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Abstract:

Flocking behavior of groups of animals is a fascinating natural phenomenon. In
computer games, flocking simulations can enhance visual realism or create novel
mechanics. This thesis presents a framework for flocking in the Unity game
engine, designed for simple use by both game designers and programmers. The
framework provides a modular architecture, allowing developers to add, remove,
modify, or replace individual components, such as behaviors, enabling usage in
various scenarios. Furthermore, the thesis introduces several novel theoretical
advancements to the conventional methods of modeling flocking behavior.

The thesis first deconstructs a flocking model into modular components. Each
component is then analyzed from a theoretical perspective with existing imple-
mentations to develop a robust and customizable flocking model. These ideas
are then used to create a framework in Unity, structured as a modular paral-
lel pipeline that allows customizability and improves performance. Additionally,
a graphical user interface enables users to configure the pipeline without pro-
gramming knowledge. The framework is later used to create a game scene, with
animals using up to even 14 different behaviors. A key theoretical contribution
enabling granular control over such complex flocking systems is the introduction
of behaviors that return a normalized desire value together with a desired velocity.
This enabled an improved method of blending between each desired velocity.
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1. Introduction

Computer games often have a goal of creating a realistic and immersive experi-
ences. Virtual worlds often contain simulations of different natural phenomena in
order to increase the immersion. One fascinating natural phenomenon is flocking,
the collective motion of groups of animals. Observing a large flock of birds, we
can see a beautiful complex movement of the group as a whole. The Figure 1.1
highlights this phenomenon with a large flock of starlings.

Figure 1.1: A screenshot from a video on National Geographic’s Youtube channel
[1]. It captures the flocking of a large number of starlings.

There are different use cases for simulated flocking in computer games. One
use case is a simple simulation of birds or fish purely as a visual element of the
game. These simulations only serve the purpose of creating an interesting and
realistic virtual environment. They do not necessarily need to react to the player
or other NPCs. In this case, the birds’ paths could be animated by hand instead
of using a simulation. However, for a larger number of birds, this becomes very
cumbersome.

In other cases, it can be desirable to have the simulated animals react to the
environment or the player. An example of such interaction could be a flock of
fish dispersing when a player steps into a river, or a flock of birds scattering
upon hearing a gunshot. These features could increase the immersion of a game.
While birds far up in the sky may not need to interact with the environment, fish
must at least avoid running into rocks and the ground. If interaction with the
environment is required, a flocking simulation becomes necessary.

Some games may even incorporate flocking as a part of the gameplay, or
flocking may even be the core game mechanic. An example of such game is
“Flock!” [2]. In this puzzle game, the player controls a UFO, which herds sheep
into a specified location. The player’s interaction with a simulated flock can
create many interesting situations. Obstacles or predators can split the flock into
multiple smaller flocks, creating difficult choices for the player. The animals can
be pushed off cliffs by their flockmates in narrow paths, as shown in Figure 1.2,
or they might wander off the cliff by simply following the animals directly in front
of them.
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Figure 1.2: A screenshot from the game Flock![2]. The UFO ship herds the sheep
towards the end of the level, because of the narrow space, some sheep end up
falling into the water.

The interaction between a flock of animals and a player can be an interesting
main mechanic. For most games, however, a flocking simulation would be more
of an interesting feature of a virtual world. Furthermore, the development of
computer games is usually very time consuming and expensive. For these reasons,
developing a flocking simulation could be seen as an unnecessary expense in the
development a game, especially if it is not the main mechanic, but only a visual
element. Large game companies may be able to afford to develop their own
flocking solution, in order to slightly improve the immersion of their environment.
Smaller studios with more limited resources will likely choose to allocate their
effort elsewhere. A framework which solves a large portion of common use cases
for flocking simulations in games could be used to reduce the cost and effort
in integrating this phenomenon into game environments. It would be especially
valuable for those small studios with strict budget constraints.

When looking at which game engines small game companies use, it is clear
that Unity [3] by far the most common choice. A survey conducted by Developer
Nation indicates that 48% of indie developers use Unity [4]. While researching
solutions for this problem that have already been implemented for Unity, we have
not found one which would be sufficient for more complex use cases, especially
when interaction with a flock is the a main game mechanic. In Section 1.2, we will
discuss what we consider to be important requirements for a flocking framework
to be sufficient for more complex use cases. Furthermore, we will briefly look at
and evaluate some solutions for flocking in Section 1.2.

For the aforementioned reasons, the goal of this thesis will be to create a
framework for flocking simulations, which conforms to requirements which will
be introduce in Section 1.1. Due to its popularity among small game studios and
lack of high quality flocking frameworks, Unity was chosen as the target game
engine for this framework.



1.1 Flocking Framework Requirements

Flocking simulations in computer games can have a large number of different
usages as discussed earlier. Different use cases will have different requirements,
which will now be discussed in detail.

1.1.1 Performance

Flocking is not be the main feature for most games, it is usually just a slight
environment enhancement. For this reason, it is crucial that the framework does
not consume significant amount of computational resources that could be used
for core gameplay features. This poses a challenge as for example murmurations
of starlings can contain up to millions of individuals [5] as is the case in the
Figure 1.1. However, murmurations are a special case which only happens at
certain times of the year, and smaller ones can consist of 500 birds [6]. For sheep
or other cattle, the size of a flock is likely to be in tens to hundreds of individuals.

The framework must me able to handle common sizes of flocks without tak-
ing up significant portion of computational resources on an average gaming PC.
Usually the target frame rate for games is 60 frames per second, which means
that each frame can take up to 16 milliseconds. Since the flocking simulation
may not even be an important part of the game, we believe that 1 millisecond,
a sixteenth of available resources, is a reasonable requirement. The performance
will however depend on the number of animals. We have chosen 1000 animals
as a reference number because it is sufficient for larger flocks of cattle and still
suitable for smaller murmurations.

For concrete performance testing, the author’s gaming laptop was chosen as a
reference system. It features a 6 core i7-8750H CPU, 32GB of RAM, and NVIDIA
GeForce RTX 2060 graphics card. The target is a simulation on the reference
system with at most 1 millisecond of run time for 1000 individual animals, which
do not interact with the environment in any way.

1.1.2 Modularity

While different animals will likely need to behave differently in some cases, a flock
of birds shares many similarities with a school of fish in many ways. It should be
possible to share the code for the similar parts across different types of animals
when needed, and compose new types of animals from existing code. The target
is to create modular “blocks”, which can be composed together to create new
types of animals.

1.1.3 Extensibility

Extensibility complements the modularity requirement. As discussed, it would
be beneficial for the framework to be modular, allowing easy composition of
existing modular “blocks” into new types of animals. While this is good for
quickly creating new types of animals from the existing “blocks”, sometimes it
will be necessary to create new “blocks”. The framework should be designed with
extensibility in mind to allow this.



This is especially important in situations where interaction with a flock of
animals is an important game mechanic. It is impossible to predict all different
kinds of animals, what data defines them, and how they should react to one
another and the environment. The framework should be designed to make it easy
for programmers to define new types of animals and behaviors. The main reason
to use a framework is to save development time. Therefore, while the framework
should offer “plug and play” solutions for common functionality, it should also be
easy to extend.

1.1.4 Flexibility

The framework should be flexible enough to support different types of animals
with varying behaviors. As discussed, the framework should be divided into
modular “blocks” which can be composed together to create new types of animals.
The interface of these “blocks” should impose minimal restrictions on what can
be done with them.

This allows for cases such as moving in 2D or flying in 3D, or walking on a
surface in 3D . Other cases where flexibility is needed is that while in simulations
a bird often only needs to know the positions and velocities of other birds to
determine its own movement [7], sometimes it might be necessary to take other
information into account. For example, a bird might need to know the position
of a predator’s mouth to better determine how to avoid it. In other words, the
framework should not be restrictive in what can be done with it.

1.1.5 User-Friendliness Design for Game Designers

The previous requirements focused on programmers, this one is focused on game
designers. In a typical game development team, there are programmers and game
designers. Game designers usually want to have some high level control over
systems within the game to adjust them for specific needs. While game designers
tend to have some technical knowledge, they generally cannot be expected to
understand technical details or write code. This is why it is crucial that the
framework offers a user friendly high level control to tweak the behaviors. Ideally
designers should be able to quickly create and tweak new types of animals without
having to write a single line of code.

1.2 Current Solutions in Unity

This section examines selected implementations of flocking in Unity. They are
evaluated based on the requirements described in Section 1.1. This evaluation
will help identify issues that our framework should address and guide decisions
on which Unity technologies to use. While the performance requirement is objec-
tively quantifiable, the other four requirements are not. For this reason, big part
of the evaluation will rely on our views of the evaluated solutions.



1.2.1 FlockAl

The first implementation to analyze is FlockAl [8], available on Unity Asset Store
for €10 at the time of writing this part of the thesis (January 2024). At the time
of submission of this thesis (January 2025) the package has been renamed to
GroupAl, price increased to €13.8 and some features were added. Our analysis
and decision making is based on the older version. We chose this asset because
it is relatively popular and cheaper than most other paid assets. We wanted to
explore what was available for a lower price, as our main target is studios with a
lower budget.

Performance

First, a scene simulating 1,000 birds with no interaction with the environment
was run. Upon analyzing it with a profiler, one iteration of the simulation took
around 65 milliseconds on the reference hardware. This is far from the desired
goal of 1 millisecond.

Modularity

The whole simulation is written in one large file that tries to cover all cases at
the same time. The file also contains long functions with many responsibilities.
For this reason, the code is not very modular, because a change in one place can
affect many other places.

Extensibility

The main part of the framework is implemented as one large class containing
1950 lines of code. It is implemented as a MonoBehaviour which updates all the
currently simulated animals. All interactions are programmed directly in this
class, so creating a new interaction would require writing the code directly into
it. In other words, the interactions are tied directly to the flocking simulation,
rather than to individual types of animals, which is not very extensible

Flexibility

The asset provides many different examples of how to use it. It contains fish,
birds, and even cows. It does not provide a way to have different behaviors for
different animals, but it does allow modification of properties related to move-
ment, such as maximum speed. There is some flexibility, but we are missing an
option to have different behaviors for different animals.

User-Friendliness for Game Designers

The simulation is configured with one ScriptableObject which contains all the
options. This would make it easy to configure the simulation as everything is in
one place. This is straightforward to use, even for non-technical users.



1.2.2 Sebastian Lague’s Boids

The second implementation to analyze is Sebastian Lague’s Boids [9]. Sebastian
Lague is a very popular Unity content creator on Youtube. He created an open
source project which implements the Boids model [10], and described it in a video
on his channel [9]. The video has 1.5 million views at the time of writing, making
it the most popular Youtube video on this topic in Unity, and as far as we know,
the most popular video on simulated flocking on Youtube in general. Therefore,
we consider it a good implementation to analyze.

The project does not attempt to be a framework, but rather a simple imple-
mentation of the algorithm. Lague first experimented with a simulation on the
CPU with a spatial partitioning data structure to improve performance. He then
improved the performance by moving the simulation to the GPU, disregarding
the spatial partitioning. This structure will be discussed in more detail in the
Chapter 5. The project mainly consists of one type of boid, behaviors written
in a compute shader, and a manager script that binds these parts together and
updates the boids.

Performance

Again we ran a simulation of 1000 boids (in this case fish) with no interaction
with the environment, after commenting out the parts responsible for obstacle
avoidance. The simulation part on the GPU took around 1.5 milliseconds, the
rest of the simulation took around 1.2 millisecond on the CPU, or around 2.7
milliseconds in total.

This performance is much better than the previous one, but still not quite at
the desired level. The author mentions that the performance could be improved
by combining the spatial partitioning data structure with the GPU implemen-
tation. While using the GPU for the simulation sounds promising in terms of
performance, it is important to note that the GPU could already be fully utilized
by the game’s graphics, potentially creating a bottleneck.

Modularity

As mentioned earlier, the project can be divided into three main parts: the boid,
the GPU-based behaviors, and the manager that binds them together. While the
separation between the boid and the behaviors improves modularity, the manager
directly binding them does not, as it directly depends on the type of the boid and
the specific compute shader. Otherwise, the code is split into smaller functions,
many of which could be replaced by different implementations without changing
the rest of the code. This is achieved through good coding practices, such as
keeping small functions with a single responsibility. However, it lacks any kind
of abstraction through interfaces to further decouple the code.

Extensibility

The code is not very extensible, which is understandable as this was not the
goal of the project. New behaviors would either have to be directly written into
the compute shader, or a new compute shader would have to be written. These
changes would need to be reflected in the manager which binds the compute
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shader and C# together. The manager would have to be modified for each new
behavior. Moreover, new types of animals might require a whole new manager.

Flexibility

The project offers only one type of boid, which is a fish. In the current implemen-
tation, it is not possible to have different behaviors for different types of animals,
or to have movement in 2D or on a 3D surface. For example, changing the move-
ment to 2D would require either modifying the boid itself, or creating a new type
of boid. In case of creating a new type of boid, the rest of the simulation would
have to be rewritten to accommodate it, due to the low extensibility.

User-Friendliness for Game Designers

The project offers one way to configure the simulation, which is again through
a ScriptableObject. This is straighfoward to use, even for non-technical users.
However, there are not many options to configure.

1.2.3 Unity’s DOTS Boids Sample

Lastly, there is a sample Boids implementation project [11] provided by Unity
to showcase their new Data Oriented Technology Stack (DOTS) [12]. The main
purpose of the project is to showcase the performance gains when using DOTS.

It assumes one type of a boid (fish). A query is made in a system to find
all the entities with a particular tag and required components. Then a series of
parallel jobs, compiled into native code with the burst compiler [13], is scheduled
to update the boids. On top of parallelization and the benefits of the burst
compiler, the implementation also uses a spatial partitioning data structure to
improve performance.

Performance

As expected, since the project is trying to showcase the performance benefits
of DOTS, the performance is very good. A simulation of 1000 boids with no
interactions with the environment was run. The simulation took around 0.2
milliseconds on the reference machine, which is well within the desired target of
1 millisecond.

Modularity

The simulation itself is split into multiple jobs, some of which could be replaced
by different implementations or reused for other simulations. The code defines
a series of jobs that depend on each other only through the data they read and
write to buffers. Furthermore, the jobs do not depend on a specific type of boid,
but only on the set of components that the boid has. This is a good design for
modularity, but it would be even better if the jobs that are run could be decoupled
from the system that schedules them.

11



Extensibility

The project is not a framework, so it is not built with extensibility in mind. The
behaviors are split into multiple jobs, so it would be possible to add new ones,
but it would still be needed to schedule them in the main system. This is not
very extensible, as this system would grow with each new behavior and would be
difficult to maintain. Furthemore, defining new types of animals with different
components and behaviors would require creating a new system with a new entity

query.

Flexibility

The project offers only one type of boid, a fish. It is not possible to have different
behaviors for different types of animals, or to have movement in 2D or on a
3D surface. For example, changing the movement would require creating a new
system for each type of animal, which would be almost identical to the current one,
but with a different job to update the boids position and a different entity query.
Alternatively, branching could be used in the job to determine the movement,
but this would have a negative impact on extensibility.

User-Friendliness for Game Designers

The only way to configure the simulation is through properties on the prefab
of the boid itself. This is again very simple, but there are not many options
to configure (only 6 properties). It is possible to create new types of boids by
creating new prefabs with different properties, but there is no option to change
which behaviors are used without writing code.

1.2.4 Conclusion

We gave three examples of flocking simulations in Unity. One utilizing MonoBe-
haviours, one utilizing compute shaders and one utilizing DOTS. They were eval-
uated in reference to the requirements described in Section 1.1. It was apparent
that none of the solutions were sufficient for more complex use cases, and thus
there is a need for a framework that would satisfy these requirements. We will
now summarize the findings and draw a conclusion as to which technologies will
be used for our framework.

The option using MonoBehaviours is not very performant. It could be im-
proved by using better data structures, but it would likely still not come close to
the performance of the other two. We believe that running the simulation on the
GPU with proper data structures could achieve the best performance. However,
compute shaders are very low level and the abstractions needed for a modular and
extensible framework would be difficult to implement. Also, the GPU is already
being used for the actual graphics, so this could create a bottleneck. The DOTS
implementation is performant enough, and because it uses C#, it would be easier,
but still challenging, to create a modular and extensible framework. Moreover,
the jobs utilize all available CPU cores, which can otherwise be underutilized.

For these reasons, we decided to use DOTS for our framework. The main
challenge will be to create a framework that strikes a good balance between all
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the specified requirements. DOTS offers great performance, but at the cost of
being more low level than traditional MonoBehaviours. This will make it more
difficult to achieve modularity and extensibility. It will be important to find a
good balance between performance and higher level abstractions, and between
flexibility for different use cases and the ease of use for the common cases.

1.3 Flocking and Steering Behaviors

In the previous section, we have discussed three implementations of flocking sim-
ulations in Unity. They all derive from the so-called Boids model [7] to simulate
flocking. The Boids model is probably the most well known model for simulating
flocking behaviors. For this reason, it is a promising model for our framework.
We will now discuss the Boids model and how it relates to steering behaviors in
more detail.

First described by Craig Reynolds in 1987, the Boids model [7] is perhaps
the most important and influential source on simulated flocking behaviors. The
paper has since been cited over 14000 times [14] at the time of writing. The
model was first used to simulate bats and penguins in the 1992 movie “Batman
Returns”, as Reynolds mentions on his personal website [15].

Reynolds later described the technique he used to simulate flocking in more
detail in a paper titled “Steering Behaviors For Autonomous Characters” [16].
The technique is not limited to flocking simulations, it is more of general technique
for determining the desired movement of a reactive agent [16]. Steering behaviors
have since found many usages, especially in computer games.

1.3.1 Steering Behaviors

Steering behaviors have been one of techniques for creating various Al behaviors
in computer games. One example is the Al spacecrafts in the game “Mace Griffin:
Bounty Hunter” [17]. In sections of the game, the player fights against spacecraft
controlled by the computer. We know that steering behaviors were used because
the author of the Al system for this game describes his approaches in a paper
titled “The long and short of steering in computer games” [18].

Further example of the use of steering behaviors is the mobile game “Fieldrun-
ners 2” [19]. In this tower defense game, large numbers of units try to destroy the
player’s base, while the player has to build structures to defend against them. Al
for this game was described by Pentheny in his paper titled “Efficient Crowd Sim-
ulation for Mobile Games” [20]. The paper mainly discusses how to efficiently
simulate thousands of agents on a mobile device. Pentheny notes that utiliz-
ing multiple cores, which are available in modern devices, is important to achieve
good performance. He also notes that because steering behaviors are independent
for each agent, parallelization of them is trivial. We also observed the benefits
of parallelization in Section 1.2, where the DOTS implementation was the most
performant. This further supports our decision to use DOTS for our framework,
because it offers easy parallelization through jobs.
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1.3.2 Boids Model

Looking at open source implementations of the Boids model, it is clear that im-
plementations can be quite simple and still providing a mesmerizing simulation.
An example of this is an implementation by a youtuber Ben Eater; his imple-
mentation [21], public on GitHub, fits in only 218 lines of code of JavaScript. An
interactive simulation can be seen on his personal website [22], here captured in
Figures 1.3 and 1.4 taken around a third of a second apart.

Figure 1.3: First screenshot of flock- Figure 1.4: Second screenshot
ing simulation by Ben Eater [22]. of flocking simulation by Ben
Eater [22].

We find that while it is trivial to create a simple simulation, there is no
standard way to create a Boids model. From the over 14000 citations [14] of the
paper that first introduced the Boids model [7], a large number of these papers
is concerned with implementating the Boids model. However, Reynolds only
described the model in words. Reynolds later published additional materials on
his website to further clarify his model [15], and an open source implementation
of his steering library [23] was released. However, there is still a lot of room for
interpretation and modifications.

We noticed that authors of other papers on flocking usually state that they use
the Reynolds’ Boids model. Interestingly, many of these implementations differ
in subtle details that have different effects on the final simulation. One example
discussed in more detail in Section 2.2 is that some authors describe the output
of the behaviors as a desired acceleration, while others describe it as a desired
velocity. This can be especially problematic when combining implementations of
behaviors from different sources. Furthermore, even when using the same output
semantics for behaviors, concrete implementations of the behaviors can still differ
in how they determine the output.

We believe that these differences are partially caused by the lack of formaliza-
tion of the Boids model. This is why we believe there is a need for a formalization
of it, to better understand it and analyze different implementation choices sepa-
rately.

1.3.3 Conclusion

In Subsection 1.3.1, we discussed steering behaviors. Given their success in devel-
oping models of flocking behaviors, widespread use in Al for computer games, and
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potential performance benefits, this thesis will also work with steering behaviors
as its technique for modelling flocking simulations. Throughout this thesis, the
term “flocking” will refer specifically to the collective motion of animals, and the
term “steering behaviors” will refer to the Al technique.

Furthemore, we have stated in the Subsection 1.3.2 that there is no standard
way to create a Boids model, and that there is a need to formalize it. The formal-
ization could help in understanding the model, analyzing different implementation
choices, and finding the optimal structure for the framework.

1.4 Approach

We found that there is a need for a framework for focking simulations in Unity.
We stated requirements for this framework in Section 1.1. Then, analyzed some
existing solutions in Section 1.2, and concluded that using DOTS is the best
option for our framework. Then, we discussed the Boids model and steering
behaviors in Section 1.3, concluding that a model based on steering behaviors is
a good option for our framework and that it would be beneficial to formalize it
first. This section will now discuss the approach that will be taken to create the
framework. Furthermore, the structure of this thesis will be discussed.

This thesis can be split into two parts. The first part analyzes approaches
to flocking behaviors used in other sources. First, the high level structure of a
flocking algorithm as it was introduced in the Reynolds’ seminal paper [7] will
be examined. This will be used to create a pseudocode formalization of it. This
pseudocode will help to break down the algorithm into distinct parts. This will
help with the modular design of the framework, and with the analysis of different
implementation choices. The analysis of these choices will be used to find the
best “out of the box” defaults for our framework, and to realise which parts of
the framework should be easily extensible and flexible.

In the second half of this thesis, the framework will be designed based on the
formalization, and with the requirements in mind. It will then be implemented
using Unity’s latest Data Oriented Technology Stack — DOTS [12]. Lastly it
would be beneficial to test the framework by creating a game scene that uses
it. This will help evaluate the framework in relation to its requirements, identify
possible improvements and limitations, and showcase its use cases.

1.5 Goals

The main goal of this thesis is to create a framework for the Unity game engine
that can be used to create flocking simulations. The secondary goal is to test this
framework by implementing a simple game scene that uses the framework. The
goals for the framework and the game scene will now be discussed.

1.5.1 Framework Goals

The requirements for this framework were discussed in more detail in the Sec-
tion 1.1. In brief, the framework should have the following qualities:
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1. Extensibility for programmers — It should be easy to implement new types
of animals and behaviors.

2. Modularity — It should be possible to reuse parts of the framework between
different types of animals.

3. Flexibility — The framework should not be restrictive in what can be done
with it.

4. High performance — The framework should be able to simulate up to lower
thousands of animals at interactive framerates.

5. Usability for game designers — It should be easy to configure the simulation
without writing code.

1.5.2 Game Scene Goals

In order to test the framework thoroughly, a game scene will be developed with
the following sample use case in mind. A game scene that has flocking as its
main feature. It will be a simulation of relatively large numbers of animals,
hundreds or lower thousands. There will be multiple kinds of animals in different
environments, water, ground, air. The animals should be able to react to different
elements of the environment, not just to other members of the same flock. They
should take into account various aspects of the virtual environment, such as
different kinds of animals, the player, the sounds, the physical objects in the
scene etc.

If the framework meets all the requirements specified in Section 1.1, it should
minimize the effort required to create this scene. The scene should run at in-
teractive frame rates on the reference system which was described in the Sub-
section 1.1.1. Finally, a user without programming knowledge should be able to
modify some aspects of the simulation.
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2. Formalization of Boids Model

In Section 1.3 of the previous chapter, we discussed that the Boids model lacks a
formalization, and why it is important to have one. The problem of insufficient
formalization has already been described by Bajec et al. in their paper titled
“The computational beauty of flocking: boids revisited” [24]. The paper also
provides a formalization of an artificial animal, based on Moore automata, a type
of finite state machine. It tries to be general enough to be able to model various
animal behaviors. The authors later show that the Boids model can be modeled
with their formalization.

The formalization provided by Bajec et al. is rigorous and includes a lot
of mathematical notation, which makes it very general and unambiguous, but
potentially difficult to work with. For this reason, this thesis will provide its
own formalization, focusing only on the Boids model, as it was first described
by Reynolds. This formalization will focus on decomposing the Boids model
into separate functions, how they are composed together, and determining what
is their “contract” ' and “signature” 2. Later this formalization will be used to
analyze various implementation details and their consequences. This analysis will
then help to decide on the structure of the framework and the implementation of
the concrete parts of the model.

2.1 Owur Formalization

The Boids model will now be formalized in a way to cover all the main ideas men-
tioned in the first description [7] of it. Implementation details will be intentionally
omitted for now, they will be analyzed in next chapters.

The model was initially summarized with the following:

“Stated briefly as rules, and in order of decreasing precedence, the behaviors
that lead to simulated flocking are:

1. Collision Avoidance: avoid collisions with nearby flockmates
2. Velocity Matching: attempt to match velocity with nearby flockmates
3. Flock Centering: attempt to stay close to nearby flockmates” [7]

As Reynolds notes, the first two rules can be interpreted as static collision
avoidance and dynamic collision avoidance, respectively. The first rule encourages
entities to move away from neighbors that are too close, while the second rule
promotes matching velocities with nearby neighbors, reducing the likelihood of
future collisions. The third rule is crucial for maintaining cohesion within the
flock.

Reynolds also emphasizes that the calculation of these three behaviors only
considers nearby flockmates. Additionally, he interprets the results of these be-
haviors as “acceleration requests”. “Fach behavior says: ‘if I were in charge, I
would accelerate in that direction.” ”[7] It is mentioned that all of these requests

!Contract of a function are the assumptions about its inputs and outputs.
2A signature of a function are the types of its inputs and outputs.
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are fed into navigation module, which then determines one desired acceleration.
Afterwards, the pilot module and the flight module determine the final movement
[7].

Even though the paper does not give a pseudocode or concrete equations, an
attempt can be made to formalize this general idea in order to start expanding
and analyzing it. The main information for the simulation is a set of boids.

Boids = {boidy, boid, ..., boid, 1}

There is some information which should be tracked per boid. It is clear from
the three rules that it must be at least a position and a velocity. Exactly what
information needs to be tracked per each boid is bound to differ for specific needs.

boid; = (position;, velocity;, ...)

The paper by Reynolds mentions three main behaviors, commonly referred to
as Separation, Alignment, and Cohesion. There have been numerous extensions
to the algorithm, many of which introduce new behaviors. One such example
was described by Hartman and Bene$ in their paper Autonomous Boids [25]. Tt
extended the Boids model to include a behavior where some boids can temporarily
become leaders. These leaders aim to escape to areas of lower boid density, while
others attempt to follow these temporary leaders.

Therefore, in general, k different behaviors can be assumed. For each boid,
k results must be calculated from each of the k behaviors. The result depends
only on the given boid; and a subset of all boids. In the original Boids implemen-
tation, the behaviors return desired accelerations [7]. The type of the results is
generalized to allow more information to be returned. A single behavior can be
thought of as a function of two parameters, a boid; and a subset of Boids. The
function returns a single result. Let these functions be referred to as Neighbor
Behawviors, since they depend on the neighbors.

nBehavior; : (boid;, neighbors C Boids) — result,;

The paper by Reynolds further discusses the importance of considering only
nearby flockmates in order to compute a behavior’s contribution [7]. It is men-
tioned that all boids within a certain radius is one way, and the realism can be
improved by simulating a limited field of view. This step can also differ, which
is why it will be generalized as well. Furthermore, each behavior could also need
a different subset of boids, which is why k functions which determine neighbor-
hood for boid;, for behavior nBehavior;, will be assumed. Let these functions be
referred to as Neighbor Queries.

nQuery; : (boid;, Boids) — neighborhood;; C Boids

A given behavior’s nBehavior; result result;; for a given boid boid; can now
be calculated as follows.

neighborhood;; = nQuery;(boid;, Boids)

result;; = nBehavior;(boid;, neighborhood, ;)
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Once all the results for a given boid are calculated, they must be used to
determine one final result. In Reynolds’ implementation, the final desired accel-
eration needs to be decided [7]. No restriction will be provided on this return
type. This idea can be represented as a function from a set of results, to some
final result value. Let this function be referred to as the Merger.

merger : (resulty, ..., result;x_1) — final Result;

The final step is to take the finalResult and use it to update the position
and velocity of the boid [7]. The specifics of the movement are likely to differ.
Let this function be referred to as the Mover.

mover : (boid;, final Result;) — boid; 11

The next state of the simulation can now simply be expressed as:

Boidsyy = {mover(boid;, final Result;) | i =0,1,...,N — 1}

In this section, the building blocks of the boids model were formalized. We
have essentially described which functions need to be implemented and how they
are composed together, but we have not provided specific implementations. A
specific algorithm A will depend on the implementations of these functions. What
is needed to describe a specific algorithm A are the Merger and Mover, and a set
of pairs of Neighbor Behaviors and their corresponding Neighbor Queries.

A={
merger,
mover,

{(nBehaviory, nQueryy), . .., (nBehaviory_1, nQueryx_1)}

}

The complete generalized algorithm can be expressed by the following pseu-
docode:

Algorithm 1: Boid Simulation Algorithm
Input : Boids, functions A.
Output: Updated Boids
for each boid; in Boids do
results = new array of size k;
for j=0tok—1do
neighborhood;; = nQuery;(boid;, Boids);
L results(j] = nBehavior;(boid;, neighborhood;;);

[ N I

(=]

final Result; = merger(results);
7 | boid; = mover(boid;, final Result;);
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Figure 2.1: Diagram of Algorithm 1. It shows how a single boid boid; is updated
in one frame of the simulation, assuming £ behaviors.

The introduced formalization of the Boids model, Algorithm 1, can be visual-
ized with the diagram in Figure 2.1. In the figure, the algorithm is decomposed
into 4 different layers, the Mover, the Merger, the Neighbor Behaviors, and the
Neighbor Queries. This decomposition into layers creates a modular structure,
which is one of the requirements for the framework. Each box in the diagram
represents a pure function, which means it can be replaced by another function
with the same signature and contract without any side effects. This is modular
and allows extensibility. In the upcoming chapters, we will analyze options for
implementations of the functions in each layer separately.

It is clear from the diagram and the formalization that the algorithm is com-
posed of a series of pure functions. Clearly, the Neighbor Query and Neighbor
Behavior pairs can be run in parallel, and the diagram even indicates where
synchronization is needed. This corresponds to parallelizing the inner for loop
in Algorithm 1. Not only can the behaviors be run in parallel to each other,
but all the boids can be updated in parallel as well. In Algorithm 1 this would
correspond to parallelizing the outer for loop.

It is important to note that there are some requirements for the signatures
of these functions. The output of all Neighbor Behavior must be of the same
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type T. The input of the Merger should be T[], and its output will be of an
another type U. This type must be the same as the input type of the Mowver. If
these type restrictions are met, the functions can be composed as shown in the
diagram. T and U can be polymorphic types, which would allow a more flexible,
and modular design. Another type consideration is the type of the boids, and the
type of the neighbors. These can also be polymorphic types. This is important
for the framework, as it must be able to work with different types of boids.

We have only discussed the signature of the functions, but the contract is
equally important. For example, from signature point of view, acceleration and
velocity are of the same type, a 3D vector. Mixing behaviors that return ac-
celerations and velocities would not cause a compile error, but it could create a
subtle runtime bug. This is because the semantics of acceleration and velocity
are different. Commonly used options for behavior output semantics are briefly
discussed in Section 2.2.

2.1.1 Other Steering Behaviors

So far, we described a formalization of the Boids model for flocking, the group
motion of animals, which is the main focus of this thesis. It uses what we refer to
as Neighbor Behaviors. However, in context of computer games, it may sometimes
be useful to extend flocking with other steering behaviors. For example, steering
behaviors to avoid collisions with meshes in the virtual environment. We will
now introduce two more types of behaviors, which will occasionally be useful for
computer games, and include them in our formalization.

Ray Queries and Ray Behaviors

In computer games, it might be necessary for the boids to not only interact with
their neighbors, but also avoid collisions with the virtual environment’s geometry.
In context of computer games, the virtual environment is usually defined by the
game scene’s meshes using colliders. In order to react to the colliders, information
about them needs to be queried first.

In Unity, information about the game scene’s meshes can be gathered using
ray casts. This approach was used for example in Sebastian Lague’s Boids [9], [10]
and FlockAI [8]. These two implementations were briefly discussed in analysis of
implementations of flocking in Unity 1.2. Since this approach is common in Unity
and other implementations, we will also use ray casting to gather information
about the environment.

Functions which cast rays into the environment Env to collect information
will be refered to as Ray Queries. The concept is similar to Neighbor Queries
described earlier. Neighbor Queries collected information about which boids are
neighbors. In general, there could be abitrary number k of Ray Queries, same as
with Neighbor Queries. Formally, Ray Query could be expressed as:

rQuery; : (boid;, Env) — rayResults;;

where each rayResults;; contain information about the rays’ nearest hits.
Once information about meshes is queried, it should be used to affect the boid’s
behavior. This is similar to the concept of Neighbor Behaviors described earlier,
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where result of a Neighbor Query is passed into a Neighbor Behavior. For our
implementation, we define a second type of behaviors, Ray Behaviors, which are
influenced by Ray Queries. Same as with Neighbor Behaviors, we assume each
Ray Behavior to have its own Ray Query which passes information to it.

rBehavior; : (boid;, rayResults;;) — result;;

Afterwards, all results result;; from Ray Behaviors should be merged together
with the results of Neighbor Behaviors, using the Merger, into one final value,
which is then passed into the Mover.

Simple Behaviors

So far, there are two types of behaviors: Ray Behaviors and Neighbor Behav-
iors. Both depend on result of some queries. However, there are some steering
behaviors that only depend on data associated with the current boid boid;. One
example can be the wandering behavior, described by Reynolds in his paper about
steering behaviors [16]. This behavior makes the boids wander around randomly.
We will refer to these behaviors as Simple Behaviors. Formally this could be
expressed as:

sBehavior; : boid; — result;;

As always, there could be an arbitrary number k of these behaviors. Each
result result;; would later be merged with other results using the Merger.

Extended Formalization

An algorithm A’ including kn number of Neighbor Behaviors, kr number of Ray
Behaviors and ks number of Simple Behaviors could be formally described as:

A=
merger,
mover,

{(nBehaviory, nQueryy), . .., (nBehaviory, 1, nQueryy,_1)}
{(rBehaviory, rQueryy), . . ., (rBehaviory, 1, rQueryg,_1)}

{sBehaviory, ...,sBehaviorys_1}

}

Similarly to pseudocode shown in Algorithm 1, one step of the simulation
would be expressed with the following pseudocode shown in Algorithm 2 below.
In it, Ray Behaviors and Simple Behaviors are added.
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Algorithm 2: Boid Simulation Algorithm Extended

Input : Boids, functions A’.

Output: Updated Boids

for each boid; in Boids do

results = new array of size kn + kr + ks;

for j =0 to kn — 1 do

neighborhood;; = nQuery;(boid;, Boids);
results(j] = nBehavior;(boid;, neighborhood;;);

for j =0 to kr — 1 do
rayResults;j = rQuery;(boid;, Boids);
results|kn + j| = rBehaviorj(boid;, ray Results;;);

9 for j =0 to ks—1do

10 | results[kn + kr + j] = sBehavior;(boid,);

(S N VL

B =)

11 final Result; = merger(results);
12 boid; = mover(boid;, final Result;);

2.2 Behavior Output Semantics

The previous section mentioned how the Behaviors and the Mergers can have
different return types. We have observed that in most implementations this return
type is mainly a 3D vector . Although the return type is the same, we found
that it is often the case that the semantics of the return type are different.

In the original Boids model, Behaviors and Mergers return desired accelera-
tion [7]. In Reynolds’ second paper, the semantics for these are desired forces [16].
Desired velocity can be the choice semantics as well, as Fray suggests in his paper
introducing a technique called Context Steering [26], which was used to power
Formula 1 AT in the 2011 game titled “F1”. Later in the paper, he proposes using
an array of scalars projected around the circumference of the entity. We have
also found some authors interpret the vector as desired direction [27].

We see this as a further potential cause of discrepancies between different
implementations. For any implementation, it will be crucial that the semantics
are the same across all the behaviors, as we discussed in the previous section. This
can become a problem if, for example, a behavior from one source is brought into
a model which uses different semantics.

Now, assuming that the type is a 3D vector, we will show how it is possible
to convert between different semantics. This can be useful if there is a need to
use a behavior from one source in a model which uses different semantics, or to
compare them. All the outputs here are 3D vectors, in Chapter 4 we will see that
it can be better to use at least a 4D vector, where the last dimension denotes a
“desire”.

30r a 2D vector in case of a simulation in 2D
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2.2.1 Converting Between Workflows

Three main “workflows” were mentioned, force, desired acceleration, desired ve-
locity. We will show how it is possible to convert between them if needed.

Euler integration is a common approach to approximate movement in com-
puter games. Assuming acceleration d, current velocity v., current position p.
and a time step At. New velocity v, and new position p,, can be calculated as:

Uy, = V. + a % At (2.1)

Dr = Pe + U x AL (2.2)

Given a desired acceleration ay, the Equation 2.1 can be used to compute a
desired velocity vg.

Uy = U, + ay * At (2.3)

The desired acceleration can be computed from desired velocity by rearranging
the Equation 2.3.

(2.4)

If the workflow is force, then an equation from the Newtons second law of
motion can be used.
F=mxa (2.5)
Rearranging the Equation 2.5 for a desired force ﬁd and a desired acceleration
ag gives.

—

Fy
g — —

m

Since the mass of an animal will likely stay constant during the simulation,
desired force workflow and desired acceleration workflow would essentially be the
same.

It is clear that the choice of workflow is arbitrary. For the rest of this thesis,
desired velocity will be used as the workflow. We believe it is conceptually the
easiest to think about. Each behavior says “I want to go in this direction at this
speed”. Additionally, for the rest of this thesis, velocity will denote direction and
speed, where speed is a scalar value, the magnitude of a velocity.
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3. Movers

This is the first chapter which examines one of the distict parts of the model we
introduced in Chapter 2, the Mover. The function is responsible for updating
the boid’s current velocity a position, based on the result passed to it from the
Merger.

First, assumptions about inputs, outputs and goals for the Mowver will be
given. Then, constraints which we believe are necessary for a realistic movement
will be stated. This will be used to compare selected implementations, and eval-
uate them in regards to the constraints. Afterwards, a Mover which satisfies all
the constraints will be introduced.

Mowers are not necessarily specific to flocking simulations. They can be used
to move any self propelled agent. This chapter will mainly focus on the linear
acceleration and velocity. The last section will briefly discuss the rotations.

3.1 Frame Rate Dependency

Computer games can run at vastly different frame rates, depending on the specific
hardware. This can be a cause of certain type of bugs. We will briefly explain
how the issue usually arises, and what can be done to account for different frame
rates to keep uniform experience across devices. This will help understanding
where frame rate can create issues when implementing a flocking simulation, and
how these issues can be prevented.

One simple example of a bug caused by not accounting for different frame
rate was found in the title Dark Souls II. In the game, a weapon degraded by a
constant amount every frame. This caused the weapon to degrade twice as fast
when the game was updated from 30 fps to 60 fps [28].

This issue can be called frame rate dependency, since the gameplay is in some
way tied to the frame rate. The mentioned bug in Dark Souls II could be fixed, if
the degradation amount for each frame was multiplied by the time passed since
the last frame At.

degradation = degradation + degradationSpeed x At

This implementation makes sure that no matter how many times this code
is run in one second, after one second the degradation will always increase by
degradationSpeed. 1f degradationSpeed was not multiplied by At, after one
second had passed, degradation would increase by degradationSpeedx* fps, where
fps is the number of frames per second. Movement is something where this issue
can arise as well. It will be necessary to correctly account for frame rate in the
Mower.
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3.2 Assumptions

Assumptions about the rest of the algorithm will be made, to ease the analysis.

Let us assume that Merger passes a single desired velocity into the Mowver, which

then returns new boid’s position and velocity. Assume these inputs and outputs.
The inputs are:

o boid = {p., v} the boid’s current position and velocity.
o vy the boid’s desired velocity.

o At the time that the last frame took to complete.
The outputs are:

e p,, the boid’s new position.

o v, the boid’s new velocity.

We will only be concerned with how velocity is updated, from our research,
other papers either do not describe how velocity v,, is used to update the current
position, or they use the Euler Integration (see Equation 2.2 from Section 2.2).
Lastly, for the sake of simplicity, vectors are assumed to be from R2. Generaliza-
tion to R3 should be straightforward if needed.

The provided Figure 3.1 illustrates a sample Mover with our assumptions. It
shows the current velocity v, desired velocity vy and how they are transformed
to give a new velocity v,.

—
(OF]

Figure 3.1: A sample illustration of a Mover.

26



3.3 Constraints

We have identified a set of constraints which we believe the Mover should satisfy.
The constraints are:

1. The movement must be frame rate independent.

The importance of frame rate independency was described previously in
Section 3.1.

2. The magnitude of a boid’s acceleration must be bounded by a finite number.

This ensures that there is a bound on maximum acceleration, it would be
harder to work with system without bounds. Real animals are also bounded
by their physical abilities.

3. The magnitude of a boid’s velocity must be bounded by a finite number.

This ensures that there is a bound on maximum speed, the reasoning is the
same as for the second constraint.

4. Assuming a given desired velocity, the direction of boid’s velocity will con-
verge to the direction of its desired velocity in finite time.

This ensures that the boid will eventually walk in its desired direction. No
guarantees on reaching the desired speed are given. Consider prey running
away from a predator. It would desire to run away at speed larger than the
predator, but that might not be within its capabilities.

5. It must be possible to adjust the boid’s physical abilities.

This contraint is more loosely defined, it intends to make sure that the game
designers can adjust the physical abilities for different types of animals. It
might be interesting, for example, to set up prey to have a smaller maximum
speed, but higher maneuverability.
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3.4 Analysis

Three different implementations will now be analyzed. These implementations
were chosen as common examples of what can be found in texts concerned with
flocking and steering behaviors.

3.4.1 Implementation 1 — Desired Velocity Assignment

The simplest implementation is to set the desired velocity to the new velocity
directly. Formally this can be expressed as:

(3.1)

Figure 3.2 illustrates this idea. In it, v is assigned to be the new velocity vy,
directly, ignoring the current velocity ..

5
Va

Figure 3.2: Direct assignment of vy to .

This approach was used for example in a paper titled “Flocking behaviour of
group movement in real strategy games” [29] by Fathy et al. The paper explores
using flocking and other steering behaviors with A* to control units in an RTS?
game. This approach was also by Alaliyat et al. [30] in a study comparing two
approaches to find optimal values for weighting between behaviors. Lastly it
was used in a game where flocking is the main mechanic developed at Chalmers
University and University of Gothenburg [31]. In the game, the player controls a
dog which herds sheep. Movement using the Equation 3.1 will now be analyzed
through the constraints specified in Section 3.3.

Constraint 1
The constraint 1 is satisfied, as the velocity is always the same as the current
desired velocity.

Constraint 2

The constraint 2 is not satisfied as it is possible to immediately go from any v,
into any vy.

'Real-time strategy
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Constraint 3

The constraint 3 is not explicitly satisfied as there are no bounds on the magni-
tude of v3. This could be easily fixed by clamping the magnitude of v, to some
maximum speed.

Constraint 4

The constraint 4 is clearly satisfied.

Constraint 5

Regarding the constraint 5, the only physical ability which could be adjusted
would be the maximum speed, as suggested.

3.4.2 Implementation 2 — Sum of Desired and Current
Velocity

Second implementation we have commonly found is setting the new velocity to be
the sum of current and desired velocity. This is shown in Figure 3.3, and formally
can be expressed as:

Uy, = V. + Uy (3.2)

—
(]

Figure 3.3: Illustration of Equation 3.3, vy added to v..

This implementation was found in a paper by Hartman and Benes [25], which
introduces a change of leadership behavior. The authors handle frame rate de-
pendency when updating the position with Equation 2.2. However, the desired
velocity is not multiplied by At when adding it to the current velocity. Further
example can be found in paper by Mohit Sajwan et. al. [32], which discusses
their modifications and enhancements of the Boids model. In their pseudocode,
they do not account for At. Last example is an open source implementation of
flocking, available on GitHub [33]. The author, Suboptimal Engineer, described
his solution in his youtube video [34]. There, neither velocity nor position are
updated frame rate independently.
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For our analysis, we will add a variation which accounts from different frame
rates. This means multiplying the desired velocity by At before adding it. This
can be formally expressed as:

Uy, = U, + At * Uy (3.3)

This variation is shown in Figure 3.4, where At x vy is summed with v, to give
new velocity v,. While none of the authors used the Equation 3.3, it is given
here, because it accounts for frame rate dependency. Further explanation will be
provided when analyzing the first constraint.

Uy * At

\

5
Va

Figure 3.4: Illustration of Equation 3.3, At * v; added to ;.

Constraint 1

Two alternatives were given, the Equations 3.2 and 3.3. From frame rate depen-
dency perspective, it is a very similar situation as discussed earlier in section 3.1.
It is easy to see, that in 1 second, using Equation 3.2, vy will be added to the
initial velocity fps times, so it is frame rate dependent.

Using Equation 3.3, vz will be added to the initial velocity exactly once in
1 second. For any time ¢, v will be added ¢ times, therefore it is frame rate
independent.

Constraint 2

In this implementation, the boid is accelerating in direction of the desired velocity.
Assuming the frame rate dependent variation (Equation 3.2), the boid’s velocity
is changed by fps % vg in 1 second. Using the frame rate independent variation
(Equation 3.3), the boid’s velocity is changed by v in 1 second.

The constraint 2 is not satisfied in both cases, because v; can be arbitrarily
large, so the acceleration can be arbitrarily large. Assuming Equation 3.3, this
can be resolved by clamping the magnitude of v;. Assuming the frame rate
dependent Equation 3.2, even clamping the desired speed will not resolve the
issue. The acceleration can still be arbitrarily large as fps gets larger.

Constraint 3

The constraint 3 is not satisfied, but in both cases, v,, could be clamped to some
maximum magnitude. Unlike in Subsection 3.4.1 this will always need to be done
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when using this approach. v is always added to v, regardless of the current
value of v.. The effect this will have is that after some point, speed will only keep
increasing if vz does not change. This can be seen in the Figure 3.5.

Constraint 4

The constraint 4 is not satisfied. It can be easily explained with an example
illustrated in Figure 3.5. It considers v = (v4s,0) and 0. = (0,v,,). After k
iterations of the Equation 3.2, v;, = (k * vgy, V) (same argument would work for
Equation 3.3). The y component of v, would never change in this case. The boid
would essentially be accelerating in the direction of vy forever, while still keeping
the initial velocity in the y direction. It is apparent from the figure, that the
magnitude of v,, is getting larger, and its y¥ component remains unchanged.

k times

k iterations

 —

S

L

5
Va

Figure 3.5: Visualization of k iterations of Equation 3.2, assuming constant vy.
The new velocity v,, is shown after k iterations.

Constraint 5

Regarding the constraint 5, vz could be multiplied by some constant to increase
or decrease the magnitude of acceleration, and v, could be clamped to some
maximum magnitude.

Discussion

While it may seem that this implementation is obviously incorrect, since there
are no guarantees on even matching the correct direction. It is still relatively
often used. We speculate that the reason for why this issue is not uncovered is
the following. Implementations will figure out the need to clamp the v, in order
to not have boids acceleration into ever larger speeds. In the previous example,
for large k, the direction of the vector v, = (k * v4y, vey) Will be getting closer to
(1,0), as the size of the y component will be negligible compared the the size of
the & component, so the direction will seem to be approaching the direction of
vg. Coupled with the fact that the vy will be constantly changing throughout the
simulation, this issue may go unnoticed.

31



This is an example of importance of the semantics of the result from Merger,
discussed in Section 2.2. It is our belief that the problem boils down to treating
a desired velocity as a desired acceleration in the Mower.

3.4.3 Implementation 3 — Acceleration Based

The following is perhaps the most common implementation. Reynolds uses this
approach in his paper about steering behaviors [16]. A close variation of it is also
used in his OpenSteer library [23]. The idea is to use the difference of desired
velocity vy and current velocity v, to determine an acceleration @. This is then
added to the current velocity v, to determine the new velocity v,. Formally this
can be expressed as:

Uy, = trunc(v, + d x At, maxSpeed) (3.4)

a = trunc(vy — v, maxAcc)

where maxSpeed is the maximum speed, maxAcc is the maximum size of
acceleration. The idea is illustrated in Figure 3.6. In it, the acceleration a,
determined as difference of vy and v, is multiplied by At and added to the
current velocity vr.

\ /

g
Figure 3.6: Desired acceleration @ multiplied by At and added to .

Note that in the paper, Reynolds does not specify the multiplication by At,
while his sample implementation [23] does multiply by At¢. Only the implementa-
tion that multiplies by At will be considered, for the sake of simplicity. Further-
more, Reynolds uses force as workflow, so in his implementation, a is divided by
mass first. We omit this for simplicity, as we have shown how to convert between
workflows in Section 2.2.1. Also, in Reynolds’ description [16], @ is calculated as
part of the Behaviors. Here, the responsibility to calculate @ is passed onto the
Movwer, since we are focused on analyzing how a single desired velocity vz would
affect the movement.

An implementation using the Equation 3.4 tries to account for gradual ac-
celeration from current velocity v, toward the desired velocity v;. We noticed
that usually, implementations based on Reynolds’ original papers [7, 16] share
the common idea of calculating the acceleration from v, and v; and adding it
to the current velocity. Movement based on Equation 3.4 will now be analyzed
through the specified constraints.
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Constraint 1

The constraint 1 is surprisingly not satisfied in this simple form. It may seems that
frame rate is accounted for when velocity is updated, but consider the following
scenario.

e = (0,1),0g = (1,0),At =1

In one unit of time, there will be only be one iteration which will result in:

= (0,1) + ((1,0) — (0,1)) * 1 = (1,0)

Figure 3.7 illustrates this case. Assuming At = 1, vy is set directly to vy,
same as in the first implementation in Subsection 3.4.1.

\

—
Vg

Figure 3.7: Using the Reynolds’ movement implementation, for v, = (0,1), vy
(1,0), At =1.

Normally, At will likely be smaller than 1, for simplicity assume At = 0.5,
and the same scenario. Now, there would be two iterations within one second.
Both iterations are visualized in Figures 3.8 and 3.9. It is apparent that in this
case, after one second had passed, v, will not be equal to v;. The first iteration
gives:

v = (0,1) + ((1,0) = (0,1)) * 0.5 = (0.5,0.5)

Here, the new v, is essentially halfway from v. to v3, as shown in Figure 3.8.

a *0.5

\

5
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—

Figure 3.8: Using the Reynolds’ movement implementation, for v, = (0,1), vy =
(1,0), At =10.5
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Second iteration, depicted in Figure 3.9 gives:

v;, = (0.5,0.5) + ((0,1) — (0.5,0.5)) % 0.5 = (0.75, 0.25)

Here the new v, is again halfway from o, to vy, as shown in Figure 3.9. This
means that in the second iteration, the acceleration is only half of what it was in
the first one.

—

a * 0.5

S

Figure 3.9: Using the Reynolds’ movement implementation, for v, = (0.5,0.5),
vg = (1,0), At =0.5.

It is clear from this example, that the way in which this algorithm updates the
velocity is not frame rate independent — the first constraint is not satisfied. The
problem is caused by the fact, that the magnitude of the acceleration depends
on the magnitude of vz - v.. It is inaccurate in physical sense to calculate the
acceleration as vg - U.. Both quantities are velocities, so the result is a change in
velocity, but not an acceleration, which is a change in velocity over time.

To calculate an acceleration in physical sense, the Equation 2.4 can be used.

Vg — Ve
At

This was used for example by Colas et al. [35] in their paper, which describes
using steering behaviors and flow fields to model crowd simulations. The accel-
eration is then multiplied by At and added to the current velocity:

a=

Uy, = Up + a % AL

The problem with using this approach, is that it actually equivalent to the
first implementation from Subsection 3.4.1, where the vy is assigned to v, directly.
The following shows that these two approaches are equivalent:

Ud — Ve
At

While this would be frame rate independent, it does not result in gradual
acceleration from v, to vy as intended.

U, +d * At = v, + *« XT =y, + Vg — Vo= Uy

Constraint 2

The constraint 2 is satisfied, but only because the magnitude of the acceleration
is clamped to some maximum magnitude. If it was not clamped, then the size of
the acceleration can be arbitrarily large, since it depends on the size of vy - vy,
which can be arbitrarily large.
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Constraint 3

The constraint 3 is satisfied, but again only because v,, is clamped to a maximum
speed.

Constraint 4

Regarding the constraint 4, direction of v, will be approaching the direction of
vg over time. The algorithm essentially in every step modifies the velocity to be
At of the way from v, to v}, so theoretically, in every step, v, is getting closer
to vg. However, it never fully reaches it (unless vy = v, or At = 1). However,
in practical applications, when testing at around 60 fps, we observed that v,
generally converges close enough to vy quickly, but it will always be dependent
on the actual frame rate.

One edge case is when At > 1, where we would essentially “overshoot” the
desired velocity. Computer game would generally not need to worry about At > 1,
as that would not be interactive frame rates.

Constraint 5

Regarding the constraint 5, the rate of acceleration can be adjusted by multiplying
a with some constant. v, and @ can also be limited by maximum magnitudes.

3.5 Our implementation — Constant Accelera-
tion

Our implementation is based on the Reynolds’ implementation described earlier
in Subsection 3.4.3. However, it solves the problem that in the aformentioned
implementation, the magnitude of acceleration is proportional to the size of v3—1...
Here, the idea is to scale the desired acceleration to a constant length, which
yields a constant rate of acceleration. The following equations describe this idea
concretely, and an illustration is later shown in Figure 3.10.

Uy, = Up + agiy * min(A « A, [vgirs|) (3.5)
L Vi
Adir = d:ff
|Vaiy ]

Ud:f f= Ug — V¢

where A is a constant acceleration which can be adjusted for a specific animal,
aq;r is a normalized direction of the desired acceleration and vy is the difference
between v; and v.. The main variables can be seen in Figure 3.10. Note that the
length of the acceleration added to v is A * At, resulting a constant acceleration
rate A, while accounting for frame rate independency.

Also note the usage of min function in Equation 3.5 (not apparent from
Figure 3.10). It makes sure we do not overshoot vy in a given frame.
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Figure 3.10: Constant and frame rate independent acceleration, the size of accel-
eration in a given frame is A % At.

Constraint 1

Constraint 1 is satisfied, velocity is updated in frame rate independent way, be-
cause the magnitude of acceleration is always some constant A.

Constraint 2

Constraint 2 is satisfied, the magnitude of acceleration is always a constant A.

Constraint 3

Constraint 3 can be satisfied, if size of vy or v, is clamped.

Constraint 4

Constraint 4 is ﬁsatqisﬁed. For some initial v, and vy, the desired velocity vy will
be reached in IvdTT”C‘ units of time.

Constraint 5

Regarding constraint 5, the rate of acceleration A can be set, and maximum speed
could easily be introduced.

3.5.1 Improvements

The main issue with our proposed approach is that the animal would always have
a constant acceleration. The movement could be made more dynamic by passing
a scalar desired acceleration magnitude ay to the Mover and use it instead of
constant A. This would require that the behaviors provide a4 along with vg. This
can correspond to the idea that sometimes, an animal might want to accelerate
as much as possible away from some threat. Other times, accelerating to the
desired speed at a slower rate may be more realistic, when not in an immediate
danger.

Another improvement was identified already by Reynolds in his paper about
steering behaviors [16]. Reynolds proposes that acceleration be split into two
components, one in the direction of travel, and the direction perpendicular to
it. Let us refer to them parallel component and lateral component respectively.

36



Then, the lateral component can then be thought of as changing direction, and
parallel component as changing speed. This would provide for more control over
the animal’s abilities, since the components can be scaled by different constant.
This could be used to create a type of animal, which can increase its speed quickly,
but perhaps cannot make sharp maneuvers that well. This corresponds to the
predator-prey interaction discussed in Section 3.3, constraint 5.

Vectors can be split into components by vector projection. Let proj be a
vector operation defined as:

proj(v1,v3) = (01 - 03) * U3
where v5 is assumed to be a normalized direction that v7 is being projected

on. The operation proj gives the projected component of v7 onto v5. The rest of
vy is called the rejection, and can be calculated with:

rej(vy,v) = 01 — proj(vi, v3) (3.6)

The Figure 3.11 illustrates decomposing vector v7 into two components, one
component in the direction of v3, the other perpendicular to it. Note that the
sum of rej(vi,v5) and proj(vi,v3) is equal to the original vj.

rej(u1,v3)

proj(v1,03)

Figure 3.11: v; decomposed into two components, the projection of v; onto v3
and the rejection of v; from v5.

In the previous model, limiting the animals velocity by clamping it to some
maximum magnitude was proposed. Also, the acceleration is always constant.
In real world it is harder to accelerate, the faster we are moving. We can model
this by simulating air drag, a force in the opposite direction of the velocity. In
physics, drag force is calculated as a force in the opposite direction of velocity,
with the size of F;, where Fy is given by the following equation:

1
Fdzi*p*UQ*Cd*A

Where p is density of the fluid, v the travelling speed, C,; a drag coefficient,
and A the cross sectional area [36]. We can use the Newton’s second law of motion
to determine the induced acceleration by dividing the resulting force with mass

of the object. For this purpose, all the values except for the speed are assumed
1

to be constant. Therefore a single value D = 3 x % x Cy x A * p can be used as

strength of the drag force. Then the acceleration induced by the drag force is
given by:

drag = — S |02]2 % D % At (3.7)

_|UC|
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Figure 3.12 illustrates the acceleration induced by the drag force. The force
is in the opposite direction of the current velocity v, and its size is proportional
to the square of the speed |v;|> and the drag strength D.

— =2
aqu l: |vc| *D * At

Figure 3.12: Accleration ag,,, induced by drag force on a body traveling at ve-
locity v.

Now, with equations for projection, rejection and drag, we can introduce
an improved version of our implementation. Following is the Mover with the
discussed improvements:

Up = Ve + Qproj + Qrej + Qdrag

As usual, this is illustrated in Figure 3.13, where the projected acceleration
Aproj, the rejected acceleration a,.; and acceleration induced by drag a4y, are
added to the current velocity v, to determine the new velocity v,,.
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Figure 3.13: All three acceleration components, ap,o;, Grej and agrqq are added to
the current velocity v, to determine the new velocity oy,.

The acceleration induced by drag a4, was shown in Figure 3.12 and is given
by the Equation 3.7. The calculation of projected and rejected accelerations ap,;
and a,.; is illustrated in Figure 3.14. The figure shows decomposition of desired
acceleration into lateral and paralallel components, which are scaled to be of size
of A,At and A, At respectively. To achieve this, first, desired velocity change vg;¥y
is projected onto the direction of the current velocity. This separates the parallel
component of desired velocity change vg;f7pro;. This is normalized to determine
the projected direction of the acceleration agi,pro;. Finally the acceleration in the
parallel direction for the current frame a,,,; is calculated, by multiplying agi,pro;
by rate of acceleration A, in the parallel direction and At, to account for frame
rate dependency. Note, that while not apparent from the figure, min is again
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used to make sure the desired velocity vy is not overshot. The calculation of ay,,,
and a,.; can be expressed with the following equations:

ap:oj = adir_i’roj * mln(Ap * At? |UdifFP7'0j |)

- o Udif f Proj
AdirProj = =
‘UdiffProj |

- - . — Ve
Vdif fProj = PT0OJ (Udiff, m)
C

Vdiff = Ud — Ve

Urej = Qdirrej * MAN(Ap * AL, [Vgif 7 Rej])

- Udif f Rej

Q.; . — =
dir Rej |Ud@'ffRej |

VdiffRej = Vdiff — VdiffProj

5
Qproj

/‘)
UdiffProj

— —
al‘aj Uf/i//l\‘rj

Figure 3.14: Decomposition of desired acceleration into lateral a,,; and parallel
are; components, assuming desired velocity vg and current velocity 2.

The described implementation accounts for drag, which can limit the maxi-
mum velocity of the animal more naturally. It makes it harder for the animal
to keep accelerating in the direction of its velocity as its speed increases. It
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also allows adjusting of the maneuvering and forward acceleration abilities of the
animals, using A, and A,.

There is however still one issue, the implementation does not distinguish be-
tween acceleration which increases speed, and that which decreases speed. A real
animal would likely be able to decrease its speed faster than increase its speed.
This case could be handled by deciding whether vg;5pyo; is in the direction of vy
or not. Then, a different scalar for the acceleration can be chosen. This could be
implemented as:

Vdif fProj _ 1

A if Ue . 2diffProj.
Ap:{ e 0e]  |vais fprog]

AdowDown Otherwise

3.6 Rotation

So far only linear movement has been discussed. However, the rotation of the
animal should also be handled. While for example birds always have to be aligned
with the direction of their velocity, four-legged animals can also move sideways
or backwards. One approach to handle this can be to return a desired rotation
from each of the behaviors. This approach is used in Godot Engine’s steering
library [37]. While this is an interesting addition, and could be explored further,
this thesis will only consider the common approach where the animal’s rotation is
aligned with the direction of its current velocity. Usually, animals naturally move
in the direction they are facing, and considering the fact that most games would
likely not need this level realism or control, this feature is not too important.

3.6.1 Approach 1

A simple approach is to set the rotation to align exactly with the velocity every
frame. If the velocity changes rapidly throughout the simulation, this can cause
jittering.

3.6.2 Approach 2

Second approach is to interpolate between the current rotation and the rotation
where the animal would be aligned with its velocity. In 2D, there is only one axis
to rotate around, therefore a simple linear interpolation from one angle to another
can be used. Interpolation between two rotations in 3D is a more difficult prob-
lem. The issues with interpolating rotations in 3D were described well in a paper
titled “Animating Rotation with Quaternion Curves” [38] by Shoemaker (1985).
In the paper, he proposes using quaternions to represent rotations, and interpo-
lating between them using a function called slerp. We suggest using quaternions
together with slerp to interpolate between the current boid’s rotation and the
rotation where the boid would be aligned with its velocity. This worked well in
our implementations. For details about slerp, refer to the original paper [38].
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4. Mergers

As outlined in Chapter 2, Mergers turn k results {ro...r,} from k behaviors into
one final result, which is then fed into the Mover. The Merger is responsible
for blending and arbitering between the behaviors’ results. This chapter covers
Mergers in a similar fashion as previous chapter covered the Mowvers. First, our
constraints and assumptions for Mergers are introduced. This is used to analyze
some commonly found implementations. Finally an implementation satisfying
our constraints is introduced.

4.1 Assumptions

This section introduces assumptions about the rest of the algorithm which we
make. Let us again assume desired velocity workflow to interpret the behavior
results and merge results. All vectors here are from R2, generalization to R3
should be straightforward if needed. Also assume these inputs and outputs:

e {rg...rx} in general a list of k results from behaviors, usually in case of
desired velocities {vgo ... V4 ... vak}, or in the case of desired accelerations
{ado - .. agj . ..agx}, but more information could be passed in.

The outputs are:

« 1 a single result, in case of desired velocities vy, in case of desired accelera-
tions ag

When possible desired velocities are used, for both input results and output
result. Some implementations discussed assume results to be desired accelerations
rather than desired velocities. In the case where desired accelerations are used,
the results could be converted as described in Section 2.2.1.

4.2 Constraints

We have identified a set of constraints which we believe the Merger should satisty.
The constraints are:

1. It should be possible for one behavior to take full lead.

This ensures that cases such as running straight into a brick wall can be
handled. In this case, a good Merger should have some way of completely
filtering out behaviors, which are less important in that moment.

2. A small change in inputs should only cause a small change in the output.

This ensures that there are no cases where the desired velocity is vastly
different from one frame to another. This intends to eliminate cases where
the boid could jitter back and forth between two very different results.
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3. Given only a single behavior result, the behavior’s desired velocity (or ac-
celeration) will be returned.

This ensures that a merge implementation is sensible, and does not do
anything unexpected to a behavior’s results. In the case of a single behavior,
the Merger should only pass on the behavior’s result unchanged.

4. It should be possible to adjust the importance of behaviors relative to each
other.

This constraints is aimed at game designers, who will want to adjust the
flocking simulation to their specific needs.

4.3 Analysis

Three different implementations of Mergers will now be analyzed. These imple-
mentations were chosen as common examples of what we have found in sources
concerned with flocking and steering behaviors.

4.3.1 Implementation 1 — Priority First Non-Zero

The first and perhaps the simplest implementation was proposed in Reynolds’
paper about steering behaviors [16]. Reynolds adds a priority p; to each behavior’s
desired acceleration ag;. In this case, the behavior results could be defined by the
following tuple:

r; = (ag;, p;)

The idea is to sort the results based on their priorities, and return the first
non-zero acceleration. No equations or pseudocode is given. An implementation
should be straightforward from the description.

Constraint 1

The first constraint is satisfied. The single non-zero highest priority behavior
takes lead at any given moment.

Constraint 2

The second constraint is not satisfied. If desired acceleration for a given behavior
changes slightly, and is now a zero vector, a result for a different behavior is
returned.

Constraint 3

The third constraint is satisfied. Given only one result, it will be returned with
no changes.

Constraint 4

The fourth constraint is satisfied to some extend. Priorities allow the possibility
to adjust the relative importance of results.
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4.3.2 Implementation 2 — Weigthed Sum

In his original paper about Flocking [7], Reynolds suggested using a weighted
sum to combine results of behaviors, in his case desired accelerations. From what
we have observed in other papers and implementations, this is the most common
approach. It could be expressed as:

—

Qq

—

Qgj * w;

M-

<
Il
o

where w; is the jth weight. The variation for desired velocity workflow would
be similarly be.

M-

<
Il
o

Ug = ) Ugj ¥ W; (4.1)

The Equation 4.1 using the desired velocity workflow is illustrated in the Fig-
ure 4.1. It shows a weighted sum of three behavior results {vgy, v41, vg2 }, which
gives the final desired velocity v;. The implementation using desired velocity will
be discussed in this subsection along with its problems. Using desired accelera-
tions would create similar problems.

Figure 4.1: Weighted sum of three desired velocities, determining the final desired
velocity vg.

Constraint 1

The first constraint is not satisfied. The final v; is always a blend of all vg;.

Constraint 2

The second constraint is satisfied. A small change in any vg; does not cause large
change in the final v;. However, it is interesting to note that the direction of v}
can change dramatically from one frame to another. For example a small change
in one vy could bring the final desired velocity from (0, €) to (0, —¢).

Constraint 3

The third constraint is not satisfied. This is because the vg; is multiplied by its
weight, which scales its length. Therefore the result is not simply passed on when
only one behavior is active.
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Constraint 4

The fourth constraint is satisfied. The weights allow the possibility to adjust
relative importance of the results.

Discussion

This implementation is very popular, and as Reynolds notes, it is his preferred
implementation [16]. Despite its success, the above analysis suggests there are
several issues with it. The main issue in uncovered by the third constraint. The
problem is that once vg; is multiplied by w;, the information about the intended
speed is lost!. The weights are, however, needed to satisfy the fourth constraint.

Another consequence of using weighted sum is shown in Figure 4.2. Assume
k desired velocities all equal to some vector ¢, and w; = 1 for all j. The final v,
would in this case be k x ¥. This makes little sense conceptually as all behaviors
wish to go at the same speed in the same direction, but the final vy is k& times
larger? as illustrated on the right side of the figure.

h A
T W=7

+

T #=7 \ = B= k7

T U—:zo =7

Figure 4.2: Desired velocity v; has k times larger magnitude than what each
separate behavior desires.

This specific case can be resolved by dividing the sum by £, the total number
of results:
?:0 Ugj
k
In a more general sense, to account for the weights, a weighted mean could
be used. This is very similar to the original implementation, and it is a quite
common approach as well.

Vg =

. Z?:O U_di] * U)j
Va= "k
j=0 Wj

This change also resolves the issue posed by the third constraint. Given a
single behavior, its result is returned unmodified. Using weighted mean might
however still have another undesirable effect. Consider that all behaviors except
for one find no neighbors. These behavior should likely have no “opinion” on the
desired velocity. What value should behaviors return to signify this? If they all

!The problem is still present with desired acceleration workflow, there the information about
the size of the desired acceleration is lost.
2The same argument could be made when working desired acceleration workflow.
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return a zero vector, the final v; will be smaller than what the relevant behavior
desires (because it will be divided by sum of the weights). Some special value
signifying “no opinion” could be used, and these results could be filtered out.
Having a special value for “no opinion” is not a good solution, as that could create
discontinuities in the desired velocity, which would violate the second constraint.
To arrive at velocity desired by the only active behavior, all other behaviors
would need to return the same desired velocity as the only active behavior. The
behaviors cannot know this in advance. Also it is not clear how this could be
generalized to more than one active behavior. Therefore, some issues still remain
even with the weighted mean approach.

We believe that the main issue with using a weighted sum or a weighted mean
lies in the semantics. Once the desired velocity or acceleration is multiplied by its
weight, the information about the desired speed or acceleration rate is lost. To
give a concrete example, a desired velocity vg = (0,1) with weight w; = 10 will
have the same effect as vg/ = (0,10) with weight w;/ = 1, eventhough the former
has a much higher weight, which should imply it has greater importance. The
issue that results with higher speed have higher influence could be resolved by
normalizing the desired velocities first. Then a weighted sum of desired directions
could be used. However, the ability of a behavior to match a specific speed would
be lost. Having the possibility to speed up in certain situations is important when
considering, for example, a predator-prey interaction.

4.3.3 Implementation 3 — Prioritized Allocation

The third sample approach was first also described by Reynolds in his paper
about flocking [7], there he calls it “prioritized acceleration allocation”. Later in
his paper about steering behaviors [16], he notes that over many of his imple-
mentations, he found the simpler approach from Subsection 4.3.2 to be sufficient.
Reynolds described prioritized allocation in the following way:

“The acceleration requests are considered in priority order and added into an
accumulator. The magnitude of each request is measured and added into another
accumulator. This process continues until the sum of the accumulated magnitudes
gets larger than the maximum acceleration value, which is a parameter of each
boid. The last acceleration request is trimmed back to compensate for the excess
of accumulated magnitude.” [7]

We illustrate this approach in Figure 4.3. It shows how four desired accelera-
tions agg, aq1, 4o, ags, sorted in this order by their priorities, are used to determine
final desired acceleration ay. The first two accelerations agy, ag; are summed fully,
then only a part of the third acceleration ag, is added, and agz remains unused,
as the maximum sum of magnitudes of accelerations is reached. The Algorithm 3
shows a pseudocode of this approach.

While using weights to multiply the desired accelerations is not explicitly
specified in the figure or the algorithm, it could easily be done, same as in the
previous implementation in Subsection 4.3.2. The weights allow a better control
of relative influence between behaviors. For simplicity, we assume the desired
accelerations passed into the Merger to already be premultiplied by their weights.
This brings in the issue discussed in the previous Subsection 4.3.2, namely that
information about the acceleration’s magnitude is lost.
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Figure 4.3: Prioritized acceleration allocation, the final desired acceleration ay is
the sum of full agy and ag;, only a part of agy and no part of ags

Algorithm 3: Prioritized acceleration allocation

Data: List of results results (one result is a desired acceleration and its
priority), maximum sum acceleration maxSumAcceleration
Result: Desired acceleration

// Sort in descending order based on priorities
1 sort(results);
2 currentSum < 0;

accelerationSum <+ 0;

3
4 for i <— 0 to tengtn(results) — 1 do
5 accelerationSize < ||resultsi].acceleration||;
6 currentSum < currentSum + accelerationSize;
7 if currentSum + accelerationSize >= maxSumAcceleration then
8 accDir < results[i].acceleration/accelerationSize;
9 leftOver < (maxSumAcceleration — currentSum);
10 accelerationSum < accelerationSum + accDir x le ftOver;
11 break;
12 accelerationSum <— accelerationSum + results|i].acceleration;

13 return accelerationSum;
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Constraint 1

The first constraint is satisfied. It is possible for a behavior to take the lead
by returning the highest priority and an acceleration equal to or larger than
maxSumAcceleration.

Constraint 2

The second constraint is satisfied. For example, if a small change in one of the ag;
occurs, it can allow accumulating one more result before maxzSumAcceleration
is reached, but only the small leftover part will be added.

Constraint 3

The third constraint is satisfied, if the desired accelerations are not weighted.
That would cause the same issue as the previous implementation in Subsec-
tion 4.3.2.

Constraint 4

The fourth constraint can be satisfied, if weights are used, same as in Subsec-
tion 4.3.2. Moreover the priorities allow the possibility to adjust the relative
importance of results even further.

Discussion

While Reynolds notes that he found that using prioritized acceleration allocation
is not necessary [16], we found it to be useful in our implementations. In some
cases, it brought us an improvement over the weighted sum from implementation
described in Subsection 4.3.2. The following example will illustrate one such case.

Consider the weighted sum is used, and that we are working with desired ve-
locities. Same argument could be made for desired accelerations. Also consider
that the separation behavior is the most important, and thus has the largest
weight. We would want to guarantee that the separation always has some way
to “overpower” other behaviors to prevent collisions. Further consider there are
many other behaviors, but with lesser weights. The Figure 4.4 illustrates a pos-
sible edge case where all the other results (vqy, v41, vg2) align such that they are
opposite to the separation (vgs), thus “overpowering” it. This is shown by the
final result vz on the right. This happens even though individually, vy * wy is by
far the largest term in the weighted sum. In this case, the separation behavior
would not stop a collision.
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Figure 4.4: Weighted sum edge case. On the left, weighted sum of vy * wy,
Vg1 * W1, Ugo % wo and a separation term vg, * ws. On the right, the resulting final
desired velocity vg.

Encountering this edge case could lead to increasing the weight of separation
further, which we often found the need to do in our experiments. However, this
would mean that separation has unnecessarily high influence in the common case,
which can lead to erratic movement. Due to the chaotic nature of group behaviors,
in common case, the results are randomly distributed, as shown in Figure 4.5. In
that case, other behaviors mostly cancel each other out, so the separation does
not need such a high weight.
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Figure 4.5: Weighted sum common case. On the left, weighted sum of vgy * wy,
Ugq * W1, Ugo % wo and a separation term vg, * ws. On the right, the resulting final
desired velocity vg.

The issue of needing weights too large for important behaviors can be easily
solved when using the prioritized allocation. When the request from the separa-
tion behavior is high enough, it leaves no room for other results to be blended
with it and overpower its influence. In the common case, the results are smoothly
blended together using a weighted sum.

We see the prioritized acceleration allocation as an improvement over the
simple weighted sum from implementation described in Subsection 4.3.2, because
it does the same in the common case, but it can account for the aformentioned
edge cases. However, the issue with using the weighted sum still remains. After
multiplying the desired acceleration (or velocity) by its weight, the information
about the acceleration rate (or speed) is lost.

4.4 Our Implementation — Desire Weighted Ve-
locities

The main idea behind our implementation is improving on the concept of weighted
sum from the implementation described in Subsection 4.3.2. Our implementation
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solves the issue that after a desired velocity is multipled by its weight, the infor-
mation about the speed is lost. This section later suggest some improvements, in-
cluding the priority allocation from implementation described in Subsection 4.3.3.

A vector represents a direction and a size. The size cannot represent both
a speed, and how much it is desirable to use the velocity. This was at the core
of the problems when using a weighted sum. It is clear that one more quantity
associated with the behavior results is needed. We will call this quantity the
desire. Assume that behaviors return results in the following form:

rj = (vg, dj)
where d; is the current desire for a given behavior, calculated in the behavior.
Our proposed Merger is:

vy = dir * speed (4.2)

where dir is a normalized desired direction, and speed is the desired speed.
The dir and speed are calculated as follows:

k
dir = Zv}j * d;
J
S5 g * d;

Z? d;

The desired direction dir is calculated using a weighted sum of all desired
directions vg. Note, here the weights are the desires d;, returned from the behav-
iors. The desired speed speed is given by weighted mean of all the speeds |vg;]|.

speed =

Each result has influence on direction and speed proportional to d;.

In this implementation, constant weights are no longer needed in the Merger.
The desires serve this purpose. Calculating the desire in the behavior has the
added benefit that the behavior can convey how desirable the behavior’s result is
in the current moment.

Constraint 1
The first constraint is not satisfied. Just as in Subsection 4.3.2, the final vy is a
blend of all the results. This can be resolved using prioritized allocation.

Constraint 2

The second constraint is satisfied. A small change in any result will not cause
drastic changes of the final v;. However, the direction could change as discussed
under Constraint 2 in Subsection 4.3.2.

Constraint 3

The third constraint is satisfied. For a single behavior result, vy is returned,
regardless of the current desire d;.
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Constraint 4

The fourth constraint is satisfied. The desires weigh the relative importance of
the results. However, the desires are given by the behaviors, not by the game
designer. The desires can however be multiplied by constant weights to adjust
the relative importance of the behaviors. For example d; = d’; * w;. Where d; is
determined by the behavior, and w; is a user-defined constant.

4.4.1 Priority Allocation

The implementation proposed in this section (Equation 4.2) can be enhanced
further using the priority allocation described in Subsection 4.3.3. The result
type can be extended to include a priority.

rj = (Vg dj, p;)

While the previously in Algorithm 3, the results were clamped based on sum
of magnitudes of accelerations, we clamp them based on sum of desires. For
simplicity, the priority allocation step can be done first, to filter out unused
results. Afterwards, the remaining results can be merged using the weighted
mean described at the beginning of this section®. The filtering can be described
by pseudocode in Algorithm 4.

In an actual implementation, care should be taken to handle the cases where
multiple behaviors return the same priority. In that case, they will be arbitrarily
ordered in the sorted list. In that case, there might be behaviors with same
priorities, but only some of them might be included in new Results.

One solution to this would be the following: Split the results into sub-lists
according to their priorities. Merge the sub-lists into one result using the weighted
mean. Now there are results with unique priorities only, and Algorithm 4 can
be used to filter them. Finally merge the filtered new Results using the weighted
mean.

3In an actual implementation, if performance is a concern, it would be more efficient to
calculate everything in one pass of the results array.
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Algorithm 4: Max sum desire results filtering algorithm
Data: List of results results, maximum sum desire maxSumDesire
Result: New list of results, with low priority results filtered out

// Sort in descending order based on priorities
1 sort(results);
2 currentSum < 0;
3 maxIndex < tength(results) — 1

4 for i < 0 to tengtn(results) — 1 do

currentSum <— currentSum + results[i].d;

if currentSum > mazxSumDesire then
// Account for the leftover
results[i].d < resultsli].d — (currentSum — maxSumDesire);
maxIndex < 1;

break;

10 newResults < {results[0], ..., resultsimaxIndez|};

11 return newResults;

4.4.2 Workflow Improvements

Currently, the same desire determines the influence on the final direction as well
as the speed. It can, however, also be the case that some behaviors do not care
about the boid’s speed, only the direction.

One way to try to solve this could be to define a “comfort speed” ¢ for each
animal. If a specific behavior does not care about the speed, the desired direction
is simply scaled by c. This may somewhat work for most cases, but can cause
troubles when a specific speed is needed. Consider a behavior with desired speed
equal to zero. Now, even if other behaviors do not care about the speed, their
results would bring the final speed closer to c.

Second solution would be to have behaviors return two desires, one for direc-
tion, the other one for speed. When discussing potential improvements to our
Mowver in Subsection 3.5.1, we suggested that behaviors could also return the de-
sired size of acceleration. For this, another desire could be introduced to match
the desired size of acceleration. Blending can again be done using weighted mean
as was the case with speed. The desired size of acceleration could then be passed
to the Mover. The complete result with all the improvements could be as follows:

r; = ((di}j, dir Desire;), (speed,, speedDesire;), (acc;, achesirej),pj>

If control over rotation is also needed on per behavior basis, this could be
extended further to include desired rotation, desired angular speed and desired
angular acceleration and their respective desires. Now every behavior would be
responsible for calculating all of these quantities, making the behaviors more
complex to implement. To balance complexity and fine control, our framework
and behaviors will use the following results by default:

r; = ((dfrj, dir Desire;), (speed;, speedDesirej),pj)
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5. Neighbor Queries

This chapter discusses possible Neighbor Queries, similarily as previous Chap-
ters 3 and 4 covered the Movers and the Mergers. As outlined in Chapter 2,
Neighbor Queries filter all the boids into a subset that a given behavior uses.
Limiting boids’ perception has two reasons, first it can increase the realism, be-
cause perception of real animals is also limited. Second, it decreases the runtime
needed to run behaviors. On the other hand, finding the neighbors can become
costly for performance. Reynolds discussed the problem already in his paper
which introduces the Boid model [7], he described some solutions to this prob-
lem, in his later papers [39] [40], where he uses a spatial partitioning grid, and
mentions that Binary Space Partitioning (BSP) trees could also be used. Both
approaches are discussed later in this chapter.

This chapter is split into three sections. The first Section 5.1 shows methods
that can be used to simulate limited perception. In the second Section 5.2, the
choice of Neighbor Query is analyzed in regards to runtime of behaviors. The
third Section 5.3 explores ways to optimize nearest neighbor search.

5.1 Limited Perception

This section discusses options to determine what a given boid boid; perceives.
The simplest approach would be that every boid considers the whole set of Boids
when running its behaviors. However, as Reynolds notes, this is unlikely for real
birds. He proposes limiting the vision by distance and a field of view. He argues
that simulating a limited vision increases perceived realism of the simulation [7].
This can be further supported with paper by Ballerini et al. [41], where the
authors show that only around 7 nearest birds have significant influence on the
behavior of real birds in a flock. This section will discuss combination of these
three conditions: Limiting vision by a radius - mazimum distance condition,
limiting vision by field of vision - field of view condition, taking only k nearest
neighbors - k-nn condition.

As described more formally in the Chapter 2, a Neighbor Query takes in the
set of all Boids and a current boid; and returns a subset of the Boids set.

nQuery : (boid;, Boids) — neighborhood; C Boids

5.1.1 All in Radius

The simplest idea, which implementations of limited perception usually share, is
taking all other boids within some radius r, as shown in Figure 5.1. Limiting the
neighborhood by distance is natural, because near neighbors are likely to have
the most valuable information. For example, it is more important to try avoid
collision with a bird 1 meter away, rather than one who is 100 meters away. This
can be further accounted for in the Neighbor Behaviors, where the influence of
boids further can have lesser effect, as discusses by Reynolds [7]. This idea is
discussed further in Subsection 6.4.4. Furthemore, Reynolds suggests that when
deciding on specific values for r, it can also be considered that, for example, fish in
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murky waters have very limited vision, while birds can see much farther through

air [7].

A I

Figure 5.1: All neighbors within radius r. Boid searching for neighbors is white,
boids inside its vision are black, the rest is striped.

So far, taking all neighbors within a radius r was considered. However, it can
be useful having different radii for different behaviors. For example for separation
behavior, using small radius means that only real threats of collision are consid-
ered. If the radius is too small however, there might not be enough time to avoid
the collision course in time. For cohesion on the other hand, larger radius can
prevent boids from loosing their flockmates after being split up. Radius for align-
ment does not need to be too large, it is most important to be aligned with near
neighbors, as that makes collisions with them less likely. Additionally, from our
experience, the radius for alignment should be smaller than for cohesion. That
ensures that a boid first joins the flock, and only then starts aligning with its
flockmates. From our testing, the ordering of 74, < Tatignment < Tcohesion, Shown
in Figure 5.2, worked best for us. This ordering is quite common, an example can
be found for example in a video by the Youtube Channel “Coding Train” [42].
The author also provides an online interactive simulation including the source
code [43], which contains the same ordering. The same ordering was also used in
a paper by Chiang et al. [44], which explored using the Boids model for crowd
simulations.

Limiting the vision only by radius would mean that the boids can essentially
see behind themselves. This is not quite realistic. It would be more realistic to
also check if the boid is within some field of view. This is discussed in the next
Subsection 5.1.2.
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Figure 5.2: lustration of a boid with three different radii of vision for cohesion,
alignment and separation behavior. The radii are denoted with r.on, 74, and
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Note on Optimization of Maximum Distance Condition

To check if a boid is a neighbor according to the maxium distance condition, the
distance to it can be compared to the radius of vision . This condition would have
to be checked for many potential neighbors. Therefore, a common optimization
technique for this check is worth mentioning. The idea is to avoid expensive
square root operation that is normally necessary to determine the distance. The
optimization uses the fact that the square root function is strictly increasing on
the interval [0, oo, so if sqrt(ds,) < r, then dg, < r?. Calculating only the square
distance d,, and comparing it against square of the radius r elimitates the need
for calculating square root. In the following, if condition given by Equation 5.1
is satisfied, then boid at position p, is inside the radius of a boid at position p;.

deq < 17 (5.1)

5.1.2 FOV

In the Subsection 5.1.1, limiting the perception by maximum distance r was
dicussed. However, real animals have vision limited not only by distance, but
also by their field of view. When simulating limited perception, it would be
more realistic to also account for a field of view of an animal, as proposed by
Reynolds [7]. The aforementioned maximum distance condition can be combined
with a condition that checks whether a potential neighbor is also within a specified
field of view. This is illustrated in Figure 5.3, where only boids within radius r
and field of view FFOV are considered neighbors. In context of computer games,
the FFOV could be chosen by a game designer to customize an animal’s behavior.
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Figure 5.3: Combination of field of view and maximum distance conditions. Black
boids are considered neighbors, as they are both within the radius and the field
of view.

When deciding what values for FOV to use, nature can be an interesting
source of inspiration. For example, predators often have a narrower field of view,
while prey animals typically possess a wider one [45]. Narrow field of view gives
predators wider area of stereoscopic vision which grants them depth perception
crucial to hunting. Prey animals benefit from the wider field of view for detecting
predators. For example, the field of view of a sheep is around 320-340 degrees [45],
while the field of view of a wolf around 250 degrees [46].

Although limiting the perception by field of view may be more realistic, it
can cause some issues. Smaller field of view can result in more collisions between
flockmates, because they cannot account for flockmates behind them. In our
implementations, using a larger field of view for separation proved to be a simple
approach to resolve this issue. Using different F'OV for each behavior is similar
to using different radii for different behaviors from Subsection 5.1.1. This will be
used in our implementations to increase customizability.

Note on Optimization of FOV Condition

Same as with the maximum distance condition, it is worth optimizating the field
of view condition. Assume two boids b; and by. We want to decide whether b, is
in the field of view of b;. This can be done by calculating the angle # between
the forward direction of b; and the direction from b; to by. If 0 is smaller than
FOTW, then by is in the field of view of b;.

A direct approach would be to find the angle 6 using the dot product. The
dot product of two normalized vectors ¢ and 4 gives cos(f). From this follows
that arccos(v - i) gives 6, which can be used to compare against FOTV. However,
since cos is only decreasing on the interval [0, 7], one can instead check if cos(#) >
cos(F9Y) | which implies that § < % The performance improvement comes

2 2
from the fact that this way, the expensive arccos can be avoided completely, in

IFOV is divided by 2 because the angle is measured from the forward direction to the left
and right.

95



a similar way that square root was avoided in Subsection 5.1.1. Furthermore,
cos(F9Y) can be cached, and cos(f) is given by an inexpensive dot product. In
the following, if condition given by Equation 5.2 is satisfied, a boid at position p,
is in the field of view of a boid at position p; with forward direction ﬁ

> FOV
fi-1d > cos( ) (5.2)
- P27 D1
i=-——
P2 — Pl

5.1.3 Topological Distance

One assumption brought into Reynolds’ model is that the boids’ behaviors depend
on all boids within some radius. Experimental study on flocks of birds by Ballerini
et al. [41] discovered that the influence of a bird on an individual depends on
the topological distance, rather than euclidian distance. Topological distance is
defined as the number of birds between the individual and the bird in question,
when sorted by euclidian distance.

The authors found that after 7th nearest neighbor, the influence of birds
farther is negligible. They argue that unlike in classical models, the attraction
to a flockmate is the same regardless of the distance, as long as the topological
distance is the same. The authors speculate that limiting the number of neighbors
could be beneficial, because it reduces information noise a bird receives, and thus
it can make better decisions. This experimental finding suggests that limiting
the number of neighbors may increase realism. Based on this idea, only k nearest
neighbors can be considered as neighbors, and the rest filtered out. Limiting
the maximum number of neighbors to a constant is not only a promising way to
create a more realistic model, but it can also increase the run time performance
(discussed in Section 5.2). Reynolds also used k nearest neighbors to improve
performance in his later paper focused on performant real time flocking, titled
“Big Fast Crowds on PS3” [40]. Due to possible increase in realism and better
performance, we will use this approach as well.

Taking k£ nearest neighbors can be combined with the maximum distance
condition, and the field of view condition, as illustrated in Figure 5.4 for k = 3.
Note that some boids in the figure would pass the radius and the field of view
conditions, but they are not considered, since they are not within the £ nearest
neighbors. A Neighbor Query can take in a maximum number of neighbors k£ and
return the k nearest neighbors sorted by their distance. The game designers can
use k as an additional parameter to adjust behaviors. The maximum number of
neighbors k can also be lowered if better performance is required.
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Figure 5.4: Considering only three nearest neighbors restricted by maximum
distance and a field of view. Only the black boids are considered neighbors.

5.1.4 Other Possibilities

There are other possible alternatives and additions for Neighbor Queries, which
we have not experimented with. For example, random noise could be added to
simulate imperfect perception. Or vision can be implemented as raycasts, to
simulate occlusion by other flock members. We do not use ray casts to query
neighbors, but we use them for collision avoidance (Chapter 7). Another idea
by Reynolds [39], was to use “dynamically shaped neighborhood”. He made a
simulation where birds get startled by an incoming car. There, the neighborhood
is elongated in the direction of the car’s velocity. If a bird finds itself in this
shape, it will react to it. This is an interesting addition, which we would like to
experiment with in the future.

5.2 Effect of Vision on Performance

The previous section discussed approaches for Neighbor Queries. The choice of
a Neighbor Query has significant implications on the performance. If all boids
interacted with all other boids, the time complexity of running the Neighbor
Behaviors would be O(n?), where n is the number of boids. This assumes that
the behaviors run in time linearly proportional to the number of neighbors, which
we found is usually the case. This does not scale well as size of flock increases.
Limiting the vision can be a way to combat this quadratic complexity.

This section will analyze how the choice of the Neighbor Query affects the
performance cost of running the Neighbor Behaviors. The performance cost of
finding the neighbors itself is discussed in Section 5.3. The main focus here is
on the difference between taking all neighbors within a radius (Subsection 5.1.1),
and taking k nearest neighbors (Subsection 5.1.3).
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5.2.1 All in Radius

Suppose a behavior should use all neighbors within a radius as described in Sub-
section 5.1.1. In terms of performance, the worst case would be when the whole
flock is contained within one point. In this case, all n boids have n neighbors,
so the worst case time complexity of the simulation would be O(n?). However,
in practice, it can be assumed that there is some minimum distance d,,;, be-
tween all boids keeping them separated, as shown in Figure 5.5. This combined
with maximum distance r, can give an upper constant bound on the maximum
number of neighbors m. This means a linear worst case complexity O(n * m).
This idea was considered in Reynolds’ paper titled “Interaction with Group of
Autonomous Characters” [39], but relationship between m, r, and d,;,, was not
discussed there. It is important to consider the size of the upper bound m, as
it could still end up being greater than the number of boids we are interested in
simulating.

Assuming some r and d,,;,, a boid cannot have more than m neighbors, where
m is the maximum number of circles of radius d,,;,, which can fit inside a circle
of radius r, when working in 2D. Considering the areas in 2D and volumes in 3D,
m cannot be greater than r?/d2. in 2D or r3/d3 . in 3D. This indicates that
the worst case time complexity is proportional to r and inversely proportional
to dpin. The minimum separation distance d,,;, is likely implied from the size
of the animal, so essentially only r can be reduced if there is a need for better
performance.

To get a more concrete sense of what the upper bound on m could be, consider
the following convervative scenario. Birds maintaining a minimum separation of
0.5 meters, with vision up 20 meters. In 2D this would give m < 1600, in
3D m < 64000. This puts into perspective how much worse the situation is in
3D. Moreover, we are mainly concerned with smaller flocks of hundreds or lower
thousands of boids, which could mean that n < m, therefore our upper bound on
the worst case run time could still be quadratic with respect to n.

Further factor affecting the performance in practice is distribution of the boids.
In the worst case, each boid has up to m neighbors, in the best case all boids
no neighbors. In other words, dense flocks will have worse performance than
sparse flocks. Figures below show two extreme of distributions, Figure 5.5 shows
worst, case where all boids see each other, while Figure 5.6 contains the best case
where no boids see each other. While r can be adjusted to improve the worst
case performance, the distribution of the boids is unpredictable and can lead to
unstable frame rates.
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Figure 5.5: A dense flock where all the boids are neighboring each other. Boids
have maximum radius of vision r, and minimum separation distance d,,;,.
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Figure 5.6: A sparse flock where all the boids have no neighbors. Boids have
maximum radius of vision r, and minimum separation distance d,,;,.

5.2.2 K Nearest

When using k£ nearest neighbors, each boid only interacts with at most &k neigh-
bors. Thus the worst case time complexity of running the behaviors is linear
O(n * k). While theoretically, the previous approach also has linear worst case
time complexity, the multiplicative constant there depends on the radius of vi-
sion. Here, the benefit is that if better performance is needed, k can be reduced
without sacrificing the maximum distance of the boids’ vision.

Setting k can serve as an upper bound on the resources the behaviors are
allowed to use. This way, even if a flock becomes temporarily very dense, it does
not cause a lag spike, as we identified would be the case when taking all neighbors
within radius in Subsection 5.2.1.
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Achieving stable frame rate is especially important in games. It would be
undesirable if a flock of birds in the background causes random frame rate spikes
based on its density. All this indicates that taking k& nearest neighbors is a
promising approach from the perspective of how performance heavy it is to run
the behaviors. However, finding the k nearest neighbors efficiently could still
prove to be performance heavy. This is discussed further in Subsections 5.3.2 and
5.3.3.

5.3 Neighbor Search

This section is focused on different choices when implementing neighbor search,
with the main focus on performance. First, two options to structure the algorithm
of a flocking simulation in regards to the neighbor search are discussed. Then,
two data structures for neighbor search, K—d trees and spatial partitioning, are
considered and compared. For both data structures, we will focus on using them
to find all neighbors within a radius r and using them to find £ nearest neighbors.

5.3.1 Algorithm Structure

In Chapter 2, we formalized the Neighbor Behaviors as functions that take in a
boid and a set of its neighbors. However, what we found in other implementations
was a little different. Usually, there is only one pass that calculates the behaviors
while searching for the neighbors, as shown in Algorithm 5. For simplicity, the
neighbors here are identified by iterating over all other boids naively. They are
then used to calculate a cohesion behavior. Other behaviors like separation or
alignment could be calculated in the same pass.

Let us consider only a simple implementation of a cohesion behavior for now.
Usually a centroid of all neighbors is calculated, and velocity towards it is re-
turned. There are two options, either the cohesion behavior does the neighbor
search itself, or the neighbor search is done before the cohesion behavior is called.
Algorithms 6, 5 show implementations of a simple cohesion behavior using the
two alternatives.

Algorithm 5: Neighbor search in behaviors

Input : Boid boid;, other Boids Boids, maximum distance
max Distance
Output: Desired velocity vy

1 sumPosition = (0,0,0);

2 numNeighbors = 0;

3 for boid; in Boids do

4 if distance(boid;, boid;) < maxDistance then

5 sumPosition = sumPosition + boid;.position;
6 L numN eighbors = numN eighbors + 1;

7 centroid = sumPosition/numN eighbors;

8 vy = centroid — boid;.position;
9 return vg;
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Algorithm 6: Neighbor search before behaviors
Input : Boid boid;, neighbors of boid; Neighbors
Output: Desired velocity vy

for boid; in Neighbors do
sumPosition = sumPosition + boid;.position;
numN eighbors = numNeighbors + 1;

AW N R

(< I

return vy;

It is clear that the second approach (Algorithm 6) is more modular. The
cohesion function is only concerned with calculating the centroid, and not with
finding the neighbors. This lends itself better to swapping out the neighbor
search algorithm or sharing an already calculated neighborhood between multiple
behaviors.

While not being very modular, the first approach (Algorithm 5) can be more
efficient. The behavior is implemented as a single loop over all boids, while using
the seconds approach would require two loops — one for finding the neighbors and
a second one for calculating the centroid. Moreover, the second approach requires
storing the neighbors in memory. When searching all neighbors within radius,
this could be up to O(m) per boid in the worst case, where m is the maximum
number of neighbors from Subsection 5.2.1. If the whole neighbor adjencency
matrix was precomputed, O(n * m) would be required.

Memory Cost

To see how problematic allocating memory for the whole adjencency matrix would
be, we conducted a quick test reference hardware described in Subsection 1.1.1.
As discussed in Subsection 5.2.1, m can easily be larger than n, so assuming a
larger simulation where m = n = 5000, an array of 5000 * 5000 booleans using
Unity’s NativeArray [47] was allocated and deallocated. This took 12 to 20 ms in
Editor, far from acceptable for a real time simulation. This potential issue can
be resolved by using only k£ nearest neighbors. That way, the entire adjencency
matrix requires O(n x k) of memory. Another test on the reference hardware,
assuming £k = 7 and n = 5000, was conducted. We assume k£ = 7 based on
the paper discussed in Subsection 5.1.3. The allocation and deallocation of a
NativeArray of 7 % 5000 booleans took only around 0.007 ms in Editor.

Conclusion

Using the second approach (Algorithm 6) with k neighbors provides a good bal-
ance between performance and modularity. Additionally, note that when using k
nearest neighbors, it needs to be used with second approach. It would not pos-
sible to use k nearest neighbors with the first approach, because it is impossible
to know beforehand, which boid will be one of the k£ nearest neighbors, while
iterating over them for the first time. Furthemore, as discussed in Subsection 5.2,
using k nearest neighbors can guarantee more stable frame rates. For the afor-
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mentioned reasons, we chose to structure framework according to Algorithm 6
and limit the number of neighbors to a user given constast k.

5.3.2 Spatial Partition Grid

Finding the k nearest neighbors or all neighbors within a radius can be very
performance costly. This subsection discusess one approach to optimize spatial
queries, using a spatial partition grid data structure. This was used, for example,
by Reynolds for his simulations [39] [40]. The main idea is to divide space into
a uniform grid. Then, each boid is assigned to the cell it currently occupies in
space. When querying for neighbors, only the cells within the radius r need to
be searched.

Dense Grid

There are two options when implementing this structure: a dense and a sparse
grid. Dense grid is implemented as a 2D array of cells, where each cell contains a
list of boids. The indexes into the array correspond to the coordinates of the cell.
Figure 5.7 shows a dense grid of size 3 by 3, where width of each cell w..; = 5. In
the figure, the boids occupy the cells at indexes [1, 1] and [2,2]. Note that memory
needs to be allocated for all cells, even if they are not unoccupied. Also, the case
where a boid moves outside of the allocated grid would need to be accounted for,
either by growing the grid or by limiting the boids’ positions to a bounding box.

15 A )
/\ b,

(0, 2) (1, 2) (2, 2)
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/\ b

(0, 1) (1. 1) (2, 1)
5

0, 0) (1, 0) (2, 0)

5% 10 15

Figure 5.7: A dense grid covering a square section of space from [0, 0] to [15, 15].
The grid is split into a 3 by 3 matrix, width and height of one cell is 5. Each
cell represents one element of a 2D array, and can contain a reference to multiple
boids.
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Sparse Grid

Sparse grid uses the same idea as dense grid, but it is represented by a hash map.
The key is a hash of coordinates of the cell, and the value is a list of boids. The
same situation as in Figure 5.7 is shown in Figure 5.8. Note that here, memory
only needs to be allocated for the used cells. In the figure below, that is cells at
indexes [1, 1] and [2,2].

h(1,1) [bs]

h (2, 2) (b1, by

Figure 5.8: A sparse grid implemented as a hash map. Key is a hash of index
which the boid would have in dense grid. Each element holds an array of boids.

Comparing Sparse and Dense Grid

Dense grid can have better performance, because working with a contiguous ar-
ray can be more cache friendly. Furthermore, it avoids overhead of hashing the
coordinates. The main disadvantage is that the case when boids move out of the
grid has to be handled. Additionally, memory is wasted on unoccupied cells. The
main weakness we see with the sparse grid is that the hash map look up is likely
to be slower than indexing an array, and the memory access is less cache friendly.

Because the framework aims to be useful in many different scenarios and to
be user-friendly, we see sparse grid as the better option. This way, the user of
the framework will not have to think about maintaining a bounding box around
the dense grid, or dense grid taking up too much memory.

Note on Performance of Construction of Spatial Partitioning Grid

To construct the grid, each boid is simply added to its corresponding cell. In case
of sparse grid, we assume a hashmap with O(1) insertion. Therefore, in both
cases the time complexity of both approaches is O(n), where n is the number of
boids.

From memory perspective, sparse grid only allocates what it needs, so only
O(n) memory is needed. In case of the dense grid, our main concern is allocating
memory for all the cells inside its bounding box. Let us assume a bounding box
in 3D, for simplicity a cube with sides of length wy, and thus volume of wy,.
Then the number of cells needed is wy, /w3, where w.y; is a cell’s width. Thus

cell»

the memory complexity would be O(n + wj, /w?,;). While the extra term is a
constant, in practice this constant may be very high, as it scales with the square

(in 2D) or cube (in 3D) of the bounding box’s side length.
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All in Radius Search

To find all neighbors of a given boid, boids in all cells within its radius need to be
considered. A common approach to simplify this, is to set w.y = 2r. This was
described, for example, in book titled Game Programming Design Patterns [48].
This way, only the current cell and all adjacent to it need to be checked. In that
case, the search needs to visit 9 cells in 2D and 27 in 3D.

We will consider the upper bound on the number of flockmates that need to
be visited. Same as in earlier sections of this chapter, we assume all boids to have
a minimum separation distance of d,,;,. This means that each boid occupies area
of wd? . Then in the worst case, each cell can contain up to w?,,/(wd?,.,) boids
in 2D and w2, /(wd?,,) in 3D. Thus, the maximum number of neighbors a boid
needs to visit can be bounded by constant mg..q = w2, /(rd?,,). While having a
constant worst case look up time O(my,;q) may seem good, it is not as important
if mg,iq is larger than the number of boids n. As we saw in Section 5.2.1, even
an upper bound on all neighbors within radius r can easily be larger than n
for our purposes, and it grows quadratically in 2D and cubically in 3D with the
radius. From perspective of worst case analysis, spatial partitioning grids can
theoretically be used to find full adjencency matrix in linear O(nmygy,;q) time.
This may provide a huge advantage for cases where n >> mg,;q. Meaning either
the radius of vision has to be small, which implies small m,,,4, or the total number
of boids n needs to large.

Until now, we considered w.; = 2r. However, this is not necessary. Imple-
menting the search such that w..; does not depend on r would be a bit more
difficult, but it can provide greater flexibility in regards to performance, since
Weey can be adjusted independently of r. Figures 5.9, 5.10 show all cells that
would need to be searched, for different choices of w..;. Smaller cells result in
lesser area to search, but more overhead as more cells need to be visited and have
memory allocated. We have not experimented with this approach, but it would
be an interesting addition. For our implementations, we only used the clasical

approach where w..; = 2r, due its simplicity.

Figure 5.9: A spatial partition Figure 5.10: A spatial partition
grid, with a small width of cells grid, with a large width of cells
W,y relative to the search radius. Weey relative to the search radius.
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K—Nearest Neighbors

In case of k nearest neighbors search, the same cells as when searching all neigh-
bors within radius need to be visited. To find the nearest neighbors, the neighbors
need to be sorted by their distance to the boid. An efficient way to achieve this is
having a priority queue with k best guesses and adding all potential neighbors to
it as they are being found. Insertion into a priority queue is O(log(k)), thus the
time complexity of one neighbor search is O(myg,4*log(k)) in the worst case. Note
that despite finding only k& nearest neighbors, the worst case time complexity is
higher than to find all in a radius.

The search could be optimized further by searching the cells in order of their
distance to the boid and stopping once the priority queue contains k& neighbors,
with no unvisited cell capable of containing a neighbor closer than the current
farthest neighbor. This optimization could be especially beneficial for a grid with
small wee, as the one shown in Figure 5.9. For a boid inside a densely packed
flock, only a few nearest cells would need to be considered.

5.3.3 K-d Trees

The second data structure that can accelerate the neighbor search is a K—d tree. It
was first described by Friedman, Bentley, and Finkel in 1977 [49]. A more modern
introduction to this data structure was written in 2019 by Martin Skrodzki [50].
A K-d tree, shown in Figure 5.11, is a type of binary tree, where each node
represents a region of space. In each node, space is split by each spacial dimension
alternately. For example, in 2D, the root node would split the space on the x
axis, its children split it on the y axis, and that node’s children split it on the x
axis again [50].
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Figure 5.11: A K-d tree containing several boids in its leaf nodes. The whole
space was first split once vertically, these two halves were then split horizontally
and lastly the four regions were again split vertically.
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Note on Performance of Construction of a K—d Grid

Building a balanced K—d tree can be done in ©(n x log(n)) time, and the tree
will use ©(n) memory [50]. To balance the tree, the median of the points in the
region is chosen as the splitting axis. From algorithmic complexity perspective,
the amount of memory needed is the same as when using spatial partitioning
grid. However, the construction cost is log(n) times larger. This additional
initialization cost might be balanced out by potential performance improvement
of the search.

Nearest neighbor

K—d tree enables efficient look up of a nearest neighbor of a point p. The algorithm
recursively goes down the tree, choosing regions of space containing the point p.
When the leaf node is reached, the minimum distance to the points in that region
is calculated. This represent the currently best candidate for the nearest neighbor.
Then, the recursion goes back up the tree, and at each level, the algorithm checks
whether other regions of space could contain a closer point 2. If so, that region of
space is searched as well, and if any point is closer, the current minimum distance
is updated. This algorithm is O(log(n)) [50].

K—Nearest Neighbors

The algorithm to find k£ nearest neighbors is similar to a single nearest search,
with a small difference. Instead of a single best guess for minimum distance, a
priority queue of best guesses is maintained. At the top is the farthest of the
nearest guesses, it is used to decide whether a region of space can contain a closer
point. Friedman et al. [49] who invented the K-d tree show that finding k nearest
neighbors is also O(log(n)), and provide empirical evidence that while the number
of points examined increases with k, it increases “slightly slower” than linearly.
This implies that an upper bound on the time complexity which accounts for k
is O(k = log(n)).

All in Radius

K-d trees can also be used to find all neighbors within a radius r. K-d trees
support efficient range search, meaning finding all points within a given bounding
box. Range search was discussed by Bentley and Friedman in their “Survey of
Algorithms and Data Structures for Range Searching” [51]. Range search could be
used to find all neighbors within a radius r, by finding all points within a bounding
box of width w = 7 * 2 first. Range search with K-d trees is O(n'=" 4 my,),
where d is the number of dimensions, and my, is the number of points found [51].
Worst case myy for our use case can be estimated with myg = w?/(7d?,;,) for 2D,
similarily as with the spatial partitioning grid. Note that here, the constant myg
is 9 times smaller for 2D and 27 times smaller in 3D than mg,;4, when using the

spatial partitioning grid.

2The region cannot contain a closer point if all points in that region are farther than the
current best candidate. This can be decided simply by comparing the current minimum distance
to the distance between the point p and the splitting axis of the region.
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5.3.4 Comparison

We saw that both K—d trees and spatial partitioning grids can be used to find
all neighbors within a radius r as well as k nearest neighbors. The two data
structures will now be compared.

K Nearest

We know that finding k nearest neighbors cannot be worse than O(klog(n)) for
K-d trees, and O(myg,qlog(k)) for spatial partitioning grids. Theoretically, the
time complexity when using K—d trees is worse, because it grows logarithmically
with n, while it is constant for spatial partitioning grids. In practice, as we are
focused on simulations of lower thousands of boids, even assuming 10000 boids
gives l0g2(10000) = 13.2. On the other hand it is apparent from Subsection 5.2.1
that mg,.q could easily be much larger for our use case. This suggests that using
K-d trees could be more efficient for smaller flocks, especially if r is large.

All in Radius

For finding all neighbors within a radius r, the time complexity of K-d trees
is O(n'=Y? 4 my,), meaning it scales badly for higher dimensions. For spatial
partitioning grids it is O(mgiq). As we saw, my, is smaller than my,.4, especially
in 3D. This indicates again that for smaller flocks, K-d trees could be a good
option, while spatial partitioning grids are better fit for larger flocks, because of
their constant time complexity. This is especially true in 3D, where K-d trees
have O(n?/3 + my,) time complexity.

Construction

The construction of K—d trees is O(n * log(n)) and the construction of spatial
partitioning grids is O(n). This further indicates that K—d trees will be less
efficient for larger flocks.

Conclusion

From the analysis above, it is clear that both data structures have their advan-
tages and disadvantages. The optimal choice of the data structure depends on the
specific values of n, r, d,,;n, and whether all neighbors within radius are needed
or only the k£ nearest. The analysis however indicates that for our use case of
hundreds to lower thousands of boids, K—d trees are likely to be a better choice
in most cases. It will, however, be necessary to profile the actual performance for
a specific use case, to find the best option.

5.4 Conclusion
In this chapter, different options for limitting the perception of boids were given.

Traditional options included having a limited radius and field of view of vision.
A combination of them is a good option to increase realism and performance.
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Then, we found that limiting the maximum number of neighbors to k£ can in-
crease realism [41] and performance even further. Afterwards, we discussed that
precomputing the neighborhood first, and passing it to the behaviors as in Algo-
rithm 6 is a good way to increase modularity of the whole simulation.

Lastly, K—d trees and spatial partitioning grids were discussed together with
their implications on performance. It was found that for our use case of smaller
flocks, K—d trees will likely be a better option. However, due to the numerous
tradeoffs between K-d trees and spatial partitioning grids, our framework will
include both data structures.

It is important to note, that since the complexity of running the behaviors is
O(nk), and finding k nearest neighbors for all boids is O(nk xlog(n)) (using K—d
trees), the worst case time complexity of the whole simulation is O(nk * log(n)).
This means that the neighbor queries can be expected to be the main bottleneck.
This is why it is crucial to choose the right data structure, and implement it
efficiently.
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6. Flocking Behaviors

The basic Boids model was discussed in the Chapter 2. The core model needs
three Neighbor Behaviors: cohesion, alignment and separation. In this chapter,
only the three core Neighbor Behaviors responsible for flocking will be discussed in
detail, to illustrate our main ideas behind implementing new behaviors. However,
as mentioned in the formalization, other types of behaviors can be used to extend
flocking. For example, wandering (Simple Behaviors), briefly discussed at the end
of this chapter, or obstacle avoidance (Ray Behaviors), discussed in Chapter 7.
Our detailed discussion of the three main Neighbor Behaviors will later provide
useful techniques for both Simple Behaviors and Ray Behaviors.

As was the case in Chapters 3, 4, we first set some assumptions and constraints
about Neighbor Behaviors, since they are the main focus. Then, we analyze
two implementations of the three Neighbor Behaviors responsible for flocking,
and evaluate them against the constraints. Lastly, using the analysis, our own
implementation of the three flocking behaviors will be proposed.

6.1 Assumptions

Assumptions about the behaviors will now be stated. The Neighbor Behaviors
accept a boid and a list of its neighbors. There is some data associated with each
boid — for simplicity, only their positions and velocities. The behaviors usually
return a desired velocity or a desired acceleration. In our case, they will return a
desired direction, desired speed and desires for the direction and speed. The idea
behind this was described in Subsection 4.4.2, which discussed improvements for
the types of results passed into our Merger. Furthermore, it is assumed that there
is some maximum radius of vision r for each behavior. In case of our behaviors,
each behavior also has a field of view fov associated with it.

Furthemore, all behaviors will be analyzed in isolation from each other, and
independently of the Mergers and Movers. When possible, it is assumed that
there is only one Neighbor Behavior, which returns a desired velocity. The desired
velocity would then be passed directly to a Mover, which gradually updates the
boid’s velocity and position. Considering each behavior in isolation will simplify
the analysis, and make sure that each behavior is sensible on its own.

The inputs are:

e b. = {p:, v.}, the current boid’s position and velocity

o N.={by,by,...,by} the current boid’s neighborhood
where b; = (pj,v;) is the position and velocity of the j-th neighbor

e 7 maximum radius of vision
The outputs are:

e vy or ay the boid’s desired velocity or desired acceleration. In case of our
behaviors, ¢, which contains a desired velocity with its desires.
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6.2 Constraints

We have identified a set of constraints, which we believe the Neighbor Behaviors
should satisfy. The constraints are:

1.

The functions should be “smooth” functions of their inputs.

This makes sure that there are no sudden changes when the inputs change
slightly, similarily as with Mergers in Section 4.2. This is to ensure smooth
behavior without jittering.

It must be possible to adjust some weights or other parameters to determine
strength of the behavior.

This is targeted at designers. Adjusting weights gives them an easy way to
adjust the behavior of the boids, without touching the code directly.

A neighbor should have no influence on a behavior’s result, as distance to
the neighbor goes to r.

This makes sure that the Neighbor Behaviors remain smooth even as a
neighbor leaves the radius of vision. This builds on the idea that after
some distance r, the neighbors leave the boids vision as discussed in Sub-
section 5.2.1. Together with constraint 1, this suggests that the strength of
influence of a neighbor should be a smooth decreasing function of distance
to the neighbor, giving zero as distance goes to r.

The maximum possible size of the result should be finite.

This makes sure that there is an upper bound on the size of the result. If
the result has no upper bound, then it is more difficult to reason about the
behavior, and adjust it by designers. Having no upper bound could create
edge cases where the influence of a behavior becomes unexpectedly high,
and the behavior overpowers all other behaviors, even when it normally
should not.

The maximum possible size of the result should be independent of the number
of neighbors.

This partially follows from the fourth constraint. For example, if the max-
imum size of the result was proportional to the number of neighbors, then
the result could be arbitrarily large. Furthemore, keeping the maximum
size of the result independent of the number of neighbors makes it easier
to reason about the behaviors. It will also make it easier to reuse the same
behaviors with the same parameters for different sizes of flocks.

The mazimum possible size of the result should be independent of the radius
of vision.

This is similar to the fifth constraint. The main issue for designers would
be that after changing the radius of vision, they would likely have to adjust
some parameters of the behavior as well.
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6.3 Analysis of Other Implementations

We chose two implementations of the three Neighbor Behaviors, which we will
analyze. The first implementation is simpler, and captures the most basic ideas.
The second implementation is similar to the first one, but it conforms better to the
specified constraints. The behaviors will be analyzed against the constraints and
discussed. In Section 6.4, this analysis is used to propose our own implementation
of the behaviors.

6.3.1 Implementation 1 — Simple Flocking

An example of a simple implementation of the three rules can be found in paper
by Alaliyat et al. [30]. The paper is mainly focused on the finding optimal weights
for the three behaviors!.

Behavior Output Semantincs

In this paper, it is difficult to determine if the semantics of their output is des1red
acceleration, or desired velocity. They calculate three components coh ali and
sép, and then set their weighted sum to be the boid’s new velocity v;,,. This would
imply that all the three behaviors are desired velocities, because setting a sum of
accelerations to velocity would not make sense. The following equation is given:

U7 = Weep O + Wypiali + WsepSED (6.1)

Where weon, Wqii and wg,, are weights of the three behaviors.

From perspective of our formalization in Chapter 2, the weighted sum would
be the Merger. Merging using a weighted sum was desribed earlier in Subsec-
tion 4.3.2. The Mover would correspond to the simplest possible Mover (Sub-
section 3.4.1), that simply sets the new velocity to be the desired velocity. This
indicates that the results are desired velocities. However, when looking at their
alignment function, it seems that it uses a desired acceleration semantics. Results
for cohesion and separation might be either, if we consider looking at them in
isolation, without knowing which Merger and Mowver is used. Therefore, both op-
tions will be discussed. However, when considering desired acceleration, assume
that an appropriate Mover based on Euler integration is used.

Output Semantics Issue

The authors’ implementation illustrates an important issue that we discussed
in context of weighted sum Merger (Subsection 4.3.2). Consider the cohesion
behavior. The desired velocity is multiplied by w,,,. Adjusting the weight should
increase or decrease the influence this behavior has relative to the other behaviors.
However, after multiplying by w.,, the information about the desired speed is
essentially lost. Consider that only one behavior is active. Then, the boids will
want to travel at speed proportional to weyp. A designer changing the weight
would likely not expect this. They would only expect the behavior to have a
stronger influence relative to other behaviors.

'In fact the authors use 5 behaviors, but we will only consider the main three.
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Cohesion

The authors (Alaliyat et al. [30]) use the following equations for cohesion:

coh = Pavg — Pe (6.2)
- _ XpenDj
Pavg = o

This equation calculates the centroid? of the neighborhood, p,s,, and returns
a vector coh pointing from a boid at position p. to pa,, as shown in Figure 6.1.
Finding the centroid is commonly done for cohesion, it was also used by Reynolds
in his original paper [7].

Pj=1

—
=2
—
pum.(/
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Figure 6.1: Illustration of a cohesion behavior. Centroid pg., is calculated from
neighbors’ positions. The behavior returns vector coh towards it.

Consider the size of the resulting vector, d. = |cr;h], the distance to the
centroid. Here, d. would be the desired speed or desired size of acceleration
based on the semantics. In the first case, this would mean decreasing speed as
the centroid is reached, in the second case, the boid would decrease acceleration
to the centroid as it is reached. This would be similar to a force pulling the boid
towards the centroid. From perspective of merging the behaviors, it also means
that the behavior has higher relative influence to other behaviors, as the boid
gets further from the centroid.

The difference between the two semantics can be seen in Figures 6.2 and 6.3.
On the left, a boid travelling at v, is accelerated by coh towards the centroid Davg-
Its new velocity is v,. Note that while the direction of v;, points more to pay,
than v;, the speed increased, meaning that the boid might overshoot its target.
On the right, the boid has desired velocity cgh, pointing towards p,,,. Based on
that and its v, a desired acceleration ay is determined. Adding aj to v, would
make the boid have velocity of coh.

Based on this, it seems it would be best to give desired velocity towards
the centroid, and then determine a desired acceleration based on that. The
conversion into desired acceleration could be part of the Mover, if all behaviors

2Centroid is the “average position”.
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are expected to return a desired velocity, or it could be done inside the behavior,
if the behavior is supposed to return a desired acceleration. In the authors’
implementation, determining the desired acceleration is not necessary, because
they set coh directly as the new velocity vy,.

Sl

Figure 6.2: Boid with velocity v, ac- Figure 6.3: Boid with velocity v,
celerated towards centroid p,,, by desired acceleration ay is calculated
coh. such that coh = v, + ay.

Constraint 1

The first constraint is satisfied. The function is smooth, the result depends on
the centroid, which changes smoothly with the positions of the neighbors.
Constraint 2

The second constraint is satisfied. There is a single weight w..,, which can be
adjusted.

Constraint 3

The third constraint is not satisfied. Neighbors influence the result regardless of
distance to them.

Constraint 4

The fourth constraint is satisfied. The maximum size of the result is r, the radius
of vision, which is finite.

Constraint 5

The fifth constraint is satisfied. The maximum size of the result is r, which is
independent of the number of neighbors.

Constraint 6

The sixth constraint is not satisfied. The maximum size of the result is r, so it
is exactly the radius of vision.
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Alignment

The authors (Alaliyat et al. [30]) use the following equations for alignment:

ali = Vang — Ve (6.3)

- Zv']'- eEN U;
Vovg = —
m

As is usually the case when calculating alignment, the average velocity of
the neighborhood, v4,, is calculated. However, in this case, the current boid’s
velocity v is subtracted from it. This would indicate that ali is a correction
vector to be added to the current velocity. In other words, it would be a desired
acceleration. However, consider that only this behavior is active. Then, using
Equation 6.3 together with Equation 6.1, the boid’s new velocity would be equal
to waliafi, not v,y as one would expect. This again highlights the importance of
semantics. We believe that in this case, the authors should have set ali = Vang
directly.

Assume the corrected version, ali = Vaug, With desired velocity semantics. It
is interesting to note that the larger the speed of a neighbor, the bigger influence
it will have on the direction of vg,,. This may not be desirable. Further consider
a case with two neighbors, both travelling in the exact opposite direction. One
travels at 10m s, the other at 9ms~!. If both vectors are summed together, the
result will be in the direction of the first boid, and its size will be 1ms~!. It may
be better for the desired speed to be 9.5ms™ !, the average of the two speeds.

Constraint 1

The first constraint is satisfied. The function is smooth because its result depends
on the average velocity, which changes smoothly when the neighbors’ velocities
change smoothly.

Constraint 2

The second constraint is satisfied. There is a single weight wg;, which can be
adjusted.

Constraint 3

The third constraint is not satisfied. Neighbors influence the result regardless of
distance to them.

Constraint 4

The fourth constraint is satisfied. The maximum size of the result is $,,4., the
neighbors’ maximum speed, which we assume to be finite.

Constraint 5

The fifth constraint is satisfied. The maximum size of the result is $,,4,, Which
is independent of the number of neighbors.
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Constraint 6

The sixth constraint is satisfied. The maximum size of the result is s,,,,, which
is independent of the radius of vision.

Separation

The authors (Alaliyat et al. [30]) use the following equation for separation:

sép= > (pe —1j) (6.4)

pjEN

The authors’ separation is given by the sum of vectors pointing from each of
the neighbors position pj, to the current boid’s position p;. In this case, both
semantics could work, either the boid accelerates away from collisions, or the boid
wants to move in a direction away from collisions. However we believe the second
option makes better sense intuitively.

The function sums up vectors from each neighbor to the current boid. Each
vector is longer the bigger the distance d to the neighbor. Consider only a single
neighbor. The closer it gets to the boid, the smaller sép will be. Therefore, sep
will have less effect when merging the behaviors with Equation 6.1. This is exact
opposite of what one might expect. The size of sép should grow, as the neighbor
gets closer, in order to overpower the other two behaviors. Now consider that
there is more neighbors. The closer a neighbor is, the less influence it has on
direction of sép. Again this is unexpected, because separating from the closest
neighbors should be the most important. The maximum size of sép depends on
the number of neighbors m, and it is at most m * r (assuming all neighbors are
at the same point at distance r).

Constraint 1

The first constraint is satisfied. The function is smooth — small change in position
of one neighbor means small change in the result.

Constraint 2

The second constraint is satisfied. There is a single weight ws,,, which can be
adjusted.

Constraint 3

The third constraint is not satisfied. Neighbors influence the result more, the
further away they are.

Constraint 4

The fourth constraint is mostly satisfied. The maximum size of the result is
m * r. If there is some bound on the number of neighbors m, then m * r will be
finite. If we consider all neighbors within a radius, the upper bound on m can be
very large, as discussed in Subsection 5.2.1.

75



Constraint 5

The fifth constraint is not satisfied. The maximum size of the result is directly
proportional to the number of neighbors m.

Constraint 6

The sixth constraint is not satisfied. The maximum size of the result is directly
proportional to the radius of vision r.

6.3.2 Implementation 2 — UAV Flocking

As a second example, we chose an implementation which is focused on a very
different use case than ours. The paper by Hoang et al. [52] uses the Reynolds’
boids model to control swarms of Unmanned Aerial Vehicles (UAVs). The inter-
esting aspect is that because of the nature of having a swarm of real UAVs, the
authors needed more robust guarantees about the swarm.

Note, when analyzing the behaviors, the authors handle the special cases
where the number of neighbors m is zero. In those cases they return 0 to avoid
divisions by zero. We describe their implementation without this detail for the
sake of simplicity, but it would be an important detail in an actual implementa-
tion.

Behavior Output Semantincs

Same as in the previous example, the authors use the weighted sum of the three
behaviors. This time, however, the result is added to the current velocity, rather
than setting it directly. The authors interpret the results as desired velocity.
We consider the addition of desired velocity to the current velocity as Mover
described in Subsection 3.4.2 together with its issues.

The authors give the following equation:

m
Up = Ve ) Wil
i=1

where w; is the weight of the i-th behavior, 7; is the result of the i-th behavior
and v, and v, are the current and new velocity of the boid respectively.

Looking closer at the authors’ behaviors, it is clear that each function com-
putes some normalized direction, 7;, where the boid should travel, and multiply
it by w;. Unlike in the previous example, the weights are not constant. They
are calculated as part of the behavior. We believe that multiplying normalized
directions by weights which specify their influence would correspond more to
semantics of desired directions, rather than desired velocities. In the previous ex-
ample (Subsection 6.3.1), we discussed the difficulties when the size of the result
has two meanings. Assuming that r; is the desired direction, and that the weight
indicates the level of influence the behavior should have in the weighted sum, the
size of w;r; has only one interpretation. To control speed, they clamp v, to a
maxium length. For the sake of simplicty, the semantics of desired directions will
be assumed throughout the analysis.
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Cohesion

The authors (Hoang et al. [52]) use the following equations for cohesion?:

-

- ¢
coh = wwhﬂ (6.5)

—

C = Pavg — Pc

- Zp_j'ENp_j»

Pavg = m
M

Weoh = ——

m

where M is the “optimal number of neighbors”, the authors set this to be 6.

The authors find direction towards centroid of the neighborhood ¢, and mul-
tiply it by a weight w,,,. The weight is proportional to M, and inversely propor-
tional to m. In other words, the weight is smaller, the more neighbors there are.
We understand this as the boid wanting to go towards the centroid more, when
it has fewer neighbors. This relationship is graphed in Figure 6.4 for different
choices of M. When the number of neighbors m is equal to the optimal number
M, the weight is 1, and it goes to zero as m grows larger. As the number of
neighbors goes to 1, the weight goes to M. Unlike in the previous example of a
cohesion function, the maximum size of coh does not depend on the distance to
the centroid. We consider this an improvement.

M/m
A
4

Figure 6.4: Function % used by the authors for weighting the cohesion behavior,

graphed for different values of M. Orange: M = 3, Green: M = 2, Blue: M = 1.
The number of neighbors m is on the horizontal axis.

3Upon closer inspection, it seems that the authors forgot to subtract the current position
from the centroid. We assume that this is a mistake, which we corrected in the description
here.
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Constraint 1

The first constraint is satisfied. The function is smooth — the result depends on
the centroid, which changes smoothly with the positions of the neighbors.
Constraint 2

The second constraint is satisfied. The optimal number of neighbors M can be
adjusted.

Constraint 3

The third constraint is not satisfied. Neighbors influence the result, regardless
of distance to them.

Constraint 4

The fourth constraint is satisfied. The maximum size of the result is %, which is
finite.

Constraint 5

The fifth constraint is not satisfied. The maximum size of the result is %, which
is indirectly proportional to the number of neighbors.

Constraint 6

The sixth constraint is satisfied. The maximum size of the result is %, which is
independent of the radius of vision.

Alignment

The authors (Hoang et al. [52]) use the following equations for alignment:

ali = w29 (6.6)
|[Vangl|
M
Wqali = —
m
ey = =

This function is analogous to their cohesion function. The authors find the
average velocity vq,, of the neighborhood, normalize it, and scale it by wy;. The
weight itself is also calculated in the same way as for their cohesion behavior.
Same as in the previous alignment implementation (Equation 6.3), neighbors
with higher speeds have larger influence on direction of vg,,, which may not
be intended. Since wy; is indirectly proprotional to number of neighbors, it is
interesting to consider that the more neighbors a boid has, the less it will want to
align with them. Our concern with this scaling is that it may cause dense flocks
to become unaligned and chaotic. The constraints are satisfied in the same way
as with cohesion.
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Constraint 1

The first constraint is satisfied. The function is smooth — the result depends on
average velocity, which changes smoothly with velocities of the neighbors.
Constraint 2

The second constraint is satisfied. The optimal number of neighbors M can be
adjusted.

Constraint 3

The third constraint is not satisfied. Neighbors influence the result regardless of
distance to them.

Constraint 4

The fourth constraint is satisfied. The maximum size of the result is %, which is
finite.

Constraint 5

The fifth constraint is not satisfied. The maximum size of the result is %, which
is indirectly proportional to the number of neighbors.

Constraint 6

The sixth constraint is satisfied. The maximum size of the result is %, which is
independent of the radius of vision.

Separation

The authors (Hoang et al. [52]) use the following equations for separation:

|

(6.7)

SEP = Wgep

Sal

§= > fulllpe = 55| (Pe — p5)
p;EN

Wsep = T max fu (|l = pill)
J

fw(d> :r_7

where T} is a scaling factor. The authors give an in depth explanation how
to determine the scaling factor, such that the weight w,., can be larger than
then sum of all other weights, thus it can overpower all other behaviors. They
determine it based on M from previous behaviors, maximum distance of vision
r, and intended shortest possible distance between the boids d,,;,. The details
are not be discussed here, as the method is specific to their use case.

To determine séep, the authors take a weighted sum of vectors pointing from
each neighbor’s position p; to the current boid’s position p;. The weights are given
by function f,,, which takes in distance between the two boids d. The function,
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an upside down parabola graphed in Figure 6.5, is zero at the maximum distance
r, and 7 at distance 0. It is apparent that 0 < f,(d) <r Vd € (0,7), and the
function grows the closer the neighbor is. We see this as an improvement over
Equation 6.4, where closer neighbors had lesser influence.

The weight wye, is the maximum value of all the weights given by f,,, multi-
plied ty T,. Thus, wsep, is at most r7T. The fact that there is an upper bound on
the weight regardless of the number of neighbors provides a guarantee that the
boids will not separate too much, as could be the case in the previous example’s
separation, where the weight was essentially unbounded. We also see this as an
improvement.

fd)
A

0 1 2 3 d

Figure 6.5: Function f,, used by the authors for weighting the separation behavior,
graphed for different values of r. Orange: r = 3, Green: r = 2, Blue: » = 1. The
distance to the neighbor d is on the horizontal axis.

Constraint 1

The first contraint is satisfied. The function is smooth — small change in position
of one neighbor will mean small change in result.

Constraint 2

The second constraint is satisfied. The maximum and minimum distances r and
dmin can be adjusted.

Constraint 3

The third constraint is satisfied. Neighbors loose influence on the result, as
distance to them goes to r.

Constraint 4

The fourth constraint is satisfied. The maximum size of the result is 7T, which
is finite.
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Constraint 5

The fifth constraint is satisfied. The maximum size of the result is rT, which is
independent of the number of neighbors.

Constraint 6

The sixth constraint is not satisfied. The maximum size of the result is 77T,
which depends on the radius of vision. This is likely not an issue here, as they
determine T using r such that it satisfies their criteria.

6.4 Our Implementation

This section will describe our Neighbor Behaviors used for flocking, and concepts
used to derive them. First, similarities between behaviors from the reference im-
plementations are discussed. Based on these similarities, we give a generalization
of the behaviors. Then, we discuss easing functions, and how they can be useful
when creating new behaviors. Afterwards, this generalization, together with the
easing functions, is used to develop our behaviors that satisfy the constraints
from Section 6.2. Finally, our entire flocking model is summarized through all
the implementation choices from Chapters 3, 4, 5.

6.4.1 Semantics

When introducing our Merger in Section 4.4, we discussed why it is beneficial
for behaviors to return more information than one 2D or 3D vector. In our
implementation, each behavior returns five values:

q= ((d;?“, desdir)a (Spd7 desspd)7p)

where dir is the desired direction, desg;, is the desire of the direction, spd is the
desired speed, and des,q is the desire of the speed. The priority p is used by the
Merger for prioritized allocation (see Subsection 4.3.3). In our implementation,
we assume the priority to be a constant set by a game designer according their
needs.

Note, when analyzing other behaviors through our constraints, we were often
interested in the maximum size of a behavior’s result, since it had a key role
in how influential the result will be, when it is merged together with results of
other behaviors. Because all the aforementioned behaviors returned a 2D or a 3D
vector, we considered the size to be the length of the vector. Here, our results, ¢,
have a more complicated type. For example, the amount of influence a result has
on the final direction produced by our Merger from Section 4.4 is given by des ;.
For this reason, when discussing the constraints, ¢ will have two sizes, desy;, and
desspq.

6.4.2 Generalization of Neighbor Behavior Functions

After reviewing the three behaviors in the previous sections, it becomes clear that
they share some similarities. Identifying these similarities is useful to create a
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general description of Neighbor Behaviors. This generalization is especially useful
for the framework design. It can provide the users with a unified approach for
creating new Neighbor Behaviors. All behaviors discussed until now first sum up
some values over all the neighbors, and then use this to determine the final result.
Generally, this can be expressed as:

q= f(be,q)
q' = Dv,eng(be, bj)

Where ¢ is the result of the behavior, given by function f(b.,q’), which re-
ceives the current boid b, and an accumulator ¢’. The accumulator ¢’ is given by
accumulating some intermediate results g(b., b;) over all neighbors b; of the cur-
rent boid b.. The accumulation operation is given in general by some operation
@. While & is often a summation (}°), it can more generally, represent other
operations, such as finding the position of the nearest neighbor. To illustrate the
generalization, the cohesion function from the first example (Equation 6.2) could

be described as follows:
J = — ]92 Weoh
m

i=3 p

pjeN

In this example:

. @:Z

e g(be,bj) = p;
¢ f(bcu q/) = (Z; - p_;) Weoh

Activation Functions

In the sample cohesion behavior above, the size of the result |G| linearly decreases
as boid b, gets closer to the centroid. This is important to realize, because the size
of the vector determines the influence of a behavior relative to other behaviors
when they are merged. In general, the relationship does not have to be linear.
Non-linear relationships could provide more interesting behaviors. For example,
in the second separation behavior (Equation 6.7), analyzed in Subsection 6.3.2,
the size of the result was a quadratic function of distance to the nearest neighbor.

We will call functions which shape the size of the result activation functions.
In general, an activation function does not always need to depend on distance to
something, but it will often be the case. For example, in the cohesion behavior
above, the weight w,,, could be multiplied by a function a(deentroia), Where deeptroia
is distance to the centroid. This could be expressed as:

Y
(? - (z”b - _::) wcoha(dcentroid)
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In this example, the vector towards the centroid is not normalized. We saw
this as problematic when analyzing the constraints of the first cohesion imple-
mentation (Subsection 6.3.1), because it meant that the maximum size of the
result was proportional to the radius of vision r.

In our implementations, all behaviors will work with normalized directions,
much like the second set of example behaviors from Subsection 6.3.2. In our case,
a normalized direction dir will be returned, together with a desire for direction
desgi. The desg;, will be given by product of a weight w and a result of an
activation function a(x). To ensure a predictable maximum size of the desire, all
of our activation functions will return values in the range of [0, 1], regardless of
the number of neighbors m, or radius of vision r. This way, each behavior will
have a predictable maximum desire equal to its weight.

Having a predictable maximum desire will make it easier to assign a weight
to a behavior, to adjust how influential it is relative to other behaviors when
they are merged together. Furthermore, the choice of activation function will be
another point where the behavior can be customized to specific needs. The high
level of customizability and predictability will be useful to game designers who
would want high level control over the behaviors.

Observability Functions

We introduced the concept of activation functions, which shape the influence
of a behavior relative to other behaviors. A second important concept that we
introduce is observability functions. They will be used in our behaviors to shape
the influence each neighbor has on the behavior’s result. This is inspired by
Reynolds’ idea of simulated perception, where sensitivity to other neighbors is a
function of distance to them [7]. For example, in the cohesion behavior above,
the influence each neighbor has on position of the centroid could be given by a
function o(d), where d is the distance to the neighbor. This could be expressed
as follows:

¢ = Y pjo(lpj — pel)
p;EN

It is important to note that in this case, q_; would have to be divided by sum of
all o(|p; — pc|) to give a centroid. In this case, the centroid would no longer be a
simple average of positions of the neighbors, but a weighted average of positions
of the neighbors.

The text above only serves as a short introduction to the concept of observ-
ability functions, and where they fit into our generalization. Subsection 6.4.4 will
explore this idea in more detail, including a specific implementation, which will be
shared among our cohesion, alignment and separation behaviors. However, some
easing functions useful for observability functions as well as activation functions
need to be discussed first.

6.4.3 Easing Functions

The concept of activation and observability functions was introduced in the pre-
vious Subsection 6.4.2. However, no concrete functions were described so far.
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Some functions to consider can be found among easing functions, commonly used
in computer games to transitions between values. They are functions which take
in a value from 0 to 1 range, and return a value from 0 to 1 range. Due to their
popularity in computer games, and the ease of working with normalized values,
they are very useful for our use case. A good resource covering many different eas-
ing functions is the website easings.net [53]. Below are some examples of easing
functions that we experimented with for activation and observability functions
for our behaviors.

Power Functions

Perhaps the simplest easing function is a quadratic f(z) = 22, usually referred to
as “quadratic ease in” [53]. In the same sense, “cubic ease in” is f(x) = z® [53].
Here, we generalized this concept to an arbitrary power: f(x) = 2!, where [ is
some constant. The following Figures 6.6 — 6.9 show the functions and their
transformations for different values of I. The function f(z) = ! has a useful
property, the derivative at x = 0 is 0 for [ > 1, giving it a smooth start. The
parameter [ is useful since it provides one more point of customizability.

fo(x) = ! fop(r) =1 - z!

0:5

0 0.25 0.5 0.75 1 z 0 0.25 0.5 0.75 1 z
Figure 6.6: Easing function fy; for Figure 6.7: Easing function fg for
x € [0,1]. Graphed for different x € [0,1]. Graphed for different
values of [. Orange: | = 8, Green values of [. Orange: | = 8, Green
[ =4, Blue: [ = 2. [ =4, Blue: [ = 2.
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https://easings.net

fur(r) =1— (1 —2)

0.5

0 025 05 075 T 025 05 075 T
Figure 6.8: Easing function fg3 for Figure 6.9: Easing function fy4 for
x € [0,1]. Graphed for different x € [0,1]. Graphed for different
values of [. Orange: | = 8, Green values of [. Orange: | = 8, Green
[ =4, Blue: | =2. [ =4, Blue: [ =2.

S—Curves

Second class of useful easing functions are s-shaped curves. They are useful when
both the start and the end should be smooth. The following Figures 6.10 —
6.14 show some s-shaped curves we experimented with. The functions f,; and
fso are so-called smoothstep functions, which are commonly used in computer
graphics [54]. The function fy3 is a combination of f(z) and f4(x). For second
power, fg3 is usually referred to as “quadratic ease in out” [53]. The function fy
is an s-shaped curve which we derived. It has a smooth start and end, and grows
in between, but is not symmetric like fy3. The function f5 is a segment of sin.

fa(x) = 32% — 22° fo(z) = 62° — 152* 4+ 1027
Y Y
1 1
0.5 + + + 0.5
0 0.25 0.5 0.75 1 . 0 0.25 0.5 0.75 1 .
Figure 6.10: Easing function f,; for Figure 6.11: Easing function f, for
z € [0,1] z € [0,1]
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0.5 t t t 0.5

0 0.25 0.5 0.75 1 I 0 0.25 0.5 0.75 1 I
Figure 6.12: Easing function f,3 for Figure 6.13: Easing function f, for
z € [0,1]. Graphed for different z € [0,1]. Graphed for different
values of [. Orange: | = 8, Green values of [. Orange: | = 4, Green
[ =4, Blue: [ = 2. [ =3, Blue: [ =2.

fss(x) = %sm((a: —

7))

N

0.5

0 0.25 0.5 0.75 1

T

Figure 6.14: Easing function f,5 for
z € [0,1].

Bell Curves

Lastly, we experimented with bell shaped curves. For us, that is curves that give
0 for x = 0 and x = 1, and give 1 for z = 0.5. We have not found resources for
this type of curves, so we built them from the previously discussed ones. The first
option, fy(z), is a segment of sin() function. The second option fy(z) is built
from fy(z). The third and fourth options fi3(x), fea(x) are built from fy3(z)
and fq(z) respectively. Lastly fys(x) and fys(z) are built from f(x) and feo(z)
respectively. All the functions except for fi2(x) have derivatives at x = 0 and
x =1 equal to 0, and they all have derivative equal to 0 at x = 0.5. This means
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that (except for fy2(x)) they all have a smooth start and end, and a smooth peak

at x = 0.5.

fo1(z) = 0.5sin(2zm—0.57)+0.5

Y
1

0.5

0:25

0 0.25 0.5 0.75 1
T

Figure 6.15: Easing function fy; for
x € [0,1].

Jes(x) = fea(1 = [22 — 1])

IR/

S

IV
)

0 0.25 0.5 0.75 1

T

Figure 6.17: Easing function fy3 for
x € [0,1]. Graphed for different
values of [. Orange: | = 8, Green
[l =4, Blue: [ = 2.
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Figure 6.16: Easing function f, for
x € [0,1]. Graphed for different
values of [. Orange: | = 8, Green
[l =4, Blue: | =2.

foa(z) = fau(1 — |22 — 1])
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Figure 6.18: Easing function fy, for
x € [0,1]. Graphed for different
values of [. Orange: | = 4, Green
[l =3, Blue: [ = 2.



Jos(x) = fa(l— |22 — 1)) Jos(2) = foo(l — |22 — 1))

0.5 t t 0.5

0 0.25 0.5 0.75 1 z 0 0.25 0.5 0.75 1 z
Figure 6.19: Easing function f; for Figure 6.20: Easing function fyg for
z € [0,1]. z € [0,1].

Range Remapping

All functions given above are from range [0, 1] to range [0, 1]. It can sometimes
be useful to remap them to other ranges. For example, remapping the output
from [0, 1] t0 [Ymin, Ymin]- Additionally, it can be useful to move the function to
the right, or left. For example, if the function should start at x,,;,, and end at
Tmaz- Given a function f(z), its remapped version f’(x) can be calculated as:

T — Tmin

(@) = f (ctamp ( )) (e = i) + i (6.8)

Tmaz — Tmin

where

clamp(x) = min(maz(x,0),1)

Figures 6.21 — 6.23 show examples of remapping some of the previously intro-
duced functions into different ranges.

y y Y
+ 1 1

0 0.25 0ls 0.75 1, 0 0.25 05 0.75 [ 0 0.25 05 075 [

Figure 6.21: Fas-  Figure 6.22: Eas-  Figure 6.23: Eas-

ing function f;; for ing function fg for ing function fi3 for

r € [0,1]. Input =« € [0,1]. Output =z € [0,1]. Input and

range is remapped range is remapped output ranges are

into [0.25,0.75] into [0.25,0.75] both remapped into
[0.25,0.75]
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6.4.4 Observability Functions

The concept of observability functions was introduced in the generalization in
Subsection 6.4.2. The inspiration comes from Reynolds’ idea that not only should
the boids’ perception be limited, as discussed in Chapter 5, but also different
importance should be given to neighbors based on distance to them.

For us, the two main factors limiting a boid’s perception are the maximum
distance, r, at which the boid can observe its neighbors, and the boid’s field of
view fov. It is one of our constraints, that neighbors at distance r should have
no influence on a behavior’s result, to ensure smoothness. This indicates that the
influence of a neighbor should be some function of distance to the boid, which
gives 0 at distance r. In our model, we also assume the boids to have a field
of view fov. The same concept can be applied here as well. The observability
function should give 0 as neighbor reaches the edge of the boid’s field of view fouv.

In this sense, an observability function is a scalar field in radius r around
the boid. A neighbor’s position within the field gives a weight specifying how
influential the neighbor should be. There are two components to this idea. We will
call one distance based observability functions, they give a neighbor’s weight based
on distance. The second one, where the weight depends on the angle between the
boid and its neighbor will be called angle based observability functions. These
two components will now be analyzed separately, and then combined together to
arrive at the final observability function that will be used for our behaviors.

Distance Based Observability Functions

As discussed, a distance based observability functions is a scalar field around the
boid, returning a weight based on distance to its neighbor. To illustrate this idea,
consider Figure 6.24. It shows a circular scalar field with radius 7,,,, around a
boid at position p;. The weights are given by 04;s (Td—J), where d;; is the distance
from p; to a neighbor at p;. The distance d;; is divided by 7maz, to normalize it
to range [0, 1]. This ensures that the weight is independent of 7,4, so that ez
can easily be adjusted, while preserving the relationship. The weight is visualized
using a gradient at the bottom of the figure, going from blue at 0 to yellow at 1.
The observability function oy (), used for this figure, gives 1 for a neighbor at
distance 0, and 0 for a neighbor at distance 7,,,.. This means that the closer the
neighbor is, the more important it will be. To create this figure, a simple linear
relationship, 0g;s:(2) = 1 —x, was used. In general, the relationship does not need
to be linear. Other options will now be considered.
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Tmax dz 0
0= Odist(l) = Odist ( - ) Odist( / ) Odist ( ) = Odist (0) =1
rmaz rmaz rmaz

Figure 6.24: Visualization of distance based observability function as a scalar
field with gradient from blue at 0 to yellow at 1. Position of current boid — p;,
neighbor’s position — p;, distance between them — d;;, maximum radius — 7p,qz-

The first option for a distance based observability function we will consider is
based on Reynolds’ first paper about flocking [7]. In the paper, he mentions he was
inspired by experimental findings of Brian Partridge [55], who studied behavior
of schools of fish. He suggests that the influence of neighbors is proportional to
the inverse square or cube of the distance. Based on this idea, our first suggestion
is the function f;,(x) given below:

1
fin(@) = il

The function f;,(x) is graphed in Figure 6.25 for different choices of {. The
parameter [ can be used to adjust steepness of the curve. For example, [ = 2
would correspond to inverse square relationship. One assumption here is that
same as before, the distance passed in is normalized, and therefore x € [0, 1].
The function f;,(x) gives 0 for x = 1, and goes to infinity as = goes to 0. For
observability, this means that the influence will be larger, the closer the neighbor
is. The fact that f;,(1) = 0 is important in order to satisfy Constraint 3, which
says that neighbors at distance r should have no effect.
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Figure 6.25: Observability function
0.05f;, for = € [0,1]. Graphed for dif-
ferent values of [. Orange: [ = 3, Green
[ =2, Blue: [ =1.

Furthemore, for illustrative purposes, Figures 6.26 — 6.28 show the visualiza-
tion of f;,(x) for the same choices of [ used in Figure 6.25. When looking at the
figures, note that the function cannot be fully visualized as it goes to infinity as
x goes to 0. Also note that in those figures, the function’s output is scaled by
0.05 for visualization purposes. For our purpose, only the relative influence of
the neighbors is important, so the actual multiplication constant does not matter.
Lastly, it is important to remember that the function is not defined at 0, so it
is necessary to handle this case separately, possibly by clamping all inputs below
some threshold to some €. This should not be an issue, since two boids occupying
the exact same position should likely never happen.

Figure 6.26: Distance Figure 6.27: Distance Figure 6.28: Distance
observability function observability function observability function
fip for x € [0,1] and  f;, for € [0,1] and f;, for x € [0,1] and
l=1. =2 l=3.

Second option for distance based observability function that we experimented
with was fp(z) = 1 =2 or fi3(x) = (1 —x)!, described in Subsection 6.4.3. They
are both 0 for x = 1, as required, and they go to 1 as = goes to 0. We find it
preferable to have larger differences in influence for closer neighbors, so fy3(z)
would be the better option, because it is steeper around 0. Its visualization is
shown in Figures 6.29 — 6.31 for varying options of [.
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Figure 6.29: Distance Figure 6.30: Distance Figure 6.31: Distance
observability function observability function observability function
fg3 for € [0,1] and  f3 for x € [0,1] and  fy3 for z € [0,1] and
l=1. [ =2. l=3.

Comparing f;,(x) to f,3(x), one advantage of f,3(x) is that it is defined at 0.
The disadvantage is that the maximum of f3(z) is limited to 1, so the relative
difference in influence of neighbors cannot be as large. For this reason, and
because inverse square or cube should be realistic based on experimental findings,
we decided to use f;,(x) for our behaviors.

Angle Based Observability Functions

So far, only observability based on distance was described. However, the boids’
vision is limited by a field of view as well. This will be handled by an angle based
observability function, in a similar manner to the distance based observability
function. The idea is analogous. Here, neighbors right in front of the boid will
have maximum weight, which goes to 0 as the the neighbor leaves the field of
view.

Figure 6.32 illustrates this idea. In the figure, a boid at position p; has a field
of view of fov,,., = 27 around its current direction of movement, given by its
velocity U;. The angle between the boid at p; and its neighbor at p; is denoted by
a;;j. The same gradient as before is used, and again, the angles are normalized
into [0, 1] range before being passed in. The weight of a neighbor is therefore
given by o, ( ffvii I) Again, 04,(1) = 0 should hold, and the maximum should
be for 04, (0). Same as before, the relationship in this figure is linear, therefore
0fw(z) = 1 — x. Other non-linear relationships will be discussed next.
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Figure 6.32: Visualization of angle based observability function as scalar field
with gradient from blue at 0 to yellow at 1. Position and velocity of current boid
Pi, Ui, neighbor’s position pj, angle between them «;;, maximum angle c,q-

For distance based observability, the function f;,(z) was suggested. We as-
sumed that the case where the distance is 0 would likely never happen. Here, the
case where the angle is 0 a normal situation, one where a boid is facing directly
one of its neighbors. From our experimentation, we found that fpe(z) =1 — 2!
worked well for us. It was chosen over f,3(z) = (1 — x)!, because this way, even
angles relatively far from the center still have high influence. We think of it as
the boid having almost equally good vision for close angles, which quickly falls off
at the edge of the field of view. This effect can be observed in Figures 6.33 and
6.34, which visualize f,o(x) for different choices of [, assuming fov,,., = 7. Note
that the influence of neighbors at angles close to 0 is higher, as [ grows. Also,
note that in the figures, if the angle ay; is above 7, the observability is 0.

Figure 6.33: Angle ob-  Figure 6.34: Angle ob-
servability function f»  servability function fyo
for | =2 and fov,,.. = forl =3 and fov,.. =
. .
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Combining Observability Functions

Two types of observability functions were introduced, one for distance, and one
for field of view. We want to combine the two observability functions into one,
o(d,j, ;;), which depends on both the distance d;; and angle «;;. The main idea
behind observability functions was that they should go to zero as a neighbor leaves
the boid’s vision, either by getting too far, or out of the field of view. Therefore,
o(d;;, cvij) should give 0 when either of the functions gives 0. Naturally, the final
observability should be higher, the more a neighbor is in front of the boid, and the
closer it is. To satisfy these conditions, we define o(d;;, a;;) as product of oy, and
ogist- This is analogous to Boolean AND operator. This way, neighbors who are
both close, and right in front of the boid, will have high influence. Furthemore
neighbors have no influence, if either d;;, or «;j, is too high. The combined
observability function we will use is the following:

o(di;, i) = Ogis L) O H
(dig> us) dt<rmaz> ¢ <f0vmax>

For our behaviors, o4ist(z) = fip(), 0pw(x) = fy2(z). Both functions are
illustrated in Figures 6.35, 6.36, and their product is shown in Figure 6.37. In
the last figure, see that the product indeed has highest values for low d;; and a;,
and it is 0 when either d;; or «;; reaches its maximum.

Both of the chosen functions allow us to specify a parameter [, which shapes
them. This constant can be set by the game designer to customize the behaviors.
Based on our testing, setting [ = 2 for both functions seemed to be a good default.
We chose default value of 2 based on the inverse square or cube relationship sug-
gested by Reynolds [7]. The motivation was mentioned when discussing distance
based observability functions.

However, it is possible to try different values for different purposes. For ex-
ample, to increase difference in influence for close neighbors, one would increase
[ of the o04is¢t(x). On the other hand, increasing [ of the o4, (x) would reduce the
difference in influence for small ;.

Figure 6.35: Distance Figure 6.36: Angle Figure 6.37: Product

based observability  based observabil-  of distance based ob-
function using f;, for ity function wusing servability function f;,
l=2. fg2 for I = 2 and for [ = 2 and an-

fovmar = 2m. gle based observability

function fg for [ = 2.
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6.4.5 Neighbor Behaviors

In the previous subsections, the concepts which will help deriving the behaviors
were introduced. Now, these concepts will be used to derive our cohesion, align-
ment and separation functions. The behaviors are based on the generalization
from Subsection 6.4.2, and take on the following pattern: First some informa-
tion weighted by observability is accumulated over all neighbors. This is used to
determine one final desired direction dir and speed spd. Then, easing functions
from Subsection 6.4.3 are used to assign direction desire desy; and speed desire
desgpg.

All behaviors below are defined from the perspective of the current boid b..
For example, the current boid’s position is p., and the distance between the
current boid and its j-th neighbor is d.;. Furthermore, for the sake of conciseness,
normalized vectors are denoted using the “hat” notation, defined as: v = ﬁ
Lastly, when analyzing the constraints and discussing the size of a result, we
mean the result’s desires as discussed previously in Subsection 6.4.1.

Cohesion

As is traditionally the case, our implementation also builds on the concept of
centroid. However, here, it is calculated as a weighted mean of the neighbors’
positions. The weights are given by o(d.;, ;). The desired direction is then
direction towards this centroid. The direction desire grows with distance to the
centroid using f,1(z) = #'. There is “no opinion” on the desired speed, so the

speed and its desire are 0. The cohesion behavior is given by:

lal]

d'?" = EI,, desdi?” == wcohfql (7") (69)

spd =0, desgg =0 (6.10)

—

4 = Pavg Pe

Zb}eN O(de> O‘CJ')p_;

e ey 0cy)

-

Pavg =

where w,,, is an adjustable weight.

After a lot of experimentation, we settled on using f,; for the activation
function. This makes the desire smoothly fall off to zero as the boid gets closer to
the centroid. Note, this implementation does not entirely satisfy what we wanted
to achieve with the third constraint. If there is only one neighbor, then as it
leaves the radius of vision r, the desire suddenly drops from maximum w.., to
0. This can result in sharp change of the boid’s movement, which we wanted
to avoid. We tried to solve this issue by using one of the bell shaped functions
for activation, then the activation function would give 0. However, this edge case
rather rare (since the number of neighbors is usually larger than 1), and we found
no success with this approach.
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Constraint 1

The first constraint is satisfied. The function is smooth, small change in position
of one neighbor will mean small change in result.

Constraint 2

The second constraint is satisfied. The value of wc,, and power [ of f,; can
be adjusted. It is also possible to experiment with settings of the observability
functions.

Constraint 3

The third constraint is satisfied. Neighbors loose influence on the result, as
distance to them goes to r. However, there will be a discontinuity in desire if
there is only a single neighbor leaving the radius of vision.

Constraint 4

The fourth constraint is satisfied. The maximum size of the result is w,,,, which
is finite.

Constraint 5

The fifth constraint is satisfied. The maximum size of the result is w,,}, which is
independent of the number of neighbors.

Constraint 6

The sixth constraint is satisfied. The maximum size of the result is w..,, which
is independent of the radius of vision.

Alignment

Same as with other implementations of alignment functions we explored earlier,
our alignment is also based around the concept of average velocity. However, as
with our cohesion, a weighted mean is used. Additionally, we calculate a weighted
mean of directions and speeds separately. This avoids the issue where neighbors
with higher speeds have more influence on the final direction. This issue was
discussed when analyzing the first example implementation (Subsection 6.3.1).
The desire for direction increases, the more the boid is misaligned with the desired
direction. The desire for speed grows with magnitude of difference between the
current and desired speed. The alignment behavior is given by:
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—

dir = a,  desgir = WaiDir fq1 (9(%’ a)) (6.11)

™

b— ||v.
spd =0,  desspq = Waiispafoq1 <H|H‘> (6.12)

Smax

a= Z O(dcj,acj)ﬁj

b;eN
_ Xpen 0(dej, ;) || 5]

Zb}eN 0(d0j7 O‘Cj)

where wgipir and wgspa are adjustable constants, s,,4, is the maximum pos-
sible speed, and 6(¥, i) gives angle between two vectors. Activation function for
both desires is f;;. We also experimented with s-shaped curves, but found no
large difference. As usual, the values passed into the activation functions are
normalized to [0, 1] range.
Constraint 1
The first constraint is satisfied. The function is smooth, small change in velocity
of one neighbor will mean small change in result.

Constraint 2

The second constraint is satisfied. The values of wy;pir and weispd, and powers [
of the f,; activation functions can be adjusted. It is also possible to experiment
with settings of the observability functions.

Constraint 3

The third constraint is satisfied. Neighbors loose influence on the result, as
distance to them goes to r. However, same issue as with cohesion applies.

Constraint 4

The fourth constraint is satisfied. The maximum sizes of the result are wq;pir
and weispd, both of which are finite.

Constraint 5

The fifth constraint is satisfied. The maximum sizes of the result are wg;pi and
Walispd, both of which are independent of the number of neighbors.

Constraint 6

The sixth constraint is satisfied. The maximum sizes of the result are wgy;p;r and
Walispa, both of which are independent of the radius of vision.
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Separation

Our implementation of separation is quite similar to the one discussed earlier in
Subsection 6.3.2. The desired direction is also determined as a weighted sum of
directions from neighbors to the boid. As usual in our behaviors, the summed
directions are weighted by result of the observability function. This makes sense
conceptually, since neighbors that are closer, and positioned more directly in front
of the boid, should be seen as a bigger threat of causing a collision.

The idea of seeing the observability as a measure of threat can be used for our
activation function. The direction desire, desy;,., should grow with observability
of the neighbors. However, there is one observability value per each neighbor. We
considered working with the sum of the observabilities, but that sum depends on
the total number of neighbors, so that could lead to unexpected results. Taking
the average observability would avoid this issue, but the average would be too
low in situations where one neighbor is very close, and the rest is very far. For
this reason, we got inspired by implementation from Subsection 6.3.2, where the
authors use the nearest neighbor to determine the behavior’s weight. Similarly,
we choose the highest observability out of all neighbors, denoted by u. However,
the observability has no upper bound, but we want our activation function to give
a normalized result in the [0, 1] range, as discussed in Subsection 6.4.2. Therefore,
an activation functions based on easing functions (Subsection 6.4.3) cannot be
used here as before, since their inputs should be from [0, 1] range.

The solution is to use an activation function with an asymptote at y = 1,
as x goes to infinity. One such option is fi,(z) defined below and graphed in
Figures 6.38, 6.39. It is a monotonically increasing function, with an asymptote
y = 1 as x goes to infinity. Moreover, it gives 0 for x = 0, to make sure neighbors
at the edge of vision have no influence. The function f,.,(x) can be customized
with two parameters, [ and k. The effect of these parameters can be observed
in the figures. Essentially, [ makes the curve grow faster, and k “squashes” it
vertically. Using the activation function f.,(z), our separation behavior is given
by:

—

dir = a, desqir = wsepfsep(u) (613)

spd =0, desgpq =0 (6.14)

u = glg])\% o(dcj, Ozcj)

. Pe — Dj

d= ) o(de,acj)im—=2n
bj%v 7 e = pill
1

(kz +1)"

where wg,, is an adjustable constant for weight, and & and [ affect the shape
of the activation function f.,(z).

foep(w) = =
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Figure 6.38: Activation Figure 6.39: Activation

function fi., for z € [0, 1], function f, for z € [0, 1],
where £k = 5. Orange: where £ = 1. Orange:
=3, Green: [ =2 [l =3, Green: | =2

Constraint 1

The first constraint is satisfied. The function is smooth, small change in position
of one neighbor will mean small change in result.

Constraint 2

The second constraint is satisfied. The value of w,., and power [ and constant
k of fsp can be adjusted. It is also possible to experiment with settings of the
observability functions.

Constraint 3

The third constraint is satisfied. Neighbors loose influence on the result, as
distance to them goes to r.

Constraint 4

The fourth constraint is satisfied. The maximum size of the result is wge,, which
is finite.

Constraint 5

The fifth constraint is satisfied. The maximum size of the result is wsep, which is
independent of the number of neighbors.

Constraint 6

The sixth constraint is satisfied. The maximum size of the result is ws.,, which
is independent of the radius of vision.
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Notes on Our Flocking Behaviors

The main parameter that can be adjusted on all the behaviors are the weights.
Same as Reynolds in his first paper [7], we recommend ordering of wge, > wq; >
Weon- If the behaviors’ results are merged using priority allocation (see Subsec-
tions 4.3.3, 4.4.1), the same ordering is recommend for priorities.

The powers [ can shape the observability and activation functions. As men-
tioned earlier, at the end of Subsection 6.4.4, | = 2 seemed to generally be a
good default. It seemed to be a generally good default for all powers [ in the
activation functions as well. This can also have a positive effect on performance,
as x*x is faster to run than invoking a mathematical library function to compute
z!, for a general floating point number [. For k used in fs,(x), a good default
seemed to be kK = 0.01. However, all of these constants were not chosen based
on any objective measures, but rather what worked well for us when testing this
algorithm. The behaviors can be customized further, by remapping the ranges of
inputs or outputs with Equation 6.8. It will always be necessary to find the ideal
combination of all of these hyper-parameters through experimentation. Furthe-
more, the choice of the activation and observability functions themselves could
be another interesting aspect to experiment with.

There is one serious issue, if these three behaviors stood on their own. Con-
sider a starting state, with multiple boids all having no speed. The only behavior
that affects speed is alignment, which tries to match the speed of other neighbors.
Therefore, the boids would not move anywhere. The wandering behavior in the
next Subsection 6.4.6 solves this issue.

6.4.6 Other Behaviors

This section adds two more behaviors to our flocking model. As discussed, the
boids would not move anywhere if only our cohesion, alignment and separation
were used (end of Subsection 6.4.5). For this reason, a wandering behavior that
drives a boid’s desired speed is added. Furthemore, a homing behavior is added
to keep the flock contained within a defined area. While the previous behaviors
were what we refer to as Neighbor Behaviors, these two behaviors will not de-
pend on any neighbors. We refer to these behaviors as Simple Behaviors. This
distinction was discussed when extending the formalization of the Boids model
in Subsection 2.1.1.

Wandering

The wandering behavior’s main purpose is to drive the boids’ desired speeds.
Additionally, it makes the boids smoothly change direction over time. That
makes sure that even a boid with no neighbors moves around in an interesting
way.

Wandering is quite a common steering behavior that can be added to a flocking
model. It was described, for example, by Reynolds in his paper on steering
behaviors [16]. In the paper, he described an approach where the boid has sphere
in front of it, and a point on the surface of the sphere is selected. Then, wandering
direction is the direction from the boid to that point. Each frame, a random offset
is added to this direction, which is then constrained back to the surface of the
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sphere. However, he also mentions using Perlin Noise could be a good alternative.
We decided to use Perlin Noise, as it is a commonly used in computer games, so
users of the framework are likely to understand this approach easily.

To implement our wandering, two Perlin Noise functions are sampled over
time, to give angles a and 6. They determine a random direction in spherical co-
ordinates. Third noise function is used to sample a random speed. Our wandering
function is given by:

—

dir = d,  desgir = WwanDir (6.15)

spd =b,  desSspg = WywanSpd (6.16)

a = (sin(0)cos(), cos(), sin(0)sin(a))

b= le?“p(Smm, Smaxs U)

0 = mnoise(2id, tf,,)
1
o= §7T + Qnag noise(id, tf,)

- 1 N noise(3id, tf)

2 2

where Wyanpir and Wyansps are adjustable constants. The variable ag,q, de-

termines maximum angle of dir with the 2z plane. This is useful to prevent boids
from flying up at unnaturally high angle. The frequency for change in direction
in the xz plane can be adjusted with constant f,.. The frequency for change
in the up and down direction can be adjusted with constant f,. Frequency for
change in speed is given by fs,. The function noise is a Perlin Noise function,
which outputs values in range of [—1, 1] with uniform probability. The boid’s id,
td, is used to seed the noise function. The variable t is the current time, and
lastly, the function lerp is linear interpolation.

Note, the desired direction dir is in world space, which is why it is crucial
that the noise function has a uniform probability distribution. Usually that is
not the case for Perlin Noise implementations, which tend to be more biased to-
wards 0. This would bias all boids towards some world space direction. In our
implementation, we used a histogram equalization technique based on cumula-
tive distribution function [56] (usually used for images), to find a function that
converts non-uniform Perlin Noise into Perlin Noise with uniform distribution.
This technique gives the function in terms of a lookup table. We wanted to avoid
using a large lookup table in our implementation, so we fit the table using a poly-
nomial of 5th degree (higher degress provided marginal accuracy improvements).
Disclaimer, the core idea to use histogram equalization to find a uniform perlin
noise is not our own. It was suggested to us by Al chatbot ChatGPT [57].
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Homing

Currently, there is nothing stopping the boids from leaving an area where they
are initialiazed. Having this feature would be very useful in context of games.
For example, one might want to have a flock of birds above a specified area, and
ensure they do not leave it. A homing behavior based on the idea that the boids
have some “home” area can resolve this problem.

A homing behavior was proposed, for example, by Frank Heppner in his paper
titled “A Stochastic Nonlinear Model for Coordinated Bird Flocks” [58], written
in 1990. Note, the author uses homing as a core component of flocking, we will use
it mainly to restrict the boids to a given area. In the paper, the author uses two
radii, minimum and maximum, around a homing position. The “attractivness”
of homing (in our case this would be desire), is 0 at either extreme, and reaches a
maximum somewhere in between. For us, this would be like using a bell shaped
activation function.

For our implementation, we use a similar idea. Desire is 0 when the boid
is within some minimum radius, 7r,,;,, but it only grows as the boid reaches the
maximum radius, 7,,,;. This could result in a sharp change in the boids behavior,
as it leaves the maximum radius. However, for us, the reason to use homing is
to prevent the boids from leaving the homing area altogether, so ideally that
case should not happen. If it does, the weight or priority should be increased to
prevent it from happening.

Our homing is given by:

dir = a,  desgir = Whome fq1(d) (6.17)

spd =0,  desgpg =0 (6.18)

d= Temap(rmina T"max, 07 17 ||CL‘ |)
a4 = Pp — Pc
where wpome i an adjustable constant, 7,,;, and 7,,,, are the minimum and

maximum distance around the home at position p,. When the boid’s distance to
the home is below 7,,;,, it will stop desiring to go towards it.

6.5 Full Model

By now, all the components needed for our flocking model were discussed. That
is the Mover (Chapter 3), Merger (Chapter 4), Neighbor Query (Chapter 5) and
finally, this chapter discussed three Neighbor Behaviors and two Simple Behaviors.
All the ideas can now be brought together to create a whole flocking model.

To query neighbors, each boid considers k£ nearest boids within some maximum
distance and field of view, as discussed in Section 5.1. Our model then uses the
previously proposed 5 behaviors — cohesion, alignment, separation, wandering
and homing. Each behavior returns a constant priority, desired direction with
a direction desire, and desired speed with speed desire. The behaviors’ results
are passed into a Merger described in Section 4.4, which uses weighted sum and
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priority allocation to determine a single desired velocity. Finally, the desired
velocity is passed into movement function from Subsection 3.5.1, which finds a
new velocity of the boid based on its current velocity.

Naturally, the behaviors do not have to be limited to these five behaviors. A
useful addition would be, for example, an obstacle avoidance behavior, using the
concept of Ray Behaviors. One such obstacle avoidance behavior is described in

Chapter 7.
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7. Avoiding and Resolving
Collisions

In Chapter 6, we introduced our complete model for flocking. It could be used,
for example, for a flock of birds in a computer game. Using that model would
be sufficient, because birds would likely not need to interact with the game’s
environment, since they are too high away from it. However, other animals, such
as fish or sheep, might need to interact with the game’s environment. For this
thesis, we assume the game’s environment to be defined by arbitrary meshes with
colliders, since this is usually the case in Unity.

This chapter will discuss two aspects of interaction with the environment.
Collision avoidance will involve Ray Queries and Ray Behaviors, which can be
used to prevent collisions with the environment. Collision resolution will deter-
mine how a boid’s movement changes, if collision avoidance fails. Since neither
collision avoidance nor collision resolution is necessary for all animals, both these
aspects will be covered only briefly.

7.1 Collision Avoidance

When adding other types of steering behaviors to our formalization of Boids
model in Subsection 2.1.1, we introduced the concept of Ray Queries and Ray
Behaviors, with the intent of using them for collision avoidance. The idea is that
a Ray Query casts rays into the environment, and a Ray Behavior takes the ray
hits and returns a result suggesting how to avoid collision.

7.1.1 Assumptions about Ray Queries

Our assumptions about Ray Queries will now be stated. The queries accept a boid

with some data associated with it, cast several rays intersecting the environment,

and return results of those ray casts. As usual, we assume that a boid would

have at least a current position p. and a current velocity v.. For each cast ray,

we assume that commonly used data, such as its direction, as well as hit-related

details like the normal, distance, and position, are provided by the physics engine.
The inputs are:

o b. = {p:,v.}, the current boid’s position and velocity.
The outputs are:
e R={ro,r1,...,mn}, aset of rays cast into the environment.

— If a ray r; does not hit anything, then r; = 0.
— If a ray r; hits an object, it is represented as a tuple containing:

1. The ray’s direction ;.
2. The hit’s normal n;.
3. The hit’s position i;;
4. The hit’s distance d;.
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7.1.2 Assumptions about Ray Behaviors

Assumptions about Ray Behaviors will now be stated. They accept a boid which
has some data associated with it, and result R of the Ray Query. They use this
to return a result suggesting how the boid should move. For our behaviors, the
return data would be the same as introduced in Subsection 4.4.2, and used for our
behaviors in Chapter 6. For other authors’ behaviors, the return data is usually
a vector representing either a desired acceleration or a desired velocity.

o b. = {p:,v.}, the current boid’s position and velocity.

e R={ro,r1...7,}, result of the Ray Query.

The outputs are:

o q= ((d;r, desair), (spd, desspa), p) for our behaviors, where:

dir is the desired direction,
desg;, is desire for the direction,
spd is the desired speed,

desgpq is desire for the speed, and

A

p priority.

o Alternatively, v; or ay, the boid’s desired velocity or desired acceleration,
when discussing other authors’ solutions.

7.1.3 Discussion of Other Implementations

While reading sources related to flocking, we found many approaches to imple-
ment cohesion, alignment and separation. However, we have not found many
sources discussing approaches to collision avoidance in detail with their formal
descriptions. For this reason a detailed analysis of other authors approaches like
in Chapter 6 will not be done here.

Reynold’s Implementations

One often cited source is Reynold’s obstacle avoidance behavior from his paper
about steering behaviors [16]. His illustration of the behavior is shown in Fig-
ure 7.1. For simplicity, he assumes all obstacles to be circles, but notes that the
technique could be extended to other shapes. The behavior works in the follow-
ing way. In the figure, the boid (green arrow) selects the first obstacle on its
collision course (obstacle B). The behavior then returns a desired acceleration ag
(red arrow) in direction perpendicular to the boid’s current velocity v.. In 2D,
there are two directions perpendicular to v;. As shown in the figure, the direction
pointing away from the sphere’s center is selected (red arrow).
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Figure 7.1: Reynolds’ obstacle avoidance behavior. Figure from his paper about
steering behaviors [16].

While this idea seemed promising at first, we identified a potential issue with
accelerating by ay perpendicular to v.. To illustrate the issue, consider a boid
moving slowly in the direction of an obstacle. In each frame, an acceleration ay
is added to v, resulting in a new velocity v,. Since ay is perpendicular to v,
the magnitude of v, will grow. Therefore, the initially slow-moving boid gains
speed as it attempts to avoid the collision, which feels unrealistic. In our view,
the growing speed could lead to other collisions.

Lague’s Implementation

One approach we experimented with can be found in an open-source implementa-
tion of Boids in Unity by Sebastian Lague [10], [9]. His approach involves casting
multiple rays into the environment, in a pattern shown in Figure 7.2. The pattern
covers certain a maximum field of view FOV,,,, up to a maximum distance d,,
where obstacles can be detected. For us, the pattern in which the rays are cast
represents the Ray Query. Figure 7.3 shows some of the rays (red) detecting an
obstacle.

The behavior then works in the following way. First, it checks for a potential
collision ahead using a sphere cast. If there is a collision ahead, the behavior
returns a desired velocity vy in the direction of one of the rays that did not hit
any obstacle. Among the rays that did not hit any obstacle, the one closest in
angle to the boid’s forward direction is selected. This ray is visualized in magenta
in Figure 7.3.
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Figure 7.2: Sebastian Lague’s pat- Figure 7.3: Sebastian Lague’s pat-
tern of ray casts for FOV,,q. = 7. tern of ray casts for FOV,,., = 7.
Red rays — hit, green rays — no hit,
magenta ray — no hit and closest in
angle to the boid’s forward direction.

In our implementation, this approach was quite promising at first, but it was
unclear how to handle a situation where all rays hit an obstacle. This meant
that in some edge cases, a boid would stop trying to avoid collisions, since all
the rays were hits. This could be mitigated by removing the limit on FOV,,.,
and cast rays in all directions around the boid instead. This potentially requires
far more rays, which has a negative impact on the performance. Furthermore, it
was difficult to decide on the optimal length of the rays d,,... Longer rays detect
potential collisions sooner, giving the boid more time to react. However, larger
dmae also increases the likelihood of encountering the edge case where all the rays
hit something. Due to these issues, we did not pursue this approach further.

7.1.4 Our Implementation

For our implementation of obstacle avoidance, we use the same Ray Query as
Lague used in his implementation described in the previous Subsection 7.1.3. His
Ray Query is similar to the Neighbor Query that we assumed in our implemen-
tations of Neighbor Behaviors. In the same way, the boid’s vision is limited by a
maximum distance d,,,, and a maximum field of view FOV,,,,. For this reason,
the same concept of observability (Subsection 6.4.4) from our Neighbor Behav-
iors, can be applied for our collision avoidance behavior. Here, the observability
depends on distance to ray hit d;, and the angle between the ray and the current
boid’s forward direction, «;. For Neighbor Behaviors, observability considered
distance to a neighbor and an angle between direction to the neighbor and the
boid’s current forward direction.

The implementation of our obstacle avoidance behavior is almost identical to
our implementation of separation (Subsection 6.4.5), since separation’s responsi-
bility is essentially obstacle avoidance as well. The main idea in the separation
behavior was to take a weighted sum of directions away from each neighbor. Sim-
ilarly, the obstacle avoidance accumulates a weighted sum of normals 77 pointing
away from the obstacles over all ray hits. The weights in this sum are given by
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observability of each ray, just as the weights for separation were given by observ-
ability of each neighbor. Furthemore, the same activation function, f,.,(z), is
used to determine desg;,. The function fs.,(z) receives u as parameter, where u
is the highest observability over all rays. For separation, the highest observability
over all neighbors was used. More formally, our obstacle avoidance behavior is
given by:

—

dir = a, desqir = woafsep(u) (71)
spd =0, desgpq =0 (7.2)
u= max o(d;,a;)

r,€ER, m#@
a= Z O(di, Oé,)ﬁ;
r,€ER, Tﬁé@
1
sep\L) = =777
freo() (kz + 1)

where w,, is an adjustable constant for weight, and k and [ affect the shape
of the activation function fe,(z). How k and [ affect fs.,(x) was discussed in
Subsection 6.4.5.

7.2 Collision Resolution

While the obstacle avoidance behavior described in Subsection 7.1.4 works quite
well for avoiding collisions, it does not guarantee that all collisions will be avoided.
For this reason, collisions with the environment need to be handled in some way,
to ensure that the boids do not clip through the scene’s colliders.

7.2.1 Options

There are some options to consider for collision resolution. One option in Unity
or other game engines would be to make the boids dynamic rigidbodies and let
the physics engine handle the rest. However, a dynamic body can fall over when
hit, slide down on uneven ground, or bounce off walls. Rigidbodies are good for
simulating inanimate objects, but a real animal would be able to keep its balance
without falling over, stand without moving on steep ground and it would not
bounce off a wall upon hitting it.

The second option would be to use a “character controller” which handles
collisions. For example in Unity, there is a CharacterController [59] component for
MonoBehaviors. There is also an experimental character controller for ECS [60].
However, upon testing it, we found it to be unnecessarily complex for our needs.
We also found its performance to be insufficient. For these reasons, we decided to
implement our own collision resolution algorithm, based on the commonly used
“collide and slide” algorithm.
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7.2.2 Collide and Slide

Collide and slide is a technique for collision resolution that can be used to build a
character controller around. We were inspired to use this approach by a YouTube
video [61] by Poke Dev, who used it to build a simple character controller in
Unity. His implementation is based on a paper [62] by Kasper Fauerby, who
introduced the technique for collision resolution of characters in 3D games. The
video also references a paper [63] by Jeff Linahan who improved the technique to
be numerically stable.

The main idea behind this algorithm is that when a character collides with
a wall, it should slide along it. This is illustrated in Figure 7.4. The entity
is represented by a sphere. In the figure, the sphere is supposed to move with
velocity vz, but that would result in a collision. Therefore, the algorithm finds
v1, the largest velocity to travel at before colliding. The rest of the unused v,
is then projected onto the collision surface, giving v5. The final new velocity
to use is v,, the sum of v; and v3. In case that v3 would result in a collision,
the algorithm recursively again snaps the velocity to the collision surface, and
projects the rest. This is repeated until the entire velocity is used up, or until
some maximum number of iterations is reached.

Figure 7.4: One iteration of collide and slide with current velocity v.. New
velocity v, is composed of v; and v3.

Improvements

When experimenting with the basic collide and slide algorithm, we first attempted
to reimplement the algorithm from the video [61] that inspired us to use this
approach. However, our implementation suffered from edge cases, such as clipping
through the walls and jittering. For this reason, we reimplemented the algorithm
from Jeff Linahan’s paper [63], which aims to solve numerical stability issues. The
main idea behind this implementation is the same, with some small changes, and
usage of techniques to improve the numerical stability. One notable improvement
is that this algorithm does not need a “magic number” for maximum number of
iterations. Instead, it uses at most three iterations, guaranteeing that clipping
through geometry is not possible. This spares the user of having to balance
quality of collision resultion and performance by manually setting a maximum
number of iterations. A further benefit is that the performance would be more
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unstable and unpredictable if a high maximum number of iterations was used.

The three iterations are the following: The boid first slides along the first wall
as before. If there is a second wall, it slides along a vector which is parallel to
both the first, and the second wall. If there is a third wall, the movement stops
there. Especially the second step is important. Using the classical collide and
slide, jittering can happen when moving into a corner. This is because in each
iteration, the boid could slide along one wall, onto the second one and then back
to the first one and so on. Restricting the movement to a vector parallel to both
walls in the second step avoids this.

Additionally, the paper explains how to find the normal of the wall while
handling edge cases like colliding with a sharp edge. Furthermore, it describes
how to prevent edge cases where the sphere moves too close to the collision point,
which could make the next sweep cast detect that position as a collision due to
floating-point errors. It uses the concept of a “skin width” to prevent this. For
implementation details, see the referenced paper [63].
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8. DOTS and ECS Background

In Chapter 1, the Unity’s Data Oriented Technology Stack — DOTS [12] was
chosen to implement the framework. It was relatively recently introduced into
Unity in 2018 and consists of a collection of technologies designed to improve
performance. There are three main parts of DOTS, Burst Compiler [13], Job
System [64] and ECS [65].

The Burst Compiler enables compilation of C# into optimized native code.
However, it comes with many restrictions, such as being able to compile only
unmanaged types. In practice, this means that only structs, not classes, can
be burst-compiled. For this reason, common data structures like T[] arrays
or List<T> lists cannot be used. Instead, Unity provides an unmanaged array,
NativeArray<T> [47], where all elements must be unmanaged types, and nested
arrays are not supported.

Job System enables utilizing all CPU cores through parallelization. Code
inside a job’s Execute! method can be scheduled to run in parallel. The paral-
lelization can be twofold, jobs can invoke Execute multiple times in parallel and
multiple jobs can run in parallel to each other. Additionally, jobs can be burst-
compiled. For synchronization, each job, A, provides a JobHandle that can be used
as a dependency, making sure that another job, B, waits for A to complete, before
it begins execution.

ECS, which stands for Entity Component System, is a paradigm for game
development, different to the traditional OOP-based approach. Its main concepts
relevant to this thesis are explained in the list below.

« Entity [66] — Represents a single object in the game, for example a boid.
Entities have a set of components associated with them. In practice entity
is only an index into arrays of components.

« Component [67] - A piece of data associated with an entity. Components
are structs that can contain only unmanaged types, and usually contain no
logic, only data. They can, for example, be used to configure each boid, or
contain a boid’s current velocity.

« Tag Component [68] — A component with no properties. Tag compo-
nents can be used to uniquely identify entities. For example, all entities
representing birds can be marked with a bird tag.

o Archetype [69] — All entities sharing the exact same set of component
types are said to belong to the same archetype. For example, all entities
with exactly these three components: position, velocity, and a bird tag,
would share the same archetype.

o Entity Query [70] — A query used to look up all entities with certain
restrictions on their components. For example, any entity with these three
components: position, velocity, and a bird tag.

1Usually the name of the method is Execute, but it can be named in a different way.
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o System [71] — Contains logic which processes and updates entities’ com-
ponents. Usually, a system looks up entities with certain components using
an entity query, and then performs operation on them, possibly by running
parallel jobs.
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9. Framework Implementation
Documentation

In Chapter 2, we presented formalization of a flocking algorithm by breaking
it down into main four parts, Movers, Mergers, Queries, and Behaviors. In the
following Chapters 3, 4, 5, 6 7, implementations of these functions were discussed.
While the concrete implementations from different sources varied significantly,
the core structure of the algorithm, described by the formalization, remained the
same.

A framework based on the formalization would allow modular interchaning
of concrete implementations, such as a specific Neighbor Query or Neighbor Be-
havior, without having to make changes to rest of the algorithm. That would,
for example, make it easy to implement and use a new behavior, such as a new
cohesion behavior. However, most users would not want to write their own behav-
iors. Therefore, the framework should also include good default implementations
that the user can use. Moreover, the framework should provide a user friendly
GUI, that allows the user to set up a flocking system without writing any code.
There, the user could configure their own system, for example, by selecting a set
of implementations of Neighbor Behaviors to use. This is especially useful for
computer game development, to allow even non-technical team members to work
with the framework.

This chapter will describe the implementation of a framework that has these
features. The implementation is done in Unity using their Data Oriented Tech-
nology Stack (DOTS) [12]. This technology was chosen in Section 1.2, based on
analysis of other implementations of flocking in Unity. For terminology related
to DOTS, see Chapter 8.

9.1 Requirements

So far, we outlined what the framework should be able to do. The requirements
for the framework were described more concretely in Section 1.1. The following
list summarizes these requirements in the context of previous chapters. The
framework will be implemented such that the requirements are satisfied as well
as possible.

1. Performance — Maximum 1 millisecond to run a flocking simulation of
1000 boids on reference system described in Subsection 1.1.1.

2. Modularity — Support for swapping different implementations of Mowver,
Merger, Neighbor Queries, Neighbor Behaviors, Ray Queries, Ray Behaviors
and Simple Behaviors (Subsection 1.1.2).

3. Extensibility — Possibility to easily add new implementations of Mower,
Merger, Neighbor Queries, Neighbor Behaviors, Ray Queries, Ray Behaviors
and Simple Behaviors (Subsection 1.1.3).
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4. Flexibility — Ability to support different design choices like what informa-
tion a behavior receives and returns, or how movement is handled (Subsec-
tion 1.1.4).

5. User-Friendliness — Provide default implementations of Mover, Merger,
Neighbor Queries, Neighbor Behaviors, Ray Queries, Ray Behaviors and
Simple Behaviors that can be used without programming through GUI
(Subsection 1.1.5).

9.2 Framework Design

Based on the requirements discussed again in Section 9.1, the framework must
essentially be divided into two main parts. The core ensures the modular de-
sign based on the formalization from Chapter 2. It provides interfaces such as
the concept of a Neighbor Behavior, together with a system to run their con-
crete instances. It also contains code that simplifies implementation of these
interfaces. The defaults provide some concrete implementations of the inter-
faces, for example a cohesion behavior. The GUI for working with the framework
will be described in Chapter 10. The framework’s source files are located in
com.o-vaic.steering.ai/Runtime/Core and com.o-vaic.steering.ai/Runtime/Defaults
after importing the framework (see Attachment A.1.1).

We will begin with a high level overview of the core. The core gives a modular
structure and manages the data flow, parallelization, and memory management
in the background. It is designed to be as general as possible, while still doing
large portion of the work for the user. Figure 9.1 shows a diagram of the Base
System, which integrates all the key interfaces. In terms of DOTS, it is an ECS
system that schedules a parallel pipeline of jobs, where jobs pass information
between one another.

The Base System does the following. First, it queries all relevant entities using
EntityQuery, named Main Entity Query in the figure. Then it passes information
about the entities into three pipelines, one per each behavior kind — Simple Behav-
1ors, Neighbor Behaviors and Ray Behaviors. Simple Behaviors are for behaviors
like wandering, whose result depends only on the current boid. Wandering was
discussed in Subsection 6.4.6. Neighbor Behaviors are for behaviors like cohe-
sion, alignment and separation, discussed extensively in Chapter 6. Their result
depends on the current boid and its neighbors. At last, Ray Behaviors can be
used for behaviors like obstacle avoidance, discussed in Section 7.1. Their result
depends on the current boid and its ray casts.

To avoid having to determine neighborhood or ray casts for each Neighbor
Behavior and Ray Behavior, the behaviors can be grouped by their queries. For
example, in Figure 9.1, an array of Neighbor Behaviors depends on a single Neigh-
bor Query, which in turn depends on an Entity Query responsible for querying
potential neighbors. To allow having multiple different Neighbor Queries or Ray
Queries, the framework supports having multiple groups of Neighbor Behaviors
and Ray Behaviors.

Once all behaviors are finished, Merger merges their results together into one
final result (normally a desired velocity), which is used by the Mover System to
update the boid’s current velocity. Optionally a Collision System can run at the
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end to resolve collisions.

As mentioned earlier, the parts of Base System that the user can implement
and replace are defined in terms of interfaces. Namely, Merger, Simple Behavior,
Neighbor Behavior, Ray Behavior, Neighbor Query and Ray Query are interfaces,
and their implementations are parallel jobs. The parallelization is twofold: the
jobs run in parallel to other jobs, while each job internally parallelizes compu-
tation per each entity. The Base System is set up to be agnostic to concrete
implementations of the jobs, it only schedules them and passes information be-
tween them. The data flow and dependencies between the jobs are indicated by
the arrows in Figure 9.1. The user can configure what set of jobs to run using
SteeringSystemAsset, described in Subsection 9.3.1.

Main Entity Query 1
Other
Entity
Query
J/ \Z \L \Z \Z \2
Neighbor Raycast
Query Query
Simple Neighbor Raycast
Behaviors Behaviors Behaviors
.'.Iiii
Merger ]

l

Mover System
Collision System

Figure 9.1: Diagram of the Base System of the framework.
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9.2.1 Jobs and Job Wrappers

The core idea behind the framework design in Figure 9.1, is that it is possible to
configure the Base System by giving it an array of jobs, which implement some
interface, for example an array of Simple Behaviors. As far as we know, this
requires a small workaround, because instance of a job needs to be scheduled
through the Schedule extension method. This method only becomes avaliable for
the concrete job structs. However, in order to have an array of jobs, the concrete
types would have to be hidden behind an interface.

A simple workaround is to wrap the scheduling of a concrete job type into
a class implementing some shared interface, and have an array of these wrapper
classes instead. We will call these classes Job Wrappers. An example of this
concept is shown in Listing 9.1. The snippet shows a job named MyJob, scheduled
from inside of class MyJobWrapper, which implements IFloatArrayJobWrapper inter-
face. In this case, it would be possible to have an array of IFloatArrayJobWrapper,
and call Schedule on every element.

The whole Base System is composed of these Job Wrappers, which implement
some shared interface, for example 1SimpleBehaviorJobWrapper for Simple Behav-
tors. A potential downside of this is that the Base System has to use instances
of classes so it cannot be burst compiled. This is not an issue, because the jobs
themselves can still be burst compiled, which is where all the computation is
done. One benefit is that the schedule method of the Job Wrappers can contain
additional set up, or it could even schedule a chain of multiple jobs.

Listing 9.1: Example of a Job Wrapper.

struct MyJob : IJobParallelFor

{
public NativeArray<float> Data;
public void Execute(int index)
{
float a = Data[index];
}
}

class MyJobWrapper : IFloatArrayJobWrapper

{
public JobHandle Schedule(NativeArray<float> data, JobHandle inDependency)
{
var outDependency = new MyJob { Data = data }.Schedule(data.Length, 1,
inDependency);
return outDependency;
}
}
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interface IFloatArrayJobWrapper

{
public JobHandle Schedule(NativeArray<float> data, JobHandle inDependency);

9.3 Base System and Relevant Types

Section 9.2 outlined the structure of the framework, which is centered around
the Base System, illustrated in Figure 9.1. This section will explore this further,
from perspective of how this is set up in C+#.

The Base System is an abstract class named BaseSteeringSystem, inheriting
from Unity’s SystemBase. Concrete implementation of BaseSteeringSystem is a sys-
tem for one type of animal. The user only has to override a method that returns
path to load a SteeringSystemAsset (described in Subsection 9.3.1). This asset
is a ScriptableObject containing serialized Job Wrappers of different types, all of
which will be discussed in Subsection 9.3.4.

The system first queries all entities with a specified tag component provided by
SteeringSystemAsset. This is the Main Entity Query in Figure 9.1. After finding
all these entities, it caches some commonly used data from their components,
like their positions and velocities, into BaseBehaviorParams struct, described in
Subsection 9.3.2. The system schedules the Job Wrappers as shown in Figure 9.1
and passes the BaseBehaviorParams into them. The rest of this section is focused on
the contents of BaseBehaviorParams, SteeringSystemAsset and types of JobWrappers
which can be implemented.

9.3.1 Steering System Asset

The SteeringSystemAsset is a ScriptableObject that declaratively specifies behav-
iors to run, along with queries to use. All of this information is serialized in editor
and loaded at runtime by an implementation of BaseSteeringSystem. An instance
of SteeringSystemAsset can be editted in an editor window (see Chapter 10). The
SteeringSystemAsset holds the following information:

o SimpleBehaviorJobWrappers — An array of Simple Behaviors to run.

» NeighborBehaviorGroups — An array of neighbor behavior groups. Each group
contains an array of Neighbor Behaviors to run, grouped by a Neighbor

Query.

o RaycastBehaviorGroups — An array of ray behavior groups. Each group con-
tains an array of Ray Behaviors to run, grouped by a Ray Query.

o MergeJobWrapper — The Merger which turns results from all behaviors into a
final result, suggesting where each entity wants to go.

o MainTagComponentType — The type of tag component used for the Main Entity
Query.
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To illustrate contents of the SteeringSystemAsset, see Listing 9.2. This is how
creating an instance of a SteeringSystemAsset would look like in code, rather than
in the editor. Note, the actual implementation of SteeringSystemAsset class is
slightly different, because of code related to the editor. The sample below only
illustrates the class’ main structure, and the main idea behind it. The concrete
implementations in the sample, such as CohesionJobWrapper, are from the frame-
work’s defaults (See 9.5).

The asset in the sample defines a system for sheep (MainTagComponentType),
which exhibit flocking with other sheep (first NeighborBehaviorGroup), avoid wolves
(second NeighborBehaviorGroup), avoid obstacles (RaycastBehaviorGroup), and wan-
der around (SimpleBehaviorJobWrappers). Implementation of merging the behaviors
results is assigned to the MergeJobWrapper property. A more detailed breakdown
of the set up is described below the snippet.

Listing 9.2: Example of a SteeringSystemAsset.

new SteeringSystemAsset {
MainTagComponentType = typeof(SheepTagComponent),
MergeJobWrapper = new MergeVelocitiesJobWrapper(),
SimpleBehaviorJobWrappers = new ISimpleBehaviorJobWrapper[] {
new WanderJobWrapper(),
}
NeighborBehaviorGroups = new NeighborBehaviorGroup[] {
new NeighborBehaviorGroup {
BehaviorJobWrappers = new INeighborBehaviorJobWrapper[] {
new CohesionJobWrapper(),
new AlignmentJobWrapper(),
new SeparationJobWrapper(),
}
NeighborQueryJobWrapper = new KDTreeKNNJobWrapper(),
EntityQueryDesc = new EntityQueryDesc {
Any = new ComponentType[] {
typeof (SheepTagComponent),

}
I
NeighborhoodSettings = new NeighborhoodSettings
{
MaxNeighborDistance = 10,
MaxNumNeighbors = 10,
MaxFOV = 270,
}

I

new NeighborBehaviorGroup {
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BehaviorJobWrappers = new INeighborBehaviorJobWrapper[] {
new FleeJobWrapper(),
I
NeighborQueryJobWrapper = new KDTreeKNNJobWrapper(),
EntityQueryDesc = new EntityQueryDesc {
Any = new ComponentType[] {
typeof (WolfTagComponent),

}
}
NeighborhoodSettings = new NeighborhoodSettings
{
MaxNeighborDistance = 20,
MaxNumNeighbors = 1,
MaxFOV = 360,
}

}
H
RaycastBehaviorGroups = new RaycastBehaviorGroup[] {
new RaycastBehaviorGroup {
BehaviorJobWrappers = new IRaycastBehaviorJobWrapper[] {
new AvoidObstaclesJobWrapper()
}
CreateRaysJobWrapper = new ConeCreateRaysJobWrapper(),

RaySettings = new RaySettings

{
MaxDistance = 10,
NumRays = 10,
LayerMask = 1 << 8,
}

}’

Listing 9.2 will now be described in more detail. First, MainTagComponentType
tells the Base System to run the system for all sheep, that is entities with the
SheepTagComponent. The tag is used by the Main Entity Query from Figure 9.1.

e MainTagComponentType: typeof (SheepTagComponent) — Run the Base System for
all sheep.

Then, MergeJobWrapper is assigned. It specifies the implementation of a Merger,
used to merge results from all behaviors after they are finished. Different methods
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of achieving this were discussed in Chapter 4, users can implement and use their
own approach.

e MergelobWrapper: MergeVelocitiesJobWrapper — Merge behaviors’ results into
one desired velocity per sheep using this Job Wrapper.

Next property is SimpleBehaviorJobWrappers, an array of all Simple Behaviors
to run for the sheep. Here, only the wandering behavior, discussed in Subsec-
tion 6.4.6, is used. The Base System passes infomation about all the main entities
(sheep) as input into the behaviors, and the behaviors produce results, which are
later passed into MergeVelocitiesJobWrapper.

e SimpleBehaviorJobWrappers
— WanderJobWrapper — Sheep will wander around using this Job Wrapper.

Next there are two groups of Neighbor Behaviors. These behaviors were the
main focus of Chapter 6. First group is set up for behaviors for flocking with
other sheep. For each group, an entity query to find potential neighbors is ran
first. In Figure 9.1, this corresponds to the Other Entity Query. The entity query
here, configured by the EntityQuerybDesc field, looks for all sheep using their tag.
In this case, the Main Entity Query and the Other Entity Query look for the
same entities.

After the information about the main entities (sheep) and the other entities
(also sheep) is queried, neighborhood of the main entities can be queried. In Fig-
ure 9.1, querying neighborhood corresponds to a Neighbor Query. These queries
were discussed in Chapter 5. The implementation of the Neighbor Query itself is
assigned to the NeighborQueryJobWrapper field. Here, the KDTreeKNNJobWrapper uses
a k-d tree to find k nearest neighbors restricted by maximum distance and maxi-
mum field of view. The parameters like maximum distance are configured in the
NeighborhoodSettings field.

Finally, after the Neighbor Query is finished, information about all the sheep
and their neighbors is passed into all behaviors of the BehaviorJobWrappers array.
This corresponds to the Neighbor Behaviors in Figure 9.1. Here, there are three
implementations of Neighbor Behaviors: cohesion, alignment and separation.

o NeighborBehaviorGroup — A group of Neighbor Behaviors to run.
— EntityQueryDesc — All entities satisfying this entity query are potential

neighbors.
= Any — Entity must have at least one of the following components.
o typeof (SheepTagComponent) — The entity query targets sheep.
— NeighborhoodSettings — Settings for querying neighbors.

m MaxNeighborDistance: 10 — Neighboring sheep must be within 10
units.

m MaxNumNeighbors: 10 — Up to maximum 10 neighbors per sheep.

m MaxFOV: 270 — Restrict each sheep’s field of view to 270 degrees.

— NeighborQueryJobWrapper: KDTreeKNNJobWrapper — Neighbor Query imple-
mentation for querying the neighbors.
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— BehaviorJobWrappers — An array of implementations of Neighbor Behav-
tors to run.

m CohesionJobWrapper — Implementation of a cohesion behavior.
m AlignmentJobWrapper — Implementation of an alignment behavior.

m SeparationJobWrapper — Implementation of a separation behavior.

There is one more group of Neighbor Behaviors. It is used by the sheep to
flee from wolves. The set up is very similar to the previous group. The main
differences are the following. The wolves are queried using the wolfTagComponent,
and the NeighborhoodSettings field is set up to look for only one neighbor, using
a wider field of view and higher maximum distance. Furthemore, there is only
one Neighbor Behavior, the FleeJobWrapper, which makes sure the sheep flee away
from the wolf.

¢ NeighborBehaviorGroup

EntityQueryDesc

= Any
e typeof (WolfTagComponent) — The entity query targets wolves.
— NeighborhoodSettings
m MaxNeighborDistance: 20 — Wolves can be detected farther than
sheep.
m MaxNumNeighbors: 1 — At most 1 wolf can be detected.
m MaxFOV: 360 — Use full field of view of 360 degress.

— NeighborQueryJobWrapper: KDTreeKNNJobWrapper
— BehaviorJobWrappers

m FleeJobWrapper — Implementation of a flee behavior to escape the
wolves.

At last, there is one group of Ray Behaviors. It contains one behavior, which
is responsibile for collision avoidance. The set up is quite similar as for the
Neighbor Behaviors. First, rays are cast into the environment, this corresponds
to Ray Query in Figure 9.1. Here, the ConeCreateRaysJobWrapper creates rays in
a conic pattern. The Ray Query is parametrized by the RaycastSettings field,
which tells the query how far to cast the rays, how many rays to cast, and
which physics layer to target. After the Ray Query is done, its results are
passed together with information about the sheep into the Ray Behavior named
EnvironmentAvoidanceJobWrapper.

 RaycastBehaviorGroup — A group of Ray Behaviors to run.

— RaycastSettings — Settings for ray casting.

m MaxDistance: 10 — Cast up to maximum 10 units away.
m NumRays: 10 — Cast 10 rays.
m LayerMask: 1 << 8 — Use 8th layer as a LayerMask for the ray casts.
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— CreateRaysJobWrapper : ConeCreateRaysJobWrapper — Casts rays in a conic
pattern using this implementation of a Ray Query.

— BehaviorJobWrappers — An array of implementations of Ray Behaviors
to run.

m EnvironmentAvoidanceJobWrapper — Implementation of an environ-
ment avoidance behavior.

9.3.2 Base Behavior Params

Each Job Wrapper used in Subsection 9.3.1 receives some information about the
entities queried by the entity queries. For example, the wandering Simple Be-
havior receives information about all sheep queried by the system’s Main Entity
Query. Some data about the entities tends to be useful for most Job Wrappers, so
it is cached by the framework into BaseBehaviorParams struct. The struct mostly
contains arrays of components on the entities. The Base System can then pass
this struct into each Job Wrapper. The data is queried either based on the Main
Entity Query, or the Other Entity Query in case of Neighbor Behaviors. In code,
a job named FillBaseParamsJob is used by the system to fill the BaseBehaviorParams
for the user. Below is a list of the most important fields in the BaseBehaviorParams
struct, to illustrate the idea.

e NativeArray<LocalToWorld> LocalToWorlds — Provides i-th entity’s transforma-
tion matrix.

e NativeArray<VelocityComponent> Velocities — Provides ¢-th entity’s current
velocity.

e ... — Other commonly used components.

e NativeArray<ArchetypeChunk> ArchetypeChunks — Provides all ArchetypeChunks
in the query. An ArchetypeChunk can be used to look up any component
on an entity, in case the components are not cached in a different field of
BaseBehaviorParams.

9.3.3 Behavior and Merger Results

Throughout the first part of the thesis, we discussed the importance of the type
of results the Behaviors pass to the Merger. Additionally, one can consider types
of results that the Merger passes to Mover. We call this the “workflow”. Often,
other authors simply use 3D vector representing a desired acceleration or a desired
velocity, for both the Behaviors and Mergers.

Our behaviors (Chapters 6, 7), need to return more information. Namely the
desired direction with direction desire, desired speed with speed desire, and a
priority. Our Merger (Chapter 4), then uses these results to determine a desired
velocity as a 3D vector, which is passed into the Mover. While this approach
worked well for us, we do no want restrict more advanced users to our workflow.
We want to enable them to define their own workflow, for their own Behaviors
and Mergers, if necessary.
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Behavior Results

Interfaces such as 1SimpleBehaviorJobWrapper, used for Simple Behaviors, share
their results with the rest of the system through IDelayedDisposable interface. This
interface is almost identical to IDisposable interface from the System namespace in
the .NET framework. The only difference is that the bispose method also receives
Unity’s JobHandle, which should be awaited before disposing. This way, a user
can create their own workflow for behaviors, by creating a type that implements
the IDelayedDisposable interface. This would then enable a user to create their
own behaviors that use this workflow.

For example, in the framework’s defaults, each behavior creates and writes
their results to a struct of type VelocityResults. The VelocityResults struct imple-
ments IDelayedDisposable, and contains a field of type NativeArray<VelocityResult>,
where each element represents the behavior’s result for an individual entity as
VelocityResult. The velocityResult struct contains: desired direction with direc-
tion desire, desired speed with speed desire, and a priority. For details about
VelocityResult and VelocityResults, see Subsection 9.4.3.

Merger Results

After all behaviors are done, all of their results need to be merged into one final
result for each entity. Therefore, Merger’s interface, IMergeJobWrapper, receives
an array of IDelayedDisposable, one per each behavior. Running a Merger is the
last step of BaseSteeringSystem. For this reason, the final results that the Merger
calculates are written directly into the entities’ components.

For example, in the framework’s defaults, the MergevVelocitiesJobWrapper re-
ceives an array of IDelayedDisposable. It casts each of them into velocityResults.
Then, for each entity, the Merger calculates one final result, and writes it into the
entity’s DesiredVelocityComponent component. This component contains a single
3D vector, specifying the entity’s desired velocity. Later, a Mover system can
read this component to decide how to update the entity’s current velocity. In de-
faults, all Movers update velocity based on an entity’s DesiredVelocityComponent
component.

It is possible that a more advanced user of the framework would want their
Merger’s result to be more complex than DesiredVelocityComponent. In that case,
the Merger could simply write any information necessary to a component of
different type. However, the user would then have to implement their own Mover
system, one that works with their component.

9.3.4 Job Wrappers

Section 9.2.1 described the concept of Job Wrappers and how they are used within
the framework. In Subsection 9.3.1, their instances were used to create a sam-
ple SteeringSystemAsset for sheep. In code, each type of a Job Wrapper, like
WanderingJobWrapper conforms to some interface. In this case, wandering is a
Simple Behavior, and its interface is ISimpleBehaviorJobWrapper. This subsection
describes all Job Wrapper interfaces used by the framework. A user can use these
interfaces to, for example, implement a new behavior. Usually, the implemen-
tation of a Job Wrapper will schedule a single job, however, nothing restricts it
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from scheduling multiple of them if needed.

Each Job Wrapper interface has only one method named Schedule. All Schedule
methods share the following three input parameters: the BaseBehaviorParams, a
JobHandle of a job that needs to run before it, and a reference to BaseSteeringSystem
that scheduled the Job Wrapper. The Schedule method then returns a JobHandle
as a dependency for the rest of the Base System. Additionally, each Job Wrapper
is expected calculate some result per each entity as part of its contract. The
BaseSteeringSystem then passes the results as input to the next Job Wrapper in
the pipeline.

Note, all behaviors need to write their results into some struct implementing
IDelayedDisposable (see Subsection 9.3.3). For sake of simplicity, while describing
the Job Wrappers, we will assume that all behaviors write their results into the
VelocityResults struct, which is used for all behaviors in defaults. Additionally,
all the Job Wrappers that will be used as examples are from the framework’s
defaults. For more information about them, see Section 9.5.

Simple Behavior

As the name suggest, ISimpleBehaviorJobWrapper allows implementation of Simple
Behaviors. Custom implementations of ISimpleBehaviorJobWrapper are useful for
behaviors that do not depend on the entities’ neighbors or raycasts, such as
wandering. The interface is shown in Listing 9.3 below. Role of the interface for
Simple Behaviors was already illustrated in Figure 9.1. Here, Figure 9.2 provides
a closer overview with examples.

The figure shows m implementations of ISimpleBehaviorJobWrapper, marked
with SBj ... SB,,, where m-th behavior is the wandering behavior. As indicated
with the tag in the Main Entity Query, the BaseSteeringSystem schedules the
behaviors to run for all entities with a SheepTag. The tag and instances of the
behaviors would be loaded from a SteeringSystemAsset (see Subsection 9.3.1).

At the top of the diagram, an EntityQuery is executed to find all sheep.
Internally, the FillBaseParamsJob fills an instance of BaseBehaviorParams, named
MainBaseParams, with information about sheep. The MainBaseParams contain useful
information about the entities, such as a NativeArray of n positions, [p; ... pn],
one for each sheep. The MainBaseParams are passed into all the Simple Behaviors.
Each behavior, for example, the WanderingJobWrapper, uses the information about
entities to produce Results. As discussed in Subsection 9.3.3, Results could be
any type implementing IDelayedDisposable, but normally, it would be an instance
of VelocityResults. In that case, Results contains n instances of VelocityResult,
one for each sheep — [v1 ... v,,]. Each Simple Behavior creates one Results in this
manner. Later, an array of m Results — one per each behavior — would be passed
into the Merger.

In the figure, all black arrows show flow of dependencies for synchronization.
This indicates that all behaviors run in parallel to each other. The grey arrows
indicate the main data inputs and outputs. Usually, a Job Wrapper in the pipeline
receives some input to work with, together with another job’s dependency of type
JobHandle. The job has to wait for the dependency before the input can be read.
In the figure, wanderingJobWrapper receives MainBehaviorParams, together with a
dependency from FillBaseParamsJob.
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Figure 9.2: Diagram of the role of ISimpleBehaviorJobWrapper interface (Simple
Behavior) in the Base System.

Figure 9.2 illustrated the role of implementations of 1SimpleBehaviorJobWrapper,
such as WanderingJobWrapper. The ISimpleBehaviorJobWrapper interface has a single
method — Schedule, shown in Listing 9.3. The method receives: a reference to
the system that scheduled it — SystemBase, a dependency it needs to wait for —
Dependency, and information about the entities — MainBaseParams. It is expected to
write output of the behavior through out parameter Results. The Schedule method
returns a JobHandle that should be awaited before reading from Results. The
MainBaseParams and the Dependency are based on the FillBaseParamsJob, which ran
before it (see Figure 9.2). As discussed, Results could be any IDelayedDisposable,
but normally it would be an instance of VelocityResults.

Listing 9.3: Interface of ISimpleBehaviorJobWrapper.

public JobHandle Schedule(
SystemBase SystemBase,
in BaseBehaviorParams MainBaseParams,
out IDelayedDisposable Results,

in JobHandle Dependency);
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Neighbor Queries and Neighbor Behaviors

As already seen Figure 9.1, and in Subsection 9.3.1, Neighbor Behaviors are
grouped into groups by Neighbor Queries. For example, in Subsection 9.3.1,
the sheep used one group for flocking with other sheep, and a second group to
flee from wolves. In that example, FleelobWrapper (Neighbor Behavior) was re-
sponsible for the flee behavior, and the KDTreekNNJobWrapper (Neighbor Query)
was responsibile for finding their neighboring wolves. A new Neighbor Query
can be implemented with INeighborQueryJobWrapper interface, and a new Neigh-
bor Behavior can be implemented with a INeighborBehaviorJobWrapper interface.
Both interfaces are shown in Listing 9.5. The pipeline tying these two interfaces
together is illustrated in Figure 9.3.

The figure shows one group of Neighbor Behaviors. The group contains m im-
plementations of INeighborBehaviorJobWrapper, marked with N B ... NB,,, where
the m-th behavior — FleeBehaviorJobWrapper is a behavior for fleeing. The be-
haviors are ran for all sheep, as indicated with SheepTag in the Main Entity
Query. Sheep use the behaviors to react to wolves, as indicated with wolfTag
in the Other Entity Query. In this example, KDTreeKNNJobWrapper is the Neighbor
Query responsible for finding neighboring wolves for all sheep. The tag for neigh-
bors, instances of the behaviors, and an instance of the query are loaded from a
SteeringSystemAsset (see Subsection 9.3.1).

The figure will now be described from top to bottom in more detail. Same as
with Simple Behaviors from Figure 9.2, information about the sheep is queried
into an instance of BaseBehaviorParams named MainBaseParams. This is the same
instance that was passed into the Simple Behaviors. Inside the group of Neigh-
bor Behaviors, another instance of BaseBehaviorParams, named OtherBaseParams, is
created. It contains data about the wolves.

Once information about both types of entities is queried, the Neighbor Query,
here KDTreeKNNJobWrapper, can start. It receives NeighborQueryParams, containing
data about sheep and wolves, together with an instance of NeighborhoodSettings.
These settings, already discussed in Subsection 9.3.1, are used for parameters of
the Neighbor Query, like maximum distance or maximum number of neighbors.
In the figure, k is used for maximum number of neighbors. The Neighbor Query
determines a neighborhood for each sheep, and writes it into Neighbors. The
format of the Neighbors array is expected to be a flat 2D array. That is, indexes
[0,k — 1] contain k neighbors, [u] ... U1, ... |, of the first sheep, next k entries
contain neighbors of the second sheep, and so on until neighbors of the last sheep
[...; Up1 ... upg]. The neighbors are stored as NeighborMatch type, which mainly
contains an index of the neighbor inside the arrays of otherBaseParams.

After the neighborhoods are queried, the Neighbor Behaviors can start run-
ning. Fach behaviors receives NeighborBehaviorParams. This struct contains data
that was passed into the Neighbor QQuery — NeighborQueryParams, and Neighbors pro-
duced by the query. Each Neighbor Behavior uses this information to calculate its
Results. The Results are normally of type VelocityResults (see Subsection 9.3.3),
containing n results of a behavior, [v ... v.,], one result for each sheep.
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Figure 9.3: Diagram of the role of INeighborQueryJobWrapper interface (Neighbor
Query) and INeighborBehaviorJobWrapper (Neighbor Behavior) in the Base System.
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The Schedule method of INeighborQueryJobWrapper (see Listing 9.4) receives
an instance of NeighborQueryParams. It also receives preallocated array, Neighbors,
where it has to write the neighborhoods. It is expected to write the neighborhoods
as a flat 2D array, as discussed above. As usual, Schedule also receives a Dependency
to wait for, and returns a dependency to complete before reading from Neighbors.

Listing 9.4: Interface of INeighborQueryJobWrapper and types related to it.

public JobHandle Schedule(
SystemBase SystemBase,
in NeighborQueryParams NeighborQueryParams,
in NativeArray<NeighborMatch> Neighbors,

in JobHandle Dependency);

public struct NeighborQueryParams {
public BaseBehaviorParams MainBaseParams;
public BaseBehaviorParams OtherBaseParams;

public NeighborhoodSettings NeighborhoodSettings;

public struct NeighborMatch {
public int OtherIndex;

The Schedule method of INeighborBehaviorJobWrapper (see Listing 9.5) receives
an instance of NeighborBehaviorParams. Same as when implementing a Simple
Behavior using the ISimpleBehaviorJobWrapper interface, an implementation of
INeighborBehaviorJobWrapper should allocate Results and write to them. As al-
ways, Schedule has an input Dependency to wait for, and an output dependency
that should complete before reading from Results.

Listing 9.5: Interface of INeighborBehaviorJobWrapper and types related to it.

public JobHandle Schedule(
SystemBase SystemBase,
in NeighborBehaviorParams NeighborBehaviorParams,
out IDelayedDisposable Results,
in JobHandle Dependency);

public struct NeighborBehaviorParams {

public NativeArray<NeighborMatch> Neighbors;

public NeighborQueryParams NeighborQueryParams;
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Ray Queries and Ray Behaviors

The Ray Queries and Ray Behaviors are set up in a very similar way to the
Neighbor Queries and Neighbor Behaviors. The Ray Behaviors are grouped by a
Ray Query, which they need to wait for, before producing their results. In the
example in Subsection 9.3.1, sheep used ConeCreateRaysJobwrapper (Ray Query) to
create rays querying information about colliders in the environment, and avoid
the colliders using EnvironmentAvoidanceJobWrapper (Ray Behavior).

A Ray Query is implementation of ICreateRaysJobWrapper and a Ray Behav-
tor is implementation of IRaycastBehaviorJobWrapper. For reference, see List-
ings 9.6, 9.7. Note, that as the name suggest, the ICreateRaysJobWrapper only
creates the rays. The Base System then makes sure to actually cast them and
pass the results further.

The Figure 9.4 shows one group of Ray Behaviors, where the main entities
(sheep) use ConeCreateRaysJobWrapper, to create rays in a conic pattern. Results
of these raycast are then used to avoid collisions with the environment using
the EnvironmentAvoidanceJobWrapper. Same as with figures illustrating Simple Be-
haviors or Neighbor Behaviors, the group of Ray Behaviors first receives info-
mation about the sheep through an instance of BaseBehaviorParams, here named
MainBaseParams.

The MainBaseParams are passed together with RaySettings into a Ray Query,
here ConeCreateRaysJobWrapper. Instance of RaySettings determines parameters for
the Ray Query, similarily to NeighborhoodSettings that determined parameters for
a Neighbor Query. The settings contain, for example, which LayerMask to use, or
how many rays to cast. In the figure, k is used to the number of rays. The Ray
Query uses the MainBaseParams and RaySettings to create rays, and writes them
into RayDatas array. Same as with Neighbors of Neighbor Queries, the rays should

be written into RayDatas in a 2D flat array format — [r1 ... r1g, ..., 701 ... Tni). The
Base System then uses the BatchRayCastsJob to cast rays based on RayDatas, and
writes the results of these raycasts into RaycastHits — [h11 ... Rk, -y Pt oo Bl

Once RaycastHits array is filled, the Ray Behaviors can start running. They re-
ceive RayBehaviorParams, containing information about the sheep — MainBaseParams,
information about the Ray Query — RayData, RaySettings, and information about
the ray cast hits — RaycastHits. As usual, each Ray Behavior uses the informa-
tion to produce Results. Normally, Results would be of type VelocityResults (see
Subsection 9.3.3).
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Figure 9.4: Diagram of the role of ICreateRaysJobWrapper interface (Ray Query)
and IRaycastBehaviorJobWrapper (Ray Behavior) in the Base System.
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The Schedule method of ICreateRaysJobWrapper (see Listing 9.6) receives an
instance of CreateRaysParams. It also receives preallocated array, RayDatas, where
it has to write the rays it wants to cast. It is expected to write the rays in a flat
2D array format, as discussed above. As always, there is an input Dependency, and
an output dependency to complete before reading from RayDatas.

Listing 9.6: Interface of ICreateRaysJobWrapper and types related to it.

public JobHandle Schedule(
SystemBase SystemBase,
in CreateRaysParams CreateRaysParams,
in NativeArray<RayData> RayDatas,

in JobHandle Dependency);

public struct CreateRaysParams {
public RaycastSettings RaySettings;

public BaseBehaviorParams MainBaseParams;

public struct RayData {
public float3 Origin;
public float3 Direction;

public float MaxDistance;

The Schedule method of IRaycastBehaviorJobWrapper (see Listing 9.7) receives
RaycastBehaviorParams. Same as other behaviors, it allocates Results, and writes
to them. As always, Schedule receives Dependency it should wait for before reading
from RayBehaviorParams, and it returns a dependency that should complete before
reading from Results.

Listing 9.7: Interface of IRaycastBehaviorJobWrapper and types related to it.

public JobHandle Schedule(
SystemBase SystemBase,
in RaycastBehaviorParams RayBehaviorParams,
out IDelayedDisposable Results,
in JobHandle Dependency);

public struct RaycastBehaviorParams {
public NativeArray<RaycastHit> RaycastHits;
public NativeArray<RayData> RayDatas;
public BaseBehaviorParams MainBaseParams;

public RaycastSettings RaySettings;
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Merger

Once all Results arrays are filled by all the behaviors, the Merger can merge them
together into one final result that specifies what each entity wants to do. For ex-
ample, in Subsection 9.3.1, sheep used MergeVelocitiesJobWrapper, which is an im-
plementation of algorithm described in Section 4.4. Merging can be implemented
using the IMergeJobWrapper interface (Listing 9.8). Custom implementations of
IMergeJobWrapper can be created to experiment with different merging strategies.

The role of the interface is illustrated in Figure 9.5. The figure uses the already
mentioned Merger, MergeVelocitiesJobWrapper. A Merger receives MainBaseParams
as usual, and an array of Results from all behaviors. In the figure, this is illus-
trated as SB-Results[] from all Simple Behaviors, NB-Results[] from all Neighbor
Behaviors and RB-Results[] from all Ray Behaviors.

For each entity, the Merger should calculate one final result suggesting what
the entity wants to do, and write it into some component on the entity. This
could be any component on the entity, as discussed in Subsection 9.3.3. For
example, MergeVelocitiesJobWrapper from the framework’s defaults writes into a
DesiredVelocityComponent. This component contains a 3D vector suggesting what
velocity the entity wants to have. In the figure, this is illustrated as Merger
writing into n components — [vg; ... Ug,]. The component can later be used by the
Mower system to update the entity’s current velocity. All Movers in the defaults
of the framework (Subsection 9.5.7) use DesiredVelocityComponent.

Simple Behaviors Neighbor Behavior Groups Ray Behavior Groups
SB-Results| ] NB-Results| ] RB-Results] |
Results : [v,..v]

SB-Results| ]
Results, : v, .. v]

NB-Results| ]

RB-Results] ]

MainBaseParams

Merger

[V -+ Vgl

Figure 9.5: Diagram of the role of IMergeJobWrapper interface (Merger) in the Base
System.
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As usual, the Schedule method of IMergeJobWrapper (see Listing 9.8) receives
MainBaseParams. Additionally, it receives an array of IDelayedDisposable. It con-
tains Results from all the behaviors that were scheduled. An implementation of
this Job Wrapper should write the final result into a component on each entity.
Normally this component would be of type DesiredvelocityComponent. This is the
last step of the Base System, a Mover System can later look up the components,
and update the boid’s current velocity accordingly.

Listing 9.8: Interface of IMergeJobWrapper

public JobHandle Schedule(
SystemBase system,
in BaseBehaviorParams MainBaseParams,
in IDelayedDisposable[] Results,
JobHandle Dependency);

9.4 Base Jobs

In the previous Section 9.3, the Base System was described together with Job
Wrapper interfaces it schedules. The user can create implementations of the Job
Wrappers with any code they want to run. This section focuses on simplifying
the implementation of these interfaces.

While dicussing Neighbor Behaviors in the previous Chapter 6.4.2, we iden-
tified a pattern shared by all Neighbor Behaviors. This section builds on this
concept, abstracting the shared logic to allow users to focus only on implemen-
tation details of different behaviors. For example, implementations of Neighbor
Behaviors like cohesion, alignment or separation would all need to reimplement
the following logic. Each entity iterates over all its neighbor accumulating an
intermediate result. While iterating, some data about the boids and their neigh-
bors, such as their positions, may need to be queried from the BaseBehaviorParams
or from components attached to them. Later, the intermediate result is processed
into a final result, which is written into the Results of the behavior’s Job Wrapper.

To prevent reimplementing this logic for each new behavior, custom jobs [72]
(see Subsection 9.4.1) hiding the shared logic are provided. This section gives an
overview of what types of custom jobs are provided by the framework, what they
handle for the user in the background, and how they can be used.

9.4.1 Custom Job Types

In Unity’s ECS, there are several job types. The simplest jobs implement the
IJob [73] interface. There, the job’s Execute function is ran once. Another example
is IJobParallelFor [74]. Implementations of it run their Execute method once for
each index in the range of [0, length].

Unity provides a way of defining new custom job types like IJobParallelFor.
Going into details of defining new custom jobs is outside the scope of this thesis.
A good explanation of this can be found in a blog post by Jack Durstann [75]. In
the framework, jobs hiding shared logic from the user are implemented as custom
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jobs. These custom jobs can be used by the user to simplify creation of new
behaviors. The job can then be scheduled by a Job Wrapper. This way, the use
only has to implement the custom job’s interface to create a new behavior, which
can then be scheduled from a Job Wrapper.

9.4.2 Entity Information

All our custom jobs iterate over all the boids in parallel, and invoke one or more
methods, which the user has to implement. Usually this is the Execute method,
with a parameter of type EntityInformation<C> . It contains the entity’s data from
BaseBehaviorParams, and an ECS component of type ¢. This component should be
attached to every entity using the custom job. It can be used to parametrize a
behavior per each entity.

Listing 9.9 shows a snippet of EntityInformation<C>. Figure 9.6 shows how
instance of EntityInformation<C> is extracted from BaseBehaviorParams by the cus-
tom jobs. For example, for the first entity, e;, the instance is filled with the first
position, p;, and velocity, v, from BaseBehaviorParams. Additionally, an arbitrary
component of type C, relevant for the given behavior, is looked up on the en-
tity and assigned to the Component field. The component C is useful to specify
parameters of the behavior per entity. For example, CohesionJobWrapper from de-
faults relies on the entites having a CohesionComponent. That component contains
parameters like the behavior’s weight.

Listing 9.9: EntityInformation<C>

public struct EntityInformation<C> where C : unmanaged, IComponentData
{

public LocalToWorld LocalToWorld;

public VelocityComponent Velocity;

public C Component;

Positions: [p, b, 1
BaseBehaviorParams Velocities: [v, v ]
Entitylnformation<C> e ¢

Figure 9.6: Relation between BaseBehaviorParams and EntityInformation<Ts.

'Tn code, the generic parameter is named ComponentT. Here the name is shortened.
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9.4.3 Velocity Result(s)

In Subsection 9.3.3, we discussed that the framework is set up such that behavior
Job Wrappers can use any type for their results, as long as that type implements
IDelayedDisposable. We also discussed that in the framework’s defaults, all behav-
iors write into an instance of type VelocityResults that contains one VelocityResult
for each entity. This subsection describes the velocityResult and VelocityResults
types in more detail.

The velocityResult struct is shown in Listing 9.10. It contains a normalized
desired direction — Direction, together with its desire — DirectionDesire. It also
contains a desired speed — Speed, together its desire — SpeedDesire. Lastly it
contains and a priority — Priority. An example instance of VelocityResult is
visualized in Figure 9.7. It shows Direction equal to (0,0,1) and DirectionDesire
equal to 0.5. This is drawn as a vector scaled by the desire, with the values
written out in the first row of the box. The example VelocityResult has Speed
equal to 1 and SpeedDesire equal to 0.5, as indicated by the second row.

Figure 9.7: Visualization of VelocityResult. = The arrow is Direction =
DirectionDesire. First row of the box lists the DirectionDesire and Direction.
Second row lists the Speed and SpeedDesire.

When working with the Job Wrapper interfaces described in Subsection 9.3.4,
the results only have one restriction — they must implement IDelayedDisposable.
Later in this section, custom jobs that can ease implementation of these Job
Wrappers are introduced. When working with these custom jobs, the results,
such as VelocityResults, have additional restrictions on their type. Furthemore,
type restrictions are put on each element in the results, such as VelocityResult.
This is apparent from Listing 9.10 showing the velocityResult type.

The custom jobs require that the velocityResult struct implements three inter-
faces — IDebugDrawable, IValidable, and IToStringFixed. They are used internally
by the the custom jobs to draw the result’s visualization, to check the result’s va-
lidity, and to turn the result into a fixed string that can be used in burst compiled
code. For example, VelocityResult is not valid, if DesiredDirection is not normal-
ized. In that case, the user is warned in the console, using the ToStringFixed
method. The draw method gives visualization shown in Figure 9.7. The visual-
ization is drawn in color assigned to the Color field. This is especially useful for
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debugging. The braw method gets called by the custom job if the user sets the
Debug flag of the behavior’s component to true.

Listing 9.10: Implementation of the VelocityResult struct.

public struct VelocityResult : IDebugDrawable, IValidable, IToStringFixed {
public float3 Direction;

public float DirectionDesire;

public float Speed;

public float SpeedDesire;

public byte Priority;

public Color Color;

public void Draw(float3 position, float scale) { ... }
public bool IsValid() { ... }
public void ToStringFixed(out FixedStringl28Bytes stringl128) { ... }

As mentioned above, the type VelocityResults also has additional type restric-
tions when using the custom jobs. On top of having to be IDelayedDisposable,
the struct also needs to implement the IBehaviorResults<R> 2 interface. See List-
ing 9.11, where VelocityResults implements this interface. The interface forces
VelocityResults to contain a field Results of type NativeArray<R>, where R must
implement the three interfaces that velocityResult implements in Listing 9.10.
The IBehaviorResults<R> interface is useful, because it allows the custom jobs to
write each VelocityResult directly into Results, so that a user does not need to
do it.

Listing 9.11: Implementation of the velocityResult struct.

public struct VelocityResults : IBehaviorResults<VelocityResult> {
public NativeArray<VelocityResult> Results => results;

private NativeArray<VelocityResult> results;
public VelocityResults(int entityCount) {

results = new NativeArray<VelocityResult>(entityCount,

Allocator.TempJob);

public void Dispose(JobHandle dependency) { results.Dispose(dependency); }

2In code, the generic parameter is named ResultT. Here, the name is shortened.

136



9.4.4 Simple Behavior Jobs

In Subsection 9.3.4, we discussed that a new Simple Behavior could be created
by implementing the ISimpleBehaviorJobWrapper interface (see 9.3.4). This would
mean that the users would have write all the logic themselves. However, there
is some shared logic that all Simple Behaviors would likely need to reimplement.
Each Simple Behavior would have to loop through all entities queried by the
Main Entity Query. For each entity, it would need to extract some data from
the BaseBehaviorParams, and look up a component of some type C specific to the
behavior. Then, a behavior’s result of some type R would need to be calculated,
and written into the Job Wrapper’s Results. For each Simple Behavior, only the
calculation of the behavior’s result would be different. For this reason, a custom
job that handles the shared logic in the background was created. To use it,
the user has to implement the ISimpleBehaviorJob<C, R>? interface. An example
implementation is shown in Listing 9.12. Figure 9.8 illustrates what the custom
job does in the background.

First, the figure will be described. The custom job runs for all entities
queried by the Main Entity Query in parallel. For each entity, the job extracts
EntityInformation<C> from MainBaseParams, and passes it into the job’s Execute
method, that the user has to implement. The method returns a single result
of generic type R, which is written at the entity’s index into Results. In the fig-
ure, you can see n-th invocation of Execute receiving information about entity e,,
and returning a result v,,,. For a concrete example, see Listing 9.12.

MainBaseParams
Results
f e |, e (Entitylnformation<C>)
1 n
Execute
L Vrl Vrn(R)
[v,..v] Results
Results

Figure 9.8: Illustration of what ISimpleBehaviorJob<C, R> does for the user in the
background.

3In code, C is named ComponentT, and R is named SteeringDataT.
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Listing 9.12 illustrates a sample Simple Behavior named GoForwardJob. It is
created as an implementation of ISimpleBehaviorJob<C, R>. Here, the type pa-
rameter C is the GoForwardComponent component, and the type parameter R is the
VelocityResult. The Execute method receives information about an entity. The
GoForwardComponent of this entity is accessible through the entity.Component field.
Based on information about this entity, an instance of velocityResult is returned.

This behavior simply makes the entity go in its forward direction at a specified
speed. This is done by assigning entity.Forward to Direction of the returned
VelocityResult. The desired speed, desires and priority are assigned directly from
the entity’s GoForwardComponent.

Listing 9.12: Example implementation of ISimpleBehaviorJob<C, R>.

struct GoForwardJob : ISimpleBehaviorJob<GoForwardComponent, VelocityResult>

{

public VelocityResult Execute(EntityInformation<GoForwardComponent> entity)

{

return new VelocityResult

{
Direction = entity.Forward,
DirectionDesire = entity.Component.BaseData.DirectionStrength,
Speed = entity.Component.BaseData.Speed,
SpeedDesire = entity.Component.BaseData.SpeedStrength,
Priority = entity.Component.BaseData.Priority

}i

To use the GoForwardJob shown above, the user would implement a new Job
Wrapper implementing the ISimpleBehaviorJobWrapper interface, and schedule the
job from it. Listing 9.13 illustrates this. In the snippet, GoForwadJobWrapper sched-
ules the GoForwardJob. From a user’s perspective, this is only boilerplate code,
needed to set everything up. The Schedule method of GoForwadJobWrapper only
allocates Results, and then passes it together with all of its parameters to the
Schedule method of GoForwardJob. Note, scheduling the job returns a JobHandle
that completes when the job is done and the Results are filled out. The user
should return this JobHandle from the Job Wrappers Schedule method, as shown
in the sample.
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Listing 9.13: Scheduling GoForwardJob from GoForwardJobWrapper, an implementa-
tion of ISimpleBehaviorJobWrapper.

public class GoForwardJobWrapper : ISimpleBehaviorJobWrapper

{
public JobHandle Schedule(
SystemBase SystemBase,
in BaseBehaviorParams MainBaseParams,
out IDelayedDisposable Results,

in JobHandle Dependency)

Results = new VelocityResults(MainBaseParams.EntityCount);
return new GoForwardJob().
Schedule<GoForwardJob, GoForwardComponent, VelocityResult>(
SystemBase,
MainBehaviorParams,
(VelocityResults)Results,
1,

Dependency);

9.4.5 Neighbor Behavior Jobs

In Subsection 9.4.4, we showed a custom job that can simplify creation of Simple
Behaviors. In the same manner, there is a custom job that simplifies creation of
Neighbor Behaviors. The job’s interface is named INeighborBehaviorJob<Cl, €2,
A, R>.

What the custom job does for the user in the background will be explained
using Figure 9.9. Same as the ISimpleBehaviorJob<C, R>, the job runs for each
entity in parallel. However, for each entity, there is up to k£ neighbors to process,
so implementing a Neighbor Behavior is not as simple as invoking the Execute
method that returns a result. For each entity, the Execute method is invoked up
to k times, once for each neighbor. The method receives NeighborsInformation<C1,
€2>. In contains information about the main entity — EntityInformation<Cl> and
information about its neighbor — EntityInformation<C2>. This is, for example, the
n-th entity, e,, and its first neighbor, ¢,;. The Execute method also receives an
“accumulator” of type A. The accumulator is used to keep track of some state
between invocations of the Execute method. For the entity e,, this is illustrated
as accumulator going through states a,; ... a,,. In other words, the accumulator
is updated for each of the k neighbors. After all the neighbors are processed, the
accumulator and information about the entity are passed into Finalize method,

4In code, the generic parameters have different naming. C1 is named ComponentT, C2 is
named OtherComponentT, A is named AccumulatorT and R is named SteeringDataT.
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which returns a result of type R. Same as with ISimpleBehaviorJob<C, R>, the
result is written into Results. This approach of splitting the behavior into an
accumulation and finalization part was inspired by generalization of Neighbor
Behaviors in Subsection 6.4.2.

NeighborBehaviorParams
Results
e e (Entitylnformation<C1>)
q, q,,(EntityInformation<C2>)
all anl(A)
11 nl

Execute

Lo Lo

e e (Entitylnformation<C1>)
q, q,, (Entitylnformation<C2>)
a1k ank(A)
1k nk
Execute
i a1k+1 l ank+1(A)
e e (Entitylnformation<C1>)
a1k+1 ank+1(A)
k n
Finalize

i v, t v, (R)

[v, v, Results

writes to behavior’s results

' Results
\

Figure 9.9: Ilustration of what INeighborBehaviorJob<Cl, €2, A, R> does for the
user in the background.
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Listing 9.14 shows a simple implementation of a cohesion behavior imple-
mented using the INeighborBehaviorJob<C1l, €2, A, R>interface. Usually, the main
idea behind a cohesion behavior is to accumulate centroid of all neighbors, and
then go towards it. Therefore, the Execute method adds the neighbor’s position
into the sum accumulator, which accumulates a sum of vectors passed into it. Af-
terwards, the Finalize method uses information from the accumulator to calculate
the centroid, and returns a VelocityResult with direction towards it. The user
would schedule the job from an implementation of INeighborBehaviorJobWrapper,
similarily as it was done with GoForwardJob in Listing 9.13.

Listing 9.14: Example implementation of INeighborBehaviorJob<C1l, C2, A, R>.

struct CohesionJob : INeighborBehaviorJob<CohesionComponent, Comp2, Sum,

VelocityResult>
{
void Execute(in NeighborsInformation<CohesionComponent, Comp2> pair, ref
Sum accumulator)
{
accumulator.Add(pair.0OtherEntity.Position);
}
VelocityResult Finalize(in EntityInformation<CohesionComponent> entity, in
Sum accumulator)
{
float3 centroid = accumulator.SumVector / accumulator.NumNeighbors
float3 toCentroid = math.normalize(centroid - entity.Position);
return new VelocityResult { Direction = toCentroid, ... }
}
}

struct Sum : IAccumulator

{
public float3 SumVector;
public int NumNeighbors;
public void Add(float3 position) { SumVector += position; NumNeighbors++; }
public void Init() { SumVector = float3.zero; NumNeighbors = 0; }
}
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9.4.6 Ray Behavior Jobs

In Subsection 9.4.5, we described INeighborBehaviorJob<C1l, C2, A, R> interface,
which simplifies creation of Neighbor Behaviors. The IRaycastBehaviorJob<C,
Al, A2, R>" interface simplifies creation of Ray Behaviors in a very similar way.
No figure is provided for this custom job, since the idea is almost identical
to a custom job for Neighbor Behaviors. For an example implementation of
IRaycastBehaviorJob<C, Al, A2, R>, see Listing 9.15 below.

To implement a new Ray Behavior, the user has to implement three methods
— OnHit, OnMiss and Finalize. As usual, the job loops in parallel through all
entities. For each entity with component ¢, the onHit method is invoked per each
ray that hit, and onMiss is invoked per each ray that missed. Intermediate results
from onHit are accumulated into an accumulator of type A1, while 0OnMiss uses an
accumulator of type A2. After the job has looped through all the rays, Finalize
method is invoked with information about the entity and the two accumulators,
and returns a result of type R. An implementation of this job would be scheduled
from an implementation of IRaycastBehaviorJobWrapper, similarily as it was done
with GoForwardJob in Listing 9.13.

Listing 9.15 shows a simple implementation of a collision avoidance behavior
implemented as IRaycastBehaviorJob<C, Al, A2, R>. Here, the onHit method uses
Min accumulator (A1) to find the closest ray hit position. The onMiss method is
empty, because it is not needed for this behavior. Therefore, it uses an empty
None accumulator (A2). The Finalize method returns a VelocityResult (R) with
Direction away from the closest hit. Additional information about the entity that
could be used in the behavior are on its AvoidanceComponent (C).

5In code, C is named ComponentT, Al is named AccumulatorHitT, A2 is named
AccumulatorMissT and R is named SteeringDataT.
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Listing 9.15: Example implementation of IRaycastBehaviorJob<C, Al, A2, R>.

struct AvoidanceJob : IRaycastBehaviorJob<AvoidanceComponent, Min, None,

VelocityResult>
{
void OnHit(in EntityInformation<AvoidanceComponent> entity,
in RaycastHit hit, in RayData rayData, ref Min hitA)
{
hitA.Add(hit.HitPosition, hit.Distance);
}
void OnMiss(in EntityInformation<AvoidanceComponent> entity,
in RayData rayData, ref None missA) { }
VelocityResult Finalize(in EntityInformation<AvoidanceComponent> entity,
in Min hitA, in None missA)
{
float3 fromClosest = math.normalize(e.Position - hitA.ClosestPosition);
return new VelocityResult{ Direction = fromClosest, ...};
}
}

struct Min : IAccumulator

{
public float3 ClosestPosition;

private float MinDistance;

public void Add(float3 position, float distance)
{

if (distance < MinDistance)

{
ClosestPosition = position;

MinDistance = distance;

public void Init() { MinDistance = float.PositiveInfinity; }

struct None : IAccumulator { public void Init() {} }
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9.4.7 Ray Creation Jobs

The framework provides a custom job that simplifies creation of new Ray Queries.
As discussed in Subsection 9.3.4, an implementation of ICreateRaysJobWrapper
should write k rays per each entity into the Job Wrapper’s Results array. The
array should be filled in a flat 2D array format. This can be simplified through a
custom job that requires implementation of ICreateRaysJob interface.

The custom job loops through all entities in parallel as usual. For each en-
tity, the Execute method is invoked £ times, once for each ray to create. In the
sample below, k is NumRays. The Execute method receives information about the
entity, entity, and an index of a ray to create for this entity, rayIndex. Each
invocation of the Execute method returns one instance of Raybata, and the cus-
tom job writes it at the approapriate index into the Results array. Note, in-
formation about the entity passed into the Execute method is an instance of
EntityInformation<SteeringEntityTagComponent>. Unlike other custom jobs, the job
itself does not have a generic parameter for the component, because we never
found a need to have one. Instead, the tag SteeringEntityTagComponent is used.
This tag is present on all entities used by the framework.

Listing 9.16 illustrates a sample implementation of ICreateRaysJob. This im-
plementation creates NumRays rays in a circle around each entity. Each ray ranges
to distance MaxDistance.

Listing 9.16: Example of implementation of ICreateRaysJob.

struct Circle2DRaysJob : ICreateRaysJob

{
public int NumRays;
public float MaxDistance;
RayData Execute(int rayIndex,
in EntityInformation<SteeringEntityTagComponent> entity)
{
float alpha = 2 * math.PI * rayIndex / NumRays;
float3 dir = new float3(math.sin(alpha), 0, math.cos(alpha));
return new RayData
{
Origin = entity.Position,
Direction = dir,
MaxDistance = MaxDistance
}
}
}
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9.5 Provided Implementations

The framework, as described until now, provides a high level modular abstrac-
tion through the BaseSteeringSystem, SteeringSystemAsset, and the Job Wrappers.
It also contains custom jobs for some of the Job Wrappers to ease the implemen-
tation of the user’s logic. That is the core of the framework. We also want to
provide the user with concrete implementations of all the Job Wrappers, so that
the framework can be used right away, even without programming knowledge.
This is the defaults part of the package, which will be discussed in this section.
The default implementations would also be useful as a reference when implement-
ing new ones. All the implemented behaviors return the velocityResult struct,
discussed in Subsection 9.4.3.

9.5.1 Simple Behaviors

The defaults contain several useful implementations of ISimpleBehaviorJobWrapper.
We found these to be useful among different scenarios, or for prototyping. The
behaviors are shortly discussed below. More details can be found in the attached
documentation A.1.3. As of writting this thesis, there are 7 Simple Behaviors
provided by the framework.

Wandering

The wandering behavior (WanderingJobWrapper) is perhaps the most common be-
havior to add to the traditional boids model. It adds more randomness to the
movement of the boids. The implementation is based on the wandering behavior
from the Behaviors Chapter 6.4.6. It uses perlin noise to smoothly change the
desired direction and speed. The main properties the user can adjust are the
frequencies of the noise functions, and minimum and maximum speeds.

Homing

The homing behavior (HomingJobWrapper) makes the boids move towards a target
spherical area. The implementation is based on the homing behavior from the
Behaviors Chapter 6.4.6. The direction desire to go towards the home grows as
the boid’s distance to it goes from minimum to maximum radius that the user
sets.

Go Forward

The go forward behavior (GoForwardJobWrapper) makes the boid continue going in
its current direction, at a specified speed. It can be useful as a behavior that
drives the boid’s speed. This is useful when no other behavior returns non-zero
speed and speed desire. It can also be useful for debugging.

Up Alignment

When trying out 3D simulations of fish or birds, we noticed that the boids would
sometimes move straight up or down, which looks unnatural. This behavior
(AlignUpJobWrapper) tries to prevent this. The behavior returns the boid’s current
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direction projected on the world’s up direction. The direction desire grows as the
angle between the current forward and world’s up decreases.

Keep Height

The keep height behavior (KeepHeightJobWrapper) makes the boid stay within a
specified range of y coordinates. It is useful to keep the boids from flying too
high or too low. The homing behavior already restricts the y coordinate as well,
but we often found it useful to limit the maximum and minimum height even
more. It also mitigates visible spherical artifacts of the flock when using only
homing. The behavior returns direction straight up or down. The direction
desire grows the farther the boid moves outside the specified range.

Follow Path

The follow path behavior (FollowPathJobwrapper) makes the boid follow a specified
path at a specified speed.

Debug Simple

This behavior (DebugSimpleJobWrapper) draws a circle around each boid. It is
useful, for example, to mark a boid of interest for debugging, so that it does not
get lost among others.

9.5.2 Neighbor Behaviors

The defaults contain several implementations of INeighborBehaviorJobWrapper, cov-
ering some common group interactions, like flocking and predator and prey in-
teractions. More details about the behaviors can be found in the attached docu-
mentation A.1.3.

Cohesion

The cohesion behavior (CohesionJobWrapper) makes the boids move towards the
centroid of their neighbors. It is useful for keeping a group of boids together.
The implementation is based on the cohesion behavior from Subsection 6.4.5.
The direction desire grows with distance to the centroid.

Alignment

The alignment behavior (AlignmentJobWrapper) makes the boids align their direc-
tion and speed with the average direction and speed of their neighbors. It is
useful for keeping a group of boids aligned. The implementation is based on the
alignment behavior from Subsection 6.4.5. The direction desire grows with how
misaligned the current boid is, relative to the average direction. The speed desire
grows with how far the current boid’s speed is from the average speed.
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Separation

The separation behavior (SeparationJobWrapper) makes the boids move away from
their neighbors. It is useful for preventing collisions within a group. The im-
plementation is based on the separation behavior from Subsection 6.4.5. The
direction desire grows with the largest observability value out of all neighbors.

Flee

The flee behavior (FleeJobWrapper) makes the boids move away from its neighbors
at high speed. It is useful for predator avoidance. The difference from separation
is that this behavior affects speed as well. The direction desire, speed and speed
desire all grow as the neighbor gets closer.

Seeking

The seeking behavior (SeekingJobWrapper) makes the boid move towards a neigh-
bor. It is useful, for example, for a predator that hunts other boids. Same as with
the flee behavior, the direction desire, speed and speed desire grow as distance to
the neighbor decreases.

Multi Homing

The multi homing behavior (MultiHomingJobWrapper) is very similar to the previ-
ously mentioned homing behavior from Subsection 9.5.1. The difference is that
this behavior can work with multiple different homes placed around the scene.
Out of all the homes where the boid’s distance to the center is smaller than the
home’s maximum radius, the boid will travel to the one with the smallest maxi-
mum radius. This way, there can be multiple smaller homes scattered around the
environment, with large homes making sure the boids do not leave the general
area. The direction desire to go towards the home grows as the boid’s distance
to it goes from minimum to maximum radius which the user sets.

Debug Neighbors

This behavior (DebugNeighborsJobWrapper) draws lines from the current boid to
each of its neighbors. It is useful for debugging the neighbor relationship given
by an implementation of INeighborQueryJobWrapper.

9.5.3 K Nearest Neighbor Search

The framework contains two implementations of INeighborQueryJobWrapper. From
the user’s perspective, they both do the same. They find k nearest neighbors
restricted by maximum radius and maximum field of view. The only difference is
in the used data structure. One implementation uses k-d trees (Subsection 5.3.3),
the other uses space partitioning (Subsection 5.3.2). Their comparison from per-
spective of performance is analyzed in Subsection 9.6.1.

147



KD Tree KNN

This implementation is based on k-d trees (Subsection 5.3.3). It can be scheduled
from KDTreeKNNJobWrapper. The implementation is a modified version of k nearest
neighbor search implementation found in a public github repository by Arthur
Brusse [76]. The main modifications done are the restrictions by maximum radius
and field of view.

Spacial Hash KNN

This implementation is based on spacial partitioning (Subsection 5.3.2). It can be
scheduled from SpacialHashKNNJobWrapper. It is implemented as a sparse grid, so
that the user does not have to specify and keep track of a bounding box. Initially,
we started experimenting with flocking algorithm which uses spatial partitioning
found on Unity’s official github [11]. Upon closer inspection, it becomes clear
they take a different approach to flocking. They do not calculate quantities such
as average velocity of a neighborhood per boid as we do, but per cell of the
grid. While this provides a performance improvement, it suffers from “blocky”
artefacts, making the grid visible as the boids move. For this reason, we did not
continue with this approach further. However, we used their implementation as
a base for our implementation of the spacial partitioning grid.

9.5.4 Ray Behaviors

The defaults contain a few implementations of IRaycastBehaviorJobWrapper. All
the provided Ray Behaviors are aimed at avoiding collisions. The behaviors are
shortly discussed below. More details can be found in the attached documenta-
tion A.1.3. As of writting this thesis, there are 3 Ray Behaviors provided by the
framework.

Environment Avoidance

The environment avoidance (EnvironmentAvoidanceJobWrapper) is the most general
behavior to avoid collisions. It makes the boids move in direction normal to the
surface detected by ray casts of the Ray Query. The implementation is based
on our obstalce avoidance behavior from Subsection 7.1.4. The direction desire
grows with the largest observability value out of all ray hits.

Avoid Verticals

The avoid verticals behavior (AvoidVerticalWallsJobWrapper) is very similar to the
environment avoidance behavior. The main difference is that the obstacle’s nor-
mal is projected on the plane defined by world’s up (the xz plane). This way, the
behavior does not bias the desired direction up or down.

Figure 9.10 shows a trajectory when using the normal environment avoidance
in yellow and avoid verticals behavior in red. The boid was driven by Go Forward
behavior (see Subsection 9.5.1), illustrated in magenta. Note that the yellow path
goes up, because the normal of the wall to avoid points up. This behavior was
included especially for cases like keeping fish inside a pond, because we often ran
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into an issue where the environment avoidance biased the fish towards the water’s
surface.

Note, this behavior ignores rays that hit surfaces with slope below a set angle,
because the behavior is not effective at avoiding those. For example, a normal of
flat plane in world’s zz plane would give a zero vector, if projected on the same
plane.

Figure 9.10: Collision avoidance trajectories. Movement direction — magenta ar-
row, environment avoidance behavior trajectory — yellow, avoid verticals behavior
trajectory — red.

Avoid Ground

As the name suggests, the avoid ground behavior (AvoidGroundJobWrapper) is aimed
at avoiding ground® below. It is useful for example for birds flying above an
uneven terrain. The Figure 9.11 shows a trajectory when using this behavior.
The behavior always returns direction straight up, drawn in green in the figure.
The direction desire grows with distance to the closest ray hit, drawn with blue
in Figure 9.12.

6What is considered ground depends on the LayerMask specified in the Ray Query.
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Figure 9.11: Avoid ground behavior
trajectory. Red — boid’s trajectory, or-
ange — ray hits, green — desired direc-
tion.

Figure 9.12: Using avoid ground be-
havior. Blue — closest ray hit, orange
— other ray hits, green — desired direc-
tion.

9.5.5 Ray Queries

The defaults contain two useful implementations of ICreateRaysJobWrapper, which
are used to create ray casts for implementations of IRaycastBehaviorJobWrapper.

2D Cone

The 2D cone (Sweep2DCreateRaysJobWrapper) is especially useful for 2D simulations.
It creates rays in a 2D cone as shown in Figure 9.13. The cone is centered around
the boid’s direction. The user can set the field of view of the cone, as well as the
maximum distance.

Figure 9.13: Ray casting in a 2D cone, missed rays in yellow, hit rays in red.
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3D Cone

This Ray Query (ConeCreateRaysJobWrapper) is analogous to the 2D cone, but in
3D. Mlustration of the rays was shown already in Figure 9.12 as orange arrows.
This Ray Query was already desribed in Subsection 7.1.3. The user can adjust
rotation relative to the boid’s direction. In the figure, the rays point straight down
in world space. The code is based on implementation by Sebastian Lague [77],
who used it in his youtube video about boids [9].

9.5.6 Merging

The defaults contain only one implementation of IMergeJobWrapper, which merges
results of the behaviors. It is scheduled from MergevelocitiesJobWrapper. It accepts
results of behaviors of type VelocityResults, introduced in Subsection 9.4.3. The
job then writes the final desired velocity into the boid’s DesiredVelocityComponent.
The implementation is based on the Merger which we proposed in Section 4.4.
The behaviors’ results are accumulated from the highest priority as long as the
sum of their desires is less than one. The results that are not filtered out are
merged using a weighted average, where direction and speed are summed up
separately, weighted by their desires.

9.5.7 Movement

The movement is handled by a separate system, not a part of the Base System.
This gives the flexibility to use the same movement system for all entities using
the DesiredVelocityComponent, which Merger writes to. Three implementations
of a movement system are provided. One for 3D, one 2D, and one for “2.5D”
which is movement in 3D, but on a surface. All implementations are based on
our proposed Mover from Section 3.5. The main idea is that first, a desired
acceleration is calculated based on the desired velocity, the desired acceleration is
then split into parallel and lateral components that can be scaled independently,
and added to the current velocity.

All three movement systems read the DesiredVelocityComponent, and write their
results into the velocityComponent and the Rotation of the LocalTransform compo-
nent. The movement systems only rotate the boids and set their new velocity.
The change of position based on the velocity is done later elsewhere, to enable
for example the addition of a collision resolution step (see Subsection 9.5.8).

2D Movement

The implementation 2D movement is in essence directly taken from the Sec-
tion 3.5. The main implementation detail is that both the current and desired
velocities are projected on the xz plane, to ensure the movement stays in 2D. The
main properties to specify are the maximum speed, and maximum accelerations
in either directions (parallel/lateral). The rotation of the boid is blended from
its current rotation, to the rotation given by its current velocity, using spherical
linear interpolation as proposed in Subsection 3.6.2.
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3D Movement

The implementation of 3D movement is directly taken from the Section 3.5. An
interesting detail is that for rotation, we took an idea from Reynolds’ paper [7].
In the paper, he described that his boids not only align their direction with the
their velocity, but their up direction is aligned to simulate the effects of centrifugal
force, making the realistically looking banking turn.

Figure 9.14 illustrates this idea. The red arrow shows the gravitational force.
The green arrow shows the centrifugal force, their negated sum gives the new up
direction which the boid should align with, shown in yellow. Figure 9.15 shows a
path taken by a boid, the yellow arrows show how its up direction progressed.

Figure 9.14: The boid’s centrifugal Figure 9.15: Sequence of a boid’s
force (green), gravitational force  up directions (yellow) after moving
(red) and the direction to align its through trajectory in white.

up with (yellow).

2.5D Movement

The 2.5D movement system solves walking on surface of a 3D object, usually a
terrain. It is handled by two states, if there is no ground below, the boid falls
down. On the ground, the algorithm is more complex.

First, the desired velocity is projected on the surface below and scaled to its
original length. The user can set two important parameters: a minimum and
a maximum slope angle. When walking up, the desired velocity’s magnitude is
scaled by value from zero to one as the angle of surface below goes from maxi-
mum to minimum angle. This makes the boid gradually loose speed as the slope
increases. When walking down, the desired velocity is scaled by value from one
to two, as the slope goes from minimum to maximum angle. This makes the boid
gradually gain speed as the slope increases when walking down. The system then
finds the desired acceleration as usual, and adds it to the current velocity.

Afterwards, several sphere casts are used to detect and handle cases such as
walking over small obstacles like stairs, snapping to the surface if slightly above
ground or switching to the falling state if the surface is too far. While the system
resolves potential collision to some extent, by projecting the desired velocity onto
the surface, it may still fail in some scenarios. For this reason, it should be used

152



together with collision resolution system, for example CollideAndSlide described
in Subsection 9.5.8.

So far, only the linear movement was discussed, but the system handles ro-
tations in quite an interesting way. The boid will align its up direction with the
normal of the surface and its forward direction with its current direction of move-
ment. This is illustrated in Figure 9.16, where the boid has a current forward
direction (green) and a current up direction (orange). The boid will smoothly
rotate to align with its target forward direction (blue) and target up direction
(red).

For the rotation, we wanted to have control over how fast the boid aligns its
up and forward directions align separately. The usual spherical linear interpo-
lation “slerp” does not support this. We found that a solution to this problem
was described by Ming-Lun "Allen" Chou in his blog post [78] about swing-twist
interpolation - “sterp”. We used his implementation of this algorithm after fixing
minor issues and edge cases pointed out by the readers in the comments. The user
can set two rotation speeds, one for aligning with the surface, one for aligning
with the velocity.

Figure 9.16: Boid before aligning to the surface. Current forward (green), current
up (orange), target forward (blue) and target up (red)

9.5.8 C(Collision Resolution

The collision resolution is handled by CollideAndSlide system, which makes sure
the boids do not clip through colliders in the scene. The implementation is
based on the collide and slide algorithm discussed in Subsection 7.2.2. The
CollideAndSlide system is the last step after movement systems, and it can be
used regardless of the selected movement system. It considers the boid’s current
position, velocity and radius to update the boid’s position. The user can use the
CollideAndSlideComponent to set the LayerMask of meshes to avoid.
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9.6 Performance Testing

One of the goals of this framework was to provide a performant solution for
flocking. This section will briefly analyze the performance of simulations created
using the framework. The main bottleneck are the Neighbor Queries, which is why
the main focus will be on them, in Subsection 9.6.1. Afterwards, Subsection 9.6.2
will consider performance of an entire flocking simulation. The Unity project
used for testing the performance can be found in Attachement A.3.

9.6.1 Neighbor Queries

The defaults contain two implementations of k nearest neighbor search. One using
k-d trees, one using spacial partitioning grid. In Chapter 5, we were concerned
with theoretical worst case performance of neighbor search per one boid. Based on
the theory, we expected that k—d trees would be more suitable for smaller flocks,
and spacial partitioning would eventually overtake as the total number of boids
increases. We also expected k—d trees to scale better as the amount of neighbors
within a boid’s radius increases. For these reasons, we concluded that k—d trees
would likely be better for our use case, since we are interested in hundreds to
lower thousands of boids, and also we do not want radius of vision or how dense
the flock is at the moment to affect the performance. In this subsection, we will
see if our assumptions hold in the actual implementations.

Methodology

In Chapter 5, it became apparent that there is a few important factors which
have performance implications. The variables which we will be interested in are:

o n — Total number of boids.
e Lk — Maximum number of neighbors.

» p — Density of the flock. (explained below)

As discussed in Chapter 5, the performance will unsurprisingly depend on n
and k. However, it will also depend on how many potential neighbors m there are
within a boid’s radius of vision r. To account for this, we keep constant radius
of vision r = 5. This way, m depends only on how dense a flock is. To control
a flock’s density, expressed in number of boids per meter cubed, we introduce a
variable p. Then, to try to account for keeping constant p, while changing the
number of boids n, we restrict boids’ positions to a cube, where the cube’s side
length [ is chosen such that p = n/I3 is a constant. If a boid travels beyond the
cube’s extents, it gets teleported to the opposite side.

To illustrate this idea, see Figures 9.17, 9.18. They show flocks of size n = 100
and n = 5000 with the same constant density p = 0.01. For reference, the length
of each boid is around 0.2 meters. For a much denser flock, see Figures 9.19, 9.20,
which show flocks of size n = 100 and n = 5000 with the same constant density
p=2.
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Figure 9.17: Group of boids for n = Figure 9.18: Group of boids for n =
100, p = 0.01. 5000, p = 0.01.

Figure 9.19: Group of boids for n = Figure 9.20: Group of boids for n =
100, p = 2. 5000, p = 2.

When measuring the performance, we spawn a number of boids n randomly
around the cube. Then we wait for a few seconds for the simulation to warm up
at an increased simulation speed. Afterwards a few seconds is spent collecting
the durations it took to complete a Neighbor Query in each frame. We use this to
find the average time it took for a Neighbor Query to complete t,,4. A Neighbor
Query finds k nearest neighbors for all n boids, but it is more interesting to
consider how long it takes per one boid. Therefore, we measure ¢t = t4,,/n, the
average time it took to query k nearest neighbors per one boid. The time here is
measured in microseconds. The tests were ran on a desktop PC with i9-14900K
processor and 64GB of RAM.

Variable Number of Boids

The first performance test was to see how t scales with increasing n, for constant
k =5 and p = 0.01. First see Figures 9.21, 9.22. They show how ¢ progresses for
n € [50,1000]. In both cases, ¢ starts at around 1.6 microseconds and appears
to stabilize to roughly a constant around n = 500. For k—d tree this constant
is approximately ¢ = 0.3 microseconds, for spacial partitioning the constant is
approximately ¢ = 0.2 microseconds. In this case, spacial partitioning is the
better choice even for small n, which is not what we expected.

We assume that the reason why the average time per boid is larger for small n
is because in those cases, the cube which holds the boids is so small that essentially
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all n boids are within the radius of vision. For larger n with a larger cube, only
a fraction of n is within the radius of vision. Possibly, constant overhead of
scheduling the jobs could also play a role.

17
16
15
14
13
12
1.1
10
0.9
08
0.7
06
05
04
03
0.2
0.1
0.0

average time per boid (t)

1.6
1.5
14
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
04
0.3
0.2
0.1
0.0

average time per boid (t)

°
®
LN
R
® 0,09
07000000000 ,0000,0000,%°
50 150 250 350 450 550 650 750 850 950 1050
count (n)
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Figure 9.22: Spacial partitioning for n € [50,1000], k =5, p = 0.01.

Based on Figures 9.21, 9.22, it appears that ¢ stabilizes to a constant. We
wanted to see if this is true for even larger n. The same set up was tested for
n € [500,90000]. The results are shown in Figures 9.23, 9.24. For k-d trees, t
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starts to slowly increase around n = 10000. This curve appears to be logarithmic,
which is what we expected based on the theory.

For spacial partitioning, at first, ¢ drops further from 0.2 microseconds to
0.1 microseconds where it stays constant until around n = 70000. However,
afterwards ¢ starts to increase at what appears to be linear or even quadratic
rate. Based on the theory, we expected t to drop to a constant as n increases.
We did not expected it to increase afterwards. We are not sure what the cause is,
but it suggests that perhaps for extremly large flocks, k—d trees might be a better
choice, which is opposite to our expectations. Since such large groups were not
the target use case of the framework, we did not investigate this further.
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Figure 9.23: K-d tree for n € [500,90000], £ =5, p = 0.01.
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Figure 9.24: Spacial partitioning for n € [500,90000], k = 5, p = 0.01.
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Variable Density

Based on the previous experiment, it seems that the spacial partitioning imple-
mentation is a better choice. However, that experiment only tested a scenario
for an arbitrarily chosen density p = 0.01. Here, we tested how the performance
scales with an increasing density p € [0.01,2] for constant n = 1000 and k = 5.
The results are shown in Figure 9.25, 9.26. In both cases, ¢ appears to grow
logarithmically with p, and ¢ roughly doubles as p goes from 0.01 to 2. In this
experiment, spacial partitioning also performed better overall.
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Figure 9.26: Spacial partitioning for n = 1000, k = 5, p € [0.01, 2]
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Variable Number of Neighbors

Lastly, we wanted to see how ¢ scales as k increases. This was tested for n = 1000,
p = 0.2 and k € [0,1000]. Larger than usual density of 0.2 was chosen because
we noticed that as k grows, the flocks became more cohesive, and we did not
want this effect to influence the experiment. At p = 0.2, the space becomes
quite uniformly filled so this should not have a strong impact. In both cases,
t appears to scale linearly as k grows until around & = 250 and stays roughly
constant afterwards. We assume that the point after which ¢ stays constant is
for k£ > m, where m is the number of neighbors within a boid’s radius of vision.
When the same scenario was tested with a larger radius of vision, ¢ continued to
grow linearly longer, which supports this assumption further.
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Figure 9.27: K—d tree for n = 1000, & € [0, 1000], p = 0.2
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Conclusion

This subsection conducted a test of two Neighbor Query implementations, one
based on k—d trees, the other based on spacial partitioning. In all circumstances
we tested, the spacial partitioning implementation performed better, and so it
seems to be the better choice for our use case of hundreds to lower thousands
of boids. However, it is still possible that in some different circumstances or on
different hardware the situation would be different.

9.6.2 Full Simulation

One of the goals of this thesis was to create a framework that enables a basic
simulation of a flock of 1000 boids under 1 millisecond. The goal was to achieve
this on an older gaming laptop with i7-8750H CPU and 32 GB of RAM. We
tested this with the same set up as in Subsection 9.6.1. The test for n = 1000
was run with p = 0.01, £ = 5, » = 5. The boids used the three usual behaviors
for flocking — cohesion, alignment and separation. On average, the simulation
needed around 1.5 millisecond in each frame on the laptop. Therefore, our goal
for performance was not entirely achieved, but we are not too far from it. We
have two ideas how the performance could be improved.

The implementation of behaviors used in the framework contains many differ-
ent parameters to experiment with. For example, the exponent for observability
and activation functions can be set by the user. Therefore, the implementation
has to use math.pow. However, we often left the exponent at default value of 2.
In that case, x * x would run faster. Also, some behaviors have other additional
parameters, such as setting a minimum desire of the behavior. For this reason,
math.max had to be used. This introduces branching, which may also negatively
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impact performance. The option to specify a minimum desire could also be re-
moved, at the expense of some additional control over the behaviors.

The aformentioned optimizations could provide some speed up, but it would
likely not be too significant. However, we believe that running the simulation
on a GPU could improve the performance by orders of magnitude. The biggest
challenge would be implementing the £ nearest neighbors search on GPU. After-
wards, the rest of the model is “embarrassingly parallelizable”, which makes it
an ideal task for a GPU.
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10. Editor Window
Documentation

In the previous Chapter 9, the design and implementation of the framework was
discussed. The main idea is that an implementation of BaseSteeringSystem loads
in a scriptable object SteeringSystemAsset (Subsection 9.3.1). The asset contains
information about which Job Wrappers to run and which entities to target using
tags. This is achieved through serialization of the Job Wrappers and tags. The
Job Wrappers are then run by the implementation of BaseSteeringSystem.

This chapter will discuss an editor tool created to manage the assets of type
SteeringSystemAsset. The editor should provide a user friendly way to build the
asset in editor, without the need to write code, or know implementation details
of the framework. For this reason, it has to be robust, minimizing the possib-
lity for user’s mistakes. Setting up the SteeringSystemAsset as a scriptable object
through editor has the additional benefit compared to defining it in code: it
avoids triggering recompilation with every change, increasing the speed of exper-
imentation. The editor’s source files are located in com.o-vaic.steering-ai/Editor
after importing the framework (see Attachment A.1.1).

10.1 User Perspective

This section focuses on the editor window from the point of view of the user, and
how it relates to the fields of the SteeringSystemAsset class, which were shown in
Listing 9.2 in Subsection 9.3.1. Usage of the editor window for a regular user is
explained in the attached documentation A.1.3. Figure 10.1 shows a screenshot
of the editor window. The list below gives an overview of its main elements. The
following Subsection 10.1.1 goes into more detail.

1. The user selects the tag of entities to use here.
2. The user can drag and drop the entity’s prefab here.

3. The four tabs enable switching between editing the Neighbor Behaviors,
Ray Behaviors, Simple Behaviors, or Merging. In the figure, the user is
editing the Neighbor Behaviors.

4. List of components the entity’s prefab should have.
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FlockingAsset : (BoidPrefab)

Prefab

SampleEntityTagComponent =

Create Group

X

KNMNJobWrapper =

Figure 10.1: Editor for SteeringSystemAsset, with Neighbor Behaviors tab selected.

10.1.1 Editing Steering System Asset

See Figure 10.2, focusing on the area where the user can edit Neighbor Behaviors.
The list below describes all the elements of one group of Neighbor Behaviors.

1.

2.

The “Create Group” button adds a new group of Neighbor Behaviors.

A dropdown containing all implementations of INeighborQueryJobWrapper,
with SpacialHashKNNJobWrapper currently selected for this group.

Settings for the selected implementation of INeighborQueryJobWrapper, such
as maximum distance, can be set here.

A dropdown of all implementations of INeighborBehaviorJobWrapper. In the
figure, DebugNeighborsJobWrapper is selected. Clicking the “+” button adds
the selected behavior to the list below.

A list containing instances of INeighborBehaviorJobWrapper added for this
group. The list shows the three flocking behaviors. As shown with the
separation behavior, a Job Wrapper can have extra serialized properties
associated with it.

Two lists of components used by an EntityQuery to match potential neigh-
bors. The query matches entities with any component from list (a) and all
components from list (b).
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(a) This list allows adding tags of potential neighbors, using the dropdown
above it.

(b) This list shows all components that must be attached to the potential
neighbor, as inferred from the Job Wrappers used. How this is inferred
is discussed in Section 10.2.

FlockingAsset : (BoidPrefab)

Prefab B BoidPrefab (Steering Entity Authoring) @

SampleEntityTagComponent ~

Rs 5 Si iors Combine results

Create Group

X

shKNNJobWrapper =

Figure 10.2: Editor for SteeringSystemAsset, with Neighbor Behaviors tab selected.

Above, only the “Neighbor behaviors” tab was described. The “Ray behav-
iors” tab is set up in a very similar way. The user can also add groups, and then
instead of selecting a INeighborQueryJobWrapper for it, the user selects an implemen-
tation of IRayQueryJobWrapper. Afterwards the user adds behaviors which are im-
plementations of IRayBehaviorJobWrapper, instead of INeighborBehaviorJobWrapper.
Under the “Simple behaviors” tab, implementations of ISimpleJobWrapper can be
added into a single list. In the “Combine results” tab, the user can select an
implementation of IMergeJobRunner to use.

As previously mentioned, the list marked with number 4 in Figure 10.1 con-
tains all components which should be attached to the entity’s prefab. This is
inferred from all the Job Wrappers used by the asset (see Section 10.2). The
plus and minus buttons next to the components allow adding or removing the
components from the entity’s prefab.

Merging and Workflow

By selecting the implementation of IMergeJobRunner under the “Combine results”
tab, the user also implicitly selects the “workflow”, that is what types of results
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the behaviors return. That could be multiple different types, if the implemen-
tation of IMergeJobRunner allows it, but normally, if using the implementation of
from defaults, it would be the velocityResults. After the implementation is se-
lected, the editor only displays behaviors which return this type of results in all
dropdowns where behaviors can be selected (under tabs “Neighbor behaviors”,
“Ray behaviors”, “Simple behaviors”). This is a sort of type checking, to pre-
vent the user from selecting behaviors incompatible with the currently selected
implementation of IMergeJobRunner.

10.2 Reflection

The previous section suggests that the editor needs to query types in the project.
For example, to find all implementations of INeighborBehaviorJobWrapper compat-
ible with the currently selected implementation of IMergeJobRunner. This can be
achieved through meta programming. In C#, meta programming can be done
through reflection [79]. An important concept here is attributes [80], which
can be used to store additional information about a type. For example, an
attribute on a INeighborBehaviorJobWrapper can specify what type of results it
uses. The editor can then use reflection to find all types of implementations
of INeighborBehaviorJobWrapper compatible with the selected implementation of
IMergeJobRunner. This section focuses on the attributes used by the framework.

10.2.1 Steering Entity Tag Attribute

In Unity’s ECS, a tag component is a component with no fields. There can
be many tag components for different purposes. Marking a tag component with
SteeringEntityTagAttribute makes it show up in all the editor’s dropdowns where a
user can select a tag. For example the dropdown in top left corner of Figure 10.1.
This will filter out other tag components in the project, which are not supposed
to be used with this framework.

10.2.2 Component Authoring Attribute

An ECS component is a struct implementing the IComponentData interface. It is
possible to attach the components to entities in code, but Unity also offers a way
to attach them to prefabs in the editor. This can be achieved through classical
MonoBehavior on the prefab, which are responsible for adding the ECS components
to the entity. The process is called baking, refer to Unity’s documentation [81]
for more details. However, it is possible that there are multiple MonoBehavior
components which add the same ECS component to an entity. It is also possible
that one MonoBehavior component adds multiple ECS components to an entity. In
other words, there is no 1 to 1 mapping between MonoBehavior components and
ECS components.

See again the list of required components on the right in Figure 10.1, the user
can add a missing ECS components to the prefab, or remove an unncesessary
one. The ComponentAuthoringAttribute is used to mark a MonoBehavior component,
which adds the specific ECS component to an entity. The attribute’s constructor
takes in the type of the ECS component which the MonoBehavior adds. This allows
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the editor to find the right MonoBehavior component to add or remove from the
prefab.

10.2.3 Job Wrapper Attribute

The JobWrapperAttribute is used to mark the Job Wrappers which should be dis-
played in the editor’s dropdowns. The attribute also contains types of components
the entity using this Job Wrapper should have. These are then collected by the
editor and displayed in the list on the right in Figure 10.1. In the case of Neighbor
Behaviors, it also contains types of components the neighbors must have. These
would be displayed in the list 6(b) in Figure 10.2. In the figure, all neighbors
must have a SteeringEntityTagComponent.

10.2.4 Out Data Attribute

The last attribute that the editor uses is the outDataAttribute. All behavior Job
Wrappers should have this attribute. It specifies what type of results the behaviors
return, normally it is VelocityResults. The implementation of IMergeJobRunner
should also have this attribute, but there, it declares what types of results it
can merge. After selecting the implementation of IMergeJobRunner, the editor will
only display behaviors which return the compatible results. For more complex
workflows, the outDataAttribute on implementation of IMergeJobRunner can declare
multiple types, if it can handle multiple different types of results.

10.3 Serialization

So far, the SteeringSystemAsset was described, together with how it can be editted
through the editor window. The asset still needs to have some way of being saved
and loaded from the disk. The idea is that the user creates the asset, edits it
in the editor window and saves it. We tried two approaches, the first one using
JSON serialization with C# code generation, and the second one using Unity’s
serialization.

10.3.1 JSON Serialization with Source Generation

Initially, we experimented with serializing all the data to a JSON file, and then
using this JSON file to generate code with C# source generators [82]. The gen-
erated code was a class implementing the BaseSteeringSystem, which contained a
generated instance of a SteeringSystemAsset. The generated instance would look
for example like Listing 9.2 from Subsection 9.3.1. This approach was abandoned
for multiple reasons. First, it was not clear how serialize fields of the Job Wrapper
classes. However, the main reason was that each time the asset was saved, the
newly generated code had to be recompiled. This would slow down the iteration
process, when experimenting with different configurations.
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10.3.2 Unity Serialization

The second approach to serialize an instance of SteeringSystemAsset was to use
serialization which is already built into Unity. The idea is that SteeringSystemAsset
inherits from ScriptableObject [83]. Classes inheriting from ScriptableObject can
be saved as an asset in the project, and loaded at runtime. This has a number
of benefits. First, Unity provides ways to save, edit and load ScriptableObject
assets, making the editor window easier to implement. Second, users of Unity
tend to be familiar with ScriptableObject assets, rather than JSON files from the
first attempt. Most importantly, because source generation is not used, there is
no need for recompilation as was the case with the other approach.

JobWrapper Serialization

Normally, when an asset is selected in Unity, the default inspector window dis-
plays serialized fields of the asset. Aslong as the fields are marked as Serializable,
Unity can handle them by default. However, in SteeringSystemAsset, the fields
holding the instances of Job Wrappers are lists of interface types. Interfaces are
not Serializable, and so Unity cannot handle them the same way. Unity provides
an attribute SerializeReference [84] for these fields, which partially solves the
problem.

This attribute allows Unity to handle interface fields — the Serializable fields
of the concrete type will be displayed. However, Unity lacks a way to select a
concrete type to use, an instance has to be assigned in code. This is one of the
reasons why the editor window was created. In our editor, dropdowns are used to
select the concrete type to instantiate. The concrete types are looked up through
reflection, and they are instantiated with Activator.CreateInstance [85]. Then, the
instances are assigned to the SerializeReference fields on the SteeringSystemAsset.

10.4 Implementation

This section discusses the implementation of the editor window. Since 2022,
Unity provides a new way for creating Ul, including editor windows, called UI
Toolkit [86]. It uses an XML based language called UXML to define the Ul
elements. In C#, it is possible to interact with the UI elements, and bind an
object’s fields to them. There is also a visual editor for creating Ul without
writing the UXML code directly. We decided to use this new system for the
editor window. The main motivation was that the visual editor makes it easier
to layout the UI elements.

10.4.1 UI Elements

There are some important Ul elements that were used when creating the layout
for the editor window. They will now be briefly described.

PropertyField

Perhaps the most important UI element is the PropertyField [87]. When a field
of an object is bound to a PropertyField, the default Unity serialization is used
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to display and edit the field. This is for example how all the instances of Job
Wrappers are handeled in our editor window.

Dropdown

One simple, but important, element is the Dropdown [88]. Dropdowns are, for
example, used to select a concrete type of a JobWrappers to use. The dropdowns
are populated with a an array of elements, which are displayed and can be selected
by the user.

ListView

The Listview [89] is used to display lists of elements. In our editor window, they
are used for all the lists within the editor window, like the list of all Neighbor
Behaviors within a group.

10.4.2 Editor Window

The editor window is implemented in class SteeringSystemEditor which inherits
from EditorwWindow. After double clicking on an SteeringSystemAsset, the window
is opened and the asset is loaded with AssetDatabase.LoadAssetAtPath. Next, all
properties are bound to their respective Ul elements. For example, a ListView for
the Simple Behaviors is initialized, and bound to it is a list of ISimpleJobWrapper
instances from the SteeringSystemAsset. There are, however, some Ul elements
requiring extra work. These exceptions are discussed in the next subsections.

Dropdowns

For simplicity, consider a dropdown for selecting the type of 1SimpleJobWrapper to
add. Dropdowns for other Job Wrappers work similarly. The dropdown is popu-
lated with all the types which are compatible with the selected IMergeJobRunner,
as described in Section 10.2 when discussing reflection. Furthermore, all the
implementations of ISimpleJobWrapper that are already in the list of Simple Be-
haviors are filtered out. Whenever a new behavior is added into the ListView,
the dropdown has to be refreshed to filter out the added behavior. Lastly, all the
dropdowns for selecting the types of behaviors need to be refreshed whenever an
instance of IMergeJobRunner has changed.

Components List

The SteeringSystemAsset object does not contain information about which com-
ponents the entities should have directly. This information is inferred from
the attributes of selected Job Wrappers. To populate the list, the editor finds
union of all the required components for all the Job Wrappers used, based on
their JobWrapperAttribute. Then, for each required ECS component, it finds the
MonoBehavior component which adds this ECS component to an entity. These
MonoBehavior components are looked up using the ComponentAuthoringAttribute.
The editor then looks at the selected prefab, and if there is no MonoBehavior com-
ponent for a required ECS component, a plus button is displayed next to the
component. On click, the editor adds this MonoBehavior to the prefab. Once this
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is done, the minus button is displayed to remove the given MonoBehavior from the
prefab. The list is updated whenever a new JobWrapper is added or removed, or
when the selected prefab changes. To add or remove a component from a prefab,
the editor uses Unity’s ObjectFactory.AddComponent and Object.DestroyImmediate
methods.
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11. Sample Game Scene

One the goals introduced in the first Chapter 1 was to set up a game scene which
would demontrate the capabilities of the framework. This chapter outlines what
is in the game scene, and how the framework helped with creation of the scene.

The sample game scene’s source files are located in Game/GameProject, see At-
tachment A.2.1. Builds of the project can be found under Game/Builds, see Attach-
ment A.2.2. The Builds folder contains a build of the attached GameProject folder,
and a second build using better graphical assets, which could not be included in
the attachments due to their licensing restrictions. The figures in this chapter
use screenshots from the version without better assets.

11.1 Game Scene

The game scene is a simulation of a small ecosystem. There is a 3D environment
with several types of animals moving around. All the animals in the scene react
to the environment, each other, and the player.

11.1.1 Environment

The game environment is a simple 3D world with a terrain and a pond (see
Figure 11.1). There are patches of grass placed around the terrain, and obstacles
in form of stones and trees. Steep mountains surround the world, creating a
natural border.

Figure 11.1: Sample game scene.

11.1.2 Player

The player, Figure 11.2, is a 3D character who can run around the world. He
can do two actions - throw an apple and fire a gun. Firing the gun at an animal
kills it, which makes the animal fall to the ground. Throwing the apple will make
some animals chase it.
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Figure 11.2: The player’s character.

11.1.3 Birds

Birds are the only flying animals in the scene. They are the most numerous
animals, with two groups of 600 birds each. Figure 11.3 shows one of the groups.
The birds exhibit flocking behavior, they are aware of where their “home” area
is, and do not stray too far from it. If a gun shot hits anything near the birds,

they scatter.

Figure 11.3: Flock of birds.

11.1.4 Fish

Fish, pictured in Figure 11.4, are the second most numerous at 200 individuals
in the pond. They exhibit the same flocking and homing behavior as the birds.
Morever, they are afraid of the player, loud sounds nearby, and most importantly
the sharks, and will swim away from each of these stimuli. They, however, see
a dead shark as a potential food source, together with apples, birds and sheep.

171



When a food source is near, the fish swim towards it and bite it. The tendency to
go after food is stronger the hungrier the fish is. Once they have taken a bite of
food, they will take a while to chew it. Figure 11.4 shows a fish swimming with
pieces of sheep in their mouth. While chewing, they do not search more food,
and try to avoid other fish. This is because they consider even the food inside
their school mates’ mouths as potential food, and may try to steal it.

Figure 11.4: Fish with pieces of sheep in their mouth.

11.1.5 Sharks

Sharks are the predators of the pond. There are three of them in the pond. They
use the same homes as fish, keep their distance from the other shark (especially
when eating), and swim away from sounds and the player. When hungry, they
hunt for sheep swimming on the surface, try to catch fish, or go for shot down
birds. Their largest maximum speed in the scene is balanced out by their inability
to turn as fast as the fish, and their narrow field of view. This gives the fish a
chance to escape.

Figure 11.5: Shark with a fish in its mouth.
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11.1.6 Sheep

There is 160 sheep walking around the terrain. They have flocking behavior, but
no homing to a specific area. They are afraid of the player, the wolves, sounds,
sharks and the fish. They eat apples and grass, and after finding a grass patch
they slow down to eat it. Same as other animals, they avoid other sheep when
eating. The sheep can also swim on the surface of the pond, but the movement
is slower than on land.

Figure 11.6: Flock of sheep.

11.1.7 Wolves

There are 8 wolves that serve as the predators of the sheep. One wolf is shown
in Figure 11.7. The wolves flock, but their tendecy to it is not very strong.
Their main food source are the sheep which they hunt. Dead birds are the
second possible food source. As other animals, they try to keep their distance
while eating. Wolves try to avoid the player, but not as strongly other animals.
Unlike other animals, wolves are not afraid of sounds. As for the movement,
they cannot swim, and will not enter the pond. Similarly to sharks, they are the
fastest animals on the terrain, which is balanced by their low maneuverability,
and lower field of view for hunting.
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Figure 11.7: Wolf scaring a flock of sheep.

11.2 Framework Changes and Additions

Chapter 9.5 described behaviors and movement systems provided by the frame-
work. While the framework aims to provide a solution that does not need any
additional programming, there was still a need to modify and add some behav-
iors and movement systems for this specific game scene. This section describes
changes and additions specific to this game scene, which were not included in the
framework’s defaults.

11.2.1 Abandoned Context Steering Test

While creating the example game, we also experimented with a relatively novel
approach to steering behaviors called Context Steering [26], introduced by A.
Fray in the book titled “Game AI Pro 2”. This was done especially to try if
our framework can handle other approaches to steering behaviors than the ones
the framework was designed for. While this approach is interesting, we found
no significant improvements which would justify the added complexity. For this
reason, we decided to not use it for the game scene, and to not include it in the
framework by default. Therefore we will not go any further into description of
this approach.

11.2.2 Movement System with Energy

The movement system for 3D, Move3DSystem, was editted to emulate getting tired
while running at high speed. This mechanic was added especially to make the
predator-prey interaction between the shark and fish more dynamic and interest-
ing. It creates a sort of cooldown period when the shark has to regain energy
before being able to hunt.

To do implement this, each entity has an energy value associated with them.
Energy is depleted more, the faster an entity moves, and is recovered more, the
slower it moves. An entity’s maximum speed and acceleration decrease as the
energy decreases.
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11.2.3 Chase Food Behavior

An additional Neighbor Behavior for chasing food (ChaseFoodJobWrapper) was cre-
ated, so that the animals can prioritize between different food sources. Food are
entities with FoodComponent on them. The component contains the food’s “nu-
triousness”. The behavior accumulates a weighted average of directions towards
food sources. A food’s weight grows with the food’s nutriousness and proxim-
ity. The final desires and speed grow with proximity to the food source with the
highest weight.

An important aspect is that the behavior takes into account a MouthComponent,
which entities using the behavior must have. The component contains, among
other information, a position of the entity’s mouth. The direction and distance to
the food is calculated from the mouth’s position. Calculating it from the center
of the entity was especially problematic for sharks, whose mouth is far from the
center. Figure 11.8 illustrates the difference. In the figure, vy is the desired
velocity calculated from the center, vgs is calculated from the mouth. Note that
moving in direction of vg; would not result in catching the fish.

mouth

shark

Figure 11.8: Using mouth position to get better desired direction towards food.
Boid’s position to fish — vz;. Boid’s mouth position to fish — vg.

11.2.4 Avoid When Eating Behavior

This Neighbor Behavior (AvoidwhenEatingJobWrapper) was added to make the an-
imals avoid each other when eating. We added this behavior to, for example,
make fish that already took a bite swim away, letting other fish reach the food
as well. The behavior accumulates a weighted sum of direction away from neigh-
bors, weight of a neighbor is larger the closer it is. If the current entity has a
MouthComponent with food, the summed direction is returned, and the entity speeds
up. The desires for this behavior grow with sum of the weights.

11.2.5 Avoid Sound Behavior

This Neighbor Behavior (AvoidSoundJobWrapper) makes the animals avoid sounds.
In the game scene, the only sound source is the player’s gun. An entity repre-
senting sound spawns at player’s position and the position of the bullet’s impact.
The sound is represented by a sphere that expands until it disappears after some
time. The entities try to get away from it more, the closer and the louder it is.
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The behavior uses a weighted average of all the sounds detected. Furthemore, it
makes the entities speed up.

11.2.6 Get Pushed Behavior

The Get Pushed behavior (GetPushedJobWrapper) is a Neighbor Behavior, which
tries to simulate animals getting pushed from behind by their neighbors. It was
created specifically for sheep, to avoid a problem where the player scared sheep
from behind, but they could not move forward because of the sheep in front of
them. Note, that this was not a problem for example with the fish, as they can
swim over one another. The user can set a “maximum push angle” « illustrated
as a cone in Figure 11.9, the cone is always behind the entity’s direction of
movement. The current entity speeds up away from entities within the cone, if
their speed is higher. The desired direction and speed are calculated based on
weighted averages. The neighbor’s weight grows with how much faster it is, how
much it is directly behind, and how close it is.

Figure 11.9: A boid (white) and its neighbors considered for Get Pushed behavior
(striped) within a cone with angle a.

11.2.7 Find Grass Behavior

The game contains patches of grass, this Ray Behavior (FindGrassJobWrapper) is
only used by the sheep which eat the grass. The Chase Food behavior is not ideal
for grass, because it targets the center of the object. That is not ideal, because
the patch of grass can be large, and we wanted to avoid sheep clumping in its
center.

The Find Grass Behavior handles two cases. One, it makes the sheep go
towards nearby grass patches detected by ray casts. Second, when a sheep is
above a grass patch and hungry, it makes the sheep slow down to eat it.

11.2.8 Avoid Player Behavior

A special Neighbor Behavior (AvoidPlayerJobWrapper) for avoiding the player was
created. This was done especially because we wanted better control over how
much, and at what distance the player is avoided, so other behaviors like fleeing
could not be reused. The entities speed up away from the player, the closer he
is. If the player is not moving, the animals will reduce the radius at which they
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start avoiding the player. This simulates the player being less threatening when
not moving.

11.3 Set Up of Animals

So far, the role of each animal type was discussed (Section 11.1), afterwards,
changes and additions to the framework were outlined (Section 11.2). This section
describes how the framework and the added behaviors were used to set up each
animal type in the scene. The main focus is on the parameters of the movement
systems, and the behaviors. Due to the large number of different parameters
each behavior has, only the most important ones are mentioned. For example,
see Table 11.2, showing Neighbor Behaviors for the fish. The table is structured
in the following way. The Tag column shows which entities the behavior targets,
D is the maximum distance to them, P is priority of the behavior, WD and WS
are weight multipliers for direction desire and speed desire respectively.

The way the behaviors are implemented, the maximum direction and speed
desires are always WD or WS respectively. Note, our method of merging Be-
haviors’ results, described in Section 4.4, assumes a maximum sum of desires.
In the framework, this is implicitly one. Therefore, the highest desire each be-
havior should return is one. For example, if a behavior with the highest priority
returned one for desire, no other behaviors would have any effect on the final
desired velocity. For these reasons, all WD and WS weights are in normalized
0, 1] range.

11.3.1 Fish

The fish are tagged with a FishTag tag. Description of their role in the game scene
can be found in Subsection 11.1.4. They consist of 14 different behaviors, which
makes them the most complex animals in the scene.

Fish Movement

The fish use Move3DSystem for movement. The values for the associated component
are shown in Table 11.1 below. The specific parameters for movement were chosen
to make interaction with the shark interesting. The fish’s maximum speed is lower
than the sharks’, but they still have a chance to outswim them, depending on
the energy levels. Their acceleration in the parallel diretion is smaller than the
sharks’, but their acceleration in the lateral direction is higher to give them chance
to outmaneuver the sharks.

To make the interaction even more interesting, the fish consume energy faster
than the sharks, but they also recover it much faster. The fast recovery is done to
make sure that the fish are essentially always ready to speed up. This emphasizes
the initial burst of speed after first detecting a predator. The fish’s fast energy
depletion gives the shark a better chance to catch it during long pursuits.

177



Maximum Speed 5.5
Maximum Parallel Acceleration | 3
Maximum Lateral Acceleration | 8

Table 11.1: Parameters for movement of fish.

Fish Neighbor Behaviors

Table 11.2, shows the set up of Neighbor Behaviors for the fish. There, are
the usual three behaviors for flocking, which all target the Fish tag. The specific
values were found through experimentation to achieve highly cohesive and aligned
flocks where fish do not collide with one another using the Separation behavior.
High cohesion is achieved through high maximum distance and weight, but when
there are neighbors near, the Alignment behavior with higher priority can take
over. If the neighbors are dangerously close, the separation behavior can take
over due to its high priority.

The Multi Homing behavior has the lowest priority and low weight. Its main
purpose is to slightly bias the fish towards center of the pond, which looks more
natural, and helps with keeping a few bigger cohesive groups. The home areas
are shown in Figure 11.10. Blue shows the maximum radius where the home
can be detected, green shows the minimum radius where fish have zero desire to
go towards the home. The Chase Food behavior has a high weight and medium
priority to emphasize chasing food, while leaving higher priorities for avoiding
danger. Note the behavior’s Dead Shark tag. After a shark dies, this tag is added
and its Shark tag is removed, to stop fish from avoiding the shark.

The behaviors Avoid Sound, Avoid Player, Flee and Avoid When FEating are
all aimed at avoiding danger. Avoiding the player and sounds comes secondary
to fleeing from the shark. The Flee behavior has a high weight to get a very
strong predator response whenever possible. It is however lower priority than
Separation to make sure some distance is kept between the fish. Lastly, Avoid
When FEating has the highest priority. This is only done to always bias the fish
towards avoiding other fish when eating. The weights, however, are low, to let
even lower priority behaviors like Flee overpower it if needed.
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| Behavior | tag |P|WD|WS| D]

Cohesion Fish 0| 08 | 0.3 | 20
Multi Homing FishHome | 0 | 0.2 0 20
Alignment Fish 1] 06 | 02 ] 5

Apple

Sheep
Chase Food . 21 0.8 |]0.65] 20

Bird

DeadShark

Avoid Player Player 2104 |02 10
Avoid Sound Sound 2 1065|065 10
Flee Shark 31 08 | 0.7 |65
Separation Fish 41 0.6 0 |15
Avoid When Eating Fish 5103 |03 | 3

Table 11.2: Fish’s Neighbor Behaviors and their main parameters.

Figure 11.10: Three homing areas inside the pond. Homes’ maximum radius in
blue, minimum radius in green.

Fish Ray Behaviors

The fish have two Ray Behaviors, shown in Table 11.3. Both are aimed at avoiding
the physical environment of the scene. Note that both behaviors have priorites
especially large, to make sure avoiding collisions with environment is prioritized
over everything else. The Avoid Vertical Walls is the main collision avoidance
behavior, its very high weight and priority makes sure that this behavior can
overpower all other behaviors. The main purpose is keeping the fish away from
edges of the pond. The Avoid Ground has a higher priority, to always bias fish
away from the ground, but low weight, to let the fish reach the ground if there is
food at the bottom. Both behaviors have a low maximum distance to make sure
only imminent collisions are avoided.
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| Behavior | Layer |[P|WD|WS|D|]
Environment

Avoid Ground Gl"OllI.ld 51 0.2 0 2
Terrain

FakeWalls

Avoid Vertical Walls | oround 6| 07 0 |2

Terrain

Table 11.3: Fish’s Ray Behaviors and their main parameters.

Fish Simple Behaviors

There are three Simple Behaviors for the fish, listed in Table 11.4. The Keep
Height behavior has the highest priority, and a small weight. It tries to make
sure the fish do not swim too close to the surface. However, having small weight
makes sure that the fish can still take a bite of sheep swimming on the surface.
The behaviors Align Up and Wandering have the lowest priority, together with
Homing and Cohesion. The Align Up behavior has a low weight, to not bias the
fish too much if there is more going on, but to still make the fish align to world’s
up when there is no target or danger. The lowest weight is on the Wandering, to
make sure it does not interfere with other behaviors. However, it is important to
let the fish naturally wander around when no other behavior is active. The small
weight for speed is especially important. It makes sure the fish always have some
target speed, but other behaviors can easily overpower it if necessary.

’ Behavior \ P \ WD \ WS ‘
Wandering | 0 | 0.03 | 0.01
Align Up 0 0.2 0

Keep Height | 6 | 0.35 0

Table 11.4: Fish’s Simple Behaviors and their main parameters.

11.3.2 Sharks

The Sharks are tagged with a Shark tag. Description of their role in the game
scene can be found in Subsection 11.1.5. The set up of sharks is very similar to
the fish. For this reason, the main focus will be on their differences.

Sharks Movement

The sharks use the Move3DSystem, same as the fish. The system’s parameters are
listed in Table 11.5. As mentioned when discussing the fish, the parameters were
mainly chosen relative to the fish, in order to create interesting predator-prey
interactions. With the fish, the main focus was on allowing situations where the
fish can escape. In general, however, the shark should be the apex predator,
and it should have the upper hand in most situations. To ensure this, the shark
has higher maximum speed, and it does not deplete energy as fast. However, it
recovers energy slower. This creates an interesting dynamic, where the shark has
long periods of calm swimming around the lake and scaring the fish in its way,
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followed by shorter periods of high speed hunts which often result in catching a
fish. The high parallel acceleration let’s it achieve its maximum speed quickly,
which is balanced out in fish’s favour by lower lateral acceleration, reducing the
shark’s maneuverability.

Maximum Speed 8
Maximum Parallel Acceleration
Maximum Lateral Acceleration | 5

\]

Table 11.5: Parameters for movement of sharks.

Sharks Neighbor Behaviors

The first noteworthy information in Table 11.6, is that the Multi Homing behavior
targets the same homes as the fish. This is intentional to force situations where
the fish gather in large groups around the homes, only to get dispersed by the
shark. Note that the priority is not the lowest as was the case for fish. That is
because for the shark, the home is a valuable place to be, because the fish are
there. The Chase Food behavior has a very high weight, to allow the shark to be
“locked in” on its prey, but relatively low priority to let collision avoidance take
the lead if necessary. The avoidance of sounds and the player has a relatively low
weight, to make the shark hard to scare. Separation tries to ensure no collisions
occur between the sharks, using a medium weight and high priority. High weight
and maximum distance for Avoid When FEating makes sure the shark swims far
away from other sharks with its food.

’ Behavior \ tag \ P \ WD \ WS \ D ‘
Multi Homing FishHome | 1 | 0.3 0 |20
Avoid Player Player 21025102510
Avoid Sound Sound 2103503515

Fish
Apple
Chase Food 2109 |09 |15
Sheep
Bird
Separation Shark 4|1 0.5 0 3
Avoid When Eating Shark 51085 | 0.85 | 12

Table 11.6: Sharks’ Neighbor Behaviors and their main parameters.

Sharks Ray Behaviors

Sharks’ Ray Behaviors, shown in Table 11.7, all try to solve collision avoidance.
The Environment Avoidance is the strongest behavior. It tries to make sure
to stop the shark from colliding with any surface. The Awvoid Vertical Walls is
aimed at avoiding the edges of the pond. It has relatively low priority, because it
is not the main collision avoidance behavior. Having higher maximum distance
than Environment Avoidance makes sure that in most cases Avoid Vertical Walls
behavior is used to avoid the edges. The priority for Avoid Ground is quite low,
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to allow the sharks to hunt fish even near the bottom, at the cost of occasionally
colliding with it.

| Behavior | Layer |[P|WD|WS|D|]

Avoid Ground Ground 1 0.5 0 3

Terrain

Environment

Avoid Vertical Walls Ground 3| 0.7 0 3

Terrain
FakeWalls
Environment

Environment Avoidance Grour}d 6 | 0.7 0 2
Terrain

FakeWalls

Table 11.7: Sharks’ Ray Behaviors and their main parameters.

Sharks Simple Behaviors

The Simple Behaviors for sharks, shown Table 11.8, are very similar to the fish.
The only interesting difference is that the Keep Height behavior has a very low
priority. The reasoning is the same as for the Avoid Ground behavior. It let’s
the shark catch prey at the surface more easily.

’ Behavior \ P \ WD \ WS ‘
Wandering | 0 | 0.01 | 0.02
Align Up 0| 0.2 0

Keep Height | 1 | 0.45 0

Table 11.8: Sharks’ Simple Behaviors and their main parameters.

11.3.3 Birds

Birds are tagged with a Bird tag. Description of their role in the game scene can
be found in Section 11.1.3. The set up of birds is similar to the fish, but they are
simpler. The main focus is to make a large flock of birds look realistic while not
being too performance heavy.

Birds Movement

Birds use Move3DSystem, but they do not use the energy feature, because there are
no predators to hunt them. The associated component’s parameters are listed
in Table 11.9. The birds have a relatively high Mazimum Speed, because even
real birds need to travel at high speed to stay airborne. They also have high
acceleration to go along with it. We found high acceleration to be especially
important for large flocks, because it allows the flock as a whole to quickly change
direction, which looks visually appealing and realistic. It also allows the birds to
avoid collisions with their numerous neighbors better.
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Maximum Speed 7.5
Maximum Parallel Acceleration | 8
Maximum Lateral Acceleration | 8

Table 11.9: Parameters for movement of birds.

Birds Neighbor Behaviors

Birds have only five Neighbor Behaviors (Table 11.10), the three classical ones
for flocking, one for avoiding sounds and one for homing. FEspecially the flock-
ing behaviors are the biggest concern from performance perspective, since each
bird has many potential neighbors. For this reason, the maximum distances for
flocking behaviors are very low compared to other animal types, which improves
the performance of the neighborhood search. However, this has some negative
effects, especially on the cohesion of the flock, which is why the weight for Cohe-
sion behavior is unusually high, which increases the flock’s cohesion. Weight for
Alignment is also high, which results in a more organized looking flock. The Sep-
aration, as usual, has a high priority, with weight over 0.5 to allow it to overpower
other lower priority behaviors.

As usual, the birds also avoid sounds. The Avoid Sound behavior has a very
high priority and weight to show this interaction off, since it is the only way
the player can interact with the birds. Note that unlike before, the priority and
weight for Multi Homing is very high. This is because in this case, homing is
used to make sure the birds stay in their intended area. This was not necessary
in previous examples, where colliders kept the fish from leaving the pond. Homing
is also important, because it forces the boids to be in one cohesive flock, despite
the low maximum distance for Cohesion.

’ Behavior \ tag \ P \ WD \ WS \ D ‘
Cohesion Bird 0] 0.8 0.1 5
Alignment Bird 1] 08 | 0.3 5
Multi BirdHome | 5 | 0.8 0 1000
Separation Bird 41 0.6 0 2
Avoid Sound Sound 41 0.7 | 07 15

Table 11.10: Birds’ Neighbor Behaviors and their main parameters.

Birds Ray Behaviors

There is only one Ray Behavior for the birds, listed in Table 11.11. It only
makes sure that the birds stay far above the ground. Having the birds stay at
high altitude has the benefit that they cannot collide with any environment. The
Avoid Ground behavior works well with a single ray cast downwards. That is
more performance friendly than using for example the Environment Avoidance
behavior, which would need multiple ray casts per each bird.
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| Behavior | Layer |P| WD | WS |D |
Water
Avoid Ground | Ground | 3 | 0.8 0 30

Terrain

Table 11.11: Birds’ Ray Behaviors and their main parameters.

Birds Simple Behaviors

The birds use the same three Simple Behaviors (Table 11.12) as the previous
two animals. The Keep Height behavior does not need particularly large priority
or weight like fish that had to respect the water’s surface to not collide with it.
Keeping a maximum height however “flattens” the shape of the flock which is
otherwise more spherical due to the strong homing. Based on our observations,
a more flat shape looks more realistic. The set up of the other two behaviors is
very similar to other animals.

’ Behavior \ P \ WD \ WS ‘
Align Up 0| 0.2 0
Wandering | 0 | 0.045 | 0.1
Keep Height | 4 | 0.75 0

Table 11.12: Birds’ Simple Behaviors and their main parameters.

11.3.4 Sheep

The sheep are tagged with a Sheep tag. Their main difference to aforementioned
animals is that they move on the ground. However, most of the set up is still sim-
ilar. Description of their role in the game scene can be found in Subsection 11.1.6.

Sheep Movement

The sheep use the Move25DSystem, the parameters are shown in Table 11.13. Their
predator is the wolf, but unlike with fish, we did not balance the movement
parameters around their interaction too much. The reason for this is twofold —
first, the area where the sheep can move is much more open, and so if wolf finally
finds itself close to a sheep, we want player to see it catch it. Second, sheep are
not particularly known for their speed or agility, and so it made sense to make
them an easy prey. Moreover, setting the acceleration low makes their movement
smoother. This prevents the whole flock from taking sharp coordinated turns,
which we personally did not like for sheep as much as we did in the case of birds
or fish.

Maximum Speed 7
Maximum Parallel Acceleration | 3
Maximum Lateral Acceleration | 3

Table 11.13: Parameters for movement of sheep.
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Sheep Neighbor Behaviors

The sheep’s Neighbor Behaviors are shown in Table 11.14. As usual, there are
three behaviors for flocking. Note the high maximum distance for Cohesion, so
that the flock can regroup even over larger distance. This was not so important
for fish and birds since the homing helps them regroup. The weights for both
Cohesion and Alignment are relatively low, which makes the flock more “loose”.
This is based on personal preferance. However, the Separation behavior has a
very high priority and weight, to prevent sheep walking through each other. This
is a bigger concern than with fish or birds, because the sheep cannot move over
or under one another. They are also larger, which makes walking through each
other more easily noticeable. The Get Pushed behavior provides additional help
with preventing collisions between the flockmates.

As always, the Chase Food behavior has a high priority and weight to em-
phasize chasing food, but not high enough to interfere with avoiding danger or
collision avoidance. Much like in other examples, the sheep are afraid of sounds
and the player, but they flee from their predators with the largest priority and
weight. It is interesting to mention that weight and priority for Awvoid Player is
quite low, to make sheep appear a little bit domesticated, allowing the player to
get close without completely dispersing the flock. Additionally, note that there is
no home area for the sheep, this allows them to roam the entire environment. A
home area is also not needed to contain the sheep, because the steep mountains
around the environment form a natural barrier.

| Behavior | tag [P|[WD|WS| D |
Cohesion Sheep | 0 | 0.5 | 0.5 | 18
Alignment Sheep | 1 | 04 | 05 | 5
Get Pushed Sheep | 2 | 0.3 | 0.3 | 2.5
Avoid Player Player | 2 | 0.25 | 0.25 | 15
Avoid Sound Sound | 3 | 0.7 | 0.6 | 15
Avoid When Eating | Sheep | 3 | 0.7 | 0.3 | 5
Chase Food Grass | 5 1 75 | 0.3 | 20
Apple
Wolf
Fleeing Fish | 5] 0.8 | 0.7 | 20
Shark
Separation Sheep | 6 | 0.8 0 2

Table 11.14: Sheep’s Neighbor Behaviors and their main parameters.

Sheep Ray Behaviors

There are two Ray Behaviors listed in Table 11.15. One is Environment Avoidance
targeting only the Environment layer and having the highest priority and weight.
The other behavior, Find Grass, is the only example of a Ray Behavior which is
not used for collision avoidance, but for getting more information about a target
entity. The sheep use this behavior to stop moving when they detect grass below
them. Giving it high priority and a high weight makes sure that the only thing
to interrupt eating grass is the wolf or other sheep.
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Behavior | Layer |[P|WD|WS|D|]
Find Grass Grass 4 0.7 0.7 | 5
Environment Avoidance | Environment | 7 | 0.95 0 3

Table 11.15: Sheep’s Ray Behaviors and their main parameters.

Sheep Simple Behaviors

The only Simple Behavior for the sheep is the Wandering behavior, shown in
Table 11.16. There is no need for the usual Align Up behavior, since Move25DSystem
makes them align with the sufrace below them. The Keep Height behavior is not
needed either for obvious reasons.

’Behavior \P\WD\WS\D‘
| Wandering | 0 | 0.05 | 0.1 | 0 |

Table 11.16: Sheep’s Simple Behaviors and their main parameters.

11.3.5 Wolves

The wolves are tagged with a Wolf tag. They are almost identical in their set up
to the sheep, so the main focus here is on their differences, and how they interact
with the sheep. A more detailed description of their role in the game scene can
be found in Subsection 11.1.7.

Wolves Movement

The wolves use the Move25DSystem system. As already mentioned when discussing
the sheep, the wolves movement is superior in every way to the sheep’s. This is
apparent from Table 11.17.

Maximum Speed 10
Maximum Parallel Acceleration | 10
Maximum Lateral Acceleration | 6.5

Table 11.17: Parameters for movement of wolves.

Wolves Neighbor Behaviors

The wolves Neighbor Behaviors are listed in Table 11.18. They use all three
flocking behaviors, to allow formation of packs of wolves. However, the weight
for Cohesion is low, to prevent them from forming one large pack. Furthermore,
the distance for Separation is unusually high, to make the packs of wolves more
spread out, which increases their chance of finding sheep.

Notice that similarly to sheep, the maximum distances tend to be relatively
high, due to the openness of the area. This is especially the case for Chase Food
behavior. One more interesting thing to note is that unlike sheep, wolves have a
Multi Homing behavior. Three homes were set up on the edges of the map, to
create areas of danger. The weight of the Multi Homing is low, to let them chase
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the sheep if needed. The rest of the wolves’ set up should be straight forward
from the previous examples.

| Behavior | tag |P|WD|WS|D |
Cohesion Wolf 0016 | 0.1 | 20
Alignment Wolf 11 04 | 03 |95
Multi Homing WolfHome | 2 | 0.3 0 80
Avoid Player Player 31 07 | 07 |20
Chase Food Sheep 31 09 | 06 | 35
Separation Wolf 4 | 0.23 0 7
Avoid When Eating Wolf 6| 06 | 0.6 |15

Table 11.18: Wolves’ Neighbor Behaviors and their main parameters.

Wolves Ray Behaviors

The wolves only have one Ray Behavior, displayed in Table 11.19. Same as
in other examples, it helps the wolves avoid the environment. As usual, the
behavior’s priority is the highest. Note the high weight and maximum distance,
which makes sure that collisions are avoided as soon as possible. This is useful
due to their high maximum speed. Unlike sheep, the wolves also avoid collisions
with FakeWalls. These are invisible walls placed around the pond to prevent the
wolves from running into water.

’ Behavior ‘ Layer ‘ P ‘ WD ‘ WS ‘ D ‘
. . Environment
Environment Avoidance FakeWalls 71 0.95 0 5

Table 11.19: Wolves’ Ray Behaviors and their main parameters.

Wolves Simple Behaviors

Same as sheep, the wolves’ only Simple Behavior is the Wandering behavior. See
Table 11.20 for its parameters. As always, Wandering ensures that the wolves
always have something to do.

| Behavior | P | WD | WS |
’Wandering\ 0 ‘ 0.03 ‘ 0.1 ‘

Table 11.20: Wolves’ Simple Behaviors and their main parameters.
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12. Conclusion

In this thesis, first the need to create a framework for simulating flocking and
similar behaviors was identified (Chapter 1). After looking at other frameworks
and use cases, the requirements for the framework were defined (Section 1.1).
The main aspects were that the framework should be modular, extensible, flex-
ible, performant and easy to use. Afterwards, a theoretical model of a flocking
system was created, based on the work of Craig Reynolds [7] (Chapter 2). The
model splits a flocking system into four distinct parts: Queries (split further into
Neighbor Queries and Ray Queries), Behaviors (split further into Neighbor Be-
haviors, Simple Behaviors, Ray Behaviors), Merger and Mover which feed into
each other in this order. Then each of these parts was analyzed in detail from a
theoretical perspective (Chapters 3, 4, 5, 6, 7). For each part, we analyzed how
other authors implementated each part of the model, and discussed advantages
and disadvantages of their approaches, often in relation to some constraints which
we set. Based on this analysis, we proposed a basis for our implementations of
each part of the model.

In the second part of the thesis, a framework was implemented based on the
proposed formalization (Chapter 9). The framework was used to implement a
number of modular parts of the model, using the proposed implementations from
the theoretical part of the thesis. Furthemore, GUI was implemented to make
working with the framework faster and less error prone (Chapter 10). Lastly,
the framework was thoroughly tested by creating a scene with multiple different
animal types interacting with each other, with the player and with the environ-
ment (Chapter 11). Creation of this scene allowed us to test that the framework
can handle complex use cases. We showed that it was possible to reuse a lot
of the code among different animals, while being flexibile enough for each an-
imal to be unique. It also showed that after some initial learning curve, even
a non-programmer could set up this scene, given that all the behaviors had al-
ready been implemented. That being said, we are satisfied with the result of the
thesis, having achieved most of the established goals. The only goal that was
not achieved, was the goal of simulating a flock of 1000 boids in 1 milisecond on
reference gaming laptop. The performance testing was described in Section 9.6.

12.1 Contributions

Throughout working on this thesis, we spend a very large amount of time coming
up with models for flocking and steering behaviors, tweaking them and testing
them. For quite long, more basic model was used, where each behavior returned
a desired velocity as a 3D vector. These vectors were afterwards merged into
one final desired velocity using a weighted sum. Using this model, we found it
extremely difficult to add new behaviors. Any added behavior usually required
us to rebalance parameters of other behaviors as well, and it usually introduced
subtle edge cases which were hard to avoid and debug. With each behavior added,
the complexity of adjusting all the parameters started to become unbearable, as
the models started to be more and more unstable. The instability was caused by
the fact that there is usually many behaviors with conflicting goals.
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The decision to split the result of a behavior into two components: the desired
velocity and its weight, was crucial for success of this thesis. The trivial addition
of one more dimension for desire allowed us to create a more robust merging
function (Section 4.4), which from our experience handles large number of be-
haviors much better. In fact the framework uses two desires, one for speed and
one for direction, which provided more granular control. Additionally, priority
was added to each result, using Reynolds’ concept of prioritized allocation [7].
This provided a layer of robustness to make sure that, for example, separation
behavior can always overpower cohesion and alignment behaviors. Adding all this
extra information to each behavior’s result allowed creation of more complex ani-
mals. An example can be fish consisting of total 14 behaviors (Subsection 11.3.1).
Having a robust merging function was crucial to ensure that the framework can
be used in a modular manner, as behaviors can be added and removed without
affecting the rest of the system too much. Moreover, having the split between the
desire and the desired speed allowed the Mover to account for what speed the
animal wants to move at. This proved to be essential for creation of believable
predator-prey interactions with dynamic speeds. We see the concept of adding
one more dimension for “desire” as the main contribution of this thesis, which
can be used to improve simple models based on Reynolds’ work. This change is
simple to understand and implement, while its performance impact is negligible.

Further ideas which made creating and parametrizing multiple different be-
haviors easier come from Chapter 6. There, the Neighbor Behaviors are split into
an accumulator going through all neighbors to find an intermediate result, which
is then used to determine the behavior’s final result. This divided each Neighbor
Behavior into two more manageable problems. The same ideas were later used
for Ray Behaviors. Chapter 6 also introduced the idea of using easing functions
to smoothly shape the amount of influence each neighbor has, and to shape a
behavior’s final desire. This allowed us to create more interesting non-linear be-
haviors. Furthermore, keeping desires returned from all Behaviors in the range of
[0, 1], gave a clear maximum limit of how much influence each behavior can have,
which makes reasoning about a system with numerous behaviors much easier,
and helps with finding the right balance of the parameters.

12.2 Future Work

While we are satisfied with the result of the thesis, there are many features and
ideas which we would like to implement in the future. Some of them are:

o Implementing a Merger which limits influence of multiple behaviors in a
different way than priority allocation we currently use. An idea which we
will experiment with next is inspired by arithmetic coding compression.
For example, currently if there are three results r1, ro and r3 with priorities
p1 > po > p3 each having a desire of 0.5, then r; and ry would have the same
influence and r3 would not be included. A better approach could be that r;
contributes by one half, leaving one half for the other two behaviors. Then
ro would contribute by one half of the remainder, having only one quater of
the influence and leaving one quater for the lowest priority result r3 which
would only contribute by one eighth. This would allow all behaviors to
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have at least some influence, which exponentially decays as their priority
decreases.

Trying out a different approach to calculating weighted average of direc-
tions in the Merger. Currently we use a weighted arithmetic mean of the
directions. This way, however, a normalized direction is not defined for two
vectors with same length poiting in opposite directions, indicating that this
method is not ideal. In our future work, we want to experiment with using
spherical means instead of arithmetic ones.

Experimentation with making the animals more complex by giving them
a Finite State Machine as a brain. Based on the current state, different
behaviors could be activated or their parameters changed.

Implementing some sort of histerysis for the behaviors. Currently once
a predator leaves the field of view of a prey, the prey immediately stops
trying to escape. The acceleration based movement partially mitigates this
problem, but a better solution could be found.

Currently, the same weights of behaviors are used for all animals of a same
type in the example scene. It could be interesting to experiment with
randomizing these weights slightly. The weights could also change based on
parameters like hunger, tiredness, age and similar, to create more unique
animals. This could open up interesting game mechanics.

Extending the flocking with a behavior proposed in a paper [25] by Hart-
man and Benes, where some boids start escaping the flock and temporarily
become leaders. This could create more interesting flocks of birds. Another
interesting option to stimulate flocks would be creating a time based vector
field representing wind affecting the flock.

In 2D, collision avoidance with neighbors was difficult to achieve using only
our separation behavior. We would like to experiment with more advanced
dynamic obstacle collision avoidance algorithms, like RVO or ORCA.

Experimenting with more advanced workflow, like one we proposed in the
Chapter 4 about Merger. There, we suggested each behavior to return
desired direction, speed, acceleration together with their rotational couter-
parts and a desire for each of them. Having control over acceleration could
create even more realistic predator response. Having control over the rota-
tion could be useful to let the animals move in one direction, while observing
a target in another. Currently our predators often loose their target because
they do not try to keep it in their vision.

Creating a flow field that the boids can follow, as suggested by Reynolds [16].
This could be a relatively cheap way to navigate the animals around more
difficult areas. Currently the boids have a hard time navigating around
large obstacles like walls to reach a target. More exact navigation like A*
would also be a very interesting addition.

Further experimentation with Context Steering [26], and finding a conve-
nient way of working with these behaviors and implementing them.
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A. Attachments

The attachments are split into two main folders, as shown below in a high-level
overview of the attachments. The folder Framework contains files relevant to the
framework described in Chapters 9, 10. The folder Game contains files relevant to
the sample game scene described in Chapter 11. Lastly, PerformanceTest contains
project that was used to test performance in Section 9.6. The following sections
describe contents of these two folders in more detail.
Attachments

Framework

Game

PerformanceTest

A.1 Framework

The main file in the Framework folder is the SteeringAI.unitypackage. It can be used
to import the framework into a Unity project. To see the framework’s code and try
out the framework’s sample scenes, the reader would have to install the package
according to the documentation. Therefore, we include a prepared Unity project
with the package installed in the SamplesProject folder. For completeness, the
Docs folder also contains the source files needed to run the online documentation
locally.
Framework
SteeringAI.unitypackage - The framework as a Unity package.
SamplesProject - A Unity project with SteeringAI.unitypackage installed.
Docs - Source files for the framework’s online documentation.
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A.1.1 SteeringAl.unitypackage

The framework can be imported into Unity using the file SteeringAI.unitypackage.
The package was tested with Unity version 2022.3.39f1. To install it, see Get-
ting Started/Installation page of the documentation. To explore the framework
without having to install it, see the Unity project in SamplesProject folder (At-
tachment A.1.2). It contains the unpackaged code and sample scenes.

To understand contents of the package, consider a Unity project Project. Its
folder structure after importing SteeringAI.unitypackage is shown below. The
framework’s code is imported into com.o-vaic.steering.ai inside Packages. The
framework is split into three main folders. The Core folder contains the frame-
work’s core, described in Sections 9.2, 9.3, 9.4. The befaults folder contains the
framework’s defaults, described in Section 9.5. Lastly, the Editor folder contains
source code for the framework’s GUI editor (see Chapter 10).

The package further allows the user to import several sample scenes into
ECS-Steering-Samples under the project’s Assets. The sample scenes can be ex-
plored to understand the framework better. Each sample is documented under
Samples in the documentation.

Project
| Assets

LA,ECS-Steering-Samples - Samples showing the framework’s functionality.

1. Minimal Set Up
2. 2D Movement

| Packages
com.o-vaic.steering-ai
RunTime
kCore - The framework’s core source files.
Defaults - The framework’s defaults source files.
Editor - The framework’s editor source files.
package.json - The framework’s dependecies.

A.1.2 SamplesProject

The samplesProject can be used to try the framework, and explore its source code,
without the need to install the SteeringAI.unitypackage. The folder can be opened
in Unity version 2022.3.39f1. It contains only the samples, ECS-Steering-Samples
and the framework, com.o-vaic.steering-ai. The SamplesProject folder is the re-
sult of creating a new Unity project and installing the package following the
instructions in the Getting Started /Installation section of the documentation.
SamplesProject

Assets

LA,ECS-Steering-Samples

Packages

com.o-vaic.steering-ai
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A.1.3 Docs

The folder pocs contains source files for the online documentation. This is
because the online version may change over time. To run version matching the
attached SteeringAI.unitypackage locally, see Readme.md. To see its current version
online, see:

https://ondra-vaic.github.io/Steering-AI-Documentation

The documentation was created using Docusaurus [90]. The most important
folder of a Docusaurus project is docs. It contains .mdx files, one for each page
of the documentation. The folder structure of docs reflects the menu on the left
in Figure A.1. In the figure, the Getting Started/Installation page is selected,
corresponding to path docs/getting-started/installation.mdx.

The documentation is split into four main sections. The beginner guide
(2_getting-started), description of the framework’s samples (3_samples), and doc-
umentation of the framework’s core (4_documentation-core) as well as its defaults
(5_documentation-defaults).

Docs
| Readme.md - Explains how to run the documentation locally.
| docs - The documentation’s .mdx files, each file is one page.

1_intro.mdx
2_getting-started
1_installation.mdx

3_samples
4_documentation-core
5_documentation-defaults

~ I8 Installation | SteeringAl Docum: X ar

<« c 23 ondra-vaic.github.io/Steering-Al-Documentation/docs/getting-started/installation

BB steeringal

b ] Getting Started

1) Import

2) Add a

' I n sta I Iatio n STEERING_DEBUG

symbol

Minimal Setup 3) Initizlize Samples
Steering Al is split into four main folders, shown when imperting in the

Concepts ) 9 P PR porting 4) Set Renderer to
image below. F—

Samples

X 5) Te

* Runtime/Core - The core of the framework, it must always be IS

imported. It is responsible for taking

Documentation Core

Documentation Defaults . P -
prepared in thy and running it

Runtime/Defaults - Contains implementation of several ]
as well as nd other utilities. This will be most
likely be useful to import into any project unless you want to create
all your behaviors from scratch.

* Editor - Handles editting of the in editor.

® ECS-Steering-Samples - Contains sample scenes which showcase

Figure A.1: Framework’s documentation with the Installation page selected.
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A.2 Game

The Game folder contains two subfolders. The GameProject folder holds a Unity
project for the sample game scene, described in Chapter 11. The Builds folder
contains builds of the game scene.
Game
tGameProject - Source files for the game scene.
Builds - Builds of the game scene.

A.2.1 GameProject

The GameProject is a Unity project, which can be opened with Unity version
2022.3.39f1. It has the same folder structure as SamplesProject. All game-
specific assets are in the Assets/_Project folder, including some new behaviors
described in Section 11.2. As usual, a copy of the framework is located in
Packages/com.o-vaic.steering-ai. However, this version of the framework contains
some minor changes (see Section 11.2).
GameProject - The game’s Unity project.
| Assets - The game’s assets.
L_Project
Scripts
Prefabs

| Packages
tcom.o-vaic.steering-ai - The framework.

A.2.2 Builds

The Builds folder contains two game builds. The game’s controls are described
in Readme.txt. The first build, GameProject.exe, is a build of GameProject, which
uses simplistic graphic assets that can be shared here thanks to their permis-
sive licensing. The other build, GameProjectBetterVisual.exe uses better graphical
assets, which, however, are not licensed to be distributed in uncompiled form.
This includes several 3D meshes, animations, textures, and a Unity package that
resolves animations for Unity ECS. The difference between GameProject.exe and
GameProjectBetterVisual.exe is only visual, Figures A.2, A.3 show how the animals
look between the two versions. From left to right, both figures display a wolf, a
sheep, a shark, a fish and a bird.
Builds

Readme.txt - Controls.

GameProject

tGameProject.exe - Build of GameProject.

GameProjectBetterVisual
kGameProjectBetterVisual.exe - Build with better visual.
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Figure A.2: Scene’s visual of GameProject.exe. From left to right: a wolf, a sheep,
a shark, a fish, and a bird.

Figure A.3: Scene’s visual of GameProjectBetterVisual.exe. From left to right: a
wolf, a sheep, a shark, a fish, and a bird.

A.3 PerformanceTest

The PerformanceTest folder contains the Unity project that was used for perfor-
mance testing in Section 9.6. As always, all regular assets are located in the Assets
folder, and the framework’s copy is located in Packages/com.o-vaic.steering-ai.
Here, the framework has some minor changes that enable tracking the perfor-
mance. A performance test can be configured through GameObject named Tester
inside the TestingScene.unity scene.
PerformanceTest
Assets - Source files for the performance testing.
Packages
com.o-vaic.steering-ai - The framework.

201



	Introduction
	Flocking Framework Requirements
	Performance
	Modularity
	Extensibility
	Flexibility
	User-Friendliness Design for Game Designers

	Current Solutions in Unity
	FlockAI
	Sebastian Lague's Boids
	Unity's DOTS Boids Sample
	Conclusion

	Flocking and Steering Behaviors
	Steering Behaviors
	Boids Model
	Conclusion

	Approach
	Goals
	Framework Goals
	Game Scene Goals


	Formalization of Boids Model
	Our Formalization
	Other Steering Behaviors

	Behavior Output Semantics
	Converting Between Workflows


	Movers
	Frame Rate Dependency
	Assumptions
	Constraints
	Analysis
	Implementation 1 – Desired Velocity Assignment
	Implementation 2 – Sum of Desired and Current Velocity
	Implementation 3 – Acceleration Based

	Our implementation – Constant Acceleration
	Improvements

	Rotation
	Approach 1
	Approach 2


	Mergers
	Assumptions
	Constraints
	Analysis
	Implementation 1 – Priority First Non-Zero
	Implementation 2 – Weigthed Sum
	Implementation 3 – Prioritized Allocation

	Our Implementation – Desire Weighted Velocities
	Priority Allocation
	Workflow Improvements


	Neighbor Queries
	Limited Perception
	All in Radius
	FOV
	Topological Distance
	Other Possibilities

	Effect of Vision on Performance
	All in Radius
	K Nearest

	Neighbor Search
	Algorithm Structure
	Spatial Partition Grid
	K–d Trees
	Comparison

	Conclusion

	Flocking Behaviors
	Assumptions
	Constraints
	Analysis of Other Implementations
	Implementation 1 – Simple Flocking
	Implementation 2 – UAV Flocking

	Our Implementation
	Semantics
	Generalization of Neighbor Behavior Functions
	Easing Functions
	Observability Functions
	Neighbor Behaviors
	Other Behaviors

	Full Model

	Avoiding and Resolving Collisions
	Collision Avoidance
	Assumptions about Ray Queries
	Assumptions about Ray Behaviors
	Discussion of Other Implementations
	Our Implementation

	Collision Resolution
	Options
	Collide and Slide


	DOTS and ECS Background
	Framework Implementation Documentation
	Requirements
	Framework Design
	Jobs and Job Wrappers

	Base System and Relevant Types
	Steering System Asset
	Base Behavior Params
	Behavior and Merger Results
	Job Wrappers

	Base Jobs
	Custom Job Types
	Entity Information
	Velocity Result(s)
	Simple Behavior Jobs
	Neighbor Behavior Jobs
	Ray Behavior Jobs
	Ray Creation Jobs

	Provided Implementations
	Simple Behaviors
	Neighbor Behaviors
	K Nearest Neighbor Search
	Ray Behaviors
	Ray Queries
	Merging
	Movement
	Collision Resolution

	Performance Testing
	Neighbor Queries
	Full Simulation


	Editor Window Documentation
	User Perspective
	Editing Steering System Asset

	Reflection
	Steering Entity Tag Attribute
	Component Authoring Attribute
	Job Wrapper Attribute
	Out Data Attribute

	Serialization
	JSON Serialization with Source Generation
	Unity Serialization

	Implementation
	UI Elements
	Editor Window


	Sample Game Scene
	Game Scene
	Environment
	Player
	Birds
	Fish
	Sharks
	Sheep
	Wolves

	Framework Changes and Additions
	Abandoned Context Steering Test
	Movement System with Energy
	Chase Food Behavior
	Avoid When Eating Behavior
	Avoid Sound Behavior
	Get Pushed Behavior
	Find Grass Behavior
	Avoid Player Behavior

	Set Up of Animals
	Fish
	Sharks
	Birds
	Sheep
	Wolves


	Conclusion
	Contributions
	Future Work

	Bibliography
	Attachments
	Framework
	SteeringAI.unitypackage
	SamplesProject
	Docs

	Game
	GameProject
	Builds

	PerformanceTest


