line[guard window min :
: guard window max] (5.6)
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α = num train ∗
(︂
false alarm rate−1/num train − 1

)︂
(5.7)

sum total =
∑︂

window (5.8)
sum guard =

∑︂
guard window (5.9)

pnoise = (sum total − sum guard)/num train (5.10)

When the value in the max val pos bin is larger than the minimal threshold
α ∗ pnoise, it is recorded, constructing a peak matrix for all data lines. As for each
data line we record only the first bin index, our peak matrix turns effectively into
a peak vector, which is an outcome of method get peaks().

We implemented another peak detection approach with CWT. We parame-
terize the model with three parameters:

• scales: an array of scales at which to perform the wavelet transform. The
scales choice can significantly affect the transform’s ability to detect features
at different sizes and frequencies.

• wavelet: type of wavelet to use for the transform.

• cwt guard: number of data points to exclude from the start and end of the
data vector during analysis, similar to a guard band in radar processing, it
can help reduce edge effects in the wavelet transform.

In order to calculate the CWT coefficients, we use the PyWavelets [33] library.
To construct the peak matrix with the CWT approach, we use NumPy’s [34]
unravel index method to identify peaks in the data.

After identifying peaks in get peaks(), if there are peaks detected, we apply
a Kalman filter to the peak matrix. There for each element of the peak matrix,
we update the state estimate based on the measurement using the Kalman filter’s
predict and update steps, and then predict the next system state using the system
model, returning the current state estimate.

Follows the remove outliers() method to remove the outlier peaks from the
detected peaks in the peak matrix, based on variance and a predefined threshold.
Calculation of the peak matrix variance goes as follows:

SUM =
∑︂

peak matrix (5.11)
mean = SUM/len(peak matrix) (5.12)

square sum =
∑︂

x∈peak matrix
int(x)2 (5.13)

variance =
√︂

square sum/len(peak matrix) − mean2 (5.14)

When the calculated variance exceeds a threshold MAX VARIANCE, it is not re-
corded, and we run removal of variance outliers remove variance outliers().
There we can choose whether we use either mean or median as a center identifi-
cation approach, and proceed to remove peak outliers from the peak matrix as
follows:

peak matrix = [int(peak) for peak in peak matrix
if (int(peak) − center)/variance ≤
≤ OUTLIER VARIANCE REMOVE THRESHOLD] (5.15)
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Figure 5.6: Signal processing flow: peak counts to get target bin.

The choice of a center method and variance thresholds cuts (MAX VARIANCE
and OUTLIER VARIANCE REMOVE THRESHOLD), discussed in Section 5.2.2, are para-
mount in the radar signal processing cut flow, as with too restrictive cutting we
were not able to detect any RR in the same data.

We continue to identify the bin (frequency) with the most consistent peak
occurrences, which is likely to correspond to the target, in get target bin().
This procedure is shown in Fig. 5.6.

Figure 5.7: Signal processing flow: unwrapped phase vector.

Next, we embark onto unwrapping the phase of the radar signal in un-
wrap phase() to extract frequency from the data. Example of an unwrapped
phase vector is shown in Fig. 5.7.
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Figure 5.8: Signal processing flow: respiration frequency vector.

Upon applying FFT on the unwrapped phase vector, we obtain a respiration
frequency vector, shown in Fig. 5.8, before and after cleanup.

Figure 5.9: Signal processing flow: respiration time signal with detected respira-
tion activity peaks.

Next, we apply inverse FFT on respiration frequency vector, we obtain res-
piration time signal, as shown in Fig. 5.9. We then use a gradient-based peak
detection algorithm to identify respiration peaks in the respiration time signal, the
lung peaks: it identifies peaks in a data vector by examining the gradient of the
data and selecting points that exceed a specified amplitude threshold as peaks.
This method systematically avoids counting in the last peak, as shown in this
figure (the red cross is ”missing” on top of the last peak), thus systematically, the
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detected RR may be one breath-per-minute shorter. Using the lung peaks and
unwrapped phase vector, we calculate the detected respiration rate as shown in
(5.18).

Llp = len(lung peaks) (5.16)
Lupv = len(unwrapped phase vector) (5.17)
RR = int[Llp/(0.5 ∗ max frequency ∗ Lupv) ∗ 60] (5.18)

This overview of the cut flow in radar signal processing, from raw radar data
frame all the way to a detected respiratory rate, comes handy in the next section,
to describe the parametric model parameters variations.

5.4 health detection application for parametric
model study

We study a phase space of the parametric model to understand what are the
most favorable parameters of the remote detection of human respiratory rate
with a Fraunhofer FMCW radar. As shown in this Section 5.3, the RR detection
depends on many parameters:

• Peak detection method: either CFAR or CWT.

• CFAR parameters: num train, num guard, false alarm rate.

• CWT parameters: num guard, max of scale, wavelet.

• Threshold for gradient detection of RR.

• Threshold for gradient detection of HR, constantly set to 0.1.

• Max variance.

• Thresholds to remove outliers from the peak matrix, and to remove variance
outliers; both set to 1.5.

• Threshold to remove variance outliers.

• Size of the Kalman filter initialization sample, constantly set to 10.

• Center methods to remove outliers from the peak matrix, and to remove
variance outliers; either median or mean.

To allow a rapid prototyping of the parameters variations, as well as to remove
OS dependencies of the HealthDetectionSample application, we implemented
health detection application in Python 3. Its code is not listed in this doc-
ument, however it is a part of the attached archive file, and we describe it in
section A.2.4.

We started with machine code translation from C++ to Python 3 with as-
sistance of ChatGPT [35], in order to experiment with and explore the ”new”
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application of large language models. The machine translation was far from per-
fect, as we had to solve several issues with code failures, but it was a good start,
and we successfully implemented changes to the machine translated code. These
changes consisted of e.g. choice of different methods from opensource libraries,
different parameters to those methods, or adapting type conversion among various
forms of integers and floating point numbers in C++ and their counterparts in
Python 3 (which often were not distinguished apart in Python). The final script,
the health detection application, does not provide exactly same floating point
numbers as the HealthDetectionSample application, the difference may be e.g.
on 4th or 5th digit after the decimal point, but this precision is perfectly fine for
this work, as the final result of the full cut flow provides the same results, within
the error of ± 1 breath per minute.

Here we describe elements of health detection application. In Fig. 5.10 we
outline the schema of the health detection application. The RR detection flow
starts with the run function, which serves as a wrapper to initialize instances of
all the classes that we need for the radar signal processing:

• FraunhoferRadar: managing a radar system configuration;

• RadarPacket and VitalSignalPacket: data structures to store data about
the radar processed signal, and the RR detection results;

• CFAR and CWT: methods of peak detection;

• FFT: a class to calculate FFT of radar data to get a range FFT matrix;

• DefaultMeasurementModel: a default measurement model for converting
system states into observable measurements;

• DefaultSystemModel: a default system model for state estimation pur-
poses;

• StateEstimatorFilterType: an enumeration class representing different
types of Kalman Filters used in state estimation processes;

• StateEstimator: a class that estimates the state of a dynamic system using
various types of Kalman Filters. It integrates both system and measurement
models to predict and update the state based on incoming measurements;

• GradientPeakDetection: implements a gradient-based peak detection al-
gorithm. This class identifies peaks in a data vector by examining the
gradient of the data and selecting points that pass a specified amplitude
threshold as peaks; and finally,

• HealthDetection: a class to process radar signal, detect peak in the radar
data and determine the RR.

The HealthDetection class provides method get vital signs(), its schema
is shown in Fig. 5.11, which drives the flow of the RR detection:

• First, we read the radar data frame from a file with load data();
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Figure 5.10: Schema of the health detection application.
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Figure 5.11: Schema of the respiratory rate detection core.
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• Then, for every data line, we calculate FFT of the data line with
FFT.get fft();

• We continue with get peaks() to build the peak matrix;

• Next, we apply Kalman filter on the peak matrix;

• and continue with remove outliers() and possibly also
remove variance outliers(), to remove outliers from the peak matrix,
or if needed, also remove variance outliers, so that we can continue further
with the RR detection;

• We go on to locate bins in the data lines, which correspond to the target
location, with get target bin(), and then unwrap phase with
unwrap phase() from the data, to continue further with the vital signs
extraction with
extract vital signal frequencies();

• There we get respiration frequency vector from unwrapped phase vector
through FFT, and gain respiration time signal from it through inverse FFT;

• We then find peaks in the respiration time signal with the
GradientPeakDetection.find peaks();

• And, finally, we calculate RR with (5.18).

We created the code dependencies visualizations from Figs. and with the
open source libraries: the offline call graph generator for Python 3 pyan3 [36],
and Graphviz an open source graph drawing tools [37].

5.5 Radar respiratory rate detection results
We used the health detection application to scan the parameter space with 51
different parametrizations of the RR detection parametric model. Overview of the
parametrizations is listed in Tables 5.1 and 5.2. We started with the parametriza-
tion labeled as BULK 0000, which clones parametrization of the original model
from the HealthDetectionSample application. We then started modifying the
model parameters, to start detecting RR, and even improve the RR detection.
For each parametrization, we ran the RR detection with the full data sample,
Measurement IDs in the range [0001; 0115].

A ”TL;DR” describing Figures 5.12 through 5.15: the desired ”ideal look” is a
fully green column. Such a column would tell us that for this particular configu-
ration (represented by the column label), the analysis model parameters best suit
for the RR detection across different environments and conditions (represented
by different measurements in each row). This is not an exact description, however
describes the idea behind these plots.

The RR detection results for the first 33 parametrizations (from Table 5.1) are
shown in Fig. 5.12 (Measurement IDs in the range [0001; 0060]) and Fig. 5.13
(Measurement IDs in the range [0061; 0115]). The RR results for the last 18
parametrizations (from Table 5.2) are shown in Fig. 5.14 (Measurement IDs in
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Figure 5.12: Results of respiratory rate detection, part 1.
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Figure 5.13: Results of respiratory rate detection, part 2.
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Figure 5.14: Results of respiratory rate detection, part 3.
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Figure 5.15: Results of respiratory rate detection, part 4.
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the range [0001; 0060]) and Fig. 5.15 (Measurement IDs in the range [0061;
0115]).

These four figures, Fig. 5.12 through Fig. 5.15 show a heatmap of detected
RR with different parametrization. The heatmap rows corresponds to the same
data file, while a column corresponds to a same parametrization. In these figures,
the white background corresponds to failure to detect a respiratory rate (or the
detected RR was zero breaths per minute). The green background color corre-
sponds to detected RR in the range of [10, 15] breaths per minute, which is an
ideal RR range. The yellow background color corresponds to detected RR in the
range of (5, 10), while red background color corresponds to the detected RR in
the range of (0, 5]; both are suspiciously low. In the cells where RR detection
revealed a RR, we print the RR in breaths per minute.

5.5.1 Radar RR detection results with CFAR peak detec-
tion model

The baseline parametrization, BULK 0000, corresponds to the very original para-
metrization with CFAR peak detection method. As shown in the first two figures,
it does not lead to RR detection for the full sample of 115 measurements, thus
we tried different parametrizations to find a more suitable set.

At first, we stick to the CFAR peak detection method, and tried to vari-
ate the CFAR model parameters, as well as the max variance, freezing the cen-
ter method for both outliers removals, in parametrizations BULK 0001 through
BULK 0008. The parametrizations BULK 0006 through BULK 0008 do not seem to
have improved the RR detection over the baseline BULK 0000.

The parametrizations BULK 0015 through BULK 0023 used CFAR model, and
focused on variation of the center method for both outliers removals. The first
three parametrizations from this set slightly improved the situation over the
parametrizations from the previous paragraph, but the rest, BULK 0018 through
BULK 0023 made it even worse (large amount of white background cells).

The last set of experiments we performed for parametrizations with CFAR are
those listed in Table 5.2. Parametrizations BULK 0018 C1 through BULK 0023 C1
do not serve well at all to detect RR. They all have one parameter in common: the
center method for peak matrix outliers removal is median, similarly for BULK 0018
through BULK 0023. The parametrizations BULK 0006 C1 through BULK 0008 C1
are slightly better, but still not resilient. They all have num train=80 and
num guard=320, same as BULK 0006 through BULK 0008.

In Table 5.3 we sort parametrizations by the number of green, yellow, red, and
white cells. From this table it seems that the parametrizations BULK 0000 C1 and
BULK 0015 C1 provide the most suitable parametrization for RR detection with
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Label # green # yellow # red # white
BULK 0000 C1 87 18 1 9
BULK 0015 C1 87 18 1 9
BULK 0003 C1 80 15 0 20
BULK 0001 C1 79 15 0 21
BULK 0016 C1 79 15 0 21
BULK 0002 C1 72 15 0 28
BULK 0017 C1 72 15 0 28
BULK 0000 59 21 12 23
BULK 0015 59 21 12 23
BULK 0004 C1 64 13 0 38
BULK 0003 56 18 10 31
BULK 0001 53 18 11 33
BULK 0016 53 18 11 33
BULK 0002 49 17 9 40
BULK 0017 49 17 9 40
BULK 0006 C1 46 22 1 46
BULK 0005 C1 50 12 0 53
BULK 0004 44 15 10 46
BULK 0005 32 15 8 60
BULK 0007 C1 35 11 1 68
BULK 0006 28 15 6 66
BULK 0008 C1 27 9 0 79
BULK 0007 22 6 5 82
BULK 0008 18 4 4 89
BULK 0018 C1 13 6 0 96
BULK 0021 C1 13 6 0 96
BULK 0018 8 2 4 101
BULK 0021 8 2 4 101
BULK 0019 C1 7 4 0 104
BULK 0020 C1 7 4 0 104
BULK 0022 C1 7 4 0 104
BULK 0023 C1 7 4 0 104
BULK 0019 3 0 3 109
BULK 0020 3 0 3 109
BULK 0022 3 0 3 109
BULK 0023 3 0 3 109

Table 5.3: Radar RR detection results, CFAR models.
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CFAR peak detection model:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

num train = 50
num guard = 200
false alarm rate = 0.001
max variance = 700
Thresh. ∇ RR = 0.01
Thresh. ∇ HR = 0.1
Thresh. to remove peak matrix outliers = 1.5
Thresh. to remove variance outliers = 1.5
Kalman filter initialization sample size = 10
Center for peak matrix outlier removal = mean

(5.19)

With the center for variance outlier removal method being

• median for BULK 0000 C1,

• mean for BULK 0015 C1.

5.5.2 Radar RR detection results with CWT peak detec-
tion model

In case of parametrizations with CWT peak detection, we chose nicely the CWT
model parameters, thus we embarked on scanning a phase space with variating
the max variance and the center methods for both outlier removals. We ran
the scan with 15 different parametrizations with CWT peak detection (shown in
Table 5.1).

Using the same comparison method for parametrizations with CWT peak
detection model, the CWT parametrization results are shown as a part of Fig. 5.12
and 5.13.

The most suitable parametrizations for RR detection with CWT peak detec-
tion model, as shown in Table 5.4, are BULK 0009, BULK 0010, BULK 0024, and
BULK 0025, with parametrization⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cwt guard = 150
scales = 80
wavelet = gaus1
Thresh. ∇ RR = 0.01
Thresh. ∇ HR = 0.1
Thresh. to remove peak matrix outliers = 1.5
Thresh. to remove variance outliers = 1.5
Kalman filter initialization sample size = 10
Center for peak matrix outlier removal = mean

(5.20)

With the max variance being

• 700 for BULK 0009 and BULK 0024,

• 100 for BULK 0010 and BULK 0025,

and the center for variance outlier removal method being
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• median for BULK 0009 and BULK 0010,

• mean for BULK 0009 and BULK 0010.

Label # green # yellow # red # white
BULK 0009 81 29 4 1
BULK 0010 81 29 4 1
BULK 0024 81 29 4 1
BULK 0025 81 29 4 1
BULK 0012 78 32 5 0
BULK 0013 78 32 5 0
BULK 0011 56 18 3 38
BULK 0026 56 18 3 38
BULK 0014 48 22 4 41
BULK 0027 0 0 1 114
BULK 0028 0 0 1 114
BULK 0029 0 0 1 114
BULK 0030 0 0 1 114
BULK 0031 0 0 1 114
BULK 0032 0 0 1 114

Table 5.4: Radar RR detection results, CWT models.

5.6 Preparing for calibration data processing
In Section 3.2.1 we discussed how we perform simultaneous measurement and
detection of respiratory activity with a loosely coupled system of 3 sensors (radar,
chest belt, laser), and how we do not need to apply complex distributed systems
algorithms to assure time synchronization in the system, because it is sufficient
to identify a 1-minute interval when the measurement is performed.

At first, we identified start and end timestamps for each data taking 1-minute
interval: for each measurement we have an application log from the Health-
DetectionSample application (Fig. 5.16), where we chose to print highest level
of logs to have debug information available to understand all aspects of radar
data acquisition and processing.

From this application log we detected the first and last timestamps of of the
SerialCommunication module log with message denoting the full data frame
being read out from the radar, the Number of bytes read: 4095 message.

Then we used these interval end points to map this interval to data series
of chest belt and laser, allowing us process the calibration sensors data indepen-
dently. Code snippets relevant to this process are listed in Section A.2.1.
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[X3 :53.051] [ HealthDetection ] [info] STARTING
[X3 :53.051] [ FraunhoferRadar ] [debug] initialize
[X3 :53.051] [ SerialCommunication ] [info] initialize
[X3 :53.051] [ SerialCommunication ] [info]

50 deviceName_ /dev/ ttyACM0 fileFlags 2306
[X3 :53.051] [ FraunhoferRadar ] [debug] radarConfiguration
[X3 :53.051] [ FraunhoferRadar ] [debug]

calculateRadarParameters
...
[X3 :53.058] [ FraunhoferRadar ] [info] Radar initialization

completed .
[X3 :53.058] [ FraunhoferRadar ] [debug]

getMaxObservationFrequency
[X4 :03.058] [ FraunhoferRadar ] [debug] getFrame
[X4 :03.058] [ FraunhoferRadar ] [debug] startRamp
[X4 :03.059] [ SerialCommunication ] [debug]

Number of bytes read: 1
...
[X4:03.165] [SerialCommunication] [debug]

Number of bytes read: 4095
...
[X5:07.990] [SerialCommunication] [debug]

Number of bytes read: 4095
[X5 :07.990] [ SerialCommunication ] [debug]

Number of bytes read: 1320
...
[X5 :10.142] [ HealthDetection ] [debug] respirations : 11,

heartbeats : 69
[X5 :10.142] [Radar Sample ] [info] RR: 10 bpm , HR:
[X5 :10.142] [ HealthDetection ] [debug] deinitialize
[X5 :10.142] [ FraunhoferRadar ] [debug] deinitialize
[X5 :10.142] [ SerialCommunication ] [info] deinitialize

Figure 5.16: Example of the HealthDetectionSample application log (M0048).
The block highlighted in blue shows the endpoints of the active radar data taking
period.
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6. Chest belt signal processing
In this chapter we describe signal processing from the PLUX chest belt sensor
(Section 3.2). First, we describe data acquisition and preparation of data for pro-
cessing in Section 6.1, and the respiratory rate detection approach in Section 6.2.

6.1 Data acquisition with PLUX chest belt
We used the PLUX chest belt as an independent contact-full calibration sensor
in addition to RR detection by the radar. During the data taking period, the
subject person was wearing the chest belt, data was acquired, and read out via
a Bluetooth connection, using a Python script that leverages PLUX-provided
closed source libraries for data acquisition. The chest belt data acquisition ran
through the whole session with multiple radar measurements, therefore we used
procedure described in Section 5.6 to identify the periods when respiration rate
was detected by radar.

Time stamp , global_resp , global_ecg
WeekDay Month Day X4:05 YYYY

, -0.3173037308308538 ,1.4720314033366044 ,
WeekDay Month Day X4:05 YYYY

, -0.3167544060425727 ,1.4720314033366044 ,
... ### another 1248 rows with the exact same timestamp

Figure 6.1: Example of the PLUX chest belt data series, before the timestamp
correction.

Upon identification of the radar measurement periods in chest belt data, we
noticed that the chest belt data contains a series of 1250 data points with the
exact same timestamp string, spaced 5 s between two clusters. Each data point
(example shown in Fig. 6.1) consists of a timestamp, the distance measurement
(chest wall displacement) in arbitrary units [a. u.], and a dummy column of
a constant value, a placeholder for possible heart rate detection that we didn’t
pursue as it goes beyond objectives of this work.

Time stamp , global_resp , global_ecg
[X4:05.0], -0.3173037308308538 ,1.4720314033366044 ,
[X4:05.004], -0.3167544060425727 ,1.4720314033366044 ,
... ### another 1248 rows with the exact same timestamp

Figure 6.2: Example of the PLUX chest belt data series, after the timestamp
correction.

Inspection of the raw data revealed a pattern in the data files: there are
consistently 1250 data points with the exact same timestamp string, different
one every 5 seconds. Thus we applied a time correction to the data points: For
each data point in a cluster of 1250 subsequent data points, we incremented the
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timestamp by 4 ms with respect to the previous data point timestamp, as shown
in Fig. 6.2. When we plotted the original raw data of [timestamp, distance], it
looked as a series of time-equi-distant spikes, as shown in Fig. 6.3.

Figure 6.3: Example of chest belt raw data series, before the timestamp correc-
tion. The spikes at every 5 s time are caused by a feature in raw data, when
1250 subsequent data points have the same timestamp string. We addressed this
feature by introducing an incremental 4 ms step to timestamps.

In total, we have used the chest belt to perform additional calibration mea-
surement of chest wall displacement in 53 periods with Measurement IDs in range
[0047, 0115]. The raw data after the applied timestamp correction for these mea-
surements is shown in Fig. 6.5 and Fig. 6.6, where we show measurements that
lasted the whole period of 1 minute (in fact, (65 ± 1) s. We will use these mea-
surements for peak detection later on.

In Fig. 6.4 we show measurements that we excluded from further processing,
because they lasted significantly less than 1 minute: we have excluded measure-
ments 0057 and 0104 as they lasted 18 s and 25s.

Figure 6.4: Chest belt raw data, excluded data series.

In Fig. 6.5 and Fig. 6.6 the amplitude and its pattern varies wildly, neverthe-
less, it overall follows a malformed sinusoid-like pattern. We will use this feature
to detect respiratory rate from the chest belt data.
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Figure 6.5: Chest belt data after timestamp correction, part 1.
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Figure 6.6: Chest belt data after timestamp correction, part 2.
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6.2 Peak detection in chest belt data
We need to be able to detect peaks in the data series in order to determine the
respiratory rate from the chest belt data. The chest belt data (after the timestamp
correction discussed in the previous Section) depicting chest wall displacement
during the respiration activity for the relevant data sample is shown in Fig. 6.5 and
Fig. 6.6, to demonstrate the peak detection activity we will focus on Measurement
IDs [0047, 0068, 0076, 0085 ], shown in Fig. 6.7.

Figure 6.7: Chest belt raw data, sample for peak detection.

In some cases, the sinusoidal shape is very clear (e.g. 0047), sometimes there is
a ”plateau” instead of peak (e.g. first 10 s of 0068, 0076), sometimes the smoothed
sinusoidal shape is not so clean and contains ”hairy”/spiky peak clusters (e.g.
0076, 0085) which then confuse the peak detection algorithms.

We tried three approaches to peak detection:

• manual counting,

• smoothing data, moving average & local peak detection, and

• detecting peaks that are ”enough apart” with scipy’s [38] find peaks
method.

Manual counting. The manual counting method determines Ncounted, and
does not scale in terms of automation, however, for the 53 measurements we
performed a best-guess-and-count estimation method. For some difficult cases,
e.g. for ”plateaus”, we employed both counting and frequency analysis, taking
into account the ”plateau” width and frequency of occurences of other peaks. We
estimate the manual counting method may have an error of up to 2 breaths on
the interval length of (65 ± 1) s.

Code snippets for the two following programmatic peak detection methods are
listed in Section A.2.2.

Smoothing data, moving average & local peak detection. With this
approach we start with smoothing the data with either 1D Gaussian smoothing,
or with a Savitzky-Golay filter [39]. Then we calculate moving averages of the
data with a sliding window of length AVG WINDOW (or window size in Figures 6.8
through 6.11.), and complete the process by detecting the local maxima positions.
We label the number of peaks identified with this method as Npeaks gauss or
Npeaks savgol, depending on which smoothing method was chosen.
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Detecting peaks ”enough apart” with scipy’s find peaks method. With
this approach we start with identification of a band of the chest wall displacement,
where we expect the peaks (of local maxima) to be. We then use the scipy’s
find peaks method to identify peaks that are at least DISTANCE WINDOW (or
window size) data points apart. We label the number of peaks identified with
this method as NSciPeaks.

We studied 42 values of window sizes in a range [100, 900] to understand what
would be the best parametric model for peak detection in chest belt data.

In Fig. 6.8 through 6.11 we show how peak detection works for window sizes
{100, 420, 460, 520}. In each of these four plots we list the RR determined by
the three detection methods (while we do distinguish smoothing in the relevant
method), listed in the legend.

Starting with the models parametrized by window size 100 (Fig. 6.8), we found
out that for a very smooth sinusoidal shape (0047) the peak detection of Npeaks
and NSciPeaks works reasonably well, but with ”plateau”-ed and volatile shapes
the two methods can differ significantly from the counted RR, or mis-identify a
peak in a wrong place (in a minimum point, at the inflection point, or at a local
max that is much smaller than a higher local max nearby).

For the three programmatic approaches (smoothing with gauss, smoothing
with savgol, scipy), we are trying to understand which window size leads to
best matching the peaks position and number of counted peaks. For smoothing
with gauss and scipy the most suitable window size for number of peaks seems
to be 520, while for smoothing with savgol the most suitable window size seems
to be 420.

We varied the window size parameter to observe behavior of the three ap-
proaches, e.g. to 420 shown in Fig. 6.9. The detected numbers of peaks are
getting closer to the counted ones, however, we can see that e.g. the smoothing
approaches systematically lead to avoiding a peak placed on top of the last respi-
ration peak while scipy approach does not, and can also see an occurence where
scipy misses some of the respiration peaks. In terms of peak placement, the
”hairy”/spiky measurement (0085) shows some peaks identified rather in valleys,
although the peak count is close to the counted number of peaks.

In case of window size of 460 (Fig. 6.10), we still see some mis-tagged (valleys)
or under-tagged peaks or issue with a ”plateau” peak detection, however, for the
sample of 4 measurements we may have the closest match of the sample with
respect to counted RR, location and frequency of detected peaks.

In case of window size of 520 (Fig. 6.11) we are observing similar features as
for window size of 420.

6.2.1 Chest belt peak detection results
We evaluated which method and with what parameters is better for peak detec-
tion on the data sample of 53 measurements by calculating average Manhattan
distance of Npeaks (for two different smoothing methods, gauss and savgol),
and NSciPeaks from the Ncounted.

As it is clear from the code snippets in Section A.2.2, the smoothing & lo-
cal max detection approach (Npeaks) and scipy (NSciPeaks) approaches are
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Figure 6.8: Chest belt data peak detection: window size = 100.

Figure 6.9: Chest belt data peak detection: window size = 420.
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Figure 6.10: Chest belt data peak detection: window size = 460.

Figure 6.11: Chest belt data peak detection: window size = 520.
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independent from each other. To compare them, we use a metric of average Man-
hattan distance of detected number of peaks from the counted number of peaks
for the whole sample of 53 measurements.

Figure 6.12: Chest belt peak detection, overview of average Manhattan distance
by window size.

The comparison of the approaches with different parametric models is shown
in Fig. 6.12. This figure considers only detected number of peaks w.r.t. the
counted number of peaks, it does not take into account the peak location on
top of the respiration peak. We consider a better model one that has the average
Manhattan distance closer to zero (keeping in mind that a metric that focuses only
on number of peaks may hide mis-, under- or over-tagging). For window sizes
outside the range [350, 650] the average Manhattan distance tends to increase
significantly, sometimes even tends to explode (the vertical axis has a logarithmic
scale).

In Fig. 6.13 we close up on a few examples of window sizes. In this figure we
compare Ncounted, Npeaks and NSciPeaks for each measurement. The grayed
area denotes a range of (Ncounted ± 3).

The smoothing savgol model depends on parameters smoothing & window
size. In general, it identifies number of peaks with systematically lower aver-
age Manhattan distance of Npeaks savgol from Ncounted for the full sample
of 53 measurements than both the smoothing gauss and the scipy approaches,
therefore it may be the most suitable model for peak detection, provided that a
sensible choice of the window size is made.

The smoothing gauss model . In general, it identifies number of peaks
with systematically highest average Manhattan distance of Npeaks gauss from
Ncounted for the full sample of 53 measurements than both the smoothing savgol
and the scipy approaches, and systematically tends to overestimate number of
peaks compared to counted number of peaks.

The NSciPeaks model depends on parameter window size. With the chosen
window size values, this method detect number of peaks systematically on the
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lower side of number of detected peaks, and lays on the middle ground in terms
of average Manhattan distance of NSciPeaks from Ncounted for the full sample
of 53 measurements.

Figure 6.13: Chest belt peak detection, several examples of Manhattan distance
distribution for a sample of window size parameters.
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7. Distance laser signal
processing
In this chapter we describe signal processing from the Baumer OM70 distance
laser sensor (Section 3.2). First, we describe data acquisition in Section 7.1, and
the respiratory rate detection approach in Section 7.2.

7.1 Data acquisition with Baumer OM70 dis-
tance laser

We used the Baumer laser as an independent contact-less calibration sensor in
addition to RR detection by the radar. During the data taking period, the laser
was attached to the radar with a 3D printed plastic mount, as shown in Fig. 7.1.

Figure 7.1: Experimental setup of Baumer laser and Fraunhofer radar.

The distance laser was connected to a computer through a USB port, which
served for serial communication, while it was powered by a battery pack. We
wrote a Python 3 script (code snippet is provided in Section A.4) to configure
the distance laser and read out data from it, leveraging the PySerial [23] library.

...
X :29:09.742013 : NaN [b ’:01A;NaN ;11;454 E\r\n’]
X :30:26.186885 : 1338.519 [b ’:01A ;1338.519;13;1 A34\r\n’]
X :30:26.299012 : 1368.027 [b ’:01A ;1368.027;13; F818\r\n’]
X :30:26.410834 : 1373.601 [b ’:01A ;1373.601;13; EFD5\r\n’]
...

Figure 7.2: Example of a laser data series log.

The used laser measures distances in the range [0.15 m, 1.5 m]. Outside this
range it provides only a NaN values. The laser data example is shown in Fig. 7.2.
The data line contains a timestamp, measurement value (either a distance in mm,
or a NaN for an out-of-range measurement), and a bytestring that we read out
from the laser device. This bytestring is a semi-colon (’;’) separated list of four
values, where the second value is the distance we are looking for. A measurement
visualisation is shown in Fig. 7.3.
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Figure 7.3: Example of a distance laser measurement.

The distance laser data acquisition ran through the whole session with mul-
tiple radar measurements, thus we used procedure described in Section 5.6 to
identify the periods when respiration rate was detected by radar.

In total, we have used the distance laser to perform additional calibration
measurement of chest wall displacement in 58 periods with Measurement IDs in
range [0047, 0115].

7.2 Peak detection in distance laser data
We determine the respiratory rate from the distance laser data through detecting
peaks. The distance laser data depicting chest wall displacement during the
respiration activity for the relevant data sample is shown in Fig. 7.5 and Fig. 7.6,
to demonstrate the peak detection activity we will focus on Measurement IDs
[0047, 0050, 0075, 0079], shown in Fig. 7.4.

Figure 7.4: Distance laser data, sample for peak detection.
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Figure 7.5: Distance laser data, part 1.
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Figure 7.6: Distance laser data, part 2.
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In some cases, the sinusoidal shape is very clear (e.g. 0050), sometimes the
smoothed sinusoidal shape is not so clean and contains ”hairy”/spiky peak clus-
ters (e.g. 0047, 0075), and sometimes there are even several convoluted sinusoidal
shapes (e.g. 0079) which confuse the peak detection approaches.

We tried the same three approaches to peak detection as in the case of the
chest belt:

• manual counting,

• smoothing data, moving average & local peak detection, and

• detecting peaks that are ”enough apart” with scipy’s find peaks method.

The difference is in the model parametrizations: for peak detection in the dis-
tance laser signal we used different window size range, and different parametriza-
tion of the scipy’s find peaks method – the peak detection code snippet is shown
in Section A.2.3.

We studied 32 values of window sizes in a range [10, 50] to understand what
would be the best parametric model for peak detection in chest belt data.

In Fig. 7.7 through 7.10 we show how peak detection works for window sizes
{10, 20, 35, 50 }. In each of these four plots we list the RR determined by
the three detection methods (while we do distinguish smoothing in the relevant
method), listed in the legend.

Figure 7.7: Laser data peak detection: window size = 10.

Starting with the models parametrized by window size = 10 (Fig. 7.7), we
see that for the first three data series the three approaches systematically over-
tag the peaks, locating estimated peaks in both peak and valley positions. In the
”convoluted sinusoids” measurement 0079, the smoothing methods over-tag the
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Figure 7.8: Laser data peak detection: window size = 20.

Figure 7.9: Laser data peak detection: window size = 35.
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Figure 7.10: Laser data peak detection: window size = 50.

peaks, while the scipeak method has trouble detecting peaks in the large valley
(time [20, 40] s).

The window size = 20 parametrization (Fig. 7.8) represents a ”sweet spot”
where the three approaches show the closest peak count w.r.t. counted number
of peaks. For window size = 35 (Fig. 7.9) and window size = 50 (Fig. 7.10)
again show detected peak counts diverging away from the counted one.

7.2.1 Distance laser peak detection results
We evaluated which method and with what parametrization is better for peak
detection on the data sample of 58 measurements by calculating average Manhat-
tan distance of Npeaks (for two different smoothing methods, gauss and savgol),
and NSciPeaks from the Ncounted.

The code snippets in Section A.2.3 shows that the smoothing & local max
detection approach (Npeaks) and scipy (NSciPeaks) approaches are independent
from each other. We compare them, we use again a metric of average Manhattan
distance of detected number of peaks from the counted number of peaks for the
whole sample of 58 measurements.

The comparison of the approaches with different parametric models is shown
in Fig. 7.11. This figure considers the detected number of peaks w.r.t. the counted
number of peaks, and leaves the peak location on top of the respiration peak out
of consideration. We consider a better model to be one that has the average
Manhattan distance closer to zero. For window sizes outside the range [15, 35]
the average Manhattan distance tends to increase significantly, sometimes even
exploding.

In Fig. 7.12 we show in more details a few examples of window sizes. In this
figure we compare Ncounted, Npeaks and NSciPeaks for each measurement. The
grayed area denotes a range of Ncounted ± 3.
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Figure 7.11: Laser peak detection, overview of average Manhattan distance by
window size.

The NSciPeaks model depends on parameter window size. With the studied
window size values [10, 50], this method detect number of peaks systematically
lowest average Manhattan distance over the full sample of 58 measurements,
however also systematically under-tags ”hairy”/spiky data series. The best per-
formance (with lowest average Manhattan distance, and the detected peak count
within the range (Ncounted ± 3) is observed for window size ∈ [20, 33]. For
window size < 20 this approach over-tags the peaks, and for window size > 33
it under-tags the peaks.

The smoothing savgol model depends on parameters smoothing & window
size. In general, it identifies number of peaks with systematically the middle-
ground value of average Manhattan distance of Npeaks savgol from Ncounted
for the full sample of 53 measurements than both the smoothing gauss and the
scipy approaches, therefore also here it may be the most suitable model for
peak detection, provided that a sensible choice of the window size is made – for
window size ∈ [20, 33].

The smoothing gauss model: In general, it identifies number of peaks with
systematically highest average Manhattan distance of Npeaks gauss from Ncoun-
ted for the full sample of 53 measurements than both the smoothing savgol and
the scipy approaches, and systematically tends to overestimate number of peaks
compared to counted number of peaks, also in the range of window size ∈ [20, 33].
Therefore, this approach looks like a least fortunate choice for peak detection
approach in smoothed distance laser data series, possibly because the data series
are very volatile for the smoothing model & local maxima detection, compared
to the chest belt data series.
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Figure 7.12: Laser peak detection, several examples of Manhattan distance dis-
tribution for a sample of window size parameters.
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8. Results discussion
In this Chapter we summarize our studies of remote detection of human vital
signs, particularly respiratory activity, with a FMCW radar, a distance laser,
and a contact-full detection with a chest belt.

8.1 Summary: radar data acquisition
At first, we gained an initial understanding of radar data acquisition and its signal
processing, as discussed in Chapter 4. In Section 3.4 we proposed 6 measurements
scenarios, M01 through M06, and performed these measurements. Bellow we sum-
marize feasibility or challenges encountered:

M01: 1D angular resolution spectrum. (35 measurements) In the be-
ginning several attempts to measure the 1D angular resolution spectrum of the
radar have been made (in horizontal and vertical axis), however, resulting into a
conclusion that with the available laboratory setup, one cannot achieve a precise
spectrum measurement with resolution of several degrees.

M02: Subject lying down on their back. (8 measurements) In this sce-
nario, detection from different parts of the subject’s body has been performed,
with the subject lying down on the back, wearing the chest belt. The radar &
laser were at a fixed vertical height position, measuring while pointing radar at
different parts of the subject’s body, e.g. head, shoulders, several chest locations,
and hips and thighs. The distance of the radar & laser from the subject was
fixed, in the range of 1.1 m to 1.5 m. With these scenarios, a confirmation has
been made that the only body area where one can reasonably detect respiratory
movements remotely with a radar is the human subject’s thorax, therefore further
measurements were restricted only to thorax.

M03: Subject lying down on their side. (12 measurements) In this
scenario, detection of respiratory movements of a human subject lying down on
their side has been performed, either facing the radar, or the radar pointed at
their back. While facing the radar, the measurements focused at the subject’s
collar bone, several locations on their chest, waist and hips. While detecting from
the person’s back, the measurements focused to the person’s upper shoulders,
scapulas, several places on the chest around their diaphragm, and waist and hips.

M04: Subject lying down on their stomach. (5 measurements) In this
scenario, respiratory movements of a human subject lying down on their stomach,
turned with their side to the radar were detected. The radar was pointing, from
the person’s side, to locations on their shoulders, scapulas, rib cage line, waistline,
and hips. In these scenarios, the human subject was wearing a t-shirt or a light,
tightly fitting, sweater.
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M05: Subject sitting down, wearing a standard-issue work jacket. (5
measurements) In this scenario, the human subject was sitting down in a
chair, wearing a standard-issue work jacket. Several measurements, pointing
the radar & laser to the area of diaphragm, have been performed. In these
measurements there was no obstacle in the line of beam between the radar and
the human subject, except for the Earth atmosphere.

M06: Subject sitting down, wearing a standard-issue work jacket, with
a plexi-glass in the line of beam. (12 measurements) In this scenario,
the setup was similar to M05, however, a decision has been made to add a clear
plexi-glass obstacle to the line of beam. That turned out to be a killer change
parameter, as both the laser and radar data analysis packages heavily suffered
from the newly introduced refraction effects.

Besides measuring through these 6 scenarios, we confirmed it is not trivial
to bring a new/novel sensor from conception through commissioning to produc-
tion, and that the engineering behind the whole process can be truly interesting
experience. During our measurement sessions we faced issues with the radar
overheating, as discussed in Section 4.2.1.

The most suitable conditions for RR detection are a static system with no
obstacle in the line of beam, however, we were able to detect RR also during
worsened conditions. One of the most important realisations is the need for
tightness or fitting of the working clothes: when the work jacket or other work
clothing is not loose, that helps to the rescue! That is indeed an important fact
for work place safety!

8.2 Summary: radar signal processing
In Chapter 5 we discussed the approaches of Fraunhofer FMCW radar signal
processing that we took. We discussed what is the signal processing cut flow,
what challenges we encountered and addressed, in software for data acquisition,
and for signal processing.

We developed the health detection application, to scan the phase space
of parameters of the signal processing parametric models. In Section 5.5 we
described parametrizations of two families of parametric models: one based on
CFAR algorithm peak detection described in (5.19), and another one which we
implemented, based on CWT algorithm peak detection described in (5.20).

8.3 Summary: calibration sensors
We discussed the data acquisition and signal processing of the PLUX chest belt
data in Chapter 6, and of the Baumer OM70 distance laser data in Chapter 7.

We described three approaches for RR detection for both sensors: 1) manual
counting, 2) smoothing data & local peak detection; with either Gaussian smooth-
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ing, or with a Savitzky-Golay filter, and 3) detecting peaks that are ”enough
apart” with scipy’s [38] find peaks method.

We summarized the peak detection results, for the chest belt signal processing
in Section 6.2.1, and for the distance laser signal processing in Section 7.2.1.
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9. Future work
In this chapter we briefly describe what could be the possible paths towards
improvements of the respiratory rate detection performed and described in this
work.

Earlier we described the limitations coming from environmental, sensor device,
nature of respiratory activity, and signal processing areas.

In the data acquisition area, one of the improvements could be an introduction
of an active cooling mechanism of the radar device, where we hope to allow for
un-interrupted data acquisition periods of many hours, maybe even several days,
in a row.

Other listed limitations boil down to improvements in signal processing.

A dynamic breathing pattern, a short and shallow breathing or gasping, is
difficult to detect, as our parametric model is built around variance cuts. We
hope that with a different, and possibly a more complex signal processing / peak
detection approach we would be able to overcome the high data volatility and
detect RR.

Another interesting area of further research would be studying alternative
sensing methods for an environment where we do not have a clear line of sight,
when there are obstacles along the line of beam, e.g. a plexi-glass or smoke. In
addition to the radar (being mounted on a robotic arm of a mobile robot), one
could equip the robot with a IR camera (and use e.g computer vision techniques
to detect movements in the field of view). One could equip the robot with a
microphone or even a two-way communication device, to allow the remote Fire &
Rescue operator to listen or even to communicate with the person(s) in distress.
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10. Conclusions
In this work we studied remote sensoric detection of human vital signs with a
frequency-modulated continuous wave radar. We achieved our objectives:

Data acquisition: The used Fraunhofer FMCW 80 GHz radar was a prototype
sensor, where a proper (possibly proprietary) documentation of its data format
was not available. Despite it, we were able to successfully acquire sensoric data
from two contact-less sensors (Fraunhofer FMCW 80 GHz radar, and a Baumer
OM70 distance laser) and a contact-ful sensor (PLUX chest belt), and devel-
oped software where we implemented parametric models to successfully detect
respiratory rate in the acquired data.

We described several families of success scenarios of respiratory rate
detection in the radar signal.

We implemented several improvements in the radar signal detection:
ranging from identifying the best max variance thresholds, through experimen-
tation with the choice of central method for outliers removal, to providing an
alternative approach to the peak detection algorithm and identifying its initial
parametrization, so that it provides viable information for RR detection.

We implemented the health detection application to study different
parametric models to detect respiratory rate in radar signal.

We described limitations of the experimental setup:
• environmental: need of clear line of sight / no obstacles,

• sensor device: need for active cooling,

• nature of human respiratory activity: need to target body area around the
person’s diaphragm; need for certain breathing patterns: shallow or quick
breathing or person movements bring too much volatility to the signal,

• signal processing: limitations of the parametric models on success of RR
detection, e.g. high volatility signal processing needs complex de-compensa-
tion of signal volatility in terms of variation management and peak detection
that goes beyond the scope of this work.

We documented environment dependencies of the HealthDetection-
Sample application, and made it a standalone application. We created a con-
tainerized environment to run this application in a container with Podman.

We demonstrated that a FMCW radar is a viable sensor for a remote
detection of human respiratory activity, and described several para-
metric models to increase chances of detecting a reasonably correct
respiratory rate, as well as provided an understanding of the limita-
tions of the experimental setup and the parametric models.
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A. Attachments
In this chapter we provide various code snippets used in processing of signal
from radar, chest belt and laser measurements and detection of respiratory rate.
Majority of the code snippets are provided in the attachments archive file, smaller
part is listed in the following sections.

First, we describe the attachments archive file in Section A.1. There we de-
scribe code snippets for intervals endpoint detection in subsection A.2.1, peak de-
tection in chest belt data in subsection A.2.2, peak detection in distance laser data
in subsection A.2.3, and the health detection application in subsection A.2.4.
These code snippets are provided either in a form of an interactive Jupyter [40]
notebook, or a Python 3 script with a bash wrapper.

Then we continue with description of the HealthDetectionSample applica-
tion Dockerfile in Section A.3, and close with description of distance laser data
acquisition script in Section A.4.

A.1 Archive structure
In this section we describe content of the attachments archive of this work. The
attachments archive has the following structure:

archive /
|-- README .md
|-- data
| |-- 0047. dat
| |-- 0048. dat
| |-- DATA_RADAR_INTERVALS_MEASUREID .json
| |-- log_belt .sample -0047 -0048. csv
| |-- log_laser .sample -0047 -0048. csv
| |-- log_radar . HealthDetectionSample .0047. log
| |-- log_radar . HealthDetectionSample .0048. log
| |-- rr_data .csv
|-- md5.list
|-- outputs
| |-- LABELED_SENSOR_DATA . log_belt .sample -0047 -0048. csv
| |-- LABELED_SENSOR_DATA . log_laser .sample -0047 -0048. csv
| |-- data_belt_Npeaks .0047. gauss. wavg100 .json
| |-- data_belt_Npeaks .0047. savgol . wavg100 .json
| |-- data_belt_Npeaks .0048. gauss. wavg100 .json
| |-- data_belt_Npeaks .0048. savgol . wavg100 .json
| |-- data_belt_Nscipeaks .0047. wdist100 .json
| |-- data_belt_Nscipeaks .0048. wdist100 .json
| |-- data_laser_Npeaks .0047. gauss. wavg10 .json
| |-- data_laser_Npeaks .0047. savgol . wavg10 .json
| |-- data_laser_Npeaks .0048. gauss. wavg10 .json
| |-- data_laser_Npeaks .0048. savgol . wavg10 .json
| |-- data_laser_Nscipeaks .0047. wdist10 .json
| |-- data_laser_Nscipeaks .0048. wdist10 .json
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| |-- log. BULK_0000_C1 .log
| |-- log. BULK_0009 .log
| |-- plot_belt_data_and_peaks . win100__example .png
| |-- plot_laser_data_and_peaks . win10__example .png
| |-- results_respiration . BULK_0000_C1 .json
| |-- results_respiration . BULK_0009 .json
| |-- timestamps_radar_log_ALLDAT . log_radar . Health

DetectionSample .0047. log
| |-- timestamps_radar_log_ALLDAT . log_radar . Health

DetectionSample .0048. log
|-- scripts

|-- 0 _intervals_endpoint_detection .ipynb
|-- 1 _peak_detection_belt .ipynb
|-- 2 _peak_detection_laser .ipynb
|-- 3 _run_health_detection_examples .sh
|-- health_detection .py

4 directories , 37 files

There are three subdirectories: data, scripts and outputs. In the root
directory, there is also this README file, and a file with md5 checksums of the
content files, md5.list.

The data directory contains samples of acquired data files or logs used as
(primary, not derived) inputs for signal processing. The data and log samples in
this directory contain a slightly redacted timestamps, nevertheless, it does not
have a negative effect on showcasing the functionality of the code snippets.

The scripts directory contains Jupyter notebooks, Python 3 and bash scripts
to process inputs from data.

The outputs directory contains outputs and logs of scripts executions.

A.2 Description of scripts
In the following subsections we describe the scripts purpose, inputs and outputs.
With all scripts we process data samples for measurement IDs 0047 and 0048.

A.2.1 Intervals endpoint detection
In this section we provide code snippets (script 0 intervals endpoint detec-
tion.ipynb) that served to detect interval endpoints in data taking logs of the
HealthDetectionSample application logs (radar data acquisition and signal pro-
cessing application) discussed in Section 5.6.

Step 1: Detect full range of timestamps of data acquisition period with the
radar, from the HealthDetectionSample application log files.

• inputs:

– HealthDetectionSample application log files:
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∗ /archive/data/log radar.HealthDetectionSample.0047.log
∗ /archive/data/log radar.HealthDetectionSample.0048.log

• outputs, under /archive/outputs/:

– log files containing a list of timestamps from the input log files:
∗ timestamps radar log ALLDAT.log radar.HealthDetection

Sample.0047.log
∗ timestamps radar log ALLDAT.log radar.HealthDetection

Sample.0048.log

Step 2: Detect start and end timestamp for each measurement, by identifying
clusters of sequential timestamps of maximal length of 70 s. The start and end
timestamps for each measurement are gathered programatically, and then we
manually augment the data structure with the proper measurement ID label.

• inputs, under /archive/outputs/:

– log files containing a list of timestamps from the input log files:
∗ timestamps radar log ALLDAT.log radar.HealthDetection

Sample.0047.log
∗ timestamps radar log ALLDAT.log radar.HealthDetection

Sample.0048.log

• outputs:

– A dictionary that contains the cluster boundaries and measure-
ment id mapping: /archive/data/DATA RADAR INTERVALS MEASURE-
ID.json

Step 3: Detect measurement intervals endpoints in chest belt and distance
laser measurement data: With the chest belt and distance laser measurement
sample (data file or a log file), with the cluster boundaries from the radar
data acquisition logs, identify which chest / laser measurement corresponds with
what measurement ID.

• inputs, under /archive/data/:

– A dictionary that contains the cluster boundaries and measure-
ment id mapping: DATA RADAR INTERVALS MEASUREID.json

– Chest belt data sample: log belt.sample-0047-0048.csv

– Distance laser data sample: log laser.sample-0047-0048.csv

• outputs, under /archive/outputs/:

– Chest belt data sample augmented with the measurement ID informa-
tion (and timestamp correction discussed in Section 6.1):
LABELED SENSOR DATA.log belt.sample-0047-0048.csv

– Distance laser data sample augmented with the measurement ID infor-
mation: LABELED SENSOR DATA.log laser.sample-0047-0048.csv
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A.2.2 Peak detection in chest belt signal
In this section we discuss code snippets (script 1 peak detection belt.ipynb)
that served to detect peaks in chest belt data, in order to determine respiratory
rate from the PLUX chest belt measurement, as discussed in Section 6.2.

In the measured data, we have information about the chest wall expansion
over time, the data series shape looks like a spiky sinusoid, thus we can detect
peaks in the chest wall expansion data to determine respiratory rate in this sensor
signal. As discussed in Section 6.2, we use three different approaches to detect
peaks:

• manual counting,

• smoothing data, moving average & local peak detection, with two different
smoothing methods (Gaussian smoothing; Savitzky-Golay filter): detect -
peaks Npeaks(), and

• detecting peaks that are ”enough apart” with scipy’s find peaks method:
detect peaks Nscipeaks().

In this sample script, we chose window size 100. This script processes following
inputs and provides out puts:

• inputs:

– Chest belt data sample augmented with the measurement ID informa-
tion: /archive/outputs/LABELED SENSOR DATA.log belt.sample-
0047-0048.csv

– File that contains information about manually Counted peaks for chest
belt and distance laser data: /archive/data/rr data.csv

• outputs, under /archive/outputs/:

– Peak detection information (number of peaks, detailed peak location
data) for measurement 0047:

∗ smoothing gauss:
data belt Npeaks.0047.gauss.wavg100.json

∗ smoothing savgol:
data belt Npeaks.0047.savgol.wavg100.json

∗ scipy approach:
data belt Nscipeaks.0047.wdist100.json

– Peak detection information (number of peaks, detailed peak location
data) for measurement 0048:

∗ smoothing gauss:
data belt Npeaks.0048.gauss.wavg100.json

∗ smoothing savgol:
data belt Npeaks.0048.savgol.wavg100.json

∗ scipy approach:
data belt Nscipeaks.0048.wdist100.json

– Visualization of detected peaks, comparing the 3 files for both mea-
surement: plot belt data and peaks.win100 example.png
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A.2.3 Peak detection in distance laser signal
In this section we provide code snippets (script 2 peak detection laser.ipynb)
that served to detect peaks in distance laser data, in order to determine respi-
ratory rate from the Baumer OM70 distance laser measurement, as discussed in
Section 7.2.

In the measured data, we have information about the changing chest wall
distance from the laser over time, the data series shape also looks like a (even
more) spiky sinusoid, thus we can detect peaks in the chest wall expansion data
to determine respiratory rate in this sensor signal.

As discussed in Section 7.2, we use the same three different approaches to
detect peaks:

• manual counting,

• smoothing data, moving average & local peak detection, with two different
smoothing methods (Gaussian smoothing; Savitzky-Golay filter): detect -
peaks Npeaks() – the very same implementation as for chest belt peak
detection, and

• detecting peaks that are ”enough apart” with scipy’s find peaks method:
detect peaks Nscipeaks() – here we use a different parametrization of
the scipy’s find peaks() method.

In this sample script, we chose window size 10.
This script processes following inputs and provides outputs:

• inputs:

– Chest belt data sample augmented with the measurement ID infor-
mation: /archive/outputs/LABELED SENSOR DATA.log laser.sam-
ple-0047-0048.csv

– File that contains information about manually Counted peaks for chest
belt and distance laser data: /archive/data/rr data.csv

• outputs, under /archive/outputs/:

– Peak detection information (number of peaks, detailed peak location
data) for measurement 0047:

∗ smoothing gauss:
data laser Npeaks.0047.gauss.wavg10.json

∗ smoothing savgol:
data laser Npeaks.0047.savgol.wavg10.json

∗ scipy approach:
data laser Nscipeaks.0047.wdist10.json

– Peak detection information (number of peaks, detailed peak location
data) for measurement 0048:

∗ smoothing gauss:
data laser Npeaks.0048.gauss.wavg10.json
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∗ smoothing savgol:
data laser Npeaks.0048.savgol.wavg10.json

∗ scipy approach:
data laser Nscipeaks.0047.wdist10.json

– Visualization of detected peaks, comparing the 3 files for both mea-
surement: plot laser data and peaks.win10 example.png

A.2.4 The health detection application code
In this section we present code of the health detection application to study
parametric model for respiratory rate (RR) detection, discussed in Section 5.4.

We provide a wrapper script 3 run health detection examples.sh to run
the RR detection for measurement IDs 0047 and 0048, for parametric model
configurations discussed in Section 5.5:

• the most suitable parametrization for RR detection with CFAR peak de-
tection model (5.19), with configuration BULK 0000 C1, and

• the most suitable parametrization for RR detection with CWT peak detec-
tion model (5.20), with configuration BULK 0009.

For this example, we processed following files:

• inputs: radar data files:

– 0047: /archive/data/0047.dat

– 0048: /archive/data/0048.dat

• outputs, under /archive/outputs/:

– respiration result files:
∗ BULK 0000 C1: results respiration.BULK 0000 C1.json
∗ BULK 0009: results respiration.BULK 0009.json

– execution log files:
∗ BULK 0000 C1: log.BULK 0000 C1.log
∗ BULK 0009: log.BULK 0009.log

The parametrization used is listed in 3 run health detection examples.
The health detection script allows command line parameters listed in Ta-
ble A.1.

A.3 The HealthDetectionSample application Doc-
kerfile

We containerized the HealthDetectionSample application as discussed in Sec-
tion 5.1. The Dockerfile is presented below.
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CLI option Default value Purpose
-L, --label BULK-TEST Label to distinguish bulk data process-

ing run
-D, --record dir ./data/ Directory to store radar data
-F, --filename 0047.dat Filename with the radar data

-P, cfar Peak detection method (cfar/cwt).
Choices: cfar, cwt

--peak detection method
-T,
--cfar num train

50 Number of training cells for CFAR

-G,
--cfar num guard

200 Number of guard cells for CFAR

-R, 0.001 False alarm rate for CFAR--cfar false alarm rate
-U, --cwt guard 150 Number of guard cells for CWT
-s,
--cwt scale max

80 Max of range for CWT scales

-W, --cwt wavelet gaus1) CWT wavelet. Choices:
pywt.wavelist(kind=’continuous’)

-r, 0.01 Gradient peak threshold for
respiration rate detection--gradient peak threshold resp

-g, 0.1 Gradient peak threshold for heart rate
detection--gradient peak threshold heart

-V, --max variance 100.0 Maximum allowed variance for target
range bin changes

-O, 1.5 Threshold to remove occasional false
detection points--outlier remove threshold

-o, 1.5 Variance threshold for outlier removal--outlier variance remove threshold

-C, mean Center for outlier removal. Choices:
mean, median.--remove outliers center

-c, median Center for variance outlier removal.
Choices: mean, median.--remove variance outliers center

-k, 10 Kalman filter initialization sample size
--kalman init sample size
-S,
--save data sample

False Save a dump of data as a sample to
visualize later

Table A.1: The health detection application command line parameters.
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FROM ubuntu :22.04
RUN apt -get update && \

apt -get install -y sudo cmake build - essential git
vim libboost -all -dev nlohmann -json3 -dev
libeigen3 -dev && \

rm -rf /var/lib/apt/lists /*
# Define mountable directories .
VOLUME ["${ CODE_DIR }", "${ DATA_DIR }"]
# Add user
RUN useradd -rm -d /home/${ WRK_USERNAME } -s /bin/bash -g

root -G sudo -u 1001 ${ WRK_USERNAME }
# sudo needed for interactive debugging & setup/chown
RUN echo ’${ WRK_USERNAME } ALL =( ALL) NOPASSWD : ALL ’ >>

/etc/ sudoers
# Setup directories & their ownership
RUN chown -R ${ WRK_USERNAME } /home/${ WRK_USERNAME }
RUN chmod 755 /home/${ WRK_USERNAME }
RUN mkdir -p ${ CODE_DIR } ${ DATA_DIR }
RUN chown -R ${ WRK_USERNAME } ${ CODE_DIR }
RUN chmod 755 ${ CODE_DIR }
RUN chown -R ${ WRK_USERNAME } ${ DATA_DIR }
RUN chmod 755 ${ DATA_DIR }
RUN chown -R ${ WRK_USERNAME } /home/${ WRK_USERNAME }/ wrk
RUN chmod 755 /home/${ WRK_USERNAME }/ wrk
# Switch over to the user environment
USER ${ WRK_USERNAME }
# Define the working directory .
WORKDIR /home/${ WRK_USERNAME }
# Define default command .
CMD ["/bin/bash"]

A.4 Distance laser data acquisition
In this section we provide code snippet that served to acquire data from the
Baumer OM70 distance laser, as discussed in Section 7.1. We used the pySerial
library [23] to configure the distance laser and read out data from it.
#!/ usr/bin/env python3
# -*- coding : utf -8 -*-

import datetime
import serial

### Bauder OM70 laser commands
CMD_LOCK_DEACTIVATED = b":01 W010 ;0; E9C3\r\n";
CMD_DEVICE_INFO = b":01 R002 ;3955\ r\n";
CMD_GET_BAUDRATE = b":01 R006;F957\r\n";
CMD_SET_BAUDRATE = b":01 W006 ;1; C1FF\r\n";
CMD_GET_MEASUREMENT = b":01 R021 ;09 F4\r\n";
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CMD_GET_ALL_MEASUREMENTS = b":01 R022;F9F4\r\n";

def cmd(dev , command , caption ):
"""
Executes a command on a device and prints the command

with its caption before execution and the output
after execution .

Parameters :
- dev: The device connection object on which the

command will be executed . This object should have a
write () method to send the command and a
readlines () method to read the output .

- command : A string representing the command to be
executed on the device .

- caption : A brief description or identifier for the
command , used for logging and output purposes .

Returns :
- A list of strings representing the lines of output

from the executed command .

The function first logs the command to be executed
along with its caption , then sends the command to
the device using the device ’s write () method . It
waits for the command to execute and reads the
output using the device ’s readlines () method .
Finally , it logs and returns the output .

"""
dev.write( command )
res = dev. readlines ()
return res

if __name__ == " __main__ ":
### Initiate the device
dev = serial . Serial (’/dev/ ttyUSB0 ’, 57600 ,

timeout =0.1 , parity = serial . PARITY_EVEN )

### Set the device ’s baudrate
cmd(dev , CMD_SET_BAUDRATE , " CMD_SET_BAUDRATE ")

### Read the device ’s baudrate
cmd(dev , CMD_GET_BAUDRATE , " CMD_GET_BAUDRATE ")

### Deactivate the lock
cmd(dev , CMD_LOCK_DEACTIVATED , " CMD_LOCK_DEACTIVATED ")

### Get the device information
cmd(dev , CMD_DEVICE_INFO , " CMD_DEVICE_INFO ")
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### Read out a measurement
cmd(dev , CMD_GET_MEASUREMENT , " CMD_GET_MEASUREMENT ")

### Measurement loop
while True:

### Data point timestamp
ts = datetime . datetime . utcnow ()
### Data point measurement string
res = cmd(dev , CMD_GET_MEASUREMENT ,

" CMD_GET_MEASUREMENT ")
### Log the data point value
print(f"{ts}: {res}")
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