
MASTER THESIS

Matej Husár

Improved graph pruning for multi-agent
pathfinding using heuristics

Department of Theoretical Computer Science and Mathematical Logic

Supervisor of the master thesis: RNDr. Jiří Švancara, Ph.D.
Study programme: Computer Science - Artificial

Intelligence

Prague 2025

I declare that I carried out this master thesis on my own, and only with the
cited sources, literature and other professional sources. I understand that my
work relates to the rights and obligations under the Act No. 121/2000 Sb., the
Copyright Act, as amended, in particular the fact that the Charles University has
the right to conclude a license agreement on the use of this work as a school work
pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

I would like to thank my supervisor Mgr. Jiří Švancara, Ph.D., who helped me
solve the given topic, for his highly professional and expert guidance throughout
the entire period of my research, for his valuable advice, prompt communication,
help, willingness, constant support, and human approach. I would also like to
thank my family and closest friends for their support and creation of favorable
conditions throughout my studies, as well as during the writing of this thesis.

Title: Improved graph pruning for multi-agent pathfinding using heuristics

Author: Matej Husár

Department: Department of Theoretical Computer Science and Mathematical
Logic

Supervisor: RNDr. Jiří Švancara, Ph.D., Department of Theoretical Computer
Science and Mathematical Logic

Abstract: In this work, we focus on improving the solution finding process of the
multi-agent pathfinding (MAPF) problem by extending graph-pruning techniques
through heuristic-based selection of ground vertices, which they rely on. Finding
an solution to a MAPF problem which is represented by collision-free paths
for all agents from start to goal positions becomes NP-hard when optimality
is required. Conventional algorithms struggle with scalability on large maps,
motivating alternative approaches. Building on our previous work, we propose
five progressively more sophisticated heuristics for selecting ground vertices based
on agent paths. These approaches introduce various improvements, such as
minimizing spatial and temporal conflict on vertices and edges while adding agent
prioritization. Experimental evaluations demonstrate that the RPS algorithm
presented in the end significantly outperforms the others, achieving the highest
success rate and the fastest computation times and, in many cases, solving
instances independently without the need for further solving. Our results confirm
that careful ground vertex selection can substantially improve MAPF solving
efficiency by graph-pruning techniques, especially on large-scale maps.

Keywords: Multi-agent pathfinding, SAT, Pruning heuristics, Ground vertices

Název práce: Vylepšení ořezávání grafu pro multiagentní plánování cest pomocí
heuristik

Autor: Matej Husár

Katedra: Katedra teoretické informatiky a matematické logiky

Vedoucí diplomové práce: RNDr. Jiří Švancara, Ph.D., Katedra teoretické infor-
matiky a matematické logiky

Abstrakt: V této práci se zaměřujeme na zlepšení procesu hledání řešení prob-
lému multiagentního plánování cest (MAPF) rozšířením technik ořezávání grafu
pomocí heuristického výběru klíčových vrcholů, na kterých tyto techniky závisejí.
Nalezení řešení MAPF problému, které je reprezentováno bezkolizními cestami
všech agentů z počátečních do cílových pozic, se při požadavku na optimál-
nost stává NP-úplným problémem. Tradiční algoritmy narážejí na problémy se
škálovatelností na velkých mapách, což motivuje hledání alternativních přístupů.
Navazujeme na naši předchozí práci a navrhujeme pět postupně sofistikovanějších
heuristik pro výběr klíčových vrcholů na základě jednotlivých cest agentů. Tyto
přístupy zavádějí různá vylepšení, jako je minimalizace prostorových a časových
konfliktů vzniklých na vrcholech a hranách pričemž zavádí prioritizaci agentů.
Experimentální vyhodnocení ukazuje, že algoritmus RPS představený na závěr
výrazně překonává ostatní přístupy, dosahuje nejvyšší úspěšnosti a nejrychlejších
výpočetních časů a ve většině případů řeší instance samostatně bez nutnosti
dalšího řešení. Naše výsledky potvrzují, že pečlivý výběr klíčových vrcholů může
výrazně zlepšit efektivitu řešení MAPF pomocí technik ořezávání grafu, zejména
na rozsáhlých mapách.

Klíčová slova: Multiagentní plánování cest, SAT, Heuristiky pro ořezávání, Klíčové
vrcholy

Contents

Introduction 8

1 Definitions 9
1.1 Multi-Agent Path Finding (MAPF) 9

1.1.1 MAPF Instance . 9
1.1.2 Types of collisions . 10
1.1.3 Cost functions . 11
1.1.4 Time-expanded graph . 12

2 Solving MAPF 13
2.1 Solving MAPF by reduction to SAT 13
2.2 Methods for speeding up the solving 15

2.2.1 Use of basic pre-processing 15
2.2.2 Graph Pruning . 16

3 Ground Vertices Selection 20
3.1 Agent single-paths strategies . 20

3.1.1 Biased . 20
3.1.2 Random . 21
3.1.3 Without Crossing . 23
3.1.4 Without Crossing at the Same Times 24
3.1.5 Recursive Path Search . 26

3.2 Vertex A* Sorting Heuristics . 30
3.3 Swapping condition . 34
3.4 Determining Solution from Shortest Paths Strategies 35

4 Experimental Evaluation 37
4.1 Instances . 37
4.2 Results . 39

4.2.1 Success rate of Sub-optimal algorithms 40
4.2.2 Success rate of Optimal algorithm 43
4.2.3 Solved by pathfinding . 45
4.2.4 Overall solution finding speedup 46

Conclusion 49

Bibliography 50

List of Figures 54

List of Tables 55

A Attachments 56
A.1 Electronic attachments . 56

A.1.1 List of electronic attachments 56
A.1.2 Instructions for running the experiments 56

6

A.1.3 Input files descriptions . 57
A.1.4 Output files description 58

7

Introduction
Multi-agent pathfinding (MAPF) is a versatile and important computational

problem that is used, for example, in video game control [1], airplane taxiing [2],
traffic junctions [3] but also finds its application in the field of warehouse automa-
tion [4]. The general task of multi-agent pathfinding is to find paths for two or
more agents, from their starting to their goal destination, in such a way that the
agents do not block each other or generally cause any collisions between each
other [5]. Finding such a solution is a demanding problem, to which, if we add
the requirement of optimality, the problem becomes NP-hard [6, 7]. Conventional
algorithms can solve it relatively quickly, unless we start to rapidly enlarge the
maps on which the agents are to move. In these cases, conventional algorithms
become overwhelmed and their calculation time starts to grow exponentially.

In our study, we are focusing primarily on solution optimality in terms of the
total time, which will elapse from the start to the moment when all the agents
are present at their corresponding final goal position. For finding the solution,
we are using a reduction-based approach based on the translation to a Boolean
satisfiability (SAT).

In our previous work, we have worked with the idea of reducing the graph by
pruning vertices that no agent may need on its path, which allowed us to reduce
the number of variables entering the SAT solver, thereby demonstrably reducing
the overall calculation time needed to find a solution. For small maps, which
can be solved by common algorithms, this method of graph reduction brought
the smallest improvement because it is highly likely that agents have to use the
entire space for their movement. On the other hand, for large maps, where the
agent generally has more space to move around, which represents a significant
complication for basic algorithms, pruning approaches turned out to be more
efficient, which translated into a significant acceleration of the overall calculation.

In this work, we focus on improving the previous pruning approach using
heuristics in terms of selection of ground vertices. The overall performance of
pruning approaches depends on the selection of the so-called ground vertices
around which the pruning itself is performed. In the original work, these ground
vertices were represented by the random shortest paths of the agents from their
start to their corresponding goal. This approach turned out to be sufficient to
achieve an overall improvement, but at the same time, it represented a place
where the given approach could be further improved. In this work, we will propose
five progressively more complex approaches to selecting ground vertices based on
agent paths, each of which will focus on improving the previous one. We will test
individual approaches against each other, while comparing them in terms of the
overall computational speed they bring. The great results of the final algorithm
for finding ground vertices led us to focus on its ability to find the overall solution
independently, without the help of graph-pruning approaches.

8

1 Definitions
1.1 Multi-Agent Path Finding (MAPF)

1.1.1 MAPF Instance
Definition 1. A Multi-Agent Path Finding (MAPF) instance is defined as a pair
(G, A). The underlying graph structure is represented as a G = (V, E) where V
represents the set of vertices of all possible positions that agents can occupy and E
represents the set of all possible transitions between these positions. A denotes
the set of all agents, while every agent ai ∈ A is specified by a pair (si, gi) of two
positions from V , where si denotes the corresponding starting position of the agent
while gi denotes the corresponding goal position of the agent.

Figure 1.1 Simple grid-based MAPF instance example, where colored circles represent
individual agents, and flags with corresponding colors represent their respective goal
positions.

The figure 1.1 shows a lattice instance, but the MAPF problem can be solved
on any graph.

Definition 2. A plan for agent i is defined as an ordered sequence of vertices
that specifies the concrete position of agent at each discrete time step in the graph.
This sequence of agent steps is denoted by πi, where the expression πi(t) = v
indicates that agent i occupies the vertex v at the time step t. The length of the
plan, representing the total number of time steps, is denoted by |πi|.

Definition 3. A plan πi for agent ai = (si, gi) is said to be valid if and only
if it satisfies the following conditions: the agent starts at its initial vertex, i.e.,
πi(0) = si, and ends at its goal vertex, i.e., πi(|πi|) = gi. Furthermore, for
every time step t = 0, . . . , |πi| − 1, the agent either remains stationary, i.e.,
πi(t) = πi(t + 1), or moves to an adjacent vertex, i.e., (πi(t), πi(t + 1)) ∈ E.

From the above definitions, we can see that time is discrete for each time step,
and therefore for each agent, it is true that, in order to find a valid path, it either
moves along the edge to the neighboring vertex or remains at the current position
it occupied in the previous time step. We consider all agents to be homogeneous
and therefore it is true that crossing one edge takes the same time for each of the

9

agents. Since each edge is of the same length, it is also true that all agents move
around the map at the same speed.

Definition 4. A joint plan Π is defined as a collection of valid individual plans,
one for each agent, such that all plans are of equal length. The joint plan Π is
considered valid if it contains no conflicts between any pair of agents throughout
its whole length. Thus, each solution to the given MAPF instance is determined
by the corresponding existence of the valid joint plan. The overall length of the
joint plan is denoted by |Π|.

The definition of a valid joint plan requires that the plans of all agents be
of equal length. We can achieve this result simply by saying that an agent with
a shorter plan can simply wait at its destination or can stop somewhere else on
the way. This is important to consider because when an agent reaches its goal
location, it is not removed from the graph but is still on it, while the other agents
must reach their destinations without collisions. The entire joint plan ends when
all agents arrive at their destinations and are on them at the same time.

The definition 4 describes that a solution to a MAPF instance is represented
by a valid joint plan, but that does not necessarily mean that a solution must
always exist. Consider, for example, a simple case in which we have a graph with
two components and one agent. The agent’s starting position would lie in one
component, and the target position would lie in the other component. So, it is
clear that such an example will not have a solution.

1.1.2 Types of collisions
Finding or solving the plan for the one agent is straightforward, so the main

idea is to be able to solve such plans for multiple agents. However, in a multi-agent
environment we encounter new problems, which are collisions between agents that
arise when they interact with each other. There are of course several types of
conflicts that can occur between agents when moving around the map.

Figure 1.2 Types of possible collision conflicts that can occur between agents in the
MAPF environment where (a) represents the edge conflict, (b) represents the vertex
conflict, (c) represents the following conflict, (d) represents the cyclic conflict and (e)
represents the swapping conflict. [8]

Definition 5. An edge conflict (illustrated in Figure 1.2(a)) arises when two
agents ai and aj try to change their corresponding positions at timestep t by the
same edge. Formally, πi(t) = πj(t) ∧ πi(t + 1) = πj(t + 1) and simultaneously
πj(t) ̸= πj(t + 1).

10

Definition 6. A vertex conflict (illustrated in Figure 1.2(b)) arises when two
agents ai and aj share their corresponding positions on the graph at any given
time step t. Formally, πi(t) = πj(t).

Definition 7. A following conflict (illustrated in Figure 1.2(c)) arises when the
agent ai attempts to move to a position that was occupied shortly before by the
second agent aj. Formally, πi(t + 1) = πj(t).

Definition 8. A cyclic conflict (illustrated in Figure 1.2(d)) arises when a group
of k agents ai, ai+1, . . . , ai+k where k > 2 are trying to move sequentially in a closed
loop. Formally, πi(t + 1) = πi+1(t) ∧ πi+1(t + 1) = πi+2(t) ∧ · · · ∧ πi+k−1(t + 1) =
πi+k(t).

Definition 9. A swapping conflict (illustrated in Figure 1.2(e)) arises when
two agents ai and aj change their corresponding positions using the one concrete
edge in the same timestep. Formally, πi(t + 1) = πj(t) ∧ πi(t) = πj(t + 1) and
simultaneously πi(t) ̸= πi(t + 1).

It is clear from the definitions themselves that prohibiting some of the conflicts
listed will automatically prohibit some of the others. For example, if we prohibit
pursuit conflict, we will automatically prohibit exchange conflict as well as cyclic
conflict. However, the opposite implication is not true. Another example is that
if we, for example, prohibit vertex conflict, we will automatically prohibit edge
conflict. The opposite is also not true.

If we wanted to consider some real-life example where the moving agents
are physical objects, such as airplanes, cars, ships, or robots, we would have to
automatically prohibit vertex, edge, and exchange conflicts because these agents
would have to share a common physical space, which is not possible in reality.
On the other hand, we certainly allow pursuit and cyclic conflicts, since physical
objects can move behind each other.

In this work, we will use the conflict setting mentioned above in order to
simulate a real environment. We will call such a setting parallel motion. In other
setting which, in comparison with parallel motion, also prohibits following conflicts,
which at the end implies that the cyclic one is also automatically prohibited, it is
referred to as ”pebble motion” [9].

1.1.3 Cost functions
So far, we have only discussed instances and the valid solution itself, but we

have not said anything about the quality of a valid solution, or about how difficult
it is to find a valid solution in terms of the required computational power.

Two evaluation functions are used most often to evaluate the quality of a
solution, namely Makespan [10], which describes the moment when all agents are
at their target position and Sum-of-costs [11], which describes the sum of the time
steps needed for all agents to be at their target positions and thus not need to
move any further.

To define these two functions, we still need to introduce the notation Ti, which
denotes the number of time steps required for agent ai to reach its target position
without having to leave it later.

11

Definition 10. For agents A the Makespan of their plan Π is defined as:
Mks(Π) = max

ai∈A
Ti

Definition 11. For agents A the Sum-of-costs of their plan Π is defined as:
SoC(Π) =

∑︂
ai∈A

Ti

Moreover, finding a valid solution may require finding a solution that tries to
minimize one of the two defined evaluation functions. It may not be obvious at
first glance that optimizing a solution using one or the other function often leads
to a different solution [12].

There exist many algorithms for finding a feasible solution to a MAPF problem
in polynomial time, but finding a solution that is either makespan or sum-of-costs
optimal falls into the class of NP-hard problems [6, 7]. Even deciding whether a
solution exists in T time steps is an NP-complete problem [13].

1.1.4 Time-expanded graph
The paths of agents through a graph do not always have to be acyclic. It

often happens that an agent visits a vertex more than once during its journey.
A time-expanded graph [14] is used to better visualize the movement of agents
through a graph.

Figure 1.3 An example of transforming a directed graph into a time-expanded graph
with T layers.

Definition 12. Let G = (V, E) be an undirected graph and n ∈ N. Then, the
time-expanded graph with n + 1 time layers created from G is a directed graph
ExpT (G, n) = (V × {0, 1, . . . , n}, E ′), where E ′ = {([u, t], [v, t + 1]) | {u, v} ∈
E; t = 0, 1, . . . , n− 1} ∪ {([v, t], [v, t + 1]) | v ∈ V ; t = 0, 1, . . . , n− 1}.

We create a time-expanded graph by adding T copies of the graph G on top of
the original one, which creates additional T × |V | vertices, which can be imagined
as individual time layers. We connect these layers with edges such that when there
is an edge (u, v) ∈ E, then for all layers i ∈ {0, . . . , T} we add an edge (ui, vi+1)
(such edges represent movement between vertices) and for each vertex u ∈ V we
add an edge (ui, ui+1) (these edges represent waiting at a vertex). Agents move
along such a graph by starting at the first layer and moving to the next layer
with each time step. It is obvious that we can easily create such a graph from a
directed graph 1.3.

12

2 Solving MAPF
In general, there are two main ways how MAPF can be solved: optimal and

sub-optimal. Sub-optimal algorithms represent an important category, often
focusing on the speed of finding a solution at the expense of its optimality. In
this paper, we will also demonstrate and test two sub-optimal approaches, while
we will mainly focus on the optimal approach. In general, optimal solvers fall into
two main categories.

Search-based solvers

In this category the Conflict-Based Search (CBS) [15] algorithm is the most
notable one while in this regard is considered to be the state-of-the-art approach
together with its improvements [16, 17]. CBS by its name works in a way that is
trying to find the solution by eliminating the conflicts between the agents. For
finding the paths corresponding to agents, the algorithm uses the single-agent A∗

approach. When a conflict arises between two agents, the algorithm tries to resolve
it in one of two ways. It either forbids the first agent in the conflict position in
the conflicting time or does the same for the second agent. This decision-making
process creates a binary constraint tree that CBS searches over while finding the
optimal solution.

Reduction-based solvers

Reduction-based solvers address a MAPF instance by translating it into a
chosen established formalism. Prominent approaches in the literature include
translations to SAT [18] and ASP [19], although alternative formalisms offer
distinct advantages, as outlined in a recent survey[20]. It is well established that
search-based and reduction-based solvers demonstrate complementary strengths
across different instance types[21], while search-based methods are particularly
effective in large sparse environments, reduction-based techniques tend to perform
best in small densely occupied ones. However, the scalability of reduction-based
approaches is limited in large environments, motivating various enhancements
aimed at reducing problem size. One such strategy involves the construction of a
subgraph by eliminating potentially unnecessary vertices [22]. In this work, we
extend the subgraph method while still using the reduction to SAT. Both key
concepts will be discussed in greater detail in the next sections.

2.1 Solving MAPF by reduction to SAT
In this section, we will show how finding a solution to the MAPF problem

can be expressed as solving the general SAT problem by using the reduction. In
addition to finding a valid solution, we will look for one that is makespan optimal.
We can achieve this by limiting the length of the plan while trying to find a
solution to it. In many cases this leads to failure because the problem cannot be
solved because of its restriction, so in that case the increase of the given length
limit [23] will take place and the finding process repeats.

13

Let us first show how to reduce a finite-step MAPF to a SAT. We consider
finding a solution to a parallel-motion MAPF with a conflict setting and a
makespan T . Let us define two sets of variables: ∀v ∈ V, ∀ai ∈ A,∀t ∈ {0, . . . , T} :
At(v, i, t), where this means that agent ai is located (is at position) at vertex v
at time t, which corresponds to the position in the time-expanded graph (12);
a ∀(u, v) ∈ E, ∀ai ∈ A, ∀t ∈ {0, . . . , T − 1} : Pass(u, v, i, t) means that agent
ai starts traversing edge (u, v) at time t and arrives at vertex v at time t + 1,
which corresponds to one edge in the time-expanded graph (12). Due to this
behavior, we do not declare variables for time T . The agent ai can also stay at its
vertex, so we must add an edge (v, v) to E for each vertex v ∈ V . Pass(v, v, i, t)
which means that agent ai does not leave the vertex v at time t, but stays on it.
Conditions by which we can describe the MAPF problem are designed as follows:

∀ai ∈ A : At(si, i, 0) = 1 (2.1)
∀ai ∈ A : At(gi, i, T) = 1 (2.2)

∀ai ∈ A, ∀t ∈ {0, . . . , T} :
∑︂
v∈V

At(v, i, t) ≤ 1 (2.3)

∀v ∈ V, ∀t ∈ {0, . . . , T} :
∑︂

ai∈A

At(v, i, t) ≤ 1 (2.4)

∀u ∈ V, ∀ai ∈ A,∀t ∈ {0, . . . , T − 1} :
At(u, i, t) =⇒

∑︂
(u,v)∈E

Pass(u, v, i, t) = 1 (2.5)

∀(u, v) ∈ E, ∀ai ∈ A, ∀t ∈ {0, . . . , T − 1} :
Pass(u, v, i, t) =⇒ At(v, i, t + 1) (2.6)

∀(u, v) ∈ E : u ̸= v, ∀t ∈ {0, . . . , T − 1} :∑︂
ai∈A

(Pass(u, v, i, t) + Pass(v, u, i, t)) ≤ 1 (2.7)

For a better understanding of the individual conditions, we will describe them
in turn. Conditions (2.1) and (2.2) ensure that the starting and ending positions
are valid for all agents. The condition (2.3) describes the fact that each agent
must be at most one vertex at a time. On the other hand, (2.4) ensures that each
graph vertex can be used concurrently, at the same time, by just one agent. To
ensure the correct movement of agents around the graph, we have the conditions
(2.5), (2.6), and (2.7). Condition (2.5) states that an agent can leave a vertex
only along an edge that leads from a given vertex, and condition (2.6) ensures
that the agent arrives at the target vertex along a given edge at time t + 1. The
last condition is (2.7), which ensures that two agents cannot swap places on the
same edge. The interpreted fulfillment of these conditions corresponds to finding
a solution for MAPF with makespan T . [24]

As we have already mentioned, to find a makespan-optimal solution, we
gradually increase makespan T until we generate a set of satisfiable conditions.
Such an approach will unambiguously find a makespan-optimal solution because
when a solution is found, we are guaranteed that there is no solution with a smaller
makespan.

14

2.2 Methods for speeding up the solving
In this subsection, we will focus on already well established methods for

speeding up the overall computation time of finding a solution. We will first show
and describe basic pre-processing methods, and then focus on the more complex
graph pruning method of speeding up the computation.

2.2.1 Use of basic pre-processing
The problem of finding the optimal solution to a MAPF is often non-trivial and

requires considerable computational power, while its calculation takes a significant
amount of time. An improvement in the terms of reduction of the total number of
variables, which describe the problem would be helpful not only for the makespan
optimal model but also for the sum-of-costs optimal model. This would result
in the computation speed up because the SAT solver would be working with a
smaller variable count.

We can speed up the overall computation by better specifying the initial
makespan value. Instead of starting with T = 1, we can easily determine the
initial T as the longest of the shortest paths between the starting position and
the goal position of all agents, formally, LBmks = maxai∈A dist(si, gi).

The overall calculation speed can be further improved by doing the so-called
pre-processing [25] for each variable At(v, i, t) that describes that agent ai occupies
the vertex v at time t. With this in mind, we can for some vertices easily in
advance determine whether a given agent can be present there or not. A simple
example is times 0 and T , because we can say with certainty that all agents
must be at their starting position at time 0 and at time T they must be at their
goal position again. From this we can easily conclude that if d is the distance
between the vertex v and the starting position si of the anent ai, then the agent
cannot certainly be at the vertex v at times 0, . . . , d− 1. This follows from the
fact that the agent does not have enough time to travel the distance given to
the vertex v. However, the same applies in the direction away from the goal. If
the goal position gi of the agent ai is distanced d steps away, then we can say
that the given agent certainly cannot be present at the given vertex at times
T − d + 1, . . . , T simply because it would not have time to reach its goal position
in the remaining time. We can leverage this knowledge of the vertex occupancy
to apply the pre-processing calculation also to the Pass(u, v, i, t) variables such
that if the vertex is not occupied by the agent at the time t it means that the
edges that are connected to this vertex are certainly also not going to be used at
the given time t.

Figure 2.1 shows the pre-processing calculation for a single agent with a
makespan value of 5. The calculation is made using a wave that propagates
from the agent’s starting position, which iteratively increases to the size of the
makespan. The same calculation is then performed with the wave starting at the
agent’s target position. Using these waves, it is easy to determine where the agent
can be furthest from the starting position at time t and also where it must be at
time t, in order to still reach its target position. In this example, pre-processing
immediately finds the optimal solution. The numerical values in the left part of
the figure (separated by an arrow) tell us where the agent can be furthest from

15

Figure 2.1 An example of basic pre-process computation for a single agent with
T = 5.

the starting position, respectively, from the target position. On the other hand,
in the right part of the figure, the numerical values show us which vertices the
agent can be located at at a given time step.

Let us again look at the time-expanded graph (12), which helps us solve the
MAPF problem with respect to the makespan optimality. A possible way to
visualize it is that the agents do not move through a common one, but each agent
has its own time-expanded graph on which it moves. These individual graphs are
then connected to each other using conditions that guarantee non-conflict.

One of the advantages of a time-expanded graph is its ability, together with
pre-processing, to detect unreachable vertices, which helps us in finding a solution
from the perspective of graph connectivity, but also from the perspective of the
possible respective path of the agent from the starting position to the goal, for
each agent individually. We can use this property to our advantage since we know
where the agent cannot be at a given time and, conversely, where it must be. This
knowledge can significantly speed up the calculation of the SAT solver.

Another, proved option for reducing vertices and thus input variables to
the SAT solver is to remove vertices from the graph before calculating the pre-
processing. This approach is shown to be useful in speeding up the calculation
when solving maps that have many vertices, and therefore their calculation can
be extremely demanding and inefficient when using common algorithms, as shown
in our previous work [22], which, to be self contained, we will briefly describe in
the next subsection.

2.2.2 Graph Pruning
The subgraph method [22] is a framework developed to enhance the scalability

of reduction-based solvers by eliminating vertices from the graph and then system-
atically adding them back if the solution does not exist without them. Given an
MAPF instanceM = (G, A) and a specified set of ground vertices, the method
constructs a relaxed instance denoted as Mk,m. The parameter k defines the
maximum graph distance from the ground vertices to the included vertices in the

16

subgraph, while m determines the cost increase added to the lower-bound metric
LBmks which together makes the total allowed cost T .

Figure 2.2 Labeled single agent instance which for each vertex shows to which k-
restricted subgraph it belongs. Figure layout is taken from [22].

In its original formulation, ground vertices are chosen as those lying on the
shortest random paths from the start position of each agent si to its goal position
gi. The value of k controls the number of additional vertices incorporated into the
subgraph, effectively expanding its coverage, while m specifies the increase added
to the lower-bound metric. An illustrative case involving a single agent is shown
in Figure 2.2. As k increases, the subgraph expands by forming layers around the
initially selected ground vertices, which corresponds to the base case when k = 0.

Figure 2.3 MAPF instance relaxations for kmax = 3, mmax = 2 taken from the
original paper [22].

In the original paper, four different strategies were presented, which search
the relaxed instanceMk,m described above in different ways. An example of such
an instance is shown in Figure 2.3, which was taken from the original paper. The
Algorithm 1 shows the pseudocode of a generic subgraph method for finding a
solution, where the generic method Relax() can be replaced with one of the four
relaxation methods which are briefly described below.

17

Algorithm 1 Generic subgraph method.
1: function Generic MAPF relaxation(M)
2: LB = maxai∈A |SPi|
3: (k, m)← Initial_Candidate()
4: while not solve_MAPF(Mk,m) do
5: (k, m)← Relax()
6: end while
7: return LB + m
8: end function

Baseline

The Baseline relaxation strategy B operates by retaining the entire original
graph G effectively selecting a sufficiently large value of kmax while iteratively
increasing only the parameter m. This approach corresponds to the standard
behavior of vanilla SAT-based makespan-optimal solvers, which do not restrict the
graph but instead progressively relax the cost bound to find a feasible solution.

Prune-and-cut

The Prune-and-cut relaxation strategy P begins with the smallest possible
instance, which is M0,0. If the instance is determined to be unsatisfiable, the
parameter k is increased by powers of two until the upper bound kmax is reached.
Only after exhausting all values of k does the parameter m increase by one, at
which point k is reset to 0 and the process repeats.

Figure 2.4 The traversal of the instance relaxation lattice by Prune-and-cut strategy,
where just the relaxed instances which are highlighted are being solved. This figure was
taken from the original paper [22].

The instance relaxation lattice traversal strategy of the Prune-and-cut algo-
rithm is shown in Figure 2.4. This strategy has been formally proven to guarantee

18

the discovery of an optimal solution, and empirical evaluations have shown that it
consistently outperforms the baseline approach in terms of efficiency.

Makespan-add

The Makespan-add relaxation strategy M begins with the instanceM1,0 so
that m = 0 and k = 1 is chosen for the increased probability of finding the
solution. If the instance is determined to be unsatisfiable, the parameter m is
incremented by one until the instance is not satisfiable and the solution is fined.
This strategy has been formally proven to be both suboptimal and incomplete,
but in the majority of cases, this simple strategy is sufficient to find a solution,
while the substantial reduction in the number of vertices within the graph often
results in significantly improved computational efficiency, enabling faster solution
discovery.

Combined

The Combined relaxation strategy C begins with the initial candidate instance
M0,0, where both parameters are set to zero, such as k = 0 and m = 0. If the
instance is determined to be unsatisfiable, both parameters are incremented simul-
taneously by one. This approach reduces the total number of solver invocations
by avoiding exhaustive exploration of all possible subgraph reductions. However,
this efficiency gain comes at the cost of optimality because it has been formally
proven that the Combined strategy is complete, in the sense that it guarantees to
find a solution if exists, but it does not necessarily find an optimal one.

Number of shortest paths to consider

A subsequent study [26] investigated an extension of the subgraph method by
incorporating multiple shortest paths per agent into the set of ground vertices,
rather than restricting to a single path. However, experimental results indicated
that this increase in the number of included vertices led to a significant increase in
the computation time. Consequently, in this work, we adopt the original strategy
of selecting a single shortest path for each agent when constructing the ground
set of vertices.

19

3 Ground Vertices Selection
The heuristics presented in the following chapters describe different single-path

strategies for path selection and ordering to optimize the pruning process. Based
on our previous work, we decided to focus only on the single-path strategies
for the ground vertices selection. These strategies provide various methods for
refining the search space based on agent movement preferences, priority sorting
mechanisms, and conflict prevention techniques. The individual algorithms will
be compared with each other in the next chapter, focusing on various aspects of
their performance and behavior.

3.1 Agent single-paths strategies
In this section, we will introduce individual single-path algorithms for finding

the shortest paths. We will show basic approaches that do not change the order of
agents for which individual paths are searched, namely Baseline, Random, Without
Crossing and Without Crossing at the Same Times. Next, we will introduce a
more advanced approach, Recursive Path Search, which already considers the
order in which individual paths for agents will be searched, and we will show and
explain how such an ordering can greatly facilitate finding a conflict-free solution.

3.1.1 Biased
The Biased algorithm is a variant of the Breadth-First Search (BFS) algorithm,

where the order of node expansion is fixed, leading to a preference in path selection.
In this case, we chose the BFS algorithm because it has already been used to
determine the reachability of the vertices by the agents. Unlike traditional BFS,
which explores all neighboring nodes in an arbitrary or dynamically determined
order, the Biased algorithm enforces a strict expansion sequence: left, up, right,
and down from the goal. This predefined order influences the reconstruction of
paths, as the direction from which a node was reached determines the backtracking
process.

Algorithm Execution: The algorithm begins by enqueuing the starting posi-
tion and then iteratively expands the nodes in a breadth-first manner. At each
step, the next node to be expanded is selected according to the fixed order of
movement. This ordering imposes a directional preference, meaning that when
multiple paths are available, the agent will always choose the one that aligns
with the predefined expansion sequence. As a result, the paths that are found by
the algorithm exhibit a structured bias, reflecting a consistent movement pattern
across different environments.

Path Reconstruction and Bias: During path reconstruction, each visited
node maintains a reference to the direction from which it was first reached. Since
the expansion order is strictly enforced, this reference is inherently biased. If
multiple paths exist with equal costs, the algorithm consistently selects the one that
aligns with the left-down-right-up preference. Consequently, the paths generated

20

by different agents following the same biased strategy tend to be similar, as the
movement preference dictates a common traversal pattern.

Implications of Bias: The biased nature of the algorithm results in predictable
and structured paths. While this property may be beneficial in scenarios requiring
uniformity, it can also introduce inefficiencies by restricting alternative, potentially
less conflicting, paths that do not align with the fixed movement order. Further-
more, when applied in multi-agent pathfinding, agents using the Biased algorithm
tend to cluster along similar routes, increasing the likelihood of congestion in
shared environments, but lowering the number of used vertices, which is beneficial
in reduction-based solving of multi-agent pathfinding [22].

Efficiency Considerations: The computational complexity remains identical
to standard BFS, as each node is visited once and all neighbors are expanded
in constant time. However, the fixed expansion order simplifies implementation
and ensures deterministic behavior across different runs. This makes the Biased
algorithm well suited for applications where predictability and uniform movement
patterns are desirable.

In general, the Biased algorithm extends BFS by introducing a movement
preference, resulting in common path structures shaped by the agent’s inherent
expansion order. This approach is particularly useful in environments where
uniformity and deterministic path generation are preferred, though it may limit
flexibility in exploring alternative routes, which leads to a higher number of
collisions on paths.

3.1.2 Random
The Random algorithm is a variation of the Breadth-First Search (BFS)

algorithm, similar to the Biased approach. However, instead of following a fixed
expansion order for path reconstruction, it introduces randomness in selecting
the predecessor node when backtracking to construct the final path. This results
in a shortest path that varies between executions (in testing, the seeding of the
random generator was used to stabilize the results of the testing between runs),
unlike the deterministic behavior of the Biased algorithm.

Algorithm Execution: As with standard BFS, the algorithm explores the
state space in a breadth-first manner, ensuring that the shortest path to each node
is discovered. However, during the path reconstruction phase, instead of choosing
the first discovered parent (as in Biased), the predecessor is randomly selected
from all possible parents that led to the given node with the same shortest cost.
This introduces stochasticity into the path selection process.

Path Reconstruction and Randomness: Since multiple shortest paths may
exist in a grid-like environment, the random selection of predecessors leads to
different path variations in the same situation. The generated paths remain valid
from the point of view being shortest, but lack the structured preference seen in

21

the Biased algorithm. This randomness ensures that no single traversal pattern
dominates, resulting in a diverse set of paths.

Implications of Randomized Path Selection: The introduction of ran-
domness prevents agents from following the same movement pattern repeatedly,
reducing congestion in multi-agent scenarios which potentially leads to fever colli-
sion between agents, but potentially leads to a greater number of used vertices in
final paths combined.

Efficiency Considerations: The computational complexity remains equivalent
to BFS, as node expansion and shortest path discovery follow the same principles.
The only additional computational overhead occurs during path reconstruction
when a random selection is made among valid predecessors. Despite this, the
algorithm remains efficient and practical for applications where diverse path
generation is preferred.

Overall, the Random algorithm extends BFS by introducing stochasticity in
path reconstruction, resulting in different shortest paths, which can lead to safer
traversal through the environment from a collision point of view. This randomness
eliminates agent movement bias, making it useful in applications that require
variation in traversal patterns.

Biased and Random algorithms in use

Both proposed algorithms Biased and Random are able to find optimal paths
for each agent in terms of their length. However, these approaches are greedy in
terms of finding the shortest path and also in terms of the order of agents for
which they search for a given path. Both the Biased and Random algorithms do
not look at other agents, they completely ignore them, which of course can lead
to unwanted conflicts.

Figure 3.1 Conflict caused by Biased and Random algorithms.

Let us consider a simple instance, which is shown in Figure 3.1. The instance
consists of two agents, with the first agent, orange, having a starting position at
(A1), and its goal at position at (B3). The second, green agent, has a starting
position on the (C1) position while its goal is located at position (C4). The
individual paths of the agents from the corresponding start to the goal are shown

22

in the figure in the corresponding color of the individual agents. The paths shown
on this figure were obtained by actual run of the individual algorithms with the
given instance.

Both algorithms in this case found the same correct path in terms of length,
but in terms of conflict, the given paths are incorrect. The Biased algorithm first
found the correct conflict-free shortest path for the orange agent, but since it
does not take other agents into account when finding the path, when finding the
path for the green agent it follows purely its biased rules, which end up finding
the incorrect shortest path in terms of conflict. The Random algorithm has the
potential to find a conflict-free path for the green agent, but due to its randomness,
in this case it chose the same incorrect shortest path in terms of conflict as the
Biased algorithm.

In the next two subsections, we will describe two proposed algorithms whose
aim is to mitigate this unwanted greediness in the term of finding the shortest
path without looking at other agents positions on their paths to at least some
degree.

3.1.3 Without Crossing
The Without Crossing algorithm is an adaptation of the classical A∗ search

algorithm that employs the Without Crossing Ranking (WCR) heuristic Algo-
rithm 7, to determine the expansion priority of the vertex. The primary objective
of this algorithm is to ensure that all the final paths are the shortest possible ones
while its secondary objective is to prevent crossing with the other agents paths
computed before, thus greedily preventing conflicts.

The algorithm maintains an open list, which serves as a priority queue where
nodes are sorted according to the WCR heuristic Algorithm 7. This heuristic
not only considers the standard cost function f(v) = G[v] + H[v] where G[v]
represents the known cost from the start to the vertex v and H[v] is the estimated
remaining cost based on the Manhattan distance, but also incorporates vertex
occupancy constraints to prioritize nodes that are used less frequently, which is
achieved by the tie-breaking condition on the usage of the vertices by the agents
computed before.

Algorithm Execution: The algorithm initializes by adding the starting node
to the open list with its corresponding cost. At each iteration, the node with the
highest priority (determined by WCR) is expanded. The priority queue ensures
that nodes with lower heuristic values are processed first, promoting efficient
pathfinding. For each expanded node, the algorithm examines its neighboring
nodes and updates the cost of reaching those nodes and adds them to the open
list if it has not been visited or if a lower-cost path has been found. The search
continues until the goal node is reached, at which point the optimal path by the
general length and by the algorithm path goal of minimal crossing is reconstructed
by tracing back through the predecessors of each expanded node.

Conflict Avoidance: A key feature of this algorithm is its ability to prevent
crossing paths by leveraging the WCR heuristic. The heuristic prioritizes nodes
that minimize conflicts based on past occupancy data, ensuring that paths are

23

selected in a way that minimizes interference between multiple agents. By doing
so, the algorithm avoids situations in which two agents attempt to potentially
pass through the same node at the same time. This behavior will be shown and
described alongside Without Crossing at the Same Times algorithm in detail later
with the accompanying visualization in Figure 3.2.

Computational Efficiency: The use of a priority queue ensures that the most
promising nodes are expanded first, maintaining the efficiency of A∗ search while
enhancing its applicability in multi-agent pathfinding scenarios. By integrating
WCR into the priority queue sorting, the algorithm ensures better coordination
among agents while maintaining time optimality in path selection.

Overall, the Without Crossing algorithm extends the classical A∗ search by
integrating conflict-aware heuristics, making it well suited for navigation tasks in
constrained environments where multiple agents operate simultaneously.

3.1.4 Without Crossing at the Same Times
The Without Crossing at the Same Times algorithm extends the Without

Crossing variant of A∗ by incorporating temporal constraints to ensure that agents
do not occupy the same position at the same timestep. This is achieved by
replacing the WCR-based priority queue sorting with the Without Crossing at the
same times Ranking (XCR) heuristic Algorithm 8, which considers both spatial
and temporal conflicts.

Algorithm Execution: The core structure remains the same as the Without
Crossing algorithm, where nodes are expanded based on a priority queue. However,
instead of using the WCR heuristic for sorting, the XCR heuristic is applied,
which incorporates an additional time-dependent vertex occupancy function. This
structure Vocc[v][t], tracks how often a vertex v is occupied at a specific timestep
t, ensuring that agents do not reach the same node simultaneously.

Temporal Conflict Avoidance: When comparing two nodes for expansion,
the XCR heuristic determines the priority. If both nodes have the same distance
heuristic value, the algorithm further prioritizes nodes that have a lower occupancy
count at the given time step. This additional constraint ensures that agents not
only avoid spatially crossing paths but also prevent simultaneous occupation of
the same vertex. This behavior will be shown and described alongside previous
Without Crossing algorithm in detail later with the accompanying visualization in
Figure 3.2.

Efficiency Considerations: By integrating temporal information into the
sorting mechanism, the algorithm achieves path optimality with greedy conflict
avoidance. While ensuring safe navigation, it maintains computational efficiency
by leveraging the priority queue mechanism of A∗ search. The additional time
constraint does not significantly increase computational complexity, as it only
adds a lookup operation to the vertex occupancy table.

24

Overall, the Without Crossing at the Same Times algorithm enhances the original
Without Crossing approach by avoiding both spatial and temporal conflicts with
agents computed before, making it more suitable for multi-agent pathfinding in
time-sensitive environments.

WCR and XCR algorithms in use

The Without Crossing and Without Crossing at the Same Times algorithms
are equally optimal in terms of the length of the computed paths compared to
the Biased and Random algorithms, but they bring an improvement during path
computation in terms of agent awareness compared to the Biased and Random
algorithms. This agent awareness in both algorithms consists in the fact that
when searching for the shortest path, a tie-break condition is used for path-length
equal vertices, specific to each algorithm, which leads to the general selection of a
better shortest paths in terms of conflicts.

Figure 3.2 Conflict avoidance by WCR and XCR algorithm copared to algorithms
Biased and Random from figure 3.1.

Figure 3.2 shows the performance of the Without Crossing and Without
Crossing at the Same Times algorithms on the same instance where the conflict
shortest path selection of the Biased and Random algorithms were shown. As we
can see, unlike the previous algorithms, algorithms based on A∗, which are using
the WCR and XCR heuristics, find the optimal solution both in terms of path
length and also in terms of conflicts.

In this case, both algorithms were able to find a solution because they searched
for the orange agent first and then for the green one. However, both the WCR
and the XCR algorithms are greedy in terms of the order in which the shortest
paths are searched for the agents. If in this case the path for the green agent was
searched first and the path that leads through the vertex (B3) was chosen, this
would lead to conflicting pathfinding for both WCR and XCR. In this case, both
algorithms would have to bring the orange agent into conflict with the green agent
at the vertices (B2) and (B3), which would lead to a collision. This is the same
problem as the Biased and Random algorithms had, as shown in Figure 3.1. So in
this case, there would be no improvement. In the next subsection, we will look
at how to handle this problem, which is caused by the order in which agents are
presented to the pathfinding algorithm.

Another very important shortcoming of the WCR and XCR algorithms is that
both approaches still focus only on finding the shortest path with the least number

25

Figure 3.3 Conflict caused by WCR and XCR algorithm when third agent with short
start-goal distance is introduced.

of collisions with previous computed agents. The consequence of this problem is
simply illustrated in Figure 3.3, which shows what happens when we add another
blue agent to both algorithms, which has its starting and goal positions at the
same vertex, namely (D3). It does not even matter in what order the individual
algorithms would search for paths for this trio of agents because they would always
fail on the minimal conflict criterion. If the shortest paths were searched in the
order (blue, green, orange), this would lead to a conflict between the green and
orange agents at positions (B2) and (B3). If they were searched in the order
(green, blue, orange), this would lead either to a conflict at position (D3) between
the green and blue agents, or at positions (B2) and (B3) between the green and
orange agents, depending on which path the green agent would choose at the
beginning. As a last option, there could be a combination (orange, green, blue),
which would also lead to a conflict, namely between the green and blue agents at
position (D3). In this example, we have shown that there is no correct order for
searching paths for a given trio of agents, as long as the given algorithms only
search for the shortest paths. To solve this problem, we must find a path longer
than its shortest path for some agent, so that there are no conflicts, and at the
same time, the makespan condition of the optimal solution is met. In the next
subsection, we will show an algorithm that aims to solve both problems of the
WCR and XCR algorithms.

3.1.5 Recursive Path Search
The proposed combination of Algorithm 2 and Algorithm 3 efficiently computes

the makespan-long paths for a set of agents navigating a shared environment
represented as a graph with the goal of being as collision-free as possible. Given
a set of agents, each with a specified start and goal position, and a predefined
makespan T , the algorithm determines a valid path from the perspective of time
constraint for all agents while trying to minimize conflicts with other agents. So
for the given environment G and the set of agents A the algorithm outputs a
mapping that assigns to each agent a ∈ A a sequence of positions over time:
∀a ∈ A,∀t ∈ {0, . . . , T},Paths[a][t] = v ∈ V .

The algorithm first initializes the data structures to track occupancy constraints.
Specifically, Vocc[v][t] records the number of times vertex v is occupied at time

26

Algorithm 2 Find Paths in Makespan for Agents
1: Input: G = (V, E) is a valid graph representing the shared environment
2: Input: A is the valid set of agents. Each agent is represented as a pair

a = (as, ag)
3: Input: T ≥ LB is the length of each agent final path
4: Return: ∀a ∈ A, ∀t ∈ {0, . . . , T} : Paths[a][t] = v ∈ V
5: function FindPaths(G, A, T)
6: ∀v ∈ V, ∀t ∈ {0, . . . , T} : Vocc[v][t]← 0
7: ∀e ∈ E, ∀t ∈ {0, . . . , T} : Eocc[e][t]← 0
8: ∀a ∈ A, ∀v ∈ V : R[a][v]← SPlength(as, v)
9: ∀a ∈ A, ∀t ∈ {0, . . . , T} : Paths[a][t]← null

10: for all agents a ∈ A in descending order sorted by R[a][gi] do
11: for c← 0 to T do
12: ∀v ∈ V, ∀t ∈ {0, . . . , T} : V isited[v][t]← false
13: if RPS(R[a], Vocc, Eocc, V isited, as, ag, T , c, Paths[a]) then
14: break
15: end if
16: end for
17: end for
18: return Paths
19: end function

t, which was already introduced in the XCR algorithm for determining vertex
collision, while Eocc[e][t] is newly introduced for this algorithm, which tracks edge
usage over time. Edge usage tracking is used to determine the swapping conflict,
which previous algorithms were lacking of. The shortest path length from the
start position of each agent to every reachable vertex is calculated and stored in
R[a][v], which forms the basis for path planning. Initially, all paths are set to null,
and agents are sorted in descending order according to the shortest path length
from their starting position to their goal. This sorting of the agents is newly
introduced in this algorithm compared to the previous ones, which were greedy in
this sense. Implications of this sorting approach are shown and discussed later in
the Figure 3.4.

Each agent is processed sequentially, trying to compute a feasible path using
the recursive function RPS(). The search begins with a strict constraint of
zero allowed conflicts, incrementally relaxing this constraint if no valid path is
found. The function RPS() operates recursively to explore feasible paths for an
agent from its current position c to its goal g while respecting the remaining
time budget Tleft and the given conflict allowance. If the agent reaches its goal
with no remaining time steps, the path is recorded as valid, and the function
returns success. Otherwise, the algorithm marks the current position as visited
and proceeds with further exploration.

To prioritize efficient pathfinding, two queues are maintained: a priority queue
containing preferred moves and a conflict queue storing moves that introduce
conflicts. A neighbor n of the current position c is classified in one of these
queues based on whether visiting n in Tnext = Tleft − 1 introduces a conflict in the
occupancy matrices Vocc and Eocc determined by the Algorithm 9. The priority

27

Algorithm 3 Recursive Path Search Algorithm
1: Input: R[v] (shortest time in witch each vertex can be visited by an agent)
2: Input: Vocc[v][t] (tracks how many times a vertex is occupied in given time)
3: Input: Eocc[e][t] (tracks how many times an edge is occupied in given time)
4: Input: V isited[v][t] (tracks if the vertex vas already visited in given time)
5: Input: Current position c = (cx, cy)
6: Input: Goal position g = (gx, gy)
7: Input: Tleft number of time steps left to stand on goal position
8: Input: conflicts number of allowed conflicts left on the path
9: Input/Output: Path[t] agent final path (computed during recursion)

10: Return: TRUE if goal g was reached with T = 0 steps left else FALSE
11: function RPS(R, Vocc, Eocc, V isited, c, g, Tleft, conflicts, Path)
12: if c = g and Tleft = 0 then
13: Path[0]← g
14: Vocc[g][0]← 1
15: return true
16: end if
17: V isited[c][Tleft]← true
18: if Tleft = 0 then return false
19: Initialize Qpriority and Qconflict
20: Tnext ← Tleft − 1
21: for all neighbor n of c do
22: if not V isited[n][Tnext] and |R[g]−R[n]| ≤ Tnext then
23: if IsConflict(c, n, Tnext, Vocc, Eocc) then Append n to Qconflict
24: else Append n to Qpriority
25: end if
26: end for
27: Sort Qpriority using Manhattan(a, b, g)
28: Sort Qconflict using ConflictsManhattan(a, b, g, Tnext, Vocc)
29: for all n in Qpriority do
30: if RPS(R[a], Vocc, Eocc, V isited, n, g, Tnext, conflicts, Path) then
31: Path[Tleft]← c
32: Vocc[c][Tleft]← Vocc[c][Tleft] + 1
33: Eocc[(c, n)][Tleft]← Eocc[(c, n)][Tleft] + 1
34: return true
35: end if
36: end for
37: if conflicts = 0 then return false
38: for all n in Qconflict do
39: if RPS(R[a], Vocc, Eocc, V isited, n, g, Tnext, conflicts−1, Path) then
40: Path[Tleft]← c
41: Vocc[c][Tleft]← Vocc[c][Tleft] + 1
42: Eocc[(c, n)][Tleft]← Eocc[(c, n)][Tleft] + 1
43: return true
44: end if
45: end for
46: return false
47: end function

28

queue is sorted using a Manhattan distance heuristic described in Algorithm 5,
while the conflict queue is sorted based on a conflict-aware heuristic described in
Algorithm 6.

The function then recursively explores the priority neighbors first, as they
provide the most optimal paths. If no valid path is found, the algorithm attempts
to explore moves from the conflict queue, decreasing the remaining allowed conflicts.
If a valid path is discovered, the position and edge usage statistics are updated,
and the function returns success. Otherwise, if no valid moves remain, the function
terminates with failure.

The complexity of the algorithm depends on the number of agents |A|, number
of vertices |V | and on the makespan T . In the worst case, the exponential
number of nodes can be expanded; however, heuristic-based A∗ vertices sorting
significantly reduces the branching of the search, improving runtime efficiency.
The algorithm ensures that all agents obtain feasible paths while minimizing
conflicts and optimizing movement.

Recursive Path Search algorithm in use

The Recursive Path Search algorithm is equally optimal in terms of the
makespan length of the computed paths compared to the Without Crossing and
Without Crossing at the Same Times algorithms, but brings an improvement in
the term of each agent path length. Recursive Path Search algorithm allows agents
to diverge from their shortest paths as long as they are able to travel to their
corresponding goal locations in a given makespan.

It also brings an improvement during path computation in terms of agent
swapping awareness compared to the Without Crossing and Without Crossing at
the Same Times algorithms. This agent swapping awareness in algorithm consists
in the fact that when searching for the makespan-long path, a tie-break condition
is used for path-length equal vertices not just in terms of vertex occupancy but
also in swapping occurrence, which are in this case both specified as conflict.

The last but very important improvement compared to the previous algorithms
comes in the form of agent sorting. While all previous algorithms were greedy
in terms of agent path search execution, this algorithm is making use of the
information about the reachability of the vertices by the agents from which it can
determine the length of the shortest path for the each agent. With information
about the length of the shortest paths, it sort in the descending order the agents
by their corresponding shortest path length before the computation of the single
makespan-long paths for each of them begins. From this approach, we can see
that the agent with the longest shortest path is going to be computed first because
he has no time to diverge from its shortest path, while the agent with the shortest
path has the most time to diverge from it, to make the space for the more priority
agent to pass first.

Combining these three key improvements together leads to a better general
selection of the makespan-long paths in terms of conflicts, while making use of
the spare time of the agents whose shortest path length is smaller than makespan.
This improvement can be seen in the Recursive Path Search algorithm solution to
the example instance introduced in Figure 3.3 where the Without Crossing and
Without Crossing at the Same Times algorithms failed to find a suitable one.

29

Figure 3.4 Conflict avoidance by RPS algorithm copared to algorithms WCR and
XCR from figure 3.3.

In Figure 3.4 we can see the final paths that the Recursive Path Search
algorithm efficiently found for this given instance. On them we can see that
the green agent was computed first, because he has the longest shortest path.
The path for the orange agent was then computed, while the path for the blue
agent was computed at the end. At the beginning the green agent had two valid
options to choose from, ether would be sufficient. He chose to go on the bottom
route, through the blue agent start and goal position, which he did not have
information about. Then the orange agent can be easily computed. The blue
agent is computed lastly with enough time to step aside and make a clean route
for the green agent, because he knows about his presence, because the green
agent was computed before. If the green agent at the beginning chose the top
path through orange goal position, the instance would also be solved because the
orange agent would be able to wait and let pass the green agent through its goal
and then make a move toward it, while the blue agent at the end would just be
standing at his finish.

3.2 Vertex A* Sorting Heuristics
Vertex A∗ sorting heuristics play a crucial role in determining the order in

which neighboring positions are explored during the pathfinding process. By
prioritizing certain moves over others, the search algorithm can be significantly
optimized, reducing unnecessary backtracking and improving overall efficiency.
Two primary heuristics are employed in the Recursive Path Search algorithm,
which are sorted by the Manhattan distance comparison Algorithm 5 and the
Manhattan distance with conflict comparison Algorithm 6, while the others are
used in the basic A∗ based searches such as Without Crossing and Without Crossing
at the Same Times. These heuristics ensure that the agent moves towards its goal
in an optimal manner while also considering potential conflicts with other agents.

Manhattan distance

The Manhattan distance heuristic is a fundamental metric used to evaluate
the priority of two candidate positions relative to the agent’s goal. Given two
positions a = (ax, ay) and b = (bx, by), the heuristic computes the Manhattan

30

distance from each position to the goal g = (gx, gy):

h(a) = |ax − gx|+ |ay − gy| (3.1)

h(b) = |bx − gx|+ |by − gy| (3.2)

Algorithm 4 Manhattan distance Computation
1: Input: Positions v = (vx, vy)
2: Input: Goal position g = (gx, gy)
3: Return: Manhattan distance h(v) between v position and goal g
4: function ManhattanDistance(v, g)
5: hv ← |vx − vx|+ |ay − gy|
6: return hv
7: end function

A position a is given higher priority over b if its computed heuristic value is
lower, i.e.,

h(a) < h(b). (3.3)
This sorting mechanism ensures that the search first explores paths that move

an agent closer to its goal, minimizing detours. The Manhattan heuristic is
particularly effective in grid-based environments where movement is constrained
to axis-aligned directions. It is utilized in the recursive function RPS() to order
the priority queue Qpriority, thereby guiding the search towards the goal in an
optimal manner.

Algorithm 5 Manhattan distance Comparison
1: Input: Positions a = (ax, ay)
2: Input: Positions b = (bx, by)
3: Input: Goal position g = (gx, gy)
4: Return: TRUE if a has higher priority than b else FALSE
5: function Manhattan(a, b, g)
6: ha ← ManhattanDistance(a, g)
7: hb ← ManhattanDistance(b, g)
8: if ha < hb then return true
9: return false

10: end function

Manhattan distance with conflicts

While the Manhattan distance heuristic effectively prioritizes movement to-
wards the goal, it does not account for conflicts that may arise due to multiple
agents competing for the same space. To mitigate this, an extended heuristic is
introduced that incorporates vertex occupancy information.

Given two positions a and b, if the Manhattan heuristic ranks them equally, a
secondary comparison is made based on the occupancy count stored in Vocc[v][t].

31

This value tracks how many times a vertex has been occupied at a given time step
t. The heuristic is computed as follows:

aused = Vocc[a][t], bused = Vocc[b][t]. (3.4)

If aused < bused, position a is prioritized over b, as it has historically encountered
fewer conflicts. This strategy ensures that the search favors paths that minimize
collisions while maintaining proximity to the goal.

This enhanced heuristic is crucial in scenarios where multiple agents compete
for limited space, as it balances goal-oriented movement with conflict resolution.
The function ConflictsManhattan() applies this logic within RPS() by sorting
the conflict queue Qconflict accordingly. By integrating conflict awareness into
the heuristic, the algorithm achieves better coordination among agents while
preserving computational efficiency.

Overall, the combination of Manhattan distance and conflict-aware heuristics
provides an effective sorting mechanism that enhances pathfinding in multi-agent
environments. By prioritizing movement towards the goal while accounting for
occupancy constraints, the algorithm significantly improves path efficiency with
regards to conflicts.

Algorithm 6 Manhattan distance with vertex conflicts Comparison
1: Input: Position a = (ax, ay)
2: Input: Position b = (bx, by)
3: Input: Goal position g = (gx, gy)
4: Input: Time t
5: Input: Vocc[v][t] (tracks how many times a vertex is occupied in given time)
6: Return: TRUE if a has higher priority than b else FALSE
7: function ConflictsManhattan(a, b, g, t, Vocc)
8: if Manhattan(a, b, g) then return true
9: if Manhattan(b, a, g) then return false

10: aused ← Vocc[a][t]
11: bused ← Vocc[b][t]
12: if aused < bused then return true
13: return false
14: end function

Without Crossing Ranking A∗ heuristic (WCR)

The A∗ heuristic Without Crossing Ranking (WCR) is a sorting mechanism
designed to prioritize nodes during pathfinding while preventing unnecessary
crossings or conflicts. This heuristic extends the traditional A∗ search algorithm
by incorporating occupancy constraints, ensuring that paths are chosen not only
based on cost, but also on the history of vertex usage.

Given two positions a and b, together with a goal position g, the heuristic
evaluates which of the two should be prioritized based on two main factors: the
estimated total cost to the goal and the frequency of vertex occupation. The first
step involves computing the heuristic cost for each position. The cost function is
defined as:

32

fv = G[v] + ManhattanDistance(v, g) (3.5)

where G[v] represents the accumulated cost from the starting position to the
vertex v, and the Manhattan distance provides an admissible estimate of the
remaining cost to reach the goal. This cost function follows the principle of A∗ by
combining actual and estimated costs.

The comparison proceeds as follows:

• If fa < fb, then the position a is considered to have a higher priority, and
the function returns true.

• If fa > fb, then b is preferred and the function returns false.

• If both positions have the same estimated cost, the heuristic introduces an
additional tie-breaking criterion based on occupancy.

To prevent excessive congestion at frequently used nodes, the function examines
the recorded vertex occupancy values Vocc[v], which track how often each position
has been occupied. If position a has been used less frequently than position b,
then a is prioritized, returning true. Otherwise, b retains priority.

Algorithm 7 Without Crossing Ranking A∗ heuristic
1: Input: Position a = (ax, ay)
2: Input: Position b = (bx, by)
3: Input: Goal position g = (gx, gy)
4: Input: G[v] (tracks cost of the path from start to a vertex)
5: Input: Vocc[v] (tracks how many times a vertex is occupied)
6: Return: TRUE if a has higher priority than b else FALSE
7: function WCR(a, b, g, G, Vocc)
8: fa ← G[v]+ ManhattanDistance(a, g)
9: fb ← G[v]+ ManhattanDistance(b, g)

10: if fa < fb then return true
11: if fa > fb then return false
12: aused ← Vocc[a]
13: bused ← Vocc[b]
14: if aused < bused then return true
15: return false
16: end function

This approach improves path selection by discouraging the use of congested
or highly visited areas while maintaining optimal path efficiency. By integrating
both cost estimation and historical usage data, the heuristic ensures a more
balanced and conflict-free navigation strategy, reducing unnecessary crossings and
improving overall pathfinding performance.

Without Crossing at the same times Ranking A∗ heuristic (XCR)

The A∗ heuristic Without Crossing at the same times Ranking (XCR) is an
extension of the A∗ Without Crossing Ranking heuristic (WCR). This variant

33

refines the sorting mechanism by ensuring that two agents do not cross paths at
the same timestep. Although WCR already incorporates occupancy constraints,
XCR introduces a time-sensitive component to prevent simultaneous conflicts.

Algorithm 8 Without Crossing at the same times Ranking A∗ heuristic
1: Input: Position a = (ax, ay)
2: Input: Position b = (bx, by)
3: Input: Goal position g = (gx, gy)
4: Input: G[v] (tracks cost of the path from start to a vertex)
5: Input: Vocc[v][t] (tracks how many times a vertex is occupied in given time)
6: Return: TRUE if a has higher priority than b else FALSE
7: function XCR(a, b, g, t, G, Vocc)
8: return WCR(a, b, g, G, Vocc[t])
9: end function

Similarly to WCR, the function prioritizes positions a and b based on the
estimated total cost to the goal. The heuristic cost function remains the same as
in the WCR where G[v] denotes the accumulated cost from the starting position
to the vertex v, and the Manhattan distance estimates the remaining distance
to the goal. The fundamental logic of WCR is preserved, with the algorithm
prioritizing the position that minimizes this heuristic cost.

However, XCR enhances the decision-making process by introducing a time-
dependent vertex occupancy check. Instead of using a static Vocc[v] to track vertex
usage, XCR evaluates Vocc[v][t], which records how frequently a vertex is occupied
at a specific timestep t. This ensures that path assignments avoid simultaneous
occupation of the same vertex.

The XCR function calls the WCR directly with the modified occupancy data
at time t:

XCR(a, b, g, t, G, Vocc) = WCR(a, b, g, G, Vocc[t]) (3.6)
By extending WCR with a time-dependent constraint, XCR prevents agents

from occupying the same position in the same timestep, reducing potential con-
flicts in dynamic environments. This modification makes the heuristic more
robust in multi-agent pathfinding scenarios, improving spatial coordination while
maintaining optimal path selection.

3.3 Swapping condition
In multi-agent pathfinding, conflicts can arise not only from two agents at-

tempting to occupy the same position, but also from agents attempting to swap
positions simultaneously. To handle these cases, a swapping condition is intro-
duced to determine whether the transition from a current position c to a next
position n at a given time step t results in a conflict. Two primary types of conflict
are considered when assessing a valid movement:

• Vertex Conflict: A conflict occurs when an agent attempts to move to
a vertex that is already occupied at time t, i.e., if the vertex occupancy
tracker Vocc[n][t] is greater than zero.

34

• Edge Conflict: A conflict occurs when two agents attempt to swap positions
at the same time, i.e., one moves from c to n while another moves from n
to c. This is detected by checking the edge occupancy tracker Eocc[(c, n)][t],
which keeps track of the transitions between the connected nodes.

The function IsConflict() evaluates both of these conditions simultaneously.
If a vertex or an edge conflict is detected, the function returns true, indicating
that the transition is invalid. The condition is formalized as follows:

IsConflict(c, n, t) =

⎧⎨⎩true, if Vocc[n][t] > 0 or Eocc[(c, n)][t] > 0,

false, otherwise.
(3.7)

The swapping condition plays a critical role in ensuring a collision-free move-
ment in a constrained environment. It is used within the main pathfinding logic
to prevent agents from making conflicting moves, ensuring smooth navigation.
Specifically, this function is applied to the conflict resolution mechanism within
RPS(), where an agent’s movement is evaluated before execution. If IsConflict()
returns true, alternative paths or waiting strategies are considered to dynamically
resolve the conflict.

Algorithm 9 Checks for edge or vertex conflict between two vertices in given time
1: Input: Current position c = (cx, cy)
2: Input: Next position n = (nx, ny)
3: Input: Time of potential conflict t
4: Input: Vocc[v][t] (tracks how many times a vertex is occupied in given time)
5: Input: Eocc[e][t] (tracks how many times an edge is occupied in given time)
6: Return: TRUE if transition from c to n in given timestep t results in conflict

else FALSE
7: function IsConflict(c, n, t, Vocc, Eocc)
8: if Vocc[n][t] > 0 or Eocc[(c, n)][t] > 0 then return true
9: return false

10: end function

By incorporating both vertex and edge conflicts, the algorithm effectively pre-
vents agents from occupying the same space or swapping positions simultaneously.
This approach enhances the efficiency and reliability of multi-agent coordination,
reducing unnecessary backtracking and ensuring smoother navigation in complex
environments.

3.4 Determining Solution from Shortest Paths
Strategies

After computing the shortest paths for all agents using one of the defined
search strategies, we can verify whether these paths are valid. This validation
process ensures that all conditions described in Equations (2.1)–(2.7) are satisfied,
preventing conflicts such as agents occupying the same position simultaneously or
swapping positions through the same edge.

35

The validation procedure begins with the fundamental assumption that the
pathfinding process inherently satisfies the conditions that ensure that each agent
starts at its designated starting position (Equation (2.1)) and reaches its goal
at the final timestep (Equation (2.2)). Similarly, the constraint ensuring that
each agent occupies only one position at any given time (Equation (2.3)) is
inherently guaranteed by the pathfinder, as it generates individual paths without
self-overlaps.

The first explicit check ensures that no two agents occupy the same vertex in
the same timestep, as required by Equation (2.4). This is verified by iterating
over all agents at every timestep and comparing their positions. If two agents
are found at the same vertex simultaneously, the solution is deemed invalid. This
check is necessary because individual shortest paths are computed independently
in some instances, so then the potential conflicts between agents must be resolved
by the next stage.

Next, the validation process ensures that agents move only through valid
edges and that transitions between vertices comply with Equation (2.5) and
Equation (2.6). These conditions are implicitly satisfied by the pathfinder, as
agents can only traverse edges that are part of the graph structure and must
always arrive at their next position at the expected timestep.

Finally, an important constraint to check is that no two agents will change their
corresponding positions using the same edge in the same timestep, as required by
Equation (2.7). This is verified by iterating through all agents at every timestep
and checking whether two agents have exchanged their positions between two
consecutive timesteps. If such a swap is detected, the solution is invalid as it
violates the restriction that an edge can only be occupied by a single directed
movement per timestep.

If all conditions are satisfied, the solution is valid, which means that all agents
can follow their computed paths without conflicts. This verification ensures that
the multi-agent system can execute the computed paths in a collision-free manner
while maintaining adherence to the underlying graph structure and movement
constraints.

36

4 Experimental Evaluation
In this chapter, we will look at a comparison of the individual reduction-

based graph prunning strategies Makespan-add [22], Prune-and-cut [22], and
Combined [22], all combined with the proposed pathfinding heuristics which were
described in the previous chapter while focusing on their overall speedup in finding
a solution to an MAPF instance compared to the basic reduction-based Baseline
approach.

4.1 Instances
For testing of the proposed algorithms, grid-based maps representing different

types of environment were used. For each type of map, the sizes of 32×32, 64×64,
and finally 128 × 128 were included to progressively increase computational
complexity. In addition, maps of large cities were included in the tests with their
size 256× 256 to truly test the capabilities of the pathfinding heuristics. In the
end, the large warehouse map 164×340 was also added to the test portfolio to test
the capabilities of algorithms on the probable map type for this type of problem
solving. Agents were placed incrementally on these maps, increasing in number
each time the algorithm successfully solved a given instance. Each computation
started with 5 agents, and if the algorithm was able to solve the instance within a
time limit of 30 seconds, an additional 5 agents were introduced to the total limit
of 100 agents when the computation was restarted. Conversely, if the algorithm
failed to solve a given instance within the specified time limit, it was assumed
that it would be incapable of solving an instance with a greater number of agents
and thus the experiment was terminated.

The first type of map tested was empty, specifically empty-32-32, empty-64-
64, and empty-128-128. Instances for the empty-32-32 map were obtained from
movingai.com [8]. The instances for the remaining maps, empty-64-64 and empty-
128-128, were generated by randomly distributing the start and goal positions of
the agents.

Figure 4.1 Layouts of the maze-type maps. From left to right: maze-32-32-2, maze-
64-64-2, and maze-128-128-2.

The next type of maps used in our experiments was maze. Their respective
visualizations are shown in Figure 4.1. The maps maze-32-32 and maze-128-128,
along with their respective instances, were obtained from movingai.com [8]. The

37

maze-64-64 map was created by mirroring the maze-32-32 map, first along the
horizontal axis and then along the vertical axis. The individual instances for this
map were subsequently generated by randomly distributing the start and goal
positions of the agents.

Figure 4.2 Layouts of the random-type maps. From left to right: random-32-32-20,
random-64-64-20, and random-128-128-20.

The next category included random maps, illustrated in Figure 4.2. The
random-32-32-20 and random-64-64-20 maps, along with their instances, were
obtained from movingai.com [8]. The random-128-128-20 map was created similarly
to the previous case, by mirroring the random-64-64-20 map, first along the
horizontal axis and then along the vertical axis. The individual instances for this
map were subsequently generated by randomly distributing the start and goal
positions of the agents.

Figure 4.3 Layouts of the room-type maps. From left to right: room-32-32-4, room-
64-64-4, and room-128-128-4.

The most challenging basic environment for the agents was the room map
type, shown in Figure 4.3. This time, only the room-32-32-4 map, along with
its instances, was obtained from movingai.com [8]. The remaining two maps,
room-64-64-4 and room-128-128-4, were generated by mirroring the room-32-32-4
and room-64-64-4 maps, respectively. The instances for both mirrored maps were
then generated by randomly distributing the start and goal positions of the agents.

The environments most challenging due to their large size for agents were
the types of map of the city family, shown in Figure 4.4. All three maps along
with their instances were obtained from movingai.com [8]. In the testing was also
added the largest warehouse type map, shown in Figure 4.5 from movingai.com [8]
with the corresponding instances.

38

Figure 4.4 Layout of the large maps. From left to right: Berlin_1_256, Paris_1_256,
and Boston_0_256.

Figure 4.5 Layout of the large Warehouse-20-40-10-2-2 map.

Empirical evaluation

To test and compare the proposed path selection algorithms, we reimplement
the subgraph methods and the reduction-based MAPF solver. For the underlying
reduction-based MAPF solver, MAPF-encodings [27] project was used, which
for SAT solving uses Kissat [28]. For the tasks management and execution the
BS-thread-pool [29] library was used. All of the code is implemented in C++
(compiled using g++ with the C++20 standard) and run on a PC with AMD
Ryzen™ 9 5900X CPU and a limit of 56 GB of RAM. A description of the test
environment, input files, and results can be found in the attachments A.1.

4.2 Results
When comparing the algorithms, we focus on their various properties. Of all

the properties, we focus most on the overall calculation speed, and we also look at
the number of agents they can solve in the form of success rate. In individual tables
and graphs, we refer to the reduction-based graph prunning strategies by using the
initials of their names, the so-called B refers to the Baseline algorithm, M refers
to the Makespan-add algorithm, P to the Prune-and-cut algorithm and C to the
Combined algorithm [22]. We split the results into two groups to separate optimal

39

and sub-optimal algorithms while comparing their results coherently. Next, we
will be interested in the success of individual pathfinding algorithms in terms of
their ability to solve a given instance without the need to use a reduction-based
graph pruning strategy. We will refer to this metric as Solved in preprocess and
it will express the percentage of times a given pathfinding algorithm was able to
solve a given instance on its own. To the newly proposed pathfinding heuristics we
refer in the individual tables and graphs by they corresponding short name such
as Bia for the Biased algorithm, Ran for the Random algorithm, WCR for the
Without Crossing algorithm, XCR for the Without Crossing at the Same Times
algorithm and RPS for the final Recursive Path Search algorithm.

4.2.1 Success rate of Sub-optimal algorithms
Sub-optimal algorithms represent an important part of reduction-based ap-

proaches in terms of their speed. It turns out that sub-optimal algorithms such as
Makespan-add and Combined can often find a solution faster than their optimal
counterparts, but at the expense of some suboptimality [22]. Because of this fact,
we decided to look at this type of algorithms separately and try out the proposed
heuristics on them and observe how they affect their ability to find solutions, both
in terms of overall success rate and in terms of their suboptimality. We will soon
take a closer look at the results of the proposed heuristics in combination with
the Combined algorithm, while we will also take a closer look at their impact in
combination with the Makespan-add algorithm.

Combined strategy combined with pathfinding heuristics

The individual results of pathfinding algorithms in combination with the
sub-optimal algorithms Combined and Makespan-add can be seen in Tables
4.1 and 4.2 respectively. The tables show two important metrics according to
which we evaluate a given combination of algorithms, namely Success Rate and
Sub-Optimality which are separately displayed for each map type and their
corresponding size. Success Rate represents the proportion of the number of
solved instances with all instances that were solved by at least one of the tested
approaches. So, the Success Rate 1 means that the given combination of algorithm
and pathfinding heuristic found a solution within the time limit for each instance
that was presented to it, which we aim for. Sub-Optimality then represents
the percentage of cases in which the given approach found a solution that was
sub-optimal. In this case, this means for us that the closer this number is to 0
that we aim for, the better the given combination of algorithm and heuristic.

In Table 4.1 we can see the results of the comparison of individual combinations
of heuristics with the suboptimal algorithm Combined by the metrics described
above. From the table we can see that the Success Rate for maps of size 32 is not
completely dominantly biased towards any algorithm, however, the RPS algorithm
performs best on average out of all of them what was expected. The highest
Success Rate is achieved for maps of type empty and maze, while at the same time
it achieved complete success on the random map with all other algorithms. The
Success Rate on the room map is the most interesting, because it gives us insight
into how individual algorithms work, because, due to the complexity of this map,
the reduction-based graph pruning Combined algorithm is essential for finding

40

Map
Size Type Metric B C

Bia Ran WCR XCR RPS

32

empty
Succes
rate

0.63 0.775 0.805 0.7 0.79 1
maze 0.714 0.733 0.77 0.752 0.839 0.932

random 0.985 1 1 1 1 1
room 0.875 0.95 0.91 0.895 0.95 0.935
empty

Sub-
Optimality

- 0.039 0 0 0.032 0
maze - 0.627 0.091 0.117 0.12 0

random - 0.005 0 0 0.01 0
room - 0.043 0.049 0.034 0.074 0.022

64

empty
Succes
rate

0.1 0.41 0.38 0.355 0.375 1
maze 0.134 0.279 0.291 0.279 0.285 0.994

random 0.077 0.332 0.316 0.281 0.321 1
room 0.2 0.455 0.43 0.375 0.435 1
empty

Sub-
Optimality

- 0 0 0 0 0
maze - 0.02 0 0 0.078 0

random - 0.046 0 0 0 0
room - 0 0 0 0 0

128

empty
Succes
rate

0 0.175 0.19 0.2 0.145 1
maze 0 0.026 0.037 0.016 0.021 1

random 0.02 0.175 0.16 0.15 0.14 1
room 0.025 0.175 0.19 0.175 0.175 1
empty

Sub-
Optimality

- 0 0 0 0 0
maze - 0 0 0 0 0

random - 0 0 0 0 0
room - 0 0 0 0 0

Table 4.1 Comparison of individual combinations of heuristics with the suboptimal
algorithm Combined [22] by the specified metric.

the solution. In this case, the most successful algorithms were also Bia and XCR,
followed by the RPS algorithm, and at the end, the Ran algorithm ended up with
the worst success rate. The highest success of the Bia and XCR algorithms can be
easily explained by their behavior, which in this case is beneficial for the Combined
algorithm. The paths found by these two algorithms differ from the others in that
they generally use fewer vertices, which is beneficial for reduction-based graph
pruning strategies [22]. The paths found by the Bia algorithm are specific in that
they all have the same preference, which has the indirect consequence that they
often go through the same vertices. The WCR algorithm tries to find paths that
cross as little as possible throughout their entire length, which ultimately makes
the sum of all used vertices on the paths in the graph larger than for the XCR
algorithm, which allows paths to cross, while only trying not to cross them at
the same time when several agents would pass through the same vertex at the
same time. This results in the XCR algorithm using fewer vertices overall than
the WCR algorithm, which ultimately makes it easier for the Combined algorithm
to find a solution. The RPS algorithm still finds the best paths in terms of the
number of collisions in this case, but at the cost of using more vertices, while still
using fewer of them than the Ran algorithm, which is expected and also correct.

41

Sub-optimality is strongly dominated by the RPS algorithm for all map sizes
32, 64 and 128. From the individual results, we can see that the larger the map,
the more important it is which pathfinding algorithm is used. We can imagine
this as a weight of the problem. The smaller the map, the more likely it is that
a great portion of vertices from it will have to be used to solve a given instance,
and therefore it is very important that the reduction-based solver is as optimal as
possible, because solving such an instance will require solving a larger number
of conflicts that arise between individual agents in a small space. So the more
weight from the problem is needed to be carried by the reduction-based solver.
On the other hand, for large maps, it is again important that the pathfinding
itself avoids as many conflicts as possible, because for them it is much simpler and
more efficient on large maps where fewer agents are trying to move. Hence, the
more weight from the problem needs to be carried by the pathfinder to lesser the
burden from the reduction-based solver. From this we can clearly determine that
the most advanced RPS pathfinding algorithm is the most successful of all the
presented algorithms as expected because it was able to reduce the suboptimality
of the Combined algorithm to zero in almost all cases. It failed to do so only for a
room map of size 32, while still achieving the best result.

When we look at the success rate of individual algorithm combinations on
maps of size 64 and 128, we can see that the RPS algorithm dominates the
other approaches in a striking way. This huge difference between the individual
algorithms can easily be explained by the sheer number of instances that the
individual algorithm were able to solve. The ability to frequently find a solution
using the RPS algorithm alone without the need to call a reduction-based solver
increases with increasing map sizes, which we will show in more detail and describe
later in Table 4.4. The actual speed of finding a solution using the RPS algorithm
will be shown and described in more detail later in Figures 4.6 and 4.7.

Makespan-add strategy combined with pathfinding heuristics

Another sub-optimal reduction-based graph pruning strategy tested combined
with the proposed pathfinding algorithms was the Makespan-add strategy, the
individual results of which are given in Table 4.2. As with the Combined algorithm,
in this case we were most interested in the achieved success rate on individual map
types, and we also focused on the achieved sub-optimality of individual strategy
combinations. As with the sub-optimal Combined strategy, the Makespan-add
pathfinding heuristic RPS achieved by far the best results, either in terms of
achieved success rate or in terms of achieved sub-optimality among all pathfinding
approaches. As in the previous case, the RPS algorithm lags behind in terms of
achieved success rate only just on the room map of size 32. The performance it
achieved on this map was not very far from the best algorithm on this map of
this size, which was WCR.

All in all, from the achieved results of individual pathfinding heuristics in
combination with the sub-optimal reduction-based graph pruning strategies, we
can conclude that while each of the proposed strategies has its own specifics, it
turns out that the RPS strategy is by far the best from all tested. This strategy
achieves much better results than the others, both in terms of success rate and
in terms of achieved sub-optimality. We can therefore conclude that the RPS
algorithm represents a substantial improvement over the other algorithms, while

42

Map
Size Type Metric B M

Bia Ran WCR XCR RPS

32

empty
Succes
rate

0.63 0.645 0.66 0.625 0.625 1
maze 0.714 0.776 0.77 0.758 0.795 0.944

random 0.985 0.995 0.995 1. 0.995 1
room 0.875 0.93 0.92 0.935 0.915 0.925
empty

Sub-
Optimality

- 0 0 0 0 0
maze - 0 0 0 0 0

random - 0 0 0 0.005 0
room - 0.027 0.044 0.011 0.049 0.005

64

empty
Succes
rate

0.1 0.24 0.24 0.225 0.23 1
maze 0.134 0.235 0.229 0.223 0.251 0.994

random 0.077 0.199 0.204 0.209 0.214 1
room 0.2 0.32 0.32 0.295 0.3 1
empty

Sub-
Optimality

- 0 0 0 0 0
maze - 0 0 0 0 0

random - 0 0 0 0 0
room - 0 0 0 0 0

128

empty
Succes
rate

0 0.155 0.165 0.19 0.135 1
maze 0 0.021 0.032 0.021 0.016 1

random 0.02 0.11 0.105 0.09 0.075 1
room 0.025 0.08 0.11 0.095 0.085 1
empty

Sub-
Optimality

- 0 0 0 0 0
maze - 0 0 0 0 0

random - 0 0 0 0 0
room - 0 0 0 0 0

Table 4.2 Comparison of individual combinations of heuristics with the suboptimal
algorithm Makespan-add [22] by the specified metric.

showing its dominance across all environments with different map sizes, while its
performance gains rise with growing map sizes.

4.2.2 Success rate of Optimal algorithm
In the previous section, we focused on combinations of pathfinding heuristics

and sub-optimal algorithms. Sub-optimal algorithms often have their contribution
in the form of higher performance or speed, which can be beneficial in some
situations, but at the expense of the optimality of the solution found. When
searching for a solution to a MAPF problem, the optimality of the solution
found is in the most cases of our most interest, and therefore algorithms that
guarantee optimality are often the ones that we are trying to improve. The
performance of pathfinding methods on sub-optimal algorithms gives us insight
into how individual combinations of pathfinding heuristics will behave with an
algorithm that guarantees optimality. The optimal algorithm mentioned in this
case is the Prune-and-cut [22] strategy, which, like the sub-optimal Combined and
Makespan-add strategies, relies heavily on finding suitable paths, which can then
be used to perform graph pruning.

43

Map
Size Type Metric B P

Bia Ran WCR XCR RPS

32

empty
Succes
rate

0.63 0.785 0.795 0.7 0.79 1
maze 0.714 0.714 0.77 0.745 0.783 0.925

random 0.985 0.99 0.985 0.985 0.985 1
room 0.875 0.89 0.85 0.835 0.865 0.87

64

empty
Succes
rate

0.1 0.41 0.38 0.355 0.375 1
maze 0.134 0.263 0.279 0.268 0.274 0.983

random 0.077 0.332 0.316 0.281 0.332 1
room 0.2 0.455 0.43 0.38 0.435 1

128

empty
Succes
rate

0 0.175 0.19 0.2 0.145 1
maze 0 0.026 0.037 0.026 0.021 1

random 0.02 0.175 0.16 0.15 0.14 1
room 0.025 0.17 0.19 0.175 0.175 1

Table 4.3 Comparison of individual combinations of heuristics with the optimal
algorithm Prune-and-cut [22] by the success rate percentage metric.

In Table 4.3 we can see the results of the comparison of individual combinations
of heuristics with the optimal algorithm Prune-and-cut using the success rate
metric, which was already described above. In the contracts with the algorithms
Combined and Makespan-add the table now does not contain the result for the
sub-optimality, because the algorithm tested guarantees that the solution find
is always optimal. When we compared the success rate of individual algorithm
combinations for Combined strategy for maps of size 32, we were able to see that
the results were not completely dominated by any algorithm; however, the RPS
algorithm performed the best on average of all of them, as expected. In this case,
however, the RPS algorithm shows much better results compared to the others.
He wins in almost every map category on every map size except for the room one
with a size of 32. The Success Rate on this room map is the most interesting
because it gives us insight into how individual algorithms work, because, due to
the complexity of this map, the reduction-based graph pruning Prune-and-cut
algorithm is essential for finding the solution. In this case, the most successful
algorithm was Bia, closely followed by the RPS algorithm, and in the end, the
WCR algorithm ended up with the worst success rate. Due to the nature in which
the Prune-and-cut strategy operates, it shows that Prune-and-cut is more sensitive
to the paths provided than the Combined pruning strategy, which can be seen
from the better results of the pathfinding algorithm RPS. The RPS algorithm
with the Prune-and-cut strategy combination finds in most cases the solution to
the given instance, which shows that the RPS algorithm is even more suited for
the optimal strategy than for the sub-optimal ones, in the tightly packed instances,
while still showing strong dominance on maps with greater number of vertices
such as 64 and 128.

Overall, based on the results obtained from individual pathfinding heuristics
combined with the optimal reduction-based graph pruning strategy, it can be
concluded that although each proposed approach exhibits unique characteristics,
the RPS strategy consistently outperforms all others evaluated. This method
delivers a significantly superior outcome in terms of success rate and scalability.

44

Consequently, the RPS algorithm can be regarded as a notable advancement
over alternative strategies, demonstrating its superiority across different types
of map with varying sizes, with its performance benefits becoming increasingly
pronounced as the map size grows.

4.2.3 Solved by pathfinding
In previous sections, we have discussed the combinations of pathfinding al-

gorithms with reduction-based graph pruning strategies, focusing on the im-
provements that these strategies can provide in combination with them. In this
section, on the other hand, we will focus purely on the performance of individual
pathfinding algorithms. In subsection 3.4, we described how we can evaluate
individual paths found by pathfinding algorithms and determine whether the paths
themselves represent solutions to the given instance for which they were searched.
With this approach, we can greatly speed up the overall calculation of the solution
search, because if a given pathfinding algorithm found paths that meet all the
solution conditions, we would not have to use any reduction-based method to
calculate it. When testing the full combinations of pathfinding algorithm with
reduction-based graph pruning strategy, we took advantage of this fact, and before
each call to the reduction-based strategy, we checked whether the paths found by
the tested pathfinding algorithm already met the MAPF solution conditions.

Map
Size Type Metric P

Bia Ran WCR XCR RPS

32

empty
Solved by
pathfinding

0.05 0.065 0.075 0.07 1
maze 0.006 0.012 0.025 0.025 0.845

random 0.04 0.045 0.065 0.035 0.6
room 0.025 0.03 0.035 0.035 0.55

64

empty
Solved by
pathfinding

0.095 0.105 0.135 0.1 1
maze 0.028 0.034 0.028 0.034 0.972

random 0.031 0.036 0.082 0.046 1
room 0.035 0.06 0.04 0.035 1

128

empty
Solved by
pathfinding

0.14 0.15 0.18 0.115 1
maze 0.021 0.032 0.021 0.016 1

random 0.095 0.085 0.075 0.05 1
room 0.055 0.095 0.065 0.05 1

Table 4.4 Percentage of instances solved by the concrete pathfinding algorithm without
the use of reduction-based graph pruning Prune-and-cut [22] strategy.

In Table 4.4 we can see the individual results of the tested pathfinding al-
gorithms indicating their ratio of solved instances without the need to call the
reduction-based graph pruning Prune-and-cut strategy. From the results, we can
see the absolute dominance of the RPS algorithm across all map types and their
individual sizes. The RPS algorithm was able to independently solve 100% of
instances on the empty map in the all three sizes, namely 32, 64 and 128. In
general, the most difficult instances turned out to be those located on the smallest
maps, namely 32, due to the ratio between the free vertices and the number of
agents, since we chose 100 agents as the maximum tested for each map. The

45

second most difficult environment of size 32 turned out to be the maze map, where
the RPS algorithm was able to independently solve 85% of instances. The next
most difficult environment turned out to be the map of type random of size 32,
where the RPS algorithm was able to solve 60% of the instances independently.
The most difficult environment turned out to be the room map of size 32, where
the RPS algorithm solved 55% of the instances independently, which turns out to
be a very good result, because the room map is the most difficult and difficult to
solve of all the maps, which can also be seen from the previous results of other
algorithms tested. The RPS algorithm was able to solve almost all instances
independently on maps of size 64, achieving 100% of success on maps of the empty,
random, and room types. The only map of size 64 in which the RPS algorithm
did not find a solution independently for all instances is the maze map, where it
managed to achieve 97% of success. On larger maps of size 128, the RPS algorithm
demonstrated its ability to search for solutions on large maps efficiently, achieving
a full 100% success rate in all environments tested.

From the results achieved for the RPS algorithm, we can confidently conclude
that it has demonstrated an impressive ability to solve the vast majority of
presented instances independently, without the need to use a reduction-based
solver algorithm, and in a negligibly short time compared to other reduction-based
approaches. From this we can generally conclude that the RPS algorithm has
proven to be a suitable indicator of difficult instances that cannot be solved by it.
All other instances that the RPS algorithm was able to solve independently can
be considered simple in the future, because the RPS algorithm can solve them
optimally in a few milliseconds, as we will show in the next subsection in Figures
4.6 and 4.7. In future work, we therefore propose to focus only on instances that
are difficult in terms of not finding a solution using the RPS algorithm. These
instances are worth closer examination, while further optimizations should be
primary focused on these RPS-hard instances.

4.2.4 Overall solution finding speedup
In the previous subsection, we focused on the very important ability of the

tested pathfinding algorithms to find optimal solutions on given instances without
the subsequent need to use a reduction-based solver algorithm. We have shown that
the RPS algorithm achieves respectable results in this regard. In this subsection,
we will focus on an extremely important aspect of the tested approaches, which is
their overall speed of finding the optimal solution. We will therefore look at how
individual pathfinding algorithms affect the Prune-and-cut algorithm in terms of
the overall computation time, and thus the finding of the optimal solution.

For a more detailed comparison of the running speed of the individual algo-
rithms, we refer to Figures 4.6 and 4.7, each of which shows a different map size,
one for normal maps in sizes 32, 64, and 128, while the other is for the large
town maps with the large warehouse map. They show us the number of instances
solved by a given time-limit. Each color represents one algorithm, and the lower
the curve, the better it is for the given algorithm combination.

46

Normal maps

In Figure 4.6 we can see the individual time complexity of the combinations
tested of the optimal Prune-and-cut algorithm with pathfinding algorithms on
normal maps. This graph shows the results of empty, maze, random, and room
map types in their corresponding sizes 32, 64, and 128.

On the individual curves in the graphs we can clearly see that the Baseline
algorithm is the slowest, while its calculation time is clearly growing rapidly, which
is based on the results shown in our original work [22], while the speed curve
of the other combinations of the algorithms Bia, Ran, WCR and XCR is much
shallower. Among these four algorithms, not one is significantly better than the
others, which can be seen from the way their individual corresponding curves
constantly overlap.

Figure 4.6 Number of instances solved by the tested algorithm combinations by a
given time-limit on normal map types.

The most important result was achieved by the RPS algorithm. It was able
to solve by far the largest number of instances of all the algorithms, while it was
also by far the fastest from all of them. From its corresponding P-RPS curve we
can see that the total actual time complexity of the RPS algorithm is only on the
order of a few milliseconds on classical maps. The practically constant part of the
given curve represents all cases where the solution of the given instance was found
by the RPS algorithm without the help of the reduction-based graph pruning
Prune-and-cut strategy. From this we can easily see the efficiency of the RPS
algorithm itself, proving that it is not only able to find the solution on its own in
a large percentage of cases, but also manages to do so in negligible time compared
to reduction-based methods, which proves its general usability and time-saving
nature.

47

Large maps

Due to the impressive results achieved by the RPS algorithm, we decided to
test it on much larger and more complex maps with a much larger number of
agents. We tested individual algorithms on 256 × 256 city maps, the layout of
which is shown in Figure 4.4. We also added a large warehouse map to the test,
whose size is 164× 360 and its layout is shown in Figure 4.5. Due to the huge size
of the given maps, we decided to raise the maximum allowed limit of agents in one
instance to 900, which turned out to be correct because the RPS algorithm was
comfortably able to solve many more agents on these maps than the original 100.

Figure 4.7 Number of instances solved by the tested algorithm combinations by a
given time-limit on large map types.

On normal-sized maps, the RPS algorithm achieved by far the best results,
while on large maps this advantage was even more pronounced, as can be seen
in Figure 4.7. The other algorithms were able to solve only a tiny fraction of
the number of instances that the RPS algorithm was able to solve in these test
environments. In the vast majority of cases, the RPS algorithm was able to reach
the limit of 900 agents on a given map, which demonstrates its ability to cope
effectively with large environments. All instances solved by the combination of
the RPS and Prune-and-cut algorithms were solved purely by the RPS algorithm
because if the given RPS algorithm could not find a solution on its own, then
the Prune-and-cut algorithm was unable to solve the given instance, due to its
extreme complexity, either in terms of the number of vertices or by the cheer
number of agents.

48

Conclusion
In this work, we focused on accelerating the overall calculation of multi-agent

pathfinding (MAPF) using graph-prunning algorithms, focusing on heuristics that
were aimed at increasing the performance of these graph-prunning approaches.
Our main intention was to show that the calculation method using graph-prunning
methods can be significantly accelerated and improved using heuristics primarily
focused on selecting ground vertices, around which graph-prunning methods then
build their calculation, which is most important on large maps with a large number
of vertices, since for small maps it would be difficult to find vertices that we could
remove from the graph.

We proposed five progressively more complex approaches for selecting ground
vertices based on agent paths, each of which focused on improving the previous
one in some way or another. The first approach was the Biased algorithm, which
looked for paths that had a bias in the form of a preference for the direction of
motion, which led to a smaller total number of used vertices at the expense of
greater number of conflicts caused. This was followed by the Random algorithm,
which has the potential to find a conflict-free path for the agent, but due to its
randomness there are cases where it chooses the same incorrect shortest path in
terms of conflict as the Biased algorithm. Both Biased and Random approaches
are greedy in terms of finding the shortest path as they do not look at other
agents, which the next Without Crossing (WCR) algorithm aimed to improve. It
introduced a spatial tie-breaking condition for vertices selection while finding a
path for the agent. This approach was further extended by the Without Crossing
at the Same Times (XCR) algorithm, which while doing the pathfinding tries to
avoid both spatial and temporal conflicts on the vertices with agents computed
before.

The most complex approach tested was the Recursive Path Search (RPS)
algorithm. This algorithm brought up three key improvements compared to
previous approaches. The first improvement was in form of the ability to use
the whole given makespan time, so the agents were not constrained by their
corresponding shortest-path length on their paths. The second improvement was
introduced in the form of an extension of the tie-break condition by the detection
of agent swapping during pathfinding. The last but very important improvement
compared to the previous algorithms comes in the form of agent priority, which
determines in which order they will be processed by the pathfinding algorithm,
which was achieved by sorting them by their corresponding shortest paths length
in descending order.

Finally, in the experimental part, we focused mainly on the achieved success
rate of individual algorithms and also on the computational time that the tested
algorithms needed to solve the given instances. In both cases, the RPS algorithm
achieved by far the best result compared to other approaches and was even able
to solve most of the test instances on its own, without calling the reduction-based
solver.

In our future work, we would like to explore the potential application of the
subgraph methods with the sum-of-costs objective function.

49

Bibliography
1. Silver, David. Cooperative Pathfinding. In: Young, R. Michael; Laird,

John E. (eds.). Proceedings of the First Artificial Intelligence and Interac-
tive Digital Entertainment Conference, June 1-5, 2005, Marina del Rey,
California, USA. AAAI Press, 2005, pp. 117–122.

2. Morris, Robert; Pasareanu, Corina S.; Luckow, Kasper Søe; Malik,
Waqar; Ma, Hang; Kumar, T. K. Satish; Koenig, Sven. Planning, Schedul-
ing and Monitoring for Airport Surface Operations. In: Magazzeni, Daniele;
Sanner, Scott; Thiébaux, Sylvie (eds.). Planning for Hybrid Systems,
Papers from the 2016 AAAI Workshop, Phoenix, Arizona, USA, February 13,
2016. AAAI Press, 2016, vol. WS-16-12. AAAI Technical Report. Available
also from: http://www.aaai.org/ocs/index.php/WS/AAAIW16/paper/
view/12611.

3. Dresner, Kurt M.; Stone, Peter. A Multiagent Approach to Autonomous
Intersection Management. J. Artif. Intell. Res. 2008, vol. 31, pp. 591–656.
Available from doi: 10.1613/JAIR.2502.

4. Wurman, Peter R.; D’Andrea, Raffaello; Mountz, Mick. Coordinating
Hundreds of Cooperative, Autonomous Vehicles in Warehouses. AI Mag. 2008,
vol. 29, no. 1, pp. 9–20. Available from doi: 10.1609/AIMAG.V29I1.2082.

5. Stern, Roni; Sturtevant, Nathan R.; Felner, Ariel; Koenig, Sven;
Ma, Hang; Walker, Thayne T.; Li, Jiaoyang; Atzmon, Dor; Cohen,
Liron; Kumar, T. K. Satish; Barták, Roman; Boyarski, Eli. Multi-Agent
Pathfinding: Definitions, Variants, and Benchmarks. In: Surynek, Pavel;
Yeoh, William (eds.). Proceedings of the Twelfth International Symposium on
Combinatorial Search, SOCS 2019, Napa, California, 16-17 July 2019. AAAI
Press, 2019, pp. 151–158. Available from doi: 10.1609/SOCS.V10I1.18510.

6. Yu, Jingjin; LaValle, Steven M. Structure and Intractability of Optimal
Multi-Robot Path Planning on Graphs. In: desJardins, Marie; Littman,
Michael L. (eds.). Proceedings of the Twenty-Seventh AAAI Conference on
Artificial Intelligence, July 14-18, 2013, Bellevue, Washington, USA. AAAI
Press, 2013. Available also from: http://www.aaai.org/ocs/index.php/
AAAI/AAAI13/paper/view/6111.

7. Ratner, Daniel; Warmuth, Manfred K. NxN Puzzle and Related Reloca-
tion Problem. J. Symb. Comput. 1990, vol. 10, no. 2, pp. 111–138. Available
from doi: 10.1016/S0747-7171(08)80001-6.

8. Stern, Roni; Sturtevant, Nathan R.; Felner, Ariel; Koenig, Sven;
Ma, Hang; Walker, Thayne T.; Li, Jiaoyang; Atzmon, Dor; Cohen,
Liron; Kumar, T. K. Satish; Barták, Roman; Boyarski, Eli. Multi-Agent
Pathfinding: Definitions, Variants, and Benchmarks. In: Surynek, Pavel;
Yeoh, William (eds.). Proceedings of the Twelfth International Symposium
on Combinatorial Search, SOCS 2019, Napa, California, 16-17 July 2019.
AAAI Press, 2019, pp. 151–159. Available also from: https://aaai.org/
ocs/index.php/SOCS/SOCS19/paper/view/18341.

50

http://www.aaai.org/ocs/index.php/WS/AAAIW16/paper/view/12611
http://www.aaai.org/ocs/index.php/WS/AAAIW16/paper/view/12611
https://doi.org/10.1613/JAIR.2502
https://doi.org/10.1609/AIMAG.V29I1.2082
https://doi.org/10.1609/SOCS.V10I1.18510
http://www.aaai.org/ocs/index.php/AAAI/AAAI13/paper/view/6111
http://www.aaai.org/ocs/index.php/AAAI/AAAI13/paper/view/6111
https://doi.org/10.1016/S0747-7171(08)80001-6
https://aaai.org/ocs/index.php/SOCS/SOCS19/paper/view/18341
https://aaai.org/ocs/index.php/SOCS/SOCS19/paper/view/18341

9. Kornhauser, Daniel; Miller, Gary L.; Spirakis, Paul G. Coordinating
Pebble Motion on Graphs, the Diameter of Permutation Groups, and Applica-
tions. In: 25th Annual Symposium on Foundations of Computer Science, West
Palm Beach, Florida, USA, 24-26 October 1984. IEEE Computer Society,
1984, pp. 241–250. Available from doi: 10.1109/SFCS.1984.715921.

10. Surynek, Pavel. Compact Representations of Cooperative Path-Finding as
SAT Based on Matchings in Bipartite Graphs. In: 26th IEEE International
Conference on Tools with Artificial Intelligence, ICTAI 2014, Limassol,
Cyprus, November 10-12, 2014. IEEE Computer Society, 2014, pp. 875–882.
Available from doi: 10.1109/ICTAI.2014.134.

11. Sharon, Guni; Stern, Roni; Goldenberg, Meir; Felner, Ariel. The In-
creasing Cost Tree Search for Optimal Multi-Agent Pathfinding. In: Walsh,
Toby (ed.). IJCAI 2011, Proceedings of the 22nd International Joint Con-
ference on Artificial Intelligence, Barcelona, Catalonia, Spain, July 16-22,
2011. IJCAI/AAAI, 2011, pp. 662–667. Available from doi: 10.5591/978-1-
57735-516-8/IJCAI11-117.

12. Surynek, Pavel; Felner, Ariel; Stern, Roni; Boyarski, Eli. An Empir-
ical Comparison of the Hardness of Multi-Agent Path Finding under the
Makespan and the Sum of Costs Objectives. In: Baier, Jorge A.; Botea,
Adi (eds.). Proceedings of the Ninth Annual Symposium on Combinatorial
Search, SOCS 2016, Tarrytown, NY, USA, July 6-8, 2016. AAAI Press, 2016,
pp. 145–147. Available also from: http://aaai.org/ocs/index.php/SOCS/
SOCS16/paper/view/13972.

13. Surynek, Pavel. On the Complexity of Optimal Parallel Cooperative Path-
Finding. Fundam. Informaticae. 2015, vol. 137, no. 4, pp. 517–548. Available
from doi: 10.3233/FI-2015-1192.

14. Surynek, Pavel. Time-expanded graph-based propositional encodings for
makespan-optimal solving of cooperative path finding problems. Ann. Math.
Artif. Intell. 2017, vol. 81, no. 3-4, pp. 329–375. Available from doi: 10.
1007/s10472-017-9560-z.

15. Sharon, Guni; Stern, Roni; Felner, Ariel; Sturtevant, Nathan R.
Conflict-based search for optimal multi-agent pathfinding. Artif. Intell. 2015,
vol. 219, pp. 40–66. Available from doi: 10.1016/J.ARTINT.2014.11.006.

16. Boyarski, Eli; Felner, Ariel; Stern, Roni; Sharon, Guni; Tolpin,
David; Betzalel, Oded; Shimony, Solomon Eyal. ICBS: Improved Conflict-
Based Search Algorithm for Multi-Agent Pathfinding. In: Yang, Qiang;
Wooldridge, Michael J. (eds.). Proceedings of the Twenty-Fourth Interna-
tional Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires,
Argentina, July 25-31, 2015. AAAI Press, 2015, pp. 740–746. Available also
from: http://ijcai.org/Abstract/15/110.

17. Gange, Graeme; Harabor, Daniel; Stuckey, Peter J. Lazy CBS: Im-
plicit Conflict-Based Search Using Lazy Clause Generation. In: Benton, J.;
Lipovetzky, Nir; Onaindia, Eva; Smith, David E.; Srivastava, Sid-
dharth (eds.). Proceedings of the Twenty-Ninth International Conference on
Automated Planning and Scheduling, ICAPS 2019, Berkeley, CA, USA, July

51

https://doi.org/10.1109/SFCS.1984.715921
https://doi.org/10.1109/ICTAI.2014.134
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-117
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-117
http://aaai.org/ocs/index.php/SOCS/SOCS16/paper/view/13972
http://aaai.org/ocs/index.php/SOCS/SOCS16/paper/view/13972
https://doi.org/10.3233/FI-2015-1192
https://doi.org/10.1007/s10472-017-9560-z
https://doi.org/10.1007/s10472-017-9560-z
https://doi.org/10.1016/J.ARTINT.2014.11.006
http://ijcai.org/Abstract/15/110

11-15, 2019. AAAI Press, 2019, pp. 155–162. Available also from: https:
//ojs.aaai.org/index.php/ICAPS/article/view/3471.

18. Barták, Roman; Svancara, Jirí. On SAT-Based Approaches for Multi-
Agent Path Finding with the Sum-of-Costs Objective. In: Surynek, Pavel;
Yeoh, William (eds.). Proceedings of the Twelfth International Symposium on
Combinatorial Search, SOCS 2019, Napa, California, 16-17 July 2019. AAAI
Press, 2019, pp. 10–17. Available from doi: 10.1609/SOCS.V10I1.18497.

19. As’in Ach’a, Roberto Javier; López, Rodrigo; Hagedorn, Sebastián;
Baier, Jorge A. A New Boolean Encoding for MAPF and its Performance
with ASP and MaxSAT Solvers. In: Ma, Hang; Serina, Ivan (eds.). Proceed-
ings of the Fourteenth International Symposium on Combinatorial Search,
SOCS 2021, Virtual Conference [Jinan, China], July 26-30, 2021. AAAI
Press, 2021, pp. 11–19. Available from doi: 10.1609/SOCS.V12I1.18546.

20. Surynek, Pavel. Problem Compilation for Multi-Agent Path Finding: a
Survey. In: Raedt, Luc De (ed.). Proceedings of the Thirty-First International
Joint Conference on Artificial Intelligence, IJCAI 2022, Vienna, Austria,
23-29 July 2022. ijcai.org, 2022, pp. 5615–5622. Available from doi: 10.
24963/IJCAI.2022/783.

21. Svancara, Jirí; Atzmon, Dor; Strauch, Klaus; Kaminski, Roland;
Schaub, Torsten. Which Objective Function is Solved Faster in Multi-Agent
Pathfinding? It Depends. In: Rocha, Ana Paula; Steels, Luc; Herik,
H. Jaap van den (eds.). Proceedings of the 16th International Conference on
Agents and Artificial Intelligence, ICAART 2024, Volume 3, Rome, Italy,
February 24-26, 2024. SCITEPRESS, 2024, pp. 23–33. Available from doi:
10.5220/0012249400003636.

22. Husár, Matej; Svancara, Jirí; Obermeier, Philipp; Barták, Roman;
Schaub, Torsten. Reduction-based Solving of Multi-agent Pathfinding on
Large Maps Using Graph Pruning. In: Faliszewski, Piotr; Mascardi,
Viviana; Pelachaud, Catherine; Taylor, Matthew E. (eds.). 21st Interna-
tional Conference on Autonomous Agents and Multiagent Systems, AAMAS
2022, Auckland, New Zealand, May 9-13, 2022. International Foundation for
Autonomous Agents and Multiagent Systems (IFAAMAS), 2022, pp. 624–632.
Available from doi: 10.5555/3535850.3535921.

23. Kautz, Henry A.; Selman, Bart. Planning as Satisfiability. In: Neumann,
Bernd (ed.). 10th European Conference on Artificial Intelligence, ECAI 92,
Vienna, Austria, August 3-7, 1992. Proceedings. John Wiley and Sons, 1992,
pp. 359–363.

24. Barták, Roman; Svancara, Jiri; Vlk, Marek. A Scheduling-Based Ap-
proach to Multi-Agent Path Finding with Weighted and Capacitated Arcs.
In: André, Elisabeth; Koenig, Sven; Dastani, Mehdi; Sukthankar, Gita
(eds.). Proceedings of the 17th International Conference on Autonomous
Agents and MultiAgent Systems, AAMAS 2018, Stockholm, Sweden, July 10-
15, 2018. International Foundation for Autonomous Agents and Multiagent
Systems Richland, SC, USA / ACM, 2018, pp. 748–756. Available also from:
http://dl.acm.org/citation.cfm?id=3237494.

52

https://ojs.aaai.org/index.php/ICAPS/article/view/3471
https://ojs.aaai.org/index.php/ICAPS/article/view/3471
https://doi.org/10.1609/SOCS.V10I1.18497
https://doi.org/10.1609/SOCS.V12I1.18546
https://doi.org/10.24963/IJCAI.2022/783
https://doi.org/10.24963/IJCAI.2022/783
https://doi.org/10.5220/0012249400003636
https://doi.org/10.5555/3535850.3535921
http://dl.acm.org/citation.cfm?id=3237494

25. Barták, Roman; Zhou, Neng-Fa; Stern, Roni; Boyarski, Eli; Surynek,
Pavel. Modeling and Solving the Multi-agent Pathfinding Problem in Picat.
In: 29th IEEE International Conference on Tools with Artificial Intelligence,
ICTAI 2017, Boston, MA, USA, November 6-8, 2017. IEEE Computer Society,
2017, pp. 959–966. Available from doi: 10.1109/ICTAI.2017.00147.

26. Svancara, Jirí; Obermeier, Philipp; Husár, Matej; Barták, Roman;
Schaub, Torsten. Multi-Agent Pathfinding on Large Maps Using Graph
Pruning: This Way or That Way? In: Rocha, Ana Paula; Steels, Luc;
Herik, H. Jaap van den (eds.). Proceedings of the 15th International Confer-
ence on Agents and Artificial Intelligence, ICAART 2023, Volume 1, Lisbon,
Portugal, February 22-24, 2023. SCITEPRESS, 2023, pp. 199–206. Available
from doi: 10.5220/0011625100003393.

27. Svancara, Jirí. MAPF-encodings [https://github.com/svancaj/MAPF-
encodings]. GitHub, 2025.

28. Biere, A.; Fazekas, K.; Fleury, M.; Heisinger, M. CaDiCaL, Kissat,
Paracooba, Plingeling and Treengeling Entering the SAT Competition 2020.
In: Balyo, T.; Froleyks, N.; Heule, M.; Iser, M.; Järvisalo, M.; Suda,
M. (eds.). Proc. of SAT Competition 2020 – Solver and Benchmark Descrip-
tions. University of Helsinki, 2020, vol. B-2020-1, pp. 51–53. Department of
Computer Science Report Series B.

29. Shoshany, Barak. A C++17 Thread Pool for High-Performance Scientific
Computing. SoftwareX. 2024, vol. 26, p. 101687. Available from doi: 10.
1016/j.softx.2024.101687.

53

https://doi.org/10.1109/ICTAI.2017.00147
https://doi.org/10.5220/0011625100003393
https://github.com/svancaj/MAPF-encodings
https://github.com/svancaj/MAPF-encodings
https://doi.org/10.1016/j.softx.2024.101687
https://doi.org/10.1016/j.softx.2024.101687

List of Figures

1.1 Simple grid-based MAPF instance example. 9
1.2 Types of possible collision conflicts that can occur between agents

in the MAPF environment. 10
1.3 Example of transforming a directed graph into a time-expanded

graph. 12

2.1 Example of basic pre-process computation. 16
2.2 Labeled single agent instance which for each vertex shows to which

k-restricted subgraph it belongs. 17
2.3 MAPF instance relaxations for kmax = 3, mmax = 2. 17
2.4 The traversal of the instance relaxation lattice by Prune-and-cut

strategy. 18

3.1 Conflict caused by Biased and Random algorithms. 22
3.2 Conflict avoidance by WCR and XCR algorithm. 25
3.3 Conflict caused by WCR and XCR algorithm when third agent

with short start-goal distance is introduced. 26
3.4 Conflict avoidance by RPS algorithm. 30

4.1 Layouts of the maze-type maps. 37
4.2 Layouts of the random-type maps. 38
4.3 Layouts of the room-type maps. 38
4.4 Layouts of the large maps. 39
4.5 Layout of the large Warehouse map. 39
4.6 Number of instances solved by the tested algorithm combinations

by a given time-limit on normal map types. 47
4.7 Number of instances solved by the tested algorithm combinations

by a given time-limit on large map types. 48

54

List of Tables

4.1 Comparison of individual combinations of heuristics with the sub-
optimal algorithm Combined by the specified metric. 41

4.2 Comparison of individual combinations of heuristics with the sub-
optimal algorithm Makespan-add by the specified metric. 43

4.3 Comparison of individual combinations of heuristics with the opti-
mal algorithm Prune-and-cut by the success rate percentage metric. 44

4.4 Percentage of instances solved by the concrete pathfinding algo-
rithm without the use of reduction-based graph pruning Prune-
and-cut strategy. 45

55

A Attachments
A.1 Electronic attachments

A.1.1 List of electronic attachments
1. The src folder containing the source codes (.cpp, .hpp).

2. The Experiments folder containing the test instances.

(a) The Tests folder containing the test instances of normal maps.
(b) The BigMaps folder containing the large maps test instances.
(c) The results_maker.py file containing the Python script used to gen-

erate the results table.

3. The makefile file containing the build and compile instructions.

4. The Tests-Results.csv file containing the results of the normal instances,
from which the tables for this work were made.

5. The file BigMaps-Results.csv, which contains the results of the large
instances, from which the tables for this work were made.

6. The build, env folders containing additional supporting files, while file
README.md contains a brief description and setup process of the project.

A.1.2 Instructions for running the experiments
The project can be compiled using the make command.

Search Algorithms

• b – Baseline

• m – MakespanAdd

• p – PruneAndCut

• c – Combined

Pathfinding Algorithms

• b – Biased

• r – TrulyRandom

• w – WithoutCrossing

• x – WithoutCrossingAtSameTimes

• R – RecursivePaths

56

Running Experiments

Experiments can be executed by running the following command:
./build/mapf_experiments -{b|m|p|c} -{b|r|w|x|R} {time limit per

instance in seconds} {relative path to tests folder}

Generating Results

To create a <Tests folder name>-Results.xlsx file containing the experi-
ment results, use the Python script located in the Experiments folder:
python Experiments/results_maker.py --data_path Experiments/<Tests

folder name>

Examples

Example of running experiments:
./build/mapf_experiments -mp -wx 30 Experiments/Tests

Example of generating the Tests-Results.xlsx file:
python Experiments/results_maker.py --data_path Experiments/Tests

Additional Notes

Please note that experiments involving large maps or a high number of agents
may require significant memory resources.

A.1.3 Input files descriptions
type octile
height 4
width 4
map
....
@.@.
..@.
@...

Example of an input file random-4-4.map containing a map of size 4 × 4 with
four obstacles.

version 1
0 random-4-4.map 4 4 0 0 2 3 3.41421356
4 random-4-4.map 4 4 0 2 3 0 2.74329455

Example of an input file random-4-4-even-1.scen containing two agents, where
the fifth and sixth columns together represent the starting position coordinates
and the seventh and eighth columns together represent the goal coordinates for
that agent.

57

A.1.4 Output files description
room-32-32-4.map room-32-32-4-even-1.scen 205 5 101 OK
room-32-32-4.map room-32-32-4-even-1.scen 299 10 101 OK
room-32-32-4.map room-32-32-4-even-1.scen 329 15 101 OK
room-32-32-4.map room-32-32-4-even-1.scen 347 20 101 OK
room-32-32-4.map room-32-32-4-even-1.scen 386 25 107 OK
room-32-32-4.map room-32-32-4-even-1.scen 400 30 107 OK
room-32-32-4.map room-32-32-4-even-1.scen 418 35 107 OK
room-32-32-4.map room-32-32-4-even-1.scen 442 40 107 NO solution
room-32-32-4.map room-32-32-4-even-1.scen 591 40 107 OK
room-32-32-4.map room-32-32-4-even-1.scen 460 45 108 OK
room-32-32-4.map room-32-32-4-even-1.scen 466 50 108 Timed out
room-32-32-4.map room-32-32-4-even-2.scen 666 5 80 OK Preprocess
room-32-32-4.map room-32-32-4-even-2.scen 246 10 80 NO solution
room-32-32-4.map room-32-32-4-even-2.scen 396 10 80 OK

...

Example of a log output file *_log.txt. The individual columns represent, from
left to right, the map name, the file name containing the agents, the number of
map vertices used (left uncut from the graph), the number of agents, the tested
makespan, and the solving result.

room-32-32-4.map room...even-1.scen 205 5 101 101 2 153 156
room-32-32-4.map room...even-1.scen 299 10 101 101 2 368 371
room-32-32-4.map room...even-1.scen 329 15 101 101 3 659 662
room-32-32-4.map room...even-1.scen 347 20 101 101 3 1205 1208
room-32-32-4.map room...even-1.scen 386 25 107 107 3 2556 2559
room-32-32-4.map room...even-1.scen 400 30 107 107 3 4677 4680
room-32-32-4.map room...even-1.scen 418 35 107 107 4 10707 10711
room-32-32-4.map room...even-1.scen 591 40 107 107 3 10390 10395
room-32-32-4.map room...even-1.scen 460 45 108 108 4 10475 10479
room-32-32-4.map room...even-2.scen 172 5 80 80 2 0 4
room-32-32-4.map room...even-2.scen 396 10 80 80 2 1071 1074
room-32-32-4.map room...even-2.scen 468 15 93 93 3 1477 1481
room-32-32-4.map room...even-2.scen 495 20 93 93 3 2452 2456

...

Example of the output file *_results.txt which contains the calculated results.
The individual columns represent, from left to right, the map name, the file name
containing the agents, the number of map vertices used (left uncut from the
graph), the number of agents, the lower bound on the makespan, the size of the
makespan of the found solution, pre-processing pathfinding heuristics time, SAT
solver time, and the total solution time.

58

	Introduction
	Definitions
	Multi-Agent Path Finding (MAPF)
	MAPF Instance
	Types of collisions
	Cost functions
	Time-expanded graph

	Solving MAPF
	Solving MAPF by reduction to SAT
	Methods for speeding up the solving
	Use of basic pre-processing
	Graph Pruning

	Ground Vertices Selection
	Agent single-paths strategies
	Biased
	Random
	Without Crossing
	Without Crossing at the Same Times
	Recursive Path Search

	Vertex A* Sorting Heuristics
	Swapping condition
	Determining Solution from Shortest Paths Strategies

	Experimental Evaluation
	Instances
	Results
	Success rate of Sub-optimal algorithms
	Success rate of Optimal algorithm
	Solved by pathfinding
	Overall solution finding speedup

	Conclusion
	Bibliography
	List of Figures
	List of Tables
	Attachments
	Electronic attachments
	List of electronic attachments
	Instructions for running the experiments
	Input files descriptions
	Output files description

