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the R programming language.
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Abstract

This thesis presents a prototype Just-In-Time (JIT) compiler for the R pro-
gramming language based on the Copy-and-Patch approach. Due to R’s highly
dynamic nature, native compilation is a significant challenge. Building on the
Ř project’s existing bytecode instruction infrastructure, this work adapts all
104 of its instruction implementations for use in the Copy-and-Patch JIT.
The resulting prototype compiles R bytecode to native code by copying and
patching precompiled chunks of instructions at runtime, enabling extremely
fast compilation with minimal overhead. Despite being conceived as a mini-
mal proof-of-concept, the implementation supports full execution of complex
R programs, as tested in all benchmark suites from the Ř project, including
the widely used Shootout suite. Benchmarks show compilation times with
the median value of 0.7 ms (maximum under 6 ms), which is several orders
of magnitude faster than what Ř currently offers. Execution performance,
although slower, follows the characteristics of Ř implementation, despite the
baseline nature of the JIT. Several additional optimizations were implemented,
one yielding up to 21% performance improvement in specific benchmarks. The
project demonstrates that the Copy-and-Patch approach is a viable foundation
for building fast, low-overhead JIT compilers for dynamic languages like R.

Keywords R language, Ř project, Rsh project, Just-In-Time compilation,
JIT, Copy-and-Patch, baseline JIT, dynamic languages, bytecode interpreta-
tion, compiler optimizations, native code generation
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Abstrakt

Tato práce představuje prototyp Just-In-Time (JIT) kompilátoru pro pro-
gramovací jazyk R, založeného na principu Copy-and-Patch. Kvůli dynam-
ické podstatě jazyka R představuje nativní kompilace značný problém. Tato
práce staví na existující implementaci instrukcí z projektu Ř a adaptuje všech
104 podporovaných instrukcí pro použití s Copy-and-Patch JIT kompilátorem.
Výsledný prototyp kompiluje R bytecode do nativního kódu kopírováním a
záplatováním předkompilovaných kusů strojového kódu, což umožňuje velmi
rychlou kompilaci s minimální režií. Přestože původním cílem byl pouze min-
imální prototyp, výsledná implementace plně podporuje běh komplexních R pro-
gramů, jak bylo ověřeno na benchmarcích použivaných v projektu Ř, včetně
široce používané sady Shootout. Výsledky ukazují dobu kompilace s mediánem
0,7 ms (maximum 6 ms), což je o několik řádů rychlejší než stávající řešení pro-
jektu Ř. Výkon při běhu programu, ačkoliv nižší, odpovídá charakteristikám
implementace Ř, a to i přes fakt, že jde o naprosto jiný způsob kompilace.
Několik dalších optimalizací bylo rovněž integrováno, přičemž jedna konkrétní
dosahuje až 21% zvýšení výkonu v některých sadách testů. Projekt demon-
struje, že přístup Copy-and-Patch je plně použitelným řešením pro tvorbu
rychlých, odlehčených JIT kompilátorů i pro dynamické jazyky, jako je R.

Klíčová slova jazyk R, projekt Ř, projekt Rsh, Just-In-Time kompilace,
JIT, Copy-and-Patch, baseline JIT, dynamické jazyky, interpretace bytekódu,
optimalizace kompilátoru, generování strojového kódu
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Introduction

The R programming language is widely used in data science, statistics, and
research for its expressive syntax and rich ecosystem of libraries. Originally de-
signed as an interpreted language for statistical computing, R has evolved into
a powerful, dynamic language that supports high-level abstractions, including
first-class environments, lazy evaluation, non-standard evaluation, and run-
time allowing for unlimited reflection without frontiers. These features, while
central to R’s expressive power, also make it an unusually difficult target for
both Ahead-of-Time and Just-In-Time (JIT) native compilation.

Native compilation of R code presents several core challenges. Its execution
model includes ubiquitous use of environments (essentially first-class mutable
scopes), which are often used for metaprogramming and state encapsulation.
Lazy evaluation allows function arguments to be passed as unevaluated ex-
pressions and evaluated only when needed, possibly multiple times or not at
all. Combined with R’s extensive use of reflection and runtime introspection,
such as modifying functions during execution or dynamically constructing and
evaluating code, these language characteristics make it difficult to apply tradi-
tional compiler optimizations, particularly those relying on static analysis and
predictability.

The Ř project [1] (pronounced Rsh) is an initiative that aims to bring
high-performance native compilation to R. It introduces several optimizations
into its alternative version of the GNU R runtime, specifically designed to ad-
dress R’s idiosyncrasies, and designs a new system for compiling R bytecode
using LLVM. Ř has shown that it is possible to compile R code into opti-
mized native code, achieving significant performance gains over the standard
GNU R interpreter in several real-world benchmarks. However, the Ř compiler
is slow, making it ill-suited for use as a baseline JIT – one that prioritizes low
compilation latency and is suitable for fast, repeated invocations on small or
short-lived programs.

This thesis explores an alternative approach to implementing a baseline JIT
compiler for the R language by applying Copy-and-Patch technique, originally
proposed by Haoran Xu and Fredrik Kjolstad in their OOPSLA 2021 paper [2].

1



Introduction 2

Copy-and-Patch is a minimalistic and efficient method for JIT compilation that
trades off some optimization potential for near-instantaneous compilation.

The goal of this work is to implement a working prototype of a Copy-
and-Patch compiler that integrates with the R runtime, making use of the
optimizations introduced in Ř, while significantly improving on the project’s
main disadvantage – compilation speed. If successful, it could be used as a
baseline JIT for the Ř project.



Chapter 1

Background

This chapter introduces the contents required for the understanding of the
followup work. It introduces the R language, its memory representation and
its execution model. Special focus is on the R bytecode representation, as it
is crucial for this project. It presents the idea of JIT compilation, specifically
the Copy-and-Patch approach. Another section is dedicated to the Ř project,
which serves as the implementation platform for this work.

1.1 The R Programming Language
R is a programming language released in 1993, designed primarily for statistical
data analysis and visualization. As a high-level language, R allows users to
perform complex statistical operations without requiring deep knowledge of
computer science or low-level programming (an example of a typical use can
be seen in Figure 1.1)

Although R is an open-source project and not limited to a single imple-
mentation, the GNU R [3] implementation is widely regarded as the de facto
standard, therefore it will also be considered as such throughout this work.

R is dynamically typed, uses garbage collection, and is interpreted. While
this high-level design makes R more user-friendly, it also results in reduced
efficiency, often making R significantly slower than compiled languages.

R relies heavily on function calls for many constructs that are typically
implemented as language primitives in other programming languages. Fur-
thermore, functions in R are first-class objects. As a result, even core control
structures, such as loops and conditionals, are implemented as ordinary func-
tions and can be reassigned at runtime.

For example, the following is valid R code that overrides the while loop
keyword with a function that exits the R environment, whenever used:

while <- function(...) q()

3



The R Programming Language 4

# Library
library(ggplot2)

# create a dataset
data <- data.frame(
name=c( rep("A",500), rep("B"

,500), rep("B",500), rep("C"
,20), rep('D', 100) ),

value=c( rnorm(500, 10, 5), rnorm
(500, 13, 1), rnorm(500, 18,
1), rnorm(20, 25, 4), rnorm
(100, 12, 1) )

)

# Most basic violin chart
ggplot(data, aes(x=name, y=value,

fill=name)) + geom_violin()

0
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Figure 1.1 Example of a typical use of the R language [4].

This level of flexibility, while powerful, introduces significant challenges for
optimization. Any compiler or runtime must conservatively assume that even
fundamental operations may have been redefined, thereby restricting opportu-
nities for specialization or inlining.

The primary limitation of the interpreter is instruction dispatch. Each
instruction requires decoding the opcode, branching to the handler, and exe-
cuting a fixed sequence of C operations, often including type checks, coercions,
and memory allocations. This overhead accumulates rapidly in tight loops or
recursive calls.

Optimizations like inlining primitives or unboxing common values have
been explored and implemented in other interpreters [5, 6], but they are lim-
ited in R by the need to preserve reference semantics, handle non-standard
evaluation, and manage environments as first-class values.

Optimizing R is notoriously difficult due to a variety of semantic and dy-
namic features. According to Flückiger et al. in their work on Ř [1], the list
of the biggest challenges includes:

Out-of-order arguments: R functions can be called with named argu-
ments in any order (e.g., add(y = 1, x = 2)). The interpreter must reorder
arguments at runtime to match formal parameters.

Missing arguments: Functions can be called with missing parameters
(e.g., add(, 2) or add(y = 2)). Defaults must be inserted if available; oth-
erwise, errors are deferred until access.

Argument overflow: Calls can supply more arguments than a function
expects. The interpreter must detect and reject such calls at runtime.
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Promises: Function arguments are passed as promises (lazy thunks) that
may contain side effects and are only evaluated on first access. Optimiza-
tions must preserve their deferred and state-dependent behavior.

Reflection: R supports introspection, allowing access to local variables
and environments from higher up the call stack. This necessitates main-
taining first-class runtime environments.

Vector semantics: R treats all values as vectors, including scalars (as
length-one vectors). Implementations must assume boxing and vectorized
behavior unless it can be proven otherwise.

Object attributes: Any value can carry attributes, including class tags
used for method dispatch. The runtime must inspect and respect these
attributes when executing operations.

1.2 Just-In-Time Compilation
To address the limitations of interpreted languages, many language runtimes
have adopted JIT compilation. A JIT compiler translates intermediate rep-
resentations (IR) into machine code at runtime, often specializing based on
runtime types or profiling information. This allows the system to eliminate
type checks, fuse instructions, and reuse native registers.

Prominent examples include V8 for JavaScript [7], PyPy for Python [8],
and GraalVM for polyglot languages [9]. These systems are complex, involving
IR construction, speculative optimization, deoptimization support, and tiered
compilation. While effective, they require deep integration with the runtime
and a large engineering effort to maintain correctness.

Tiered compilation is an important feature of modern JIT compilers. This
design involves multiple compilation strategies with increasing level of opti-
mizations, but slower compilation speed. Code is first compiled quickly using
a low-tier strategy to allow immediate execution, and then, if necessary, re-
compiled at runtime using more aggressive optimizations. This allows for fast
startup times while still achieving high performance for frequently executed
code. The low-tier strategy is called a baseline JIT, and it is the focus of this
work.

One of the challenges that JIT compilers frequently encounter is inefficiency
caused by memory addressing that does not fit within the constraints of rela-
tive addressing. In such cases, compilers must resort to absolute addressing.
While relative addressing is generally faster and produces more compact code
(since the target address can be embedded directly within a single instruction)
absolute addressing often results in larger and slower code. It may require
multiple instructions: one to load the absolute address into a register, and
another to access the memory at that address. This contrasts with relative
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addressing, where the same operation can typically be performed in a single
instruction.

For R, the constraints of the language and the interpreter make JIT com-
pilation challenging to implement. The language’s reliance on lazy evaluation,
first-class environments, and copy-on-write semantics complicates optimiza-
tion. Several JIT projects have attempted to work around this in the past
(most notably FastR [10], pqR [11], and RLLVMCompile [12]) but they are
no longer actively developed, never reaching mainstream use. Another similar
project was CXXR [13], which made an effort to re-implement R in C++, but
is now also abandoned.

1.2.1 The Ř Project
Ř is an optimizing just-in-time (JIT) compiler for the R language, developed
by the PRL-PRG group over the past few years. It utilizes the LLVM compiler
infrastructure as a backend and introduces several key enhancements over the
standard GNU R interpreter. One of its central features is contextual dispatch,
a mechanism in which functions are versioned and compiled under distinct
assumptions. At runtime, the system selects the most appropriate version
based on the dynamic context of the call site. This approach yields significant
performance improvements, with benchmarks showing an average speedup of
approximately 1.7× compared to GNU R [1].

More features of Ř include modified stack representation, allowing certain
values to be kept in unboxed formats during execution, and a caching technique
used for faster access to variables, called BCells. However, the compilation
latency of Ř is not low enough to warrant its use as a baseline JIT. Therefore,
it would benefit from integration into a tiered compilation system, where it
serves as a higher-tier optimizer.

The Ř project is architecturally divided into two components: the server
and the client. The server is implemented in Java and leverages LLVM to
compile R code. In simplified terms, it analyzes R bytecode and emits C
code consisting of function calls corresponding to each R instruction. The
generated C code is subsequently compiled into a native object, which can
then be executed within the R environment. Notably, the server component is
not utilized in this project.

The functions invoked in this manner are part of the client component.
These instruction functions are implemented using Ř’s optimization techniques
and consolidated within a C header file. This header is included from the source
code generated by the server component, allowing this source code to inline it,
and therefore use the implementations directly. In the context of this work,
the client header file is repurposed to support the Copy-and-Patch approach,
aiming to leverage the runtime speed advantages of Ř while combining it with
a lightweight, fast-compiling JIT for the first tier of execution.
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1.3 Copy-and-Patch Approach
As described earlier, one of the most important features of a baseline JIT
is the speed of its execution. In this work, we will be using a novel approach
called Copy-and-Patch, introduced by Haoran Xu and Fredrik Kjolstad in their
article from 2021 [2]. This approach aims to provide the lowest compilation
speed possible, while still allowing for the advantages of efficient code.

It is capable of translating both high-level languages and low-level byte-
code programs into binary code by stitching together code from a library of
precompiled binary implementation variants. These binary implementations
are referred to as stencils, as they contain placeholders (called holes) that are
later filled during the patch phase. The authors present a method for con-
structing a stencil library and describe the Copy-and-Patch algorithm itself
used to generate optimized binary code from these templates.

This approach provides exceptionally fast compilation times, significantly
outperforming traditional compilers, as the execution engine performs minimal
work: parsing bytecode, copying the corresponding instructions into memory,
and stitching them together. It also offers ease of maintenance: adopting
Copy-and-Patch is primarily a one-time effort. Subsequent updates to the
implementation require little to no additional work, since new features are
automatically incorporated through the underlying stencils.

This approach has inspired several real-world implementations, most no-
tably for Lua [14] and Python [15]. The Python implementation, now merged
into the CPython codebase, is what inspired this work. Although R and
Python differ significantly in many aspects, they share similar execution mod-
els, both of which could benefit from fast and easily maintainable JIT compiler.

Stencils are at the core of the Copy-and-Patch approach. Each stencil is
created from a function compiled ahead-of-time, corresponding to a single byte-
code instruction. These stencils are extracted from compiled ELF object files,
along with relocation metadata (holes), using a custom linker-like wrapper.
The resulting templates are stored as binary blobs in the runtime.

Bytecode/AST

Stencil 
Generators

Copy-and-Patch

Binary
code

Stencil Library

Figure 1.2 Copy-and-Patch framework overview [2].

When the JIT compiler is invoked, a Copy-and-Patch engine instantiates
these stencils into a contiguous code buffer. It applies relocations to inject im-
mediate values (e.g. constants, offsets, jump targets) directly into the machine
code at positions specified in the hole list. It then links the stencils together to
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form a complete function body, preserving control flow. The general overview
of the Copy-and-Patch framework can be seen in Figure 1.2.

Stitching of code together allows elimination of calls that are usually present
in the bytecode interpretation. The calls are optimized into jumps due to the
tail-call optimization. These jumps right to the next instruction can then be
omitted altogether, as this is effectively a NOP1. This is the main source of
execution performance gain that the Copy-and-Patch approach can offer.

The phases of this approach could be split into three logical steps:

1. Compilation of stencils

2. Extraction of stencils

3. Copy-and-Patch compilation

The first two steps are run only once on the target machine (during instal-
lation). Only the last step is performed each time the JIT is invoked. Splitting
this in such a way is what allows this approach to be so fast in compilation
times, compared to regular compilers that effectively do all three steps each
time they are invoked (compilation and linking of the executable).

void if_leq(uintptr_t stack) {
 int lhs = *(int*)(stack + );
 int rhs = ;
 if (lhs <= rhs) {
 ((void(*)(uintptr_t) )(stack);
 } else {
 ((void(*)(uintptr_t) )(stack);
 }
}

1

2

3

4

(a) Stencil source in C

binary: { /* omitted, see Figure (b) */ }
pc32Patches: { 14 /*binaryOffset*/, 19 /*binaryOffset*/ }
sym32Patches: {
 { 1 /*binaryOffset*/, 2 /*holeOrdinal*/ },
 { 8 /*binaryOffset*/, 1 /*holeOrdinal*/ },
 { 14 /*binaryOffset*/, 4 /*holeOrdinal*/ },
 { 19 /*binaryOffset*/, 3 /*holeOrdinal*/ }
}
sym64Patches: {}

(b) Generated stencil header

0xb8 0x00 0x00 0x00 0x00
0x41 0x39 0x85 0x00 0x00 0x00 0x00
0x0f 0x8f 0xee 0xff 0xff 0xff
0xe9 0xe9 0xff 0xff 0xff

2

1

4

3

(c) Compiled executable code

20: b8 02 00 00 00 mov $0x2, %eax
25: 41 39 85 08 00 00 00 cmp %eax, 0x8(%r13)
2c: 0f 8f 0e 00 00 00 jg 40
32: e9 e9 ff ff ff (jmp removed to fallthrough) 

(d) Result after Copy-and-Patch

Figure 1.3 Copy-and-Patch process detailed overview [2].

The steps of the Copy-and-Patch approach, as described in the article [2],
are illustrated in Figure 1.3. In Figure 1.3a, a simple example of a stencil
implemented in C is shown. The stencil contains four placeholders, referred to
as “holes”, marked in blue. The first hole represents an offset used to access
a value, the second holds an immediate constant, and the third and fourth
are function call sites that will later be patched with addresses pointing to
appropriate locations in executable memory.

1No operation instruction - does no change to the execution environment
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Figures 1.3b and 1.3c depict the stencil extraction process. Figure 1.3c
shows the compiled machine code of the stencil, highlighting the positions of
the holes. The extraction tool then processes this binary into a C header file,
shown in Figure 1.3b, which is included in the Copy-and-Patch engine.

Finally, Figure 1.3d illustrates the completed result after executing the
Copy-and-Patch process. The engine places the stencil into a concrete memory
location and patches the holes with the appropriate values. The final JMP
instruction is removed, as discussed earlier.

This project adopts a similar system, adapted to accommodate the R run-
time and its unique characteristics.

1.4 R Bytecode
R is an interpreted language, but the interpreter comes in two forms. There’s
the AST interpreter which runs SEXPs as they are, and there’s the byte code
interpreter, which runs bytecode. Bytecode is generated from ASTs using the
byte code compiler. The compiler is a Just-In-Time compiler that is turned on
by default in the newest versions of R. If the JIT is running whenever function
is executed twice, it gets byte code compiled before the second execution. [16]

R bytecode is an intermediate representation of R code designed to opti-
mize execution by transforming high-level expressions into a compact, lower-
level format that can be processed by the R virtual machine. This bytecode
representation is generated by the compiler package and consists of a sequence
of instructions that operate on R’s internal data structures. Unlike machine
code, which is executed directly by hardware, R bytecode is interpreted by the
R bytecode engine, which is a part of the R runtime environment.

Each bytecode instruction corresponds to a fundamental operation in R,
such as arithmetic calculations, function calls, or control flow management.
Instructions are typically composed of an opcode and, in many cases, one or
more arguments specifying constants or labels. Example of a real R bytecode
can be seen in Code listing 1.1.

R’s bytecode follows a stack-based execution model, where each instruction
operates by manipulating an operand stack rather than using registers or direct
memory access. Instructions push and pop values from this stack as required,
performing computations before storing or returning results.

A simple example demonstrating this execution model is shown in Code list-
ing 1.2. The instruction LDCONST loads a compile-time constant and pushes it
onto the stack. As such, it has a stack effect of 0 POP and 1 PUSH, resulting in
a net stack size change of +1. The instruction ADD pops two values from the
stack, adds them together, and pushes the result back onto the stack. Thus,
it has a stack effect of 2 POP and 1 PUSH, yielding a net stack change of -1.
Finally, the RETURN instruction pops the top value from the stack and returns
it from the R function. Its stack effect is 1 POP and 0 PUSH, again resulting in
a net change of -1.
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# if (x > 5) print('hello')
GETVAR x
LDCONST 5
GT
BRIFNOT @label1
GETFUN print
PUSHCONSTARG "hello"
CALL
RETURN
@label1
LDNULL
INVISIBLE
RETURN

Code listing 1.1 Example R bytecode.

# return (1 + 2)
LDCONST 1
LDCONST 2
ADD
RETURN

Code listing 1.2 Stack-based approach demonstration.

This execution model enables compact expression evaluation. The use of
a stack simplifies instruction encoding, as operations do not need to refer-
ence specific memory locations or registers. Instead, operands are implicitly
accessed based on their position in the stack.

While the bytecode interpretation reduces some of the parsing and evalua-
tion costs of raw AST traversal, it does not fundamentally change the execution
model. Each bytecode instruction still corresponds to a small, boxed operation,
executed in isolation and mediated through the full interpreter stack.

1.5 Memory Representation: SEXPs
All values in R are heap-allocated and represented as SEXP (S-expression) ob-
jects. These are tagged unions with a fixed header and type-specific data. For
example, integers are represented as INTSXP objects, which contain a header
and a pointer to an array of 32-bit values. Symbols, closures, and environments
have their own corresponding SEXP types, all sharing a uniform interface via
macros like TYPEOF(x) and INTEGER(x).

This model ensures uniformity and runtime type safety but imposes several
costs. First, all values are boxed – primitive scalars cannot live on the stack
or in registers for long. Second, every access involves an indirection and a tag
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check. Finally, the garbage collector must track all objects and roots, further
increasing runtime overhead.

In numerical workloads, the cost of heap allocation and boxing is partic-
ularly visible. Even simple operations like a + b require heap-allocating the
result as a new vector object, rather than reusing stack-allocated temporaries.
The interpreter must also preserve R’s copy-on-modify semantics, complicating
in-place updates.

There are many SEXP types, but three are particularly important for this
project. The explanations for the following subsections are taken from the book
Everything You Always Wanted to Know About SEXPs But Were Afraid to
Ask, by Konrad Siek [16].

1.5.1 Type CLOSXP
A closure is represented by a CLOSXP. The payload of a closure’s SEXP is spec-
ified by a closxp_struct, which contains pointers to three other SEXPs: the
closure’s formals (argument definitions), its body, and its enclosing environ-
ment. This is visualized in Figure 1.4.

formals body env

LISTSXP LANGSXP ENVSXP

FORMALS(s)

BODY(s)

CLOENV(s)

Figure 1.4 CLOSXP representation [16].

The formals are a list of formal arguments that the function accepts ex-
pressed as a pairlist (LISTSXP). If the function has no formal arguments, for-
mals points to R_NilValue. If there are formal arguments, there is a list where
the tagval point to symbols representing the names of arguments, and carval
point to their values, if the arguments have default values. In arguments that
do not have values, carval is set to R_UnboundValue.

The body is an AST representing the body of the function. The enclosing
environment is the environment in which the function operates. These follow
the structure we have laid out earlier.
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1.5.2 Type BCODESXP
Internally, byte code compiled expressions in R are represented using a SEXP
of type BCODESXP. There is no specialized payload structure for this type;
instead, the general listsxp_struct is used, accessible through the listsxp
field of the u union. Figure 1.5 illustrates the internal layout of a BCODESXP
object.

carval tagval cdrval

BCODE_CODE(s)

BCODE_EXPR(s)

BCODE_CONSTS(s)

INTSXP NILSXP VECSXP

Figure 1.5 Internal representation of a BCODESXP object [16].

The BCODE_CODE field holds the actual byte code as a vector of encoded op-
erations and arguments. The BCODE_CONSTS field refers to a vector of constants
and associated metadata. The BCODE_EXPR field was likely intended to store
the original abstract syntax tree, but is currently unused and omitted by the
compiler.

As an example, consider compiling a simple literal expression:
library(compiler)
expr <- compile(42)
expr
<bytecode: 0x5555573ff110>

Disassembling this bytecode produces the instructions:
LDCONST 42
RETURN

The BCODE_CODE field contains these encoded instructions stored in an INTSXP
vector. However, these are not plain integers. Each element represents a BCODE
union, defined as:
typedef union { void *v; int i; } BCODE;

This allows an entry to store either a pointer to an operation or an integer argu-
ment. Due to platform-dependent alignment, each BCODE may occupy multiple
slots in the underlying INTSXP vector. The exact number is calculated as:
int m = (sizeof(BCODE) + sizeof(int) - 1) / sizeof(int);
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Typically, m = 2, meaning each instruction or argument spans two vector
elements. Therefore, a minimal bytecode sequence (one instruction and one
argument) may already require four entries. Figure 1.6 visualizes this layout.

carval tagval cdrval

length

8

truelength

0

allign

[0]

10

[1]

0

[2]

1432968343
[3]
21845

[4]

0

[5]

0

[6]

1432961375
[7]

21845

BCODE_CODE(s)

BCODE_EXPR(s)

BCODE_CONSTS(s)

INTSXP NILSXP VECSXP

R_xlen_t R_xlen_t

INTEGER_ELT:

int int int int int int int int

Figure 1.6 Bytecode representation in BCODE_CODE [16].

The first element of this vector always encodes the compiler version used
during compilation. Subsequent entries store instructions and their arguments.
To decode an instruction, the system uses the global opinfo array:
volatile static struct { void *addr; int argc; char *instname; }

opinfo[OPCOUNT];

Each operation is matched by its address field (addr) to the corresponding
v pointer from a BCODE entry. This matching is implemented in findOp:
static int findOp(void *addr) {

int i;
for (i = 0; i < OPCOUNT; i++)

if (opinfo[i].addr == addr)
return i;

error(_("cannot find index for threaded code address"));
}

The argument count (argc) associated with each instruction is also read
from this structure, allowing traversal of the bytecode vector.

Instruction arguments are not direct values, but are instead interpreted
as indices into the BCODE_CONSTS vector. In the above example, the LDCONST



Memory Representation: SEXPs 14

instruction takes the argument 0, referring to the first entry in BCODE_CONSTS,
which stores the constant 42. Figure 1.7 depicts this structure.

carval tagval cdrval

length

2

truelength

0

[0]

42

length

4

truelength

0

BCODE_CODE(s)

BCODE_EXPR(s)

BCODE_CONSTS(s)

INTSXP NILSXP VECSXP

R_xlen_t R_xlen_t

INTEGER_ELT:

R_xlen_t R_xlen_t

[1]

REALSXP INTSXP

INTEGER_ELT:

[0]

-2147483648
NA

[1]

0

int int

[2]

0

[3]

0

intint

Figure 1.7 Constant pool in BCODE_CONSTS [16].

The first entry of BCODE_CONSTS is always the entire original expression.
Thus, to reconstruct the uncompiled representation, one can retrieve element 0.
Additionally, the vector contains an expressionsIndex, an integer vector that
maps instructions back to their original source expressions. This index has the
same length as the number of bytecode instructions (including the version)
and aligns each to a corresponding constant expression. The first element is
always NA, since the version is not derived from the source.

A more complex example, such as compiling a simple function, follows the
same layout but with additional structure:
f <- cmpfun(function(x, y) x + y)
f
function(x, y) x + y
<bytecode: 0x55555b3b9130>

Here, the enclosing function is represented as a CLOSXP, but its body is
no longer a LANGSXP; it becomes a BCODESXP. The BCODE_CONSTS vector now
contains the entire uncompiled function body, variable references (x and y),
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and the + operation. Instructions like LDVAR and ADD reference these constants
via their argument indices.

In summary, the BCODESXP representation enables R to encode executable
expressions in a compact bytecode form, while preserving essential metadata
for reconstruction, introspection, and debugging. It integrates instruction en-
coding, source mapping, and constant management within a unified structure
that leverages existing SEXP mechanisms.

1.5.3 Type EXTPTRSXP
External pointers act as handles to C structures. They have a dedicated SEXP
type: EXTPTRSXP. There is no dedicated payload type that would represent
external pointers. Thus, listsxp_struct can be used to represent them, which
is accessed via the listsxp field of the payload union. The internal layout can
be seen in Figure 1.8.

carval tagval cdrval

EXTPTR_PTR(s)

EXTPTR_TAG(s)

EXTPTR_PROT(s)

void * SEXP SEXP

Figure 1.8 EXTPTRSXP representation [16].

The EXTPTR_PTR returns a pointer to a C structure, EXTPTR_TAG is used to
provide identification to the pointer, and EXTPTR_PROT can provide a SEXP
object that should be protected from GC, as long as the EXTPTR_PTR is alive.

Such pointer structures are not usually visible from standard R, but are
crucial for some packages that require low-level memory addressing, such as
this project.



Chapter 2

Implementation

This chapter describes both the static and dynamic components of the Copy-
and-Patch system in detail. It begins with an overview of how stencils are
compiled and extracted, followed by the structure of the runtime patching
engine. It also discusses optimizations applied to reduce code size and im-
prove performance, including strategies for register preservation, stack han-
dling, relocation simplification, and instruction specialization. In each case,
the discussion is accompanied by practical examples comparing optimized and
unoptimized code paths.

Each stencil corresponds to a single bytecode instruction and is compiled
as a standalone function. These functions are extracted from compiled object
files using a custom toolchain and stored as header files, which are linked into
the runtime engine. At runtime, when a function is JIT-compiled, a dedicated
stencil Copy-and-Patch engine instantiates these templates into contiguous
memory, patches immediate values and control flow targets, and links them
together to form a complete function body.

The complete implementation of the extraction toolchain and the runtime
engine consists of approximately 1,500 lines of hand-written C code. In addi-
tion, the stencil library comprises around 800 lines that adapt each instruction
implementation from Ř into stencils. A minimal wrapper is also provided to
expose the system as an R package, consisting of roughly 50 lines of combined
R and C code. The full source code is included in the attachment.

2.1 Stencil Implementation
Stencils form the foundation of this project, making it essential to adopt a de-
sign that promotes both high performance and long-term maintainability. The
central idea behind stencils is that they are compiled ahead of time using highly
optimized code generation.

To support this objective, the C programming language was chosen as the

16
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implementation language. This decision not only enables low-level performance
optimizations, but also aligns seamlessly with the existing Ř implementation
of instruction handlers, which is likewise written in C.

2.1.1 Stencil Design
When designing the stencils, it is important to keep in mind that they serve as
input to the subsequent extraction phase. This purpose influences the coding
approach, making it distinct from conventional executable or library develop-
ment.

The most straightforward method for implementing each R bytecode op-
eration as a stencil is to define a C function named after the corresponding
instruction. This naming convention simplifies both the implementation and
the extraction process in the next phase.

Since R bytecode operates on a stack-based model, there is no need to pass
temporary values between functions. This simplifies the stencil design and
allows the use of a uniform function prototype across all stencils.

Based on this approach, a preprocessor macro can be introduced to stan-
dardize stencil definitions.

#define RCP_OP(op) STENCIL_ATTRIBUTES SEXP _RCP_##op##_OP (void)

Code listing 2.1 Stencil definition macro.

This design also facilitates forwarding control to the next function call. All
functions1 conclude with a placeholder call that is later patched to point to
the subsequent instruction to be executed. This placeholder may be omitted
entirely if the current instruction is the last within the function (as further
discussed in Section 2.4.2).

The placeholder call is implemented as an extern function and is invoked
through an additional preprocessor macro created for this purpose.

extern SEXP _RCP_EXEC_NEXT(void);
#define NEXT return _RCP_EXEC_NEXT()

Code listing 2.2 Stencil placeholder return function.

To manipulate the R stack, macros provided in Code listing 2.3, as defined
in the Ř project, can be used.

1With the exception of the RETURN instruction, which returns the actual value and ter-
minates the execution.
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#define PUSH_VAL(n) \
do { \

int __n__ = (n); \
if (R_BCNodeStackTop + __n__ > R_BCNodeStackEnd) { \
nodeStackOverflow(); \

} \
while (__n__-- > 0) { \
SET_SXP_VAL(R_BCNodeStackTop++, R_NilValue); \

} \
} while (0)

#define POP_VAL(n) \
do { \
R_BCNodeStackTop -= (n); \

} while (0)

#define GET_VAL(i) (R_BCNodeStackTop - (i))

Code listing 2.3 Ř stack macros.

A practical application of these features (shown in Code listings 2.1, 2.2,
and 2.3) is demonstrated in Code listing 2.4, which contains a real implemen-
tation of a stencil for the POP instruction. Disassembly of this stencil can be
seen in Code listing 2.5.

RCP_OP(POP) {
POP_VAL(1);
NEXT;

}

Code listing 2.4 Stencil for the POP instruction.

subq $0x10, R_BCNodeStackTop(%rip)
jmp _RCP_EXEC_NEXT@PLT

Code listing 2.5 Stencil for the POP instruction compiled.

It is worth noting that, as observed in the compiled code, control flow is
transferred to the placeholder via a JMP rather than a CALL. This occurs due to
the compiler applying tail call optimization – since there are no instructions
following the call, the compiler replaces it with a more efficient JMP. As the
Copy-and-Patch approach relies on this optimization for optimal performance,
it is essential to verify that the optimization is indeed applied in the context
of this project.
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2.1.2 Instruction Arguments
Each R bytecode operation may include arguments that are known at compile
time. These arguments must be accessible within the stencil code. While the
intuitive approach might be to pass them as function parameters, doing so
would violate the requirement for uniform function prototypes.

An alternative would be to pass a pointer to an array of arguments, al-
lowing each function to retrieve only what it needs and increment the pointer
accordingly. Although this would work, it introduces inefficiencies due to the
additional indirection, pointer arithmetic, and consuming of a register solely
for parameter passing.

A more efficient approach is to patch the compile-time arguments directly
into the machine code during the patch phase. This method avoids the over-
head and is also straightforward to use within the stencils. To support this,
several read-only global variables are introduced, each corresponding to a pos-
sible argument position. These variables are marked with the extern keyword
and use project reserved names.

When writing stencil code, these variables can be referenced to access the
compile-time arguments. The compiler generates a relocation entry for each
reference to these reserved names. During the extraction phase, these ref-
erences are identified, and, rather than being relocated to internal symbols,
are replaced with compile-time constants associated with the instruction (dis-
cussed more in Section 2.4.1).

To simplify the patching process, each immediate argument is represented
by a separate extern variable with an ordinal suffix, rather than a single array.
Since R instructions have at most four immediate arguments, this approach
remains practical. This can be seen in Code listing 2.6.

extern const int _RCP_RAW_IMM0;
extern const int _RCP_RAW_IMM1;
extern const int _RCP_RAW_IMM2;
extern const int _RCP_RAW_IMM3;
#define GET_IMM(index) _RCP_RAW_IMM##index

Code listing 2.6 Constant argument extern symbols.

For instance, if a stencil prints its first immediate argument to the console,
it could be implemented as shown in Code listing 2.7.

RCP_OP(EXAMPLE) {
printf("%d\n", GET_IMM(0));
NEXT;

}

Code listing 2.7 Instruction immediate access example.
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Furthermore, additional runtime overhead can be avoided by resolving an-
other layer of indirection during the patch phase. Although R bytecode argu-
ments are integers, they are almost always used as either indices into a constant
pool or labels for control flow.

In both scenarios, the indirection can be resolved ahead of time, and the
evaluated result can be provided directly. This requires support from both
the extraction tool and the patching process, but remains simple to use when
developing stencils. To enable this, another set of reserved extern symbols,
this time of the target type (e.g., SEXP), is used.

Likewise, for control flow instructions to efficiently perform jumps, ad-
ditional extern placeholder functions are defined to represent jump targets.
During extraction, the tool recognizes these reserved function names, enabling
the patch algorithm to substitute them with the actual memory addresses
corresponding to bytecode labels.

These implementations are shown in Code listings 2.8 and 2.9, respectively.

extern const SEXP _RCP_CONST_AT_IMM0;
extern const SEXP _RCP_CONST_AT_IMM1;
extern const SEXP _RCP_CONST_AT_IMM2;
extern const SEXP _RCP_CONST_AT_IMM3;
#define GETCONST_IMM(i) _RCP_CONST_AT_IMM##i

Code listing 2.8 Constant argument constpool symbol.

extern STENCIL_ATTRIBUTES SEXP _RCP_EXEC_IMM0(void);
extern STENCIL_ATTRIBUTES SEXP _RCP_EXEC_IMM1(void);
extern STENCIL_ATTRIBUTES SEXP _RCP_EXEC_IMM2(void);
extern STENCIL_ATTRIBUTES SEXP _RCP_EXEC_IMM3(void);
#define GOTO_IMM(i) return _RCP_EXEC_IMM##i()

Code listing 2.9 Constant argument control flow symbol.

The usage of both mechanisms is straightforward, as demonstrated in
Code listing 2.10. In this example, the fictional instruction takes two immedi-

RCP_OP(EXAMPLE_ADVANCED) {
Rf_PrintValue(GETCONST_IMM(0));
GOTO_IMM(1);

}

Code listing 2.10 Advanced constant access example.

ate constant arguments: the first is an integer representing an index into the
constant pool, identifying the constant to be retrieved; the second is an integer
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indicating the bytecode position or label to which control should jump after
the instruction completes execution. Both arguments are resolved at compile
time to eliminate the indirection that would otherwise be required within the
stencil itself. The compiled result of this stencil is shown in Code listing 2.11.

lea _RCP_CONST_AT_IMM0(%rip), %rdi
push %rax
call Rf_PrintValue@PLT
pop %rdx
jmp _RCP_EXEC_IMM1@PLT

Code listing 2.11 Advanced constant access example compiled.

As in earlier examples, the compiler applies tail call optimization. This
confirms that even control flow–altering instructions conform to the design
principles required for an efficient Copy-and-Patch implementation.

Several other symbols used to resolve indirections appear within the sten-
cils, all adhering to the same principles illustrated in Code listing 2.8. Addi-
tionally, a relocation symbol for the R execution environment is introduced,
referred to as rho.

2.1.3 Usage of Ř
The Ř implementation provides functions for each instruction, expecting all
required values as arguments (e.g., input/output values, bytecode immediate
constants, and others). An example function prototype is shown in Code list-
ing 2.12.

void Rsh_EndAssign2(Value *rhs, Value lhs_cell, Value value,
SEXP symbol, SEXP rho);

Code listing 2.12 Ř function example.

This function operates on three stack values: the first used for both input
and output, and the remaining two for input only. It also expects a SEXP
symbol, which corresponds to a constant retrieved from the bytecode, and

finally, the rho environment.
All of these arguments can be supplied from within the stencil environment.

Thus, a stencil for this instruction can be easily implemented by including
the Ř header and invoking the corresponding Ř function. Stack-based Value
arguments are passed in order from bottom to top. If multiple constants are
present, they are provided sequentially from the first to the last. An example
of this can be seen in Code listing 2.13.
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RCP_OP(ENDASSIGN2) {
Rsh_EndAssign2(GET_VAL(3), *GET_VAL(2), *GET_VAL(1),

GETCONST_IMM(0), GET_RHO());
POP_VAL(2);
NEXT;

}

Code listing 2.13 ENDASSIGN2 stencil.

The compiler inlines the Ř function and generates the full stencil using the
appropriate relocations. Once the Ř function finishes execution, the stencil
removes the appropriate number of values from the stack, as specified in the
instruction documentation.

Similarly, when a function needs to push new values onto the stack, the
stencil performs the push before the Ř call and provides pointers to the newly
added values. Example of this can be seen for in the LDCONST stencil seen
in Code listing 2.14.

RCP_OP(LDCONST) {
PUSH_VAL(1);
Rsh_LdConst(GET_VAL(1), GETCONST_IMM(0));
NEXT;

}

Code listing 2.14 LDCONST stencil.

As described earlier, Ř also incorporates a caching mechanism for variable
access, using a technique called BCells. To support Ř functions that rely
on this optimization, the stencil system must be capable of relocating BCell
accesses for later patching. To see how this can be done in our stencil design,
refer to Code listing 2.15. BCells are configured to “mirror” accesses to SYMSXP

EXTERN_ATTRIBUTES extern BCell _RCP_CONSTCELL_AT_IMM0;
EXTERN_ATTRIBUTES extern BCell _RCP_CONSTCELL_AT_IMM1;
EXTERN_ATTRIBUTES extern BCell _RCP_CONSTCELL_AT_IMM2;
EXTERN_ATTRIBUTES extern BCell _RCP_CONSTCELL_AT_IMM3;
#define GETCONSTCELL_IMM(i) &_RCP_CONSTCELL_AT_IMM##i

Code listing 2.15 Constant argument constcell.

constants representing variable names. Because of this, they are accessed using
the same argument indices as constants retrieved from the constant pool.

The only case where BCells are accessed differently than described is in for
loops. The STEPFOR instruction must access the BCell that mirrors the loop
iteration variable. Since this variable’s symbol is provided as an immediate
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RCP_OP(GETVAR) {
PUSH_VAL(1);
Rsh_GetVar(GET_VAL(1), GETCONST_IMM(0),

GETCONSTCELL_IMM(0), GET_RHO());
NEXT;

}

Code listing 2.16 GETVAR stencil example.

argument to the STARTFOR instruction, and STEPFOR contains a label pointing
to it, we can relocate the BCell accordingly. For this specialized use case,
another set of extern variables is introduced, as shown in Code listing 2.17.

EXTERN_ATTRIBUTES extern BCell _RCP_CONSTCELL_AT_LABEL_IMM0;
EXTERN_ATTRIBUTES extern BCell _RCP_CONSTCELL_AT_LABEL_IMM1;
EXTERN_ATTRIBUTES extern BCell _RCP_CONSTCELL_AT_LABEL_IMM2;
EXTERN_ATTRIBUTES extern BCell _RCP_CONSTCELL_AT_LABEL_IMM3;
#define GETCONSTCELL_LABEL_IMM(i) &_RCP_CONSTCELL_AT_LABEL_IMM##i

Code listing 2.17 Constant argument constcell.

The STEPFOR stencil also serves as an example of one of the few cases where
control flow is conditionally determined by the return value of the Ř function.
In most other cases, the functions return void. The STEPFOR stencil implemen-
tation is shown in Code listing 2.18.

RCP_OP(STEPFOR) {
if (Rsh_StepFor(GET_VAL(3), GET_VAL(2), GET_VAL(1),

GETCONSTCELL_LABEL_IMM(0), GET_RHO()))
GOTO_IMM(0);

else
NEXT;

}

Code listing 2.18 STEPFOR stencil.

Following this methodology, all R bytecode instructions supported by Ř were
implemented using Ř instruction functions and custom relocation symbols.
The resulting collection of stencils is contained in a single file, prepared for
compilation in the next stage. This file is included in the attachments.

2.2 Additional Optimizations in Stencils
Given that stencils are central to the design of this project, their efficiency
directly impacts overall performance. This section outlines several techniques
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and strategies employed to optimize stencil implementations, ensuring they
execute as efficiently as possible while maintaining correctness and compati-
bility.

2.2.1 Eliminating Redundant Register Saving
Each stencil is implemented as a standalone function body. Without any extra
information, the compiler assumes standard calling conventions apply, meaning
function calls must follow regular rules for register preservation. On Linux
systems using the x86_64 architecture, this follows the System V ABI [17],
which requires roughly half of the general-purpose registers to be preserved by
the callee.

However, this assumption introduces unnecessary overhead in our use case.
Stencil code is not invoked through conventional function calls, but rather exe-
cuted sequentially from copy-patched machine code. Consequently, preserving
callee-saved registers, only to restore them before returning, is redundant.
This not only increases the size of each stencil but also introduces avoidable
performance penalties.

Starting from version 14, GCC supports the no_callee_saved_registers
function attribute. When applied to a function, this attribute informs the
compiler that it is not responsible for saving or restoring any callee-saved
registers. The burden of preserving registers is instead shifted to the caller,
allowing for more efficient function definitions when the compiler can determine
that certain registers are not live across calls.

GCC further optimizes such function calls by analyzing register usage: it
saves only those registers that are live and omits saving those that are not. This
results in reduced code size and improved performance. In scenarios where a
call to a function marked with this attribute occurs as the final instruction in
the caller’s body, the compiler can completely eliminate register-saving oper-
ations.

This usage pattern aligns precisely with our stencil design. Each stencil
concludes by transferring control to the next stencil via a placeholder func-
tion. When this placeholder is defined with the no_callee_saved_registers
attribute, the compiler omits all instructions related to register preservation.

The impact of this optimization is illustrated in Code listing 2.19. The orig-
inal stencil, adhering to the standard calling convention, includes instructions
to push callee-saved registers onto the stack at the beginning of the function.
In contrast, the optimized version, employing the aforementioned attribute,
omits these instructions entirely, resulting in a more compact and efficient
code segment.

To ensure compatibility with multiple compilers, the stencil source code in-
cludes a preprocessor directive that verifies compiler support for the required
attribute (see Code listing 2.20). If a supported compiler is not detected, a
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push %r15
push %r14
push %r13
push %r12
push %rbp
push %rbx
sub $0x18, %rsp
mov R_BCNodeStackTop(%rip), %r12
mov -0x20(%r12), %r13d
mov -0x10(%r12), %eax
mov -0x18(%r12), %rbp
mov -0x8(%r12), %rdi
cmp $0xe, %r13d
jne 80 <_RCP_ADD_OP+0x80>
...

(a) Start of ADD stencil (original)

sub $0x18, %rsp
mov R_BCNodeStackTop(%rip), %r12
mov -0x20(%r12), %r13d
mov -0x10(%r12), %eax
mov -0x18(%r12), %rbp
mov -0x8(%r12), %rdi
cmp $0xe, %r13d
jne 80 <_RCP_ADD_OP+0x80>
...

(b) Start of ADD stencil (optimized)

Code listing 2.19 Comparison for optimized version of the ADD stencil.

warning is issued, but the compilation proceeds (without enabling this opti-
mization).

#if __GNUC__ >= 14
#define STENCIL_ATTRIBUTES \
__attribute__((no_callee_saved_registers)) __attribute__ ((noinline))
#else
#warning "Compiler does not support no_callee_saved_registers \
directive. Generated code will be slower."

#define STENCIL_ATTRIBUTES \
__attribute__ ((noinline))
#endif

Code listing 2.20 Function attribute optimization and preprocessor check.

While this attribute significantly reduces code size and improves runtime
efficiency, its effective use during stencil execution requires the calling en-
vironment to assume responsibility for register preservation. Typically, the
compiler handles this automatically when invoking a function marked with
no_callee_saved_registers. However, doing so necessitates that the calling
environment (specifically, the R runtime in our case) be compiled with GCC
version 14 or later.

At the time of writing, GCC 14 has not yet achieved widespread adop-
tion across distributions. Requiring this specific version solely to support one
optimization would be impractical and introduce deployment constraints.

To circumvent this limitation while still benefiting from the optimization,
we introduce a special-purpose stencil, referred to as the init stencil (see
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Code listing 2.21 and 2.22). This stencil is inserted exactly once at the
beginning of every patched program. Its role is to proactively back up all
general-purpose registers prior to the start of execution and to restore them
upon program termination.

By handling register preservation at the entry and exit points of the pro-
gram, this approach ensures that execution remains fully transparent to the
R environment, even in the absence of a compiler that supports the required at-
tribute. Thus, the optimization remains effective without imposing additional
requirements on the runtime environment.

extern STENCIL_ATTRIBUTES SEXP _RCP_EXEC_NEXT(void);
SEXP _RCP_INIT () {

return _RCP_EXEC_NEXT();
}

Code listing 2.21 Init function.

push %r15
push %r14
push %r13
push %r12
push %rbp
push %rbx
push %rax
call _RCP_EXEC_NEXT@PLT
pop %rdx
pop %rbx
pop %rbp
pop %r12
pop %r13
pop %r14
pop %r15
ret

Code listing 2.22 Init function compiled.

This optimization reduced the average stencil code size by approximately
2% without requiring changes to individual stencil implementations.

2.2.2 Patching Values Instead of Addresses
As outlined earlier, the Copy-and-Patch approach relies on patching values
into stencils. However, current compilers do not allow this directly, or at least
not intuitively.
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It was previously established that immediate bytecode values would be
patched using extern variables. The compiler emits relocations for these vari-
ables, and an external tool extracts this information to register the patch
locations and contents.

But even if such a variable is declared const, the compiler still generates
a relocation to its address. Since we already know the value to be patched,
storing its address instead introduces an unnecessary level of indirection.

However, when the stencil takes the address of an extern variable (using
the & operator), this address is relocated as a value.

We exploit this behavior by never accessing the external variables directly.
Instead, we always take their address and cast it to the required type. Since
the relocations are handled by our own tooling, we can safely patch in the
actual value rather than the address, contrary to what the compiler would
normally expect.

Instead of the symbols shown in earlier Code listings 2.6 and 2.8, stencils
now use the pattern shown in Code listing 2.23.

extern const void* const _RCP_RAW_IMM0[];
extern const void* const _RCP_RAW_IMM1[];
extern const void* const _RCP_RAW_IMM2[];
extern const void* const _RCP_RAW_IMM3[];
#define GET_IMM(index) (unsigned)(int64_t)&_RCP_RAW_IMM##index

extern const void* const _RCP_CONST_AT_IMM0[];
extern const void* const _RCP_CONST_AT_IMM1[];
extern const void* const _RCP_CONST_AT_IMM2[];
extern const void* const _RCP_CONST_AT_IMM3[];
#define GETCONST_IMM(i) (const SEXP const)(&_RCP_CONST_AT_IMM##i)

Code listing 2.23 Direct value patching of constants.

These symbols are declared as extern arrays to force the compiler to emit
absolute 64-bit relocations, even in non-large memory models. This is neces-
sary for accessing arbitrary values such as integers or SEXP constants.

This technique assumes that patched values remain constant. If a value
were to change at runtime, it would not be visible to the stencil. Therefore,
this is safe only for truly immutable variables. In contrast, accesses to variables
such as BCell or rho are modified by the R runtime, and therefore cannot make
use of this optimization.

A comparison of compiled stencils with and without this optimization is
provided in Code listing 2.24.

While the number of instructions remains the same, the optimized version
uses a MOV variant that loads an immediate value directly into a register. In
contrast, the unoptimized version performs a memory load from an address.

An additional performance gain may result from the compiler’s assumption
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mov R_BCNodeStackTop(%rip), %rax
lea 0x10(%rax), %rdx
mov %rdx, R_BCNodeStackTop(%rip)
xor %edx, %edx
movl $1, R_Visible(%rip)
mov %edx, (%rax)
mov _RCP_CONST_AT_IMM0(%rip),

%rdx
mov %rdx, 0x8(%rax)
jmp _RCP_EXEC_NEXT@PLT

(a) LDCONST (relocating address).

mov R_BCNodeStackTop(%rip), %rax
lea 0x10(%rax), %rdx
mov %rdx, R_BCNodeStackTop(%rip)
movabs _RCP_CONST_AT_IMM0(%rip),

%rcx
xor %edx, %edx
movl $1, R_Visible(%rip)
mov %rcx, 0x8(%rax)
mov %edx, (%rax)
jmp _RCP_EXEC_NEXT@PLT

(b) LDCONST (relocating value).

Code listing 2.24 Comparison of relocating address vs value.

that a patched SEXP value, now appearing as an immediate, will not change.
When only the address is known, the compiler must assume the underlying
value may be updated externally, requiring reloading on each use. With this
optimization, the compiler can safely assume immutability and skip redundant
loads.

2.2.3 Omitting Stack Overflow Check
Each time a value is pushed to the stack, a safety check is performed to de-
tect potential stack overflow. While this is the safest option, it introduces
conditional branches into every stencil, which can degrade performance.

Because the stack macro is inlined and stencil bodies are replicated into
memory via the Copy-and-Patch mechanism, these branches are executed only
once per program path. It could be argued that this limits opportunities for
branch prediction to learn and optimize such patterns, potentially resulting in
frequent mispredictions.

To address this, we introduce a preprocessor macro that allows the safety
check to be disabled entirely. The modified PUSH_VAL macro is shown in
Code listing 2.25.

A comparison of compiled stencils with and without this optimizatio, using
the LDTRUE instruction, is provided in Code listing 2.26.

2.2.4 Optimizing Pushing to Stack
The macro responsible for pushing values onto the stack, shown in Code list-
ing 2.3, is not as optimized as it could be.

To avoid problems with the garbage collector, each value that should be
pushed to stack needs to already have an assigned space there. There should
not be a time where, in between R runtime calls, there is an unattended SEXP
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#ifndef NO_STACK_OVERFLOW_CHECK
#define CHECK_OVERFLOW(__n__) \
do { \

if (__builtin_expect(R_BCNodeStackTop + __n__ > \
R_BCNodeStackEnd, 0)) { \
nodeStackOverflow(); \

} \
} while (0)
#else
#define CHECK_OVERFLOW(__n__)
#endif

#define PUSH_VAL(n) \
do { \

int __n__ = (n); \
CHECK_OVERFLOW(__n__); \
while (__n__-- > 0) { \
SET_SXP_VAL(R_BCNodeStackTop++, R_NilValue); \

} \
} while (0)

Code listing 2.25 Optimized PUSHVAL.

mov R_BCNodeStackTop(%rip), %rax
lea 0x10(%rax), %rdx
cmp %rdx, R_BCNodeStackEnd(%rip)
jb 2d <_RCP_LDTRUE_OP+0x2d>
mov %rdx,R_BCNodeStackTop(%rip)
movl $0x1, 0x8(%rax)
movl $0xa, (%rax)
jmp _RCP_EXEC_NEXT@PLT
push %rax
call 33 <_RCP_LDTRUE_OP+0x33>

(a) LDTRUE with safe stack push.

mov R_BCNodeStackTop(%rip), %rax
lea 0x10(%rax), %rdx
movl $0x1, 0x8(%rax)
mov %rdx, R_BCNodeStackTop(%rip)
movl $0xa, (%rax)
jmp _RCP_EXEC_NEXT@PLT

(b) LDTRUE with fast stack push.

Code listing 2.26 Comparison of STACK_PUSH safety optimization.

value anywhere in the stencil. Therefore, the values are changed directly on
stack.

This requires stencils that grow the stack to first increase the stack size
and insert a placeholder value for each slot. In the original implementation,
R_NilValue was used as the placeholder. While logically correct, this choice
introduces inefficiencies due to how it interacts with the Ř stack optimization.

As discussed earlier, Ř introduces an optimization that allows stack entries
to hold primitive values (int, double, or logical) instead of relying exclusively
on full SEXP objects. This is done to avoid the overhead of converting SEXP
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into primitive types every time there is an arithmetic operation.
This specialization is implemented as a tagged union, with the union values

being the mentioned primitive types + SEXP (pointer) for cases where this
optimization cannot be applied.

When a SEXP is placed on the stack, the union tag is set to zero and the
pointer is stored in the SEXP field.

The compiler is intelligent, and when a code sets a value into a variable and
later overwrites it, the first write is optimized out. There is potential for this
optimization in the stencil code, as the empty values pushed on stack could be
left out, if is it overwritten right after.

However, because the place to be overwritten is a union (and not all
datatypes inside it have the same size), the compiler cannot/does not omit
the first write out, when the following write could be of a smaller size.

This means that in some stencils, there is an unnecessary write to memory
at the start of the stencil.

To address this, a different placeholder strategy is used: instead of ini-
tializing the slot with R_NilValue, we set the tag to indicate a primitive type
and leave the value field unchanged. Since primitive-tagged stack entries are
ignored during garbage collection, this is semantically safe. More importantly,
the initialization now consists of a single memory write (just the tag) which
can be optimized out if the field is overwritten shortly thereafter.

The revised PUSH_VAL macro is shown in Code listing 2.27.

1 #define PUSH_VAL(n) \
2 do { \
3 int __n__ = (n); \
4 if (R_BCNodeStackTop + __n__ > R_BCNodeStackEnd) { \
5 CHECK_OVERFLOW(__n__); \
6 } \
7 while (__n__-- > 0) { \
8 (R_BCNodeStackTop++)->tag = INTSXP; \
9 } \

10 } while (0)

Code listing 2.27 Optimized PUSHVAL.

Only Line 8 is changed: instead of using SET_SXP_VAL, we directly set the
tag and advance the stack pointer.

A real-world comparison using the LDTRUE instruction is shown in Code list-
ing 2.28. For simplification, the overflow check described in Section 2.2.3 is
also disabled in this comparison.

The comparison was done with the real instruction LDTRUE. A stack push
is performed, after which its value is set to logical one, using the Ř optimizing
union.
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mov R_BCNodeStackTop(%rip), %rax
lea 0x10(%rax), %rdx
mov %rdx,R_BCNodeStackTop(%rip)
mov R_NilValue(%rip), %rdx
movl $0xa, (%rax)
mov %rdx, 0x8(%rax)
movl $0x1, 0x8(%rax)
jmp _RCP_EXEC_NEXT@PLT

(a) LDTRUE with old stack push.

mov R_BCNodeStackTop(%rip), %rax
lea 0x10(%rax), %rdx
movl $0x1, 0x8(%rax)
mov %rdx, R_BCNodeStackTop(%rip)
movl $0xa, (%rax)
jmp _RCP_EXEC_NEXT@PLT

(b) LDTRUE with optimized stack push.

Code listing 2.28 Comparison of STACK_PUSH optimization.

The old method can be seen using the R_NilValue, even though it’s com-
pletely unnecessary in this stencil.

2.2.5 Efficient Memory Access to Internal Reloca-
tions

When the large memory model is not in use, the compiler is capable of gen-
erating shorter and more efficient memory access instructions using relative
addressing.

In the medium memory model, whether the compiler emits relative or
absolute addressing for external symbols depends on the size of the referenced
variable. For variables exceeding the size of a pointer, the compiler defaults to
using absolute addressing, leading to longer and less efficient instructions.

The Ř runtime defines several extern SEXP arrays required for optimiza-
tions. Since the compiler cannot know their runtime size, it conservatively
chooses absolute addressing. However, we know these symbols will always
reside within reach for relative 32-bit access

To use the smaller memory access instructions for these extern symbols,
we can annotate them with a compiler attribute that convinces the compiler
that these symbols are near enough and can be relocated in the more efficient
way.

This requires a minor change in how the arrays are declared in the Ř source.
While this optimization could theoretically apply to the baseline Ř as well, we
limit it to stencils by using a preprocessor macro that activates the attribute
only when included from a stencil source file.

The macro is applied to all internal runtime arrays that are relocated from
within the stencil code.

2.2.6 Stencil Specialization
Stencil specialization is an optimization approach already explored in the orig-
inal article that inspired this work [2]. However, the scope for specialization
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#ifdef RCP
#define EXTERN_ATTRIBUTES __attribute__((section(".data"), visibility

("hidden")))
#else
#define EXTERN_ATTRIBUTES
#endif

Code listing 2.29 Ř extern attributes.

is more limited in R bytecode, as stencils typically operate on stack values,
which are unknown at compile time.

Nevertheless, some bytecode instructions contain immediate operands, and
this information is available during compilation. In certain cases, these imme-
diate values enable useful optimizations.

The Ř project implements specialized versions of stencils for instructions
where part of the runtime logic can be moved to compile time by leveraging
the known immediates.

A primary example is the LDCONST instruction, which loads a constant
from the constant pool based on an immediate index and pushes it onto the
stack. Although this constant is always a SEXP, Ř’s stack optimization allows
stack entries to hold primitive types: int, double, or logical instead.

Since the type of each constant is known at compile time, the conversion
from SEXP to a primitive type can be performed ahead of time. A special-
ized stencil is generated to directly load the primitive value, thereby reducing
runtime work.

Each specialized version is implemented as a standalone stencil with a
distinct name. This name allows the Copy-and-Patch stage to select the ap-
propriate variant during code generation (described in Section 2.5.4). These
variants are illustrated in Code listing 2.30.

A similar specialization strategy is applied to the MATH1 instruction, which
includes an immediate specifying which mathematical function to apply. Be-
cause the program will know during compile time which math operation it uses
(based on its argument), this function can be specialized to each mathematical
operation.

Code listing 2.31 shows two variants of the MATH1 stencil, each special-
ized to a specific mathematical operation. For clarity, only the differing basic
block is shown. Each version contains a direct call to the corresponding math
function, bypassing indirection and improving performance.
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RCP_OP(LDCONST_INT) {
PUSH_VAL(1);
Rsh_LdConstInt(GET_VAL(1), GETCONST_IMM(0));
NEXT;

}
RCP_OP(LDCONST_DBL) {
PUSH_VAL(1);
Rsh_LdConstDbl(GET_VAL(1), GETCONST_IMM(0));
NEXT;

}
RCP_OP(LDCONST_LGL) {
PUSH_VAL(1);
Rsh_LdConstLgl(GET_VAL(1), GETCONST_IMM(0));
NEXT;

}
RCP_OP(LDCONST_SEXP) {
PUSH_VAL(1);
Rsh_LdConst(GET_VAL(1), GETCONST_IMM(0));
NEXT;

}

Code listing 2.30 Optimized LDCONST stencils.

...
vmovsd -0x8(%rbx), %xmm1
vmovapd %xmm1, %xmm0
vmovsd %xmm1, 0x8(%rsp)
call floor
vmovsd 0x8(%rsp), %xmm1
vucomisd %xmm0, %xmm0
jp 5e <_RCP_MATH1_0_OP+0x5e>
...

(a) MATH1 stencil with argument 0 (floor).

...
vmovsd -0x8(%rbx), %xmm1
vmovapd %xmm1, %xmm0
vmovsd %xmm1, 0x8(%rsp)
call ceil
vmovsd 0x8(%rsp), %xmm1
vucomisd %xmm0, %xmm0
jp 5e <_RCP_MATH1_1_OP+0x5e>
...

(b) MATH1 stencil with argument 1 (ceil).

Code listing 2.31 Example of specialized MATH1 stencils compiled.

As can be seen in the middle of the basic block, each stencil directly calls
a different mathematical function.

2.3 Stencil Compilation
For our implementation, we selected the x86_64 architecture running on a
Linux operating system. This choice is motivated by the widespread adoption
of this platform, as well as its proven compatibility with Ř.

The stencil source file is compiled into an object file, which serves as an in-
termediate representation from which stencil functions can be extracted. This
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object file must conform to the Executable and Linkable Format (ELF), the
standard binary format used on Unix-like systems.

To compile the stencil code, we employed the GNU Compiler Collection
(GCC). Our selection of GCC is primarily influenced by its support, beginning
in version 14, for the no_callee_saved_registers function attribute. This
attribute plays a role in one of our Copy-and-Patch optimizations (detailed in
Section 2.2.1).

The stencil code is compiled with a specific set of compiler flags. Each
option is selected for a particular purpose, aimed at ensuring compatibility
with the function extraction process and the runtime system. The table 2.1
summarizes these options, their roles, and their relevance to our project.

It should be noted that the use of the medium memory model may not be
suitable for all target systems. In environments where the operating system
randomizes the memory layout of dynamically loaded libraries (a common
security feature), the copy-patch compiler described in the next phase may
be unable to express all necessary pointers using relative addressing. In such
cases, the stencil code must be recompiled using the large memory model to
ensure correctness.

Because the Copy-and-Patch approach relies on the ability to lay out ma-
chine code sequentially in memory, code alignment is not feasible. This lim-
itation prevents the use of several optimizations typically enabled by default
in GCC. Specifically, it is necessary to disable function and control flow align-
ment via the -fno-align-functions, -fno-align-loops, -fno-align-jumps, and
-fno-align-labels flags.

Fortunately, the -Os optimization level implicitly disables these alignment
optimizations while retaining all other optimizations available under -O2, mak-
ing it an ideal fit for our use case [18].

Optimization option that focuses on size aggressively (-Oz) is not used, as
it was tested that the average stencil size decreases by just 2%. Given that -Oz
tends to disable certain performance-related optimizations in pursuit of size
reduction, it was concluded that the trade-off was not justified.

All options combined produce the following prompt:
gcc stencils.c -o stencils.o -c -ffunction-sections -Os -march=native

-fno-stack-protector -fcf-protection=none -fno-asynchronous-
unwind-tables -fno-pic -mcmodel=medium -fno-merge-constants -fno-
jump-tables

2.4 Stencil Extraction
After the object file is produced, a program is run to extract machine instruc-
tions and associate them with the corresponding R instructions, while also
identifying the holes and their types based on relocation symbols.
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Option Description Justification in Project
-c Compile only; skip

linking and produce an
object file.

Required to generate an object
file from which individual func-
tions can be extracted using
our extraction tool.

-ffunction-sections Places each function in
its own section in the
object file.

Enables easier extraction of in-
dividual functions, as each re-
sides in a separate section.

-Os Optimize for size (with
a balance for speed).

Important due to our Copy-
and-Patch approach; keeping
code size small minimizes mem-
ory overhead.

-march=native Use extended instruc-
tion set of the CPU the
compiler is running on

Uses the full potential of the
CPU. Because stencils are to be
compiled on each system dur-
ing installation, it is safe to use.

-fno-stack-protector
-fcf-protection=none

Disables stack canaries
and control-flow pro-
tection.

These security features are un-
necessary and would compli-
cate analysis and patching;
thus, they are disabled.

-fno-asynchronous-
unwind-tables

Disables generation of
unwind tables for ex-
ception handling or de-
bugging.

Reduces object file size and
avoids clutter, as we do not re-
quire exception handling.

-fno-pic Disables generation of
position-independent
code.

Since the code will be patched
to fixed memory addresses,
this improves performance by
avoiding indirection.

-mcmodel=medium Uses the medium mem-
ory model, allowing
larger address ranges
where needed.

Necessary for accessing larger
R runtime variables potentially
located beyond lower 2 GB of
memory.

-fno-merge-constants Avoids merging iden-
tical constants and
places them in a single
section.

Simplifies analysis and extrac-
tion, as read-only data is cen-
tralized.

-fno-jump-tables Disables generation of
jump tables for switch
statements.

Prevents the need to patch en-
tire tables upon function copy-
ing, simplifying the patching
process and minimizing code
size.

Table 2.1 Compiler options used and their justifications in the project.
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Once all the data is collected, it must be exported in a format suitable for
use by the Copy-and-Patch compiler. Since reduced compilation time is one
of the key advantages of this approach, as much processing as possible should
be offloaded to the extraction tool. This means that the output format must
be trivial to parse and integrate.

To meet this requirement, stencils are exported as C header files, which can
be included in the compiler directly via the #include directive. This avoids
any runtime parsing or file I/O overhead and effectively embeds the stencil
data as part of the compiler binary.

2.4.1 Parsing the Object File
The extraction program is written in C and uses the Binary File Descriptor
library [19] to parse the object file and extract the necessary information.

The program iterates over all sections in the object file. Each section
carries metadata flags that describe its contents. Of particular interest are
sections marked with SEC_CODE, indicating that the section contains executable
instructions.

The only non-code section that is extracted is .rodata, which contains con-
stants that the compiler was unable to inline, typically C strings and floating-
point constants. This section is notable because it requires maximum system
alignment when laid out in memory, which becomes relevant during stencil
memory placement in the later phases of the project.

As the compiler was invoked with the -ffunction-sections flag, each func-
tion resides in its own section. This convention conveniently encodes the func-
tion name into the section name, simplifying the task of splitting code into
separate stencils.

When the program encounters such a function section, it extracts its con-
tents (raw executable bytes) and records them alongside the function’s name.
It then examines any associated relocation entries and records them as the
holes within the stencil.

Each relocation has a type that specifies how it should be applied. The
current implementation supports five relocation types (see Table 2.2), which
covers all observed patterns using the selected compilation settings 2.

For each relocation, the program records:

The offset in the instruction stream where the relocation occurs.

The relocation addend – an integer value added during the patching phase.

The relocation size

Whether it is relative or absolute.
2When a large memory model is chosen during stencil compilation, only one of these is

used (64-bit absolute).
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Internal Name Description Relocation size
R_X86_64_PLT32 PC-Relative address of a function 32-bit
R_X86_64_PC32 PC-Relative address 32-bit
R_X86_64_32 Absolute address 32-bit
R_X86_64_32S Absolute address 32-bit (signed)
R_X86_64_64 Absolute address 64-bit

Table 2.2 Supported relocation types.

This information is essential for reconstructing and correctly patching the
executable code during the final stage of the pipeline.

Most importantly, every relocation entry corresponds to a reference to some
symbol or data. The extractor must resolve what exactly is being referenced,
so that this information can be exported alongside the stencil hole metadata.

In standard linking and loading, this mapping is done via symbol names.
For example, consider the following code:
#include <math.h>
extern double result;
void example(double a) {
global_result = pow(a, 3);

}

When compiled, this function can produce the following assembly:
1 subq $8, %rsp
2 movsd .LC0(%rip), %xmm1
3 call pow
4 movsd %xmm0, result(%rip)
5 addq $8, %rsp
6 ret

The example code contains three relocations: a constant literal (3) on Line
2, a function call to pow from the standard math library on Line 3, and an
external global variable result on Line 4. The disassembler visualizes this,
but in the actual object file, the executable section does not embed these
symbol names directly – the immediate operands are zeroed.

Instead, this symbol information is stored in the object file’s relocation
table. The constant is emitted into the .rodata section, and its address is
inserted via relocation. The other two (function and global variable references)
are symbol relocations, where the linker performs a textual match on the
symbol name and fills in the actual address at link time (or produces an error
and halts, if unresolved).

When parsing the object file during stencil extraction, the relocation itself
cannot be performed just yet – it can not be known where these symbols will
live in memory at runtime.

Instead, the symbol name is recorded and exported as part of the stencil
metadata in the generated header file. The Copy-and-Patch compiler can then
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delegate the task of resolving these symbols to the dynamic loader at runtime
(see Section 2.4.3).

However, this approach is insufficient for the stencil design requirements.
As discussed in Section 2.1.1, stencils often use external symbols to also allow
for patching of their arguments or special values (for an example, see Code list-
ing 2.14). These do not and can not work as regular patch symbols, as their
address/value is supposed to change based on what their immediate bytecode
value is. This compiler trick requires close coordination with the stencil ex-
tractor.

The extraction program determines these internal relocation types solely
by the name of the symbol being reallocated, so it is important that the stencils
use the exact symbols names that the extraction tool expects.

All supported internal relocation types are enumerated in Table 2.3, along
with their meaning and how frequently they appear in real-world stencils.
Internal names from the fourth row onward are also used as relocation symbols,
when they are prefixed with an underscore (as seen in previous code listings).

First two hole types are reserved for standard relocations. The third type,
RCP_PRECOMPILED, is used to refer to Ř’s precompiled SEXP symbols (explained
later). The remaining entries correspond to stencil-specific relocations.

Starting from the fifth row of the table, hole types correspond to relocations
where the address patched depends dynamically on the bytecode’s immediate
value. The other types represent static addresses, consistent across all uses of
the stencil.

To support multiple arguments per stencil, the argument’s ordinal is en-
coded in the symbol name. If the symbol ends with _IMM, it must be followed
by an integer (e.g., RCP_RAW_IMM1). The extractor parses this suffix, converts
it to an integer, and stores it in the hole descriptor.

Ř applies an optimization to avoid recreating constant SEXP symbols and
primitives repeatedly. For example, the ADD instruction requires access to
the symbol “+” each time it executes. Instead of reconstructing it each time,
Ř initializes a set of these constants once at startup and stores them in global
arrays accessible to all instructions.

To integrate seamlessly with this mechanism, the extractor contains a list
of all such arrays used by Ř and changes this relocation to only one array that
will be given a type of RCP_PRECOMPILED. This allows stencil code to use these
cached symbols efficiently without modifying Ř itself.

2.4.2 Extra Optimizations
One of the key assumptions in the Copy-and-Patch approach is that tail call
optimization will be applied. In the stencils, control flow is passed to the next
operation by calling a special placeholder function at the end of execution.

However, since stencils are not actually invoked as standalone functions,
but rather copied into memory in a flat, sequential layout, this JMP becomes
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Internal Name What is Patched Where It Is Used Frequency
RUNTIME_SYMBOL Address of any symbol

available at runtime
Any access to external
variables or functions

Very Often

RODATA Address of the .rodata
section

Access to values placed
in .rodata (e.g., strings,
floats)

Sometimes

RCP_PRECOMPILED Address of an array of
precompiled SEXP val-
ues

Access SEXP values com-
puted at compile time

Rare

RCP_RHO Address of variable
specifying the current
execution environment

Access to the current run-
time environment

Often

RCP_EXEC_NEXT Address of next in-
struction’s code start

Stencil passes control flow
to the next instruction

Often

RCP_EXEC_IMM Address of the code for
a given label

Stencil jumps to a speci-
fied label

Sometimes

RCP_RAW_IMM Integer value of instruc-
tion immediate

Accessing the stencil’s
raw immediate argument

Rare

RCP_CONST_AT_
IMM

SEXP constant pointed
to by instruction imme-
diate

Accessing the stencil’s
SEXP immediate argu-
ment

Very Often

RCP_CONST_STR_
AT_IMM

Pointer to a string rep-
resenting symbol name

Accessing the symbol
name from a SEXP con-
stant

Very Rare

RCP_CONSTCELL_
AT_IMM

Address of a BCell for
an instruction immedi-
ate

Ř cache optimization for
variable retrieval

Sometimes

RCP_CONSTCELL_
AT_LABEL_IMM

Address of a BCell from
instruction at a given
label

Ř cache optimization
used in for loops

Very Rare

Table 2.3 Relocation Types for Stencil Holes.

redundant. It simply jumps to the instruction immediately following it, which
would have been executed next anyway. In this context, the JMP serves no
purpose – it’s effectively a NOP.

This makes it safe and useful to remove the instruction entirely. Since it
is always the final instruction in the function, there is no need to adjust or
re-patch any surrounding code.

The extraction tool implements this optimization by scanning the final
instruction of each stencil. If it detects an unconditional jump to the known
identifier, it simply strips it from the output. The relevant code can be seen in
Code listing 2.32, and a before/after comparison is shown in Code listing 2.33.

This optimization, however, is only applicable when using the medium
memory model. In the large memory model, tail calls to the next stencil are
often compiled into a sequence of two or more instructions (e.g., loading an
address followed by an indirect jump), which may not be contiguous or easily



Stencil Extraction 40

if (strcmp(descr, "EXEC_NEXT") == 0) {
if (rel->address - rel->addend == stencil->body_size &&

stencil->body[rel->address - 1] == 0xE9 /*JMP*/)
{
// This is the last instruction; safe to just delete
stencil->body_size = rel->address - 1;
return; // No relocation from this

}
else
hole->kind = RELOC_RCP_EXEC_NEXT;

}

Code listing 2.32 Removing JMP at the end of stencil

subq $0x10,R_BCNodeStackTop(%rip)
jmp _RCP_GOTO_NEXT@PLT

(a) POP stencil (original).

subq $0x10,R_BCNodeStackTop(%rip)

(b) POP stencil (optimized).

Code listing 2.33 Comparison of optimized version for the POP stencil.

detected. Handling this would require deeper instruction analysis and a more
advanced removal strategy, which has not (yet) been implemented.

2.4.3 Exporting
During object file parsing, the program stores stencils in two categories. When
it encounters a function, it checks the symbol name against a list of known
R instructions. If a match is found, the stencil is registered in a lookup table
using the instruction’s opcode. If not, the stencil is added to a separate list of
named stencils, intended for specialized or internal use.

Once all object files are parsed, the program begins exporting the discov-
ered stencils.

A standard C header file is created for each stencil, where its executable
code is exported as a byte array, initialized with a brace-enclosed list. Along-
side the code, a list of holes is exported, describing every detail needed to
patch the stencil: offsets, sizes, types, and patch values. When a relocation
targets a runtime symbol, the header includes it as a reference to a C symbol
using the & operator. This allows the dynamic loader of the Copy-and-Patch
compiler to resolve the address automatically at runtime.

The header generation logic and resulting output are shown in Code list-
ings 2.34 and 2.35, respectively.

All generated header files are then included from a single main header
file, stencils.h, which builds the global instruction lookup table. Each im-
plemented instruction is mapped to its corresponding stencil; unimplemented
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void export_body(FILE *file, const StencilMutable *stencil,
const char *instruction_name)

{
fprintf(file, "const Hole _%s_HOLES[] = {\n", instruction_name);
for (size_t j = 0; j < stencil->holes_size; ++j)
{

const Hole *hole = &stencil->holes[j];

fprintf(file,
"{ .offset = 0x%lX, .addend = %ld, .size = %hu, .kind = %u, \
.is_pc_relative = %u, .indirection_level = %u",
hole->offset, hole->addend, hole->size, hole->kind,
hole->is_pc_relative, hole->indirection_level);

switch (stencil->holes[j].kind)
{
case RELOC_RUNTIME_SYMBOL:
fprintf(file, ", .val.symbol = &%s",

stencil->holes[j].val.symbol_name);
break;
case RELOC_RCP_EXEC_IMM:
case RELOC_RCP_RAW_IMM:
case RELOC_RCP_CONST_AT_IMM:
case RELOC_RCP_CONST_STR_AT_IMM:
case RELOC_RCP_CONSTCELL_AT_IMM:
case RELOC_RCP_CONSTCELL_AT_LABEL_IMM:
fprintf(file, ", .val.imm_pos = %zu",

stencil->holes[j].val.imm_pos);
break;
}

fprintf(file, " },\n");
}

fprintf(file, "};\n\n");
fprintf(file, "const uint8_t _%s_BODY[] = {\n", instruction_name);
print_byte_array(file, stencil->body, stencil->body_size);
fprintf(file, "\n};\n\n");

}

Code listing 2.34 Function for exporting stencils.

ones are assigned an empty entry. Named stencils outside of the table remain
accessible by their string identifiers. This main file also includes the .rodata
byte array.

The structure and layout of stencils.h can be seen in Code listing 2.36.
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const Hole __RCP_LDCONST_SEXP_OP_HOLES[] = {
{ .offset = 0x3, .addend = -4, .size = 4, .kind = 0, .is_pc_relative

= 1, .indirection_level = 1, .val.symbol = &R_BCNodeStackTop },
...
{ .offset = 0x1D, .addend = 0, .size = 8, .kind = 7, .is_pc_relative

= 0, .indirection_level = 0, .val.imm_pos = 0 },
...
{ .offset = 0x38, .addend = -4, .size = 4, .kind = 3, .is_pc_relative

= 1, .indirection_level = 0 },
};
const uint8_t __RCP_LDCONST_SEXP_OP_BODY[] = {
0x48, 0x8B, 0x05, ... , 0xE8, 0x00, 0x00, 0x00, 0x00,

};
};

Code listing 2.35 Example of exported stencil (compacted).

#include "RETURN_OP.h"
#include "GOTO_OP.h"
#include "BRIFNOT_OP.h"
#include "POP_OP.h"
#include "DUP_OP.h"
...
#include "SEQLEN_OP.h"

uint8_t rodata[] = { 0x66, 0x61, 0x63, ..., 0xFF, 0xDF, 0x41, };

const Stencil stencils[129] = {
{0, NULL, 0, NULL}, // BCMISMATCH_OP
{100, _RETURN_OP_BODY, 7, _RETURN_OP_HOLES}, // RETURN_OP
{5, _GOTO_OP_BODY, 1, _GOTO_OP_HOLES}, // GOTO_OP
{210, _BRIFNOT_OP_BODY, 13, _BRIFNOT_OP_HOLES}, // BRIFNOT_OP
{8, _POP_OP_BODY, 1, _POP_OP_HOLES}, // POP_OP
{47, _DUP_OP_BODY, 5, _DUP_OP_HOLES}, // DUP_OP
...
{368, _SEQLEN_OP_BODY, 20, _SEQLEN_OP_HOLES}, // SEQLEN_OP

}
};

Code listing 2.36 Header file including all stencils.

2.5 Execution Engine
The project is distributed as an R package. Inside the package, the C language
is used to implement all functionality. All stencils extracted in the previous
step are included as header files, and are therefore compiled into the dynamic
library loaded with the package.
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Once installed, the package can be loaded into the R runtime, where it
becomes capable of compiling closures using the Copy-and-Patch approach.

The main entry point is implemented to resemble compiler::cmpfun. Its
first argument is the closure to compile; the second, optional, argument is a
list of bytecode compiler options, which are forwarded internally when the
compilation is triggered.

The function returns a new closure that can be executed from the R envi-
ronment like any regular R function, but internally runs native, copy-patched
x86_64 machine code.

fun <- function() {
print("Hello, world!")

}
res = rcp::rcp_cmpfun(fun, options = list(optimize = 3))
res()
# [1] "Hello, world!"

Code listing 2.37 Package example use.

Logically, it could be split into these phases:

1. Bytecode compilation

2. Preparation run

3. Memory allocation

4. Stencil selection

5. Copying and patching

6. Finalization

2.5.1 Bytecode Compilation
As the Copy-and-Patch approach relies on bytecode as its input format, the
closure provided as an argument must be compiled using R’s native bytecode
compiler, if it has not been already compiled via JIT.

This is achieved by calling the compiler::cmpfun R function from within
the package, which returns a new closure whose body is of type BCODESXP.

If a second argument is passed to the function in our package, it is for-
warded to the bytecode compiler. This allows, among other things, the spec-
ification of optimization levels. This is particularly important, as usage of
Ř currently requires compilation with optimization level 3.

Once bytecode compilation is complete, the result must be extracted into
a format that the rest of the system can understand. This is done using
R_bcDecode, which decodes the bcode object into a VECSXP of instructions.
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Following the decoding, the program accesses the internal pointer of this
object to retrieve a C-array of instructions, each followed by its arguments (im-
mediate values), if it has any. Likewise, the constant pool pointer is retrieved
directly from the BCODESXP object.

SEXP bcode_code = BCODE_CODE(bcode);
SEXP bcode_consts = BCODE_CONSTS(bcode);

SEXP code = PROTECT(R_bcDecode(bcode_code));

int* bytecode = INTEGER(code) + 1;
int bytecode_size = LENGTH(code) - 1;

SEXP* consts = DATAPTR(bcode_consts);
int consts_size = LENGTH(bcode_consts);

rcp_exec_ptrs res = copy_patch_internal(bytecode, bytecode_size,
consts, consts_size);

UNPROTECT(1); // code
...

Code listing 2.38 Decoding bytecode.

2.5.2 Preparation Run
The program first iterates over the bytecode instructions in a preparation
phase, performing several tasks required for subsequent stages.

2.5.2.1 Instruction Validation
If the program encounters invalid opcodes or instructions that are not sup-
ported by Ř, it raises an error and halts before any further processing is per-
formed.

2.5.2.2 Sizes and Lookup Tables
To allocate the required memory space, the program must determine the total
size in advance. For the code section, this is done by summing the sizes of all
stencils based on their usage frequency in the program.

During this phase, a code lookup table is constructed. This table contains a
prefix sum representing the start addresses of each instruction’s stencil within
the allocated memory region.

This structure is crucial for instructions that involve jumps (e.g., GOTO
), as it allows the program to resolve the jump offsets during the patching
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step. Without this mechanism, jumping to a yet-unprocessed instruction would
necessitate a second patching pass, introducing unnecessary complexity.

Additionally, a lookup table for BCell accesses is created. A naive imple-
mentation would assign each constant index in the constant pool a unique
BCell, resulting in wasted memory since only a subset of constants is ever
accessed using the BCell optimization.

Instead, the program identifies only the constants that are actually accessed
via BCell, allocates just enough memory for them, and uses the lookup table
to map each accessed constant to its corresponding BCell during patching.

2.5.3 Memory Allocation
After all required sizes are computed, memory can be allocated.

Memory placement is particularly important in this context. When using
the smaller and faster memory model, the generated stencil code assumes that
all external symbols reside within the first 2 GiB of memory, near the stencil
code itself.

Because code is generated and patched at runtime (i.e., JIT-compiled), the
external symbols may reside too far from the allocated stencil memory, causing
address resolution issues.

To address this, two strategies are employed: placing the memory as close
as possible to R runtime symbols, and allocating a contiguous block for both
code and runtime variables, ensuring proximity and valid relative addressing.
The memory layout proposed in the following sections can be seen in Figure 2.1.

.rodata rho BCells Precompiled
SEXPs Executable

.rodata

Private memory:

Shared memory:

Figure 2.1 Memory layout.

2.5.3.1 Private Memory
To find an appropriately placed memory region, a helper function is used to
locate the nearest available memory address to a given base address, satisfying
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the required size constraint.
This is achieved by parsing the /proc/self/maps file, which lists allocated

and free memory regions under Linux. The function identifies the nearest free
block large enough to accommodate the requested memory.

The function is called with an address close to any known R runtime func-
tion to ensure relative proximity within 2 GiB for x86_64 relative addressing.

The allocated space is then divided into the following segments:

Read only section of the stencil executable (.rodata)

Current environment SEXP (set at runtime)

BCell slots used by the compiled closure (reset at runtime)

Precompiled SEXP symbols

Executable stencil code for copy-patching

Once the total memory size is determined, including code and runtime
variables, the program calls mmap with the requested address and access per-
missions (read/write initially).

void* mem_address = find_free_space_near(&Rf_ScalarInteger,
total_size);

uint8_t* memory = mmap(mem_address, total_size, PROT_READ |
PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);

if (memory == MAP_FAILED)
exit(1);

Code listing 2.39 Allocating near memory.

These segments are initialized with appropriate data where needed.

2.5.3.2 Shared Memory
The compiler may choose to use either PC-relative or absolute 32-bit address-
ing for external symbols. While the former is satisfied by placing memory
close to the runtime, the latter cannot be guaranteed because the chosen ad-
dress may not fall within the lower 2 GB of memory, rendering 32-bit absolute
addresses invalid.

To resolve this, a secondary memory region is allocated explicitly within the
lower 2 GB using the MAP_32BIT flag with mmap. This memory region contains a
read-only copy of the necessary runtime data. The patching phase then selects
between the near and lower-memory version depending on the type of address
required (relative/absolute).
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Because this memory segment does not need to be close to the JITed code
and its contents are identical across all compiled closures, it is shared among
all of them. A reference counting mechanism ensures that the memory is
deallocated only after all closures using it are destroyed.

uint8_t *mem_shared = NULL;
size_t *mem_shared_ref_count = NULL;
static void prepare_rodata()
{
mem_shared = mmap(NULL, sizeof(rodata), PROT_READ | PROT_WRITE,

MAP_PRIVATE | MAP_ANONYMOUS | MAP_32BIT, -1, 0);
if (mem_shared == MAP_FAILED)
exit(1);

memcpy(mem_shared, rodata, sizeof(rodata));

if (mprotect(mem_shared, sizeof(rodata), PROT_READ) != 0)
{
perror("mprotect failed");
exit(1);

}

mem_shared_ref_count = malloc(sizeof(*mem_shared_ref_count));
*mem_shared_ref_count = 1;

}

Code listing 2.40 Allocating shared memory.

2.5.4 Stencil Selection
In this phase, the core of the Copy-and-Patch approach begins, as the program
iterates over the bytecode instructions. For each instruction, it selects the
corresponding stencil to use.

For most instructions, only generic stencils are available, but a few have
specialized versions (see Section 2.2.6).

The stencils are designed such that the Copy-and-Patch compiler can select
the correct variant based on compile-time information.

A primary example is the LDCONST instruction, which is specialized based
on the type of the constant it loads. Since the program now has access to the
constant’s SEXP type, it can convert the generic load to a specialized stencil
that directly loads the primitive value.

This behavior is illustrated in Code listing 2.41.
A similar specialization exists for the MATH1 instruction. In this case, the

stencil is selected based on the immediate argument, which specifies the math-
ematical function to execute.
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SEXP constant = r_constpool[imms[0]];
if (constant->sxpinfo.scalar &&

ATTRIB(constant) == R_NilValue)
{

switch(TYPEOF(constant))
{

case REALSXP:
return &_RCP_LDCONST_DBL_OP;

case INTSXP:
return &_RCP_LDCONST_INT_OP;

case LGLSXP:
return &_RCP_LDCONST_LGL_OP;

default:
break;

}
}
return &_RCP_LDCONST_SEXP_OP;

Code listing 2.41 LDCONST specilization.

For instructions without specialized versions, a lookup table generated by
the stencil extraction tool is used. This allows the program to determine the
appropriate stencil in constant time based on the opcode of the instruction.

If the instruction is MAKECLOSURE_OP, the program recursively compiles the
referenced closure from the constant pool and replaces it with its compiled,
copy-patched version. This allows complete compilation of the original closure,
including any nested functions or closures it contains.

2.5.5 Copying and Patching
After selecting the appropriate stencil, the program copies its body (raw x86_64
instructions) into the allocated memory using memcpy, placing it immediately
after the previous stencil. This creates a continuous block of executable code
that can later be invoked as a single function.

Once copied, the stencil is patched in-place. The program iterates over the
stencil’s holes and fills them with the appropriate values or addresses.

The value to patch is determined by the patch type specified in the stencil
metadata (see Table 2.2).

To increase the likelihood of success with the small (and faster) memory
model, internal runtime symbols are allocated close to the executable code, as
described in Section 2.5.3.

Furthermore, the shared read-only data section (.rodata) is duplicated into
memory within the lower 2 GB. If a stencil requires an absolute address to .
rodata, the patching algorithm uses this lower memory region to ensure that
the 4-byte absolute address fits within the stencil’s hole. This mechanism is
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if(bytecode[i] == MAKECLOSURE_OP)
{
SEXP fb = constpool[bytecode[i+1]];
SEXP body = VECTOR_ELT(fb, 1);

if(TYPEOF(body) == BCODESXP)
{
SEXP res = copy_patch_bc(body, stats);
SET_VECTOR_ELT(fb, 1, res);

}
else if(IS_RCP_PTR(body))
{
DEBUG_PRINT("Using precompiled closure\n");

}
else
{
error("Invalid closure type: %d\n", TYPEOF(body));

}
}

Code listing 2.42 Recursive compilation.

shown in Code listing2.43.

if(hole->is_pc_relative)
ptr = (ptrdiff_t)ctx->ro_near;

else
ptr = (ptrdiff_t)ctx->ro_low;

Code listing 2.43 Patching of .rodata.

Other patch types are handled in a straightforward manner: the ptr value
is simply set to the value being patched.

After the value to patch is known, the program adds the addend to it, and
if it is PC-relative, subtracts the current position of the memory to get offset
instead of relative address.

After computing the final value to patch, the program verifies that it fits
into the allocated hole size. If the stencils were compiled using the medium
memory model, there is a possibility that, on some systems, a patched address
will not fit. In such cases, an error is raised and compilation is aborted.

Finally, the computed value is written into the stencil hole, and the program
proceeds to the next hole.

The overall patching process (excluding patch type selection) is illustrated
in Code listing 2.44.
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static void patch(uint8_t* dst, const Hole* hole, int* imms, int
nextop, const PatchContext* ctx)

{
ptrdiff_t ptr;

switch(hole->kind)
{
...

}

ptr += hole->addend;
if(hole->is_pc_relative)
ptr -= (ptrdiff_t)&dst[hole->offset];

if(!fits_in(ptr, hole->size))
error("Offset does not fit into patch hole");

memcpy(&dst[hole->offset], &ptr, hole->size);
}

Code listing 2.44 Patching function.

2.5.6 Finalization
The program resets runtime-initialized variables, such as BCells and the envi-
ronment pointer, to default values.

If all preceding operations complete successfully, the program marks the
allocated memory region as executable and returns a structure containing all
the information required to execute the compiled closure. This structure is
defined in R header files and is shown in Code listing 2.46.

An EXTPTRSXP object is then created to hold a pointer to this structure.
It is tagged with an internal C-string, allowing it to be identified at runtime.
A finalizer is registered for this object, ensuring that all allocated memory
is released when the resulting SEXP is garbage collected. This is shown in
Code listing 2.45, a continuation of Code listing 2.38.

The body of the original closure, compiled using compiler::cmpfun, is then
replaced with this EXTPTRSXP, and the resulting closure is returned.

2.6 Runtime
Support for running copy-patched closures had to be integrated directly into R.
First, a structure is defined to represent the compiled closure, enabling R in-
ternals to interact with the native code. This structure, shown in Code list-
ing 2.46, includes a pointer to the executable code (eval), runtime-modifiable
variables (rho and bcells), and memory metadata required for cleanup.
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...
rcp_exec_ptrs* res_ptr = malloc(sizeof(rcp_exec_ptrs));
*res_ptr = res;

SEXP tag = PROTECT(install(RCP_PTRTAG));
SEXP ptr = R_MakeExternalPtr(res_ptr, tag, bcode_consts);
UNPROTECT(1);// tag
PROTECT(ptr);
R_RegisterCFinalizerEx(ptr, &R_RcpFree, TRUE);
UNPROTECT(1); // ptr

Code listing 2.45 Creation of custom EXTPTRSXP.

typedef struct rcp_exec_ptrs
{
// Executable code
SEXP (*eval)();

// Local internal variables to set before execution (do not free!)
SEXP * rho;
SEXP * bcells;
size_t bcells_size;

// Memory management
void* memory_private;
size_t memory_private_size;
void* memory_shared;
size_t memory_shared_size;
size_t* memory_shared_refcount;

} rcp_exec_ptrs;

Code listing 2.46 Structure for the result of copy-patch.

A tag is introduced to label external pointers produced by the compiler, and
a macro is added to check whether a given SEXP is a custom pointer belonging
to this project.

#define RCP_PTRTAG "rcp_exec_ptrs"

#define IS_RCP_PTR(fun) \
(TYPEOF(fun) == EXTPTRSXP && \
strcmp(CHAR(PRINTNAME(EXTPTR_TAG(fun))), RCP_PTRTAG) == 0)

Code listing 2.47 Macros to check for RCP pointer.
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2.6.1 Execution
In the implementation of R’s eval function (responsible for evaluating R ex-
pressions) a check is added to detect whether the expression being evaluated
points to a copy-patched closure.

switch (TYPEOF(e)) {
case EXTPTRSXP:
if(IS_RCP_PTR(e))
tmp = rcpEval(e, rho);

else
tmp = e;

break;
case BCODESXP:
tmp = bcEval(e, rho);
...

Code listing 2.48 Support for copy-patch in R evalution.

If the check passes, a custom evaluation function is called (see Code list-
ing 2.49).

At the start of this function, the external pointer is cast to the structure
defined in Code listing 2.46. Because the memory for internal runtime variables
(e.g., environment, BCells) is allocated alongside the code (see Section 2.5.3),
they need to be initialized before execution.

This initialization happens in Lines 16–19, where the BCell cache is reset
and the current environment is assigned.

However, because the copy-patched closure can be executed recursively, the
program cannot just overwrite the internals, as this would break the function
that initiated the recursion - after the call returns back to the caller, the
environment and cache would be invalid.

Because of this, the program first needs to save the current values, which
can be seen on Lines 6-13. BCell cache is backed up to stack, and current
environment into a local variable. If the function is never executed recursively,
this is unnecessary, but needs to be done to support recursion.

Next, global variables that could be left in a corrupted state are backed
up in Lines 22–23. This precaution mirrors the original bytecode evaluation
routine in R, which also preserves these values to prevent session-wide failures
caused by incomplete closures.

With all preparations complete, the function calls the compiled native func-
tion, and control transfers into the executable memory region, as described in
Section 2.5.5. Execution continues until the compiled closure completes and
returns a result of type SEXP.

After execution, the function restores global variables (Line 29) and local
runtime values (Lines 30–32), then returns the computed result.
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1 SEXP rcpEval(SEXP body, SEXP rho)
2 {
3 rcp_exec_ptrs* ptrs = (rcp_exec_ptrs*)EXTPTR_PTR(body);
4
5 /* save current bcells and rho - needed to support recursion */
6 for (size_t i = 0; i < ptrs->bcells_size; ++i)
7 {
8 R_BCNodeStackTop->tag = 0;
9 R_BCNodeStackTop->flags = 0;

10 R_BCNodeStackTop->u.sxpval = ptrs->bcells[i];
11 R_BCNodeStackTop++;
12 }
13 const SEXP rho_old = *(ptrs->rho);
14
15 /* set up the new bcells and rho */
16 for (size_t i = 0; i < ptrs->bcells_size; ++i)
17 ptrs->bcells[i] = R_NilValue;
18
19 *(ptrs->rho) = rho;
20
21 /* save current globals */
22 struct bcEval_globals globals;
23 save_bcEval_globals(&globals);
24
25 /* run the actual copy-patched code */
26 SEXP res = ptrs->eval();
27
28 /* restore everything to previous state */
29 restore_bcEval_globals(&globals);
30 *(ptrs->rho) = rho_old;
31 for (size_t i = 0; i < ptrs->bcells_size; ++i)
32 ptrs->bcells[i] = (--R_BCNodeStackTop)->u.sxpval;
33
34 return res;
35 }

Code listing 2.49 Calling of copy-patched code during runtime.

2.6.2 Memory Management
When the SEXP closure containing the custom pointer is destroyed (for how
this is triggered, see Code listing 2.45), a finalizer function is called.

This function, shown in Code listing 2.50, is responsible for releasing all
memory allocated in Section 2.5.3, preventing memory leaks in the R environ-
ment.

It frees the private memory (internal variables, cache and code), and the
pointer itself. If shared memory used across all compiled closures is no longer
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void R_RcpFree(SEXP ptr)
{

if(!IS_RCP_PTR(ptr))
error("Attemted to free a non-rcp pointer");

rcp_exec_ptrs* ptrs = (rcp_exec_ptrs*)EXTPTR_PTR(ptr);
if(ptrs)
{
/* unmap private memory */
munmap(ptrs->memory_private, ptrs->memory_private_size);

/* unmap shared memory, if this is it's only use */
if(ptrs->memory_shared_refcount != NULL &&

--(*ptrs->memory_shared_refcount) == 0)
{
munmap(ptrs->memory_shared, ptrs->memory_shared_size);
free(ptrs->memory_shared_refcount);

}

/* free the structure itself */
free(ptrs);
EXTPTR_PTR(ptr) = NULL;

}
}

Code listing 2.50 Freeing of internal structure.

referenced (determined via reference counting) it is freed as well.



Chapter 3

Evaluation

This chapter presents an evaluation of the implemented system. First, a sum-
mary of the environment and used benchmarks is provided. Then, the perfor-
mance of the project is assessed and compared to GNU R. Special attention is
given to compilation speed and runtime performance. Additionally, we evalu-
ate the effectiveness of selected optimizations introduced in Section 2.2.

3.1 Setup
All tests were conducted on a machine with an Intel Core i7-7700K CPU,
32 GB of RAM, and a fresh installation of Ubuntu 24.04. The R environment
was compiled from source with default arguments, modified only to support
the runtime system introduced in Section 2.6.

The benchmarks used for performance evaluation and the script for running
them were imported from the Ř project. All 104 instructions implemented in
Ř were successfully adapted for the Copy-and-Patch approach and verified for
correctness. All 57 provided benchmarks were compiled and executed within
the R environment without any issues, including real-world, non-trivial R code.

Performance was evaluated based on three key metrics:

Compilation speed

Execution speed

Binary size of compiled code

Instruction counts per function were also recorded. All optimizations de-
scribed in Section 2.2 were applied, except for stack overflow checks, which
were evaluated separately. Unless stated otherwise, results are based on the
absolute (large) memory model.

In this configuration, the total size of all compiled stencils is 75,950 bytes.
The average stencil size is 611 bytes, with the average size of stencil for used
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instructions across benchmarks being 919 bytes. Individual stencil sizes for all
supported instructions are listed in Table 3.1.

Each benchmark was executed 30 times, with 5 warm-up runs beforehand.
The mean of these 30 measurements was used in execution performance com-
parisons.

3.2 Benchmark Datasets

The evaluation used the benchmark suites provided by the Ř project, covering
a wide range of usage patterns:

Are We Fast Yet: A cross-language suite of micro and macro bench-
marks [20]

Real Thing: Real-world R programs

Shootout: Benchmarks from the popular cross-language competition [21]

Simple: Custom microbenchmarks targeting individual R features

3.3 Compilation Speed
As the speed of compilation is one of the most important features of the Copy-
and-Patch approach, it is important to evaluate if this is also the case for the
introduced implementation. Measured compilation speed for all benchmark
datasets can be seen in Figure 3.1.
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Figure 3.1 Compilation speed for all benchmarks.
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Stencil Size

RETURN 135
GOTO 12
BRIFNOT 275
POP 26
DUP 69
STARTFOR 1205
STEPFOR 1078
ENDFOR 51
INVISIBLE 26
LDCONST 95
LDNULL 78
LDTRUE 87
LDFALSE 85
GETVAR 1350
SETVAR 1000
GETFUN 174
GETBUILTIN 156
GETINTLBUILTIN 168
CHECKFUN 147
MAKEPROM 231
DOMISSING 161
SETTAG 114
DODOTS 431
PUSHARG 236
PUSHCONSTARG 120
PUSHNULLARG 113
PUSHTRUEARG 123
PUSHFALSEARG 123
CALL 729
CALLBUILTIN 729
CALLSPECIAL 422
MAKECLOSURE 180
UMINUS 482
UPLUS 458
ADD 847

Stencil Size

SUB 837
MUL 848
DIV 831
EXPT 891
SQRT 536
EXP 536
EQ 887
NE 887
LT 887
LE 887
GE 887
GT 887
AND 498
OR 498
NOT 399
STARTASSIGN 731
ENDASSIGN 579
STARTSUBSET 744
DFLTSUBSET 525
STARTSUBASSIGN 673
DFLTSUBASSIGN 745
STARTSUBSET2 744
DFLTSUBSET2 525
STARTSUBASSIGN2 673
DFLTSUBASSIGN2 745
DOLLAR 493
ISNULL 54
ISLOGICAL 62
ISINTEGER 127
ISDOUBLE 62
ISCOMPLEX 62
ISCHARACTER 62
ISSYMBOL 60
ISOBJECT 60
ISNUMERIC 192

Stencil Size

VECSUBSET 1207
MATSUBSET 1666
VECSUBASSIGN 2376
MATSUBASSIGN 1532
AND1ST 328
AND2ND 375
OR1ST 345
OR2ND 361
GETVAR_MISSOK 1317
SETVAR2 174
STARTASSIGN2 473
ENDASSIGN2 204
SETTER_CALL 1703
GETTER_CALL 990
SWAP 103
DUP2ND 69
STARTSUBSET_N 346
STARTSUBASSIGN_N 427
VECSUBSET2 1107
MATSUBSET2 1584
VECSUBASSIGN2 3117
MATSUBASSIGN2 1753
STARTSUBSET2_N 346
STARTSUBASSIGN2_N 427
SUBSET_N 1698
SUBSET2_N 1618
SUBASSIGN_N 1534
SUBASSIGN2_N 1751
LOG 429
LOGBASE 876
MATH1 527
COLON 796
SEQALONG 566
SEQLEN 488

Table 3.1 Stencil size in bytes for each R instruction.
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As can be seen from the results, the introduced implementation is able
to compile all individual benchmarks in under 7 ms, with the median of just
0.68 ms. Compared to the Ř implementation, this is a substantial improve-
ment. For illustration, the introduced implementation approach is capable of
compiling all 57 benchmarks combined in under 50 ms total, which is several
orders of magnitude faster than compilation of just a single benchmark file
in Ř [1].

Compilation time correlates closely with binary size, which is expected as
memory bandwidth is the main bottleneck. Interestingly, number of R byte-
code instructions are not a reliable predictor of executable size or compilation
time.

For example, while the two benchmarks that produce the biggest code
sizes (which are pidigits and flexclust) have large number of instructions, the
benchmark flexclust_no_s4 from the RealThing dataset does not - despite
producing the third biggest executable size (0.4 MB). On the contrary, it does
so with only one of the smallest number of instructions in the entire benchmark
suite - 27. Compared to the benchmark with the second biggest executable
size, which consists of 1,809 instructions, it can be seen that this metric by
itself is not directly responsible for decreasing compilation speed.

3.4 Execution Performance
The execution performance speedup for all benchmarks is visualized in Fig-
ure 3.2.
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Figure 3.2 Execution performance speedup.

Across all benchmarks, the performance speedup is averaging to 1.00×.
But as the benchmark results vary depending on the dataset, two are described
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separately and in more detail: Simple and Shootout.
The behavior difference between these two datasets is considerable. While

the average speedup for the Shootout dataset is 0.82×, the Simple dataset
performs much better, with an average speedup of 1.54×, and a maximum of
5.00×.

Detailed performance comparisons to GNU R for Simple and Shootout
datasets are presented in Figures 3.3 and 3.4. Individual benchmarks are
sorted by relative speedup.

It is interesting to observe that both the worst speedups (binarytrees, bina-
rytrees_naive and binarytrees_2 from shootout) and the best (bytecodes from
simple finish their execution in less than third of a second in both cases, with
bytecodes finishing in as low as 8 ms. While the relative difference of the
mentioned benchmarks is the highest, the absolute difference in runtime is low
enough that other execution environment overheads might be more noticeable,
and it is up to further analysis if these results would scale in the same way for
larger use cases.

It is very important to note however that the differences in execution speed,
both positive and negative, are mostly due to the Ř implementation of instruc-
tion functions. The authors of Ř introduce many changes from the original
implementation of GNU R that are beneficial in some use cases, but at the
same time can also be responsible for slow downs in others. These changes are
what causes some benchmarks to exhibit pathological behavior in both cases
of the spectrum.

Additionally, it should be reiterated that this implementation uses as sten-
cils the already established Ř implementations of instructions that are origi-
nally designed for a different purpose. It is beyond the scope of this work to
optimize Ř implementation of instructions for the use with Copy-and-Patch
(this would however be useful to do in future work). The main information
gained from this section is that the implementation follows the performance
trend of Ř with much improved speed of compilation, which was the goal of
this work.
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Figure 3.3 Performance comparison of benchmarks of the simple dataset.
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3.5 Optimization Evaluation
While the comparison of execution performance between the reference imple-
mentation and this project is mostly due to choices of Ř authors, there are
also performance implications for how the Copy-and-Patch approach is imple-
mented.

As described in Section 2.2, there were deliberate additional optimizations
implemented. The two most likely to produce measurable differences were
evaluated, and compared to a version without their usage.

3.5.1 Omitting Stack Overflow Check
This evaluation directly references the Section 2.2.3, where this optimization
is described in detail. This optimization was evaluated on all benchmarks, and
the speedup visualized in Figure 3.5.
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Figure 3.5 Performance comparison for turning off stack overflow checks.

As can be clearly seen from the graph, the optimization noticeably im-
proved the execution performance of most benchmarks. The speed of execu-
tion was improved by 2% on average, specifically benefiting more the simple
dataset where the difference was on average over 3%. The dataset shootout
also gained measurable performance increase, although more modest (1%).

The largest improvement was observed in the scalar-for benchmark from
the Simple dataset, likely due to tight loops with heavy stack manipulation.

Despite measurable gains, this optimization may not be worth the trade-
off in safety. For most use cases, especially those involving JIT, preventing
crashes on malformed programs is more important than a small performance
boost.
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3.5.2 Memory Models
Usage of different memory models (PC-relative and absolute) produces an
important difference for an executable. As the absolute model must address
every function and variable using full 64-bits, this increases the size of the
executable considerably to the point it can slow down the execution.

However, the faster and more compact PC-relative model has its limita-
tions, especially for a JIT. By default, it requires all accessed symbols to be
near the executable, which might be difficult to achieve on some machines due
to memory randomization techniques and other OS related specifics.

Despite considerable effort in this work to enable the usage of PC-relative
memory model globally, in the environment where this work was tested, not
all symbols required for all instructions were available in this way1, so all
performance evaluation so far were done using the absolute model.

This is unfortunate, as the relative memory model can offer significant
performance improvements, as can be seen in Figure 3.6, where benchmarks
which could not be compiled (7 out of the total of 53) were omitted.
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Figure 3.6 Performance comparison for different mcmodel options.

Usage of the PC-relative memory model improved the performance nearly
for all benchmarks, with varying levels of success. On average, all benchmarks
that were able to be compiled using this memory model were faster by more
than 8%, while the simple dataset specifically received a performance boost of
21%.

As described, this technique also made the executable smaller, and that on
average by 26% across all benchmarks. This in turn resulted in an additional

1Specifically the cmath library was loaded far from others, so any Ř instruction function
using it will not work.
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compilation speed increase by more than 3%, further confirming the theory
that the execution engine is memory bandwidth-bound.

If the non-functioning benchmarks are filtered, a new comparison to GNU R
can be made, visible in Figure 3.7.
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Figure 3.7 Execution performance speedup using PC-relative model.

As expected, this technique improved the performance of this implementa-
tion, which now shows close to 1.16× speedup over GNU R. It is important to
note however, that the filtered out benchmarks have shown results in benefit
of GNU R, so the new results might benefit from not including them more
than from the optimization.

However, the simple dataset (where no benchmarks were left out), now
improves on its already good speedup by gaining the result of 2.01× over the
reference implementation.

With additional work, it might be possible to adapt all instructions to the
PC-relative memory model, which shows promising results for the instructions
which are already supported.



Conclusion

In this work, a functional prototype of the Copy-and-Patch approach for the
R programming language has been successfully implemented. The Ř project
was fully adapted to this approach, including all 104 R bytecode instructions
it supports. Furthermore, what was originally meant to be a minimal proof-
of-concept, has exceeded its initial scope. The prototype now runs complex,
real-world R code and passes all provided benchmarks, including the widely
recognized Shootout suite.

Several additional performance optimizations were developed and inte-
grated. Notably, one optimization in particular (relative memory addressing
model) showed a 21% performance boost in one of the benchmark suites.

The project was evaluated across multiple metrics, including compilation
speed, execution time, and binary size. Compilation times were particularly
impressive: all benchmarks compiled in under 6 ms, with a median of just
0.7 ms. Execution speed followed the performance characteristics of Ř, as
expected, since this implementation reuses Ř’s instruction definitions. While
performance was generally slower than Ř, as is typical for a baseline JIT,
the compilation speed was several orders of magnitude faster. Compared to
GNU R, execution performance was roughly on par.

In further work, the Ř implementation of R instructions would benefit from
detailed analysis and possible design changes for the use with Copy-and-Patch.
Furthermore, some of the optimizations introduced could be extended or made
compatible with more programs, namely implementation of the relative mem-
ory model, which showed promising results for programs on which it was able
to be used at the moment. Additional improvements, like adjusting stencil
inlining, may reduce binary size and improve compile times further.

Although the result is a fully functional and self-contained prototype R
package, it is not yet ready for production. It has not undergone rigorous
testing for bugs or edge cases in general usage. Lastly, a deeper analysis
of benchmark behavior could provide more insight into specific performance
characteristics and guide future improvements.
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Attachment Contents

/
exec.....................directory with compiled package and stencils

stencils..........................directory with compiled stencils
headers.........................directory of stencils as headers
stencils.o..........................compiled stencil object file
stencils.txt.....................compiled stencil disassembly

rcp_1.0.0.0000.tar.gz......................compiled R package
measurements...............................evaluation measurements
src

rcp-code..............................................source code
rcp-text.............................source of the thesis in LATEX

text............................................................thesis
thesis.pdf......................................... thesis in PDF

license.txt.....................................license of source files
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