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Abstract
This thesis investigates approaches to speech enhancement using neural audio codecs (NACs).
Traditional supervised methods rely on artificially simulated datasets of paired clean and
noisy speech, which might fail to generalize to real-world conditions. To address these limi-
tations, this work introduces a novel dual-branch architecture that enables clean speech/noise
decomposition without requiring paired data. The system employs adversarial training with
branch-specific discriminators to guide one branch toward generating clean speech and the
other toward generating noise. To ensure consistency between the input and the enhanced
output, the system also enforces that the sum of the two branches closely resembles the orig-
inal noisy input. Additionally, vector quantization is used to control latent bandwidth and
reduce interference between the branches. The model is evaluated across supervised and
unsupervised settings using a wide range of objective, perceptual, and downstream metrics.
Extensive experiments validate the effectiveness of the proposed approach, demonstrating
its ability to enhance speech quality in both synthetic and real-world noisy environments
without explicit supervision. The results show that the model performs comparably to prior
work while offering high efficiency, enabling real-time audio enhancement.

Abstrakt
Táto práca sa zaoberá skúmaním spôsobov na vylepšenie reči pomocou neurálnych au-
dio kodekov. Štandardné supervizované metody sa spoliehajú na umelo vytvorené dáta z
párov zašumenej a čistej reči, čo môže sposobiť problémy s generalizáciou na reálne audio.
Ako riešenie v tejto práci predstavujeme novú dvoj-vetvovú architektúru, ktorá umožňuje
separáciu čistej reči a šumu bez potreby párových dát. Navrhnutý systém využíva adversar-
iálny tréning s vetvovými disrkiminátormi, ktoré zaručujú že jedna vetva bude produkovať
čistú reč a druhá šum. Pre zaručenie konzistencie medzi čistou rečou a vstupnou zašu-
menou nahrávkou, systém je trénovaný tak aby súčet výstupov z daných vetví odpovedal
vstupnému zašumenému audiu. Naviac pritom používa vektorovú kvantizáciu na kontrolu
priepustnosti latentných reprezentácií pre kontrolu interferencie medzi vetvami. Navrhnutý
model je vyhodnotení na supervizovanom aj nesupervizovanom učení za použitie širokej
škály objektívnych, percepčných a downstream metrík. Rozsiahle experimenty validujú
efektivitu navrhnutého riešenia a demonštrujú jeho schopnosť vylepšiť kvalitu reči syn-
tetických aj skutočných nahrávok bez použitia explicitnej supervízie. Výsledky ukazujú
že systém je porovnateľný s predchádzajúcimi riešeniami a umožňuje vylepšenie audia v
reálnom čase.
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Rozšířený abstrakt
Táto diplomová práca predstavuje komplexné skúmanie neštruktúrovaného (nesupervizo-
vaného) zlepšovania reči pomocou neurónových audio kodekov (NACs), pričom sa zameriava
na zásadné obmedzenia tradičných supervizovaných metód. Supervizované prístupy zvyča-
jne vyžadujú rozsiahle datasety pozostávajúce zo spárovaných príkladov zašumenej a čistej
reči. Tieto datasety sú umelo vytvárané, čo obmedzuje ich schopnosť efektívne generalizo-
vať do reálnych akustických prostredí v dôsledku rozdielov medzi simulovaným a skutočným
zašumeným audiom.

Na prekonanie týchto problémov práca navrhuje novú dvojvetvovú neurónovú architek-
túru, špeciálne navrhnutú na umožnenie efektívnej separácie a rekonštrukcie čistej reči a
šumu bez potreby spárovaných dát. Tento dvojvetvový model využíva adversariálne tréno-
vanie, pri ktorom sa dve samostatné vetvy trénujú súčasne—jedna sa výslovne zameriava
na produkciu čistej reči, zatiaľ čo druhá sa zameriava na rekonštrukciu šumu. Kľúčovým
prvkom tejto metódy je zavedenie rekonštrukčnej konzistencie, ktorá zabezpečuje, že kom-
binovaný výstup oboch vetiev sa čo najviac približuje pôvodnému zašumenému vstupu.
Takéto riešenie umožňuje využitie rozsiahlych dát nezávisle nahratej čistej reči a šumu, čím
sa eliminuje potreba explicitného spárovaných príkladov.

Neoddeliteľnou súčasťou úspechu tejto architektúry je implementácia vektorovej kvan-
tizácie (VQ), ktorá slúži na reguláciu šírky pásma latentných reprezentácií a minimalizáciu
interferencie medzi oboma vetvami. To zlepšuje schopnosti modelu v oblasti separácie,
čím zabezpečuje jasnú a efektívnu dekompozíciu na rečové a šumové zložky. Navrhnutá
architektúra modelu je rozsiahlo hodnotená v rôznych scenároch vrátane supervizovaného
a plne nesupervizovaného trénovania.

Vyhodnotenie kvality odšumenej reči zahŕňa rôzne signálové metriky, posúdenie vní-
manej kvality a downstream úloh, ako napríklad automatické rozpoznávanie reči (ASR), na
overenie praktickej využiteľnosti metódy zlepšovania reči. Výsledky z rozsiahlych experi-
mentov ukazujú, že navrhnutá nesupervizovaná metóda dosahuje porovnateľnú kvalitu než
predošlé nesupervizované techniky. Zároveň to dosahuje pri podstatne zjednodušených poži-
adavkách na dáta a výrazne vyššej výpočtovej efektívnosti, čo ju robí mimoriadne vhodnou
pre aplikácie v reálnom čase.

Okrem toho boli vykonané rozsiahle ablačné štúdie s cieľom objasniť dopady jednotlivých
komponentov modelu a tréningových stratégií. Systematicky sa skúmali faktory ako vplyv
pretrénovania, architektúra diskriminátorov, strategické využitie vektorovej kvantizácie a
rôzne metódy kombinovania vetiev.

Celkovo táto práca poskytuje robustný, teoreticky podložený a experimentálne overený
framework pre nesupervizované odšumenie reči, pričom vykazuje značný potenciál pre efek-
tívne nasadenie v realistických a zložitých šumových prostrediach bez potreby nákladných
a ťažko škálovateľných spárovaných dát.
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Chapter 1

Introduction

Speech enhancement (SE) is a long-standing problem in signal processing and machine
learning, aiming to improve the quality and intelligibility of speech degraded by environ-
mental noise or artifacts caused by transmission or recording. It plays a crucial role in a
wide range of applications, including teleconferencing, hearing aids, automatic speech recog-
nition (ASR), and real-time communication systems. While significant progress has been
made using supervised deep-learning approaches, these typically require large-scale paired
datasets of noisy and clean audio, which are expensive, domain-specific, and challenging
to scale in real-world scenarios. Moreover, supervised training usually relies on artificially
simulated noisy speech recordings, creating a gap between training and testing conditions,
leading to worse generalization to real-world noise conditions.

In recent years, unsupervised and self-supervised learning have emerged as promising
alternatives, enabling models to learn from unpaired or weakly labeled data. However,
applying these techniques to speech enhancement remains challenging due to the underde-
termined nature of the problem: Given a noisy speech signal, infinitely many plausible ways
exist to separate the clean speech without explicit supervision. Effective solutions must,
therefore, rely on strong inductive biases, signal priors, or structural constraints.

This thesis proposes a novel framework for unsupervised speech enhancement based on
neural audio codecs. We introduce a dual-branch architecture that outputs two parallel
audio signals that, after summming, reconstruct the input signal. Furthermore, we employ
adversarial training to force one branch to output clean speech and the other to output
noise by training two generative adversarial network (GAN) discriminators to distinguish
between the generated outputs and real clean speech or noise, which allows us to leverage
vast amounts of clean speech data and noise corpora without requiring paired examples.
We further explore vector quantization (VQ) as a mechanism to limit the bandwidth of
the latent representations, which helps to reduce leakage between the two branches and
encourages the disentanglement of clean and noisy speech components.

We evaluate our models across various supervised and unsupervised settings using both
traditional signal-based metrics and perceptual metrics, as well as downstream tasks such
as automatic speech recognition (ASR) performance or speaker similarity. We investigate
the impact of pretraining, branch combination methods, discriminator design, and VQ
bottlenecks through detailed ablations. We also provide a theoretical justification for our
architecture, showing that it can be viewed as an approximate solution to a maximum a
posteriori (MAP) inference of clean speech given a noisy input, underpinning the theoretical
soundness of our approach.
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Contributions
The main contributions of this thesis are as follows:

• A novel dual-branch neural audio codec architecture for unsupervised speech enhance-
ment, enabling clean/noise decomposition without paired data.

• Adversarial branch-specific discriminators and a reconstruction consistency constraint
to guide the learning of clean and noise components.

• A comprehensive experimental evaluation across supervised, semi-supervised, and
unsupervised regimes, including ablations and real-world scenarios.

Thesis Outline
The remainder of this thesis is organized as follows:

• Chapter 2 introduces the speech enhancement task and prior supervised and unsu-
pervised approaches.

• Chapter 3 lays down the foundations of neural audio codecs and its components.

• Chapter 4 presents the architecture, loss functions, and theoretical motivation be-
hind our proposed method.

• Chapter 5 describes used datasets, implementation and training details.

• Chapter 6 reports extensive experimental results, including baselines, ablations, and
analysis of supervised and unsupervised variants.

• Chapter 7 concludes with a summary of findings and outlines directions for future
work.

6



Chapter 2

Speech Enhancement

This chapter introduces SE background with basic definitions of noises, reverberated signals,
and the SE task itself. It also describes prior supervised and unsupervised SE approaches.

2.1 Background
Whether it is a noise created by the recording device, environmental background, bandwidth
limitation or packet loss, these (and many more) factors corrupt speech audio signal. Noises
can be divided into two main categories:

1. Stationary - has constant statistical properties, i.e., n = (𝑛1, 𝑛2, . . . , 𝑛𝑇 ), 𝑛𝑡 ∼ 𝑝(𝜃),
usually caused by electronic device imperfections (e.g. Gaussian or Brown noise) or
devices like air conditioning,

2. Non-stationary - statistical properties change over time, i.e., n = (𝑛1, 𝑛2, . . . , 𝑛𝑇 ),
𝑛𝑡 ∼ 𝑝(𝜃(𝑡)), majority of urban noises (e.g. sirene, wind, music, background speech).

Furthermore, indoor audio usually gets reverberated as a consequence of waveform
bouncing of the surrounding walls and other objects, causing the reflected signal to be
captured by a recording device with small delay, which can be mathematically defined as:

x′(𝑡) = x(𝑡) +

∞∑︁
𝑖=1

x(𝑡− 𝜏𝑖)𝛼𝑖, (2.1)

where x,x′ ∈ R𝑇 is the original and reverberated signal respectively, 𝜏𝑖 is the 𝑖−th delay
and 𝛼𝑖 ∈ R is the attenuation factor.

As a result of the aforementioned signal corruptions, speech technology performance
rapidly decreases, making it barely usable in challenging environments.

2.2 Task Definition
Speech enhancement is a speech processing task consisting in estimating clean speech signal
from input noisy signal. More formally, let the noisy input signal be defined as:

y = (x+ n) ⋆ r, (2.2)

where x is a clean speech signal, n is arbitrary noise (can be non-stationary), r is a room
impulse response (RIR), y denotes the noisy signal, all defined as sequences of real numbers,
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and ⋆ is a convolution operator. The goal of a speech enhancement model is to estimate
x given a noisy recording y with unknown ground truth noise, nor RIR, which can be
mathematically formulated as:

𝑓* = argmin
𝑓∈ℱ

∑︁
(x,y)∈𝒟

𝑑(x, 𝑓(y)), (2.3)

𝑓* = 𝑓𝜃* , 𝜃
* = argmin

𝜃∈Θ

∑︁
(x,y)∈𝒟

𝑑(x, 𝑓𝜃(y)), (2.4)

x̂ = 𝑓*(y), (2.5)

where 𝑑 is some distance metric (i.e. 𝐿1 norm of a difference of the ground truth clean
speech signal and the estimated clean speech signal), 𝑓 is an enhancement model, and
ℱ is a family of functions we consider during optimization, and 𝒟 is a dataset of paired
examples. Usually, we parametrize the function 𝑓 by parameters 𝜃 from a set of possible
parameters Θ, e.g., a transformer neural network with pre-determined hyperparameters.
Also, another plausible definition includes probability densities and maximum a posteriori
(MAP) estimation and can be defined as:

x̂ = argmax
x′∈R𝑇

𝑝(x′|y), (2.6)

meaning that we are trying to find the most probable clean speech signal given the noisy
input.

2.3 Prior Approaches
We provide an overview of prior approaches to speech enhancement, first focusing on tradi-
tional methods that predate deep learning. Then, we first describe supervised approaches,
which are more common in the literature, and then we focus on unsupervised approaches,
which are the main focus of this thesis.

2.3.1 Traditional Pre-Deep-Learning Methods

Speech enhancement has been approached through a range of methods, each with distinct
theoretical foundations and practical trade-offs. One of the earliest and most widely used
techniques is the Wiener filter [36], which estimates the clean speech signal by minimizing
the mean-square error between the noisy observation and the desired signal in the frequency
domain. While effective at high signal-to-noise ratios (SNRs), the Wiener filter can intro-
duce distortion at low SNRs due to its reliance on accurate a priori SNR estimates. The
authors of [7] later introduced spectral subtraction as a computationally efficient alterna-
tive that estimates the noise spectrum during nonspeech segments and subtracts it from
the noisy signal. Although simple and suitable for real-time applications, this method often
introduces various noise artifacts. Building upon these earlier approaches, [15] proposed
a statistically optimal method that directly estimates the short-time spectral amplitude
(STSA), which is more perceptually relevant than the full complex spectrum estimated by
the Wiener filter. By modeling speech and noise as independent Gaussian variables, their
MMSE-STSA estimator achieved improved noise suppression and reduced speech distor-
tion, particularly under uncertain speech presence. More recently, [33] combined spectral
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subtraction and adaptive wavelet thresholding in the wavelet domain by applying spectral
subtraction to low-frequency bands and wavelet-based denoising to high-frequency compo-
nents. Their hybrid method effectively mitigates both noise artifacts and over-smoothing,
demonstrating improved performance in non-stationary acoustic environments.

2.3.2 Supervised Deep Learning Methods

More recent work has moved beyond traditional signal processing approaches, with a grow-
ing focus on data-driven methods based on deep learning. Initial efforts in this direction
employed fully connected neural networks trained to predict clean spectral magnitudes from
noisy inputs [82]. These models were later extended with recurrent architectures, such
as long short-term memory (LSTM) networks, which enabled the modeling of temporal
dependencies in speech [76]. The incorporation of phase-sensitive loss functions and time-
frequency masking further improved performance, particularly in terms of intelligibility and
automatic speech recognition robustness. However, these models typically required more
parameters and were computationally intensive, limiting their applicability in low-resource
or real-time scenarios.

To address these limitations, convolutional approaches gained popularity. The Redun-
dant Convolutional Encoder-Decoder (R-CED) network introduced a fully convolutional
neural network with skip connections and no pooling layers, enabling efficient spectral
mapping with a relatively small number of parameters [44]. This made it more suitable for
deployment in resource-constrained environments. Similarly, the Temporal Convolutional
Neural Network (TCNN) [43] employed causal and dilated convolutions to maintain long
receptive fields without the need for recurrence. Its encoder-decoder structure, combined
with a temporal convolutional module, supported low-latency inference while maintaining
strong enhancement performance.

Furthermore, Transformer-based models have also been explored for speech enhance-
ment. The Two-Stage Transformer Neural Network (TSTNN) proposed a modular archi-
tecture that integrates local and global contextual modeling using transformer blocks and
gated recurrent units (GRUs) [75]. This design allowed the model to efficiently process
long-range dependencies in the time domain, with moderate computational complexity.

Parallel to these developments, generative models began to be applied to speech en-
hancement. One of the earlier examples, SEGAN [46], used a generative adversarial frame-
work operating directly on raw waveforms to map noisy speech to cleaner outputs without
relying on spectral representations. While this end-to-end approach showed the potential of
generative modeling in the time domain, it faced challenges with training stability and noise
generalization. MetricGAN [18, 19] introduced a different generative formulation, in which
the discriminator does not perform binary classification but instead learns to approximate
evaluation metrics such as PESQ. This enables the generator to optimize for perceptual
quality more directly. Although MetricGAN’s training follows an adversarial structure, its
objective is closely tied to metric regression, distinguishing it from classical GAN setups
focused on data distribution matching.

More recently, diffusion-based models have offered a principled probabilistic approach to
generative speech enhancement. The Score-based Generative Model for Speech Enhance-
ment (SGMSE+) [56] models the forward corruption process as a stochastic differential
equation (SDE) in the complex STFT domain and learns the reverse process via a noise-
conditional score network. The model generates enhanced speech through iterative sam-
pling and has demonstrated effective denoising and dereverberation capabilities across a
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variety of noise conditions. Its training does not rely on metric-based losses or adversarial
objectives, but rather on score matching, aligning it more closely with probabilistic infer-
ence frameworks. Evaluation on several benchmarks has shown that diffusion-based models
like SGMSE+ provide competitive or superior results compared to both discriminative and
earlier generative methods.

Overall, these developments represent a progression from deterministic signal estimators
toward probabilistic models that aim to capture the underlying structure of clean speech.
This shift has contributed to improvements in enhancement robustness, generalization to
unseen conditions, and perceptual quality.

2.3.3 Unsupervised Enhancement Methods

While supervised deep learning methods have achieved remarkable performance, they re-
main constrained by their dependence on paired clean and noisy data. This limitation
has prompted increasing interest in unsupervised approaches that eliminate the need for
clean references, instead relying on the structure of speech, self-supervision, or generative
modeling.

One prominent line of research in unsupervised speech enhancement utilizes deep prob-
abilistic generative models trained only on clean speech. Dynamical Variational Autoen-
coders (DVAEs) [6] model clean speech as a sequence of latent variables with temporal de-
pendencies, enabling more accurate modeling of speech dynamics than standard Variational
Autoencoders (VAEs). The DVAE acts as a prior during inference, where it is combined
with a Nonnegative Matrix Factorization (NMF)-based noise model within a variational
Expectation-Maximization (EM) framework to perform unsupervised separation of clean
speech from noisy mixtures. This structure allows the use of only clean speech data dur-
ing training, while still enabling enhancement on real-world noisy inputs. To extend this
capability, later work by the authors of [34] replaced the handcrafted NMF noise model
with a trainable Deep Dynamical Generative Model (DDGM), which more flexibly cap-
tures the structure of realistic noise. This shift toward fully learnable components improves
generalization and enables both noise-agnostic and noise-specific configurations with faster
inference.

Complementing these probabilistic models, adversarial learning techniques have been
adapted to the unsupervised setting. MetricGAN-U [20] introduces a novel formulation
where the GAN discriminator is trained not to distinguish between real and fake samples,
but instead to approximate a perceptual quality metric such as DNSMOS or SRMR. The
generator is then optimized to improve the discriminator’s predicted score, effectively en-
hancing the speech signal by maximizing its estimated perceptual quality. Crucially, this
setup allows training on noisy speech alone, using the learned metric proxy as supervision,
and supports enhancement tasks such as dereverberation in addition to denoising.

Another class of unsupervised methods leverages unpaired datasets through cycle-
consistent architectures [80]. CycleGAN-based enhancement models train two generator-
discriminator pairs with a cycle-consistency loss to ensure that mappings from noisy to clean
speech and back preserve content. However, early versions suffered from unstable clean-
to-noisy mapping. This issue was addressed through Noise-Informed Training (NIT) [67],
which augments the input with noise-type labels to guide the generation of more realistic
noisy signals. This extension improved the consistency and stability of the training cycle,
leading to better generalization on unseen noise types and more reliable enhancements.
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Other approaches have explored alternative formulations of the training process itself.
The Noisy-target Training (NyTT) [21, 22] method trains a model to predict a moderately
noisy signal from a more severely degraded version, using only noisy data. A more noisy
version is synthesized by adding additional noise to the input, which then serves as the
target. This setup exploits the assumption that the clean speech is shared across both
versions, enabling the model to learn to suppress the added noise. Despite its simplicity,
NyTT has shown strong performance, especially under domain mismatch conditions where
traditional supervised models tend to fail.

Further expanding on self-supervised strategies, TF-Cycle-MixIT [73] addresses the chal-
lenge of enhancing extremely weak speech signals under severe noise. It integrates Mixture
Invariant Training (MixIT) [78], a method for source separation without clean references,
with harmonic-aware features and time-frequency fusion. The system operates in a cycle-
consistent training loop and employs periodic pseudo-label refinement to stabilize learning.
By leveraging harmonic structures common in voiced speech, the model can retain intelli-
gibility even when the signal-to-noise ratio is very low. This makes it particularly effective
in harsh conditions such as those found in distributed acoustic sensing or industrial moni-
toring.

Another recent line of work is QMixCAT [74], which aligns with teacher-student and
pseudo-labeling strategies found in other self-supervised learning domains. It simulates a
supervised training setup using only noisy data by employing quality-guided pseudo-labeling
and a competitive teacher-student framework. Noisy mixtures are scored using a perceptual
quality estimator to select high-confidence pseudo-labels, which are used to supervise a
student model. A Competitive Alternating Training (CAT) strategy then updates both the
student and teacher networks iteratively. This approach complements prior methods such
as TF-Cycle-MixIT and MetricGAN-U by focusing on perceptual guidance and dynamic
model refinement, demonstrating strong performance without requiring clean targets

Collectively, these methods illustrate a clear shift from reliance on parallel data toward
more flexible and data-efficient learning frameworks. Through a variety of architectures and
training strategies—probabilistic modeling, adversarial learning, and self-supervised objec-
tives—unsupervised speech enhancement has emerged as a viable and robust alternative to
traditional supervised methods, capable of meeting the demands of real-world applications.
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Chapter 3

Neural Audio Codecs

Learning neural representations of input data remains the main challenge in the field of
machine learning. Until recently, most neural representation models operated in continuous
latent vector spaces. However, many modalities are inherently discrete, including speech
— discrete spoken words with a finite number of speakers that can be characterized by
a combination of discrete factors (e.g., gender, emotion, age, 𝐹0, to name a few). Hence,
producing discrete representations seems better to fit the nature of the true latent speech
structure.

Discrete representation models, first successfully introduced as VQ-VAE [42], and later
by the authors of VQ-GAN [16], proved that discrete representations are enough to match
the performance of continuous counterparts when performing reconstruction and generation,
and sparked an interest in learning discrete representations. Furthermore, the authors also
proved that learning discrete representation for speech resulted in implicit phoneme-like
structures in the representations, proving that the model is indeed learning the important
higher-level latent structures. These architectures, among architectures like MelGAN [28]
or HiFiGan [27], inspired the birth of end-to-end neural audio codecs (NACs). One of the
first architectures of modern NAC is considered to be SoundStream [84], which was later
followed by Encodec [12] and many others.

Neural Audio Codec is a neural network-based model that takes audio as input, encodes
it into a sequence of discrete representations (tokens), and transforms these tokens back to
an output audio that resembles the input as accurately as possible. As depicted in Figure
3.1, the model consists of three main parts:

1. Encoder - Usually a convolutional neural network that encodes input audio into down-
sampled high-dimensional continuous representations.

2. Quantization - A clustering module that converts continuous representations into
discrete representations with maximum accuracy.

3. Decoder - Usually a neural network consisting of transposed convolutions that decodes
discretized latent representations back to a waveform.

3.1 Encoder and Decoder
The encoder and decoder are the main parts of the autoencoder network that, along with
the quantization module, define the architecture of NAC models. The difference between
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Figure 3.1: Neural Audio Codec schema.

the encoder and the decoder is mainly in the decoder block, which has similar architecture
to the encoder block but the last convolutional layer is transposed and placed before the
residual units to increase the time resolution and decrease the number of channels (see
Figure 3.2b); hence, we describe only the encoder architecture. As we base all our models
on Descript Audio Codec (DAC) [29], we tailor the description to the specifics of DAC
architecture. However, other convolutional NACs are similar.

(a) Schema of one residual unit. (b) Schema of one encoder block.

Figure 3.2: Schema of NAC encoder building blocks. Conv1D parameters are: (number
of kernel filters, kernel size, stride, padding, dilation), respectively, and the residual unit
parameters are: (number of kernels, dilation, and stride).

The encoder consists of a 1D convolution layer with 𝑑 channels, kernel size of 7, and
padding 3 that transforms single-channel waveform to a 𝑑-channel signal (dictates the latent
space dimensionality). Then it is followed by a sequence of encoder blocks (Figure 3.2b),
each consisting of 3 residual units (Figure 3.2a) followed by a Snake activation function,
which is defined as 𝑓(𝑥) = 𝑥 + 1

𝛼 sin2(𝛼𝑥) and was proposed by [87] to inject a periodic
inductive bias into the model. The authors of DAC [29] observed that it results in improved
reconstruction audio quality. The last building block of the encoder block is a 1D convolu-
tional layer with stride 𝑠 reducing the time resolution by a factor of 𝑠 and increasing the
number of channels twice.
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3.1.1 Normalization

Normalization is a crucial element of most modern neural networks that significantly im-
proves the stability of the training process. The authors of MelGAN [28] observed that
the choice of normalization technique was crucial for audio quality. The main problem was
rooted in normalization techniques that alter the distribution of the activation functions
(i.e., normalize mean), which can lead to removing important pitch information, making
the audio sound more metallic. The best-performing technique was weight normalization,
which re-parametrizes the weight matrices as:

w = 𝑔
v

‖v‖
, (3.1)

where v is the orignal weight matrix and 𝑔 ∈ R defines the new norm of w. Hence,
it decouples the norm from the direction of the given parameter. It can be shown that
this technique stabilizes the training process without altering internal activations by nor-
malizing the gradients instead. For more information, we refer the reader to the original
publication [62].

3.2 Transformer
Nowadays, the Transformer is a ubiquitous model used for almost all tasks and was first
introduced in 2017 by the authors of [70]. For this work, we only introduce the self-attention,
how to encode the positional information, and we will try to give intuition behind the use
of Transformer in NAC models. For more details about the Transformer architecture, we
refer the reader to the original paper.

Self-attention is a mechanism that increases the model’s receptive field to infinity com-
pared to fully convolutional networks by allowing it to combine information from all the
input embeddings. For mathematical description, let E = (e1, e2, . . . , e𝑁 ) ∈ R𝑁×𝑑 be a
sequence of 𝑁 embeddings of dimension 𝑑. We distinguish between three types of embed-
dings: query Q, key K, and value V. In self-attention, all three are being computed from
the same input sequence E by applying three different linear transformations as defined
below:

Q = E ·𝑊𝑄, K = E ·𝑊𝐾 , V = 𝐸 ·𝑊𝑉 . (3.2)

The attention scores are computed as:

Attention(Q,K,V) = softmax
(︂
QK𝑇

√
𝑑

)︂
V. (3.3)

It can be seen that the attention mechanism weights all the values by scores computed from
the similarity of queries and keys, allowing the model to focus on the most relevant parts
of the input but also to use information from the entire input sequence.

It is not hard to observe that self-attention is position invariant, meaning that the order
of the input sequence does not matter. We need to inject positional information into the
model to overcome this issue. The authors of [70] proposed to add absolute positional
encodings to the input embeddings. However, it is not sufficient for audio compression
because the position of some sound in the recording should not matter to the task itself.
Hence, relative positional information is mostly used, informing the attention mechanism
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about the distance between the current position in the embedding sequence and the one
it is attending to. For this purpose, this and also other works (e.g. [45]) use the rotary
positional encoding proposed by [64].

Until recently, the majority of NAC models were fully convolutional. However, re-
searchers started employing transformers in NAC models to increase the receptive field and
to increase the efficiency (i.e., decrease the bitrate) [45, 79, 14]. Due to the infinite receptive
field, the transformer-based NACs are able to model long-term dependencies in the audio
signal and encode it more efficiently, which is beneficial not only for the higher compression
rate but also for the subsequent audio language modeling these codecs are usually used for.

3.3 Quantization
Let z ∈ R𝑁×𝑑 be a d-dimensional vector sequence of length 𝑁 . Furthermore, let 𝑄𝑞 : R𝑑 →
N be a quantizer, i.e., a function that converts a continuous (possibly high-dimensional)
vector into a discrete number (token), and 𝑄𝑑 : N → R𝑑 be a dequantizer, i.e., a function
that converts a token back to a continuous real-valued vector. Then, we can define 𝑄 =
𝑄𝑑 ∘𝑄𝑞 as a quantization module.

The quantization module 𝑄 usually stores a set of codes called codebook. It is a look-up
table, where the key is an integer token ID and the value is a vector of 𝑑 dimensional real
values (usually called a centroid or a prototype). The quantization process for an arbitrary
input vector x ∈ R𝑑 can be defined as:

x̂ = argmin
c∈C

𝑑𝑖𝑠𝑡(x, c), (3.4)

where C = (c1, c2, . . . , c𝐾) ∈ R𝐾×𝑑 represents a codebook and 𝑑𝑖𝑠𝑡 is a distance function
(usually Euclidean).

There are several approaches to finding a suitable codebook; however, all of them can
be described in the following way: Let X = (x1,x2, . . . ,x𝑁 ) ∈ R𝑁×𝑑 be a batch of 𝑑-
dimensional vectors (i.e., a training set). Furthermore, let 𝑄C denote a quantization func-
tion with an internal codebook C. Then, finding an optimal codebook can be defined as a
minimization problem:

C = argmin
C′

1

𝑁

𝑁∑︁
𝑖=1

𝑑𝑖𝑠𝑡(x𝑖, 𝑄C′(x𝑖)). (3.5)

3.3.1 RVQ

Having only one codebook allows us to encode log2(𝑁) bits of information. However, if we
want to increase the bit rate (especially to increase the quality of the audio produced by
NAC), e.g., 80 bits, we would need to store 280 unique codes. If we assume 512-dimensional
centroids stored in 32-bit floating point numbers, we would need storage of size almost 5000
zeta bytes.

To overcome the foregoing issues, we use residual vector quantization (RVQ), which,
instead of a single codebook, contains 𝐿 codebooks. As the name suggests, the RVQ
procedure involves the iterative application of quantization to the preceding quantization
errors. We can define the RVQ algorithm as follows:
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Algorithm 1: Residual Vector Quantization
Input: x - 𝑑-dimensional vectors, 𝑁𝑞 - number of quantizers, 𝑄𝑖 - quantization

functions
Output: quantized embedding x̂
x̂← 0
e← x
for 𝑖 = 1 to 𝑁𝑞 do

y← 𝑄𝑖(e)
x̂ += y
e −= y

end for
return x̂

3.3.2 Update Methods

Several methods exist for updating the centroids, out of which EMA and gradient-based
are most commonly used.

EMA

The exponential moving average (EMA) method determines the values of a codebook code
as a moving average of data points that were quantized as the particular code during the
forward pass (see Equation 3.4). EMA updates resemble the K-means algorithm; however,
during neural network training, we use mini-batches instead of the whole training set; hence,
we need to update the centroids gradually. More formally, let {x𝑖,1,x𝑖,2, . . . ,x𝑖,𝑛𝑖} be a set
of embeddings in a mini-batch that were closest to the code c𝑖 during the forward pass. We
define a code value update as follows:

𝑁
(𝑡+1)
𝑖 = 𝑁 𝑡

𝑖 · 𝛼+ (1− 𝛼) · 𝑛𝑖 (3.6)

𝑚
(𝑡+1)
𝑖 = 𝑚𝑡

𝑖 · 𝛼+ (1− 𝛼)

𝑛𝑖∑︁
𝑗=1

x𝑖,𝑗 , (3.7)

c
(𝑡+1)
𝑖 =

𝑚
(𝑡+1)
𝑖

𝑁
(𝑡+1)
𝑖

, (3.8)

where 𝛼 ∈ [0, 1] roughly determines the number of averaged elements. Usually, 𝛼 is set to
0.99 during EMA updates.

Some code does not get updated because that particular code quantizes no vectors. To
increase the codebook utilization, authors of the Encodec model [12] used random restarts—
randomly re-initialize the corresponding centroid from a pre-defined distribution (usually
Gaussian).

Gradient-based

Another popular method for updating codebooks consists of optimizing two losses:

ℒ𝑞(x, x̂) = ‖sg[𝑥]− 𝑥̂‖22⏟  ⏞  
ℒ𝑐𝑏 codebook

+𝛽 ‖𝑥− sg[x̂]‖22⏟  ⏞  
ℒ𝑐𝑚 commitment

, (3.9)
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where sg means stop-gradient and 𝛽 is a weighting constant that adjusts the importance of
the particular loss parts, usually set to 0.25. While codebook loss updates the codebook’s
centroids to quantize the input as accurately as possible, the commitment loss serves as a
regularization to force the encoder to output embeddings close to the codebook centroids
(i.e., forces the encoder to stick to the codes the output got quantized to).

3.3.3 Curse of Dimensionality

To produce rich discrete input representations, we usually demand high codebook utilization
(usually measured as codebook entropy). The codebook entropy is estimated by quantizing
sufficiently large data and counting the number of times each code was used in each code-
book. The final codebook entropy is calculated as an average of per-codebook entropies.
Then, the codebook utilization is usually equal to the normalized entropy—i.e., dividing
the entropy by log2(𝑁), where 𝑁 is the number of codes in the codebook.

As the encoder latent space is usually high-dimensional (1024+ dimensional), computing
𝐿2 distance becomes less informative about the actual similarity between two embeddings.
It has been proven that for some chosen point in a high-dimensional space, the difference
between the nearest and the furthest point distances to the selected point converges to 0 in
the limit of space dimensionality [1]. Also, the curse of dimensionality says that the volume
of multi-dimensional space increases exponentially w.r.t. to the number of dimensions,
meaning the latent space becomes sparsely populated. All these facts lead to low codebook
entropy, which decreases the bandwidth of discrete representations and the reconstruction
quality (we want the NAC to output as accurately reconstructed audio as possible).

To overcome the aforementioned issues, previous works applied linear down projection,
performed the quantization in low-dimensional space, and projected up the quantized em-
beddings back to the original high-dimensional vector space, which can be defined as:

x̂ = W𝑢 ·𝑄(W𝑑 · x), (3.10)

where W𝑑 ∈ R𝑑×𝑙 is a down-projection matrix, W𝑢 ∈ R𝑙×𝑑 is an up-projection matrix, and
𝑄 is a quantization function defined above, and 𝑙 is the quantization space dimensionality.
𝑙 = 8 has shown to achieve the best compromise between the entropy of the codebook (0.99)
and the reconstructed audio quality [29]. Intuitively, we can say that 𝑊𝑑 is going to be a
PCA-like transformation [49], as we are minimizing ‖x− x̂‖22 and thus need to project the
original vector space into a low-rank space where we can measure the embedding similarities
more accurately (i.e., it does not make sense to keep dimensions with low variance, as they
do not reflect embedding similarities in the original space).

3.4 Reconstruction Loss Functions
The reconstruction loss term is comprised of time and frequency domain loss terms. Let
x, x̂ ∈ R𝑇 be an input and an output audio signal, respectively. The time-domain loss term
is defined as:

ℒ𝑡(x, x̂) = ‖𝑥− 𝑥̂‖1 . (3.11)

The frequency-domain losses are defined below.
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3.4.1 MultiScale Spectral Loss

Let 𝑆𝑛,ℎ(x) denote a spectrogram computed using short-time Fourier transform (STFT)
with window size 𝑛 and hop length ℎ from some input signal x. The multi-scale spectral
loss is defined as:

ℒ𝑓𝑠(x, x̂) =
𝑁𝑠∑︁
𝑖=1

‖log10 |𝑆𝑛𝑖,ℎ𝑖
(x)| − log10 |𝑆𝑛𝑖,ℎ𝑖

(x̂)|‖1 , (3.12)

where 𝑁𝑠 is the number of different scales/sizes (e.g., 𝑛𝑖 ∈ {2048, 1024, 512}), and ℎ𝑖 =
𝑛𝑖
4 .

Here, we abuse the notation of 𝐿1, as the 𝑆𝑛,ℎ returns a matrix and assume the metric is
computed over all the elemnents of the matrix by flattening it.

3.4.2 MultiScale Mel Loss

Another frequency-domain loss uses a mel-spectrogram to reflect human auditory perception
better. Let 𝑀𝑛,ℎ,𝑘(𝑥) denote a mel-spectrogram where 𝑛, ℎ,x have the same meaning as
previously stated, and 𝑘 is the number of mel bands. The (multi-scale) Mel-spectrogram
loss is defined as:

ℒ𝑓𝑚(x, x̂) =

𝑁𝑚∑︁
𝑖=1

‖log10(𝑀𝑛𝑖,ℎ𝑖,𝑘𝑖(x))− log10(𝑀𝑛𝑖,ℎ𝑖,𝑘𝑖(x̂))‖1 . (3.13)

3.5 GAN
In the generative adversarial network (GAN) paradigm, two networks called generator (𝐺)
and discriminator (𝐷) are trained against each other (adversarially) [24]. The generator 𝐺
is trained to produce samples indistinguishable from the real samples from 𝑝𝑑𝑎𝑡𝑎, while the
discriminator is trained to determine if a sample is real or generated. The adversarial train-
ing process optimizes the generator to minimize the Jensen-Shannon divergence between
the distributions of real and generated samples. It has been proven that if this training
process converges, and the generator is able to fool the discriminator well, the generator
eventually produces samples from the training data distribution 𝑝𝑑𝑎𝑡𝑎 [24].

However, in the context of NAC models, we do not generate any data, as the codec is a
deterministic function of the input. We rather use the adversarial training to increase the
perceptual quality of the reconstructed audio—i.e., to guide the model towards focusing
on the perceptually most important aspects instead of only satisfying the reconstruction
losses [13, 28].

Least Squares generative adversarial network (LS-GAN) [40] is commonly used by the
authors of previous work on audio generation instead of the vanilla GAN mainly due to the
problem of vanishing gradients in the case of an overpowered generator or discriminator
(i.e., generator perfectly fools discriminator or vice-versa). Compared to vanilla GANs,
LS-GAN optimizes Pearson divergence instead of Jensen-Shannon divergence, but claim
about the convergence described above still holds. In the descriptions below, we use 𝐺 and
𝐷 to represent generator and discriminator functions.

3.5.1 Discriminator

We first describe the discriminator, as it is later used in the definition of the generator losses.
In the case of NACs, the discriminator consists of multiple sub-discriminators operating on
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various resolutions, periods, or frequency bands (see below). Each sub-discriminator is
a convolutional neural network with linear output activation function, which outputs a
sequence of scores that are pushed to being close to 0 in the case of generated audio and
close to 1 in the case of real audio. The loss function used to train the discriminator is
defined as:

ℒ𝐷 =

𝐾𝐷∑︁
𝑘=1

E𝑥∼𝑝𝑑𝑎𝑡𝑎 [𝐷𝑘(𝐺(𝑥))2 + (1−𝐷𝑘(𝑥))
2], (3.14)

where 𝑝𝑑𝑎𝑡𝑎 is the training data distribution, 𝐷𝑘 is the 𝑘-th sub-discriminator, and 𝐾𝐷 is
the number of sub-discriminators.

Multi Period Discriminator

Figure 3.3: Multi Period Discriminator [27].

Multiperiod discriminator (MPD) was proposed by the authors of HiFi Gan [27] and
is shown in Figure 3.3. It consists of five sub-discriminators, each focusing on a different
portion of periodic input audio signals. It consists of a 6-layer 2D convolutional network
with the number of channels [32, 128, 512, 1024, 1024, 1] (the last convolutional layer pools
across-channel information to a single channel) where each but the last convolution layer
uses the LeakyReLU activation function, kernel size (5, 1), stride (3, 1) and padding (2, 0)
— i.e., the length of the input sequence is preserved. The periods for each discriminator
are defined as: 𝑝 ∈ [2, 3, 5, 7, 11].

Multi-band Complex Spectrogram Discriminator

To penalize phase shifts, the Multi-band Complex Spectrogram Discriminator (MCSD)
utilizes the complex spectrogram that encodes magnitude in the real axis and phase in the
imaginary axis. The architecture consists of three 2D convolutional layers, each having
32 kernels, stride 1, and padding 1, followed by the LeakyReLU [81] activation function.
The complex spectrogram is treated as a matrix of tuples—real and imaginary axis (i.e., 2
channels). The last, 4th, convolutional layer uses only one kernel and is added to obtain the
sub-discriminator scores. The authors of DAC [29] found that splitting the spectrogram
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into sub-bands improves high-frequency prediction and mitigates aliasing artifacts; hence,
each sub-discriminator is replicated (without weight sharing) and applied to the specific
frequency band.

3.5.2 Generator

The generator in the context of NAC is the encoder-decoder model. The adversarial loss
function is defined as:

ℒ𝐺 =

𝐾𝐷∑︁
𝑘=1

E𝑥∼𝑝𝑑𝑎𝑡𝑎 [(1−𝐷𝑘(𝐺(𝑥)))2], (3.15)

where 𝑝𝑑𝑎𝑡𝑎 is the training data distribution. Furthermore, the generator is trained with
an additional feature matching loss. The discriminator learns representations, based on
which it is able to distinguish between real and generated audio. Thus, the 𝐿1 norm of the
difference between the discriminator representations of the NAC input and the generated
audio can be viewed as a learned similarity metric we can use to provide the generator with
enhanced guidance on how the real audio should sound. Let 𝐹𝑖,𝑚(x) represent a feature
map produced by the 𝑚-th convolutional layer in the 𝑖-th discriminator. Then, the feature
matching loss is defined as:

ℒ𝑓𝑒𝑎𝑡(x, x̂) =
𝐾𝐷∑︁
𝑘=1

𝑀𝑘−1∑︁
𝑙=1

‖𝐹𝑘,𝑙(x)− 𝐹𝑘,𝑙(x̂)‖1 , (3.16)

where 𝑀𝑘 is the number of conv layers in the given discriminator (we are not using the
output of the last convolutional layer as it is treated as the discriminator score and not an
internal feature map). Also, when computing the feature matching loss, we do not update
the discriminator parameters and only backpropagate through the discriminator to obtain
the gradients for the generator parameters update.

3.6 Combined Loss
The overall loss function the generator is being optimized with is a weighted combination
of the aforementioned losses. However, the authors of DAC [29] did not use the Multi-Scale
spectral loss, which was used in prior works (e.g., [12]), but used the Multi-Scale Mel loss
instead. The overall loss function is defined as:

ℒ = 𝜆𝑡ℒ𝑡 + 𝜆𝑓𝑚 + 𝜆𝐺ℒ𝐺 + 𝜆𝑓𝑒𝑎𝑡ℒ𝑓𝑒𝑎𝑡 + 𝜆𝑐𝑏ℒ𝑐𝑏 + 𝜆𝑐𝑚ℒ𝑐𝑚. (3.17)

Given the number of the loss weights, it is important to tune them carefully or at least to
estimate their dynamic range and set the weighs accordingly.
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Chapter 4

Our Approach

This chapter outlines the details of our proposed methods, including their variations, in-
depth description, and intuition behind each design choice. We first present a single-
branch baseline model consisting of the convolutional encoder and decoder, transformer,
and quantization. Afterward, we present a dual-branch model that extends the single-
branch baseline with another parallel branch modeling residual noise, leading to a model
that allows us to train SE unsupervised.

4.1 Single-branch

Figure 4.1: Single-branch speech enhancement model scheme.

Prior SE approaches (Section 2.3) have converged mainly to two paradigms: spectrogram-
based methods and waveform-based methods. Traditional SE approaches typically estimate
a time-frequency mask applied to input noisy spectrogram, while more recent approaches
perform enhancement directly on waveforms, which is our case.

The single-branch enhancement model is essentially a NAC model that takes noisy
mixture x𝑁𝑆 ∈ R𝑇 , created as a sum of noise and clean speech as an input, and predicts
clean speech (unlike NAC that predicts the input audio).

As shown in Figure 4.1, the noisy audio is passed to the convolutional encoder z =
𝐸(x𝑁𝑆) ∈ R𝑇 ′×𝑑, extracting local features from the input signal and encoding it into a
high-dimensional latent sequence of real-valued vectors. In order to capture global infor-
mation in the speech signal, like prosody or speaker characteristics, we further employ a
transformer [71] model to increase the receptive field of the enhancement model to the entire
sequence. We found out during our preliminary experimentation that adding positional in-
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formation to the input sequence was crucial for model convergence, as a transformer model
is invariant to the position in the input latent sequence, which indeed does not correspond
to the nature of the audio signal for the enhancement task (i.e., we do want to enhance
the input speech while retaining the order of spoken phonemes). Moreover, the absolute
position in the sequence does not matter as much as the relative difference between the po-
sitions in the sequence (i.e., immediate surroundings of 𝑖-th element z[𝑖] explain z[𝑖] more
than a distant element in the sequence z); hence, we utilize relative positional information
by using Rotary Positional Embeddings (RoPE) [64]. After the transformer with RoPE
(RoFormer) processes the latent sequence z𝐶𝑆 = ℛ(z), we optionally quantize the embed-
dings using RVQ, producing quantized embeddings z̄𝐶𝑆 . Even though the quantization
step is unnecessary, it allows us to control branch-wise bandwidth with dual-branch models
described below. The last step of the pipeline is the decoding, which converts the latent
sequence back to enhanced waveform x̂𝐶𝑆 .

4.1.1 Training

We follow the NAC training scheme utilizing both reconstruction and adversarial losses
to train the model. However, in addition to the Multi-Scale Mel loss used during NAC
training, we also optimize negative SI-SDR [59] (we want to maximize SI-SDR) defined as:

SI-SDR(x, x̂) = 10 log10

⎛⎜⎝
⃦⃦⃦

x̂𝑇x
‖x‖22

x
⃦⃦⃦2
2⃦⃦⃦

x̂𝑇x
‖x‖22

x− x̂
⃦⃦⃦2
2

⎞⎟⎠ , (4.1)

beacuse it resulted in faster model convergence and better speech quality in our preliminary
experiments. The overall generator loss function is defined as:

ℒ(x𝐶𝑆 , x̂𝐶𝑆) = −𝜆𝑠SI-SDR(x𝐶𝑆 , x̂𝐶𝑆) + 𝜆𝑓𝑚ℒ𝑓𝑚(x𝐶𝑆 , x̂𝐶𝑆)+

+ 𝜆𝑓𝑒𝑎𝑡ℒ𝑓𝑒𝑎𝑡(x𝐶𝑆 , x̂𝐶𝑆) + 𝜆𝐺ℒ𝐺(x̂𝐶𝑆)+

+ 𝜆𝑐𝑏ℒ𝑐𝑏(z𝐶𝑆 , z̄𝐶𝑆) + 𝜆𝑐𝑚ℒ𝑐𝑚(z𝐶𝑆 , z̄𝐶𝑆),

(4.2)

where 𝜆𝑖 ∈ R+ is the particular loss weight, and the other losses are defined in Section 3.4.
Together with the generator, we also train the discriminator 𝐷𝑐𝑠, which is trained

to distinguish between real and generated clean speech audio by optimizing the ℒ𝐷 loss
function defined in Section 3.5 and 3.3.

4.2 Dual-branch
The single-branch model alone might be enough for supervised SE but is not for leveraging
unpaired data without any supervision available. Even though the architecture is GAN, it
lacks the essential part in the case of unpaired data: consistency—i.e., ensuring the output
is as close to the input as possible in terms of uttered words or speaker information.

Prior unsupervised SE approaches (Section 2.3) have typically relied on cycle-consistent
adversarial training (e.g., CycleGAN-based SE), contrastive learning, or domain adaptation,
often requiring complex architectures or additional regularization terms to enforce content
preservation.

In contrast to prior work, we propose a more straightforward approach of dividing the
latent sequence into two parallel branches, one modeling clean speech and the other noise,
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Figure 4.2: Dual-branch speech enhancement model scheme.

and forcing the combined branch output to be as close to the input as possible. The clean
speech and noise discriminators ensure that the output of the particular branch follows
the distribution of the corresponding data. Furthermore, forcing the combined output to
resemble the input closely ensures consistency—i.e., that the produced clean speech is an
enhanced version of the input, rather than some audio that sounds like a clean speech but
does not correspond to the speech in the noisy input.

As shown in Figure 4.2, the model takes noisy speech x𝑁𝑆 ∈ R𝑇 as an input and passes it
through the convolutional encoder 𝐸 : R𝑇 → R𝑇 ′×𝑑 to obtain a latent sequence z𝑁𝑆 . Then,
we apply two RoFormers in parallel, producing two latent sequences z𝐶𝑆 = ℛ𝐶𝑆(z𝑁𝑆) and
z𝑁 = ℛ𝑁 (z𝑁𝑆), denoting clean speech and noise respectively. Then, we optionally quantize
the RoFormer outputs using RVQ, producing quantized embeddings z̄𝐶𝑆 and z̄𝑁 . The last
step of the pipeline is the decoding, which converts the latent sequence back to waveform
using a shared convolutional decoder 𝐷 : R𝑇 ′×𝑑 → R𝑇 : x̂𝐶𝑆 = 𝐷(z̄𝐶𝑆) and x̂𝑁 = 𝐷(z̄𝑁 ).
Finally, we combine the two outputs to obtain the noisy output x̂𝑁𝑆 = 𝛼 · x̂𝐶𝑆 + 𝛽 · x̂𝑁 ,
where 𝛼, 𝛽 ∈ R are scalars defined in Section 4.2.1. If we look at the model as a whole,
it can be seen as a NAC model that reconstructs the input noisy audio x𝑁𝑆 , while the
branch-wise outputs x̂𝐶𝑆 and x̂𝑁 are used to perform source separation.

Discriminators

Reconstruction alone is not enough to perform the enhancement, and we need extra su-
pervision to force each branch to perform distinct tasks. We employ two branch-specific
discriminators, 𝐷𝐶𝑆 and 𝐷𝑁 , trained to distinguish between real and generated clean speech
and, and real and generated noise, respectively. As described in Section 3.5.1, our architec-
ture employs least square GAN losses and adversarial training results in minimizing Pearson
divergence 𝜒2

𝑝𝑒𝑎𝑟𝑠𝑜𝑛

(︀
𝑝𝐶𝑆 ‖ 𝑝𝐶𝑆+𝑝𝑐𝑙𝑒𝑎𝑛

2

)︀
, where 𝑝𝐶𝑆 is the distribution of the CS branch out-

put, and 𝑝𝑐𝑙𝑒𝑎𝑛 is the true clean speech distribution (defined by the pool of clean speech
data). Anlogous statements are held for the noise branch as well. After the convergence,
each branch should produce samples from the corresponding distribution, i.e., 𝑝𝐶𝑆 ≈ 𝑝𝑐𝑙𝑒𝑎𝑛
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and 𝑝𝑁 ≈ 𝑝𝑛𝑜𝑖𝑠𝑒, while adhering to the consistency constraint posed by the reconstruction
loss.

Furthermore, we employ the third discriminator 𝐷𝑁𝑆 to enhance the quality of the re-
constructed speech, consequently enhancing the quality of the audio each branch estimates.

4.2.1 Branch Combination Methods

In this work, we explored two main approaches to branch information combination: a
combination of branch-wise latent spaces followed by decoding the noisy waveform, and
first decoding each branch and then combining the raw waveforms (as already introduced
in Section 4.2 and Figure 4.2). We discuss the pros and cons of each of the approaches
below.

(a) Latent space combination followed
by noisy speech decoding.

(b) Branch-wise latent space decoding
followed by waveform combination

Figure 4.3: Branch combination methods: latent space combination, and waveform combi-
nation.

Latent Space

As Figure 4.3a shows, latent space combination consists in combining noise z̄𝑁 and clean
speech z̄𝐶𝑆 latent sequences into a noisy speech latent sequence z̄𝑁𝑆 and subsequent de-
coding to obtain noisy waveform x̂𝑁𝑆 . In general, we can describe it mathematically as:

x̂𝑁𝑆 = 𝐷(𝑐(𝑎(z̄𝑁 ), 𝑏(z̄𝐶𝑆))), (4.3)

where 𝑎, 𝑏 : R𝑇 ′×𝑑 → R𝑇 ′×𝑑 are branch-wise processing functions preparing the latent
sequences for combination (i.e., projecting the latent sequences to 𝐾-dimensional space),
𝑐 : R(𝑇 ′×𝑑)×(𝑇 ′×𝑑) → R𝑇 ′×𝑑 is the combination function that takes two latent sequences as
an input and produces one latent sequence as an output, and 𝐷 is the decoder that converts
latent sequence to a waveform. Notably, simple 𝑎 = 𝑖𝑑, 𝑏 = 𝑖𝑑, 𝑐(x,y) = 1

2(x+y), where 𝑖𝑑
is an identity function, works well.

The main advantage of this approach is that we work with latent sequences that rep-
resent a subsampled version of the input signal instead of waveforms directly. Also, we
leverage the power of convolutional decoder 𝐷 to process the combined latent sequence
before outputting audio (i.e., amplify clean speech or attenuate noise).
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On the other hand, combining latent spaces does not directly ensure that the information
is complementary between the two branches, nor does it directly push the model towards
outputting clean speech consistent with the input noisy speech.

Waveform

Compared to the latent space combination, as shown in Figure 4.3b, we directly decode
both branches into two waveforms: clean speech x̂𝐶𝑆 = 𝐷(z̄𝐶𝑆) and residual noise x̂𝑁 =
𝐷(z̄𝑁 ). Then, we combine the two waveforms by summing them. However, pure summation
can cause penalizing each branch for incorrectly estimating the amplitude. Therefore, we
multiply each branch output by scalars 𝛼, 𝛽 ∈ R, resulting in an estimated noisy input
x̂𝑁𝑆 = 𝛼x̂𝐶𝑆 + 𝛽x̂𝑁 . The scalars are estimated by solving the following optimization
problem:

𝛼, 𝛽 = argmin
𝛼′,𝛽′

⃦⃦
x𝑁𝑆 − (𝛼′x̂𝐶𝑆 + 𝛽′x̂𝑁 )

⃦⃦2
2
, (4.4)

and the solution is derived in Appendix A.
The main advantage of waveform combination compared to latent space combination

is that it forces each branch to learn complementary information in the time domain. For
example, if the noisy branch estimates noise only, the clean speech branch must estimate
the corresponding clean speech. Otherwise, the combined noisy speech would not resemble
the input noisy speech well during the noisy speech reconstruction. Hence, it allows us to
use noisy speech reconstruction to ensure consistency.

However, suppose the noise is not perfectly estimated. In that case, the clean speech
is going to be incentivized to estimate some of the noise (i.e., leak noise) to please the
input audio reconstruction losses, which puts more weight on the discriminator to punish
the enhanced speech for such leakage and forces it not to leak any noise in, potentially
requiring advanced discriminator design.

4.2.2 Training

We extend the single-branch training scheme by adding the input audio reconstruction
losses and adversarial losses from 𝐷𝑁𝑆 and 𝐷𝑁 . The overall loss function is defined as:

ℒ𝐶𝑆(x𝐶𝑆 , x̂𝐶𝑆) = −𝜆𝐶𝑆,𝑠SI-SDR(x𝐶𝑆 , x̂𝐶𝑆) + 𝜆𝐶𝑆,𝑓𝑚ℒ𝑓𝑚(x𝐶𝑆 , x̂𝐶𝑆)+

+ 𝜆𝐶𝑆,𝑓𝑒𝑎𝑡ℒ𝑓𝑒𝑎𝑡(x𝐶𝑆 , x̂𝐶𝑆) + 𝜆𝐶𝑆,𝐺ℒ𝐺(x̂𝐶𝑆)+

+ 𝜆𝐶𝑆,𝑐𝑏ℒ𝑐𝑏(z𝐶𝑆 , z̄𝐶𝑆) + 𝜆𝐶𝑆,𝑐𝑚ℒ𝑐𝑚(z𝐶𝑆 , z̄𝐶𝑆)

+ 𝜆𝐶𝑆,𝑧𝑚ℒ𝑧𝑚(x̂𝐶𝑆) + 𝜆𝐶𝑆,𝐸𝑚𝑎𝑥ℒ𝐸𝑚𝑎𝑥(x̂𝐶𝑆),

(4.5)

ℒ𝑁 (x𝑁 , x̂𝑁 ) = 𝜆𝑁,𝑓𝑒𝑎𝑡ℒ𝑓𝑒𝑎𝑡(x𝑁 , x̂𝑁 ) + 𝜆𝑁,𝐺ℒ𝐺(x̂𝑁 )+

+ 𝜆𝑁,𝑐𝑏ℒ𝑐𝑏(z𝑁 , z̄𝑁 ) + 𝜆𝑁,𝑐𝑚ℒ𝑐𝑚(z𝑁 , z̄𝑁 ),
(4.6)

ℒ𝑁𝑆(x𝑁𝑆 , x̂𝑁𝑆) = −𝜆𝑁𝑆,𝑠SI-SDR(x𝑁𝑆 , x̂𝑁𝑆) + 𝜆𝑁𝑆,𝑓𝑚ℒ𝑓𝑚(x𝑁𝑆 , x̂𝑁𝑆)+

+ 𝜆𝑁𝑆,𝑓𝑒𝑎𝑡ℒ𝑓𝑒𝑎𝑡(x𝑁𝑆 , x̂𝑁𝑆) + 𝜆𝑁𝑆,𝐺ℒ𝐺(x̂𝑁𝑆),
(4.7)

where 𝜆𝑖,𝑗 ∈ R+ is the particular loss weight, and the other losses are defined in Section 3.4.
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Furthermore, during our preliminary experiments, we observed that some models started
producing clean speech and noise waveforms with gradually increasing DC offset (i.e., non-
zero mean), which resulted in the model collapsing and producing non-zero mean silence
as clean speech due to numerical instabilities. This behaviour was observed mainly during
the unsupervised training. Therefore, to prevent the collapse, we add a regularization term
that penalizes the model for such behavior by employing the following loss:

ℒ𝑧𝑚(x) =

⃒⃒⃒⃒
⃒ 1𝑇

𝑇∑︁
𝑖=1

x[𝑖]

⃒⃒⃒⃒
⃒ . (4.8)

Also, to prevent branches from collapsing and outputting silence, we maximize the energy
of the clean speech branch output by minimizing:

ℒ𝐸𝑚𝑎𝑥(x) = − log

⎛⎝ 1

𝑇 ′ · 𝐹

𝑇 ′∑︁
𝑡=1

𝐹∑︁
𝑓=1

|𝑋(𝑡, 𝑓)|2
⎞⎠ , (4.9)

where 𝑋(𝑡, 𝑓) ∈ C is the STFT (window length 25ms, hop length 10ms) of the signal x.
The final loss is just a summation of all the three loss classes defined by equations 4.5-

4.7. However, we do not have paired clean speech, noise, and noisy speech data during un-
supervised training. Hence, we cannot use any loss terms, requiring the ground truth clean
speech and noise. Therefore, the ℒ𝐶𝑆 and ℒ𝑁 loss functions consist only from ℒ𝐺,ℒ𝑐𝑏,ℒ𝑐𝑚.
The input reconstruction loss ℒ𝑁𝑆 stays intact as it does not require any supervision.

Similarly to the single-branch model, we train the discriminators 𝐷𝐶𝑆 , 𝐷𝑁 , 𝐷𝑁𝑆 using
the ℒ𝐷 loss function defined in Section 3.5 using some clean speech, noise (both unpaired),
and input audio as real data samples.

4.2.3 Theoretical Justification

We now formally justify that our dual-branch model can be understood as an approximate
solution to the maximum a posteriori (MAP) inference of clean speech given the noisy
input, proving that the model can perform SE.

Let x𝑁𝑆 ∈ R𝑇 be noisy input audio, and let us assume that it is an unknown mixture
of clean speech x𝐶𝑆 ∈ R𝑇 and noise x𝑁 ∈ R𝑇 , i.e., x𝑁𝑆 = x𝐶𝑆 + x𝑁 . Our goal is to find a
function 𝑓𝜃, such that 𝑓𝜃(x𝑁𝑆) ≈ x𝐶𝑆 , or probabilistically:

𝑓𝜃(x𝑁𝑆) = argmax
x𝐶𝑆

𝑝(x𝐶𝑆 |x𝑁𝑆). (4.10)

The problem is that we do not have access to the clean speech x𝐶𝑆 during unsupervised
training, which makes finding 𝑓𝜃 by optimizing 𝜃 in a traditional (supervised) way impos-
sible.

Instead of finding 𝑓𝜃, we transform the problem into finding a function 𝑔𝜑(x𝑁𝑆) =
(x̂𝐶𝑆 , x̂𝑁 ), such that x̂𝐶𝑆 + x̂𝑁 = x̂𝑁𝑆 ≈ x𝑁𝑆 , where x̂𝐶𝑆 , x̂𝑁 ∈ R𝑇 are two signals (in our
architecture produced by the two branches). To obtain back the function 𝑓𝜃 we initially
aimed to find, we need to ensure that x̂𝐶𝑆 ≈ x𝐶𝑆 and take the first output of the function
𝑔𝜑, i.e., 𝑓𝜃(x𝑁𝑆) = 𝑔𝜑(x𝑁𝑆)1.

To do so, let us define two probability densities of the particular signals: x𝐶𝑆 ∼
𝑝𝑐𝑙𝑒𝑎𝑛,x𝑁 ∼ 𝑝𝑛𝑜𝑖𝑠𝑒, and let us further assume that x𝐶𝑆⊥x𝑁 , i.e., the two signals are in-
dependent (the same holds for the outputs of 𝑔𝜑), which is an assumption made by many
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prior SE or speech separation methods [5, 8]. Also, assume that the outputs of 𝑔𝜑 satisfy:

x̂𝐶𝑆 , x̂𝑁 = argmax
x,x′

𝑝𝑐𝑙𝑒𝑎𝑛(x) · 𝑝𝑛𝑜𝑖𝑠𝑒(x′) (4.11)

subject to x̂𝑁𝑆 = x̂𝐶𝑆 + x̂𝑁 .

Authors of [32] have shown that LS-GAN is mode-seeking, meaning that the generator tends
to produce samples close to some data distribution mode. Hence, if we assume that 𝑝𝑐𝑙𝑒𝑎𝑛
and 𝑝𝑛𝑜𝑖𝑠𝑒 are unimodal, the adversarial training will push the model towards producing
samples with maximized clean speech and noise densities.

Following the assumptions above and the consistency property, we can write the follow-
ing:

𝑝(x𝑁𝑆 |x𝐶𝑆) = 𝑝𝑛𝑜𝑖𝑠𝑒(x𝑁𝑆 − x𝐶𝑆), (4.12)

after which we immediately obtain:

𝑝(x𝐶𝑆 |x𝑁𝑆) ∝ 𝑝(x𝑁𝑆 ,x𝐶𝑆) = 𝑝𝑛𝑜𝑖𝑠𝑒(x𝑁𝑆 − x𝐶𝑆) · 𝑝𝑐𝑙𝑒𝑎𝑛(x𝐶𝑆). (4.13)

Hence, for a fixed x𝑁𝑆 , if we assume that x𝑁𝑆 = x̂𝑁𝑆 and use our prior assumptions from
Equation 4.11, we can write:

argmax
y

𝑝(x𝐶𝑆 = y|x𝑁𝑆) = argmax
y

𝑝(x𝐶𝑆 = y|x̂𝑁𝑆)

= argmax
y

𝑝𝑛𝑜𝑖𝑠𝑒(x̂𝑁𝑆 − y⏟  ⏞  
x̂𝑁

) · 𝑝𝑐𝑙𝑒𝑎𝑛(y). (4.14)

As the noisy input x𝑁𝑆 is fixed and we assume we have estimated a noise x̂𝑁 according to
Equation 4.11, we can write:

x̂𝐶𝑆 = argmax
y

𝑝(x𝐶𝑆 = y|x𝑁𝑆). (4.15)

Therefore, we proved that under the assumptions above, 𝑔𝜑 is a proxy for finding the func-
tion 𝑓𝜃. This derivation confirms that the proposed dual-branch architecture, appropriate
discriminator-based regularization, and waveform-level combination form a consistent and
theoretically grounded approach to unsupervised speech enhancement.
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Chapter 5

Experimental Setup

This chapter thoroughly describes the overall experimental setup, including datasets, pre-
processing, model architecture details, hyperparameters, hardware, and implementation
details.

5.1 Software and Hardware
We based our codebase on descript audio codec (DAC)1, which is based on pure Py-
Torch 2.7 [47]. Furthermore, for audio processing, we use Librosa [41], NumPy [25], and
Lhotse [88]. We utilize the newly created toolkit VERSA [63] for metrics computation.

We train all our models on Nvidia A40, A100, and H100 GPUs, utilizing distributed
data parallel (DDP) when training on multiple GPUs. Lastly, we use automatic mixed
precision (AMP) and train our models in bfloat16 to further optimize the training and
torch just-in-time (JIT) model compilation2 to optimize the CUDA computations even
further.

5.2 Data
We conducted the majority of experiments using noisy data synthetically created on-the-fly
using two data pools: clean speech and noise. For both training and validation, we followed
the URGENT challenge [86] setup with one change: we did not use all the augmenta-
tion/distortion methods as the authors to limit our focus solely on the enhancement rather
than audio inpainting or bandwidth extension to name a few. Furthermore, we resampled
all audio samples to 16kHz and downmixed them to monochannel. Even though around
5% of the training data is 8kHz, we decided to keep these samples as it does not introduce
any significant bias towards not focusing on higher frequencies.

5.2.1 Clean Speech

The overall clean speech dataset pool consists of the following datasets3:

• LibriVox data from DNS5 challenge: Audiobook recordings with sampling rates
between 8 kHz and 48 kHz, totaling approximately 350 hours of speech. This dataset,

1https://github.com/descriptinc/descript-audio-codec
2https://docs.pytorch.org/tutorials/intermediate/torch_compile_tutorial.html
3The dataset language is English unless stated otherwise.
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used in the 5th Deep Noise Suppression Challenge, comprises clean speech derived
from public domain audiobooks, facilitating research in noise suppression and speech
enhancement tasks [55].

• LibriTTS reading speech: Audiobook speech with sampling rates from 8 kHz
to 24 kHz, totaling around 200 hours. LibriTTS is a multi-speaker English corpus
designed for text-to-speech research, derived from the original LibriSpeech corpus
with improved quality and prosody annotations [85].

• VCTK reading speech: Recordings of read speech from newspapers and other
texts at 48 kHz sampling rate, approximately 80 hours in duration. The VCTK
corpus includes speech data from 110 English speakers with various accents, each
reading about 400 sentences, providing a diverse dataset for speech synthesis and
recognition research [72].

• WSJ reading speech: Read Wall Street Journal news articles recorded at 16 kHz,
totaling about 85 hours. The WSJ0 corpus contains recordings from 123 speakers
reading excerpts from the Wall Street Journal, commonly used for training and eval-
uating speech recognition or speech separation systems [9].

• EARS speech: Studio-quality speech recordings at 48 kHz, totaling around 100
hours. The EARS dataset comprises expressive anechoic recordings from 107 speak-
ers, covering various speaking styles and emotions, aimed at benchmarking speech
enhancement and dereverberation methods [57].

• Multilingual LibriSpeech (de, en, es, fr): Audiobook recordings in multiple
languages (German, English, Spanish, French), with sampling rates between 8 kHz
and 48 kHz. Approximately 450 hours of transcribed speech (total dataset size: 48,600
hours). MLS is a large-scale multilingual corpus derived from LibriVox audiobooks,
supporting research in automatic speech recognition across diverse languages [50].

• CommonVoice 19.0 (de, en, es, fr, zh-CN): Crowd-sourced voice recordings
in several languages (German, English, Spanish, French, Mandarin Chinese) with
sampling rates from 8 kHz to 48 kHz. Around 1300 hours of validated speech (total
dataset size: 9500 hours). Common Voice is an open-source project by Mozilla,
collecting diverse voice data to improve speech recognition technologies [2].

We further processed the speech data pool by removing non-speech and silence-dominated
samples and applied DNSMOS [53]-based filtering to remove noisy and low-quality speech
samples, the same way as the authors of the challenge.

5.2.2 Noise

Similar to clean speech, the overall noise dataset pool consists of multiple datasets described
below:

• Audioset + FreeSound noise in DNS5 challenge: A diverse collection of noise
recordings from YouTube (via AudioSet) and the FreeSound platform, encompassing
various real-world acoustic environments. This dataset, totaling approximately 180
hours, was utilized in the 5th Deep Noise Suppression Challenge to train and evaluate
noise suppression models [55].
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• WHAM! noise: Ambient noise recordings captured in urban environments such as
coffee shops, restaurants, and bars in the San Francisco Bay Area. These recordings,
sampled at 48 kHz and totaling around 70 hours, were used to augment the WSJ0-
2mix dataset, creating the WHAM! Corpus for evaluating speech separation in noisy
conditions [77].

• FSD50K (human voice filtered): An open dataset comprising over 51,000 audio
clips manually labeled across 200 classes derived from the AudioSet ontology. For
noise-related tasks, clips containing human voice have been filtered out, resulting in
approximately 100 hours of diverse sound events suitable for environmental sound
classification and related research [17].

• Free Music Archive (medium): A curated collection of music tracks from the
Free Music Archive, encompassing a wide range of genres and styles. The medium
subset includes approximately 200 hours of audio, providing a rich resource for music
information retrieval tasks and audio analysis [11].

• Wind noise simulated by participants: Synthetic wind noise samples generated
using various simulation techniques. These samples, with variable sampling rates
and durations, are employed to augment datasets for training and evaluating noise
suppression algorithms in wind interference scenarios.

5.2.3 Room Impulse Responses

During training, we use around 60k samples of simulated RIRs from DNS5 challenge [55]
to simulate reverberation.

5.3 Training and Validation Set
The overall training set consists of 1.3 million samples of clean speech of variable length,
usually a few seconds, and the noise corpora consist of 110 thousand variable-length noise
samples, usually a few seconds long.

For validation, we reserved a held-out set for each clean speech and noise dataset and
created randomly simulated data with signal-to-noise ratio (SNR) values ranging from -7
dB to 20 dB. The validation set contains 2368 recordings of variable lengths from 2 to 15
seconds. The distribution of SNR values is shown in Table 5.1.

Table 5.1: Distribution of SNR values in the validation set.

SNR Range Number of Samples
< −5 dB 23 (0.97%)

[−5, 15) dB 1889 (79.77%)
≥ 15 dB 456 (19.26%)

5.4 Test Set
For test and comparison purposes, we did not stick to the URGENT challenge set up, as the
setup is recent and there is not enough prior work we would be able to compare our models
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to. Instead, we use a well-established VCTK-Demand test set from Valentini denoising
benchmark [69], widely used for SE models comparison, consisting of 824 simulated noisy
utterances from 2 speakers with 4 SNRs—2.5dB, 7.5dB, 12.5dB, 17.5dB.

5.5 Metrics
To assess the quality of enhanced speech and noisy input reconstruction in the case of
dual-branch models, we use 3 types of metrics: intrusive or reference-based, comparing the
enhanced signal to the ground-truth clean speech, non-intrusive or reference-free metrics
predicting the mean opinion score (MOS), and downstream metrics assessing the quality of
downstream tasks using the enhanced speech as an input (automatic speech recognition or
speaker verification). Each of the used metrics is categorized and described below.

5.5.1 Intrusive Metrics

• Scale-Invariant Signal-to-Distortion Ratio (SI-SDR): Measures the ratio of
the target signal’s power to the distortion error and is invariant to the scale of the
target. It is widely used for evaluating speech enhancement and source separation
tasks [31]. SI-SDR is defined in Equation 4.1.

• Log-Mel Distance: Computes the 𝐿1 distance between log-mel spectrograms of the
reference and processed signals, which is a common metric used for assessing spectral
fidelity in speech reconstruction tasks [30]. We use 25ms window length, 10ms hop
length, and 80 mel bands.

• Perceptual Evaluation of Speech Quality (PESQ): PESQ estimates perceived
speech quality by simulating how the human ear would compare a clean and a dis-
torted signal, analyzing differences in loudness and timing across frequency bands. It
produces a predicted MOS score, making it useful for evaluating codecs and networks
in conditions like noise, delay, or packet loss [58].

• Short-Time Objective Intelligibility (STOI): STOI predicts speech intelligibility
by measuring the correlation between short-time temporal envelopes of clean and
degraded speech across frequency bands. It focuses on 384 ms segments to capture
important speech modulations relevant to human understanding [66].

5.5.2 Non-Intrusive Metrics

• Deep Noise Suppression Mean Opinion Score (DNSMOS): DNSMOS uses a
deep neural network trained on human-rated speech samples to estimate perceived
quality directly from noisy speech, without needing a clean reference. Its self-teaching
training process allows it to generalize well across diverse noise types and speech
conditions, making it highly reliable for evaluating noise suppression systems [54].

• UTokyo-SaruLab MOS (UTMOS): UTMOS predicts speech quality by combin-
ing neural and traditional models trained on SSL features and listener-aware represen-
tations. Through ensemble learning and contrastive loss, it accurately ranks synthetic
speech samples by perceived quality—even in low-data or mismatched evaluation sce-
narios [60].
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5.5.3 Downstream Metrics

• SpeechBERT Score: Evaluates the semantic similarity between generated and ref-
erence speech by computing BERTScore on self-supervised learning (SSL) features
from Wav2Vec2 [4] extracted from both signals [61].

• Speaker Similarity (Spk SIM): Measures the cosine similarity between the ground
truth clean speech and the enhanced speech using embeddings extracted from a pre-
trained speaker embedding extractor.

• Word Error Rate (WER): Calculates the rate of errors in automatic speech recog-
nition by comparing the transcribed text to the reference using Whisper Large V3 [52].

5.5.4 Training Details

The encoder consists of 4 blocks (Figure 3.2) with strides 2, 4, 5, and 8. Input audio
is processed by a convolutional layer containing 64 filters, and the output of each block
doubles the number of features (i.e., each block uses an output convolution layer that
contains twice as many kernels as the previous output convolutional block), resulting in
a 1024-dimensional latent space. Before passing the latent sequence to the decoder, we
use 1d convolution with 1536 convolutional filters, resulting in higher-dimensional space,
giving the decoder more freedom to perform additional latent sequence processing. The
convolutional decoder reflects the encoder, i.e., we use transposed convolutions instead of
regular convolutions. Its last convolutional layer uses only one kernel, and the output
represents an audio sampled at 16kHz.

Furthermore, we employ vanilla RoFormer models as presented in [64] with 8 layers,
each operating in 1536-dimensional hidden space. We also explored larger RoFormers,
mainly higher hidden spaces or more transformer layers, but it usually resulted in unstable
training (exploding gradients and problems with convergence). In contrast to convolutional
encoder and decoder, we use GeLU activation function [26] (a default option for RoFormer).
Overall, the single-branch model has around 133M parameters, with 21.5M in the encoder,
52.3M in the decoder, and the rest in the RoFormer. The dual-branch model has 191.8M
parameters due to the second branch (RoFormer and VQ). However, during inference, we
only use the clean speech branch, meaning that there is no speed difference between the
two models during inference.

For each of the three discriminators (clean speech, noise, and noisy speech), we use an
ensemble of eight discriminators following the DAC [29] architecture, consisting of five multi-
period discriminators with periods [2, 3, 5, 7, 11] and three multi-band-multi-scale complex
spectrogram discriminators with window lengths [512, 1024, 2048], FFT hop lengths being
set to 1

4 of the window length, and bands set to [[0, 0.1], [0.1, 0.25], [0.25, 0.5], [0.5, 0.75],
[0.75, 1]]. The bands correspond to the portion of the frequency resolution in the spectro-
gram (i.e., the first band covers the lowest 10% of the frequency range). During each training
step, we first update all the discriminators and then update the generator (enhancement
model).

To compute the Multi-scale log-Mel distance loss, we use 7 different STFT window
lengths (same as DAC): [32, 64, 128, 256, 512, 1024], and the hop length is set to 1

4 of the
window length. The number of mel filters is set to [5, 10, 20, 40, 80, 160, 320] corresponding
to each window length (i.e., window length 32 samples, 8 samples hop length, and 5 mel
filters).
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To create each training example, we randomly select a 3s long segment from a clean
speech utterance4. Then, we randomly mix the clean speech with Gaussian noise with
randomly sampled SNR from 0 to 25dB with a probability of 0.05 and with noise corpora
described above with a probability of 0.95. When mixing the clean speech with noise
corpora, we randomly sample one of the three SNR ranges: [−10,−5), [−5, 20), [20, 30], with
probabilities: 0.1, 0.8, 0.1, respectively. We then sample an SNR from a uniform distribution
over the selected range. This way, we have more control over the SNR distribution of the
training data compared to other works, which sample SNR uniformly from one given range.
The last step is to convolve the noisy speech with a randomly selected RIR with a probability
of 0.5.

We use AdamW [38] with a linear-warmup for 5k steps, max learning rate (lr) equal to
10−4 with cosine learning schedule [37], and weight decay equal to 10−2. We trained all
our models for 100k iterations except for the ones we compare with prior work, which were
trained for 200k steps5. We do not use any early stopping nor validation-based best model
selection as we observed that usually, the last iteration resulted in the best-performing
model, or the variance in the performance was negligible.

4We also experimented with longer segments (up to 6s), which usually resulted in better enhancement
performance as the roformer can fully utilize the self-attention and information from a broader context.
However, we stuck with the shorter segments to reduce the training time.

5Even though we could train for more steps, due to computational and time constraints, we kept a lower
number of training iterations, than is usually used for NAC training
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Chapter 6

Experiments

In this chapter, we thoroughly examine the trained models, both single-branch and dual-
branch, starting from laying out the single-branch baselines and analyzing if pre-training for
audio reconstruction helps. Furthermore, we examine which part of the single-branch model
is responsible for the enhancement, and how the enhancement training affects the quantized
representations. We then move to dual-branch models, where we first show the results for
the supervised training and then for unsupervised training we first show baseline results
and continue with ablations. As ablations, we explore the effect of model initialization
and branch combination methods and show how removing discriminators affects the model
performance. We also theoretically and empirically present the leakage problem and show
how VQ can help. We then present a comparison to prior supervised and unsupervised
speech enhancement models. Finally, we close the chapter with WER results on the VCTK-
Demand computed from Whisper transcriptions, enhancement results on a real-world noisy
dataset ATCO2 [23], and results on the inference speed on both CPU and GPU.

6.1 Single Branch
We train all single-branch models for 100k training steps using the same training data
described in Section 5.2. If not stated otherwise, we initialize the encoder and decoder
parameters from a pre-trained DAC [29]. Roformer and VQ parameters are initialized
randomly.

We set the loss weights as: 𝜆𝑠 = 1, 𝜆𝑓𝑚 = 1, 𝜆𝑓𝑒𝑎𝑡 = 1, 𝜆𝐺 = 1, 𝜆𝑐𝑏 = 1, 𝜆𝑐𝑚 = 0.25, and
whenever we do not use VQ, we do not optimize the VQ-related losses.

6.1.1 Baselines

Table 6.1 shows per-SNR group results of the single-branch baselines. Overall, the results,
as expected, show that performance gets worse as SNR goes down (i.e., recordings are more
noisy).

The first two rows of each group show that adding roformer improves enhancement
performance over a simple encoder-decoder model. After listening to the simple encoder-
decoder model outputs, if the SNR is low, some noise can leak into the clean speech, which
does not happen as often in the model with RoFormer. The improvement can be attributed
to the extra parameters that further transform the latent sequence and increase the receptive
field (to infinity) due to the self-attention mechanism employed in the roformer. As can be
seen, the improvement is consistent across various SNR levels.
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Table 6.1: Comparison of single-branch baseline models: encoder-decoder only, encoder-
decoder with roformer, and encoder-decoder with roformer and VQ. The results are based
on the validation set.

SNR model DNSMOS↑UTMOS↑ PESQ↑ STOI↑ SpkSim↑ SBERT↑ SI-SDR↑MEL↓

< −5
enc-dec 2.90 2.16 1.62 0.78 0.51 0.78 8.43 0.83

+ roformer 2.94 2.26 1.75 0.79 0.49 0.79 9.49 0.82
+ VQ 2.96 2.30 1.65 0.77 0.41 0.77 7.77 0.84

[−5, 15)
enc-dec 3.03 2.49 2.07 0.85 0.61 0.85 12.26 0.76

+ roformer 3.02 2.54 2.21 0.87 0.60 0.86 12.62 0.73
+ VQ 3.05 2.55 1.98 0.83 0.48 0.83 9.64 0.74

≥ 15
enc-dec 3.04 2.55 2.29 0.89 0.66 0.88 13.83 0.64

+ roformer 3.01 2.56 2.45 0.90 0.64 0.89 14.11 0.62
+ VQ 3.03 2.55 2.16 0.86 0.51 0.85 10.29 0.65

all
enc-dec 2.98 2.36 1.92 0.83 0.58 0.83 10.95 0.74

+ roformer 2.98 2.43 2.07 0.84 0.56 0.84 11.59 0.71
+ VQ 3.01 2.45 1.88 0.81 0.46 0.81 8.98 0.72

Furthermore, the last row shows that adding VQ results in worse performance, as we
use less amount of bits to encode the audio. However, even though SI-SDR shows decreased
performance by almost 3dB, Mel-distance, MOS scores, PESQ, and STOI are comparable
with the no-VQ model, proving that the audio is comparably intelligible despite the lower
quality.

6.1.2 Does Codec Pre-Training Help?

To assess the impact of encoder and decoder audio reconstruction pre-training on the per-
formance and convergence of the single-branch model, we trained one model with randomly
initialized weights and the other with encoder and decoder weights initialized from a pre-
trained DAC model.

Table 6.2: Comparison of single-branch models with and without pre-training. The results
are based on the validation set.

Pre-trained DNSMOS↑ UTMOS↑ PESQ↑ STOI↑ SpkSim↑ SBERT↑ SI-SDR↑ MEL↓
No 2.91 2.20 1.81 0.81 0.52 0.82 10.01 0.75
Yes 2.98 2.43 2.07 0.84 0.56 0.84 11.59 0.71

Table 6.2 compares the performance of single-branch models with and without pre-
training. It can be observed that the pre-training encoder and decoder consistently boost
the final performance on all the metrics. Furthermore, Figure 6.1 shows both models’
convergence curves of mel distance and SI-SDR. The pre-trained model converges faster
than the model trained from scratch. However, Figure 6.1a also shows that the pre-trained
model quickly adapts to the speech enhancement task and stays at some local optima,
causing the validation loss to oscillate, which can be mitigated by, e.g., learning rate tuning
or heavier regularization. Nonetheless, the pre-trained model achieves better performance
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(a) Mel distance (b) SI-SDR

Figure 6.1: Comparison of mel distance and SI-SDR convergence between the different
initialization methods of a single branch model without RoFormer.

way sooner than the one initialized randomly. It proves that using pre-trained components
for building an SE model is beneficial, as the model can leverage the knowledge learned
during pre-training for input audio reconstruction, as it does not learn audio representations
from scratch.

6.1.3 Which part of the model is responsible for enhancement?

When training SE systems, a question arises: Do internal representations contain only
enhanced speech-related information, and can they serve as robust features for downstream
tasks? To answer this question, we trained two single-branch models without roformer and
VQ, both initialized from a pre-trained NAC: one with the frozen encoder and the other
with the frozen decoder.

Table 6.3: Comparison of single-branch models initialized from NAC where only the encoder
is trained (i.e., the decoder is frozen) and vice versa on the validation set.

Trained DNSMOS↑ UTMOS↑ PESQ↑ STOI↑ SpkSim↑ SBERT↑ SI-SDR↑ MEL↓
enc 2.90 2.27 1.80 0.81 0.57 0.81 9.04 0.79
dec 2.92 2.29 1.89 0.82 0.57 0.82 9.66 0.74

(a) Noisy recording. (b) Enhanced speech.

Figure 6.2: Spectrograms of noisy speech (left) and enhanced speech by the single-branch
model with frozen encoder (right).
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Figure 6.2 shows the spectrograms of the noisy speech and enhanced speech produced
by the single-branch model with the frozen encoder. As can be seen, the model can remove
most of the noise while preserving clean speech, which suggests that the majority of the
enhancement happens in the decoder, as we were able to successfully train the decoder to
perform enhancement while the encoder was fixed—i.e., the decoder can enhance a latent
sequence containing both clean speech and noise information, as the model was initialized
from a pre-trained NAC performing audio reconstruction. Also, our findings show that
the latent space produced by neural audio codecs is separable and can be used for speech
enhancement or source separation.

Furthermore, Table 6.3 shows similar performances when either part of NAC is trained
while the other is frozen. However, when only the encoder is trained, it does not necessarily
mean that the latent sequence does not contain any noise-related information, as the encoder
might exploit the decoder to perform SE, e.g., by projecting noise to a space orthogonal to
what the decoder was trained to reconstruct.

Hence, the decoder is likely the main part of the model responsible for speech enhance-
ment, as it can also enhance the latent sequence containing noise1. Still, we do not rule out
the hypothesis that the encoder might be trying to get rid of as much noise information as
possible despite being unlikely.

6.1.4 VQ Stability

Figure 6.3: VQ stability: per-codebook accuracy of SE (darker color) and NAC models
(lighter color). The accuracy is computed as a ratio of correctly classified codes of encoded
noisy input audio (i.e., matching noisy and clean speech codes) to the total number of
codes.

Despite our previous experiments showing that we do not need to train both encoder
and decoder to train an SE system as decoder-only training is sufficient, we further explored

1We also successfully trained RoFormer and decoder to reconstruct the input noise on top of the frozen
encoder representations pre-trained for SE.
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how enhancement task affects the produced codes when VQ is employed, and the entire
model is trained.

We trained two single-branch models with VQ using the same dataset for 100K training
steps: one for SE and the other for input reconstruction (i.e., standard NAC training). We
then artificially created a noisy recording by adding Gaussian noise with specified SNR db
values (10, 20, 30, 40) and performed forward passes with and without the noise. Then, we
computed per-codebook accuracy, where the clean speech codes serve as a reference and the
noisy speech codes as a hypothesis. Figure 6.3 shows that SE codes are more robust—i.e.,
accuracy is higher; hence, they are less affected by the added noise. It can also be seen that
the lower the SNR (i.e., the more noise is added), the more significant the gap between SE
and NAC code accuracy is, mainly for the earlier codebooks. The lower difference between
later codebooks can be explained by the fact that these codebooks encode some residual
information that is not affected by the added noise that much.

Therefore, once the codes are used as features for downstream tasks (e.g., speaker
verification or diarization), using the ones produced by the SE model is more beneficial,
as they bring extra robustness for the downstream model without training on noisy task-
specific data.

6.2 Dual Branch - Supervised
In this section, we show the experiments with dual-branch models trained in a supervised
manner. Similarly to the single-branch models, we train all dual-branch models for 100k
training steps using the same training data described in Section 5.2. If not stated oth-
erwise, we initialize the encoder and decoder parameters from a pre-trained single-branch
enhancement model (i.e., encoder, decoder, clean speech RoForme ℛ𝐶𝑆 and clean speech
discriminator are pre-trained). All other parameters are initialized randomly. We also use
the same training hyperparameters as in the single-branch models.

During supervised dual-branch model training, we set the loss weights as: 𝜆𝐶𝑆,𝑠 = 1,
𝜆𝐶𝑆,𝑓𝑚 = 1, 𝜆𝐶𝑆,𝑓𝑒𝑎𝑡 = 2, 𝜆𝐶𝑆,𝐺 = 4, 𝜆𝐶𝑆,𝑐𝑏 = 1, 𝜆𝐶𝑆,𝑐𝑚 = 0.25, 𝜆𝐶𝑆,𝑧𝑚 = 10, 𝜆𝐶𝑆,𝐸𝑚𝑎𝑥 =
1, 𝜆𝑁,𝑓𝑒𝑎𝑡 = 2, 𝜆𝑁,𝐺 = 1, 𝜆𝑁,𝑐𝑏 = 1, 𝜆𝑁,𝑐𝑚 = 0.25, 𝜆𝑁𝑆,𝑠 = 1, 𝜆𝑁𝑆,𝑓𝑚 = 1, 𝜆𝑁𝑆,𝑓𝑒𝑎𝑡 = 2,
𝜆𝑁𝑆,𝐺 = 1. The loss terms are defined in equations 4.5, 4.6, and 4.7.

6.2.1 Supervised Baselines

We trained two dual-branch baseline models we use later on for initialization: one with and
the other without VQ.

Table 6.4 shows the per-SNR group results of the baselines. It can be seen that both
models perform comparably on the MOS-based metrics, proving that VQ does not affect
the subjective quality of the enhanced speech too much. However, VQ can affect speaker
similarity, as the clustering can slightly alter the speaker’s voice and produce unwanted
artifacts. The most significant difference can be seen in the SI-SDR and MEL distance,
which assess similarity on the waveform level. The difference is mainly caused by distortions
created by limiting the bandwidth and lossly compressing the latent sequence. Also, it
can be seen that the dual-branch model performs slightly worse than the single-branch
RoFormer models shown in Table 6.1. It can be attributed to the fact that both the
encoder and decoder must be able to reconstruct clean speech and a large spectrum of
noise, which is a more difficult task.
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Table 6.4: Comparison of dual-branch model with and without VQ. The results are based
on the validation set.

SNR model DNSMOS↑ UTMOS↑ PESQ↑ STOI↑ SpkSim↑ SBERT↑ SI-SDR↑ MEL↓

< −5 No-VQ 2.93 2.14 1.66 0.78 0.45 0.78 9.20 0.86
VQ 2.89 2.17 1.52 0.74 0.37 0.75 6.66 0.91

[−5, 15) No-VQ 3.01 2.47 2.15 0.86 0.57 0.86 12.65 0.76
VQ 3.01 2.48 1.89 0.83 0.47 0.82 9.42 0.80

≥ 15
No-VQ 3.01 2.51 2.40 0.90 0.63 0.89 14.21 0.63

VQ 3.00 2.49 2.09 0.86 0.50 0.85 10.30 0.68

all No-VQ 2.98 2.34 1.99 0.84 0.53 0.83 11.50 0.74
VQ 2.96 2.35 1.77 0.80 0.43 0.80 8.43 0.79

Furthermore, Figure 6.4 shows the spectrograms of separated clean speech and noise by
both of the presented models, proving that both models can separate the two sources. It
is also worth noting that we do not use any reconstruction losses between the estimated
noise and the ground-truth noise. However, the feature loss ℒ𝑁,𝑓𝑒𝑎𝑡 operates on top of the
complext spectrogram and ensures that the reconstructed noise is as close to the ground-
truth noise as possible.

6.2.2 Branch combination comparison

Table 6.5: Comparison of branch combination methods of dual-branch models trained in a
supervised manner.

Method DNSMOS↑ UTMOS↑ PESQ↑ STOI↑ SpkSim↑ SBERT↑ SI-SDR↑ MEL↓
latent 2.97 2.34 1.98 0.83 0.53 0.83 11.34 0.75

waveform 2.98 2.34 1.99 0.84 0.53 0.83 11.50 0.74

Table 6.5 compares latent and waveform combination methods described in Section 4.2.1.
As can be seen, both methods perform comparably, with a slight advantage of the wave-
form combination method. However, the difference is negligible, proving that both methods
result in similar performance when training with supervision.

6.3 Dual Branch - Unsupervised
We continue the dual-branch model experiments with unsupervised training. The only
difference between supervised and unsupervised training is that we do not use paired clean
speech supervision. Hence, we cannot use the discriminator feature losses (Equation 3.16) or
reconstruction losses (Section 3.4) between the ground-truth clean speech and the enhanced
speech. Therefore, as stated in Section 4.2.2, we drop all the losses requiring reference clean
speech and noise. We keep the loss weights the same as during the supervised training.
The particular loss terms are defined in Section 3.4.
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(a) Enhanced Speech (b) Estimated Noise

(c) Enhanced Speech (VQ) (d) Estimated Noise (VQ)

(e) Ground truth clean speech. (f) Input noisy speech

Figure 6.4: Spectrograms of input noisy speech, enhanced speech, and estimated noise by
the dual-branch model with (first row) and without (second row) VQ. The last row shows
the input noisy speech.

6.3.1 Baselines

We trained the same model configurations as in Section 6.2.1 without using paired data. We
initialized all the parameters from NAC pre-trained for audio reconstruction and trained
for another 100k iterations.

We can see from Table 6.6 that, as with the supervised models, no-VQ setup beats the
VQ setup in terms of signal-level metrics and also speaker similarity. However, other metrics
do not differ much, proving that VQ does not significantly affect subjective intelligibility.
Furthermore, we can see that the performance drops significantly for low-SNR recordings,
achieving SI-SDR 3.34dB compared to 9.2dB for supervised models (Table 6.4). Similar
performance drops can be observed on other metrics as well. After listening to low-SNR
recordings, we observed that the model cannot correctly identify speech regions and outputs
only a tiny part of the clean speech mixed with input noise. However, it suppresses other
background noise rather than leaking it to the clean speech branch. An example with SNR
-6.75dB is shown in Figure 6.5, where we can see that the supervised model (Figure 6.5d)
can at least reconstruct lower frequency harmonics, despite not reconstructing the higher
frequency harmonics, compared to the unsupervised model (Figure 6.5c) that is unable to
reconstruct most of the clean speech.

On the other hand, Figure 6.6 shows the spectrograms of enhanced speech and estimated
noise from an input noisy recording with 1.92dB SNR by VQ and No-VQ models. It can
be seen that both models are capable of separating the sources from the noisy recording.
However, compared to the supervised counterparts depicted in Figure 6.4, neither noise nor
clean speech is as well separated as in the supervised case. This is mainly caused by the fact

40



Table 6.6: Comparison of dual-branch model with and without VQ. The results are based
on the validation set.

SNR model DNSMOS↑ UTMOS↑ PESQ↑ STOI↑ SpkSim↑ SBERT↑ SI-SDR↑ MEL↓

< −5 No-VQ 2.59 1.63 1.24 0.65 0.36 0.72 3.34 1.44
VQ 2.58 1.55 1.16 0.62 0.27 0.65 1.44 1.28

[−5, 15) No-VQ 2.93 2.08 1.60 0.81 0.50 0.82 10.28 1.09
VQ 2.93 2.03 1.44 0.77 0.39 0.76 7.69 1.13

≥ 15
No-VQ 3.02 2.30 1.92 0.87 0.57 0.87 13.04 0.78

VQ 3.01 2.22 1.65 0.81 0.43 0.80 9.27 0.81

all No-VQ 2.80 1.94 1.51 0.76 0.45 0.79 7.90 1.03
VQ 2.80 1.87 1.36 0.72 0.35 0.72 5.37 1.07

(a) Noisy input (b) Ground truth clean speech

(c) Enhanced speech (unsupervised) (d) Enhanced speech (supervised)

Figure 6.5: Spectrograms of input noisy speech, ground truth clean speech, and enhanced
speech by the dual-branch model trained in unsupervised and supervised manner.

that unsupervised models are receiving a lot less information about how the output should
look. Also, it is caused by noise leakage, which is thoroughly explained in Section 6.3.5.

6.3.2 Initialization

To explore how sensitive is the unsupervised training to initialization or pre-training,
we trained three dual-branch models for 100k iterations: randomly initialized (i.e., from
scratch), encoder and decoder initialized from a pre-trained NAC, and all the parameters
initialized from a dual-branch model pre-trained in a supervised manner.

Figure 6.7 shows the convergence curves of the mel distance and SI-SDR metrics. Sim-
ilarly to single-branch models, the model trained entirely from scratch converges slower
than the one initialized from NAC. Furthermore, we can see that MEL distance and SISDR
are increasing over time, converging to similar values as without dual-branch pre-training,
which is caused by the progressive noise leakage (explained thoroughly in Section 6.3.5). In
addition, Table 6.7 shows the performance after 100k training steps on validation data. As
can be seen, we could train the dual-branch model without any paired data from scratch
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(a) Enhanced Speech (b) Estimated Noise

(c) Enhanced Speech (VQ) (d) Estimated Noise (VQ)

(e) Ground truth clean speech. (f) Input noisy speech

Figure 6.6: Spectrograms of input noisy speech, enhanced speech, and estimated noise by
the dual-branch model trained in an unsupervised manner with (first row) and without
(second row) VQ. The last row shows the input noisy speech.

Table 6.7: Comparison of initialization methods of dual-branch models trained in an unsu-
pervised manner. 2B stands for dual-branch.

Init Method DNSMOS↑ UTMOS↑ PESQ↑ STOI↑ SpkSim↑ SBERT↑ SI-SDR↑MEL↓
From Scratch 2.73 1.83 1.42 0.74 0.40 0.75 6.95 1.06

Pre-trained NAC 2.80 1.94 1.51 0.76 0.45 0.79 7.90 1.03
Pre-trained 2B 2.86 2.04 1.55 0.76 0.45 0.78 8.49 0.99

and without any model collapse or other instabilities. However, the figure also reveals that
more pre-training results in better convergence and ebetter final model performance. Also,
the experiment suggests that if we do not have any paired clean and noisy speech data, we
can at least pre-train the encoder and decoder to perform audio reconstruction to improve
the SE performance. However, if we do have at least some paired data (or can simulate
some), it is beneficial to pretrain all the parameters.

Furthermore, Figure 6.8 shows the spectrograms of the enhanced speech example pro-
duced by the three models after being trained for 100k iterations. As can be seen, pre-
training improves the enhanced speech quality, mainly in the high-frequency areas where
the harmonics are better reconstructed. Hence, we can see that the unsupervised training
does not result in complete forgetting of the abilities gained during pre-training.

To conclude this section, pre-training is important for better enhancement performance
when training without supervision. However, it is not necessary as the model can be trained
from scratch without pre-training.

42



(a) Mel distance (b) SI-SDR

Figure 6.7: Comparison of mel distance and SI-SDR convergence between the different
initialization methods of dual-branch models trained in an unsupervised manner on the
validation set.

6.3.3 Branch Combination Comparison

Compared to supervised training where waveform and latent space combination methods
performed comparably, in the case of unsupervised training, the latent combination method
resulted in a collapsed model due to not being able to properly ensure consistency compared
to the waveform combination method (also described as a disadvantage in Section 4.2.1).
The Mel distance progress throughout the training can be seen in Figure 6.9, where the
model with latent combination suddenly diverged and started producing silence instead of
enhanced speech.

The main reason behind the inability of the latent combination method to ensure the
consistency is that we do not enforce the complementarity of the encoded information in
neither time domain nor latent space. This can also be seen in Figure 6.10 that compares
latent latent vs waveform combination method outputs. Figure 6.10a shows the enhanced
speech of one example to be silence, which is likely one of the modes of the clean speech
discriminator that the clean speech branch is sampling—a schoolbook example of mode
collapse. In contrast, Figure 6.10b shows an enhanced speech spectrogram corresponding
to the correctly separated clean speech.

Similar findings apply to the separated noise, as shown in Figure 6.10c, where the model
produces a deformed output not corresponding to the noise in the recording when the
latent combination is used, whereas the waveform combination method produces an audio
containing the correct input noise (Figure 6.10d), although with some artifacts caused by
the discriminator architecture.

Lastly, Figures 6.10e and 6.10f show the reconstructed input audio spectrograms. As
can be seen, both methods output audio close to the original noisy input, which shows that
even though each of the branches alone reconstructs nonsense, the combined latent space
indeed results in a proper reconstruction of the input audio when the latent combination is
used. This also proves that when latent space combination is employed, the overall input
reconstruction does not ensure consistency between the estimated sources and the input in
the exact way that waveform combination does. Hence, we can conclude that the waveform
combination is the right choice for unsupervised training, as it forces both branches to
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reconstruct audio consistent with the input and that the discriminators can force source
separation simultaneously.

6.3.4 Discriminator Ablations

To compare what discriminators are essential for the unsupervised training and if they
can enforce the separation of the clean speech and noise, we trained three dual-branch
models for 100k iterations, all initialized from a pre-trained dual-branch model: one with
all discriminators, one with only clean speech and noisy speech discriminators (i.e., without
noise discriminator), and one with only noisy speech discriminator.

Table 6.8: Comparison of employed discriminators during dual-branch models training in
an unsupervised manner. The first row shows the model with all discriminators, while the
last row show the model without noise and clean speech discriminators.

Discriminators DNSMOS↑ UTMOS↑ PESQ↑ STOI↑ SpkSim↑ SBERT↑ SI-SDR↑ MEL↓
All 2.86 2.04 1.55 0.76 0.45 0.78 8.49 0.99
- Noise 2.88 2.06 1.55 0.78 0.45 0.77 8.68 1.00
- Clean Speech 1.75 1.57 1.36 0.78 0.63 0.78 4.50 1.67

First, we compare the models based on the validation metrics shown in Table 6.8. It
can be seen that using all discriminators results in almost identical performance to the one
without noise discriminator in all but the signal metrics (SI-SDR, Mel distance). Regard-
ing the signal metrics, we can see that the model trained with all discriminators achieves
worse SI-SDR but better MEL distance than the one without noise discriminator. This
suggests that the former model perceptually reconstructs the audio equally well but might
introduce some waveform distortions, causing SI-SDR and Mel distance to be slightly worse
(although not significantly). Furthermore, comparing Figure 6.11a and Figure 6.11c shows
that training with all discriminators yields more accurate clean speech reconstruction (com-
paring against ground truth depicted in Figure 6.8d) including breathing sounds present in
the ground truth clean speech, which are not present in the speech enhanced by the model
trained without noise discriminator. It results from forcing the noise branch to focus on
noise modeling as much as possible, which causes the overall reconstruction to push the
clean speech branch towards outputting more accurate clean speech.

In addition, Figure 6.11b and 6.11f show how the noise discriminator affects the output
of the noise branch. When we do use the noise discriminator, we can see that the noise
branch mainly focuses on noise modeling, albeit with some artifacts (e.g., spectral stripes)
that are caused, as we previously stated, by suboptimal discriminator design [3]. On the
contrary, if we do not use the noise discriminator, clean speech leaks in, causing the branch
to reconstruct mainly noise and some residual clean speech that is not well reconstructed by
the CS branch. However, even though the noise branch containing some clean speech seems
not to affect the clean speech branch too much, it is beneficial to force the noise branch to
model the contained noises as well as possible (i.e., to use the noise discriminator), as the
clean speech branch is the forced to reconstruct the clean speech more accurately.

Lastly, reconstructed audio by the model trained without branch-specific discriminators
is shown in Figure 6.11c and 6.11d. It can be observed that the noise and clean speech
are not separated at all. Each branch just reconstructs some part of the input noisy signal

44



(i.e., both reconstruct the noisy signals with different artifacts), which is also reflected in
the metrics, where the model without 𝐷𝐶𝑆 , 𝐷𝑁 performs the worst.

To sum up, the clean speech discriminator is essential for unsupervised training, as it
forces the model to reconstruct the clean speech well, proving our intuition behind the
design right. The noise discriminator is unnecessary, but it helps improve the overall per-
formance and reduce the leakage of clean speech in the noise branch. However, it is not
essential for unsupervised training, as we can train a model without it, achieving compara-
ble performance. This also shows that having a clean speech data pool with unpaired noisy
speech examples is sufficient for training the dual-branch model in an unsupervised man-
ner, as the branch can learn to separate the clean speech and the residual signal without
additional supervision.

6.3.5 Leakage

We observed that when training without any paired noisy and clean speech data, the model
cannot perfectly enhance the clean speech, and some noise can leak in, usually depending
on the amount of present noise in the input recording. In this section, we also analyze the
leakage from a theoretical point of view and show two examples of leakage spectrograms.

For the theoretical description, let us reuse prior notation and denote x𝑁𝑆 ∈ R𝑇 as
noisy input signal, x̂𝐶𝑆 = 𝑓𝜃(x𝑁𝑆) ∈ R𝑇 as enhanced speech, and x̂𝑁 = 𝑔𝜑(x𝑁𝑆) ∈ R𝑇

as estimated noise signal, where 𝑓𝜃, 𝑔𝜑 are parametrized functions (i.e., neural networks),
representing the two branches in the dual-branch model. Furthermore, as a reminder, 𝐷𝐶𝑆

and 𝐷𝑁𝑆 are the clean speech and the noise discriminators, respectively. As defined before,
the reconstructed input audio is:

x̂𝑁𝑆 = 𝛼x̂𝐶𝑆 + 𝛽x̂𝑁 . (6.1)

Let us further define two gradient vectors coming from:

• the clean speech discriminator 𝐷𝐶𝑆 as ∇x̂𝐶𝑆
𝐷𝐶𝑆(x̂𝐶𝑆),

• the overall reconstruction loss as ∇x̂𝑁𝑆
ℒ(x̂𝑁𝑆) including the adversarial losses coming

from ∇x̂𝑁
𝐷𝑁𝑆(x̂𝑁 ).

If we look at the gradient that is being used during updating 𝜃, we can see that:

∇𝜃𝑓(x𝑁𝑆) = (𝛼∇x̂𝐶𝑆
ℒ(x̂𝑁𝑆) +∇x̂𝐶𝑆

𝐷𝐶𝑆(x̂𝐶𝑆))
⊤J𝑓𝜃 , (6.2)

where J𝑓𝜃 is the Jacobian of the output of 𝑓𝜃 w.r.t. to the parameters 𝜃. Hence, the clean
speech branch gets affected by both, the gradient coming from the overall reconstruction
losses ensuring that x̂𝑁𝑆 is reconstructed well and the gradient coming from the clean speech
discriminator that forces 𝑓 to produce signals that have similar statistical properties as clean
speech.

However, this introduces a few issues. Firstly, the magnitude of each gradient path
can differ quite a lot (if ‖∇x̂𝐶𝑆

ℒ(x̂𝑁𝑆)‖22 ≫ ‖∇x̂𝐶𝑆
𝐷𝐶𝑆(x̂𝐶𝑆)‖22, then CS branch gradients

can be biased towards the overall reconstruction rather than outputting clean-speech-like
signal). Also, the gradients are most likely not aligned and sometimes might point in the
opposite direction, creating so-called gradient conflict during multitask optimization [35].
A possible solution might be using PCGrad [83] or gradient normalization similar to the
authors of Encodec [12], who proposed to normalize the gradients coming from different
losses and then multiply them by the corresponding loss weights. We even re-implemented
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this balancing; however, further weight loss tuning would be needed to achieve the same
performance as without it. Also, branch-wise gradient normalization differs from overall
gradient normalization and is left as a future work.

Secondly, the discriminator gradients might not be as informative about nuances in the
enhanced speech signal, and some noise leaks might not be penalized enough, resulting in
noise leakage. It can be solved by increasing the discriminator capacity similarly to [45]
and introducing self-supervised features and various auxiliary tasks during training. We
also leave the solution as a future work as it is a non-trivial problem to solve and requires
a lot of further research and experimentation.

Moreover, Figure 6.12 shows two examples of leakage produced by the model trained
with all discriminators. The first row depicts the x̂𝐶𝑆 for two different recordings, while
the latter two represent the ground-truth clean speech and the input noisy audio. Ex-
ample 1 (Figure 6.12a) clearly shows noise leakage in the higher frequencies. Example 2
(Figure 6.12b) demonstrates a similar pattern, albeit with less pronounced leakage mainly
present in the lower frequencies due to the noise being guitar music mixed with higher SNR
(i.e., quieter noise). Nevertheless, it can also be seen that the leakage happens only when
the speech is present, showing that the model correctly identified non-speech parts of the
input audio and suppressed the underlying noise almost entirely.

VQ vs No-VQ

Training the dual-branch model with continuous latent space allows the model to learn
arbitrary continuous representations of the input audio. Even though we showed that the
model can learn to separate the clean speech from the residual noise, no explicit mechanism
prevents the noise leakage. As we discussed before, the discriminator might not be optimal
and may overlook some nuances in the enhanced speech, allowing the reconstruction losses to
force the clean speech branch to contain some noise to achieve as good input reconstruction
as possible; hence, introducing redundancies in the representations. In this case, a natural
solution is to limit the model’s bandwidth by quantizing the latent space using RVQ and
allowing the model to use a certain number of bits to represent the input audio. This way,
to achieve good input reconstruction and satisfy the adversarial losses, the model must not
model redundant information (e.g., noise present in the clean speech), as it would decrease
the reconstructed input quality.

To explain why VQ helps mitigate leakage, we analyze our dual-branch model using
the Information Bottleneck (IB) framework [68]. IB describes representation learning as
a trade-off between compressing the input and preserving task-relevant information. The
objective is given by:

ℒ𝐼𝐵 = 𝐼(𝑋;𝑍)− 𝛽𝐼(𝑍;𝑌 ), (6.3)

where 𝑋 is the input, 𝑌 is the target, 𝑍 is the representation, and 𝐼 denotes the mutual
information between two random variables [10]. We can state that our dual-branch model
is indirectly trying to optimize the following two IB objectives simultaneously2, one for the
clean speech branch and one for the noise branch:

ℒ𝐶𝑆
𝐼𝐵 = 𝐼(𝑋𝑁𝑆 ;𝑍𝐶𝑆)− 𝛽𝐶𝑆𝐼(𝑍𝐶𝑆 ;𝑋𝐶𝑆), (6.4)

ℒ𝑁𝐼𝐵 = 𝐼(𝑋𝑁𝑆 ;𝑍𝑁 )− 𝛽𝑁𝐼(𝑍𝑁 ;𝑋𝑁 ). (6.5)
2We do not explicitly optimize the information bottleneck objectives.
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This means that the clean speech branch is trying to preserve as little information about
the input as possible while retaining only the information about the clean speech, while the
noise branch is trying to preserve as little information about the input as possible while
retaining only the information about the noise.

Focusing on the clean speech branch, we can rewrite the first term in Equation 6.4 by
applying the mutual information chain rule as:

𝐼(𝑍𝐶𝑆 ;𝑋𝑁𝑆) = 𝐼(𝑍𝐶𝑆 ;𝑋𝐶𝑆) + 𝐼(𝑍𝐶𝑆 ;𝑋𝑁 |𝑋𝐶𝑆). (6.6)

Employing VQ limits the bandwidth of the latent space and obtain the following upper
bound:

𝐼(𝑍𝐶𝑆 ;𝑋𝑁𝑆) ≤ 𝐿 log2(|𝐶|), (6.7)
where log2(|𝐶|) is the number of bits used to represent the latent space embedding and 𝐿
is the length of 𝑍𝐶𝑆 . By combining the two equations, we get:

𝐼(𝑍𝐶𝑆 ;𝑋𝐶𝑆) ≤ 𝐿 log2(|𝐶|)− 𝐼(𝑍𝐶𝑆 ;𝑋𝑁 |𝑋𝐶𝑆). (6.8)

This reveals a fundamental trade-off: with a fixed latent bandwidth, any noise-related
information retained in the clean speech representation reduces the capacity available for
encoding actual speech features. Vector quantization enforces this bandwidth constraint,
forcing the model to prioritize what information to preserve. The adversarial loss from
the clean speech discriminator encourages the model to allocate its limited capacity toward
speech-like structure and forces outputs to resemble real clean speech, making it increasingly
costly for the model to let noise leak into the clean speech branch.

To verify this claim, we trained five dual-branch models, all initialized from a pre-
trained dual-branch model: four with 1, 2, 4, 8 RVQ codebooks, and one without VQ.
However, relying on metrics as before does not work well when assessing if VQ helps with
leakage. The main reason is that using VQ decreases the audio quality due to limiting the
bandwidth. Thus, the metrics are worse when VQ is employed, even though the leakage is
reduced. Therefore, we rely purely on visual inspection of spectrograms (or listening) and
leave the rigorous analysis and development of a proper validation approach to future work.

Figure 6.13 shows two noise leakage examples for the abovementioned models. The first
example (with higher SNR) shows slight low-frequency noise leaks (stripes reflecting the
traces of guitar noise), on which we can see that lower bandwidth results in less leakage,
proving our intuition about the model being forced not to model the redundant information.
The second example (with lower SNR) also shows that some higher frequency noise leaks
to the first few seconds of the audio when no VQ is employed and does not leak as much
when VQ is employed. However, the leakage is still present but suppressed.

To conclude, VQ can help with leakage, but at the expense of worse reconstruction
quality (proved before by the metrics), which is mainly caused by the limited amount of
bits the model can use to represent the audio. However, there has been research into low-
bitrate neural audio codecs [45], showing it is possible to decrease the number of codes
and sampling rate, while not sacrificing the audio quality as much, and we are planning to
explore such architectures as future work.

6.4 Comparison with Prior Work
As mentioned before, we utilize the VCTK-Demand test set for metrics computation to
compare to previous works. Due to the unavailability of all metrics’ prior work results, we
only compare the models based on DNSMOS, UTMOS, PESQ, STOI, and SI-SDR.
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For supervised speech enhancement, we compare our models with the following prior
works: MetricGAN+ [19], HiFi-GAN2 [65], and FINALLY [3]. As shown in Table 6.9,
all our models improve upon the noisy input speech in all metrics. Moreover, we can see
that all our models outperform the MetricGAN+ and HiFi-GAN2 models in both MOS
metrics while being 0.06 points behind the well-performing FINALLY model. Also, our
non-VQ models achieve the best SI-SDR scores and do not lag behind HiFi-GAN2 in STOI,
achieving second-to-best scores. However, we can see that our models are behind the prior
work in PESQ, likely caused by a slight loss of fine-grained details (it can be seen that
VQ models have significantly worse PESQ scores) or artifacts that are barely noticeable
by human ears. Nonetheless, various studies have reported that reference-based metrics do
not correlate well with human perception [39, 48]. Hence, judging by the MOS scores, our
models are comparable to the prior work and achieve second to best performance. Also,
models employing VQ, while worse in reference-based metrics, do not lose much perceptual
quality according to both MOS metrics. Lastly, we compare the WER of our models. To
be comparable to the prior work numbers, we utilized a wav2vec2-based xlsr model chosen
by the authors of FINALLY [3]. It can be seen that the best-performing models match the
input noisy speech performance, while our models and MetricGan+ slightly lag behind. It
can be seen that VQ models perform worse, likely due to the introduction of artifacts that
confuse the ASR model.

Table 6.9: Comparison of our supervised models with prior work. Our models are shown
in the last four rows.

Model DNSMOS↑ UTMOS↑ PESQ↑ STOI↑ SI-SDR↑ WER↓
Input Speech 2.54 3.10 1.97 0.92 8.54 0.07
Ground Truth 3.15 4.09 4.64 1.00 - 0.05
MetricGAN+ 2.95 3.62 3.14 0.93 8.6 0.10
HiFi-GAN2 3.12 3.99 3.14 0.95 17.9 0.07
FINALLY (16kHz) 3.22 4.32 2.94 0.92 4.6 0.07
SingleBranch (Ours) 3.16 4.00 2.86 0.94 19.26 0.09
SingleBranch VQ (Ours) 3.16 3.98 2.59 0.92 14.86 0.13
DualBranch (Ours) 3.16 3.93 2.83 0.94 19.60 0.10
DualBranch VQ (Ours) 3.16 3.94 2.52 0.92 14.67 0.14

Furthermore, we focus on unsupervised model comparison and compare our models with
the following prior works: Wiener [36], NyTT [22], MetricGAN-U (half), and MetricGAN-U
(full) [20]. The difference between half and full MetricGAN-U is the number of training
epochs, as the half model was trained using early stopping [51] based on the average PESQ
score, while the full model was trained for 600 epochs on VCTK-Demand [69] train set.

Table 6.10 shows that both our models improve on the noisy input speech in all metrics,
except for STOI, where the model with VQ performs slightly worse. However, as we men-
tioned before, MOS metrics correlate with human perception better, and we significantly
beat the noisy speech in both. Furthermore, let us compare our models to the Wiener filter,
a signal processing baseline without any training data. Our models outperform it by a large
margin (all metrics except for STOI for the VQ model). Also, our no-VQ model matches
the performance of NyTT in PESQ, but lacks behind in terms of SI-SDR.
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Table 6.10: Comparison of our unsupervised models with prior work. Our models are shown
in the last two rows.

Model DNSMOS↑ UTMOS↑ PESQ↑ STOI↑ SI-SDR↑ WER↓
Input Speech 2.54 3.10 1.97 0.92 8.54 0.07
Ground Truth 3.15 4.09 4.64 1.00 - 0.05
Wiener 2.54 3.05 1.93 0.92 8.42 -
NyTT - - 2.30 - 17.66
MetricGAN-U (half) 2.89 - 2.45 - - -
MetricGAN-U (full) 3.15 - 2.13 - - -
Unsup Dual Branch (Ours) 3.04 3.61 2.29 0.93 14.51 0.10
Unsup Dual Branch VQ (Ours) 3.03 3.60 2.12 0.89 12.22 0.17

Furthermore, both our models beat the MetricGAN-U (half) model in DNSMOS and
the full model in PESQ (half model was selected to achieve the highest PESQ). Although
the MetricGAN-U model is trained to indirectly optimize DNSMOS, our approach relies
solely on data-driven learning without the incorporation of any such non-intrusive metrics
during training. As a result, our model is not constrained by the limitations of optimizing
toward a potentially sub-optimal proxy objective. Lastly, we present WER results using
the same setup as in Table 6.9. It can be seen that the no-VQ unsupervised model performs
comparably to the supervised models. On the other hand, the VQ model does not perform
as well as both supervised and unsupervised models. We observed that the pronunciation
could be slightly altered, causing the ASR model to output words like assengial or fipe
instead of essential and five, respectively. Hence, we conclude that our unsupervised models,
while not beating all the prior work, are comparable in the SE metrics and to the supervised
models in WER computed from the wav2vec2-based ASR transcripts.

6.4.1 Whisper Large-V3 WER

Even though the authors of FINALLY [3] computed all the WER scores using the wav2vec2-
based ASR model, we also decided to use our enhancement system in conjunction with
Whisper Large-V3 [52] as it is a default choice for ASR not only as a baseline model but
also as a production-ready system.

Table 6.11 shows that all but the unsupervised dual-branch VQ model improves upon
the noisy input, proving that enhanced audio can assist an already robust ASR model and
improve the WER.

6.5 Real World Noisy Data
Lastly, to prove that our method can handle real-world noisy data, we trained a dual-branch
model on ATCO2 [23]—an air traffic control dataset containing noisy communications be-
tween pilots and air traffic controllers. We used 4000h for training and the official test
set for evaluation. The model was initialized from a pre-trained NAC and trained for
100k iterations. We used the same clean speech and noise data pools as in the previous
experiments.
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Table 6.11: Comparison of WER inferred by Whisper Large-V3 ASR model using the
enhanced VCTK-Demand dataset.

Model WER↓
Input Speech 0.07
Ground Truth 0.02
Single Branch 0.04
Single Branch VQ 0.07
Dual Branch 0.04
Dual Branch VQ 0.06
Unsupervised Dual Branch 0.06
Unsupervised Dual Branch VQ 0.08

Table 6.12: MOS results on ATCO2 dataset comparing noisy input and enhanced speech
by dual-branch model.

DNSMOS↑ UTMOS↑
Noisy Input 1.99 1.30
Enhanced 3.07 1.89

Table 6.12 demonstrates that our model is capable of learning SE from real-world noisy
data, which is reflected primarily in the DNSMOS improvement from 1.99 to 3.07. In
contrast, improvement in UTMOS is not as significant as DNSMOS, as it focuses more on
intelligibility than the quality of denoising. We observed that on one hand, the enhanced
audio is a lot cleaner than the input, but, on the other hand, it sometimes does not contain
all the phonemes reconstructed well enough, making it harder to understand the uttered
words. An example of the noisy input and enhanced audio is shown in Figure 6.14.

6.6 Inference Speed and Model Complexity
To evaluate the practicality of the proposed models, we measure inference time on AMD
EPYC 9454 48-Core CPU and NVIDIA H100 NVL GPU. We pass 10s of audio through
the model 10x and take an average of the elapsed time. The real-time factor (RTF) is
then calculated by dividing the average elapsed time by 10 (audio length in seconds). To
compare with the prior work, we assume that Nvidia V100 is 10x slower than H100 NVL
and report the re-calibrated RTF. Also, for CPU RTF, we limit the number of cores to 1
to be comparable with other works and also report RTF using eight cores to report RTF
close to what one can get when using a standard desktop.

Table 6.13 shows the performance comparison between our models and the prior work.
Our models achieve the best RTF under the assumption of the relative speed between the
GPUs. However, we can conclude that our models are significantly faster than HiFi-GAN2
and comparable to FINALLY. Also, we can see that when using 1 CPU core, it takes around
1.4s to process 1s of audio and 0.37s when using eight cores. This shows that our model
can be used for real-time enhancement even without GPU when multiple cores are used.
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Table 6.13: Real time factor comparison. Prior work RTF numbers were taken from [3].

Model RTF (CPU)↓ RTF (GPU)↓
HiFi-GAN2 - 0.500
FINALLY - 0.030
Ours (1 CPU) 1.340 0.023
Ours (8 CPU) 0.378 0.023

(a) Enhanced speech, trained from scratch.

(b) Enhanced speech, initialized with a pre-trained NAC.

(c) Enhanced speech, initialized with a pre-trained dual-branch model.

(d) Ground truth clean speech.

Figure 6.8: Comparison of initialization methods of dual-branch models trained in an un-
supervised manner on the validation set.
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Figure 6.9: Comparison of latent and waveform combination methods of dual-branch models
trained in an unsupervised manner.

(a) Latent combination, enhanced speech (b) Waveform combination, enhanced speech

(c) Latent combination, separated noise (d) Waveform combination, separated noise

(e) Latent combination, reconstructed input (f) Waveform combination, reconstructed input

Figure 6.10: Comparison of latent and waveform combination methods of dual-branch
models trained in an unsupervised manner.

52



(a) All discriminators, enhanced speech (b) All discriminators, estimated noise

(c) Without noise discriminator, enhanced
speech

(d) Without noise discriminator, estimated
noise

(e) Noisy speech discriminator only, enhanced
speech

(f) Noisy speech discriminator only, estimated
noise

Figure 6.11: Comparison of dual-branch models trained in an unsupervised manner with
different discriminators. The first row shows the model with all discriminators, the second
row shows the model with clean and noisy speech discriminators, and the third row shows
the model with only noisy speech discriminator.
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(a) Example 1, Enhanced speech. (b) Example 2, Enhanced speech.

(c) Example 1, Ground truth clean speech. (d) Example 2, Ground truth clean speech.

(e) Example 1, Input audio. (f) Example 2, Input audio.

Figure 6.12: Spectrograms of enhanced, ground truth clean speech and input audio, showing
leakage.
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(a) Example 1, no VQ (b) Example 2, no VQ

(c) Example 1, 8 Codebooks (d) Example 2, 8 VQ Codebooks

(e) Example 1, 4 VQ Codebooks (f) Example 2, 4 VQ Codebooks

(g) Example 1, 2 VQ Codebooks (h) Example 2, 2 VQ Codebooks

(i) Example 1, 1 VQ Codebook (j) Example 2, 1 VQ Codebook

Figure 6.13: Noise leakage comparison of dual-branch models trained in an unsupervised
manner without VQ, with 8, 4, 2, and 1 VQ codebook.

(a) Noisy example. (b) Enhanced example.

Figure 6.14: Example of noisy input audio and its enhanced version.
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Chapter 7

Conclusion

In this thesis, we first explored a single-branch SE baseline—a NAC model trained for SE
instead of audio reconstruction. Our baseline results proved the ability of the original NAC
model to perform SE. Furthermore, we showed that adding a RoFormer model between
the encoder and decoder improves the performance on all the metrics consistently and
observed that it usually leaks less noise in low SNR scenarios compared to the original
NAC model, mainly due to the employed self-attention module, allowing the model to utilize
the entire context of the input audio. Also, adding VQ to the model did not degrade the
perceptual performance. Furthermore, we explored the effect of initializing the encoder and
decoder with parameters from a pre-trained NAC model trained for audio reconstruction.
The results showed that initializing the model with a pre-trained NAC resulted in better
convergence and final performance according to all the metrics, as the model does not need
to learn the speech representations from scratch.

Furthermore, we showed that training the decoder using a fixed encoder from a pre-
trained NAC model is sufficient to perform SE. This means that SE models do not necessar-
ily produce latent features that are already noise-free, as the majority of the enhancement
can happen in the decoder. Furthermore, we explored code stability when training with
VQ and showed that training for SE instead of audio reconstruction results in more sta-
ble codes. This suggests that codes from an SE model might be better suited for speech
downstream tasks and even provide some degree of robustness for free.

We then extended the single-branch model to a dual-branch model that separates the
latent space into two parallel branches, applies transformations and quantization to each
of them, and reconstructs two audio streams. The two streams are subsequently combined,
and the model is trained to reconstruct the input audio. Furthermore, we introduced two
branch-specific discriminators that utilize unpaired real clean speech and noise data pools to
force information disentanglement. This way, we force one branch to produce noise-like and
the other to produce clean speech-like signals. Combining discriminators with the overall
input audio reconstruction ensures that the produced clean speech is the enhanced version
of the input signal. This way, we could train the SE model without paired noisy-clean
data. We also laid down a theoretical explanation to back our dual-branch model design
and showed that the model indeed learns to enhance the noisy speech input.

We first experimented with supervised training of the dual-branch models. The results
showed that the model could learn to separate clean speech and noise well. Also, we
explored branch combination methods and concluded that waveform-level and latent-space
combination methods performed similarly. We continued by exploring the models trained
without supervision (i.e., unpaired noisy and clean speech data) and showed that the models
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enhanced the speech. However, the quality was worse compared to the supervised training as
the model received less supervision about how the enhanced version of the input noisy speech
should look. We then analyzed the effect of pre-training and, similarly to single-branch
models, concluded that the more pre-training is done, the better the final performance.
Subsequently, we explored the branch combination methods.

In contrast to the supervised training, we found that the latent-space combination
method caused the model to diverge, as it did not force consistency between the enhanced
speech and the input enough, proving that waveform-level combination is the key to suc-
cess. Next, we performed ablations on the number of branch-wise discriminators used
and observed that noise discriminator might not be necessary, as both with and without
achieved similar results. However, training without noise discriminator leaked more clean
speech to the noise branch. Also, we showed that the discriminators force the outputs to
follow the corresponding real data distribution, as the model did not perform any informa-
tion separation without the branch-wise discriminators, dividing the noise and clean speech
information almost equally between the branches. Finally, we analyzed the leakage phe-
nomenon (i.e., slight noise leaking into the clean speech) that occurs during unsupervised
training and concluded that it might be happening due to imbalanced reconstruction and
adversarial gradients or due to the discriminator not being able to capture all the nuances
of clean speech.

Furthermore, we showed that our models are comparable to the prior work in supervised
and unsupervised settings and can improve an already robust ASR system Whisper Large-
V3, even with unsupervised training without VQ. We also showed that we could train a
dual-branch model on real-world noisy data without supervision, which is not usually done
by prior unsupervised SE works, proving that our method can learn from real-world noisy
recordings. Lastly, we showed that our models can perform SE in real-time on CPU and
GPU, making them suitable for real-world applications.

Future work

We have proven that our dual-branch model can learn to enhance clean speech without
paired noisy and clean speech data. However, the enhanced speech quality is still not state-
of-the-art, mainly in the unsupervised setting. Also, we showed that the model can leak
some noise into the clean speech, degrading the quality substantially.

As part of future work, we intend to investigate alternative encoder-decoder archi-
tectures based entirely on transformer neural networks, which have been shown to scale
effectively and to compress audio into low bit-rate representations with minimal quality
degradation. Additionally, we plan to transition from a purely time-domain approach to
a time-frequency domain representation. This shift is expected to reduce computational
demands and enable training on longer utterances.

We also aim to conduct a more in-depth exploration of the discriminator design. Specif-
ically, we will seek architectural improvements that minimize noise leakage and enhance the
fidelity of the reconstructed speech. Furthermore, we plan to investigate low-resource sce-
narios in which only limited paired noisy-clean data are available (i.e., data captured using
close-talk microphones). In this context, we will examine the potential benefits of unsu-
pervised pre-training and supervised fine-tuning. Conversely, we also intend to explore the
utility of simulated data in improving model performance during unsupervised training.

Finally, the dual-branch framework proposed in this work can be extended to a multi-
branch architecture. In such a configuration, each branch can be tasked with enhancing a
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different type of source (such as speech, musical instruments, or environmental noise) pro-
vided that these sources are distinguishable by distinct prior distributions. This approach
is particularly relevant for music source separation, where individual data pools for each
instrument can be provided, allowing the model to learn to isolate specific instruments.
Beyond audio, we also envision extending this methodology to other modalities, includ-
ing unsupervised image or video enhancement. This would position our framework as a
general-purpose solution for unsupervised source separation across various domains.
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Appendix A

Derivation of Branch-wise Scaling

Let x𝑁𝑆 ∈ R𝑇 be a noisy speech, x̂𝐶𝑆 ∈ R𝑇 an output of clean speech branch, and x̂𝑁 an
output of noise branch.

We want to find 𝛼, 𝛽 ∈ R, such that:

𝛼*, 𝛽* = argmin
𝛼,𝛽

‖x𝑁𝑆 − (𝛼x̂𝐶𝑆 + 𝛽x̂𝑁 )‖22⏟  ⏞  
𝐿(𝛼,𝛽)

. (A.1)

To find 𝛼*, 𝛽*, as the function 𝐿(𝛼, 𝛽) is convex w. r. t. both parameters, we take the
derivative w. r. t. input, set it to 0 and solve the system of equations:

𝜕𝐿

𝜕𝛼
= 2(x𝑁𝑆 − 𝛼x̂𝐶𝑆 − 𝛽x̂𝑁 )⊤(−x̂𝐶𝑆) = 0⇔ 𝛼x̂⊤

𝐶𝑆x̂𝐶𝑆 + 𝛽x̂⊤
𝑁 x̂𝐶𝑆 = x⊤

𝑁𝑆x̂𝐶𝑆 , (A.2)

𝜕𝐿

𝜕𝛽
= 2(x𝑁𝑆 − 𝛼x̂𝐶𝑆 − 𝛽x̂𝑁 )⊤(−x̂𝑁 ) = 0⇔ 𝛼x̂⊤

𝐶𝑆x̂𝑁 + 𝛽x̂⊤
𝑁 x̂𝑁 = x⊤

𝑁𝑆x̂𝑁 . (A.3)

Hence, we obtain a system of linear equations:[︃
x̂⊤
𝐶𝑆x̂𝐶𝑆 x̂⊤

𝑁 x̂𝐶𝑆

x̂⊤
𝐶𝑆x̂𝑁 x̂⊤

𝑁 x̂𝑁

]︃
⏟  ⏞  

A

[︃
𝛼

𝛽

]︃
=

[︃
x⊤
𝑁𝑆x̂𝐶𝑆

x⊤
𝑁𝑆x̂𝑁

]︃
. (A.4)

Finally, after multiplying both sides by A−1, we get:[︃
𝛼*

𝛽*

]︃
=

1

(x̂⊤
𝐶𝑆x̂𝐶𝑆)(x̂⊤

𝑁 x̂𝑁 )− (x̂⊤
𝑁 x̂𝐶𝑆)2

[︃
x̂⊤
𝑁 x̂𝑁 −x̂⊤

𝐶𝑆x̂𝑁

−x̂⊤
𝐶𝑆x̂𝑁 x̂⊤

𝐶𝑆x̂𝐶𝑆

]︃[︃
x⊤
𝑁𝑆x̂𝐶𝑆

x⊤
𝑁𝑆x̂𝑁

]︃
. (A.5)
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