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Abstract

This thesis explores an acoustic analogy of electronic band structure. While a wide range
of analytical approaches and numerical methods exist to solve for the transmission properties
of sonic crystals, existing analytical expressions relating the waveguide geometry to acoustic
transmission are limited to a few special cases. The goal is to model the band structure
properties of sonic crystals using machine learning since we have access to a numerical model,
which presents a valuable opportunity for data-driven discovery. A dataset of numerical
solutions was generated using the Webster equation for the unit cell with periodic boundary
conditions of the Floquet-Bloch type. To reduce the complexity of the problem, this dataset
is transformed into a lower-dimensional space using Principal Component Analysis. In this
new coordinate system, lower-dimensional patterns are extracted via symbolic regression
implemented in an open-source library PySR. The resulting model is interpretable in terms
of underlying physics and can be used, for example, to propose optimized designs for a
desired bandgap width for sound barriers. These results enhance the overall understanding
of the system, enabling a deeper insight into the underlying principles and providing a more
efficient alternative to computationally demanding numerical optimization.

Keywords: locally periodic structures, sonic crystals, machine learning, sym-
bolic regression
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Abstrakt

Tato préce se zabyvé akustickou analogii elektronové pasové struktury. I kdyz pro reseni
prenosovych vlastnosti zvukovych krystali existuje cela fada analytickych pfistupt a num-
erickych metod, stavajici analytické vyrazy vztahujici geometrii vinovodu k jeho akustick-
ému pfenosu jsou omezeny na nékolik specialnich p¥ipadi. Cilem této prace je modelovani
vlastnosti pasové struktury sonickych krystali pomoci strojového uceni, protoze pfistup k
numerickému modelu predstavuje cennou pfilezitost pro nalézani vnitinich zékonitosti na
zékladé analyzy dat. Dataset numerickych feSeni byl vytvofen pomoci Websterovy rovnice
pro jednotkovou butiku s periodickymi okrajovymi podminkami Floquetova-Blochova typu.
Za ucelem sniZeni slozitosti problému je tento dataset transformovan do méné rozmeérného
prostoru pomoci analyzy hlavnich komponent. V tomto novém soufadnicovém systému jsou
méné dimenzionélni vzorce extrahovany pomoci symbolické regrese implementované v kni-
hovné s otevienym zdrojovym kédem PySR. Vysledny model je interpretovatelny z hlediska
vnitfnich zdkonitosti a lze jej pouzit napiiklad k optimalizaci navrhi pro pozadovanou sitku
pasma pro hlukové bariéry. Vysledky diplomové prace prispivaji k celkovému pochopeni
systému, prinaseji hlubsi vhled do zékladnich principt sonickych krystala a predstavuji efek-
tivnéjsi alternativu k vypocetné narocné numerické optimalizaci.

Klicova slova: lokalné periodické struktury sonické krystaly, strojové uceni,
symbolicka regrese
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Chapter 1

Introduction

The thesis deals with modeling the band structure properties in sonic crystals using
machine learning, and this chapter introduces the reader to the topic of periodic structures in
acoustics and their applications, such as ultrasound for imaging or noise reduction. Further,
it provides an overview of the current state of the art for modeling acoustic transmission
in periodic structures and discusses optimization techniques that are currently being used.
Finally, the motivation behind the thesis is presented, along with the specific goals.

1.1 Origins of periodic structures

The story of periodic structures for macroscopic engineering applications originates from
photonics: in the late 80’s, both John [1] and Yablonovitch [2]| simultaneously but inde-
pendently pointed out the propagation properties of electromagnetic waves inside periodic
systems. In frequency ranges specific to the configuration, there was no wave propagation in
the periodic systems. The frequency ranges were named band gaps by analogy to solid state
physics nomenclature. Similarly, their energy ranges where no electronic states exist are
called band gaps or energy gaps. Due to their ability to modify propagation the propagation
of electromagnetic waves, these so-called photonic crystals have several applications, such as
generation, waveguiding, focusing, or splitting of light [3].

A few years later, theoretical works on wave propagation in periodic media emerged
also in acoustics, showing the existence of acoustic and elastic bandgaps [4} |5]|. Here, the
bandgaps present frequency regions, where the wave propagation is significantly reduced.
Similarly to photonic crystals, the periodic structures attenuating acoustic and elastic waves
were named phononic crystals.

The first constructed example of a phononic crystal is the artwork "Organo" by sculp-
tor Eusebio Sempere, although he was propably not aware of that. For the sculpture, see
In 1995, the transmission characteristics by this sculpture was measured by
Martinez-Sala [6] and the sound attenuation by sculpture was proven, leading to the first
experimental evidence of the presence of acoustic band gaps.

Due to their transmission and reflection characteristics, not achievable by any natural
medium |[7], the phononic crystals have attracted further attention. The rich publication
history is summarized in recent reviews |8} |9].
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Figure 1.1: Sculpture Organo by Eusebio Sempere exhibited at the Juan March Foundation
in Madrid (from ), representing a two-dimensional phononic crystal.

1.2 Phononic and sonic crystals

Before delving into details on bandgaps and specifics of phononic crystals, just a short
remark on their actual size and performance. The significant difference between photonic
and phononic crystals lies in their size. The periodic structures interact with waves if the
dimension of the scatterer and their spacing is of the order of wave length of propagating
wave. Further, the bandgap is obtained for an infinite structure (or at least sufficiently large)
7]. Since the photonic crystals can be constructed from scaterrers in the size of microns and
it is feasible to do so with thousands of repeating units, no propagation of electromagnetic
waves in the bandgap can be guaranteed. On the other hand, the phononic crystals are
supposed to attenuate waves in the audible region (i.e., 20 Hz to 20 kHz), which corresponds
to wavelengths of meters to centimeters. It is not hard to imagine, that the construction of
a large enough structure is spatially demanding. Therefore only locally periodic structures
are constructed with significant wave attenuation in the bandgaps.

By altering the way how the phononic crystals are arranged, the occurance of bandgaps
can be influenced together with the amount of the wave attenuation. Examples of phononic
crystal configurations can be seen in[Figure 1.2] The dimensionality of the crystal reflects the
arrangement of the scaterrers [11]. In each of them, waves with transverse and longitudinal
wave components are observed.

(b) 2D (c) 3D

‘ l | | Umt cell Unit cell # 50 U it cell

Figure 1.2: Example of simple phononic crystals (from . ) 1D, b) 2D, and c) 3D
periodic arrangement.
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Figure 1.3: a) Dispersion relation without any bandgaps. b) Dispersion relation with
bandgaps represented by the shaded regions.

Phononic crystals generally refer to structures, that have the scaterrer made from similar
material as the host (e.g. nickel cylinders in copper matrix [7]) and are therefore homo-
geneous. Whereas the sonic crystals, one of the particular cases of phononic crystals, are
structures made of dissimilar materials (e.g. steel rods in fluid). The scatterers are perfectly
rigid and therefore sound hard in comparison to the material in which they are placed. Then,
only longitudinal wave component can be considered.

The most distinctive representation of the wave transmission through the periodic struc-
tures is the dispersion relation, i.e. the relation of the wavenumber to the frequency of the
wave. For illustration, shows a dispersion relation of a 1D sonic crystal, that
will be encoutered later in the thesis. The shaded regions represent the bandgaps. The
underlying phenomena behind the formation of bandgaps is Bragg’s scattering. Under spe-
cific conditions, destructive interference is encountered due to the spatial arrangement of the
crystal components, their volume fractions, and the composite materials’ sound speed and
density ratios [12].

1.3 Applications in medicine and human health protection

Since their beginnings, locally periodic structures have found wide application in many
fields of use thanks to their ability to control the propagation of acoustic and elastic waves.
In the following we will focus on those applications, that are related to biomedicine and
human health protection. The work of Lucklum et al. |13, [14] has shown that phononic
crystals can be used for sensing liquid properties in small cavities. The change of material
properties inside the phononic crystal leads to changes in the transmission spectrum. Hence,
based on the frequencies where the transmission takes place, the properties of the used liquid
can be determined.
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Figure 1.4: Examples of sonic crystals applications related to biomedicine and human health
protection: a) Tubular phononic crystal (from [15]). b) Superdirectivity filter (from [16]).
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The use of phononic crystals for sensing volumetric properties of liquids was further
investigated by Gueddida et al. . They designed a tubular phononic crystal (TPC, see
where any perturbation of the fluid flow inside the tube is avoided. In this way,
the TPC transmission spectrum is sensitive to the mass density and speed of sound variations
of the fluid flowing inside the pipe. Their design allows for use in sensing applications, from
microfluidics in chemical or biochemical analysis to medical or civil engineering applications.

Applications of phononic crystals were extended by Bonhomme et al. to nanoparticle
and bio-molecule sensing. They introduced devices using phononic crystals and Love surface
acoustic waves to detect the mass of nanoparticles (e.g. virus, DNA, protein).

The development of phoxonic crystals combining photonic and phononic crystal in one
device has opened up the possibility for dual characterization of liquids’ acoustic and optical
properties. Thanks to its ultrasmall volume and very high sensitivity, it might in future be
used as a biosensor, e.g., without the need for immobilization of DNA or proteins [18§].

In addition to sensing applications, phononic crystals are also suitable for focalization in
areas which rely on high-quality acoustic focusing and imaging, like industrial engineering or
medical acoustic imaging. Incorporating phononic crystals or other acoustic metamaterials
helps to realize sub-wavelength focusing and super-resolution imaging which is not achievable
with conventional lenses |19-21]. Placing of the pnononic crystal in such imaging device can

be seen in [Figure 1.

Moreover, the sonic crystals play a role in superdirectivity needed in medical imaging or
underwater communication, where they can provide a band-pass acoustic filter for ultrasound
propagation (see . Another interesting application is also the thermally
tunable phononic crystal lens , which allows for adjusting the the focal length by varing
the temperature from 20 °C to 39 °C, relying in the temperature-dependent sound velocity
and density.

In the context of medical ultrasound, locally periodic structures have another purpose.
Where the transducer cannot be coupled to the tissue via a liquid agent, air-coupled ul-
trasound becomes an alternative. Classical ultrasound may suffer from transmission losses,
but recently introduced fluidic transducers (FT) do not need direct contact with the tissue.
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Figure 1.5: Scheme of phononic crystal lens for subwavelength imaging (from )

FT uses the instability of supersonic airflow to generate ultrasound. In order to use FT in
sensitive applications, the acoustic energy needs to be redirected from the jet axis (the flow
field) and for this purpose, sonic crystals could be used .

Besides focusing, the application as a frequency filter can be leveraged in sound hygiene,
where locally periodic structures can provide an alternative to classic acoustic barriers [12].
The advantage of a sonic crystal acoustic barrier (see |[Figure 1.6a} [Figure 1.6b) is that it is
usually lightweight and easy to build. Thota et al. proposed sonic barriers with tunable
bandgaps that can be reconfigurable throughout its lifetime and therefore can overcome the
issues of fixed periodicity. If the properties of the typical noise source are known, the sonic
crystal can be designed in that way, that it attenuates and lets pass what is desired, by
alternating the characteristics of the lattice or the scatterers.

Figure 1.6: Examples of sonic crystals applications related to biomedicine and human health
protection: a) Sonmic crystal acoustic barrier (from [12]). b) Periodic pipe noise barrier
installed in Eindhoven by Van Campen. (from )
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Figure 1.7: Examples of sonic crystals applications related to biomedicine and human health
protection: a) Control of noise by trees arranged like sonic crystals (from [25]). b) Isolation
of vibration by periodic underground barriers (from [26]).

Especially in transport infrastructures (e.g., railroad corridors, highways), the barriers
for traffic noise attenuation or mitigation need to be carefully designed because, in the case of
closed classical acoustic barriers, all the emissions stay in the transport corridor and can lead
to health and safety hazards, while with sonic crystal acoustic barrier are transparent to air
and water [27-29|. The barriers also do not have to be built from fabricated scatterers; the
sound attenuation can also be achieved with vegetation: Martinez-Sala et al. demonstrated
the effect of trees arranged periodically like sonic crystals [25] (see . Similar con-
cept to sonic crystal acoustic barrier is used for attenuation of vibrations generated by traffic
or seismic waves: the phononic crystals are buried to mitigate ground wave propagation |26,

30, |31], for illustration see [Figure 1.7h|

1.4 State-of-the-art numerical approaches

Approaches used for obtaining acoustic transmission or band gaps in phononic and sonic
crystals are the finite difference time domain technique, the transfer matrix method (TMM),
multiple scattering theory, plane wave expansion or finite element methods (FEM) [7]. Gupta
et al. [32] employ the Webster equation with the Floquet-Bloch theory to study the one-
dimensional sonic crystal supporting quasi-plane wave propagation. Recently, the range of
methods employed has broadened to incorporate elements of machine learning [33-35].

Although there is a wide variety of numerical methods to solve sonic crystal problems, an-
alytical formulae relating the waveguide geometry and the acoustic transmission are limited
to a few special cases, such as the simplest chains (see, e.g., |36} |37]).

When developing devices for sound attenuation or focalization, the design of periodic
structures is based on optimization techniques. The wave propagation properties in periodic
structures depend on the external shape, the lattice arrangement, the material and the filling
fraction |38]. By tuning the mentioned parameters, one can control the acoustic transmission.
The optimization process typically involves numerical methods combined with a stochastic
search algorithm, such as the method of moving asymptotes |39], gradient-based topology
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optimization [40], or a genetic algorithm [41]. Nonetheless, this approach is computationally
demanding and provides limited insight into the underlying mechanisms.

1.5 Goals of this thesis

Having access to a numerical model is a great opportunity for data-driven discovery and
physics-informed machine learning [42H46|. Involving current knowledge of the problem’s un-
derlying physics, coordinate transformations, and optimization techniques, formulae relating
waveguide geometry and the corresponding dispersion relation can be infered and identified.
The aim of this thesis is to propose an analytical model of band structure in one-dimensional
sonic crystals of continuous geometries to both improve the overall readability of the system
features and enable more efficient optimization. The requirements are that the obtained an-
alytical formulae describing band structure properties of sonic crystals should be physically
interpretable and consistent with direct FEM simulations.

The thesis is organized as follows. In[chapter 2] the governing partial differential equation
is introduced together with the boundary conditions, implications for waveguide geometry
and the chosen numerical approach. The proof of concept for discovering analytical model
from the data using machine learning is presented in In order to move towards
more general case with better interpretability and broader applicability, new dataset is de-
signed and employed with different methods in[chapter 4] In|chapter 5| the verification of the
discovered formulae and illustrative examples of possible application are presented. Finally,

the conclusions are drawn in
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Chapter 2

Theory

In this chapter the application of governing equations for sound propagation in locally
periodic structures is shown. Throughout this work, the case of quasi-planar acoustic waves
in a waveguide of a circular transversal cross-section with non-uniform radius is considered.
First, the governing partial differential equation is introduced in Its boundary
conditions are covered in and the implications for geometry are discussed in

section 2.3] Finally, the numerical implementation is described in [section 2.4}

2.1 Governing equation

In any acoustic waveguide with variable radius and perfectly rigid walls, the Webster
wave equation (see e.g., [47]) holds for the propagation of quasi-plane waves:

0%p 1 dA(s)op 1 0%p

92 T A0 ds 0s 2o
where p = p(s, t) is the acoustic pressure and s, t and A = A(s) denote the spatial coordinate
along the waveguide axis, time and cross-sectional area function, respectively (see Fig. [2.1)).
The adiabatic sound speed ¢y is given by ¢ = vypo/po, with 7, po and py denoting the ratio
of specific heats, ambient pressure and density, respectively.

(2.1)

For simplicity, an axisymmetric waveguide (circular cross-section) is considered and there-
fore A(s) = mR(s)?. Assuming also the time-harmonic behavior (with the sign convention
e 1Y) the Eq. (2.1) can be rewritten as

d?p 2 dRdp uﬁ

— t+t =55+

ds? " Rdsds ' &7

In order to express the equation in a non-dimensional form, an axial characteristic length

£ and a lateral characteristic length Ry is introduced:

d?p  2drdp

dz?  rdzdx P ’ (23)
where © = s/, r = R/Roy, p = p/poci and k = wl/cy stand for the non-dimensional axial
coordinate, local radius, acoustic pressure and wavenumber, respectively.

~0. (2.2)



CHAPTER 2. THEORY

/\/
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s

Figure 2.1: a) Waveguide of a circular cross-section with non-uniform radius function R(s)
and cross-sectional area function A(s); b) corresponding 3D render from COMSOL Multi-
physics.

2.2 Boundary conditions

For the governing partial differential equation with non-constant coefficients, boundary
conditions need to be specified. In order to reformulate the problem from wave propagation
in an infinite periodic structure to wave propagation in a single unit cell with periodic
boundary conditions we assume the radius function r(x) periodic with a period d so that
r(z) = r(z + d) and periodic boundary conditions of the Floquet-Bloch type 49). The
Floquet-Bloch theory suggests that

Bz +d) = pr2p(x) - (2.4)

Now the remaining task is finding the multipliers p; . Let u(z) and v(x) denote linearly
independent solutions of Eq. (2.3) satisfying the following initial conditions:

u(0) =1, W(0)=0, v(0) =0, VO)=1.  (2.5)

The characteristic equation for the multipliers then reads

p? — [u(d) +v'(d)]p+1=0. (2.6)

It follows that pi1ps = 1 and hence they can be written as

p1,2 = exp(Ejud) , (2.7)

where p stands for the Bloch wavenumber. Moreover, solution of Eq. (2.6 shows that

p1+ p2 = u(d) +v'(d) (2.8)

and using the substitution in Eq. (2.6) we can write

u(d) +v'(d) = exp(jud) + exp(—jud) = 2 cos ud . (2.9)

10



2.3. IMPLICATIONS FOR THE WAVEGUIDE GEOMETRY

Finally, we obtain cosine of the Bloch phase £ = ud and the Bloch wavenumber p as

cos§ = (d) ;U,(d) , (2.10)
= - arccosu(d)zvl(d) . (2.11)

Although the latter equations are indeed equivalent, we explicitly state both of them for the
sake of the sections below.

Generally, the Bloch wavenumber can take complex values (u = p(w) € C). It follows
from Egs. and that when the imaginary part of u is non-zero, the propagation of
the quasi-plane wave in the infinite periodic structure is not possible. In a locally periodic
structure, only evanescent waves are propagating through.

2.3 Implications for the waveguide geometry

Since the Webster equation is valid in the quasi-plane wave approximation, it is necessary
to determine the conditions under which only the quasi-plane waves propagate through
the waveguide. The approximation holds when the frequency f of the travelling wave is
lower than the cut-off frequency f.. For an axisymmetric waveguide with the maximum
(dimensional) radius Rmax, the (dimensional) cut-off frequency is given as

1.83¢o

= _ 2.12
! 27 Rmax ( )

This cut-off frequency approximation is based on a uniform waveguide (see e.g., [50] for
full derivation by perturbation methods) and in practice, the maximum frequency of interest
should be significantly below f..

The estimate of a characteristic frequency of the first band gap, the Bragg frequency fp,
is given as

€0

IB

where / is the (dimensional) length of the spatial period. To construct a unit cell which has
the first band gap still in the quasi-plane wave region, it has to hold fp < f.:

o 1.83¢g

— < . 2.14

20 2mRpax ( )
Consequently, the rough estimate of the unit cell aspect ratio must be

Rmax < 0.58¢ (2.15)

which means that the tube diameter must be noticeably smaller than the spatial period.

11
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smooth

Webster

geometry

Figure 2.2: From geometry to dispersion relation. The band gaps are depicted in gray.

2.4 Numerical Approach

For a given radius function r(x), the Webster equation for a unit cell is solved
numerically using Runge-Kutta-Fehlberg method (RK45) with the initial conditions given
by Egs. . Via the Floquet-Bloch theory, the cosine of Bloch phase cos € is then obtained
as explained in To obtain the Bloch wave number p which is usually displayed
in the dispersion relation, arccosine of cos ¢ divided by the non-dimensional period d is taken

Y

equation
for
unit cell |£

Y

Floquet-Bloch
theory
for
periodic
structure

— Re(pd)
— Im(pd)

2w 3m

Y

cosine of
Bloch phase

cos&(k)

0 1 2 3
pd

.| dispersion

(see Egs. (2.10) and (2.11))).

For convenience, the process of obtaining dispersion relation for a given geometry is
illustrated in :Figure 2.2 The implementation relies on open-source libraries NumPy

and SciPy [52].

12
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Chapter 3

Proof of concept

The main purpose of this chapter is to develop a procedure to discover formulae relating
waveguide geometry and its corresponding dispersion relation. In this chapter, the employed
methods of data-driven discovery will be described. For convenience, a schematic picture of
the whole process is shown in The dataset design is described in The
first step towards the pattern extraction is finding a coordinate system, where the system
is simplified (in [section 3.2)). [Section 3.3| deals with the extraction itself (learning equations
from data). In fsection 3.4, the discovered formulae for dispersion relation prediction are
revealed, and the results, together with possible limitations of this approach, are discussed
in [section 3.9|

training dataset:
geometry control params,
related cos{(freq, geom)

coords transform

by PCA

arrays of values

basis coords
b (freq) ci(geom)
v equations v
bi(freq) = ... | |ci(geom) = ...

Ve
cos& = > bi(freq) c;(geom)

Figure 3.1: Physics-informed machine learning workflow: from the dataset to extracted

formulae.
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CHAPTER 3. PROOF OF CONCEPT

3.1 Dataset design

We aim to discover an analytical model relating waveguide geometry to its dispersion
relation. But before we begin to address the problem as formulated, we need to inspect
the problem more closely. The Bloch wavenumber () plotted in dispersion relation is a
non-trivial function taking complex values, which would be challenging to model. Moreover,
the transformation of obtaining the Bloch wavenumber p(x) from the cosine of Bloch phase
cos ¢ is already known: via arccos (see Egs. and (2.11)), last step in[Figure 2.2)). Hence,
it is unnecessary to discover it again, and instead of modelling the Bloch wavenumber (k)
directly, we simply model the cosine of Bloch phase cos€&.

3.1.1 Parametrization of the waveguide geometry

Firstly, it is necessary to choose an appropriate waveguide geometry parametrization.
The requirements for the parametrization of the radius function r(z) stem from the governing
equations of transmission in locally periodic structures. Due to combined prerequisites of
the Webster equation validity and the Floquet-Bloch theory, a smooth, slowly varying radius
function r(x) is needed, and the unit cells have to be connected periodically and continuously
to form a waveguide (i.e., 7(z = 0) = r(z = 1), see[chapter 2). So far, there are no analytical
solutions to this kind of profiles that can be expressed in terms of basic functions (for
nontrivial variants see e.g., |53} [54]). Therefore, there is no reason to prefer any specific type
of radius function. On top of the aforementioned requirements, it is essential for further
data-driven discovery that the impact of control parameters on the radius function r(z) is
clear and easy to interpret.

The specific choice of the unit cell radius function r(z) can be arbitrary, as long as it

meets the required conditions. For the beginning, it was decided to choose the following
parametrization with two control parameters:

r(z) = 1+ Asin®[rg(z)] , (3.1)
where
g(z) =az® + (1 —a)z , (3.2)

and z € [0,1],a € [0,1], A € [-0.4,0.4] is the spatial coordinate along the waveguide axis,
the asymmetry and the amplitude of waveguide geometrical perturbations, respectively. The
influence of the two control parameters is shown in

3.1.2 Building the dataset

Since the waveguide geometry is uniquely described by the geometry control parameters
amplitude A and asymmetry a, the dataset can consist only of these control parameters
a, A and related cosines of Bloch phases cos (k). The range for non-dimensional frequencies
k is chosen as k € [0,15] to include the first four bandgaps. The center of the fourth
bandgap occurs roughly at x = 4, the center of the fifth one at x = 5m. To be sure that
the entire fourth bandgap is present in the computed cosines of Bloch phases cos{(k), the

14



3.2. COORDINATE TRANSFORMATION

(@
r(x)
7(x)

I L
0 0.5 1 0 0.5 1 0 0.5 1
E z K

0.4 04 0 1 (040) (0.250.2) (-0.104) (0.050.6) (0.2:0.8) (0.451)
A ¢ (A;a)

a) Ae€[-04,04],a=0 b) A=0,a € [0,1] c) Ae[-0.4,0.4],a € 0,1]

Figure 3.2: Influence of geometry control parameters amplitude A and asymmetry a on
the waveguide geometry parametrized by Eq. (3.1). For reference, a narrow waveguide
(A=0,a =0) is depicted in gray.

k = bm ~ 15.7 was taken as a number and rounded down. Using the current numerical
solution (described in [section 2.4)), in total 246 cosines of Bloch phases cos{(k,a, A) for
given non-dimensional frequencies k € [0,15] and waveguide geometries given by a, A was

generated (see [Figure 3.3)).

3.2 Coordinate transformation

To find and extract patterns in data, we first need to find a lower dimensional space,
where the system is simplified. This is nothing new in scientific discoveries, where coordinate
transformations such as Fourier transform have long been used to reduce complexity of
systems. To find our lower dimensional space, we employ a widely used method for data
reduction, principal component analysis (PCA).

By applying PCA on the cosines of Bloch phases cos £(k, A, a) from the dataset, we obtain
new basis vectors b; (also called principal components) of a new, lower-dimensional space and
new coordinates ¢;. The bases b; are arrays of values shared by the entire dataset, that depend
only on the non-dimensional frequency x (b; = b;(k)). Meanwhile, each of the coordinates ¢;
is a scalar distinct for each geometry and hence, the dependency is ¢; = ¢;(A, a). Then, the
original cos & can be expressed as

cos&(k, A a) =by(k —i—Zb k)ci(Aya) , (3.3)

where bg, n is the mean of all cosines of Bloch phases cos{(k, A, a) and the number of chosen
bases (as well as the dimension of the new coordinate system), respectively.

For this dataset, the first two dimensions preserve enough variance in the model: 94.62
% and 5.36%, respectively (both can be seen in [Figure 3.4). Hence, in this case, we can

15
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waveguide geometry
control parameters

v
radius function
of unit cell
r(control_params)

¥ control_params™), cos £(k)!

Webster equation control_params® , cos £ (k)2
for unit cell control_params® | cos &(r)3)

v :
Floquet-Bloch theory control_params™), cos ¢ (“)(
for
periodic structures

v

dataset

1)

N)

cosine of Bloch phase

cos (k)
v

Bloch phase
§(r)

Figure 3.3: Building the dataset.

express the cosine of the Bloch phase as
cos& = bg + bicy + baco (3.4)

while keeping 99.98 % of the original information.

3.3 Pattern extraction in the lower dimensional space

The next step towards a model relating geometry to the cosine of Bloch phase cos¢ is
extracting formulae from obtained arrays of values. Each basis function b; is an array of
values shared by the entire dataset; meanwhile, each coordinate ¢; is a scalar distinct for
each geometry. This task which is done differently for the basis functions b; and coordinates
¢; due to their different nature.

3.3.1 Bases

Extracting equations for the bases by, by, by shown in[Figure 3.4]is a curve-fitting problem
that can be solved by, e.g., the method of least squares or eventually its nonlinear and more
robust variant, the Levenberg-Marquardt algorithm (LM). By closer inspection of the bases

16



3.3. PATTERN EXTRACTION IN THE LOWER DIMENSIONAL SPACE

Figure 3.4: PCA. Mean cosine of Bloch phase by and the new basis vectors by, ba, shared by
the entire dataset.

b; in we can estimate that the resulting function will probably consist of multiple
cosines with different periods and shifted phases, perhaps together with a linear or quadratic
polynomial, given as, e.g. Hence, a function can be proposed in the following form:

bi(k) = 1 cos(Bak + B3) + Bacos(Bsk + Bs) + B6 + Bk + Bsk? (3.5)

where 3; € R are the fitting coefficients. The reason why LM turned out to be an unsuitable
choice is that this algorithm is very sensitive to initial conditions and can be easily stuck
in local optima. Another possibility could be using the gradient descent (GD), but that
does not solve the task either, since in our case, finding a global optimum with GD is not
guaranteed. When using it for our nonlinear curve-fitting problem given by Eq. with
about eight fitting coefficients, GD also gets easily trapped in local optima without finding
the desired fit.

This problem can be overcome by a genetic algorithm, such as Covariance Matrix Adapta-
tion Evolution Strategy (CMA-ES) [55], which is designed for nonlinear non-convex optimiza-
tion problems. CMA-ES dynamically searches the parameters space, and with a sufficiently
large population size (40 candidate solutions in this case), it fits the bases b; very precisely
and quickly.

3.3.2 Coordinates

The relation of coordinates ¢; and ¢y to geometry control parameters amplitude A and
asymmetry a is shown in are scalars related to each specific radius function r(z).
The goal is to relate these scalars as ¢; = ¢;(A,a). Hence, a library of candidate terms was
created, involving asymmetry and amplitude raised to the power of ¢ = 0,1,2,3 and their
interactions. In order to obtain a sparse, interpretable and stable model, the least absolute
shrinkage and selection operator (LASSO)|56] was employed for variable selection.
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Figure 3.5: PCA. First two coordinates, ¢1(A,a) and c2(A4, a), distinct for each geometry.

3.4 Discovered formulae for dispersion relation prediction

The formulae obtained from the described procedure read for the new basis functions

bo(k) = 1.030 cos(k — 0.007) + 0.052 cos(0.675x -+ 0.659) — 0.073 + 0.007x |, (3.6)
by (k) = 0.026 cos(0.940k — 0.246) + 0.027 cos(0.634r + 0.933) — 0.040 + 0.003% ,  (3.7)
by (k) = 0.029 cos(0.874k — 0.578) — 0.049 cos(0.362 + 1.377) — 0.017 + 0.003% ,  (3.8)

and for coordinates

c1(A,a) = —1.798 + 18.8274% — 18.604A3 + 0.052Aa (3.9)
+0.104Aa* — 0.022a> + 0.053Aa® | (3.10)
ca(A,a) = 0.028 + 0.004A — 2.718A% + 2.883A3 (3.11)
+0.224A%a — 1.678A3%a + 6.3134%a% — 8.004%a* . (3.12)

Ilustrative comparison of prediction using these formulae with numerical solution for two
of the samples from the training dataset can be seen in[Figure 3.6l Note that the transmission
model is very sensitive to misfitting around cos(§) = —1 and cos(§) = 1, because of the arccos
properties. Although this may not seem like a big issue, it can cause wrong predictions when
a band gap should be opened but is not and vice versa. This is visible in example displayed

in [Figure 3.6) at k = 3.

It is necessary to check, if the discovered equations do not lack a physical interpretation.
For case of radius function r(x) = const, i.e. A = 0 and a = 0, we expect cos{ = cos k.
Therefore, we inspect closely the results for a narrow waveguide depicted in the bottow row of
[Figure 3.6l Around xk = 7 and x = 2 the prediction behaves as expected. However, around
k = 37 the model opens a band gap when it should not, although it is barely noticeable.
This limitations of the model together with other are discussed in
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3.4. DISCOVERED FORMULAE FOR DISPERSION RELATION PREDICTION
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Figure 3.6: Example from the training dataset: a fit (top row), a fit for the narrow waveguide
(bottom row). a) Unit cell radius function r(z); b) comparison of the numerical solution and

prediction in terms of cosine of Bloch phase cos&; ¢) comparison of the numerical solution
and prediction transformed to dispersion relation.
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3.5 Discussion

We have verified that it is possible to extract an analytical formula for the Bloch phase
from the dataset employing machine learning. To achieve that, a coordinate transformation
by PCA was employed. The bases b; of the new lower dimensional space were fitted employ-
ing CMA-ES, and the coordinates ¢; were related to geometry control parameters using a
candidate library of terms and sparse regression LASSO. Note that the model was not tested
on a testing dataset, and no error statistics were made because we encountered two major
issues.

Firstly, although the influence of the filling fraction on the band gaps has been studied
[12], there is little insight into the relationship between control parameters A,a and the
coordinates ¢;. When building the library of candidate terms entirely from scratch, it is
likely to incorporate some bias based on our intuition and knowledge about the problem.
Further extending the candidate library did not turn out to be fruitful; it only led to an
exhaustive search. Hence, it is necessary to find a more suitable approach.

Moreover, the chosen geometry parametrization is not variable enough: in most cases,
the third band gap is not opened. Hence, a different geometry parametrization with possibly
more control parameters is needed, allowing us to create waveguides with more variable
radius function r(z) to open and widen the third band gap. Enlarging the dataset and
making it more balanced would also help to discover a more accurate relationship between
the coordinates ¢; and the geometry control parameters because that was the primary source
of error so far.
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Chapter 4

Towards variability with cubic splines

Throughout this chapter, the proof of concept is further developed to achieve more general
and better applicable framework. The new parametrization of a radius function is introduced
in and in the used dataset is described. explains and
interpretes the results of coordinate transformation applied on this dataset. In
it is explained how to extract formulae from the dataset with symbolic regression and in
the complete set of formulae is presented. To make design and optimization
of sonic crystal even more approachable, focuses on prediction of formulae for
bandgap widths and centers. Finally, the results are discussed in [section 4.7}

4.1 More general parametrization of the waveguide geometry

As mentioned in [subsection 3.1.T] the choice of parametrization is more or less arbitrary
as long as it fulfils the requirements that stem from the governing equations of transmission
in locally periodic structures: unit cells connected periodically and continuously. Due to the
requirements, e.g. higher degree polynomial functions are unsuitable, because they change
wildly even for small changes of coefficients and because it is not possible to interprete
the coefficients. Since parametrization by Eq. with two control parameters does not
provide enough variability, it was opted for a cubic spline with four control parameters
21,229,711 = r(x1),r2 = r(x2). In addition, it is then easy to require r(0) = r(1) = 1,
and that the profile has zero slope at the beginning and at the end of the unit cell. For a
schematic illustration of the unit cell radius function parametrised by cubic splines, see Fig.
, and for details on the cubic spline, see Appendix in [57].

However, building a dataset of parameters x1,z2, 71,72 would lead to discovery of equa-
tions, that do not consider that the infinite periodic structures are in this case independent of
the mirror symmetry of the unit cell, i.e. the system description is independent of swapping
T1 <> xo simultaneously with r{ <> ro.
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Figure 4.1: Schematic illustration of the unit cell radius function r(z).

Therefore, new control parameters are introduced, that take this symmetry into account:

1 1
Ty = §(x1 + z2) — 3 (4.1)
Tgq = |:L’1 — .T2| N (4.2)
1
T = 5(7"1 +ra) =1, (4.3)
rq = ‘T’l — 7“2’ s (4'4)

where x,,, x4, ™m,Tq stand for the excentricity of the average control position, distance be-
tween the control points on x, average deviation from the waveguide inlet width, and distance
between the control points on r, respectively. For illustration, a narrow waveguide can be
described in multiple ways, as long as the average deviation from the waveguide inlet width,
ie. ry, =0.

4.2 Dataset properties

Having the parametrization, a dataset can be constructed, consisting of geometry control
parameters T, T4, 'm, rq and related cosines of Bloch phases cos £(k). Due to requirements
of the Webster equation, the range of each control parameter has to be restricted and not
all their combinations are allowed. Hence, we limit the non-dimensional slope of the sections
connecting the control points and the unit cell endpoints to be lower than 2 (e.g., |r; —
ro|/|x1 — x2| < 2). For the ranges of each control parameter see

The set of control parameters is created as a meshgrid of all parameter combinations
within the given ranges. Subsequently, the combinations are filtered as mentioned above. In
this way, a training dataset of 12432 geometries and testing dataset of 4632 geometries were
designed together with corresponding cosines of Bloch phases cos{(k) for k € [0, 12].
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4.3. COORDINATE TRANSFORMATION

Par. Range Formula Interpretation

T [i, 2%] — x coord. of the 1st control point

T9 [%, %} - x coord. of the 2nd control point

T [%, 2] r1 =1r(x1) r coord. of the 1st control point

79 [%, 2] ro = 1(x2) r coord. of the 2nd control point

Tm, [0, %] T = %(ml +x9) — % excentricity of the avg. contr. point position
g [%, %] xTg = |r1 — 29| distance between the control points on x

Tm [f%, %} Tm = %(rl +7r9) —1  avg. deviation from the waveguide inlet width
Td [0, %] rq=|r1 —ro distance between the control points on r

Table 4.1: Summary of the control parameters for the unit cell geometry. Note that not all
their combinations are allowed due to the requirements of the Webster equation.

Note that in the previous chapter, the range was chosen as k € [0,15] to include first
four bandgaps. However, during the study, it was realized, that the fourth gap cannot be
efficiently controlled by the changes in our parametrization of geometry. This holds also for
the new parametrization: more degrees of freedom in the parametrization would be needed
to independently control the fourth gap. Hence, the range was chosen like that so it is certain
that first three bandgaps are included. The center of the third bandgap is roughly expected
to be at k = 3, the center of the fourth bandgap at k = 4w. To be sure that the entire third
bandgap is present in the computed cosines of Bloch phases cos&(k), the Kk = 47 ~ 12.56
was taken as a number and rounded down.

4.3 Coordinate transformation

To extract formulae for prediction of cosine of Bloch phase cos &(k, T, g, T'm, rq) from the
dataset, we apply PCA on the dataset to find a coordinate transform into lower-dimensional
space that simplifies the system. By doing so, we find new bases vectors b;(k), dependent
only on the dimensionless wavenumber k, and new coordinates ¢;(Zm,, g4, "'m,74), dependent
only on the radius function features. For this dataset, the first three principal components
preserve 99.99 % of the original information (the explained variance) in the model (92.25 %,
7.35 % and 0.39 %, respectively). Hence, we can express the cosine of the Bloch phase in
this case as

cos& = by + bicy + baco + bscs . (4.5)

The bases are depicted in Fig. Since it is not possible to show the relation of coordi-
nates to geometry control parameters as in the previous chapter with ¢1(A,a) and ca2(A4, a)

in [Figure 3.5 (now we would need to depict it in five dimensions), only their distributions
are studied, see histograms in [Figure 4.3|
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cosé(k)

Figure 4.2: PCA results, mean cosine of Bloch phase by and the new bases vectors by, by, b3
shared by the entire training dataset.
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Figure 4.3: PCA results, histograms of coordinates ¢y, c2, cs3.

These histograms were used for some dataset engineering when designing the dataset,
because the less outliers the coordinates distributions have, the better the fit could be. The
early versions of the training dataset had some wild distributions of both ¢y and cs3, and it
was very hard to fit it them to accuracy, that would be satisfactory.

The shapes of bases in Fig. are also noteworthy. The mean cosine of Bloch phase by
does not correspond to a narrow waveguide (for which holds cos { = cos k), which, in theory, it
would be nice. Then all the principal components would describe only the perturbation of the
narrow waveguide. Unfortunately, this is not the case. In the beginnings, the training dataset
was designed to by symmetrical in geometry (because that was the only symmetry possible
to control directly) but the underlying physics is not symmetrical (as will be discussed later
in . Hence, it did not provide any advantage and the efforts were more fruitful
when focusing on the coordinates distributions while designing the dataset.

The base b; is essentially the only one active in the region around s =~ m, i.e., in the
region of the first bandgap. It is also responsible for the shift of the second bandgap towards
higher x. The second base by is responsible for widening the second bandgap and the third
base b is mainly active in the region of the third bandgap.
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4.4. TOWARDS SUITABLE FORM OF REGRESSION

4.4 Towards suitable form of regression

Following the approach introduced previously in [section 3.3, PCA is applied on the
cosines of Bloch phases cos{(k) and we obtain basis functions b; and coordinates ¢;, which
need to be related to the non-dimensional wavenumber and geometry control parameters,
respectively.

If one would like to follow the approach even further, it would include building own library
of candidate solutions to find formulae in the form of ¢; = ¢;(xy,, Tq, m, 74). Previously, the
candidate terms were the geometry control parameters raised to the power of ¢ = 0,1, 2,3,
allong with all possible interactions between them. For two control parameters, this results
in a total of 24 candidate terms. For four control parameters, the library includes 112 terms
and it takes the LASSO significantly more time to converge. In the end, applying LASSO
on this library candidate solutions did not turn out to be successful.

This data-driven discovery would benefit from including many more different candidate
terms, but that would even enlarge the library and still would not guarantee any success.
One key issue lies in the bias introduced by hand-selecting candidate terms, which inherently
limits the model space. In essence, with only minimal guidance during learning, the core
task is to identify expressions that accurately fit the observed coordinates ¢;, but are also
sparse and interpretable. And this is the central challenge of symbolic regression (SR), which
searches the space of mathematical expressions for a model that accurately represents the
relationship between the predictors and the dependent variable [58].

One of the recent algorithms, the so called AI Feynman proposed by Udrescu and
Tegmark [45], employs neural networks for data interpolation. The trained neural network
is then used for recursive breaking the problem into smaller parts by finding simplifying
properties, such as hidden symmetries and invariances in the data. E.g. to find the trans-
lational symmetry, it is checked whether the input (xi,x9,x3,...) gives the same result as
(1 + a,x2 + a,x3,...), for various constants a. If it holds within a given precision that
f(z1,29,x3,...) = f(x1+a,z2+a,xs,...), it can be concluded, that the function f (yet to be
found) depends only on the difference of z1 and z5. This means, that the variables z1 and
x9 can be replaced by a a single variable #j = x9 — 1. Although this idea seems promissing,
applying this algorithm on finding relationship between coordinates and geometry control
parameters did not turned out into success.

Finding a symbolic expression that fits data generated by an unknown function has
long been considered a computationally intensive and challenging task, often assumed to be
NP-hard. This assumption was formally proven in [59|, which further justifies the reliance
on heuristic methods for SR. One of the most prominent heuristic approaches is genetic
programming, popularized for SR by [60], which draws on principles of natural selection.

In this method, solution candidates are represented as expression trees composed of
analytical functions and operators. The use of genetic programming, a method based on
principles of natural selection, was for SR was popularized by [60]. Solution candidates
are built as expression trees from analytical terms and operators. A population of solution
candidates is then iteratively evolved in generations by repeated application of selection,
crossover, mutation and replacement. Examples of mutations are shown in an
example of crossover operation in [Figure 4.5 This approach presents an advantage: there is
no need to make assumptions about the underlying the physics and bias the model, because
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the model structure is not specified beforehand (as it would be for e.g. polynomial regression)
and is learnt on the fly.

Overview of available implementations and libraries is provided by many papers on this
topic, see e.g. , . Here, an open-source library PySR is employed, which uses Julia
for efficiency and Python frontend for user convenience. A key aspect of the library setup
is the choice of suitable candidate functions from which the expressions are constructed,
together with the size and amount of populations.

o e e &
AL A

/ /

1.21 ar 1.21 ar 1.21 1.21

1.21z +0.73 1.21z — 0.73 1.21z 4 0.73 1.21y +0.73

(a) (b)

Figure 4.4: A mutation operation applied to a) an expression tree, b) an input variable.

1.212 +0.73 y

y+0.73 (1.21z)¥
+
1.21 T

Figure 4.5: A crossover operation between two expression trees.
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4.5 Discovered formulae for dispersion relation prediction

After a good deal of numerical experiments, the best choice in terms of simplicity, in-
terpretability and accuracy was to allow the functions sin, cos, exp and the basic binary
operators +, —, % and /. For fitting the bases b; (i.e. curve fitting), the default option for
loss function was used: the mean squared error L2DistLoss (). However, applying the same
loss function also for the coordinates fitting did not turned out to be succesful, because of
how the points are distributed in space - the mean squared error is sensitive to outliers.
Hence, the quantile loss function QuantileLoss(7) was employed instead to mitigate the
effect of outliers, which improved the SR performance.

The losses are implemented in the library PySR via package LossFunctions.jl, where the
quantile loss function is defined as

Lo(r) = {(1 —T)r ifr=0 (4.6)

—Tr otherwise

with r = § — y. The goal was to focus on the central tendency, so the parameter 7 was
chosen accordingly, to be 7 = 0.5.

The formulae for bases functions b;(x) were fitted with the use of PySR as:

bo(k) = 1.054 cos(k) — 0.115sin(0.587k) — 0.026 , (4.7)
by (k) = 1.134 cos(0.883k) 4 0.193k — 1.279 — 5.8 - 10 S exp(k) , (4.8)
ba(k) = —0.037r cos(0.617k) + 0.032k — 1.6 - 10 % exp(k) , (4.9)
b3(x) = 0.009 k [sin(0.857x) — sin(—0.105k)] . (4.10)

The quality of the predictions can be seen in [Figure 4.6, While for by and bs the prediction
is almost perfectly follows the outputs of PCA, some discrepancies occur for b; and bs, which
was a tradeoff between accuracy and sparsity of the formulae.

For the coordinates ¢;(xy,, T4, "m,7q), the fitted equations read:

r2 +0.073
= —0.134 c0s(2.9907,, d , 4.11
“ cos(2:990rm) + 3o o a18 1y (4.11)
T'mTd
— —(9.196,, + 0.305)—™d__ 412
2 = —(9:196m +0.305) s (4.12)
Tm rq
— 0.033 — 0.7102, [ 22 42 ) 413
@ v <x§ * rd) (T + rm+0.390> (4.13)

Note the formula for the coordinate ¢; (Eq. ) which is independent of x,, and x4,
and depends only on the relative addition or removal of the waveguide breadth. Considering
that ¢; is dominant mainly in the region of the first bandgap, we can conclude, that the
first bandgap is influented by the change of unit cell overall volume, not its shape (for the
reasoning, see the end of Appendix in [57]).

In [Figure 4.7 the prediction versus truth plots for Eqs. (4.11)) - (4.13) are shown. In the

left column, the overall trends of coordinates and their predictions are shown. As discussed
before, it is not feasible to plot the dependencies of coordinates on the gemetry control
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Figure 4.6: Bases and their prediction, based on Eqgs. (4.7) - (4.10]).

parameters. Hence, they are plotted in the order how they show up in the training dataset,
which is sufficient for rough orientation.

Based on the prediction versus truth, the model for coordinate c¢; performs well: the
points are either very close to or directly lie on the line given by prediction equal to truth.
However, this is not the case for the two other coordinates co and c3: they show higher pre-
diction error and variance. The higher error variance could indicate systematic underfitting.
Although allowing more complex expressions could enhance the performance, they would no
more be as sparse and interpretable. The choice of the presented set of equation reflects the
tradeoff between accuracy, sparsity, and interpretability.

The bases and coordinates are put together and the formula for the cosine of Bloch phase
then follows as

n=3

coS &(Ky Ty Tdy Tm, Td) = bo(k) + Z bi(K)Ci(Tmy Tdy Tm,Td) - (4.14)
i=1

We are interested in comparing the cosine of Bloch phase cos &, where the ground truth
is given by the numerical solution and the prediction by the discovered formulae. Although
calculating either the mean absolute error or the mean squared error is certainly a way, we
are far more interested in the maximum difference between the cosines of Bloch phase cos¢.
For the comparison of this error on the training and the testing dataset see [Figure 4.8 As
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Figure 4.8: Error on the training and the testing dataset. The error was obtained as the
maximum difference between numerical solution and prediction in terms of cosine of Bloch
phase cos€.

mentioned before, the fit of both b; and ¢; is a trade-off between accuracy of prediction and
simplicity of the extracted formulae, while still some of the formulae might be underfitted.
Significantly reducing the error on the training dataset is not possible in case we want to
keep the interpretability of the model. On the other hand, the error on the training and the
testing dataset are comparable, therefore we can conclude, that no overfitting is present.

Although negligible, the first error has been introduced into the system already at the
beginning with the coordinate transform: as described in by choosing to use
the first three principal components, 99.99 % of the original information is preserved (and
0.01 % lost).

A few examples from the training dataset are shown in where the numerical
solutions of the Webster equation used for training are compared to the extracted formulae.
The first case illustrates that not every prediction fits perfectly as the second case with no
difference between the numerical solution and the prediction. The last case shows a narrow
waveguide, where it looks like cos & = cos k mostly holds and one can begin to celebrate that
the discovered formulae do hold for the basic case without any perturbances in geometry.
Unfortunately, this case also demonstrates that the transmission model is very sensitive to
misfitting around cos = —1 and cos§ = 1: although not large, there are visible differences
between numerical solution and prediction in the dispersion relation.
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Figure 4.9: Examples from the training dataset: a fit (top row), a good fit (middle row), a fit
for the narrow waveguide (bottom row). a) Unit cell radius function r(x); b) comparison of
the numerical solution and prediction in terms of cosine of Bloch phase cos¢; ¢) comparison
of the numerical solution and prediction transformed to dispersion relation.
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4.6 Discovered formulae for width and centre of bandgaps

Having the final formula for the dispersion relation prediction is a first step towards
having some insight in the system and how it is influenced by the geometry. However, for
proposing an optimized design for a desired band gap width, it could be usefull to have
formulae describing only that and not the whole cosine of Bloch phase cos¢.

The first idea on how to predict the bandgap widths was performing Taylor expansion
about points given by the first, second and third Bragg frequency (i.e., Kk = 7, 27, 37, recall
, which approximately estimate the bandgap centres. Although this might be
straightforward in theory, the expressions become too complicated. Hence, this approach
would go entirely against the chosen philosophy: improving the readability of the system by
discovering sparse and interpretable formulae. The SR has proven suitable for tackling our
problem of fitting bases b; and coordinates ¢;, and hence, it was decided to employ it to find
formulae for the width and centre of bandgaps.

The centres my,mo, mg and the widths wy,ws, w3 were retrieved from the datasets in
the following manner. The width of bandgaps are extracted from the cos¢{ as the width of
range where cos ¢ < —1 for the first and the third gap and cos& > 1 for the second gap. The
centers lie in the middle of that range.

After a good deal of numerical experiments, the best choice in terms of simplicity, inter-
pretability and accuracy was to assemble the formulae for centers and widths from functions
min, max and binary operators 4+, —, % and /. To reduce the importance of outliers, the
L1-loss function was employed (i.e., the mean absolute error).

Since the Bragg frequencies give a rough estimation of the centres of bandgaps, it makes
sense to describe only the deviations from these values. The fits provided by PySR read

mi =7+ 0.38max(0.17, xg4rq) , (4.15)
mg = 27 + 0.3 [max (7, rq¢) — min(0, rq)| , (4.16)
ms = 37 + max(0.25,rg — ) max(0.3,74) . (4.17)

The summary statistics of errors for these formulae in shows, that the Eqgs.
f describe the center frequencies very accurately. However, this is partially be-
cause the centers being described do not change much and the Bragg frequency as an esti-
mate is reasonably accurate on its own. Note that this is very likely a feature of the smooth
geometries in focus, not of locally periodic structures in general.

On the other hand, the accuracy of formulae for the gap widths found via SR varied
greatly, and it was therefore necessary to trade simplicity and interpretability of the formula
for its accuracy. Hence, two sets of formulae are shown. First, the ones with lower complexity
(denoted with a hat):

wy = 2.61 [max(ry,,rq) —min(0, ry,)] , (4.18)
wg = 0.13 + max[1.88(rg — ), 4.67z4rn] | (4.19)
w3 = 0.53 rqg — 0.84 min(0, ;) . (4.20)

From these, several noteworthy functional dependencies can be observed. Firstly, the width
of the first gap in Eq. (4.18]) does not depend on the z-position of the control points, only on
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Figure 4.10: Error on testing dataset for bandgap center prediction (Eqgs. (4.15)—(4.17)).
The box is indicating the median and the interquartile range, the whiskers 8th and 92th
percentile of error.

the relative addition or removal of the waveguide breadth. This is consistent with previous
findings: the formula for coordinate ¢; (Eq. ), that is dominant in the region around
k = m, (i.e., the first bandgap) contains a dependence on the same parameters as the equation
for the width of the first gap (Eq. (4.18)). This confirms the previous implications that the
decisive factor for the first gap is the change of unit cell overall volume. Last but not least:
the Eq. suffers from physical inconsistency: according to that formula, even a straight
tube would have a small second gap, while it should have none. One of the future goals
would be designing a custom loss function, that would penalize such formulae so we would
not have to select the physicaly viable ones by hand.

The comparison of formulae with lower complexity and formulae with higher complexity
is shown in It is clear that although the lower complexity formulae for wy and
w3 might be sufficient for providing general insight into the system, the accuracy is not
sufficient for design and optimization. The more elaborated set of equation reads

wy = 2.61 [max(ry,rq) — min(0, )] , (4.21)
wy = max(4.95zrm, 74) — (rg+ 0.11)[(1.852¢ — 1.01) + 5.62min(rp, — Ty, Tm)| , (4.22)

max(xd, 0.7 — xd)

w3 = max(min(zq, rm), (T4 — m)] 037 — =
. m

—0.46 . (4.23)

These equations might be harder to read but still very simple to be implemented in an
auxiliary script for evaluation and optimization, moreover useful special cases can be derived

from them. Note that Eqs. (4.18]) and (4.21]) are identical because the simpler relationship
was applicable to the same degree of accuracy as the more complex ones.
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Figure 4.11: Error on testing dataset for bandgap width prediction (Eqs. (4.21)—(4.23))),
measured on the k-axis. The box is indicating the median and the interquartile range, the
whiskers 8th and 92th percentile of error. Note that the hat is indicating the results of

relations with lower complexity (Eqs. (4.18])—(4.20))

4.7 Discussion

Throughout this chapter, all formulae discovered from the training dataset were com-
pared against the test dataset to check their performance and to rule out the possibility of
overfitting. The accuracy remained comparable for both datasets (check, e.g. [Figure 4.8))
and therefore, it was not necessary to address the overfitting phenomenon.

In comparison to the previous the waveguide geometry is parametrized by cubic
splines with four control parameters and allows for greater variability of the waveguides and
corresponding dispersion relations. Moreover, it is more common that the third bandgap
around k = 3w is opened. For discovering the formulae of either the dispersion relation
or bandgap widths and centers, SR was employed. The discovered formulae significantly
contribute to the overall readability of the system features and allow for use in design and
optimization.
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Chapter 5

Practical examples

To validate the discovered formulae and demonstrate some of their practical aspects, the
results are compared with simulations performed using the Finite Element Method (FEM).
First, the simulation setup is described in [section 5.1] |section 5.2| is dedicated to study
how many unit cells are needed to reach performance close to one of an infinitely periodic
structures. In the verification of discovered formulae is presented. Last but not
least, illustrative examples of possible applications are shown in

5.1 Simulation setup

To validate the discovered formulae and demonstrate some of their practical aspects,
the results are compared with simulations performed using FEM in COMSOL Multiphysics
5.5. For this purpose, the Helmholtz equation for acoustic pressure is simulated in a two-
dimensional axially symmetric geometry. To allow the first three bandgaps to exist securely
well below the cut-off frequency, the unit cell aspect ratio is chosen as Rpax/¢ = 0.15 unless
stated otherwise. At the input to the system, a plane wave is prescribed using a background
pressure field. The reflections are handled by perfectly matched layers at both ends of the
domain. The amplitude transmission coefficient T is calculated using the magnitude of the
complex sound pressure amplitude beyond the locally periodic structure.

5.2 Influence of the number of unit cells

As mentioned at the very beginning of the thesis in the perfect bandgap is
obtained for an infinite structure. Hence, it will be first investigated how many unit cells
are needed for complete attenuation, i.e., when the structure is sufficiently large that there
is no transmission through the structure.

The geometry was chosen from the case in (middle row) providing a good fit.
The simulation was not extended to other geometries due to its substantial computational
cost. The transmission characteristics were calculated for locally periodic structures with
different number of unit cells, namely of # unit cells, where # = {5, 10,...50, 55}. Using
higher number of unit cells is way more computationally demanding and the results prove
that it would not provide any further value.
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Figure 5.1: Transmission characteristics obtained from FEM simulations or various number
of unit cells.

| #cells [5]10] 15[ 20| 25] 30[ 35| 40| 45] 50| 55|

wy / Hz | - | 93| 100 | 103 | 103 | 103 | 103 | 103 | 103 | 104 | 104
wy /Hz | - | 50| 64| 67| 69| 69| 69| 69| 69| 69| 69
wg /Hz | - | - - - 18| 22| 24| 25| 26| 26| 26

Table 5.1: Bandgap widths for various number of unit cells, FEM simulations.

depicts the results of the simulations. The transmission characteristics of
more than 25 unit cells are overlapping, and therefore are excluded from the image. Let
the bandgap width be defined as the frequency range in Hz, where T < 1073 for the FEM
simulation. Then the contains the extracted bandgap widths.

Both the figure and the table show that the third bandgap is affected the most: it is
necessary to have no less than 20 unit cells to obtain the transmission below 1073, However,
to obtain consistently converging results, the amount of unit cells has to be at least twice
as large. The second bandgap remains consistent from 25 unit cells on, the first from 20 on.
For only 5 unit cells, none of the bandgaps reaches transmission below 1073, These results
are consistent with the information from [section 1.2]

The indicates that it would be necessary to perform the FEM simulations
with at least 50 unit cells. However, due to the high computational demands of the FEM
simulation, it was decided to limit the number of unit cells to 30 for the simulations presented
in unless stated otherwise. One only has to keep in mind the downside of this
approach: the third bandgap width will be slightly underestimated. An alternative approach
is to simulate infinitely periodic structure by implementing only one unit cell with boundary
conditions of Floquet-Bloch type, but then the practical insight would be lost.
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5.3 Verification of discovered formulae

The discovered formulae are verified employing the results of FEM simulations of the
Helmholtz equation for 50 unit cells and the geometry chosen from the case in
middle row. Next, the bandgap widths are extracted from the dispersion relation predicted
by the discovered formulae and also from the dataset obtained via Webster equation for unit
cell with boundary conditions of Floquet-Bloch type.

In the bandgap widths w;, we, w3 were retrieved from the cos§ as the width
of range where cos¢ < —1 for the first and the third gap and cos& > 1 for the second gap.
These conditions correspond to extracting the bandgap widths from dispersion relation as
the frequency ranges where the imaginary part is nonzero.

provides the comparison of the obtained bandgap widths. The first gap is
underestimated by 1 Hz, which is probably an artefact of numerical precision. The second
and third bandgap widths are overestimated by the Webster equation model compared to
the FEM simulation. As noted in the previous section, this discrepancy is expected, since
the Webster model assumes an infinite structure. The differences between the discovered

formulae and the Webster equation model are dealt with in

discovered formulae | Webster + FB | FEM simulation
wy / Hz 103 103 104
wy / Hz 82 73 69
w3 / Hz 29 33 26

Table 5.2: Comparison of bandgap widths predicted by discovered formulae, the ground
thruth from the dataset obtained via Webster equation for unit cell with boundary conditions
of Floquet-Bloch type, and FEM simulations of the Helmholtz equation for 50 unit cells.

5.4 Examples of application

This section is dedicated to practical examples showing the power of discovered formulae.

5.4.1 Targeted bandgap with simple geometry constraints

First, a simple example is given of the application of Eqgs. (4.15) and (4.21)) to a made-
up practice-motivated problem. Consider a circular ventilation pipe with a length of 8.5
meters and a diameter of 300 mm. The task is to attenuate (or ideally, completely block) a
frequency band of 50 Hz centered around 210 Hz, which could correspond, e.g., to the blade
passage frequency of a fan. Due to construction constraints, nothing can be added to the
pipe diameter; only internal inserts are allowed. Furthermore, assume that the air inside the

pipe is relatively cooler, with a sound speed of ¢ = 335 m s—'.

First, using Eq. (4.15)), the non-dimensional wavenumber for the first gap center fre-
quency is calculated. For simplicity, let r4 = 0, then

my = m + 0.38 max(0.17, x4ry) = 7+ 0.38 - 0.17 = 3.2 . (5.1)
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Since k = 2w f{/cp, the length of a unit cell can be determined as

_comi  335ms '-3.2
" onf  27-210Hz

=081 m, (5.2)

which means, that on the given length of 8.5 m, the locally periodic structure can consist of
only 10 unit cells.

Analogously, the dimensionless width w; corresponding to the 50 Hz band should have
wy =21 fl/cg=2m-50 Hz-0.81 m /335 m s~ = 0.76 . (5.3)

This value can then be used in Eq. (4.21]) to design the specific geometry.

While there are an infinite number of ways to satisfy this requirement, certain constraints
must be considered. Notably, we are only considering inserts inside the pipe. If the pipe
were part of a low Mach number flow ventilation system, a smooth profile would be required
for hydrodynamic reasons. Therefore, the following choice becomes a natural one:

Tm =0, rq=0.33, rm = —0.29 , rq=0. (5.4)

Finally, these values must be converted back into dimensional geometric quantities. The
results are presented in Fig. Clearly, both the bandwidth and its center are appropriately
sized, and the transmission coefficient is sufficiently low, making the design successful even
with just ten unit cells.

However, in the general case, one may encounter the following problem in a locally
periodic structure that is not accounted for by Egs. f. The bandgap widths
derived from these equations assume an infinite periodic structure and do not account for the
possibility that an evanescent wave might propagate far enough through the local structure.
This could lead to a transmission coefficient greater than zero. Therefore, it is logical tohave
formulae for the complete dispersion relation as well.

0 ‘ ‘ ‘ : | | | | =
0 02 04 06 08
0 50 100 150 210 250 300 350 400

7/ H
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Figure 5.2: a) The radius function of the unit cell corresponding to the problem in Sec. m
b) its transmission characteristic with the intended bandgap and its centre marked.
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5.4.2 Three equally wide bandgaps

In the locally periodic structures studied, it is common for the width of the first bandgap
to be larger than that of the second, and similarly for the third bandgap. To demonstrate
the capabilities of the analytical formulae 7, a case with three bandgaps of ap-
proximately same width is shown.

To achieve this, we minimize the following objective function:
(w1 — wa)? + (w1 — w3)? + (w2 — w3)* + max(0.5 — wy,0) , (5.5)

using a simple coordinate descent optimization algorithm. The last term prevents the so-
lution to be all the bandgap widths equal to zero. The resulting radius function and the
transmission characteristic are depicted in Fig. [5.3]
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Figure 5.3: a) Radius function unit cell for the case of three equally wide bandgaps; b) the
corresponding transmission characteristic.

5.4.3 Constant second bandgap with different geometries

Some special cases can be derived from the relatively complicated full form of Eqs. (4.21)—
. Let’s derive an example, where the second bandgap remains constant for different
geometries, assuming a unit cell consists of a protrusion with a flat tip, i.e. z,, =0, 74 =10
and r,,, > 0. For these assumptions, the total differential of Eq. reads:

dwy = (4.95r,, — 0.2) dzg + 4.95x4 dry, . (5.6)

One possible application of this equation is to guide the adjustment of r,,, and x4 in such a
way that we remains constant. This effect is depicted in Fig. [5.4] where the parameters of the
second bandgap remain fixed, while those of the first and third bandgaps vary. The behavior
of the third bandgap can be understood by noting that it (corresponding to relatively shorter
wavelengths) is more effectively supported by localized changes in the radius function. In
essence, the red radius curves in Fig. [5.4] feature a larger section of the waveguide with a
constant radius, with steeper variations occurring at the beginning and end of the unit cell.
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Figure 5.4: a) Different unit cell geometries designed to satisfy dws = 0 in Eq. (5.6). b) The
corresponding transmission characteristics.

5.4.4 Related problems

It was mentioned in [section 2.1] that an axisymmetric waveguide is considered throughout
the work, i.e. it holds for the cross-section function A(s) = wR(s)?, where R(x) is the radius
function and the s the spatial coordinate along the waveguide axis. However, the results
are not limited to axisymmetric waveguides. The modification that transforms the cross-
sectional area function A(x) into the radius function R(z)

1 dA(z) 2 dR(z)
A(z) dz _>R(x) dz

(5.7)

holds for any cross-sectional shape described by a single linear parameter, such as the side
of a square, a rectangle with a fixed aspect ratio, or an ellipse with constant eccentricity.
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Chapter 6

Conclusions

The thesis dealt with modeling band structure properties in sonic crystals using machine
learning, with the focus on one-dimensional sonic crystals of continuous geometries governed
by the Webster equation. The aim of this thesis was to discover an analytical model of band
structure in such structures to improve the overall readability of the system features and
enable more efficient optimization. This was due to the fact that, up until now, the de-
vice design and optimization were possible only with computationally demanding numerical
optimization repeatedly going back and forth from waveguide geometry to the dispersion
relation, without much knowledge about the influence of the parameters on geometry.

Having an access to a numerical model provided by the Webster equation with periodic
boundary conditions of Floquet-Bloch type is a great opportunity for data-driven discovery of
underlying patterns. Based on the principle of parsimony (also known as the Ockham’s razor
principle), it can be assumed that the model should be sparse in terms of possible functions
in the governing equations. Involving current knowledge of the problem’s underlying physics
and machine learning techniques such as coordinate transformations and sparse regression,
the governing equations can be inferred from the dataset.

Initially, when parametrizing geometry by sine to the second power in [chapter 3] the
formulae were extracted from the dataset after coordinate transformation by PCA using
LASSO and Levenberg-Marquardt algorithm in combination with a genetic algorithm CMA-
ES. However, this parametrization did not provide enough variability of the geometry, which
in turn meant that the control of bandgaps was not sufficient. Therefore in a more
general parametrization of the waveguide geometry was employed, namely cubic splines with
four control parameter. Due to the increased number of degrees of freedom, a more advanced
method was necessary for extracting formulae from the dataset. For this task, the symbolic
regression was chosen, providing a couple of mathematical expression sorted by complexity
and accuracy. Based on the tradeoff between these two, the final model was selected.

The results were validated by employing FEM to solve the Helmholtz equation for the
acoustic pressure in COMSOL Multiphysics 5.5 and shown to be supported by physical
interpretation. It was verified, that it is possible to model the band structure properties in
sonic crystals with smooth geometry from the dataset employing machine learning.

The results of the proof of concept from were presented at The 28th Inter-
national Student Conference on Electrical Engineering at Faculty of Electrical Engineering,
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CTU Prague, and published in the conference proceedings |64]. In the Best Poster Award,
the poster was awarded with first prize in the Natural Sciences section. The early stage
results from were presented at The 53rd International Congress and Exposition on
Noise Control Engineering in Nantes, France, and published in the conference proceedings
[65]. The final results with examples of formulae application were published in a Q1l-ranked
journal, The Journal of Sound and Vibration [57].

One of the future goals is to design a custom loss function, that would penalize the
formulae not supported by physical interpretation. In this way, the symbolic regression
would provide us more possible solutions and it would not be necessary to select the physically
viable by hand.

Moreover, it is worth considering transforming the problem to a Schrédinger-like equation
and defining the geometry not by the radius function as in this thesis, but by the gaussian
curvature. The preliminary results of this approach were presented at the 51st Annual
Meeting on Acoustics DAS/DAGA 2025 in Copenhagen this March, and published in the
conference proceedings [66]. Transforming the problem to the Schrédinger-like equation
allows potentially for a more multiphysical approach, because it presents a common ground
for various problems of propagation through inhomogeneous structures.
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