
UNDERSTANDING
FEEDBACK POLLUTION
IN THE R
PROGRAMMING
LANGUAGE

Bc. Filip Říha

Master’s thesis
Faculty of Information Technology
Czech Technical University in Prague
Department of Theoretical Computer Science
Study program: Informatics
Specialisation: System Programming
Supervisor: doc. Ing. Filip Křikava Ph.D.
May 9, 2025

Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of master’s thesis

Understanding Feedback Pollution in the R Programming

Language

Bc. Filip Říha

doc. Ing. Filip Křikava, Ph.D.

Informatics

System Programming

Department of Theoretical Computer Science

until the end of summer semester 2025/2026

Instructions

Understanding Feedback Pollution in the R Programming Language

The heart of just-in-time compilation is the ability to specialize functions based on past

behavior.

By recording information about types, callees, or control flow, a JIT compiler can generate

efficient native code even for highly dynamic programming languages. However, the

recorded feedback tends to become less precise over time, impacting the code quality

and, in turn, performance. This thesis aims to study this phenomenon known as feedback

pollution in the scope of the R programming language and explore ways to reduce it.

Tasks:

- Get familiar with Rsh, the JIT compiler developed at the PRL laboratory at FIT.

- Implement a tool for gathering data about feedback recorded by the VM.

- Explore how feedback behaves, how pollution occurs, and how to reduce it.

- Look how feedback is implemented in some other VM.

Electronically approved by doc. Ing. Jan Janoušek, Ph.D. on 22 January 2025 in Prague.

Czech Technical University in Prague
Faculty of Information Technology
© 2025 Bc. Filip Říha. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic. It
has been submitted at Czech Technical University in Prague, Faculty of Information
Technology. The thesis is protected by the Copyright Act and its usage without author’s
permission is prohibited (with exceptions defined by the Copyright Act).

Citation of this thesis: Říha Filip. Understanding Feedback Pollution in the R Pro-
gramming Language. Master’s thesis. Czech Technical University in Prague, Faculty
of Information Technology, 2025.

I want to thank my supervisor Filip Křikava for guiding
me through the creation of this thesis, Sebastián Kryn-
ski for being a great colleague and for his help with all
of the many corner cases of R and Ř, and also Jan
Vitek for his mentoring.
This work was funded by the Czech Science Foundation
grant 23-07580X.

iii

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipu-
lated by the Act No. 121/2000 Coll., the Copyright Act, as amended. I further
declare that I have created the thesis or part of it in the mode of employee work
pursuant to Section 58 of the Copyright Act as an employee of the Czech Tech-
nical University in Prague. This fact does not affect the provisions of Section
47b of Act No. 111/1998 Coll., the Higher Education Act, as amended.

I declare that I have used AI tools during the preparation and writing of
my thesis. I have verified the generated content. I confirm that I am aware
that I am fully responsible for the content of the thesis.

In Prague on May 9, 2025

iv

Abstract

Modern dynamic languages often leverage Just-in-Time (JIT) compilers to
improve performance of frequently executed code. These compilers use the
feedback collected at runtime to make speculations about future execution,
making further optimization possible. However, over time, the accuracy of
this feedback can degrade, leading to less precise speculations and performance
degradation. This phenomenon is known as feedback pollution.

The R programming language is highly specialized for statistical computing
and data visualization, and thanks to its features such as reflection and lazy
evaluation, it can be difficult to optimize. The Ř JIT compiler tries to improve
the performance of R by using speculations on the observed feedback in order
to increase the performance of the compiled code.

The primary objective of this thesis is to develop a tool that allows for
detailed observation and analysis of the behavior of the Ř JIT compiler, as
otherwise the inner workings of the compiler are a black box. By having the
facilities to examine the JIT internals, we open up possibilities for further
research and analysis, including the understanding of feedback pollution and
feedback usage explored in this thesis.

Keywords R, GNU R, JIT, compilation, feedback vector, type feedback

v

Abstrakt

Moderní dynamické jazyky často využívají JIT (Just-in-Time) překladače ke
zrychlení opakovaně spouštěného kódu. Tyto překladače sbírají za běhu in-
formace o chování programu a na jejich základě spekulují o budoucích bězích,
což umožňuje lepší optimalizace. Postupem času však může přesnost těchto
informací klesat, což vede ke zhoršení výkonu – tomuto jevu se říká znečištění
zpětné vazby.

Programovací jazyk R je úzce zaměřený na statistické výpočty a vizualizaci
dat. Kvůli vlastnostem jako reflexe a odložené vyhodnocování je však jeho
optimalizace náročná. Ř je JIT kompilátor navržený pro R, který se snaží
zvýšit výkon pomocí spekulací založených na pozorované zpětné vazbě.

Hlavním cílem této práce je vytvořit nástroj pro detailní pozorování a
analýzu chování kompilátoru Ř, jehož vnitřní fungování je jinak černou skříňkou.
Tím, že máme k dispozici prostředky pro zkoumání vnitřních částí kompilá-
toru, otevíráme možnosti pro další výzkum a analýzu, včetně pochopení znečištění
a využití zpětné vazby, které jsou zkoumány v této práci.

Klíčová slova R, GNU R, JIT, kompilace, vektor zpětné vazby, typová
zpětná vazba

vi

Contents

Introduction 1

1 Background 3
1.1 The R Language . 3
1.2 GNU-R . 8
1.3 The Ř Compiler . 12
1.4 Related Work . 17
1.5 Corpus . 18

2 Recording Tool 19
2.1 Motivation . 19
2.2 Design . 20
2.3 Implementation . 22

2.3.1 Hooks . 22
2.3.2 Recorder . 22
2.3.3 Events . 24
2.3.4 Serialization . 24
2.3.5 Interface . 27

2.4 Assessment . 28

3 Feedback Pollution 29
3.1 Motivation . 29
3.2 Methodology . 31
3.3 Analysis . 32
3.4 Pollution Prevention . 34

4 Feedback Usage 36
4.1 Definitions . 36
4.2 Methodology . 39
4.3 Observations . 40
4.4 Limitations . 43

5 Conclusion 45
5.1 Future Work . 46

A Bytecode Examples 48

vii

Contents viii

Bibliography 51

Contents of the Attachment 54

List of Figures

1.1 Plot of listing 1.1 . 3
1.2 Structure of the GNU-R SEXP 8
1.3 Overview of Ř architecture[10] 12
1.4 Structure of the Ř runtime objects 13
1.5 Composition of Ř runtime objects 15

2.1 Idealized event log, each point represents a function invocation 19

3.1 Event log of listing 3.1 without contextual dispatch, each point
represents a function invocation 30

3.2 Event log of the listing 3.1 with contextual dispatch, each point
represents a function invocation 31

3.3 Function pollution in Kaggle script, each point represents a com-
pilation[21] . 32

3.4 Pollution of functions in benchmarks[21] 33

4.1 Illustration of the relationship between static, feedback, ex-
pected and assumed types . 37

4.2 Usage of slots across closure compilations 40
4.3 Categorization of unused slots across closure compilations . . . 41
4.4 Categorization of used slots . 42

List of Tables

1.1 The different SEXP types[5, 1.1.1 SEXPTYPEs] 9

3.1 Summary of the feedback pollution in the corpus[21] 34

4.1 Overview of analyzed programs 39

ix

List of Code listings x

List of Code listings

1.1 R example[2] . 3
1.2 Demonstration of R special calls 5
1.3 Example of R laziness . 6
1.4 Immutability example . 7
1.5 Example of environment mutability 7
1.6 Example of malicious reflection[4] 7
1.7 A truncated example of generated GNU-R and RIR bytecodes,

full code in appendix A . 11
1.8 Example of a PIR instruction 16

2.1 Simplified code of compilation logic in interpreter/interp.cpp . 21
2.2 Example of recording state management in a hook caller in the

class ObservedTest in file runtime/TypeFeedback.h 22
2.3 Simplified definition of Record and FunRecording classes . . . 23
2.4 Definition of the Serializer struct and its usage for type bool 25
2.5 Function definition of field serialization functions 26
2.6 Example of using the fields serialization functions defined in 2.5 26

3.1 Motivating example for feedback pollution 30

4.1 PIR code structure of type assumption 37

A.1 GNU-R bytecode for listing 1.7.1, generated using A.3 48
A.2 RIR bytecode for listing 1.7.1 49
A.3 Code used for formating disassembled GNU-R bytecode 50

List of abbreviations

API Application Programming Interface
AST Abstract Syntax Tree

CRAN The Comprehensive R Archive Network
GC Garbage Collector
IR Intermediate Representation

JIT Just-in-time
NAN Not a Number
OSR On-Stack Replacement
SSA Static Single-Assignment

SEXP Symbolic Expression
VM Virtual Machine

xi

Introduction

Many modern dynamic languages are executed on a virtual machine (VM).
In order to speed up the execution of programs, VMs traditionally include
Just-in-Time (JIT) compilers, allowing them to improve the performance of
frequently executed pieces of programs by compiling them to native code. To
further enhance performance, most modern VMs record information about
the runtime (called feedback), allowing them to predict future behavior. If the
feedback information is useful, the compiler can speculate on it, leading to a
more optimized code if the assumption holds. This is based on the thesis that
what is past is prologue. However, over time, the recorded information tends
to become less precise, resulting in more general speculations and slower code
down the line. This trend is known as feedback pollution.

R is a high-level programming language specialized for statistical comput-
ing and data visualization. It is dynamically typed with function and object-
oriented patterns, and features reflection and lazy evaluation. GNU-R, the
reference implementation of R, contains both an abstract syntax tree (AST)
interpreter and a bytecode JIT compiler and interpreter. Ř is an alternative
JIT compiler for GNU-R. It uses feedback information from an interpreter to
speculatively optimize the native compilation. However, the inner workings
of Ř are sort of a black box. There is no simple way to track why and how
are functions invoked and compiled, or why and where are deoptimizations
triggered.

The main goal of this thesis is to implement a tool that would allow us
to observe and analyze the behavior of the Ř compiler, allowing us to better
understand the Ř internals and opening up possibilities for further research
and analysis. Concretely, in this thesis, we are interested in understanding the
feedback pollution as it happens in R.

Chapter 1 introduces the necessary background information, including the
R language, the GNU-R virtual machine implementation, and the Ř compiler
structure. Chapter 2 delves into the design and implementation of the record-
ing tool, as well as its impact on the Ř codebase. Chapter 3 outlines the
research done on feedback pollution, which was possible thanks to the record-

1

Introduction 2

ing tool. Chapter 4 then further analyzes how the feedback information is used
(or not used) during compilation, observing feedback patterns in the compiler,
and connecting them to the feedback pollution.

Chapter 1

Background

In this chapter, we introduce the R language and its implementation. We
also outline the implementation of Ř, an extension to R that is composed of
a bytecode interpreter and a speculative JIT compiler. We compare how Ř
collects and uses feedback information with the state of the art JIT compilers,
namely the V8 for JavaScript and HotSpot JVM for Java. Finally, we
describe the R programs used for experiments and analysis throughout the
thesis.

1.1 The R Language

The R[1] programming language has been primarily designed for statistical
computation, data analysis, and graphical visualization. It was developed by
Ross Ihaka and Robert Gentleman at the University of Auckland as an open
source alternative to the S language. It is part of the GNU Project, licensed
as a free software under GNU GPL.

1 ggplot(
2 data = gapminder,
3 aes(
4 x = gdpPercap, y = lifeExp,
5 color = continent
6)
7) +
8 geom_point() +
9 scale_x_log10()

Code listing 1.1 R example[2]

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●● ●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●●●●
●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

● ●
●●

●
●

●

●

●

●

●
●

●
●

●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●● ●
●●●

●

●
●

●

● ● ●
●

●
● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
● ●

●●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

● ●

●
●

●
●

●
●

●

●
●

●● ●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
● ●

●
● ●

● ●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

● ●●●● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●●
●●

●

●
●

●

●

● ●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

● ●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●
●

●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●
●

●

●
●

●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

● ●

●
●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

40

60

80

1e+03 1e+04 1e+05
gdpPercap

lif
eE

xp

continent
●

●

●

●

●

Africa
Americas
Asia
Europe
Oceania

Figure 1.1 Plot of listing 1.1

3

The R Language 4

The popularity of R stems from its domain-specific focus. Unlike general-
purpose languages, R offers high-level abstractions for statistical operations,
making complex analyses more accessible. As a consequence, many R users
are statisticians rather than traditional programmers. An example of the R
expressivity is in the listing 1.1, where with just a few lines of code, we can
plot the relationship between GDP per capita and life expectancy from the
gapminder data set[3].

The language is high-level, dynamic, object-oriented, functional, inter-
preted, and lazy, with automatic memory management.

The R syntax is very C-like, with if statements, for and while loops,
array indexing, and function calls. For assignment, the <- operator is used.
Statements are separated by a new line, and optionally by a semicolon if they
are on the same line.

Types

The basic types of R are the numeric types (integer, double or also real and
complex), character type (strings) and logical type (the boolean values TRUE
and FALSE). R also has NULL, and a constant NA (not available) representing a
missing value related to missing statistical observation.

R has no concept of scalars. Instead, all basic types are represented as
vectors. To create a vector with multiple elements, the function c (standing
for combine) can be used. All traditional mathematical operators are also
vectorized.

For storing elements of different types, a list is used. Other commonly used
types built on top of vectors and lists are matrix (two-dimensional vector),
array (multidimensional vector), and data frame (matrix-like structure whose
columns can have different types).

Every value can have associated attributes, a collection of name-value pairs.
These are accessed through the functions attr or attributes.

R also has multiple object models. The most common ones are S3, which
is controlled by setting a class attribute on any type, and S4, which defines
more formal classes that must be created and instantiated and are internally
represented by a distinct type.

Environments

Different scopes in R are separated using objects named environments. An
environment consists of a frame, which is the collection of variables, and a
pointer to an enclosing environment (also called a parent). The topmost en-
vironment has a pointer to a special empty environment, which has no other
parent.

When a variable or a function is accessed, it is first looked for in the current
environment. If not found, it is searched for recursively in each enclosing
environment. Only then if it is not found, it is an error.

The R Language 5

1 a <- if (TRUE) {
2 1
3 } else
4 2 * (3 + 4)

1 # This is equivalent to
2 # the previous statement
3 `<-`(a, `if`(
4 TRUE,
5 `{`(1),
6 `*`(
7 2,
8 `(`(`+`(3, 4))
9)

10))

Code listing 1.2 Demonstration of R special calls

The lookup for functions is separate from non-function lookup. An as-
signment of a variable in some environment does not shadow a function in its
enclosing environment. So the code c <- 42; c(c, c) results in one vector
with two numbers 42, because the definition of the variable c does not shadow
the function of the same name from the base environment.

These environments are also first-class values. We can create new environ-
ments, access the value of the current enclosing environment, or even access
and modify environments on the call stack.

Functions

A function, or also a closure, is composed of three parts—formals, which is
the list of formal arguments and their optional default values, body, which is
the code of the function, and environment defining the lexical scope of the
function body.

New functions can be created with the function keyword, which is ac-
tually compiled to a function call. Most operations that happen in R are,
in fact, function calls. This also includes control flow statements (like if or
while), binary operations, assignment, and even surrounding an expression in
parentheses or multiple expression with braces. This is demonstrated in listing
1.2. Note that builtin functions have to be surrounded with backticks in order
to refer to them as identifiers.

Laziness

R uses a variation of call-by-need semantics, delaying the evaluation of function
arguments until a value is needed. This means that when a function is called,
the passed arguments are not instantly evaluated, but instead wrapped in a
promise, a tuple of expression, value, and environment. The value is first set to
the unbound value. When the promise is first accessed, the expression of the
promise is evaluated within its environment (also called a force). The result

The R Language 6

is cached in the value field, and every other access to the argument results in
the cached value.

This can be seen in example 1.3. The call on line 12 first prints “Hello from
g”, then the parameter x is accessed, the promise is forced, and the text “Hello
from f” is printed. The second call to the function h demonstrates a second
behavior—when a parameter is never accessed, the promise is not evaluated,
and nothing is printed.

1 f <- function(x) {
2 print("Hello from f")
3 x
4 }
5

6 g <- function(x) {
7 print("Hello from g")
8 x
9 }

10

11 # Prints "Hello from g", then "Hello from f"
12 g(f(42))
13

14 h <- function(x) 0
15

16 # Does not print anything
17 h(f(42))

Code listing 1.3 Example of R laziness

Being lazy in the arguments allows R to have very expressive domain-
specific languages for ease of manipulating the data, as well as reducing mem-
ory overhead of the programs, as seen in the motivation example in the listing
1.1.

Promises can also be created manually by calling the delayedAssign func-
tion or by using the C API.

Immutability

All R values are semantically immutable, with the exception of environments.
This means that when a variable holds a value, this value never changes unless
the variable is reassigned. We say that non-environment values have a copy-
on-write behavior—when a value is modified, a new copy is created with the
modified parts.

Thanks to the syntax of R, it is possible to write code that looks like it
is using mutability but keeps the copy-on-write behavior. In example 1.4, the
statement on line 3 looks like it is mutating the vector in place, but instead

The R Language 7

1 x <- c(1, 2, 3)
2 y <- x
3 y[1] <- 42
4 # x is still vector (1, 2, 3)

Code listing 1.4 Immutability exam-
ple

1 e1 <- new.env()
2 e2 <- e1
3 e2$x <- 42
4 e1$x == 42
5 # TRUE

Code listing 1.5 Example of environ-
ment mutability

1 bad <- function() {
2 rm("x", envir=sys.frame(-1)) # Remove the variable x from the caller
3 2
4 }
5

6 good <- function(y) {
7 x <- 1
8 z <- y # Here the promise is evalated
9 x + z

10 }
11

12 good(bad())
13 # Error in good(bad()) : object 'x' not found

Code listing 1.6 Example of malicious reflection[4]

the function [<- is called, which creates a copy of the vector, modifies it and
reassigns the variable x.

The only truly mutable values are environments, and they conform to a
reference behavior. Listing 1.5 shows this—the variable x is added to both e1
and e1, even though we only defined it on e2.

Reflection

As previously mentioned, environments are a first-class citizen. This allows
any function to access or even modify any environment where it was created
or called. Moreover, when combined with lazy arguments, a function can reflect
on the environment in which it is being forced and modify it, sometimes in
unpredictable ways.

This is demonstrated in listing 1.6, taken from [4]. We can see that evalu-
ating the promise (the call to bad) removes a variable binding, resulting in an
error.

R also has primitives for creating, manipulating, and evaluating expressions
from the language itself. This allows for, among other things, evaluating a
promise in a different environment, programmatically creating arbitrary pieces

GNU-R 8

sxpinfo

SE
X

PT
Y

PE

Other Info Data

SEXP header

G
C

ne
xt

nd
oe

G
C

pr
ev

io
us

no
de

A
tt

rib
ut

es

Other SEXPs

Figure 1.2 Structure of the GNU-R SEXP

of code, or instrumenting functions with additional calls.
Combining reflection, laziness, and side effects makes R a very complex

language to optimize.

1.2 GNU-R
The R language is not formally specified, it only has a reference implementation
that we will refer to as GNU-R. It is written in the C programming language,
spans more than 250,000 lines of code and is currently maintained by the R
Core Team.

Representation

The GNU-R represents all code and values as symbolic expressions (also S-
expressions or SEXPs), a format for nested lists popularized by the Lisp lan-
guages. The type SEXP is a pointer to a SEXPREC or VECTOR_SEXPREC structure.
Both of these structures contain a header of type sxpinfo_struct, a pointer
to the attributes list, and previous and next nodes in the garbage collector.
The sxpinfo_struct then contains the type of SEXP (SEXPTYPE, values are
defined as in 1.1), as well as additional information about the type, garbage
collection and debugging. The rest of the structure contains the actual data.
The structure of a SEXP value is represented in figure 1.2.

As a note, through the thesis, when referring to a SEXP value, we mean
the value of SEXPREC or VECTOR_SEXPREC and not the pointer to it.

GNU-R 9

no SEXPTYPE Description
0 NILSXP NULL
1 SYMSXP symbols
2 LISTSXP pairlists
3 CLOSXP closures
4 ENVSXP environments
5 PROMSXP promises
6 LANGSXP language objects
7 SPECIALSXP special functions
8 BUILTINSXP builtin functions
9 CHARSXP internal character strings
10 LGLSXP logical vectors
13 INTSXP integer vectors
14 REALSXP numeric vectors
15 CPLXSXP complex vectors
16 STRSXP character vectors
17 DOTSXP dot-dot-dot object
18 ANYSXP make “any” args work
19 VECSXP list (generic vector)
20 EXPRSXP expression vector
21 BCODESXP byte code
22 EXTPTRSXP external pointer
23 WEAKREFSXP weak reference
24 RAWSXP raw vector
25 OBJSXP objects not of simple type

Table 1.1 The different SEXP types[5, 1.1.1 SEXPTYPEs]

Interpreter

The GNU-R parses the code into an abstract syntax tree (AST), represented
by SEXPs of the LANGSXP type, which is then interpreted.

Included with the GNU-R distribution is a bytecode compiler, which can
be invoked either explicitly, when a package is installed, or as a Just-in-Time
(JIT) compiler. The compiler is written mostly in R with few supporting
functions written in C, while the bytecode interpreter is written in C. The
bytecode is stack-based with fat instructions, such as specialized instructions
for type checking, specialized loads for common constants like NULL, TRUE or
FALSE, instructions for executing for loops or various subsetting operators.
Branching is done via jumps to arbitrary code index. An example of the
bytecode can be seen in listing 1.7.2.

The bytecode employs a series of optimizations, most notably constant
folding and inlining of base and builtin functions. Inlining can be set to var-
ious levels, with higher levels being more optimized while assuming that the

GNU-R 10

functions in the base package and core language functions (like if or `{`) are
not shadowed. This allows the compiler to translate control flow from func-
tion calls to bytecode jumps, as well as to use bytecode instructions to perform
basic arithmetic and logical operations.

When a function is compiled, its SEXP is modified in-place, replacing the
AST body with the bytecode. Every other call to this function is then inter-
preted by the bytecode interpreter.

Garbage Collector

R does not have primitives for managing memory, instead an automatic mem-
ory management provided by the runtime is expected. GNU-R uses a genera-
tional non-moving stop-the-world garbage collector with three generations[6].

Next to the GC, GNU-R also has a reference counter for each object, in-
cluded in the object header. This is used for optimistic mutations—when an
object is to be copied and mutated, but there is only one reference to it, it is in-
stead mutated in place, avoiding unnecessary copies. This correctly preserves
the copy-on-write behavior while improving performance.

Packages

A big advantage of using R is the vast library of packages, libraries, and data
sets. These are hosted at The Comprehensive R Archive Network (CRAN)[7]
package repository, which is curated and tested by the R Core Team. They
can be installed very simply by calling install.packages and loaded with
the library function.

The GNU-R base installation is also distributed with several packages, in-
cluding, but not limited to, base containing the basic functions for using R,
stats implementing statistical functions, graphics with base functions for
manipulating graphical output, compiler implementing the mentioned byte-
code compiler, or Matrix with definitions of dense and sparse matrix classes.

C Interface

In order to speed up certain packages, GNU-R allows parts of the code to
be written in more low-level languages via a C interface. This includes the
definitions for the SEXP types, a big set of functions and macros to create and
manipulate values, and several evaluation functions. The SEXP structure is
only exported as an opaque pointer, with the intention that individual fields
are to be accessed and manipulated via the exported functions.

The interface is more of an afterthought rather than a deliberate choice, as
indicated, for example, by the the main file with type definitions being called
Rinternals. The functions expose a large portion of the internal structure of
the interpreter, and this is subsequently used by package authors. Even parts
of the code that are not directly exposed are commonly accessed by packages.

GNU-R 11

f <- function(x) {
for (i in 1:10) {
if (i + 2 > 1) {
g(x)

}
}
g(x)

}

(1.7.1) R code

Code:
1 LDCONST 1
3 STARTFOR 4 3 30
7 GETVAR 3
9 LDCONST 5
11 ADD 6
13 LDCONST 7
15 GT 8
17 BRIFNOT 9 28
20 GETFUN 10
22 MAKEPROM 12
24 CALL 11
26 GOTO 29
28 LDNULL
29 POP
30 STEPFOR 7
32 ENDFOR
33 POP
34 GETFUN 10
36 MAKEPROM 12
38 CALL 11
40 RETURN

Constant pool:
...
12:
Promise 0:
Code:
1 GETVAR 0
3 RETURN

Constant pool:
0:
symbol x
1:
language g(x)
2:
'expressionsIndex' ...

...

(1.7.2) GNU-R code

0:
0 push_ 1
5 visible_
6 force_
7 push_ 10

12 visible_
13 force_
14 ; :(1, 10)

colon_input_effects_
15 pop_
16 swap_
17 colon_cast_lhs_
18 [<?>] Type#0
23 ensure_named_
24 swap_
25 colon_cast_rhs_
26 ensure_named_
27 [<?>] Type#1
32 dup2_
33 ; NULL

le_
34 [_] Test#0
39 brfalse_ 1
44 push_ 1L
49 br_ 2

1:
54 push_ -1L
...

7:
287 popn_ 3
292 ldfun_ g
297 [0, <0>, valid] Call#2
302 mk_promise_ 2
307 ; g(x)

call_ 1
324 [<?>] Type#11
329 ret_

[Prom (index 0)]
0:

0 ldvar_ x
5 [<?>] Type#5

10 ret_

[Prom (index 1)]
0:

0 ldvar_ x
5 [<?>] Type#9

10 ret_
...

(1.7.3) RIR code

Code listing 1.7 A truncated example of generated GNU-R and RIR bytecodes,
full code in appendix A

The Ř Compiler 12

Compilation

Source code RIR PIR

CompilationContext and
 speculative compilation

Compilation

Interpretation,
feedback recording

Execution

Deoptimization

LLVM
Bitcode

Native
Binary

Figure 1.3 Overview of Ř architecture[10]

As an example, some packages rely on the hidden reference counter in order
to optimize updates by modifying structures in-place.

This makes evolution of R very hard without breaking packages. It also
complicates alternative implementations of R as they need to explicitly export
the same functions as GNU-R if they want to support all available packages.

1.3 The Ř Compiler

Ř (also stylized as Rsh) is a JIT compiler for the R language, developed at
Programming Languages Laboratory at Czech Technical University in Prague1

and Programming Research Laboratory at Notheastern University in Boston2.
The project is freely available and hosted on GitHub[8].

It is built as an extension to GNU-R, although it uses a slightly modified
version of the codebase. It bypasses the GNU-R bytecode compiler and in-
terpreter, instead using a custom one, while reusing the SEXP representation,
AST interpreter, and garbage collector. For compilation into native code, the
LLVM Project[9] is used. The compilation pipeline is outlined in figure 1.3.

Runtime Objects

Ř reuses the SEXP representation and memory management from GNU-R.
All runtime objects are embedded into SEXP objects. This is one of the
modifications that need to be applied to GNU-R, a new SEXPTYPE is added
(EXTERNALSXP), along with the necessary changes to how it is garbage collected
and how it references other objects.

The structure of Ř runtime object can be seen in figure 1.4. It contains the
SEXP header and then the embedded Ř object, which always inherits from a
RirRuntimeObject class. The Ř object starts with two uint32_t numbers,
the first dictates where is the begining of area referencing other SEXPs, and

1https://prl-prg.github.io/
2https://prl.khoury.northeastern.edu/

https://prl-prg.github.io/
https://prl.khoury.northeastern.edu/

The Ř Compiler 13

SE
X

PT
Y

PE

Rest of SEXP header

SEXP header Ř header

G
C

ar
ea

st
ar

t

G
C

ar
ea

le
ng

th

M
ag

ic
nu

m
be

r

C++ data

SE
X

P

SE
X

P

. . .

(E
X

T
ER

N
A

LS
X

P)

RirRuntimeObject

Figure 1.4 Structure of the Ř runtime objects

the second indicates how many pointers are there. The magic number dictates
which Ř object it is.

There are helper macros to access the headers, as well as the pointers to
other SEXPs. On the Ř side, there are functions to convert between a C++
pointer and a SEXP.

Similarly to the GNU-R compiler, when an R function is to be interpreted,
it is compiled to a bytecode, and the body field of the closure is replaced by a
Ř structure. The composition of Ř objects can be seen in figure 1.5.

The body of Ř compiled function contains a dispatch table. A dispatch
table contains multiple entries of the compiled code, where the first version
(also called a baseline) is always the bytecode representation, whereas the
other versions are compiled into native code. The multiple compiled entries
are used by the contextual dispatch, as explained in chapter 1.3.

Every dispatch table entry is represented by a Function structure. This
holds the signature of the function, the call context, statistic about the exe-
cution like how many times it has been invoked or deopted, the body of the
function and the feedback vector.

The body of a function is stored in a structure called Code. This is either
the bytecode body or a pointer to the native function, and the constants pool.

The feedback vector collected from a bytecode interpretation is represented
by the TypeFeedback structure3. It consists of slots, where one slot corre-
sponds to information about one bytecode instruction. There are three differ-
ent types of slots:

observed calls records the destination of calling a function,

observed types record the types of values that are loaded from environment,
3TypeFeedback is a missleading name as the interpreter also collect non-type information

The Ř Compiler 14

forced, or are results of a function call,

and observed tests has one of four values recording how a branch was taken
(None, OnlyFalse, OnlyTrue and Both).

Since every function has different number of slots, the TypeFeedback object
has a different size for each function and uses a flexible array member [11] to
store observations.

RIR Bytecode Interpreter

The bytecode used by Ř is called RIR. It is a stack-based bytecode, interpreted
by a Ř interpreter. Similarly to GNU-R, RIR assume the base functions are
not shadowed, allowing it to have instructions for arithmetic operations and
control flow instead of resolving them as function calls. Unlike GNU-R, the
RIR instructions are much more granular, there are fewer of them, they are
not as specialized, and a single instruction represents a much smaller piece of C
code. An example of RIR compiled code can be seen in listing 1.7.3. Note that
the example code is not complete and is only used to give impression between
the size differences of the bytecodes and the full code listing is in appendix A.

For this thesis, the important bytecode instructions are record_call_,
record_type_, and record_test_. These do the recording of feedback infor-
mation about calls, types, and tests, respectively, by observing the top value
on the execution stack and recording the information to the TypeFeedback
structure. The instructions are printed in the listings as the current feedback
slot value in square brackets followed by the label Call#N, Type#N or Test#N,
where N is the slot index.

Apart from the feedback information, the RIR interpreter also records other
information about the running program, most notably the number of times a
function has been invoked, and the number of times a loop has been exe-
cuted. These are used to determine which parts of the program are executed
frequently, and thus are good candidates for compiling to native code.

PIR Compiler

When a function or a loop meets the compilation heuristics, it is compiled
from RIR to PIR, an intermediate representation used for optimizations. PIR
is composed of instructions in a static single-assignment form (SSA), organized
in basic blocks, with each block being terminated with a (conditional) jump
to another basic block or a speculation checkpoint.

Every PIR instruction has a type (also called a PIR type). These consist of
one or several R types (like integer or logical) and type flags. For this thesis,
the important type flags are

is scalar, meaning the value is always a vector of size 1,

The Ř Compiler 15

GC area length

SEXP header

GC area length

SEXP header

GC area start

Owner

Ř header
(empty GC area)

Slots counts

Call#0

Call#1

Test#0

Type#0

Type#1

Type#2

Type#3

Type#4

Callees

Tests

Types

Statistics

Signature

Context

Dispatch Table

Body

TypeFeedback

Default arg 0

. . .

Default arg N

SEXP header

Magic number

Size

Entry 1 (baseline)

Entry 2

. . .

Entry N

GC area start

DispatchTable

TypeFeedback

Code

Function

(non-owning pointer)

(non-owning pointer)

Magic number

CLOSXP

SEXP header

Formals

Body

Environment

C++ fields

Legend

Ř header

GNU-R SEXP header

GC traceable SEXP pointers

Flexible Array Member

Figure 1.5 Composition of Ř runtime objects

The Ř Compiler 16

is not object, which means that the value is neither of the R object models,

has no attributes, where the object does not have the associated R at-
tributes (this implies it is not an object),

can be missing, where the value can be an unbound value, raising an error
if evaluated,

can be NA or NaN, meaning the value can be NA or a not-a-number (NaN),

and maybe lazy, where the value needs to be first evaluated before used.

All of these types form a complete lattice. There are also types that model the
types internal to only the PIR code, used for the speculative optimizations.

All instructions also have effect flags, denoting what kind of observable side
effects an instruction can emit. These, for example, include deopt (may trigger
deoptimization), warn (might print a warning message), error (may produce
an error), or reflection (might invoke reflection). By explicitly tracking these
effects, the compiler is able to perform more optimizations while still preserving
the correct R semantics.

In the listing 1.8, we can see how the PIR instructions are represented in
text. It starts with the type (real$-), continues with the register by which
the instruction is referred to (%4.2), then the name of the instruction (Add),
followed by the effect flags (d), arguments (%2.0, 2, elided) and finally the
feedback slot connected with this instruction (<val?_>). When the type of
instruction is void, the register is omitted. Similarly, when the instruction
does not have a feedback associated with it, it is not shown.

real$- %4.2 = Add d 2.0, 2, elided <val?_>

Code listing 1.8 Example of a PIR instruction

Based on the observed feedback, the compiler performs speculative opti-
mizations. When the feedback slot on a PIR instruction hold interesting in-
formation (e.g. the callee is only one target, branch was always taken or the
observed type was a only integer), Ř speculates on this observation. It emits
a guard which will assert at runtime that the speculation still holds. After
compilation, if the guard fails, a deoptimization is triggered. This updates
the feedback slot with the newly observed fact, marks the native code version
with a flag, and continues execution in the bytecode interpreted version. A
frame state is used to reconstruct the environment and execution stack to a
corresponding state for the interpreter to correctly continue execution.

After all optimizations are completed, the PIR code is transformed into
LLVM bitcode, the intermediate representation of LLVM. This is then passed
to the ORC JIT compiler, which is part of the LLVM project, compiling the
bitcode to the native code.

Related Work 17

Contextual Dispatch

In addition to speculative optimizations, Ř employs another technique to op-
timize on dynamic types called contextual dispatch[12]. The idea is based on
observing arguments on runtime and based on their types, creating a disjunct
native version with the ability to specialize uniquely to the type.

For every function call, we create a context. It captures information about
the first six arguments (if they are eager, nonreflective, not an object, or a
simple scalar integer or double), the number of missing arguments, as well as
if the arguments are correctly ordered, or if there are not too many arguments
passed. These contexts form a partial ordering.

When a function compilation to native is triggered, it is compiled for a
specific context, and the compiler is able to optimize on the information in
the context. The resulting code with context (together called a version) is
installed in the dispatch table.

When a function is invoked, its arguments are observed, and a call context
is created. Based on this, the function is either dispatched to the version
connected with the same context as the call context, or a less precise context
which is ordered lower than the call context. If no such version is found, the
call is dispatched to the baseline interpreted version.

1.4 Related Work

V8

V8[13] is the JavaScript and WebAssembly engine developed by Google and
used in the Chrome web browser. V8 is composed of a bytecode compiler,
a non-optimizing JIT compiler, and two optimizing JIT compilers, gradually
compiling functions with more optimizations as they get more used.

V8 collects information about the shapes of dynamic JavaScript objects
called maps. These describe the layout of objects like on which offset is a field
stored. This information is recored in an inline cache (IC) for each load and
store. Apart from being used for speculative optimizations, inline caches also
speed up the interpreted instructions. All inline caches are stored per function
in a feedback vector.

An initialized inline cache can be in one of three states—monomorphic
meaning only one object shape was observed, polymorphic if multiple object
shapes were observed, and megamorphic if too many object shapes were ob-
served. When optimizing, V8 speculates on an inline cache unless it is meg-
amorphic.[14]

Contrary to Ř, V8 does not speculate eagerly (that is, whenever feedback
information allows it), but only when the information is used. So, for example,

Corpus 18

while compiling the JavaScript function

function f(a, b) { return a + b }

it only assumes the types of arguments a and b when compiling the plus
operator, but not while emiting load of the arguments. This ensures that
every speculation is used.

In JavaScript, the functions are often polymorphic at the start of the pro-
gram, eventually stabilizing[15]. In order to prevent that, V8 only starts
recording the type feedback after the function is invoked multiple times. It also
holds the observations in a weak pointer, discarding dead types and callees.

HotSpot

HotSpot[16] is a Java Virtual Machine (JVM) currently developed by Oracle.
It uses two JIT compilers, C1 (split into multiple levels) and C2.

Although Java is a statically typed language, Java programs often use a
large class hierarchies. The main speculative optimization is performed on
method calls, where virtual table lookups are substituted by direct calls, and
in the case of the C2 compiler to inlining.

The observations in HotSpot are either monomorphic (one observation),
bimorphic (two observations), or megamorphic. When compiling a method
call, the monomorphic and bimorphic observations are translated to a direct
call. But HotSpot speculates even on megamorphic call sites, optimizing for
the most common tagets.[17]

1.5 Corpus
For experiments and analysis, we use two codebases.

The first is a collection of Ř benchmarks4, consisting of four different suites:

Are We Fast Yet, a collection of both micro and macro benchmarks based
on the cross-language compiler benchmark suite[18],

Real Thing, a collection of real-world programs,

Shootout benchmarks from a popular cross-language benchmarks game[19],

and Simple, which are custom written short scripts used for microbench-
marking individual R features.

The second codebase is a script from a Kaggle competition about machine
learning on the Titanic dataset[20]. This script was chosen as a representation
of a more real-world program. It contains 108 lines of code extracted from
an Rmarkdown notebook and uses some of the most popular R libraries like
ggplot2 or dplyr.

4https://github.com/reactorlabs/RBenchmarking

https://github.com/reactorlabs/RBenchmarking

Chapter 2

Recording Tool

In order to observe the behavior of Ř, we had to develop a tool for capturing
and recording various event happening in runtime. In this chapter, we
introduce the main design goals of the tool, as well as the details of the
implementation, along with the ways to interface with it. Finally, we assess
the performance impact of running Ř with the recording tool.

2.1 Motivation

The problem we observed was that the behavior of Ř is a black box. There
are logging utilities for the JIT compilation, but these only print the RIR,
PIR, and LLVM code at the different stages of compilation. This is useful for
manual observation of the produced code, or for tracking down bugs in the
compilation, but it does not reflect the rest of Ř.

What we want is an event log that would reflect the behavior of the com-
piler, as in figure 2.1. We want information on what functions were invoked
and which version was the call dispatched. When a function is compiled, we
do not know what was the reason for the compilation, as there are multiple
heuristics that can be met. When a deoptimization happens, we can log the
final PIR instruction that triggers the deoptimization, but not the runtime
value that causes it, nor the impact it has on a feedback vector.

Time

Baseline

Version 1

Version 2
deopt

compilation
compilation

Figure 2.1 Idealized event log, each point represents a function invocation

19

Design 20

In reality, the behavior is more complex than the motivating figure. When
a compilation is triggered (we call that a start of compilation session), multiple
closures can be lowered to their native version. At the time of compilation, the
feedback vector of each function is static, but we have no idea of how we got to
that state, thus we also have to observe all changes to of the feedback during
the execution. We want to capture all of these events to properly analyze the
behavior of Ř.

2.2 Design
One of the most important things about designing the recording tool was
to minimize intrusiveness as much as possible, as observing the events is a
matter of debugging, not a release build. Thus, we do not modify any function
signatures, nor structure fields, and the recording tool has to be explicitly
turned on when compiling Ř. When not enabled, it has basically zero impact
on the compiler.

Another design goal was not to clutter the compiler code. Observing events
is a cross-cutting concern impacting the whole codebase, similarly to logging.
We do not want to have to keep around a state connected to the recording in
the compiler because this would increase the code complexity.

What we ended up with is a series of hooks, very simple functions that are
used by the rest of the codebase. These hooks are called at various points in
the compiler, marking that an event has occurred. Internally, invoking a hook
collects the information in a global state, but this is hidden from the caller.
Since both the R and Ř code is sequential, we do not need to deal with any
concurrency issues, but we still have to be careful with managing the global
state. One feature that we leverage is that the C++ code is compiled without
any exceptions, thus we can reliably use cleanup calls with confidence about
the control flow of the program.

As an example, in the listing 2.1 in the function doCall we can see the
logic around passing a function to the compiler when certain heuristics and
conditions are met. RecompileHeuristic and RecompileCondition are pure
functions, each having multiple heuristics or conditions, respectively, but the
information about which one was triggered is not propagated anywhere. There-
fore, when a condition or heuristic is met, we call to a hook that captures the
information in the global state (also illustrated in the listing 2.1, in the function
RecompileCondition). If a compilation occurs, we leverage this information
from the global state with another hook. If a compilation does not occur, we
reset the global state with the recording::recordReasonsClear hook.

This architecture of global state allowed us to make minimal changes to
the codebase while still collecting important information during various stages
of the compiler.

Design 21

1 SEXP doCall(/* args */) {
2 // ...
3

4 if (!isDeoptimizing() && RecompileHeuristic(/* args */)) {
5 if (RecompileCondition(/* args */)) {
6 if (/* OSR condition */) {
7 REC_HOOK(recording::recordOsrTriggerCallerCallee());
8 call.triggerOsr = true;
9 }

10 DoRecompile(/* args */);
11 }
12 }
13 REC_HOOK(recording::recordReasonsClear());
14

15 // ...
16 }
17

18 bool RecompileCondition(/* args */) {
19 if (fun->flags.contains(Function::MarkOpt)) {
20 REC_HOOK(recording::recordMarkOptReasonCondition());
21 return true;
22 }
23

24 if (!fun->isOptimized()) {
25 REC_HOOK(recording::recordNotOptimizedReason());
26 return true;
27 }
28

29 // ... Other conditions
30

31 return false;
32 }

Code listing 2.1 Simplified code of compilation logic in interpreter/interp.cpp

Implementation 22

1 void record(const SEXP e) {
2 REC_HOOK(uint32_t old = seen);
3 // Logic for modifying the `seen` member
4 REC_HOOK(recording::recordSCChanged(old != seen));
5 }

Code listing 2.2 Example of recording state management in a hook caller in the
class ObservedTest in file runtime/TypeFeedback.h

2.3 Implementation

The code is merged into the main branch of Ř and it is available on GitHub[8].
The whole implementation is in the folder rir/src in files recording.{h,
cpp}, recording_hooks.{h, cpp} and recording_serialization.h, under
the namespace rir::recording.

2.3.1 Hooks
All hook functions are defined in the file recording_hooks.h. This is the only
file intended to be included by other parts of the compiler. Calling a hook
either emits an event or adds information to the global state to be used by
other hooks.

All calls to the hooks are surrounded by the REC_HOOK macro, which con-
trols the conditional compilation of these hooks. If the recording is not enabled,
the macro does not generate the call to the hook.

The only instances where a recording state is managed by the hook caller
is when we need to capture information before calling the hook. These could
be replaced by additional hook calls, but in this case, capturing the state is
easier. For example in the listing 2.2, we check if the recording to the test
feedback slots has changed the actual value. All other instances of state are
managed by the hooks.

2.3.2 Recorder
The main orchestration is performed in the class Record, as defined in the
listing 2.3. This class contains the observed events and closures they belong
to.

We say that each event is connected to some closure, either a Ř dispatch
table, Ř function without a dispatch table (when it is a top-level compilation),
a GNU-R compiled code (represented by some SEXP), or a primitive function.
When we first observe a closure, we create an associated FunRecording in the
field functions. We try to find a name of the closure and the name of the envi-
ronment in which it is defined, and serialize the closure (serialization has to be

Implementation 23

1 class Record {
2 std::unordered_map<const DispatchTable*, size_t> dt_to_recording_index_;
3 std::unordered_map<int, size_t> primitive_to_body_index;
4 std::unordered_map<SEXP, size_t> bcode_to_body_index;
5 std::unordered_map<Function*, size_t> expr_to_body_index;
6

7 public:
8 std::vector<FunRecording> functions;
9 std::vector<std::unique_ptr<Event>> log;

10

11 template <typename E, typename... Args>
12 void record(SEXP cls, Args&&... args);
13

14 template <typename E, typename... Args>
15 void record(const DispatchTable* dt, Args&&... args);
16

17 template <typename E, typename... Args>
18 void record(Function* fun, Args&&... args);
19 };
20

21 struct FunRecording {
22 // Index into the array of primitive functions, or -1
23 ssize_t primIdx = -1;
24 // Possibly empty name of the closure
25 std::string name;
26 // Possibly empty name of the environment
27 // in which the name was bound to the closure
28 std::string env;
29 // The serialized closure
30 SEXP closure = R_NilValue;
31 // The address of the closure
32 uintptr_t address = 0;
33 };

Code listing 2.3 Simplified definition of Record and FunRecording classes

Implementation 24

enabled). Every other time we observe an event connected with the same clo-
sure, we reuse the FunRecording by indexing with the *_to_recoding_index
fields. Events only need to hold a single index into the functions field.

We use thoroughly that the GNU-R garbage collector is non-moving, as
we can then index by the address of the objects and we can be sure that they
are valid. There is still a possibility that an object whose address we have
captured gets collected by GC and in its place a new object will be placed. To
prevent that, we protect the objects by calling the R_PreserveObject function
exported from GNU-R, marking the object as alive until it is released by a call
to R_ReleaseObject. A drawback of this approach is the possibility of different
runtime properties of some programs.

2.3.3 Events
An Event is an abstract class from which all other events inherit. Every event
has an index of a FunRecording to which it is connected.

Compilation start and compilation end events denote the start and end
of a compilation session, a single call to the compiler during which multiple
closures might be lowered to native code. These events act as brackets of sorts,
everything in between these is connected to the one compilation session. They
record the heuristics used for triggering the compilation, its duration, and if
it at any point failed. For each of the closures we then register a compilation
event, where we reference the closure that was compiled, the type feedback it
used, the PIR code that it resulted in and the LLVM bitcode to which it was
lowered.

Every time we invoke a function, we register an invoke event. Due to
contextual dispatch, there can be multiple destinations where a call can be
dispatched. Thus, we capture the call context from the arguments and if we
are dispatching to native code. There are also multiple control flow paths
inside the interpreter that lead to dispatching, which is also captured.

A recording to the feedback vector is registered as speculative context event.
We capture on which feedback slot the recording occurred, what is the updated
information in it, if the recorded information is new, and if the change has
occurred because of a deoptimization.

When a deoptimization occurs, the deopt event is triggered. It captures
the deoptimization reason and value that triggered it, and the function and its
feedback slot to which is the failed speculation connected.

There is also a definition of a custom event, which is a user-defined message
that can be emitted with the R API.

2.3.4 Serialization
In order to observe the recorded data, we have to serialize it from the memory.
For that, we transform the events into an R value as a named list with two

Implementation 25

1 template <typename T>
2 struct Serializer;
3

4 template <>
5 struct Serializer<bool> {
6 static SEXP to_sexp_(bool flag) {
7 return flag ? R_TrueValue : R_FalseValue;
8 }
9 static bool from_sexp_(SEXP sexp) { return sexp == R_TrueValue; }

10 };

Code listing 2.4 Definition of the Serializer struct and its usage for type bool

fields, functions containing the recorded closures of a same-named field in
the Recorder, and events, containing all of the recorded events. Each event
is then a named list with the same fields as the corresponding C++ class.

To analyze the event log outside of R, there is a script replayer.r that
can transform the representation into a CSV file, where one event corresponds
to one line. The documentation for the CSV fields can be found in the Ř
repository[8, documentation/recording.md].

The logic for serializing the event log is in file recording_serialization.h
under the namespace rir::recording::serialization. The main type def-
inition is an incomplete templated struct Serializer working as a typeclass,
defined as in the listing 2.4. To specify how to serialize a type, we need to
explicitly instantiate the Serializer with the template argument of the type
we want to serialize and two methods to_sexp_ and from_sexp_, as seen for
the type bool in the listing. This allows us to compose the logic for more com-
plex types from the more basic ones. For example, the serialization of a C++
vector container is generic for any type as it is internally using the Serializer
struct to delegate the serialization of its elements.

For serialization complex structures, there are helper function called fields_-
from_vec and fields_to_vec, with their signatures defined as in the listing
2.5. The Derived template parameter specifies the current structure that we
are serializing, which needs to have two static members—className, a C string
that uniquely identifies this class, and fieldNames, a vector of C strings nam-
ing all individual fields. To use the serialization to and from fields, we need
to pass in the fields into the helper functions in the same order in both calls.
This can be seen in listing 2.6. Note how we only need to specify which fields
to serialize, but the method of how they are serialized is managed through
template resolving.

Implementation 26

1 template <typename Derived, typename... Ts>
2 SEXP fields_to_sexp(const Ts&... fields);
3

4 template <typename Derived, typename... Ts>
5 void fields_from_sexp(SEXP sexp, Ts&... fields);

Code listing 2.5 Function definition of field serialization functions

1 constexpr const char* CompilationStartEvent::className = "event_compile_start";
2

3 const std::vector<const char*> CompilationStartEvent::fieldNames = {
4 "funIdx", "name", "compile_reason_heuristic", "compile_reason_condition",
5 "compile_reason_osr"};
6

7 SEXP CompilationStartEvent::toSEXP() const {
8 return serialization::fields_to_sexp<CompilationStartEvent>(
9 funRecIndex_, compileName, compile_reasons.heuristic,

10 compile_reasons.condition, compile_reasons.osr);
11 }
12

13 void CompilationStartEvent::fromSEXP(SEXP sexp) {
14 serialization::fields_from_sexp<CompilationStartEvent>(
15 sexp, funRecIndex_, compileName, compile_reasons.heuristic,
16 compile_reasons.condition, compile_reasons.osr);
17 }

Code listing 2.6 Example of using the fields serialization functions defined in 2.5

Implementation 27

2.3.5 Interface
Currently, there are two ways to interact with the recording—environment
variables passed to the program, and exported R functions.

Environment Variables

With the environment variables, it is possible to record the whole run of a pro-
gram. This is done by setting RIR_RECORD to the path to which the recording
data should be serialized, using the RDS serialization format for R objects[5,
1.8 Serialization Formats]. With the RIR_RECORD_FILTER variable, we can con-
trol which events should be considered, while ignoring the rest. The available
values are Compile, Deopt, TypeFeedback and Invoke and multiple can be
specified when separated by a comma. Custom events cannot be filtered out.

As an example, by calling

RIR_RECORD=output.rds RIR_RECORD_FILTER=Compile,TypeFeedback \
R -f test.R

we record all compilation and type feedback events that were generated while
running the script test.R into the file output.rds.

There is also a RIR_RECORD_SERIALIZE environment variable which if it is
set to nonzero integer enables the serialization of closures and deopt events.

R API

The functions available in R are[8, documentation/recording.md]:

recordings.start() starts or resumes the recording,

recordings.stop() pauses the recording,

recordings.get() returns the object with recorded functions and events,

recordings.save(filename) saves the recording as an RDS to the given
file,

recordings.load(filename) loads the recording from the given file and
returns the object representing it,

recordings.reset() clears all of the recording informations,

recordings.enabled() returns a boolean representing if we are recording
right now,

recordings.setFilter(compile, deoptimize, type_feedback, invocation)
sets the filtering of individual events,

and recordings.customEvent(message) creates a custom event with the
associated message.

Assessment 28

2.4 Assessment
The recording tool is implemented in almost 1700 lines of code, excluding blank
lines and comments. Apart from the implementation files and around 40 calls
to the recording hooks through the rest of the compiler, no other changes
needed to be made in the compiler.

While running programs with the recording tool turned on and capturing
all available events, we have observed around 20% decrease in performance.
However, the final serialization of the events has increased the overall runtime
by up to 40 times in programs with a lot of function calls. This is still accept-
able for usage as an analysis tool, as it is usually not needed to capture all of
the events, but just a subset.

The final serialized recording varies in size depending on the number of
observed events, ranging from a little over 200 kilobytes for 18 events to 2.8
gigabytes for 8.5 million events.

When the tool is not turned on, no performance change was observed, as
expected.

Chapter 3

Feedback Pollution

Over a run of a virtual machine, the collected feedback information used
for speculative optimizations is prone to loss of precision, resulting in less
optimized compilations, negatively impacting performance. We call this
trend feedback pollution. In this chapter, we analyze the pollution as it
happens in the Ř compiler. First, we introduce the feedback pollution on an
example. Next, we present the analysis of feedback pollution on the Ř JIT
compiler. Lastly, we discuss possible ways to reduce the pollution.

This chapter is based on a paper we presented at the VMIL 2024 (Virtual
Machines and Intermediate Languages) conference[21]. As one of the authors,
we contributed to the research and analysis described in the paper. This was
the first use case for the developed recording tool, and in this chapter we
describe the outcomes that were a direct result of using the tool.

3.1 Motivation

Let’s take the example in the listing 3.1 and without considerid the Ř con-
textual dispatch. The observed events of the listing are demonstrated in the
figure 3.1.

At first, we will execute the function sum with a vector of doubles. The
type feedback will reflect that, and after few invocations, a compilation will get
triggered, assuming on the types of arguments being double. This will signifi-
cantly speed up execution because the arithmetic operations can be specialized
for the double type.

Next, when we run the function with integers, we fail the assumption on
doubles, trigger a deoptimization, and fallback to the baseline interpreted ver-
sion. We also update the feedback information of sum, now reflecting both
double and integer types. Because of this, the next function compilation can-
not speculate on one specific type of argument and instead uses a very general

29

Motivation 30

1 sum <- function(vec, init) {
2 s <- init
3 for (i in 1:length(vec))
4 s <- s + vec[[i]]
5 s
6 }
7

8 for (x in 1:1000) sum(doubles, 0.0)
9 for (x in 1:1000) sum(integers, 0L)

10 for (x in 1:1000) sum(doubles, 0.0)

Code listing 3.1 Motivating example for feedback pollution

Baseline

Native Version

Time

Feedback change [] → [double] [double] → [double, integer]

Call

Peak execution time

sum(doubles, 0.0)

0.15s

sum(doubles, 0.0)

3s

sum(integers, 0L)

3s

compilation deopt compilation

Figure 3.1 Event log of listing 3.1 without contextual dispatch, each point repre-
sents a function invocation

type (the only assumption made is that the value does not have any attributes).
This makes the newly compiled native function about an order of a magnitude
slower.

This is where we say that in the second compilation the type feedback slots
are polluted. They contain too imprecise of an information, thus we specialize
for a more general context and lose performance.

If we consider contextual dispatch, the performance is better, but not ideal
(illustrated in 3.2). Same as without the contextual dispatch, we first observe
and speculate on the type double. The final version is compiled under a first
context.

When we call with integers, we do not dispatch into the already compiled
version, because the call context is disjunct with the context of the first version.
Instead, we run in the bytecode interpreter, updating the type feedback to also
include integer. After a few invocations, we compile for the second context,
and again we have to speculate on a more general type, resulting in a slower
execution. But contrary to the non-contextual dispatch, when we call sum
again with the doubles argument, it is dispatched to the first compiled version,
and thus its execution is as fast as the first time we called it.

Methodology 31

Baseline

Version 1

Time

Feedback change [] → [double] [double] → [double, integer]

Call

Peak execution time

sum(doubles, 0.0)

0.15s

sum(doubles, 0.0)

0.15s

sum(integers, 0L)

3s

compilation
compilation

Version 2

Figure 3.2 Event log of the listing 3.1 with contextual dispatch, each point repre-
sents a function invocation

3.2 Methodology
Our main goal is to quantify the pollution of the feedback vector. Pollution
happens when between individual compilations the feedback vector changes,
either because an interpreter has observed a new value or a native version
fails on a speculation and deoptimizes. This implies that the first compilation
cannot be polluted, hence we are interested in subsequent compilations (or also
recompilations).

Formally, we define

polluted feedback slot as a slot whose value at the point of compilation has
changed from previous compilation,

feedback pollution as a ratio of the number of modified feedback slots to
the total number of feedback slots,

polluted compilation as a compilation, where the feedback pollution is
greater than zero,

and function pollution as a ratio between the polluted compilations and
the total number of recompilations.

Since the state of the feedback cannot go to a previous state (i.e. on an
update, the feedback either stays the same or it is in a never before visited
state), we can simply observe the state of the feedback slots when a compilation
is triggered and compare it to the previous compilation.

To collect data, we used the recording tool introduced in the chapter 2.
As input to the experiment, we used 16 benchmarks from the Ř benchmarks
collection containing nearly 1300 lines of code, and the Kaggle competition
program, both outlined in chapter 1.5. The Ř compiler is run with the default
parameters, which means that a function is compiled after 100 invocations.
Compilations triggered by loop iterations are ignored.

Analysis 32

0%

50%

100%

150%

200%

ty
pe

of
 (

1)
m

at
ch

 (
4)

%
||%

 (
3)

as
.v

ec
to

r
(2

)
ch

ar
ac

te
r

(1
)

lo
gi

ca
l (

1)
pa

re
nt

.fr
am

e
(1

)
re

p.
in

t (
2)

re
p_

le
n

(2
)

sy
s.

ca
ll

(1
)

sy
s.

fr
am

e
(1

)
un

lis
t (

34
)

ge
tC

la
ss

D
ef

 (
59

)
in

he
rit

s
(3

)
is

.fa
ct

or
 (

3)
lis

t2
en

v
(1

9)
la

pp
ly

 (
22

)
sa

pp
ly

 (
30

)
is

.v
ec

to
r

(2
)

ve
ct

or
 (

2)
nu

m
no

tn
ul

l (
39

)
se

td
iff

 (
28

)
ge

t (
7)

va
pp

ly
 (

22
)

ife
ls

e
(1

36
)

do
.c

al
l (

12
)

is
.d

at
a.

fr
am

e
(3

)
is

.w
ai

ve
 (

3)
is

_q
uo

su
re

 (
3)

nc
ol

 (
7)

ev
al

 (
11

)
ge

ne
ric

F
or

B
as

ic
 (

20
)

ge
tC

la
ss

 (
24

)
id

en
tic

al
 (

8)
m

at
ch

_s
el

ec
to

r
(8

3)
m

at
rix

 (
18

)
is

 (
17

0)
%

in
%

 (
5)

ge
tO

pt
io

n
(5

)
ne

w
.e

nv
 (

5)
.r

eg
is

te
rS

3m
et

ho
d

(9
0)

ne
w

 (
17

)
N

ex
tM

et
ho

d
(6

)
ap

pl
y

(4
97

)
si

m
pl

ify
2a

rr
ay

 (
18

8)
as

si
gn

 (
7)

ge
t0

 (
7)

m
at

ch
.fu

n
(6

5)
fo

rm
al

s
(1

6)
ge

tG
ro

up
M

em
be

rs
 (

44
)

.id
en

tC
 (

9)
st

rs
pl

it
(9

)
as

 (
15

6)
en

vh
oo

k
(1

06
)

qu
o_

sq
ua

sh
_i

m
pl

 (
17

)
N

R
O

W
 (

19
)

.c
la

ss
E

nv
 (

49
)

un
it

(7
4)

ge
tG

en
er

ic
 (

99
)

.c
he

ck
G

ro
up

S
ig

Le
ng

th
 (

27
5)

no
de

_s
qu

as
h

(2
5)

.g
et

G
en

er
ic

F
ro

m
C

ac
he

Ta
bl

e
(8

1)
m

at
ch

.a
rg

 (
95

)
ch

ec
kN

A
 (

68
)

f (
14

1)
R

ed
uc

e
(2

49
)

Function name (number of feedback slots)

F
ee

db
ac

k
po

llu
tio

n
of

 s
ub

se
qu

en
t c

om
pi

la
tio

ns

Subsequent
compilation

2nd

3rd

4th

5th

6th

Figure 3.3 Function pollution in Kaggle script, each point represents a compila-
tion[21]

3.3 Analysis
First, we will observe the Kaggle code. Running the script, 315 functions are
compiled and 146 of them are compiled more than once. A function com-
pilation is triggered 970 times, and out of these 824 are recompilations (2.6
recompilations on average per function). Overall, we have observed 90 pol-
luted recompilations (10.9%), where 19 recompilations have more than half of
the slots polluted and 10 have all of the slots polluted.

Figure 3.3 shows the function pollution in the Kaggle script. Each point
represents a compilation, where the y-axis is showing an accumulated pollution,
i.e. the summed pollution of all subsequent compilations up to that point. On
the x-axis, we show the functions that were compiled more than once.

When we take as an example the function typeof, we have three compi-
lations. The second compilation has a 100% accumulated pollution and the
third a 200% accumulated pollution, meaning that both recompilations use all
slots as polluted. The function is a small wrapper around a C function that
returns the type of the argument. It has a single parameter to which the slot
is connected, and since it can be called with any type, it will always pollute
when a new type is observed.

Most functions compiled multiple times have about a quarter of slots pol-
luted after the second compilation. The ones that change more than half of
their feedback in the second compilation are small functions with very few

Analysis 33

0%

25%

50%

75%

100%

bi
na

ry
tr

ee
s

(2
)

kn
uc

le
ot

id
e

(4
)

m
an

de
lb

ro
t (

3)

fa
st

ar
ed

ux
 (

4)

pi
di

gi
ts

 (
33

)

vo
lc

an
o

(1
2)

bo
un

ce
 (

6)

nb
od

y
(6

)

sp
ec

tr
al

no
rm

 (
6)

fle
xc

lu
st

 (
39

)

co
nv

ol
ut

io
n

(5
)

st
or

ag
e

(3
)

fa
nn

ku
ch

re
du

x
(2

)

fa
st

a
(8

)

re
ge

xd
na

 (
2)

re
ve

rs
ec

om
pl

em
en

t (
4)

Benchmark name (number of compiled functions)

R
at

io
 o

f p
ol

lu
te

d
fu

nc
tio

ns

Figure 3.4 Pollution of functions in benchmarks[21]

feedback slots. Examining these functions, we have identified that most of
them are polymorphic, with some of the slots being connected to the parame-
ters that cause the pollution. But there are also larger functions, for example
the getClassDef function has more than 50 feedback slots. It has a complex
control flow, looking up the definition of a class in many different places. By
calling this function with different classes, different paths get executed, filling
up the feedback. This represent a function which is polluted because of a
global state.

Looking at the benchmarks, we have observed much fewer compilations
than in the Kaggle code. This is to be expected, as the benchmarks are mostly
small numerical programs. In figure 3.4 we can see the benchmark pollution,
which is the ratio of polluted recompilations out of all recompilations. Of the
16 selected benchmarks, 10 of them have at least one polluted compilation. The
overall ratio between polluted compilations is 8.2%, which is very similar to the
10.9% observed in the Kaggle code. But when looking at function pollution,
we have observed that out of 139 compiled functions there are 21 polluted
functions (15.1%). This is very likely due to the nature of the benchmarks, as
they are numeric programs that mostly use very few types. Still, a pollution
can be observed and should be prevented.

Splitting the pollution by a feedback slot type, the observed values are the
cause of most of the pollution. Out of the 11,199 slots in the Kaggle code,
0.5% of observed calls, 2.7% of observed tests, and 5.7% of observed values are
polluted. This is not surprising, as the type feedback slots are the slots with
the most variability.

Pollution Prevention 34

Summary

In table 3.1 is a summary of the feedback compilation in the benchmarks and
in the Kaggle code. We can see that feedback pollution happens in both the
Kaggle code as well as in the benchmarks, although the benchmarks have
lower pollution rates, most likely due to the stable nature of the code. We
have observed that pollution is most likely caused by polymorphic functions
that are often called with different types, but other causes for pollution can be
for example a global state. Most of the polluted slots are the observed values.

Kaggle Benchmarks
Lines of code 108 1268
Compilations 970 257
Polluted compilations 90 (10.9%) 21 (8.2%)
Compiled functions 315 139
Polluted functions 66 (21%) 21 (15.1%)

Table 3.1 Summary of the feedback pollution in the corpus[21]

The code of the analysis is freely available on GitLab1 as part of the VMIL
paper[21] aritfact.

3.4 Pollution Prevention
After observing that feedback pollution is a real phenomenon, we might think
of ways to reduce it.

One way would be to split the feedback vector into multiple. Since Ř
already employs a contextual dispatch, the constructed context could be reused
by feedback, constructing a unique vector for each call context with which the
function is invoked. A proof-of-concept was implemented by Michal Štěpánek
as a part of his master thesis[22]. This leads to a decrease of around 30% in
the number of polluted compilations and a decrease of around 37% in function
pollution. However, this solution brought new problems, since the observed
information is much sparser and needs to be merged from multiple vectors.
Splitting the feedback also negatively impacts the interpreter performance and
complicates function compilation.

Another approach would be to implement a feedback decay. The idea is that
the feedback information in each slot would slowly decay as new information
is observed. This will need to be finely tuned, as very quickly the JIT could
be stuck in a deopt loop, compiling a function just to trigger a deoptimization
next time it is invoked.

Perhaps the most important question is whether feedback pollution is a
real problem. We have demonstrated that it indeed does happen and that

1https://gitlab.com/rirvm/splitfeedback-experiments/-/tree/artifact

https://gitlab.com/rirvm/splitfeedback-experiments/-/tree/artifact

Pollution Prevention 35

in synthetic examples it degrades performance. However, it remains unclear
whether feedback pollution affects real programs and to what extent. This is
not easy to answer as we would need to have an efficient implementation of
at least one of the approaches to be able to draw any conclusion. Although
interesting, it is beyond the scope of this thesis.

Chapter 4

Feedback Usage

After observing that the feedback vector can be polluted with information,
the next step is to understand how the feedback is used in the compilation.
Ultimately, we want to categorize slots in how they are used and quantify
how much of the recorded information influences the compilation, as well
as identifying the reason for why slot was not used in a compilation. First,
we define the categories for how a slot can be used or not used. Next, we
analyze the usage of feedback in Ř. Lastly, we acknowledge the limitations
of the analysis.

In this chapter, we focus only on the type slots because, as observed in the
feedback pollution analysis, these suffer from pollution the most. They are
also the most variable parts, and having a much larger state space they allow
for a richer analysis.

4.1 Definitions
We define a non-empty slot as a slot that has at least one observation. An
empty slot means that the instruction was never executed.

We say that a slot is referenced if it is part of a function that is compiled
to native, including slots inside inlined functions.

A slot is then read if during a compilation the information in the slot is
observed.

A used slot is a type feedback slot that has an assumption connected to
it in the final version of PIR (after all optimizations finished running). A
used slot is always non-empty.

36

Definitions 37

Type FeedbackStatic Type

Expected type

Assumed type

Figure 4.1 Illustration of the relationship between static, feedback, expected and
assumed types

Used Slots

When an assumption on a type is emitted, it has a structure outlined in the
listing 4.1. The value we speculate on is in the register %1 with a static type,
which is inferred from the call context, known types of builtins, and preced-
ing assumptions. The instruction also has an associated feedback type, which
is the union of all types observed in the interpreter. The speculated value
is an input to an IsType instruction, which checks the actual runtime type
against the assumed type. The result of the type check is then an input to the
Assume instruction, along with the corresponding Checkpoint, resulting in a
deoptimization if the type check fails.

[static type] %1 = [instruction] args... <feedback type>
lgl$#- %2 = IsType %1 isA [assumed type]
void Assume %2, [checkpoint]

Code listing 4.1 PIR code structure of type assumption

The construction of the assumed type is not as straightforward as it might
seem. We illustrate the process in the figure 4.1. Note that a larger area means
a more general type.

First, we construct an expected type by intersecting the static and feedback
types. If this intersection is empty, no assumption is emitted, otherwise we
proceed to create the assumed type.

It can happen that the static type is more precise than the feedback type
(in the figure 4.1 when the green area is non-empty). We call this a narrowing
of the feedback type, since the static type narrows the feedback information
to a more specific one. For example, this happens when we statically know
that the value we are speculating on is a scalar, but we have also observed

Definitions 38

non-scalar values.
If the R type of the expected type is not integer, float, or logical vector,

we do not speculate on it as it is. The optimizations are not able to use this
precise of an information, thus the compiler tries to relax the assumption first.
We call this widening, as it widens the information of the feedback type (and
also the expected type) while still staying in the bounds of the static type.
This results in the final assumed type. If we cannot reasonably relax the type,
we give up on assuming. A type can be both widened and narrowed at the
same time.

If the assumed type is equal to the feedback type, we say that the feedback
was used as an exact match. This implies that it has not been narrowed, nor
widened.

Unused Slots

For the unused slots, we want to understand why they are not used and how
this plays with the slot being polluted. We consider only non-empty slots, as
empty type feedback slot cannot be speculated on.

The first reason we have identified is that the slot is optimized away. This
happens when the instruction to which the type feedback is attached is not
present in the final optimized PIR code. There are many reasons for remov-
ing instruction during optimizations, but the most common ones are constant
folding and dead code elimination.

Another reason for not using a slot is that it contains redundant informa-
tion. Formally we say that an unused slot is redundant if its type information is
equivalent to any other slot, used or unused. This might be a broad definition,
but it can still reveal us data about slot usage. Note that redundant slots and
slots that are optimized away are not disjunct categories.

There are more reasons why a slot might not be used, like the information
in the feedback is not useful for speculation, or the information is overridden
by static information. We do not categorize these further, as this would require
a much deeper analysis, possibly needing a rewrite of parts of the compiler in
order to observe.

Polymorphic Slots

A polymorphic slot is a slot that has observed more than one distinct type. This
is a superset of the polluted slots, i.e. a polluted slot is always polymorphic,
but a polymorphic slot is not always polluted. A non-polymorphic slot is
monomorphic.

Observing polymorphic slots allows us to outline the usage of polluted slots,
while also observing the behavior of slots that have (potentially) too general
of an information even before the first compilation.

Methodology 39

Program name Benchmark suite Lines of code Compilations Referenced slots
bounce_nonames_simple Are We Fast Yet 58 11 264
mandelbrot Are We Fast Yet 65 14 358
flexclust_no_s4 Real Thing 163 144 5402
volcano Real Thing 63 23 2037
binarytrees_naive Shootout 31 22 1070
fannkuchredux Shootout 63 6 251
fannkuchredux_naive Shootout 62 5 244
fasta_naive_2 Shootout 88 17 598
knucleotide Shootout 72 59 1493
pidigits/pidigits Shootout 333 93 5710
titanic - 108 2046 67477

Table 4.1 Overview of analyzed programs

4.2 Methodology
In order to collect all the information needed, we had to directly instrument
the Ř compiler. We inspect the PIR code of closures and collect information
about all of the assumptions, including the corresponding type test and cast
instructions. We use the rich Ř APIs for traversing code and inspecting in-
structions. All of the code for collecting data is in the main repository in the
branch feedback-in-jits1.

Our unit for collecting information is a closure version compilation, one
lowering of a closure from PIR to native code. For each compilation, we define
its universe as the compiled closure and all of its inlinees. All counts are then
in reference to this universe, so, for example, the number of referenced slots
of one compilation is the sum of all slots in the universe. We ignore multiple
inlinings of the same closure in one compilation, as we have observed that in
most cases the slots are used in the same way across all inlinings.

The final data are aggregated over these closure version compilations. Thus
when we say that there were two slots used, we mean that over all compilations
a slot was used two times, it might even be the same slot. The reason for
this was that between the individual compilations, the state of the slots can
change, and there is no reasonable way to reference and quantify all slots after
the program terminates.

We ran the analysis on a selection of ten benchmarks from the Ř benchmark
suite and the Titanic Kaggle notebook, outlined in table 4.1. We can see that
the Kaggle notebook has more compilations by an order of magnitude when
compared to the benchmarks, and thus also many more referenced slots. All of

1https://github.com/reactorlabs/rir/tree/feedback-in-jits

https://github.com/reactorlabs/rir/tree/feedback-in-jits

Observations 40

bo
un

ce_
no

na
mes_

sim
ple

(26
4 r

efe
ren

ced
 slo

ts)

man
de

lbr
ot

(35
8 r

efe
ren

ced
 slo

ts)

fle
xcl

ust
_no

_s4

(54
02

 re
fer

en
ced

 slo
ts)

vo
lca

no

(20
37

 re
fer

en
ced

 slo
ts)

bin
ary

tre
es_

na
ive

(10
70

 re
fer

en
ced

 slo
ts)

fan
nku

chr
ed

ux

(25
1 r

efe
ren

ced
 slo

ts)

fan
nku

chr
ed

ux
_na

ive

(24
4 r

efe
ren

ced
 slo

ts)

fas
ta_

na
ive

_2

(59
8 r

efe
ren

ced
 slo

ts)

kn
ucl

eo
tid

e

(14
93

 re
fer

en
ced

 slo
ts)

pid
igit

s

(57
10

 re
fer

en
ced

 slo
ts) tita

nic

(67
47

7 r
efe

ren
ced

 slo
ts)

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
 o

ut
 o

f r
ef

er
en

ce
d

0.78
0.84

0.61
0.55 0.57

0.7 0.72 0.74
0.71

0.61
0.66

0.72
0.8

0.58
0.54 0.52

0.65 0.66 0.68 0.68

0.59
0.63

0.17 0.16 0.16 0.17
0.11

0.08 0.07
0.13 0.12

0.23

0.12

% of non-empty slots % of read slots % of used slots

Figure 4.2 Usage of slots across closure compilations

the experiments were run with the invocation threshold for native compilation
set to 10, as this allowed us to observe more compilations while still preserving
the characteristics.

4.3 Observations
In contrast to the pollution analysis, while categorizing the slots we have
observed that the Kaggle script behaves very much in the same way as the
benchmark programs do. This is interesting because they are written in very
different ways and are doing different kinds of computations. This might point
to a deeper issue related to the behavior of the Ř compiler.

In figure 4.2 is the categorization of the used slots. We can see that most
of the slots are not empty (68% on average), and most of the non-empty slots
are read (93% on average), thus are considered for speculation. But on average
only 14% of the slots are used (21% of non-empty slots). This is surprising, as
the recording of information is impacting the speed of the bytecode interpreter,
and yet the recorded information is used quite sparsely.

A hypothesis we had was that a polymorphic slot is less likely to be used
due to having less information. Out of the polymorphic slots, 26% of them
are used, compared to the non-empty monomorphic slots where 18% of them
are used, contradicting the hypothesis. The observed numbers are probably
due to the fact that by their nature polymorphic slots are on more frequently

Observations 41

bo
un

ce_
no

na
mes_

sim
ple

(14
8 u

nu
sed

 no
n-e

mpty
 slo

ts)

man
de

lbr
ot

(25
6 u

nu
sed

 no
n-e

mpty
 slo

ts)

fle
xcl

ust
_no

_s4

(18
13

 un
use

d n
on

-em
pty

 slo
ts)

vo
lca

no

(38
8 u

nu
sed

 no
n-e

mpty
 slo

ts)

bin
ary

tre
es_

na
ive

(25
8 u

nu
sed

 no
n-e

mpty
 slo

ts)

fan
nku

chr
ed

ux

(17
9 u

nu
sed

 no
n-e

mpty
 slo

ts)

fan
nku

chr
ed

ux
_na

ive

(16
1 u

nu
sed

 no
n-e

mpty
 slo

ts)

fas
ta_

na
ive

_2

(27
0 u

nu
sed

 no
n-e

mpty
 slo

ts)

kn
ucl

eo
tid

e

(66
1 u

nu
sed

 no
n-e

mpty
 slo

ts)
pid

igit
s

(17
98

 un
use

d n
on

-em
pty

 slo
ts) tita

nic

(26
21

7 u
nu

sed
 no

n-e
mpty

 slo
ts)

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
 o

ut
 o

f u
nu

se
d

no
n-

em
pt

y

0.56

0.69

0.5
0.54

0.61 0.62

0.52
0.57 0.56

0.8

0.58

0.29

0.21

0.3
0.36

0.23

0.51 0.51

0.27
0.32 0.29

0.16

0.36

0.22

0.35 0.33 0.3

0.22
0.27

0.35

0.26

0.16

0.36

% of redundant slots % of non-empty slots optimized away % of other reason unused

Figure 4.3 Categorization of unused slots across closure compilations

executed paths, making them more likely to not be optimized away and later
speculated on.

When we consider the non-empty unused slots shown in figure 4.3, we
can see that the dominating cause for a slot not being used is redundancy, on
average 59% of all non-empty unused slots. This is expected in the benchmarks
because they usually only use one numeric type across the whole program. But
the Kaggle script uses many different types, yet 58% of the unused slots are
deemed redundant, which is below the average. This leads us to believe that
there is a deeper cause for a redundant slot in the way the information is
collected in the interpreter, leaving room for optimizations.

Observing the slots that are optimized away, they take on average 31% of
the non-empty unused slots. Separating the monomorphic and polymorphic
slots, we see that 33% of the unused monomorphic slots are optimized always,
whereas only 27% of unused polymorphic are optimized away. This might
come from the same reasons as the comparison between monomorphic and
polymorphic used slots, where the polymorphic ones are more likely to be on
more frequently executed paths.

29% of all slots are neither redundant nor optimized away. This might
include some actually redundant slots that are not caught by our approximate
analysis, but there might also be other reasons for not using a slot, overlapping
with the identified reasons. These need to be further analyzed.

Observations 42

9266 used slots
0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
 o

ut
 o

f u
se

d

6076

3178

18

All used

7766 used monomorphic slots
0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
 o

ut
 o

f m
on

om
or

ph
ic

us
ed

5746

2017

3

Monomorphic used

1500 used polymorphic slots
0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
 o

ut
 o

f p
ol

ym
or

ph
ic

us
ed

330

1161

15

Polymorphic used

Used as exact match Used widened Used narrowed

Figure 4.4 Categorization of used slots

When we look at the graph 4.4, we can see that more than half of the slots
are used as an exact match. If we split the monomorphic and polymorphic
used slots, we can see an even bigger distinction. 73% of used monomorphic
slots are used as exact match, which means that most of the time when a slot
is not polymorphic it contains an information precise enough to be used as is.
On the other hand, 77% of used polymorphic slots are widened. This is to be
expected, as the polymorphic slots have a more general type that gets widened
before an assumption is made.

For the polymorphic slots used as exact match, we have observed two
different kinds of slots. First is a single R type (integer, real, or logical)
which might not be a scalar and which is either not an object, or it does not
have any attributes. This is a precise enough type that we can speculate on
it. The polymorphism comes from first observing scalarand then non-scalar
values. The second kind has observed too many types and resolves to the most
general R type (any R type which might be missing), but it still has a type flag
either that it is not an object or that it does not have attributes. Although we
cannot speculate on the R type, the type flag is still interesting enough that Ř
speculates on it. This shows that the compiler is able to salvage information
to speculate on even from a polymorphic slot.

Interestingly, there are very few slots that are narrowed by the static in-
formation, 18 to be precise.

3 of them have added information about the type not being NA. Since we
do not record this information2, it is trivial for the static type to narrow it
in this way. These are the only monomorphic slots that are narrowed.

4 slots are narrowed to a scalar type. This is due to the slot observing also
non-scalar types, but the static type can specialize the observation.

2In order to observe that a vector is not NA, we would need to inspect all elements of it
and this is very costly for large vectors

Limitations 43

2 slots have their type narrowed to a double and the only information used
from the slot is that the value does not have attributes.

In 9 cases, the static type removes a “might be missing” flag from the
feedback type. In these cases, we have observed too many values and the
type feedback falls back to the most generic type, which has the flag that
it might be a missing value. But this speculation is on a Force instruction,
which when forcing a value that is missing result in an error, thus the result
of Force is always not missing or it diverges.

Conclusion

The main takeaway of the analysis is that the compiler is using very low
numbers of feedback slots, and the main reason for that is redundancy. This
leads to wasted time spent in the interpreter by recording observations. If we
are able to detect which slots are dependent on each other, we could reduce
the number of recordings and thus improve the interpreter performance.

Another key point is that a polymorphism, and by extend pollution, does
not impact if a slot is used in compilation, but it influences how the feedback is
used. Since the information in a polymorphic slot is more generic, we observe
that it usually has to be widened before it is used.

The analysis is freely available online on GitHub 3.

4.4 Limitations
The biggest obstacle we have encountered during the analysis is the unknown
origin of the type information. Due to the architecture of the compiler, we are
unable to precisely track how a type is constructed or how a type information
is propagated. This leads to a broad definition of redundant slots, which might
catch unrelated slots or miss dependent slots recording different information
due to type coercions. Still, the presented results give us an idea about the
behavior of individual type feedback slots.

Another drawback is the tracking of inlined functions. A function may be
inlined multiple times within a single closure compilation, making it difficult
to summarize usage without skewing the results. A given slot might be used
differently across inlinings or used in one and not the other. This can lead to
double-counting across categories or missed usage patterns. We acknowledge
these limitations and are looking for ways to mitigate them.

The key issue is how the conclusion relates to the performance of the ex-
ecuted code. While we have observed that very few feedback slots are used,
leading to inefficiencies in the interpreter, we cannot determine the full impact
on overall execution. To assess this, we would need to quantify the time spent

3https://github.com/rihafilip/masters-thesis-analysis

https://github.com/rihafilip/masters-thesis-analysis

Limitations 44

recording, not just in relation to the total interpreter time, but to the entire
process. This falls outside the scope of the thesis.

While running the experiments, we have observed multiple runs of some of
the benchmarks (namely flexclust_no_s4 and pidigits) and the Kaggle script
result in different resulting numbers. However, the final characteristics are the
same and the trends do not change. Therefore, the numbers presented in this
chapter are from a single run of the experiments.

Chapter 5

Conclusion

The main goal of this thesis was to implement a tool which would help us to
look under the lid of the JIT compiler pot, to increase its observability. Such
a tool should then allow us to study different phenomena that occur along
the dynamic compilations the JIT performs. Concretely, we were motivated
to understand the behavior of the feedback that the compiler uses to generate
code.

We implemented this tool as described in chapter 2, and as of now it is
part of the Ř compiler codebase. We were able to minimize the impact on
the rest of the compiler to a minimum by using conditional compilation and
a series of hooks, simple functions that capture the state of the compiler at
various points of execution and compilation.

Based on this tool, we were able to perform an analysis of feedback pollution
in Ř, as described in the chapter 3 and VMIL paper[21]. We observed that
feedback pollution occurs in approximately 19% of compilations. We also
present ways in which we could implement a reduction of the pollution, either
by splitting the feedback vector by context, or by introducing a feedback decay.

Continuing the observations about the feedback vector, we evaluated how
the recorded type information is used during compilation. We observed that a
very small number of recorded information is used (21% of feedback vector slots
on average). We also conclude that if a feedback vector slot is polymorphic,
and by extension if it is polluted, it does not affect whether it is going to
be used, but it weakens the speculations that the compiler can assume on.
Furthermore, we identified different reasons why feedback information is not
used, namely that it contains duplicate information, or the instruction for
which we record the feedback is optimized away.

45

Future Work 46

5.1 Future Work
The main question we are currently unable to answer is how much feedback
pollution and the low usage of feedback information affect the performance of
real programs. This is a very hard question to answer as at this point we do not
have information about performance impacts of the various components. We
are unsure about how much time is spent in the interpreter, recording feedback
information, in the JIT compiled code, in the builtin functions of GNU-R, or
in the native extensions of libraries. Based on these metrics, we would be able
to assess the real-world impact of the observations and prioritize optimizations
for the most affected parts of the compiler.

Nevertheless, the observations made as part of this thesis unlock for us
multiple ways in which we could advance the JIT compiler.

Reducing Pollution

In order to properly analyze how a polluted slot affects the runtime perfor-
mance of JIT compiled code, we would need an oracle that at a point of
compilation would be able to correctly return an ideal feedback vector such
that the compilation produces as optimized code as possible. Since we want
to observe the behavior of real-world programs, it is not feasible to hand-write
this oracle for every compilation.

We could achieve at least an approximate oracle by extending the recording
tool by its counterpart that would be able to replay the recorded information,
i.e. influence a compilation based on previous observations. Iteratively, we
would run the program with the trace of the previous run as an additional
input from which it would approximate the ideal feedback vector.

Reducing Recoding

Another angle to take is reducing the time spent recording the feedback infor-
mation in the interpreter.

If we are able to statically find redundant feedback slots and, therefore,
eliminate some number of recording instructions, we should be able to speed
up the interpreter, but this should not be to the detriment of JIT compilation.
Another angle would be to dynamically observe which slots are being used
and which are not and, based on this trace, conditionally turn off recording of
certain slots.

Relaxing Assumptions

The last way we could improve the JIT is by relaxing the assumptions.
The Ř compiler does eager speculations on the observed values, which

means that it tries to assume on the information whenever possible in hopes
that this unlocks some optimizations later. This is contrary to how most other

Future Work 47

JIT compilers do speculations, such as JavaScript V8 VM[13], where they only
emit an assumption on a type at the point where the type is used. Eager spec-
ulation has the advantage that if an optimization is based on many complex
speculations, it will be applied. The disadvantage is that we might restrict the
type more than is necessary, e.g. we might speculate on a more specific type
than is needed.

As an example, consider a function that has observed a double scalar type
in one of its slots and based on the scalarness is able to do some significant
optimizations, but the fact that the value is a double type is never used.
Currently, the compiler still emits a guard on a double scalar. This means
that if the observed value changes to an integer scalar, we fail the assumption
even though the native code is still correct.

By carefully observing the usage of feedback information, we would be
able to relax the assumptions in the native code if not all of the information
is used. This relaxation could even extend to contextual dispatch. If we are
compiling a function for a certain call context but we never use part of the
context information, we could make the context more general, leading to more
invocations of the function ending up in a native version.

Appendix A

Bytecode Examples

Code:
1 LDCONST 1
3 STARTFOR 4 3 30
7 GETVAR 3
9 LDCONST 5

11 ADD 6
13 LDCONST 7
15 GT 8
17 BRIFNOT 9 28
20 GETFUN 10
22 MAKEPROM 12
24 CALL 11
26 GOTO 29
28 LDNULL
29 POP
30 STEPFOR 7
32 ENDFOR
33 POP
34 GETFUN 10
36 MAKEPROM 12
38 CALL 11
40 RETURN

Constant pool:
0:
language { for (i in 1:10) {; i..

1:
int [1:10] 1 2 3 4 5 6 7 8 9 10

2:
language 1:10

3:
symbol i

4:
language for (i in 1:10) { i..

5:
num 2

6:
language i + 2

7:
num 1

8:
language i + 2 > 1

9:
language if (i + 2 > 1) { g(..

10:
symbol g

11:
language g(x)

12:
Promise 0:
Code:

1 GETVAR 0
3 RETURN

Constant pool:
0:
symbol x

1:
language g(x)

2:
'expressionsIndex' int [1:4] N..

13:
'expressionsIndex' int [1:41] NA..

Code listing A.1 GNU-R bytecode for listing 1.7.1, generated using A.3

48

49

0:
0 push_ 1
5 visible_
6 force_
7 push_ 10

12 visible_
13 force_
14 ; :(1, 10)

colon_input_effects_
15 pop_
16 swap_
17 colon_cast_lhs_
18 [<?>] Type#0
23 ensure_named_
24 swap_
25 colon_cast_rhs_
26 ensure_named_
27 [<?>] Type#1
32 dup2_
33 ; NULL

le_
34 [_] Test#0
39 brfalse_ 1
44 push_ 1L
49 br_ 2

1:
54 push_ -1L

2:
59 swap_
60 pick_ 2
65 dup2_
66 ; NULL

ne_
67 [_] Test#1
72 brfalse_ 7
77 dup_
78 stvar_cached_ i{0}
87 pull_ 2
92 ensure_named_
93 ; NULL

add_
94 ldvar_cached_ i{0}

103 [<?>] Type#2
108 push_ 2
113 visible_
114 ; +(i, 2)

add_
115 [<?>] Type#3
120 push_ 1
125 visible_
126 ; >(+(i, 2), 1)

gt_
127 [<?>] Type#4
132 asbool_
133 brtrue_ 3
138 br_ 4

3:
143 ldfun_ g
148 [0, <0>, valid] Call#0
153 mk_promise_ 0
158 ; g(x)

call_ 1
175 pop_

4:
176 dup2_
177 ; NULL

ne_
178 brfalse_ 7
183 dup_
184 stvar_cached_ i{0}
193 pull_ 2
198 ensure_named_
199 ; NULL

add_
200 ldvar_cached_ i{0}
209 [<?>] Type#6
214 push_ 2
219 visible_
220 ; +(i, 2)

add_
221 [<?>] Type#7
226 push_ 1
231 visible_
232 ; >(+(i, 2), 1)

gt_
233 [<?>] Type#8
238 asbool_
239 brtrue_ 5
244 br_ 6

5:
249 ldfun_ g
254 [0, <0>, valid] Call#1
259 mk_promise_ 1
264 ; g(x)

call_ 1
281 pop_

6:
282 br_ 4

7:
287 popn_ 3
292 ldfun_ g
297 [0, <0>, valid] Call#2
302 mk_promise_ 2
307 ; g(x)

call_ 1
324 [<?>] Type#11
329 ret_

[Prom (index 0)]
0:

0 ldvar_ x
5 [<?>] Type#5

10 ret_

[Prom (index 1)]
0:

0 ldvar_ x
5 [<?>] Type#9

10 ret_

[Prom (index 2)]
0:

0 ldvar_ x
5 [<?>] Type#10

10 ret_

Code listing A.2 RIR bytecode for listing 1.7.1

50

.Code <- as.symbol(".Code")

cat0 <- function(...) cat(..., sep = "")

pp.bytecode <- function(f, promise = FALSE) {
offset <- if (promise) " " else ""

if (f[[1]] != .Code) {
stop("Not a code")

}

code <- f[[2]]
consts <- f[[3]]

cat0("\n", offset, "Code:")
for (i in 2:length(code)) {

c <- code[[i]]

if (is.numeric(c)) {
cat0(" ", as.character(c))

} else {
opc <- as.character(c)
opc <- substr(opc, 1, nchar(opc) - 3)

cat0(
"\n",
offset,
sprintf("%3i ", i - 1),
opc

)
}

}

promise_idx <- 0
cat0("\n", offset, "Constant pool:\n", offset)
for (i in seq_along(consts)) {

cat0(as.character(i - 1), ":", "\n", offset)
c <- consts[[i]]
if (is.list(c) && length(c) >= 1 && c[[1]] == .Code) {

cat0(" Promise ", as.character(promise_idx), ":")
pp.bytecode(c, TRUE)

promise_idx <- promise_idx + 1
} else {

w <- if (promise) 33 else 35
str(c, width = w, strict.width = "cut")
if (i != length(consts)) {

cat0(offset)
}

}
}

if (!promise) {
cat0("\n")

}
invisible(NULL)

}

Code listing A.3 Code used for formating disassembled GNU-R bytecode

Bibliography

1. THE R FOUNDATION. The R Project for Statistical Computing [online].
[N.d.]. [visited on 2025-05-03]. Available from: https://www.r-project
.org/.

2. R Crash Course: Creating Publication-Quality Graphics [online]. [N.d.].
[visited on 2025-05-03]. Available from: https://r-crash-course.gith
ub.io/08-plot-ggplot2/.

3. JENNYBC. gapminder [online]. GitHub, [n.d.] [visited on 2025-05-07].
Available from: https://github.com/jennybc/gapminder.

4. FLÜCKIGER, Olivier; CHARI, Guido; JEČMEN, Jan; YEE, Ming-Ho;
HAIN, Jakob; VITEK, Jan. R melts brains: an IR for first-class environ-
ments and lazy effectful arguments. In: Proceedings of the 15th ACM SIG-
PLAN International Symposium on Dynamic Languages. Athens, Greece:
Association for Computing Machinery, 2019, pp. 55–66. DLS 2019. isbn
9781450369961. Available from doi: 10.1145/3359619.3359744.

5. R CORE TEAM. R Internals [online]. 2025. [visited on 2025-04-14]. Avail-
able from: https://cran.r-project.org/doc/manuals/r-release/R-
ints.html.

6. TIERNEY, Luke. Notes on the Generational Generational GC for R
[online]. [N.d.]. [visited on 2025-04-26]. Available from: https://homepa
ge.stat.uiowa.edu/~luke/R/gengcnotes.html.

7. THE R FOUNDATION. The Comprehensive R Archive Network [online].
[N.d.]. [visited on 2025-05-04]. Available from: https://cran.r-projec
t.org/.

8. REACTORLABS. rir [online]. GitHub, [n.d.] [visited on 2025-04-28].
Available from: https://github.com/reactorlabs/rir.

51

https://www.r-project.org/
https://www.r-project.org/
https://r-crash-course.github.io/08-plot-ggplot2/
https://r-crash-course.github.io/08-plot-ggplot2/
https://github.com/jennybc/gapminder
https://doi.org/10.1145/3359619.3359744
https://cran.r-project.org/doc/manuals/r-release/R-ints.html
https://cran.r-project.org/doc/manuals/r-release/R-ints.html
https://homepage.stat.uiowa.edu/~luke/R/gengcnotes.html
https://homepage.stat.uiowa.edu/~luke/R/gengcnotes.html
https://cran.r-project.org/
https://cran.r-project.org/
https://github.com/reactorlabs/rir

Bibliography 52

9. LATTNER, Chris; ADVE, Vikram. LLVM: a compilation framework for
lifelong program analysis & transformation. In: International Symposium
on Code Generation and Optimization, 2004. CGO 2004. 2004, pp. 75–
86. Available from doi: 10.1109/CGO.2004.1281665.

10. MEHTA, Meetesh Kalpesh; KRYNSKI, Sebastián; GUALANDI, Hugo
Musso; THAKUR, Manas; VITEK, Jan. Reusing Just-in-Time Compiled
Code. Proc. ACM Program. Lang. 2023, vol. 7, no. OOPSLA2. Available
from doi: 10.1145/3622839.

11. GNU. Flexible Array Fields (GNU C Language Manual) [online]. 2023.
[visited on 2025-05-04]. Available from: https://www.gnu.org/softwar
e/c-intro-and-ref/manual/html_node/Flexible-Array-Fields.htm
l#Flexible-Array-Fields.

12. FLÜCKIGER, Olivier; CHARI, Guido; YEE, Ming-Ho; JEČMEN, Jan;
HAIN, Jakob; VITEK, Jan. Contextual dispatch for function specializa-
tion. Proc. ACM Program. Lang. 2020, vol. 4, no. OOPSLA. Available
from doi: 10.1145/3428288.

13. V8 JavaScript engine [online]. [N.d.]. [visited on 2025-05-08]. Available
from: https://v8.dev/.

14. STANTON, Michael. V8 and How It Listens to You [online]. 2016. [visited
on 2025-05-08]. Available from: https://www.youtube.com/watch?v=u
7zRSm8jzvA.

15. RICHARDS, Gregor; LEBRESNE, Sylvain; BURG, Brian; VITEK, Jan.
An analysis of the dynamic behavior of JavaScript programs. SIGPLAN
Not. 2010, vol. 45, no. 6, pp. 1–12. issn 0362-1340. Available from doi:
10.1145/1809028.1806598.

16. ORACLE [online]. 2025. [visited on 2025-05-08]. Available from: https:
//www.oracle.com/java/technologies/whitepaper.html.

17. WINTERHALTER, Rafael. An Introduction to JVM Performance [on-
line]. 2020. [visited on 2025-05-08]. Available from: https://www.youtu
be.com/watch?v=wgJWs14YcEs.

18. MARR, Stefan; DALOZE, Benoit; MÖSSENBÖCK, Hanspeter. Cross-
language compiler benchmarking: are we fast yet? SIGPLAN Not. 2016,
vol. 52, no. 2, pp. 120–131. issn 0362-1340. Available from doi: 10.1145
/3093334.2989232.

19. Measured : Which programming language is fastest? (Benchmarks Game)
[online]. [N.d.]. [visited on 2025-05-04]. Available from: https://benchm
arksgame-team.pages.debian.net/benchmarksgame/index.html.

20. RISDAL, Meg. Exploring Survival on the Titanic [online]. Kaggle, 2017
[visited on 2025-05-04]. Available from: https://www.kaggle.com/code
/mrisdal/exploring-survival-on-the-titanic.

https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1145/3622839
https://www.gnu.org/software/c-intro-and-ref/manual/html_node/Flexible-Array-Fields.html#Flexible-Array-Fields
https://www.gnu.org/software/c-intro-and-ref/manual/html_node/Flexible-Array-Fields.html#Flexible-Array-Fields
https://www.gnu.org/software/c-intro-and-ref/manual/html_node/Flexible-Array-Fields.html#Flexible-Array-Fields
https://doi.org/10.1145/3428288
https://v8.dev/
https://www.youtube.com/watch?v=u7zRSm8jzvA
https://www.youtube.com/watch?v=u7zRSm8jzvA
https://doi.org/10.1145/1809028.1806598
https://www.oracle.com/java/technologies/whitepaper.html
https://www.oracle.com/java/technologies/whitepaper.html
https://www.youtube.com/watch?v=wgJWs14YcEs
https://www.youtube.com/watch?v=wgJWs14YcEs
https://doi.org/10.1145/3093334.2989232
https://doi.org/10.1145/3093334.2989232
https://benchmarksgame-team.pages.debian.net/benchmarksgame/index.html
https://benchmarksgame-team.pages.debian.net/benchmarksgame/index.html
https://www.kaggle.com/code/mrisdal/exploring-survival-on-the-titanic
https://www.kaggle.com/code/mrisdal/exploring-survival-on-the-titanic

Bibliography 53

21. KRYNSKI, Sebastián; ŠTĚPÁNEK, Michal; ŘÍHA, Filip; KŘIKAVA,
Filip; VITEK, Jan. Reducing Feedback Pollution. In: Proceedings of the
16th ACM SIGPLAN International Workshop on Virtual Machines and
Intermediate Languages. Pasadena, CA, USA: Association for Comput-
ing Machinery, 2024, pp. 65–74. VMIL ’24. isbn 9798400712135. Available
from doi: 10.1145/3689490.3690404.

22. MICHAL, Štěpánek. Obohacenỳ kontextovỳ dispatch pro Ř. 2025. MA
thesis. České vysoké učení technické v Praze. Vypočetní a informační
centrum.

https://doi.org/10.1145/3689490.3690404

Contents of the Attachment

/
README.md.................................Description of the contents
thesis....The source files for the PDF version of the Master’s Thesis
rir-master.Source of the Ř compiler with the implemented recording
tool
rir-analysis Source of the modified Ř compiler, used for the analysis
of slot usage
used-analysis...........The analysis used for chapter 4 in the thesis
recorder-evaluate..The script and its sources used for evaluation of
the recording tool

54

	Acknowledgments
	Declaration
	Abstract
	Abstrakt
	List of abbreviations
	Introduction
	Background
	The R Language
	GNU-R
	The Ř Compiler
	Related Work
	Corpus

	Recording Tool
	Motivation
	Design
	Implementation
	Hooks
	Recorder
	Events
	Serialization
	Interface

	Assessment

	Feedback Pollution
	Motivation
	Methodology
	Analysis
	Pollution Prevention

	Feedback Usage
	Definitions
	Methodology
	Observations
	Limitations

	Conclusion
	Future Work

	Bytecode Examples
	Bibliography
	Contents of the Attachment

