
Master’s thesis

INTRINSICALLY
MOTIVATED
REINFORCEMENT
LEARNING FOR
EFFICIENT INTERFACE
NAVIGATION BY AIVA

Bc. Pavel Chudomel

Faculty of Information Technology
Department of Applied Mathematics
Supervisor: Mgr. Petr Šimánek
May 9, 2025

Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of master’s thesis

Intrinsically motivated reinforcement learning for efficient

interface navigation by AIVA

Bc. Pavel Chudomel

Mgr. Petr Šimánek

Informatics

Knowledge Engineering

Department of Applied Mathematics

until the end of summer semester 2025/2026

Instructions

As autonomous systems become more integrated into daily life, the need for robots that

can effectively interact with electronic devices like smartphones is increasing. AIVA, a

robot designed to operate mobile interfaces through actions such as clicking and

swiping, offers an opportunity to develop methods that enhance its efficiency in

navigating complex user interfaces. The goal is to train AIVA to quickly and

comprehensively explore all possible scenarios within a device’s interface.

This project will focus on creating a method that enables AIVA to apply reinforcement

learning (RL) strategies, and incorporate intrinsic motivation techniques to optimize the

navigation process. Intrinsic motivation will drive AIVA to explore without explicit

rewards, potentially leading to more efficient learning and faster task completion.

Steps:

1/ Literature Review: Review existing methods in reinforcement learning, intrinsic

motivation, and robotic interface interaction, with a focus on applications in autonomous

navigation and software testing.

2/ Explore Button Detection: Develop a method for detecting clickable buttons on a

mobile interface, utilizing computer vision techniques or machine learning models,

assess usability of such approach in AIVA.

3/ Reinforcement Learning Setup: Implement a basic RL (e.g. PPO - Proximal Policy

Optimization) framework where AIVA learns to interact with the interface. Define state

space (e.g., current screen), action space (e.g., clicks, swipes), and rewards (e.g., new

Electronically approved by Ing. Magda Friedjungová, Ph.D. on 30 January 2025 in Prague.

screen reached).

4/ Intrinsic Motivation Integration: Implement and compare some intrinsic motivation

methods, e.g. curiosity-driven exploration, to enhance AIVA’s learning process. Possibly,

try to combine these methods.

5/ Training and Optimization: Train the RL model with integrated intrinsic motivation and

fine-tuning parameters to balance exploration and exploitation for optimal learning.

6/ Performance Evaluation: Assess the system’s performance using metrics like time to

complete navigation paths, e.g. the number of unique screens visited.

7/ Analysis and Comparison: Compare the impact of different methods on AIVA’s

navigation performance, analyzing contributions to speed and thoroughness.

8/ Conclusion and Future Work: Summarize findings, discuss strengths and limitations,

and propose future research directions, such as refining motivation techniques or

expanding the approach to other devices.

This project aims to advance autonomous robotic interaction with complex interfaces,

offering insights for broader applications in human-robot interaction, software testing,

and assistive technologies.

Electronically approved by Ing. Magda Friedjungová, Ph.D. on 30 January 2025 in Prague.

Czech Technical University in Prague
Faculty of Information Technology
© 2025 Bc. Pavel Chudomel. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic. It
has been submitted at Czech Technical University in Prague, Faculty of Information
Technology. The thesis is protected by the Copyright Act and its usage without author’s
permission is prohibited (with exceptions defined by the Copyright Act).

Citation of this thesis: Chudomel Pavel. Intrinsically Motivated Reinforcement Learn-
ing for Efficient Interface Navigation by AIVA. Master’s thesis. Czech Technical
University in Prague, Faculty of Information Technology, 2025.

I would like to express my gratitude to my supervi-
sor, Mgr. Petr Šimánek, for his valuable guidance,
to my parents for their support, to the Y Soft team
for their prompt technical assistance, and to the peo-
ple from DataLab for their patience whenever the robot
decided it was time for a spontaneous ringtone perfor-
mance.

iv

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular the fact that the Czech Technical University in Prague has the right
to conclude a licence agreement on the utilization of this thesis as a school
work pursuant of Section 60 (1) of the Act.

I declare that I have used AI tools during the preparation and writing of
my thesis. I have verified the generated content. I confirm that I am aware
that I am fully responsible for the content of the thesis.

In Prague on May 9, 2025

v

Abstract

Efficient navigation in a complex user interface presents a significant challenge.
This work focuses on the automatic exploration of such environments using re-
inforcement learning, leveraging intrinsic motivation methods as a driving force
in the learning process. This work first establishes the theoretical foundations,
starting from the fundamentals of reinforcement learning and gradually ad-
vances to more complex topics, which are implemented in the practical part
on a real-world system AIVA, a robot designed for interaction with touchscreen
devices. Initially, the possibility of using a deep learning model for detecting
interactable elements on the screen is explored, but because of its high data
requirements and low portability, this approach proves impractical. The re-
inforcement learning methods attempt to learn to identify and discover new
screens using visual features derived from advanced feature extractors. This
work demonstrates that a naïve reward implementation fails, and therefore
two alternative reward mechanisms based on intrinsic motivation are proposed.
The first of them uses Intrinsic Curiosity Module (ICM) and leads to a no-
ticeable improvement in the exploration policy. The other method, Random
Network Distillation (RND), because of its non-episodic approach, results in
the robot being trapped in states it cannot easily escape from for an extended
period. Despite that, the use of RND leads to an improvement in the robot’s
ability to explore the environment. The findings thus suggest that intrinsic
motivation can improve the robot’s exploration capability, but a number of as-
pects must be considered during its implementation, as they have a significant
impact on the robot’s overall performance.

Keywords reinforcement learning, intrinsic motivation, automated explo-
ration, user interface navigation, robotic interaction

vi

vii

Abstrakt

Efektivní navigace v komplexním uživatelském rozhraní představuje zásadní
výzvu. Tato práce se zaměřuje na automatické prozkoumávání takových prostředí
pomocí zpětnovazebního učení s využitím metod vnitřní motivace, sloužících
jako hnací síla procesu učení. Práce poskytuje nezbytné teoretické pozadí od
základů zpětnovazebního učení a postupně se dostává ke složitějším tématům,
které jsou v praktické části implementovány na skutečném systému AIVA,
robotu navrženém pro interakci se zařízeními s dotykovou obrazovkou. Ne-
jprve je prozkoumána možnost použití modelu hlubokého učení pro detekci in-
teragovatelných prvků na obrazovce, která se však pro svou datovou náročnost
a nízkou přenositelnost ukazuje jako nepraktická. Metody zpětnovazebního
učení se z obrazových příznaků získaných pomocí pokročilých extraktorů snaží
naučit poznávat a objevovat nové obrazovky. Práce ukazuje, že naivní imple-
mentace odměny selhává, a proto jsou navrženy dva alternativní mechanismy
odměňování založené na vnitřní motivaci. První z nich používá Intrinsic Cu-
riosity Module (ICM) a vede k citelnému zlepšení strategie prozkoumávání.
Druhá metoda, Random Network Distillation (RND), kvůli svému neepizod-
ickému přístupu dostává robota do stavů, z nichž se po dlouhou dobu nedokáže
dostat. I přes to vede použití RND ke zlepšení schopnosti robota prozkoumávat
prostředí. Výsledky tedy naznačují, že vnitřní motivace může zlepšit schopnost
prozkoumávání robota, ale je nutné při její implementaci zvážit řadu aspektů,
které mají významný vliv na celkové fungování robota.

Klíčová slova zpětnovazební učení, vnitřní motivace, autonomní prozkoumávání,
navigace v uživatelském rozhraní, robotická interakce

Contents

Introduction 1

1 Foundations of Reinforcement Learning 3
1.1 Definition of Reinforcement Learning 4
1.2 Markov Decision Process . 4
1.3 Value Function, Bellman Equations 7
1.4 Solving MDPs with Dynamic Programming 10
1.5 Model-Free Value-Based Methods 13

1.5.1 Monte-Carlo Methods 13
1.5.2 Temporal Difference (TD) Methods 14
1.5.3 Policy Improvement in Model-Free Methods 14
1.5.4 SARSA and Q-learning 15
1.5.5 Eligibility Traces . 17

1.6 Function Approximation in RL 21
1.6.1 Gradient Descent . 22

1.7 Policy Gradient Methods . 24
1.7.1 Actor-Critic Methods 27
1.7.2 Policy Gradient Theorem 29

2 Advanced Methods in Reinforcement Learning 31
2.1 Natural Policy Gradient . 31

2.1.1 Natural Actor-Critic . 32
2.2 Trust Region Policy Optimization (TRPO) 33

2.2.1 Defining the Trust Region 34
2.2.2 Importance Sampling for Practical Use 35

2.3 Generalized Advantage Estimation (GAE) 35
2.4 Proximal Policy Optimization (PPO) 36
2.5 Intrinsic Motivation . 39

2.5.1 Intrinsic Curiosity Module (ICM) 39
2.5.2 Random Network Distillation (RND) 41

3 Robotic Interface Interaction 43
3.1 Detection of Clickable Elements 44

3.1.1 Element Detection with YOLO 44
3.1.2 Interaction with the Elements 45

3.2 Feature Extraction for Decision-Making 46

viii

Contents ix

3.2.1 Extracting Features from Screenshot 46
3.2.2 Large Action Spaces . 49

4 Experimental Setup 50
4.1 The AIVA Testing Robot . 50

4.1.1 Error Handling . 50
4.2 Element Detection Approach Setup 51
4.3 Feature Extraction Approach Setup 52
4.4 Reinforcement Learning Agent Setup 53

4.4.1 Policy Network . 54
4.4.2 Implementation of Intrinsic Motivation 55

4.4.2.1 ICM Implementation 55
4.4.2.2 RND Implementation 56

4.4.3 Tuning and Optimization 57
4.5 The Physical Environment . 57

5 Experiments 59
5.1 YOLO Element Detection . 59
5.2 Reinforcement Learning Methods 62

5.2.1 Intrinsically Motivated Learning 63
5.2.2 A Closer Look at the Feature Extraction 65
5.2.3 Random Network Distillation 66

5.3 Results . 67
5.3.1 Training Instability . 68
5.3.2 Episodic vs. Non-Episodic Learning 69

5.4 Future Work . 70

Contents of the attachment 79

List of Figures

1.1 A diagram of the reinforcement learning loop. 4
1.2 An example diagram of Markov process. 5
1.3 A simple example of a real-life environment. 7
1.4 Diagram illustrating the recursive nature of (a) vπ(s) and (b)

qπ(s, a). Based on [5]. 8
1.5 Pseudocode of the SARSA algorithm, paraphrased from [5]. . . 16
1.6 Pseudocode of the Q-learning algorithm, paraphrased from [5]. 17
1.7 The behaviour of weighting in each n-step return in the λ-

return. Reproduced from [5]. 18
1.8 An illustration of accumulating eligibility trace behaviour. Re-

produced from [5]. 19
1.9 Pseudocode of the online TD(λ) algorithm, paraphrased from [5]. 19
1.10 Pseudocode of the REINFORCE algorithm with a learned state-

value function as a baseline, adapted from [5]. 25
1.11 Example run of the REINFORCE algorithm without baseline. . 26
1.12 Pseudocode of the one-step actor-critic algorithm, adapted from [5]. 28
1.13 Pseudocode of the actor-critic algorithm with eligibility traces,

adapted from [5]. 29

2.1 PPO used on the simple screen environment. Note that the
initial fluctuation seen in Figure 1.11 are not present, as the
variance in policy gradient estimates is lower. 38

2.2 A diagram of the ICM module, reproduced from [41]. Note that
policy π operates independently of ICM, it uses only the rewards
for learning. 40

3.1 A YOLO model diagram, reproduced from [45]. 45
3.2 Illustration of the Vision Transformer, reproduced from [54].

Note that the Transformer Encoder remains unchanged from
the original Transformer architecture. 47

3.3 An illustration of LayoutLMv3 pre-training objectives, repro-
duced from [57]. The objectives are reconstructive Masked Lan-
guage Modelling (MLM), Masked Image Modelling (MIM) and
predictive Word-Patch Alignment (WPA). 48

4.1 The AIVA robot setup. The two main components are the
robotic arm and a camera. 51

x

4.2 Examples from the RICO dataset 3 with highlighted bounding
boxes for elements marked as clickable and visible. The dataset
contains (a) well-annotated data, (b) data with minor problems,
and (c) poorly annotated data. 52

4.3 An example screenshot. Note that not all text is clearly visible. 53
4.4 An overview of the system learning process. The information

used by policy network for intrinsic motivation depends on the
specific implementation. Action At is mapped to a real-world
action. 54

5.1 YOLO generalization: relatively accurate detection achieved
despite substantial label noise in the training data. Detected
bounding boxes are green. 59

5.2 Training and validation metrics from the YOLOv5 model. The
x-axis’ represents training epochs. The metrics show improve-
ment during training. 60

5.3 Generalization of YOLO to other mobile OS is limited. Even
when the confidence threshold was reduced, several icons on the
home screen remained undetected. 61

5.4 Training performance and exploration behaviour of the basic
PPO setup. 62

5.5 Training performance and exploration behaviour of ICM-based
setup. 64

5.6 Histograms of actions taken during training of the PPO model
using LayoutLMv3 and ICM reward. 64

5.7 A PCA 2D projection of extracted features of the discovered
unique states, edges highlight transistions between them. 65

5.8 RND intrinsic rewards of an agent stuck in a state escapable
only via the Home button. 66

5.9 Training performance and exploration behaviour of the RND
setup. 67

5.10 Histogram of actions performed near the end of RND training. 68
5.11 Histogram of actions selected by a degenerated policy caused by

change in PPO training parameters. 69

List of Tables

4.1 Summary of key PPO hyperparameters used for training. . . . 58

xi

List of Tables xii

5.1 Model performance comparison: average unique states visited
and state transitions discovered in 100 steps (mean ± std over
6 traversals) . 68

List of abbreviations

RL Reinforcement Learning
MDP Markov Decision Process
MRP Markov Reward Process

DP Dynamic Programming
TD Temporal Difference

GLIE Greedy In The Limit with Infinite Exploration
SGD Stochastic Gradient Descent
MSE Mean Squared Error

RMSE Root Mean Squared Error
DQN Deep Q-Network

TRPO Trust Region Policy Optimization
MM Minorize-Maximize
KL Kullback-Leibler

GAE Generalized Advantage Estimation
CPI Conservative Policy Iteration

PPO Proximal Policy Optimization
ICM Intrinsic Curiosity Module
RND Random Network Distillation

YOLO You Only Look Once
MIM Masked Image Modelling
MLM Masked Language Modelling
WPA Word-Patch Alignment
GPU Graphics Processing Unit
OCR Optical Character Recognition

OS Operating System
DDPG Deep Deterministic Policy Gradient

TD3 Twin Delayed DDPG
SAC Soft Actor-Critic

REDQ Randomized Ensembled Double Q-Learning

xiii

Introduction

The automation of user interface testing, while aiming for efficiency and con-
sistency, paradoxically remains dependent on complicated, manually defined
workflows. User interfaces may be complex, and the only information that is
always obtainable is a brief observation of the current state, e.g. screenshot.
Navigating complex environments and processing images have been among the
most challenging problems in computing, but recent breakthroughs in artificial
intelligence changed the way these tasks are approached.

This work explores the potential of reinforcement learning methods to im-
prove navigation efficiency in complex environments. Traditional navigation
approaches often rely on predefined rules or heuristics, which can perform well
in simple scenarios, but may struggle in more difficult settings. Using rein-
forcement learning, the exploring robot will be rewarded for exploring and
discovering new states. The focus of this work is specifically on exploring
applications that operate on electronic devices with a touch screen, such as
smartphones, using the AIVA system of Y Soft [1].

As a main driver for exploration, this work investigates the use of intrinsic
motivation. The robot is not rewarded extrinsically by the environment, but
rewards itself for satisfying its intrinsic motivation. This motivation can be
expressed through curiosity, where the robot is rewarded for performing actions
with surprising outcomes, or novelty, where it is rewarded for exploring new,
unseen states.

The ultimate end goal is to build a system that, after a period of time,
learns to efficiently explore the complex system of a touch-screen device. Such
a solution would be of great benefit not only in the test automation area but
also in user experience optimization or automated assistance. It could create
graphs describing the user interface and may help discover its weaknesses, bugs
and potential issues. Since the system would adapt to various touch screen
interfaces, the solution could assist in enhancing applications across different
platforms.

The first chapter offers a comprehensive overview of standard methods and
approaches in reinforcement learning, providing the theoretical background

1

Introduction 2

necessary for understanding how agents learn from interactions with the envi-
ronment. Second chapter builds upon this foundation and explores more ad-
vanced topics in reinforcement learning — algorithms allowing scalable learn-
ing and the concept of intrinsic motivation, a technique that ensures continual
learning of robots, even in environments with sparse or absent rewards. Chap-
ter three presents other methods necessary for the robotic interface interaction,
such as image processing and methods for extracting useful features from the
screenshot. Fourth chapter discusses the setups and highlights practical consid-
erations and pitfalls encountered during implementation and testing. Chapter
five concludes the work with a presentation and discussion of the results.

Chapter 1

Foundations of Reinforcement
Learning

This chapter describes the main ideas that have shaped the field of reinforce-
ment learning. Starting with the general reinforcement learning problem def-
inition, it gradually develops the ideas and explores methods of finding the
optimal policy of a reinforcement learning agent. The goal of this chapter
is to lay the foundation for the chapters that follow.

Machine learning was traditionally divided into three broad categories. Su-
pervised learning algorithms use labeled data during training to try and learn
patterns that can be utilized with new unseen examples. Unsupervised learn-
ing, in contrast, deals with unlabeled data and focuses on discovering and
leveraging hidden structures or relationships within it. Reinforcement learn-
ing introduces a third paradigm, learning through experience.

Reinforcement learning algorithms closely mirror how humans learn from
interacting with their environment. Humans affect the environment around
them, learn from it and use that experience to guide future actions. The main
distinction lies in the learning process.

A standard concept in machine learning is the backpropagation of error.
After making a prediction (in supervised learning) or taking an action (in
reinforcement learning), the result is evaluated using a problem-specific loss
function (in supervised learning) or a reward function (in reinforcement learn-
ing). This error (or reward) signal is then used to update the parameters of
the model, enabling it to improve performance over time. This concept will
play central role later in this chapter and in Chapter 2.

Although recent theories suggest that it may be possible for the human
brain to approximate the process of backpropagation [2], the mechanisms un-
derlying human learning appear to differ significantly. An influential perspec-
tive is the Hebbian theory, often summarized as: “neurons that fire together
wire together” [3] — when one neuron repeatedly activates another, the synap-

3

Definition of Reinforcement Learning 4

Agent Environment

Action At

State St+1

Reward Rt+1

Figure 1.1 A diagram of the reinforcement learning loop.

tic connection between them becomes stronger over time [4]. Although the
biological learning theories are interesting and relevant in the broader context
of learning, a detailed exploration is beyond the scope of this thesis.

1.1 Definition of Reinforcement Learning

The foundational text Reinforcement Learning: An Introduction [5] by Richard
S. Sutton and Andrew G. Barto serves as one of the main references for this
chapter, as it provides the most comprehensive and widely accepted treatment
of the field’s core concepts, definitions, and algorithms. The book sets rein-
forcement learning apart as the problem, the class of solution methods, and
the field that studies both. The problem can be intuitively understood as
a continuous interaction between an agent and an environment. The agent
performs an action in the environment and the environment responds with a
new state and a reward that the agent is trying to maximize over time — this
is how the objective of an agent is defined. A scheme of this is depicted in
Figure 1.1. A method designed to solve a reinforcement learning problem can
be considered a reinforcement learning method or algorithm [5].

The following sections aim to build a mathematical framework of reinforce-
ment learning problem within which theorems can be stated and analyzed.

1.2 Markov Decision Process
A discrete-time stochastic process is defined as a system of dependent random
variables

X = {Xn | n ∈ T}

over a probability space (Ω,F ,P) and an index set T ⊆ N0 [6]. A stochastic
process will be used to describe a system in which random state changes occur.

A specific subset of stochastic processes is Markov processes, introduced in
1907 by Andrey Andreyevich Markov [7]. A stochastic process {Sn | n ∈ N0}
with at most a countable set S is a discrete-time Markov process, if it fulfills
the Markovian property ∀n ∈ N, ∀s, s0, . . . , sn−1 ∈ S:

P(Sn = s | Sn−1 = sn−1, . . . , S0 = s0) = P(Sn = s | Sn−1 = sn−1). [6]

Markov Decision Process 5

0 1 21

1/3

2/3

2/3

1/3

Figure 1.2 An example diagram of Markov process.

The key defining property is “forgetfulness” — at any given time t, it is possible
to determine the probability of St+1 only using the knowledge of St [6].

If S is the at most countable set of states in which the system can exist
and sn, sn−1 ∈ S are describing a control variable that defines the system’s
state, P(St = sn | St−1 = sn−1) can be thought of as the probability of state
transition of the system from sn−1 to sn at time step t. In Markov process, this
transition probability is independent of t. Thanks to this property, a Markov
process can be graphically illustrated as in Figure 1.2. Note that the sum of
probabilities of transition from given state is one (transition occur in each time
step) and the transitions with zero probability are not depicted in the figure.

The notion of states, understood as realizations of the random variables,
and transitions, understood as changes between states, can formulate a more
convenient definition of Markov process. This definition is suitable for finite
state spaces: Markov process is a tuple (S,P), where S = s1, s2, . . . , sn is a
finite set of n ∈ N states and P ∈ Sn,n is a state transition probability matrix,
where Pss′ = P(St+1 = s′ | St = s) [8].

Richard Bellman in Dynamic Programming [9], first published in 1957,
describes Markovian Decision Process (later established as Markov Decision
Process, MDP), as a part of broader framework of dynamic programming.
MDPs later became crucial in the field of reinforcement learning, because they
model the environment in the exact same way reinforcement learning does.
In other words, had the MDPs not already existed, the field of reinforcement
learning may have defined it independently by itself.

The goal of an agent can be formally expressed in terms of reward. A
reward is a time-dependent value Rt+1 ∈ R that the agent obtains in each
time step. The total sum of rewards starting from time step t is denoted as
(discounted) return Gt:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + · · · =
∞∑︂
i=1

γi−1Rt+i.

Parameter γ ∈ R, 0 ≤ γ ≤ 1 is called the discount factor and adjusts the
preference of short-term/long-term reward [5].

There are various reasons to use discount factor apart from mathematical
convenience or to ensure convergence of returns in cyclic Markov processes.
Immediate rewards may be preferred in a dynamic environments with high

Markov Decision Process 6

degree of uncertainty of the future, or short-term rewards may be preferred in
finances, because it may yield more interest [8].

Consider Markov process (S,P) with a finite set of states S and state
transition probability matrix P. This can be expanded to Markov reward
process, a tuple (S,P,R, γ), where R is a reward function R : S → R,

Rs = E[Rt+1 | St = s],

and γ is a discount factor [8]. Markov processes are used to define the envi-
ronment and Markov reward processes allow the definition of an objective.

The final component necessary is the ability of the agent to make decisions.
MRP (S,P,R, γ) can be extended by adding actions to define the Markov
decision process. Thus, finite discounted Markov decision process is a tuple
(S,A,P,R, γ), where S is a finite set of states, A is a finite set of actions, P
is a state transition matrix, now also dependent on action a:

Pa
ss′ = P(St+1 = s′ | St = s,At = a),

R is a reward function dependent on action a as well, R : (S,A)→ R,

Ra
s = E[Rt+1 | St = s,At = a]

and γ is the discount factor [8].
This mathematical framework describes the interaction between the agent

and the environment depicted in Figure 1.1. An agent carries out an action
and the state of the environment changes. Note that this state transition is
stochastic, meaning the outcome may vary. The environment also produces
reward signal and the objective of the agent will be to maximize the total
expected return. Whether the agent is willing to accept smaller short-term
rewards in order to maximize long-term return or prioritizes higher immediate
gains depends on discount factor γ.

▶ Example 1.1. Throughout this thesis, a very simple examples will be used
to help obtain a better intuition of the presented methods.

Consider a very simple touchscreen interface consisting of three screens —
red, green and blue. Each screen has two buttons, white and black. Interacting
with the white button changes the screen, while interacting with the black
button stays on the current screen. See Figure 1.3.

This environment can be modelled very simply using an MDP. Let S =
{red, green, blue} be the set of states and A = {white,black} a set of actions.
The action-state transitions are deterministic, so the P matrix for pressing the
white button will be

Pwhite =

⎛⎝0 1 0
0 0 1
1 0 0

⎞⎠

Value Function, Bellman Equations 7

Figure 1.3 A simple example of a real-life environment.

and for pressing the black button,

Pblack =

⎛⎝1 0 0
0 1 0
0 0 1

⎞⎠ .

Note that until a reward is defined, there is no objective. The R function can
reward actions that transition between states (i.e. pressing the white button),
staying in the same state (i.e. pressing the black button) or any other be-
haviour. It is also important to note that the reward function is not assumed
to be deterministic.

This minimal, yet illustrative example will be used in the following sections
to showcase the discussed methods.

1.3 Value Function, Bellman Equations

Let (S,A,P,R, γ) be a discounted finite MDP, where S is a finite set of states,
A is a finite set of actions, P is a state transition matrix, R is a reward function
and γ is the discount factor. To distinguish different agents, a policy mapping
π will be used. The policy can be defined deterministically, as function π :
S → A, but more general approach is to define it stochastically. π describes
the probability of taking action a ∈ A when in state s:

π(a | s) = P(At = a | St = s) [5], [8].

Each agent has given policy that is used to determine the next action.
Since policy is independent of state transition probabilities, it is possible

to determine the probability of agent following policy π in state s moving to
state s′:

Pπ
ss′ =

∑︂
a∈A

π(a | s)Pa
ss′ . [8]

Value Function, Bellman Equations 8

(a)
s

a

s′

vπ(s)

vπ(s
′)

(b)
s, a

s′

a′

qπ(s, a)

qπ(s
′, a′)

Figure 1.4 Diagram illustrating the recursive nature of (a) vπ(s) and (b) qπ(s, a).
Based on [5].

Similarly, the expected reward of an agent following policy π in state s can
be determined as:

Rπ
s =

∑︂
a∈A

π(a | s)Ra
s [8].

The reward Rt at time step t is indeterministically given by the previous
state s and the action a the agent performed. This makes it better for some
states to be in than others — an agent should prefer the states that promise
greater discounted return Gt in the future. A state-value function is used to
determine this quantity:

vπ(s) = Eπ[Gt | St = s],

where Eπ is the expected value if an agent is on policy π [5].
Similarly, an action-value function is defined. Intuitively, if state-value

function vπ(s) for an agent following policy π describes the expected value of
discounted return Gt for an agent in state s, action-value function goes one step
forward and describes expected discounted return Gt after taking an action a
from step s. Formally:

qπ(s, a) = Eπ[Gt | St = s,At = a] [5].

These two functions are the cornerstone of reinforcement learning. As
Figure 1.4 suggests, it is possible to express state-value function recursively:

vπ(s) =
∑︂
a∈A

π(a | s)

[︄
Ra

s + γ
∑︂
s′∈S
Pa
ss′vπ(s

′)

]︄
.

Similarly, an action-value function may be expressed recursively as follows:

qπ(s, a) = Ra
s + γ

∑︂
s′∈S
Pa
ss′

∑︂
a′∈A

π(a′ | s′)qπ(s′, a′).

These are the Bellman expectation equations [8].

Value Function, Bellman Equations 9

A definition of a preorder on policies (here, sources [8] and [5] say partial
order, but antisymmetry does not hold) allow us not only to compare two
agents on different policies, but, more importantly, to define an optimal policy.
Let

π ≥ π′ ⇐⇒ ∀s ∈ S : vπ(s) ≥ vπ′(s).

An optimal policy π∗ fulfills ∀π : π∗ ≥ π. Solving a reinforcement learning
task means finding this optimal policy π∗ [8]. An optimal policy also defines
the optimal state-value function

v∗(s) = max
π

vπ(s)

and the optimal action-value function

q∗(s, a) = E[Rt+1 + γv∗(St+1) | St = s,At = a] = max
π

qπ(s, a) [5].

The optimal action-value function immediately gives the optimal policy. Intu-
itively, the agent always selects the action that maximizes q∗(s, a), formally

π∗(a | s) =

⎧⎨⎩1, if a = argmax
a∈A

q∗(s, a)

0, otherwise.
[8] (1.1)

It can be shown that for MDP as it is defined here, a deterministic optimal
policy exists. Proof of this can be found in [10].

The optimal state-value function must fulfill

v∗(s) = max
a∈A

q∗(s, a)

and considering St+1 = s′, the optimal action-value function can be expressed
similarly as

q∗(s, a) = Ra
s + γ

∑︂
s′∈S
Pa
ss′v∗(s

′).

By substituting q∗(s, a) in the first equation, the following recursive equation
is obtained:

v∗(s) = max
a∈A
Ra

s + γ
∑︂
s′∈S
Pa
ss′v∗(s

′)

Similarly, v∗(s′) can be substituted in the second equation to obtain

q∗(s, a) = Ra
s + γ

∑︂
s′∈S
Pa
ss′ max

a∈A
q∗(s

′, a).

These two equations are called Bellman optimality equations, sometimes re-
ferred to as just Bellman equations. Solving these equations allows us to con-
struct the optimal policy, as shown in equation (1.1), which, in the context of
reinforcement learning, means finding an optimal agent. While the equations
do not have closed form solution in general, many iterative solution methods
exist [8]. For an idea of how a policy of an MDP can be optimized, the next
section will introduce two of the most common methods.

Solving MDPs with Dynamic Programming 10

▶ Example 1.2. Using the environment introduced in Example 1.1, consider
the following reward function:

Ra
s =

{︄
1, if screen changed
0, otherwise.

It is clear that the optimal policy π∗ will be to always interact with the white
button. If γ = 0.66, the state-value function of each state (because the envi-
ronment is symmetric) using this optimal policy will be

∀s ∈ S : vπ∗(s) =
∞∑︂
k=0

γk · 1 = 1 + 0.66 + 0.662 + · · · ≈ 2.9412,

because the return is deterministic. If a different policy was used, its state-
value function would not be greater than that of π∗. Consider a policy π′

that starts interacting with white button and then alternates between the two
possible actions. The state-value will be

∀s ∈ S : vπ′(s) =

∞∑︂
k=0

γ2k · 1 = 1 + 0 + 0.662 + · · · ≈ 1.7717,

so the policy π′ is not optimal.

1.4 Solving MDPs with Dynamic Programming

Dynamic programming (DP) is an algorithmic paradigm that breaks down a
problem into overlapping subproblems and stores results of these subproblems
into a lookup table for future reference. The key step is to use a recursive
or iterative formulation of the problem. Dynamic programming is typically
applied to optimization problems. This section briefly highlights the use of
dynamic programming methods to find the MDP’s optimal policy π∗ [11].

A policy’s performance can be evaluated by finding its state-value function.
This is necessary to compare two policies. Recall that π ≥ π′ ⇐⇒ ∀s ∈ S :
vπ(s) ≥ vπ′(s), where ≥ is a preorder relation.

Let (S,A,P,R, γ) be a discounted finite MDP, where S is a finite set of
states with n ∈ N+

0 states denoted s1, . . . , sn. Furthermore, A is a finite set
of actions, P is a state transition matrix, R is a reward function and γ is the
discount factor. It can be shown that the state-value function can be expressed
using the Bellman expectation equation for any policy π:

vπ(s) =
∑︂
a∈A

π(a | s)

[︄
Ra

s + γ
∑︂
s′∈S
Pa
ss′vπ(s

′)

]︄
.

This equation can be expressed in matrix form. Let vπ ∈ Rn be a vector where
(vπ)i = vπ(si). Let

(Rπ)i =
∑︂
a∈A

π(a | si)Ra
si

Solving MDPs with Dynamic Programming 11

and
(Pπ)ij =

∑︂
a∈A

π(a | si)Pa
sisj ,

then vπ can be expressed as

vπ = Rπ + γPπvπ.

This equation has a closed form solution, provided (I− γPπ) is invertible:

vπ = (I− γPπ)
−1Rπ [8].

The first approach to solving the MDPs that will be highlighted here is re-
ferred to as policy iteration and was invented in 1960 by Ronald A. Howard [12].
It is an iterative algorithm, where each iteration consists of two steps:

1. Policy evaluation

2. Policy improvement

One way to evaluate a policy was shown, but using the closed form solution is
usually not very efficient. Policy evaluation is preferably performed through
iterative application of Bellman expectation equation. In each time step k,
state-value function estimate is improved using

vk+1(s) =
∑︂
a∈A

π(a | s)

[︄
Ra

s + γ
∑︂
s′∈S
Pa
ss′vk(s

′)

]︄
, (1.2)

or in matrix form
vk+1
π = Rπ + γPπv

k
π.

It can be shown that limk→∞ vk = vπ, i.e. the estimate converges to the real
state-value function [8].

Let πk be an arbitrary policy. The approach described above can be used
to compute the value function vπk

. The policy improvement step is simple and
intuitive: a new policy is obtained by acting greedily with respect to state-
value function vπk

, which can also be expressed in terms of the action-value
function:

πk+1 = argmax
a∈A

qπk
(s, a).

This greedy update guarantees that the new policy is at least as good as the
previous one, i.e. πk+1 ≥ πk. Recall that a deterministic optimal policy exists.
It can also be shown that by repeatedly applying policy evaluation followed by
policy improvement, the sequence of policies converges to the optimal policy
π∗ [8]. This result is remarkable, particularly because the method is limited to
deterministic policies and relies on straightforward greedy improvement step.

The policy evaluation step, in each of its iterations, updates the interme-
diate state-value function for all states s ∈ S. This operation is called full

Solving MDPs with Dynamic Programming 12

backup — a backup corresponds to a single update of the intermediate state-
value function [5].

Now instead of evaluating the full policy π, after just this one backup, an
algorithm can skip directly to the greedy action selection, which is the policy
improvement step. So in each step, the algorithm updates the value function
by using the following rule:

vk+1(s) = max
a∈A
Ra

s + γ
∑︂
s′∈S
Pa
ss′vk(s

′).

This equation is in fact the Bellman optimality equation and this new algo-
rithm is called the value iteration, introduced by Richard Bellman in 1957 [9],
and just like the policy iteration, the algorithm converges to an optimal policy
for discounted finite MDPs [5].

▶ Example 1.3. Consider the environment introduced in Example 1.1, the
alternating policy π′ from Example 1.2 and γ = 0.66. Setting the arbitrary
policy v0(s) = 1 for all states, the policy for each state can be evaluated using
the equation (1.2):

v0(s) = 1

v1(s) = 0 + γv0(s) = 0.66

v2(s) = 1 + γv1(s) = 1.436

v3(s) = 0 + γv2(s) = 0.948

v4(s) = 1 + γv3(s) = 1.625

. . .

v100(s) = 1.772 ≈ vπ′(s).

The value corresponds with the result from Example 1.2. To use the calculated
policy in the policy improvement step, the new policy will act greedily with
respect to it, i.e. will select the action that maximizes the action-value function

qπ′(s, a) = Ra
s + γvπ′(s′)

where Ra
s is the reward for taking action a in state s and s′ is the next state.

For each state,

qπ′(s,white) = 1 + γvπ′(s′) = 2.170

qπ′(s,black) = 0 + γvπ′(s) = 1.170

So the new greedy policy will select white button on each screen, which is the
optimal policy.

Policy iteration and value iteration assume full knowledge of the MDP of
the system. In reinforcement learning problems, however, this is not usually
the case. In the following sections, algorithms that do not require full knowl-
edge of the MDP, the model-free methods, will be discussed.

Model-Free Value-Based Methods 13

1.5 Model-Free Value-Based Methods
This thesis focuses on navigating a complex user interface. If the corresponding
MDP of the interface were known, solving the task would be straightforward.
However, since the MDP is unknown, the methods of finding optimal policy
discussed in the previous section cannot be used. In such situations, model-free
methods offer a viable solution.

1.5.1 Monte-Carlo Methods
First, consider a system with an unknown underlying MDP. An episode will
be a sequence of sampled states, actions and rewards from actual or simulated
interaction with the system under policy π, (S0, A0, R1, S1, A1, . . . , Sk). The
state-value function is the expected value of discounted return

vπ(s) = Eπ[Gt | St = s].

To find an estimate of the state-value function, sample mean of discounted
returns

Gt = Rt+1 + γRt+2 + γ2Rt+3 + . . .

over multiple episodes can be used. This approach is an instance of the Monte-
Carlo method [13].

First of the two variants of the Monte-Carlo approach is called the every-
visit Monte-Carlo. Its idea is to iterate through the episode and for every
encountered state, compute their actual discounted return until the end of the
episode and the mean of all these values will be the estimate of the state-value
function for this state. If rolling mean formula is used

xk = xk−1 +
1

k
(xk − xk−1),

the Monte-Carlo estimate can be expressed as an incremental update at time
step t to the state-value function estimate V as

V (St)← V (St) + α(Gt − V (St)), (1.3)

where α is a small positive constant (learning rate) [13]. This can be used in
a dynamic system, where value function is not constant as older episodes will
have less importance.

The other variant is called first-visit Monte-Carlo. It is different than every-
visit in that once a state was visited in an episode, its estimate is not further
updated until the end of the episode. The practical results and speculations
in [14] suggest that this version is superior to the every-visit Monte-Carlo in
terms of convergence rate, but there is no theoretical evidence of this claim.

Model-Free Value-Based Methods 14

1.5.2 Temporal Difference (TD) Methods
Another approach to the state-value function estimate, considered one of the
most significant ideas in the field of reinforcement learning [13], is temporal
difference learning, introduced by Richard S. Sutton first in 1984 in his disser-
tation [15] and later in 1988 in an article [16]. Building on the Monte-Carlo
update rule in equation (1.3), the idea of temporal difference (TD) is to use a
Bellman expectancy equation to estimate the discounted return:

V (St)← V (St) + α [(Rt+1 + γV (St+1))− V (St)] .

This can be viewed as a shift of the estimate V (St) towards the TD target

Rt+1 + γV (St+1),

and the magnitude of the shift is determined by the TD error

δt = (Rt+1 + γV (St+1))− V (St). [13]

The DP, Monte-Carlo and TD methods can be compared. The obvious
shortcoming of DP methods is that they require the knowledge of full MDP
to work. It was mentioned that for a given policy π, DP methods converge
to the actual state-value function vπ. It can also be shown that both first-
visit and every-visit Monte-Carlo converge [14]. TD also converges — almost
surely if α is sufficiently small, and with probability one if α decreases over
time [5]. The TD and DP methods, unlike Monte-Carlo, use bootstrapping,
which in this context means that the intermediate estimates are used to update
newer estimates. This allows TD to update the estimates continuously, even
if the episode hasn’t finished yet, which for some applications may be a large
advantage over the Monte-Carlo. The speed of convergence depends heavily
on the task. Temporal difference exhibits lower variance and usually converges
faster in practice than constant-α Mote-Carlo. But there are also examples
where Monte-Carlo can converge faster [5].

1.5.3 Policy Improvement in Model-Free Methods
In model-free systems, it is not possible to construct the optimal policy by sim-
ply greedily selecting the action that maximizes the estimated value-function.
This gives rise to the exploration–exploitation dilemma. If the MDP is known,
there is essentially no need for exploration, as all the necessary information
about the environment is available and pure exploitation can be performed,
i.e. the action with the highest expected return can be selected greedily. How-
ever, because the underlying MDP is usually unknown, it becomes necessary to
spend time exploring the environment. The time spent exploring must be care-
fully balanced, as excessive exploration may lead to problems, such as slower
convergence. A common strategy is to explore more in the initial phases of
training and gradually start exploiting the knowledge in the later phases.

Model-Free Value-Based Methods 15

The simplest idea is probably using the ε-greedy policy: with probability
1−ε, pick the greedy action that maximizes the estimated value function; with
probability ε, pick an action uniformly at random. The usual method is using
the ε-greedy improvement after a policy evaluation step (Monte-Carlo or TD).
The sequence of ε-greedy policies can then converge to the optimal policy, if ε
is chosen correctly [8].

A policy is said to be greedy in the limit with infinite exploration (GLIE),
if it satisfies following two conditions:

1. Every state-action pair is visited infinitely many times.

2. The learning policy converges to a greedy policy in the limit.

An example of such policy is an ε-greedy policy with εk = 1
k , where k is the

iterator of policy updates [8]. GLIE policies will play important role in finding
the optimal policy.

1.5.4 SARSA and Q-learning
Recall that the temporal difference approach evaluates the value-function of a
policy using the update rule,

V (St)← V (St) + α [(Rt+1 + γV (St+1))− V (St)] .

In model-free methods, the model of environment’s dynamics is unknown and
the transitions from a state are unknown as well. Instead of learning the
value-function of a state, an estimate of action-value Q may be learned for
every state-action pair:

Q(St, At)← Q(St, At) + α [(Rt+1 + γQ(St+1, At+1))−Q(St, At)] .

By using an ε-greedy policy maximizing the estimated action-value, the policy
can be continually improved through a process similar to policy iteration as
described in Figure 1.5. This algorithm was originally introduced as Modified
Connectionist Q-Learning in [17] in 1994. A footnote in the article mentions:
“Though Rich Sutton suggests SARSA, as you need to know State-Action-
Reward-State-Action before performing an update” [17]. Since then, the name
SARSA has become standard in the literature.

If step-sizes αt form a Robbins-Monro sequence, i.e.
∞∑︂
t=0

αt =∞

∞∑︂
t=0

α2
t <∞

and a GLIE policy is used, then SARSA algorithm converges with probability
one to the optimal action-value function, and thus yields an optimal policy [18].

Model-Free Value-Based Methods 16

Algorithm 1 SARSA
1: Initialize Q(S,A) arbitrarily for all S ∈ S, A ∈ A
2: for each episode do
3: Initialize state S and choose action A using policy derived from Q
4: while S is not terminal do
5: Take A, observe R,S′

6: Choose A′ from S′ using policy derived from Q
7: Q(S,A)← Q(S,A) + α[R+ γQ(S′, A′)−Q(S,A)]
8: S ← S′, A← A′

9: end while
10: end for

Figure 1.5 Pseudocode of the SARSA algorithm, paraphrased from [5].

SARSA is an on-policy learning algorithm, which means that it needs to
sample episodes using the policy that is being optimized to estimate its action-
value function. There exists an off-policy TD alternative, called Q-learning,
which can learn on episodes sampled using a different policy. Q-learning was
introduced already in 1989 by Christopher J. C. H. Watkins in his disser-
tation [19] and the proof to its convergence theorem was presented in 1992
in [20].

The update rule of its simplest form, the one-step Q-learning, is derived
from the Bellman optimality equation:

Q(St, At)← Q(St, At) + α
[︂
(Rt+1 + γmax

a
Q(St+1, a))−Q(St, At)

]︂
.

Since Bellman optimality equation is used, Q(St, At) is now updated toward
the action-value function of an optimal policy [5]. In each state-action pair,
the update is done greedily using the action a that maximizes the estimated
action-value, even though in the next time step, the algorithm continues with
the state-action pair that was experienced, which is not necessarily the one
with the greedy action a.

As mentioned, the algorithm operates off-policy. The policy used to gener-
ate the state-action transitions is referred to as behaviour policy and the policy
being optimized is target policy. The two processes of generating samples
and updating value function estimate are separate. The Q-learning algorithm
makes it possible to use an arbitrary behaviour policy, given that all state-
action pairs are updated infinitely often in the limit. Under this assumption
and the standard stochastic approximation conditions on the step size, it has
been shown that Q converges to q∗ [5].

In a closed-loop situation, where the agent makes decisions based on ob-
served feedback, an ϵ-greedy policy is still commonly used as the behaviour

Model-Free Value-Based Methods 17

Algorithm 2 Q-learning
1: Initialize Q(S,A) arbitrarily for all S ∈ S, A ∈ A
2: for each episode do
3: Initialize state S
4: while S is not terminal do
5: Choose action A from S using behaviour policy
6: Take A, observe R,S′

7: Q(S,A)← Q(S,A) + α [R+ γmaxaQ(S′, a)−Q(S,A)]
8: S ← S′

9: end while
10: end for

Figure 1.6 Pseudocode of the Q-learning algorithm, paraphrased from [5].

policy [13]. Pseudocode for Q-learning can be seen in Figure 1.6. The algo-
rithm is sometimes referred to as SARSAMAX [8].

1.5.5 Eligibility Traces
This section describes an important concept in temporal difference methods
that will be briefly introduced here. It was introduced in Richard S. Sutton’s
1984 PhD thesis [15], and a thorough description can be found in his and
Andrew G. Barto’s book [5].

First, the algorithm will be allowed to use information from multiple steps
ahead. In the standard TD update rule, the estimate is updated towards TD
target

Rt+1 + γV (St+1).

The update uses the immediate reward Rt+1 and the estimate of future returns
represented by the estimated state-value function V (St+1), i.e. bootstrapping
from St+1. By allowing TD to look further ahead, it could use multiple imme-
diate rewards and bootstrap from a later state. For example, with a two-step
look ahead, the TD target becomes

Rt+1 + γRt+2 + γ2V (St+2).

With infinite steps look-ahead, the TD target becomes the actual discounted
return value, so the temporal difference method becomes equivalent to Monte-
Carlo [5].

The TD target can thus be expressed as n-step return, defined as

G
(n)
t = Rt+1 + γRt+2 + γ2Rt+3 + · · ·+ γn−1Rh + γnV (St+n), [8]

Model-Free Value-Based Methods 18

Figure 1.7 The behaviour of weighting in each n-step return in the λ-return.
Reproduced from [5].

where h = t + n is called the horizon of the n-step return. This extension of
TD will then be called n-step temporal difference learning and the update step
will be

V (St)← V (St) + α
[︂
G

(n)
t − V (St)

]︂
.

If the episode concludes before the horizon is reached, the sequence is truncated
at the end of an episode and the n-step return effectively contains the actual
return [5].

Although n-steps TD methods are conceptually helpful, in practice, they
are not very convenient to implement [5]. Instead, it is common to use the
average of n-step returns for all n. Let λ ∈ R, 0 ≤ λ ≤ 1. The λ-return can be
expressed as

Gλ
t = (1− λ)

∞∑︂
n=1

λn−1G
(n)
t .

Using the Gλ
t as the TD target, the forward-view TD(λ) algorithm is ob-

tained [8]. As illustrated in Figure 1.7, lower value of parameter λ increases
the rate of decay, so more weight is given to the lower n.

The forward-view approach to TD(λ) is conceptually straightforward, but
it cannot be directly implemented in an online setting, i.e. when updates are
made during an episode [5]. An offline implementation would be possible, but
it would sacrifice one of the primary advantages of TD methods over Monte-
Carlo.

In the TD(λ) algorithm, an additional variable called eligibility trace will
be associated with each state. Eligibility trace Et(s) ∈ R+ of state s decays at
each time step by parameter λ introduced above and the discount factor γ

Et(s) = γλEt−1(s),

and whenever the state s is visited, its eligibility trace is incremented by one.

Model-Free Value-Based Methods 19

Figure 1.8 An illustration of accumulating eligibility trace behaviour. Reproduced
from [5].

Algorithm 3 Backward-view TD(λ)

1: Initialize V (S) arbitrarily for all S ∈ S
2: for each episode do
3: Initialize E(s) = 0 for all s ∈ S
4: Initialize S
5: while S is not terminal do
6: Choose action A using the evaluated policy
7: Take A, observe R,S′

8: δ ← (R+ γV (S′))− V (S)
9: E(S)← E(S) + 1 ▷ accumulating trace

10: for all s ∈ S do
11: V (s)← V (s) + αδE(s)
12: E(s)← γλE(s)
13: end for
14: S ← S′

15: end while
16: end for

Figure 1.9 Pseudocode of the online TD(λ) algorithm, paraphrased from [5].

Generally,
E0(s) = 0, Et(s) = γλEt−1(s) + 1{St=s}

where St is the state visited at time step t and 1{St=s} is an indicator function,
which equals one if St = s, or zero otherwise [8]. Illustration of how accumu-
lating eligibility trace evolves over time can be seen in Figure 1.8. There
are other strategies for updating eligibility traces, such as the replacing trace,
which sets the eligibility trace value to one instead of incrementing it, or dutch
trace, which is sort of intermediate between replacing trace and accumulating
trace [5].

The backward-view TD(λ) algorithm calculates the TD error in each step,

δt = (Rt+1 + γV (St+1))− V (St),

and updates the state-value function estimate for each state s,

V (s)← V (s) + αδtEt(s). [8] (1.4)

Model-Free Value-Based Methods 20

The update of states in equation (1.4) in fact happens only in recently visited
states, as for other states the value of eligibility trace will be zero. A possible
optimization is to keep track of recently visited states that are to be updated.
The value of parameter λ determines what “recently visited” means. The
backward view allow us to construct an online algorithm. A pseudocode for
this is illustrated in Figure 1.9.

It can be seen that TD(0) is the algorithm introduced before as TD (only
n = 1 step is used), while offline TD(1) is equivalent to the constant-α Monte-
Carlo [8].

Since SARSA is a straightforward extension of TD, a SARSA(λ) can be
constructed in the same way as TD(λ). The intuition behind forward-view
SARSA(λ) is very similar. The n-step Q-return is defined as

q
(n)
t = Rt+1 + γRt+2 + γ2Rt+3 + · · ·+ γn−1Rh + γnQ(St+n, At+n),

where h = t + n is again the horizon of the n-step Q-return. By using the
exponentially weighted average over all n with decay parameter λ, a qλ return
is obtained,

qλt = (1− λ)

∞∑︂
n=1

λn−1q
(n)
t .

Finally, using these the forward-view SARSA(λ) is obtained,

Q(St, At)← Q(St, At) + α
(︂
qλt −Q(St, At)

)︂
. [8]

In its backward-view variant, eligibility trace for each state-action pair,

E0(s, a) = 0, Et(s, a) = γλEt−1(s, a) + 1{St=s,At=a},

is used to construct the online algorithm. TD error is calculated in the same
way as in TD(λ), except that instead of state-value function, an action-value
function is being shifted,

δt = (Rt+1 + γQ(St+1, At+1))−Q(St, At),

and an action-value function for each (recently visited) state-action pair s, a is
updated,

Q(s, a)← Q(s, a) + αδtEt(s, a). [8]

It is possible to combine Q-learning with eligibility traces in a straightfor-
ward way, which was shown already in 1989 by Christopher J. C. H. Watkins
when Q-learning was introduced [19]. The algorithm is known as Watkins’
Q(λ). In the backward view, it operates in the same way as SARSA(λ), but
whenever a non-greedy action is taken, all eligibility traces are cut off and
set to zero. This can reduce the benefits of eligibility traces, especially in the
initial phases of training when exploratory actions are taken more often [5].

Function Approximation in RL 21

1.6 Function Approximation in RL
All the methods introduced so far are known as tabular methods, which require
maintaining an explicit table of estimates of value function for every state
(or state-action pair). For control of an agent in model-free environment, an
action-value function estimate must be stored for every possible state-action
pair.

For example, the number of possible legal positions in chess is estimated
to be approximately 4.8 · 1044 [21], making it infeasible to maintain a separate
estimate for each state. The problem is not just a large memory requirement
to store the table, but also the time necessary to accurately fill it [5]. In this
work, state may represent a screen (e.g., a display screenshot) in possibly a
complex environment consisting of large amount of screens. An alternative
approach might be more suitable.

The straightforward way is to use a function that approximates the real
state-value function,

v̂(s,w) ≈ vπ(s),

or action-value function,

q̂(s, a,w) ≈ qπ(s, a),

for given policy π [5].
Using function approximation, it is no longer necessary for each state or

state-action pair to be visited. The concept of generalization plays a crucial
role here. It is necessary to approximate the value function so that the ap-
proximation works well even for states that were never visited [5].

There exists wide variety of methods for function approximation, e.g. linear
regression, neural networks, proximity-based methods and many more. Recent
works (e.g. [22], [23]) have shown great promise in differentiable methods and
neural networks.

There are also requirements on the training method, namely that it must
handle non-stationary targets, as the value estimates may change during train-
ing, and that it should be suitable for non-iid data, i.e. it should be able to
handle steps that are dependent on each other [8].

First, suppose that vπ(s) is a known function and v̂(s,w) will be its ap-
proximation. The theoretical objective can be expressed as minimization of
root-mean-squared error (RMSE)

RMSE(w) =

√︄∑︂
s∈S

d(s) [vπ(s)− v̂(s,w)]2,

where d(s) ∈ [0, 1],
∑︁

s d(s) = 1 is a distribution over the states that specifies
relative importance of error in each state. In order to gain better approxima-
tion at some states, approximation in other states must become less important.

Function Approximation in RL 22

For example, states that are visited more often may have higher importance.
In fact, the distribution d may match the distribution of sampled data, which
will be assumed in the rest of this section [5].

1.6.1 Gradient Descent
A gradient of a function is a vector that contains all of its first-order partial
derivatives with respect to its input variables. Let f(w) be a differentiable
function, where w = (w1, w2, . . . , wn)

T . The gradient of f with respect to w
is given by

∇wf(w) =

(︃
∂f

∂w1
,
∂f

∂w2
, . . . ,

∂f

∂wn

)︃T

.

The gradient points in the direction of the steepest ascent, so stochastic gra-
dient descent (SGD) iteratively updates the parameters w in the direction
opposite to the gradient of the function.

In order to minimize the RMSE, parameters must be slightly adjusted in
the opposite direction of its gradient. This leads to the following update rule:

wt+1 = wt −
1

2
α∇wt [vπ(St)− v̂(St,wt)]

2

= wt + α[vπ(St)− v̂(St,wt)]∇wt v̂(St,wt). [5]

The value 1
2 is used as a part of loss function to simplify the gradient. Note that

as long as v̂(St,wt) is differentiable, gradient-based optimization algorithms
can be used to perform the update.

Since the assumption that vπ(s) is known does not make much sense (oth-
erwise the function itself would be a perfect approximation), consider using an
estimate Vt of vπ(St) as the target,

wt+1 = wt + α[Vt − v̂(St,wt)]∇wt v̂(St,wt). [5]

The methods discussed in previous sections can be used to form a state-value
function approximation:

Monte-Carlo: Vt = Gt

TD(0): Vt is the TD target Rt+1 + v̂(St+1,wt)

Forward-view TD(λ): Vt is the λ-return Gλ
t

Backward-view TD(λ): the update is done using eligibility traces,

e0 = 0, et = γλet−1 +∇wt v̂(St,wt),

δt = Rt+1 + γv̂(St+1,wt)− v̂(St,wt),

wt+1 = wt + αδtet. [5]

Function Approximation in RL 23

It can be shown that if Vt is an unbiased estimate and the standard stochastic
approximation conditions on the step size are met, then wt converges to a to
a stationary point of the mean-squared error. This is true for Monte-Carlo,
but with λ < 1, TD is not an unbiased estimate. However, bootstrapping
methods are effective and offer other performance guarantees, making them
still useful [5].

Similarly to model-free tabular methods, an action-value function must be
evaluated to be able to make decisions between actions. So instead of state-
value, the objective will shift to approximate action-value function q̂(s, a,w).
Luckily, as with the tabular methods, the extension for on-policy methods is
straightforward,

wt+1 = wt + α[Qt − q̂(St, At,wt)]∇wt q̂(St, At,wt), [5]

and by using previously introduced methods for action-value function estima-
tion, an approximation can be done in te following way:

Monte-Carlo: Qt is the return Gt

TD(0): Qt is the TD target Rt+1 + γq̂(St+1, At+1,wt)

Forward-view TD(λ): Qt is the qλ return qλt

Backward-view TD(λ): the update is done using eligibility traces,

e0 = 0, et = γλet−1 +∇wt q̂(St, At,wt),

δt = Rt+1 + γq̂(St+1, At+1,wt)− q̂(St, At,wt),

wt+1 = wt + αδtet. [5]

Backward-view TD(λ) with a control mechanism, e.g. ε-greedy policy, is called
gradient-descent SARSA(λ) [5].

Because of bias, temporal difference methods do not guarantee convergence
for a non-linear function approximation. It might seem that this goes against
the classical SGD results, but in fact, the TD methods are not instances of
true gradient descent [24], which is why they are referred to as semi-gradient
methods.

The extension of function approximation to the off-policy methods is even
more concerning, as there is no convergence guarantee even for the linear
function approximation. A famous example of divergence is the Baird’s coun-
terexample [25], introduced in 1995 by Leemon Baird. Richard S. Sutton and
Andrew G. Barto discuss the deadly triad [5], a combination of three elements
that may lead to a danger of instability and divergence:

Function approximation

Bootstrapping

Policy Gradient Methods 24

Off-policy training

According to them, when only two elements of the triad are in use, divergence
and instability can be avoided. Note however, that there are highly successful
algorithms, such as Deep Q-Network (DQN) [23], that use all three elements
of the deadly triad. There are recent works that suggest possibility to mitigate
the dangers of deadly triad [26].

1.7 Policy Gradient Methods
So far, finding a reinforcement learning agent was discussed as a task of es-
timating a value function and acting with respect to it, e.g. greedily. These
are known as value‑based methods. This section will focus on the other class,
policy-based methods, that aim to parametrize the policy,

π(a | s,θ) = P(At = a | St = s,θt = θ), [5]

where θ parametrizes the distribution.
This section will focus on policies where it is possible to estimate a gradient

of their performance measure. The objective will be to maximize this measure,
so a gradient ascent method will be used. Its update rule looks as follows:

θt+1 = θt + α ˆ︂∇θtJ(θt), (1.5)

where J(θt) is the performance measure and ˆ︂∇θtJ(θt) is the estimate of its
gradient [5].

It was in 1992 when Ronald J. Williams introduced the REINFORCE al-
gorithm [27]. It is a Monte-Carlo algorithm, so in each iteration, it samples
a complete trajectory (episode) τ = (S0, A0, R1, S1, A1, . . . , An−1, Rn) from a
space of all possible trajectories T using policy π(a | s,θ) and then, in each
step of the episode, an update rule in the form of equation (1.5) will be applied.

Williams’ original episodic REINFORCE update is

∆θt = α(Gt − b(s))∇θt log π(At | St,θt),

where α is learning rate (unlike in the original, constant is assumed in this
thesis), b is reinforcement baseline, which will be discussed in more detail later,
for now, consider b(s) to be uniformly zero, and ∇θt log π(At | St,θt) is called
the characteristic eligibility [27]. Since the update rule is not straightforward,
the following paragraph will explain the idea of how it is derived.

Consider use of the expected return from policy π as the performance
measure,

J(θ) = Eπ[R(τ)],

where R(τ) is the discounted return value of trajectory τ . This value can be
expressed as an integral over all trajectories:

J(θ) =

∫︂
T
R(τ)πθ(τ) dτ,

Policy Gradient Methods 25

Algorithm 4 Episodic REINFORCE with baseline
1: Initialize θ and w arbitrarily
2: for each episode do
3: Generate an episode (S0, A0, R1, S1, A1, . . . , AT−1, RT) using policy

π(a | s,θ)
4: for each step t in the episode do
5: G←

∑︁T
k=t+1 γ

k−t−1Rk

6: δ ← G− v̂(St,w)
7: θ ← θ + αγtδ∇θ log π(At | St,θ)
8: w← w + βδ∇wv̂(St,w)
9: end for

10: end for

Figure 1.10 Pseudocode of the REINFORCE algorithm with a learned state-value
function as a baseline, adapted from [5].

where πθ(τ) is a probability of the trajectory under policy πθ. This value
could also be expressed using separate steps of the trajectory, i.e. if ρ0(s) is
the probability distribution of the initial state (a probability of S0 = s),

S0 ∼ ρ0(S0), At ∼ πθ(At | St,θ), St+1 ∼ P(St+1 | St, At).

The simpler notation of probability of the whole trajectory, πθ(τ), will be used.
The goal is to find the gradient of the J function and since the trajectory space
T is independent of θ, Leibniz rule applies and the gradient can be moved
inside the integral. Applying the product rule for differentiation,

∇θJ(θ) =

∫︂
T
R(τ)∇θπθ(τ) dτ.

Now using the “log-derivative trick”,

∇θp(x | θ) = p(x | θ)∇θ log p(x | θ),

the gradient can be expressed as

∇θJ(θ) =

∫︂
T
R(τ)πθ(τ)∇θ log πθ(τ) dτ,

which is an expression for the expected value

∇θJ(θ) = Eπ[R(τ)∇θ log πθ(τ)]. (1.6)

Finally, to obtain the Monte-Carlo estimate of this value, a sampled trajectory
τ = (S0, A0, R1, S1, A1, . . . , An−1, Rn) and a discount factor γ will be used. The
gradient estimate can then be computed for each time step t ∈ 0, . . . , n− 1:

ˆ︂∇θtJ(θt) = γtGt∇θt log πθt(At | St,θt),

Policy Gradient Methods 26

0 50 100 150 200 250 300 350 400
Episode

20

40

60

80

100

To
ta

l r
ew

ar
d

Figure 1.11 Example run of the REINFORCE algorithm without baseline.

where Gt =
∑︁n

k=t+1 γ
k−t−1Rk [27]. This is the value that is used in the update

rule of REINFORCE algorithm if baseline b(s) is zero for all s ∈ S.
The baseline function b(s) is used to mitigate high variance. An example of

such baseline is an approximation of the state-value function v̂(s,w) introduced
in Section 1.6. The parameter vector w may be learned using gradient descent
with Monte-Carlo estimate inside the REINFORCE algorithm’s loop. This
way, the action taken is measured against the average outcome from that
state. A pseudocode of this can be seen in Figure 1.10. Using this baseline
can make REINFORCE learn much faster [5].

▶ Example 1.4. REINFORCE algorithm can be used to find an optimal
policy of the simple environment introduced in Example 1.1. An extremely
simple approximation using parameters θ =

(︁
θ0, θ1, θ2

)︁
will be used.

π(a | s,θ) = σ
(︁
θT s

)︁
,

where σ is the sigmoid function and s is a one-hot state encoding. Parameters
will be initialized to zero, so that the initial action probabilities are uniform.

When using binary actions, it is possible to rewrite the probability model
as Bernoulli distribution,

π(a | s,θ) = σ
(︁
θT s

)︁a
(1− σ

(︁
θT s

)︁
)
1−a

.

Now taking the logarithm,

log π(a | s,θ) = a log σ
(︁
θT s

)︁
+ (1− a) log (1− σ

(︁
θT s

)︁
),

by first taking the partial derivative of the approximation with respect to
x = θT s,

∂ log π(a | s,θ)
∂x

= a(1− σ(x)) + (1− a)(−σ(x)) = a− σ(x),

Policy Gradient Methods 27

because
∂ log σ(x)

∂x
= 1− σ(x) and ∂ log(1− σ(x))

∂x
= −σ(x).

Then, after computing partial derivative of x with respect to the parameters
θ,

∂x

∂θ
=

∂θT s

∂θ
= s,

a chain rule can be applied to obtain

∇θ log π(a | s,θ) = (a− σ(θT s))s.

And the update rule of REINFORCE without baseline for each timestep t will
be

Gt =
T∑︂

k=t+1

γk−t−1Rk

θ ← θ + αγtGt(At − σ(θT st))st,

where st is the one-hot encoding of state St, and γ = 0.66, α = 0.1 are used.
How the value of obtained reward per episode changes on the example can

be seen in Figure 1.11. A small value of learning rate α = 0.003 was used
so that the learning process is more explicit in the illustration. Episodes of
length 100 were sampled. The probability of selecting action white in each
state approaches one.

1.7.1 Actor-Critic Methods
A framework of what is known today as actor-critic was introduced already
in 1977 by Ian H. Witten [28]. A majority of early reinforcement learning
algorithms fell into one of two categories:

1. Actor-only methods that use parametrized policy. An example would be
the policy gradient methods, such as the REINFORCE algorithm without
baseline. These alone tend to have a large variance.

2. Critic-only methods that try to find the approximation value function and
the approximate solution to the Bellman equations. An example would be
the SARSA algorithm introduced in Section 1.5.4.

Actor-critic methods aim to combine these approaches [29].
REINFORCE algorithm with baseline uses policy gradient to update its

policy and value function approximation to stabilize the training, but the value
function approximation is done before an action is taken so it is not used to
“criticize” the policy gradient method. Actor-critic methods aim to do just
that [5].

Policy Gradient Methods 28

Algorithm 5 Episodic one-step actor-critic
1: Initialize θ and w arbitrarily
2: for each episode do
3: Initialize S
4: I ← 1
5: while S is not terminal do
6: Sample A from π(A | S,θ)
7: Take A, observe R,S′

8: δ ← R+ γv̂(S′,w)− v̂(S,w)
9: θ ← θ + αIδ∇θ log π(A | S,θ)

10: w← w + βδ∇wv̂(S,w)
11: S ← S′

12: I ← γI
13: end while
14: end for

Figure 1.12 Pseudocode of the one-step actor-critic algorithm, adapted from [5].

The transition from Monte-Carlo Policy Gradient (REINFORCE) to the
simplest actor-critic can be done analogically to the transition from Monte-
Carlo to TD in the value-based methods. Instead of using the discounted
return Gt, its bootstrapped estimate will be used,

δ = Rt+1 + γv̂(St+1,w)− v̂(St,w). [5]

By comparing this to the δ of REINFORCE with baseline,

δ = Gt − v̂(St,w),

it can be seen that the actor-critic’s δ actually uses it’s estimate to assess
the action taken by the actor. Intuitively, if Rt+1 + γv̂(St+1,w) yields lower
value than the critic estimates, the parameters will be shifted in the negative
direction of the gradient. On the other hand, if it is better than the estimate
of the critic, parameters are shifted in the direction of the gradient. Using
this approach, the algorithm becomes fully online. The pseudocode is in Fig-
ure 1.12. Note that the extension to actor-critic with action-value function
approximation is straightforward.

An obvious extension to this is adding eligibility traces. Recall that by
using them, the algorithm is allowed to look n steps ahead and use a weighted
average of approximations for n = 1, 2, . . . ,∞, where the parameter λ ∈ [0, 1] is
used — higher λ values result in a more uniform weighting across n, while lower
λ values emphasize shorter-term returns (i.e. lower n). The implementation
is straightforward and follows the implementation of backward-view approach

Policy Gradient Methods 29

Algorithm 6 Episodic actor-critic with eligibility traces
1: Initialize θ and w arbitrarily
2: for each episode do
3: Initialize S
4: eθ ← 0, ew ← 0
5: I ← 1
6: while S is not terminal do
7: Sample A from π(A | S,θ)
8: Take A, observe R,S′

9: δ ← R+ γv̂(S′,w)− v̂(S,w)
10: eθ ← γλθeθ + I∇θ log π(A | S,θ)
11: ew ← γλwew +∇wv̂(S,w)
12: θ ← θ + αθδeθ

13: w← w + αwδew

14: S ← S′, I ← γI
15: end while
16: end for

Figure 1.13 Pseudocode of the actor-critic algorithm with eligibility traces,
adapted from [5].

discussed in Section 1.5.5, its pseudocode is in Figure 1.13. λθ, λw ∈ [0, 1]
are trace-decay parameters, αθ, αw are learning rates and eθ, ew are eligibility
trace vectors [5].

1.7.2 Policy Gradient Theorem
This section briefly presents the policy gradient theorem [30]. It was derived in
Equation (1.6) that using the expected return of an episode as the performance
measure, its gradient is

∇θJ(θ) = Eπ[R(τ)∇θ log πθ(τ)].

Policy gradient theorem describes a general case, which states that for any
differentiable policy and for usual objective functions, such as the average
reward or the expected value function, the gradient is

∇θJ(θ) = Eπθ
[∇θ log πθ(a | s,θ)qπθ

(s, a)] [8]. (1.7)

When this was derived in Equation (1.6) for REINFORCE, a Monte-Carlo
estimate of Gt was used as an unbiased estimate of the qπθ

(s, a). Actor-critic
methods use a bootstrapped approximation of policy gradient, which may
introduce bias and a biased policy gradient may not find the right solution.

Policy Gradient Methods 30

By carefully choosing the approximation according to the compatible function
approximation theorem, the method may work without introducing a bias.
That is, the gradient is exactly as in Equation (1.7), if the following two
conditions are satisfied:

1. Compatibility of value function aproximator and the policy, i.e.

∇wq̂(s, a,w) = ∇θ log π(a | s,θ)

2. Parameters w minimize MSE, i.e.

ε = Eπθ

[︂
(qπθ

(s, a)− q̂(s, a,w))2
]︂

[8]

Readers further interested are referred to the original paper by Sutton et
al. [30]. Note that even methods without formal guarantees may perform
well in practice, as previously discussed.

Chapter 2

Advanced Methods in
Reinforcement Learning

This chapter builds upon the foundations laid in Chapter One and introduces
two important ideas in modern reinforcement learning: scalable learning and
intrinsic motivation. The discussion on scalable learning gradually leads to
Proximal Policy Optimization, which will be employed in the practical part of
this thesis. The chapter then explores intrinsic motivation as a fundamental
driver for the agent’s natural exploration of the environment.

2.1 Natural Policy Gradient
The policy gradient discussed in Section 1.7 is known as vanilla policy gradient.
As previously mentioned, it uses the stochastic gradient ascent algorithm to
optimize the policy and the rule is

θ ← θ + α∇θJ(θ).

Parameter α controls the step size. This rule, however, is non-covariant — not
only may not all θi have the same unit size, but also the left hand side of the
update rule has different units than the right hand side. To be exact, each
parameter on the left hand side has unit size of [θi], while the partial derivative
of this parameter has unit size[︃

∂J(θ)

∂θi

]︃
=

[J(θ)]

[θi]
=

1

[θi]
.

J(θ) is an expected return, which is unit-less [31].
Natural policy gradient uses underlying structure of the policy to update

the parameters. To simplify the notation, suppose that πθ(a | s,θ) = πθ(a | s),
i.e. the parametrization will only be denoted in the subscript. The policy

31

Natural Policy Gradient 32

gradient theorem introduced in Section 1.7.2 says that the (vanilla) policy
gradient is

∇θJ(θ) = Eπθ
[∇θ log πθ(a | s)qπθ

(s, a)],

which, given that policy π is ergodic, i.e. has a defined stationary distribution
over states ρπθ

, can be rewritten as

∇θJ(θ) =
∑︂
s∈S

ρπθ
(s)

∑︂
a∈A
∇θπθ(a | s)qπθ

(s, a).

Instead of the task of finding the direction of steepest ascent, Natural Policy
Gradient method solves the task of finding max J(θ+∆θ), under the constraint
that ||∆θ||2G = ∆θTG(θ)∆θ = ε, where ε is small positive constant and G(θ)
is a matrix defining the metric || · ||G (thus is positive-definite). The direction
of steepest ascent is ∆θ ∝ G(θ)−1∇θJ(θ) [31].

Using vanilla policy gradient, the steepest ascent that is followed is∇θJ(θ),
thus G(θ) = I where I is identity matrix [31].

Natural policy gradients reparametrize the gradient using a different G
matrix, so

∇nat
θ J(θ) = G(θ)−1∇θJ(θ).

A matrix used as G is the Fisher information matrix, defined per-state as

Fs(θ) = Eπθ
[∇θ log πθ(a | s)∇θ log πθ(a | s)T]

and it “is an invariant metric on the space of the parameters of probability
distributions” [31]. Suppose Es∼ρ[·] = E[· | s ∼ ρ], natural gradients use the
metric

F (θ) = Es∼ρπθ
[Fs(θ)],

and the steepest ascent direction is

∇nat
θ J(θ) = F (θ)−1∇θJ(θ) [31].

2.1.1 Natural Actor-Critic
An example of use of Natural Policy Gradient is Natural Actor-Critic, intro-
duced in 2005 in [32]. An example of compatible value function approximation
(more in Section 1.7.2), i.e. ∇wq̂(s, a,w) = ∇θ log πθ(a | s), is

q̂(s, a,w) = (∇θ log πθ(a | s))Tw.

The policy gradient, according to policy gradient theorem, will be

∇θJ(θ) = Eπθ
[∇θ log πθ(a | s)qπθ

(s, a)].

Using the compatible value function above as an approximation of qπθ
(s, a),

∇θJ(θ) = Eπθ
[∇θ log πθ(a | s)(∇θ log π(a | s))Tw] = G(θ)w,

Trust Region Policy Optimization (TRPO) 33

so, because the critic is compatible and the expectation equals the Fisher
matrix, the natural policy gradient is

∇nat
θ J(θ) = w.

And finally, the update step of natural actor-critic is

θ ← θ + αw [32].

The beauty of this approach is that the Fisher information matrix does not
need to be explicitly computed or inverted to use the advantages of natural
policy gradients.

2.2 Trust Region Policy Optimization (TRPO)

Trust region policy optimization (TRPO) [33] is a relatively recent approach
to policy optimization. It borrows the minorize-maximise (MM) [34] intuition
and works in a similar way. The objective is to find parametrization θ that
maximizes the expected return, i.e.

J(θ) = Eπθ
[Gt],

Suppose now that θold is the previous policy parameter that the update is
relative to. MM algorithm uses a surrogate function g(θ | θold), which is said
to minorize function J if

∀θ : g(θ | θold) ≤ J(θ) and g(θold | θold) = J(θold).

Finding a minorization of a function is the first step of the MM algorithm.
The second and last step is to find parameter θ that maximizes the surrogate
function. In the next iteration, this newly found value is used as θold [34].

Recall, that the state-value and the action-value functions following policy
π are defined as

vπ(s) = Eπ[Gt | St = s] and qπ(s, a) = Eπ[Gt | St = s,At = a],

where Gt is the discounted reward. We define the advantage function aπ
following policy π as

aπ(s, a) = qπ(s, a)− vπ(s) [33].

Intuitively, if taking action a in state s yields a higher expected return than
the average action under policy π, the advantage is positive; otherwise, it is
negative.

Advantage function will be of great importance. Suppose that θ and θold
are two arbitrary parametrizations of policy πθ. It can be shown (proof in [35])

Trust Region Policy Optimization (TRPO) 34

that if γ ∈ (0, 1) and πθ is ergodic, these two can be related using the advantage
function,

J(θ) = J(θold) + Eπθ

[︄ ∞∑︂
t=0

γtaπθold
(st, at)

]︄
.

This can be rewritten as a sum over states and actions, given that πθ is ergodic
and ρπθ

(s) is a unnormalized discounted visitation frequency of state s under
policy πθ,

J(θ) = J(θold) +
∑︂
s∈S

ρπθ
(s)

∑︂
a∈A

πθ(a | s)aπθold
(s, a). (2.1)

Recall that policy iteration (Section 1.4) indirectly uses this — if there is a
positive advantage value in a state-action pair with non-zero probability, then
the policy improves [33].

Looking at the Equation (2.1), because of dependency of ρπθ
(s) on πθ it

would be difficult to optimize it directly. Using the following approximation is
one of the key ideas in the derivation of TRPO:

g(θ | θold) = J(θold) +
∑︂
s∈S

ρπθold
(s)

∑︂
a∈A

πθ(a | s)aπθold
(s, a). (2.2)

It can be shown that a sufficiently small step that improves g(θ | θold) also
improves J(θ) [33].

So far, this mostly proceeds from Kakade and Langford’s paper [35]. They
proposed a mixture policy update rule,

πnew(a | s) = (1− α)πold(a | s) + απ′(a | s),

where π′(a | s) = 1{a = argmaxa′ qπold(s, a
′)}. This mixture policy update

rule is however not very practical [33].

2.2.1 Defining the Trust Region
The key idea in TRPO is to constrain how much the new policy parameters
deviate from the old parameters. The parameter α is replaced by a distance
measure. A natural choice is the Kullback-Leibler (KL) divergence [36],

DKL(π1(· | s)||π2(· | s)),

which measures the average divergence between two policies. TRPO uses a
heuristic approximation of this,

D
ρ
KL(θ1,θ2) = Es∼ρ [DKL(πθ1(· | s)||πθ2(· | s))] .

This is a straightforward way to approximate the size of the policy update
from policy parametrized using θ1 to one parametrized with θ2 across states
sampled from ρ. So the TRPO update rule is

maximizeθ g(θ | θold)

subject to D
ρπθold
KL (θ,θold) ≤ δ [33].

Generalized Advantage Estimation (GAE) 35

2.2.2 Importance Sampling for Practical Use
In practice, the trajectories are collected using the current policy, πθold , and
the expectations must be estimated under the new policy πθ. This is done
by replacing the sum over the actions in Equation (2.2) using the importance
sampling.

g(θ | θold) = J(θold) + Es∼ρπθold

[︃
πθ(a | s)
πθold(a | s)

Aπθold
(s, a)

]︃
,

where Aπθold
(s, a) is an estimate of the advantage function. The TRPO update

becomes
maximizeθ Es∼ρπθold

[︃
πθ(a | s)
πθold(a | s)

Aπθold
(s, a)

]︃
subject to Es∼ρπθold

[DKL(πθold(· | s)||πθ(· | s))] ≤ δ,

where δ > 0 is a hyperparameter, determining the magnitude of the con-
straint [33].

The original paper also suggests using a penalty instead of a constraint:

maximizeθ Es∼ρπθold

[︃
πθ(a | s)
πθold(a | s)

Aπθold
(s, a)

]︃
− βD

ρπθold
KL (θ,θold),

where β > 0 is a hyperparameter [33].
A note in the original paper describes how TRPO is closely related to a

natural policy gradient. Specifically, it can be derived by applying a linear
approximation to the surrogate objective and a quadratic approximation to
the KL-divergence constraint — leading to an update in the natural gradient
direction. Connection of this algorithm to policy iteration was shown [33].

2.3 Generalized Advantage Estimation (GAE)
An estimate of advantage function can be obtained by replacing value functions
by their estimate in the advantage function definition:

Aπ(st, at) = Qπ(st, at)− Vπ(st),

where Qπ(s, a) and Vπ(s) are the estimates. Because

Qπ(st, at) = E[Rt+1 + γVπ(st+1)],

where γ is the discount factor, this can be estimated as

Aπ(st, at) = Rt+1 + γVπ(st+1)− Vπ(st).

Recall that this is the TD error introduced in Section 1.5.2. Similarly to TD,
this estimator has low variance, but unfortunately is biased (unless V estimator
is unbiased) [37].

Proximal Policy Optimization (PPO) 36

The derivation of Generalized Advantage Estimation (GAE) [37] is analog-
ical to how the eligibility traces introduced in Section 1.5.5 are derived. This
simple advantage estimator can be extended to multi-step returns, yielding an
n-step advantage estimate:

Â
(n)
t = Rt+1 + γRt+2 + γ2Rt+3 + · · ·+ γn−1Rt+n + γnVπ(st+n)− Vπ(st).

If the episode concludes before reaching n, the sequence is truncated. Next,
using a decay parameter λ ∈ R, 0 ≤ λ ≤ 1, the GAE estimator is defined as
the exponentially weighted average of the n-step advantage estimate values,

Aπ(st, at) = (1− λ)

∞∑︂
n=1

λn−1Â
(n)
t .

This is equivalent to a more compact form,

Aπ(st, at) =
∞∑︂
n=0

(γλ)nδt+n,

where δt = Rt+1 + γVπ(st+1)− Vπ(st) [37].
Parameter λ controls the bias-variance trade-off. With λ = 0 the esti-

mate is reduced to a one-step TD error, which has the lowest variance but
retains the high bias of the imperfect value function estimator. With λ = 1,
GAE uses the Monte-Carlo return (unbiased) minus the estimate Vπ(st). The
Vπ(st) is cancelled out in the associated policy gradient, so it remains unbiased.
Similarly to Monte-Carlo methods, however, this advantage function estimate
would typically have a high variance [37].

State-value function v could be estimated by using an approximator func-
tion introduced in Section 1.6. A neural network used as a value-function
approximator would typically be called a value-function network. Its output
— the value function estimate — would then be used by GAE to obtain the
advantage estimate.

2.4 Proximal Policy Optimization (PPO)
Natural policy gradient and trust region methods exhibit strong theoretical
properties and practical performance, but they tend to be relatively complex.
Proximal Policy Optimization, proposed in 2017 as a project of OpenAI, is
simpler, and on many benchmarks shows better robustness, scalability and
data efficiency [38].

Recall that the objective in each step of TRPO is to maximize the surrogate
function,

Es∼ρπθold

[︃
πθ(a | s)
πθold(a | s)

Aπθold
(s, a)

]︃
,

Proximal Policy Optimization (PPO) 37

which was derived from how two policies relate using the advantage function
(Equation (2.1)), originally from [35].

The probability ratio between two policies, πθ(a|s)
πθold (a|s)

will be denoted as r(θ).

Denoting the advantage estimate Â = Aπθold
(s, a) and Es∼ρπθold

[·] = Ê[·] as in
the original PPO paper for clarity, TRPO maximizes the following objective
function:

LCPI(θ) = Ê[r(θ)Â].

CPI stands for conservative policy iteration. Because the update would oth-
erwise be too large, TRPO introduced a Kullback-Leibler divergence measure
to constrain it [38].

PPO uses a different strategy, it constrains the update by clipping the
surrogate function,

LCLIP(θ) = Ê[min(r(θ)Â, clip(r(θ), 1− ε, 1 + ε)Â)].

Clipping r(θ) ensures the ratio between the policies does not deviate too much
from 1 (at most by |ε|). Then, PPO uses the more conservative update, which
is either LCPI or the clipped surrogate [38].

The PPO implementation is designed to reuse the samples multiple times,
to be more effective. The agent performs actions for n steps to obtain trajectory
(S0, A0, R1, S1, A1, . . . , Sn). This trajectory is treated as a dataset of size n —
the steps are shuffled and the data is separated into minibatches. These are
then used to update the policy by optimizing the clipped surrogate objective
function for a fixed number of epochs [38].

Another approach presented in the PPO paper is using the penalty coeffi-
cient,

LKLPEN(θ) = Ê
[︃

πθ(a | s)
πθold(a | s)

Â− βDKL(πθold(· | s)||πθ(· | s))
]︃
. [38]

The original TRPO paper experimented with this approach, but found the
coefficient β very difficult to establish robustly enough — β too high leads
to slow optimization, while β too low lead to instability [33]. In PPO, the
penalty coefficient β is adjusted dynamically after each policy update based
on the observed KL divergence:

Optimize LKLPEN(θ) for several epochs using minibatch SGD.

With d = Ê [DKL (πθold(· | s) ∥πθ(· | s))], adjust β:

If d < dtarg/1.5, halve β.
If d > dtarg × 1.5, double β.

dtarg is used as the target divergence term. They, however, found that this
method performed worse than the clipped surrogate function objective [38].

Proximal Policy Optimization (PPO) 38

0 50 100 150 200 250 300 350 400
PPO Update Step

40

50

60

70

80

90

100

To
ta

l R
ew

ar
d

Figure 2.1 PPO used on the simple screen environment. Note that the initial
fluctuation seen in Figure 1.11 are not present, as the variance in policy gradient
estimates is lower.

To use this in practice, all that needs to be done is replacing the policy gra-
dient objective function with LCLIP or LKLPEN. Commonly used frameworks
like PyTorch [39] contain automatic differentiation, so this process becomes
very straightforward [38].

▶ Example 2.1. Example 1.4 showed how to parametrize the touchscreen
environment introduced in Example 1.1 so that policy gradients could be ob-
tained and optimized using the REINFORCE algorithm. The approximation
there was very simple: a plain sigmoid function over a linear combination
of two parameters. In practice, the approximations usually need to be more
complex — the most common approach is to use a neural network, which is
then called policy network. Obtaining gradients of the objective function with
respect to the policy network’s parameters is done automatically, using the
automatic differentiation.

Recall that in Example 1.4, the chain rule was used to calculate the gra-
dients. Neural networks and their frameworks are designed around this. A
neural network can be decomposed into a sequence of functions, whose partial
derivatives are simple. These partial derivatives are then “chained” together,
yielding the gradient of the whole network. This allows for massive scalability.

Intrinsic Motivation 39

By configuring the PPO algorithm on the simple screen environment ex-
ample with the policy used in the REINFORCE example, where the clipped
objective LCLIP(θ) is optimized for a single epoch using minibatch of size one
after each step with the clipping parameter ε = 0.2, Figure 2.1 demonstrates
strong performance. Small value-function estimation learning rate of 0.003 was
used. It is important to note, however, that the environment considered here
is extremely simple.

2.5 Intrinsic Motivation
The methods and approaches discussed so far did not address the design of
a reward function. While this process might seem relatively straightforward,
the natural reward signals can be very sparse or missing altogether in many
environments. In such scenarios, it is desirable to encourage the model to
explore, and the field of intrinsically motivated exploration is focused on finding
ways to achieve this.

The reward rt is in each time step decomposed into extrinsic reward ret
awarded from the environment (e.g. scoring in a pong game) and intrinsic
reward rit, awarded from within the agent as an exploration bonus. The ap-
proaches that will be discussed here are curiosity-driven learning approaches,
which treat prediction error as a reward. In other words, not being able to
predict the outcome of an action would reward taking the action with higher
reward.

A study from 2018 [40] found that reinforcement learning agents were able
to learn useful behaviour purely from the intrinsic reward. For example, they
show that in Super Mario Bros., the agent was capable of “discovering 11
different levels of the game, finding secret rooms and defeating bosses” [40].

2.5.1 Intrinsic Curiosity Module (ICM)
In the original work from 2017 where ICM was introduced [41], the authors
separate the RL agent into two subsystems: Intrinsic Curiosity Module (ICM)
and a policy estimator (e.g. PPO). Policy estimator decides on which action
the agent should take and is being optimized by using the extrinsic reward from
an environment combined with the reward generated by ICM, rt = ret + rit. In
this case, the extrinsic reward ret is expected to be mostly or always zero (this
is not necessary to use the ICM) [41].

An illustration of the ICM architecture is shown in Figure 2.2. Its input
consists of current state st, next state st+1 and the action at that the policy
selected to move between the two states. The ICM produces the intrinsic
reward rit. It uses feature extractor φ to extract features from states, as it
is undesirable to work with raw sensory data, such as individual pixels. The
ICM then operates only with the embedded states φ(st) and φ(st+1) [41].

Intrinsic Motivation 40

Figure 2.2 A diagram of the ICM module, reproduced from [41]. Note that policy
π operates independently of ICM, it uses only the rewards for learning.

The two main parts of the module are inverse model and forward model.
The forward model predicts the next state embedding φ̂(st+1) from previous
state φ(st) and the action at. Its parameters θF are optimized to minimize
the squared distance between the predicted φ̂(st+1) and the actual φ(st+1), its
loss function is

LF (φ(st+1), φ̂(st+1) | θF) =
1

2
∥φ̂(st+1)− φ(st+1)∥2.

This distance is also used as the intrinsic reward, i.e.

rit =
η

2
∥φ̂(st+1)− φ(st+1)∥2,

where η is a scaling factor. The intuition behind the forward model is simple
— the model rewards unpredictable/unexpected response from the environ-
ment [41].

The other component, the inverse model is utilized to model the latent
dynamics of the system and it is used mainly to learn good features in the
feature extractor. Its input would be the embeddings of the two states consec-
utively visited, φ(st) and φ(st+1), and its output ât is the prediction of action
that the policy selected, using parameters θI . Its loss function LI(at, ât | θI)
depends on how the actions are defined. In the case of discrete actions, the
softmax function is used at the output of the inverse model and categorical
cross-entropy loss function may be used to optimize its parameters [41].

The overall objective of the RL agent, where J(θ) is the policy’s perfor-
mance measure (in previous sections, expected discounted return was used),
is

minimizeθ,θI ,θF [−λJ(θ) + (1− β)LI(θI) + βLF (θF)] ,

where β ∈ [0, 1] weighs the importance of the forward vs. inverse model and
λ > 0 weighs the importance of policy gradient optimization [41]. Again, in
practice, this becomes simpler with the use of automatic differentiation.

Intrinsic Motivation 41

2.5.2 Random Network Distillation (RND)
A promising method was introduced in 2018 as Random Network Distillation
(RND) [42]. Its idea lies in awarding higher intrinsic reward rit for novel or
less frequently visited states. Similarly to ICM, the RND module is separated
from the policy estimator [42].

Uncertainty of a model, resulting in error in its prediction objective, can
generally be decomposed into aleatoric and epistemic components [43]. While
aleatoric uncertainty is caused by the stochasticity of the target function, epis-
temic uncertainty results from incomplete knowledge of the model. In other
words, epistemic uncertainty will be higher for less frequently visited states
and can be used as an intrinsic reward for exploration [42].

The RND approach is conceptually straightforward. Consider a general ob-
servation space O. It is a space in which any observation can be expressed. In
a typical environment, that would be the space of image observations, sensory
inputs, etc. RND uses two neural networks,

A randomly initialized neural network f : O → Rk with randomly initial-
ized, fixed parameters.

A predictor neural network f̂ : O → Rk with trainable parameters w, also
initialized randomly (but with different parameters than f).

During the training process of the RL agent, for each observation o ∈ O, the
predictor neural network is updated via SGD to minimize the expected mean
square error

MSE(w) = ∥f̂(o | w)− f(o)∥2.

The prediction error is used as the intrinsic reward, as it is expected to be
higher for novel or less frequently visited states [42].

Since the prediction error becomes lower over time, the paper suggests
keeping a running estimate of the standard deviation of prediction error and
dividing the reward by it [42].

As a crucial step, observation normalization is introduced to stabilize the
learning. Since the random network’s scale is fixed, it cannot adjust for the
scale of the inputs. For o ∈ O,

o = clip
(︃
o− µ

σ
,−5, 5

)︃
,

where µ is the running mean and σ is the running standard deviation. The
agent initializes µ and σ by taking a few sample steps in the environment.
The observation normalization is done only for the RND, not for the policy
estimator [42].

The original paper demonstrates that the predictor network trained via
SGD does not start to mimic the random network perfectly. This is crucial,
as otherwise the intrinsic reward would collapse to zero [42].

Intrinsic Motivation 42

An additional contribution is the exploration of combining extrinsic and
intrinsic rewards. The proposed method is fitting two value heads V̂e and V̂i

separately for each reward and using their sum to obtain V̂ [42].

Chapter 3

Robotic Interface Interaction

This chapter discusses methods by which a RL agent-controlled robot can
interact with a physical environment. First, two distinct approaches to the
task are presented and analyzed. Subsequently, methods for realization of
each are proposed and explored in detail.

Robots use sensors to perceive their environment and actuators to supply the
motive power needed to interact with it. A robot is not defined by its use of
the sensory data and decision making; in fact, “in actual practice, in devices
considered to be robotic, the amount of sensory and decision making capability
may vary from a great deal to none” [44]. The systems discussed in this thesis
are designed for robots that possess a high level of decision-making capability.

The aim of this thesis is to develop a system for efficient robotic exploration
of touchscreen interfaces. The robot’s only means of perceiving the environ-
ment is a camera aimed at the display of the device. Using its actuators, the
robot can perform actions directly on the touchscreen.

The robot’s screenshot provides valuable information; however, raw pixel
data lacks structural context. Extracting meaningful information, features,
manually from such input is a challenging and often impractical task. Recent
advancements in machine learning have introduced models that work with
images with unprecedented effectiveness.

In this work, the task of screenshot processing is approached from two
distinct directions:

1. Detection of Clickable Elements: The system first identifies all the clickable
elements on the screen. These elements are provided to the RL agent, which
selects the appropriate element to interact with based on its policy.

2. Feature Extraction for Decision-Making: The system extracts a set of fea-
tures from the screenshot that characterizes the state of the environment.
These features are provided to the RL agent, which determines the exact
point on the screen to click based on its policy.

43

Detection of Clickable Elements 44

The first approach is simple and reduces the burden on the RL agent.
However, its main drawbacks are a lack of robustness and a requirement for
a large annotated dataset. Second approach is more flexible and can work
without predefined annotations, but requires the RL agent to select from much
larger action space (it can click anywhere on screen) using only the extracted
features as the information about the environment.

These approaches will be further discussed in the following sections.

3.1 Detection of Clickable Elements
The first approach explored in this work is a guided strategy, where a separate
machine learning model identifies interactive elements in a screenshot. An
interactive element is one that after interaction causes a state change in the
environment. By isolating such elements, the RL agent can concentrate on
more effective exploration as it doesn’t need to detect these elements by itself.

However, this method requires a large set of annotated data, which limits
the robustness and scalability of the approach. In practice, each platform
would require its own pre-trained clickable element detector. While a solution
for one platform may be portable to some extent — for instance, icons across
different mobile operating systems share visual similarities — any undetected
interactive element risks cutting off the agent’s access to whole branches of the
state space. An example of such a failure would be missing the detection of a
‘home’ button on a mobile phone. Without the ability to return to the home
screen, the robot would become stuck inside an application, leaving most of
the state space unexplored.

A further limitation is that without appropriate data, this method is lim-
ited only to clicking on the elements. It cannot swipe, double tap or perform
other, more complex, actions. Such datasets are typically not readily available
and would require more manual effort to produce.

This thesis suggests YOLO (You Only Look Once) architecture [45] as a
possible method for element detection.

3.1.1 Element Detection with YOLO
YOLO is a supervised learning model introduced in 2015 for object detection.
It is illustrated in Figure 3.1. The input image is divided into a grid of size
S × S, where S is a hyperparameter. The key idea is that if the center of an
object falls within a particular grid cell, that cell is responsible for detecting
the object. Each grid cell predicts B bounding boxes and their confidence
scores, and it also predicts probabilities of the grid cell belonging to any of the
C predefined classes. Both C and B are hyperparameters. In this work, the
classification part will not be necessary. However, it could become useful if
additional interaction types, such as swipe or double-tap, were incorporated.

Detection of Clickable Elements 45

Figure 3.1 A YOLO model diagram, reproduced from [45].

The confidence of predictions is trained to predict the intersection-over-union
(IoU) between the predicted and ground truth bounding boxes [45].

One of the main advantages of this model is its high performance, as YOLO
can detect objects in real-time. It can be implemented using a single convo-
lutional neural network (24 convolutional layers followed by 2 fully connected
layers), hence its name, You Only Look Once [45].

The YOLO model evolved and new versions were developed. YOLOv5
was the first version of this object detection model to use the PyTorch [39]
framework instead of a framework made by the YOLO author [46]. At the
time of publishing this thesis, the newest version is YOLOv12, which is a
first fully attention-centric version of YOLO that still achieves real-time FPS
comparable to previous CNN-based versions [47].

3.1.2 Interaction with the Elements
Once the interactable elements are detected, the subsequent steps are rela-
tively straightforward. The coordinates of the centers of their bounding boxes
are mapped from image space to real-world coordinates. Based on this infor-
mation, the RL agent selects an element to interact with.

While the reinforcement learning part of this thesis discusses mostly fixed
action spaces, there are approaches to handle variable action spaces. One of
the most interesting RL papers in recent years, [48], introduces an agent that
is able to reach Grandmaster level in the videogame StarCraft II. It uses an

Feature Extraction for Decision-Making 46

auto-regressive policy and pointer networks to manage structured combina-
torial action space (actions are composed of multiple interdependent choices,
where earlier selections alter the set of available next ones) [48]. However, this
approach extends beyond the scope of the current work. Another similar pa-
per, [49], which presented an agent that could defeat a world champion team
in the Dota 2 videogame, uses an approach similar to action masking — invalid
actions are ignored [49].

Designing a policy network to produce probabilities over clickable elements
would require incorporating additional information about the environment,
making its structure inherently more complex. However, once the clickable
elements are detected, even random uniform policy may produce relatively
good results and no learning of the RL agent would be necessary.

3.2 Feature Extraction for Decision-Making
The other approach’s idea is to use features extracted from a screenshot as an
input to the RL agent’s policy network and allowing the robot to perform any
action on the screen. This approach is naturally more robust — the scenario
where the robot doesn’t detect a button cannot happen, because an explorative
policy will always click it, eventually. For it to be efficient, however, the policy
is required to learn to navigate in the feature space and connect properties
of the encoded screen to certain actions. The action space naturally becomes
much larger, even more so if special actions, such as swiping or double-tapping,
are included.

3.2.1 Extracting Features from Screenshot
Traditional image processing relied on handcrafted feature extractors, from
edge detectors to more advanced methods like SIFT [50] from 1999. The con-
cept of convolutional neural networks (CNNs) and their training using back-
propagation was introduced by LeCun et al. [51] in 1990; however, due to a
lack of computing power and the absence of large training data, their practical
adoption was delayed. The field started developing especially after 2006 [52].
Notably, in 2012, Krizhevsky et al. [53] showed state-of-the-art performance
in image classification on the ImageNet dataset, significantly outperforming
the SIFT method. CNNs were mentioned in Section 3.1.1 about YOLO as its
main component. This demonstrates how effective CNNs are for image-related
tasks.

In 2017, new deep learning architecture, called Transformer [55], was in-
troduced. While the standard Transformer architecture worked with text, a
Vision Transformer (ViT) [54] enabled to use images in a similar way to how
Transformer works with text. Its principle is illustrated in Figure 3.2. An im-
age is first divided into a grid of fixed-size patches, each patch is flattened into

Feature Extraction for Decision-Making 47

Figure 3.2 Illustration of the Vision Transformer, reproduced from [54]. Note that
the Transformer Encoder remains unchanged from the original Transformer architec-
ture.

a vector by linear projection, and the resulting sequence of patch embeddings
is fed into the Transformer Encoder [54].

An interesting variant of ViT is the Swin Transformer [56]. Its authors
discuss how the ViT approach overlooks certain properties of images that dif-
fer from text and propose alternative solutions. First, the high resolution of
patches makes the encoding inaccurate and prediction at the dense pixel level
impossible. Another issue is that, unlike word tokens, visual entities can vary in
scale, and the image space is much larger than that of textual embeddings [56].

The paper proposes a hierarchical architecture with multiple layers. After
each layer, adjacent patches are merged, so that deeper layers operate on
fewer but larger patches with more feature channels, forming a hierarchical
representation [56].

Unlike the Vision Transformer (ViT), which applies self-attention globally
across the entire image, the Swin Transformer restricts self-attention to small,
non-overlapping local windows within each layer — in other words, attention
is limited to a few neighboring patches. In the following layer, the window
configuration is shifted so that the new windows span across the boundaries
of the previous ones. This shift enables information to flow across windows,
which allows for connection of the attention between layers [56].

Visual feature extractors discussed so far perform well with images, but
screenshot contains more information than that. In recent years, multimodal
architectures, which can work with inputs in various formats, started gaining
prominence. Such formats can be text, images, bounding boxes, or gener-
ally any information that can be somehow embedded. A LayoutLMv3 [57]
architecture has certain properties that may be useful for the objective of this

Feature Extraction for Decision-Making 48

Figure 3.3 An illustration of LayoutLMv3 pre-training objectives, reproduced
from [57]. The objectives are reconstructive Masked Language Modelling (MLM),
Masked Image Modelling (MIM) and predictive Word-Patch Alignment (WPA).

thesis.
LayoutLMv3 was designed for Document AI tasks, which apply artificial

intelligence methods to facilitate working with documents. It extends stan-
dard Transformer Encoder with a multimodal embedding layer, consisting of
two parallel pipelines. First one performs image embedding using patches in a
similar way to ViT. Second pipeline produces text embedding, which uses 1D
positional encoding, indicating the position of a token in the input sequence (as
in Transformer) and additionally a 2D layout position, referring to the bound-
ing box of the text in document. As a result, LayoutLMv3 embeddings contain
visual information, textual information and information about the positions of
the text in the document, which captures the layout of the document [57].

During pre-training, a portion of the word tokens and image patches are
masked, and the network is trained with the objective of reconstructing them.
In addition to this masked language and image modeling (MLM and MIM),
LayoutLMv3 introduces a Word-Patch Alignment (WPA) objective, where the
model learns to predict whether an image patch corresponds to a given text
token. This task encourages the model to align visual and textual representa-
tions. These objectives are illustrated in Figure 3.3 [57].

The discussed networks might be designed for specialized tasks, such as
classification. However, they can be repurposed as feature extractors simply
by cutting off the last few layers. For example, networks designed for clas-

Feature Extraction for Decision-Making 49

sification often end with a few multi-layer perceptron (MLP) layers followed
by a softmax activation. By removing these MLP layers, the network outputs
abstract intermediate features that encode high-level information about the
input. This approach can even be applied to pre-trained networks. The result
is a working feature extractor that requires minimal or no additional training.
Finetuning the network, however, could make it more domain-specific.

3.2.2 Large Action Spaces
As already mentioned, by allowing the robot to perform any arbitrary action,
the state space becomes very large. The simplest approach to mitigate this is
using discretization into a fixed size state space. This approach will be used
for the practical part of this thesis. However, there are other, more advanced
approaches. The following two have interesting concepts and could be used to
further improve the training speed.

First of the approaches, introduced in 2016, presents the Wolpertinger ar-
chitecture [58] as an extension of the classic Actor-Critic architecture (Sec-
tion 1.7.1), where a distance measure over actions is defined. The actor selects
(more appropriate wording could be generates) an intermediate “proto-action”
â, that may not lie in the action space. Using k-nearest neighbors, n most sim-
ilar actions from the action space are found and critic selects the action that
yields the highest estimated action-value [58].

The other approach’s idea is very intuitive. Instead of learning which ac-
tions to take, an Action Elimination Network [59] (AEN) may be used to
eliminate actions and reduce the action space. In the view of standard rein-
forcement learning loop (agent-environment), environment produces new state,
reward and an elimination signal used to train the Action Elimination Net-
work [59]. For the task of touchscreen interface navigation, an elimination
signal could be designed around actions that do not change the state of the
environment.

Implementing these would require further design and testing. Since this
thesis is mainly focused on intrinsic motivation integration, it will not be used
in the practical part.

Chapter 4

Experimental Setup

This chapter outlines the experimental framework used for the practical
part of this thesis. It introduces the hardware and software environment,
details key technical decisions, and discusses practical considerations and
challenges encountered during the implementation and testing phases.

4.1 The AIVA Testing Robot

AIVA [1] is a robot developed by Y Soft for automating the testing and inter-
action with touchscreen devices, reducing manual effort in quality assurance
workflows. It features two main components: a robotic arm with a stylus for
simulating touch, and a camera that captures the device’s screen. The setup
is shown in Figure 4.1.

The AIVA robot communicates via RESTful APIs. For the purposes of
this work, three of these APIs are utilized. API names in this section follow
Y Soft’s internal naming conventions. RobotControl API enables control over
the robot’s motion and ImageProcessing API is used for camera operations,
including taking a screenshot. AIVA additionally utilizes the Peripherals API.
In case of failure, this API allows AIVA to be restarted to its initial state.
OpenAPI Generator [60] was used to generate Python client libraries from the
APIs for better integration into the scripts.

4.1.1 Error Handling
API calls can occasionally fail for various reasons such as network instability.
To mitigate this, the implemented solution uses a retry mechanism — the API
call is repeatedly attempted until a successful response is received. A short
delay, within a matter of seconds, is introduced between consecutive calls to
prevent large request frequency and allow the issues to resolve. If the system
failed to perform the call after multiple attempts, the system restart procedure
discussed previously is used as a fallback.

50

Element Detection Approach Setup 51

Figure 4.1 The AIVA robot setup. The two main components are the robotic arm
and a camera.

This mechanism enabled the robot to recover from various runtime issues.
Training took multiple days and was typically unsupervised. Training failures
often went undetected for long periods, resulting in significant time loss.

The AIVA system requires active internet connection. This offers several
advantages, including rapid support from the Y Soft development team during
technical difficulties. However, there are shortcomings to the always online
requirement. For instance, during the course of this project, a router experi-
enced a malfunction and had to be replaced. This resulted in nearly a month
of downtime, severely impacting the progress of the work.

4.2 Element Detection Approach Setup
The implementation of the first approach — interactive element detection, dis-
cussed in Chapter 3, uses YOLOv5 from Ultralytics [61] for clickable element
detection, specifically a pretrained yolov5m.pt model (medium-sized variant),
which, according to [46], performs slightly worse than larger models, but have
lower computational cost. It is trained to detect a single class (clickable el-
ements) for 50 epochs and the images used for training were resized to size
640×640. Using a batch size of 4 made it possible to train the model on GPU
with 12 GB VRAM. This made the training process significantly faster. Each
epoch (≈53k images were used for training) took approximately 16 minutes to
run.

Finding an appropriate dataset for training the model is challenging. For
the practical part, the YOLO model was trained on the RICO dataset [62].

Feature Extraction Approach Setup 52

(a) (b) (c)

Figure 4.2 Examples from the RICO dataset 3 with highlighted bounding boxes
for elements marked as clickable and visible. The dataset contains (a) well-annotated
data, (b) data with minor problems, and (c) poorly annotated data.

This dataset comprises ≈66k images of Android application UIs with their
JSON annotations. These contain information about the UI and its com-
ponents, including clickable elements. As depicted in Figure 4.2, a substan-
tial portion of the dataset suffers from inaccuracies, which makes the dataset
slightly ineffective — as mentioned, to enable full exploration, accurate de-
tection of the elements is crucial. The inaccuracies include missing elements,
annotated elements that are not directly visible and falsely annotated clickable
elements. It is expected that the YOLO model will learn to generalize over
these inaccuracies and provide reasonable results.

For the training, the dataset was split randomly into two subsets: 80%
for training and 20% for evaluation. The annotations were converted into a
format compatible with YOLO using a custom Python script.

The objective for practical experiments will be to evaluate how well the
model has learned to detect clickable elements in the evaluation data, assess
its ability to generalize to UIs from a different operating system and determine
its usability when integrated with the AIVA robot.

4.3 Feature Extraction Approach Setup
For feature extraction, the LayoutLMv3 model described in Section 3.2.1 was
used, specifically, the pretrained microsoft/layoutlmv3-base model avail-
able via the HuggingFace library. This model was pre-trained on 11 million
document images [57] from IIT-CDIP dataset [63] (more on training process in

Reinforcement Learning Agent Setup 53

Figure 4.3 An example screenshot. Note that not all text is clearly visible.

Section 3.2.1). By using this pre-trained version, the model remains relatively
general in scope while still effectively capturing the layout structure present in
the input data.

While OCR can be incorporated relatively easily, it is not used in the prac-
tical part of this work due to issues with text readability in the screenshots.
These were mainly caused by the combination of camera quality and the re-
flected backlight of the screen, which made the OCR output unreliable. An
example of this issue is depicted in Figure 4.3. Since LayoutLMv3 is a multi-
modal network, even after omitting the textual input, the model should still
be able to capture the layout of the image.

The Swin Transformer used to compare the LayoutLMv3 to a more general
encoder is microsoft/swin-tiny-patch4-window7-224 [56] also available via
the HuggingFace library. This model was pre-trained on ImageNet dataset [64],
a hierarchically organized large general image database.

Finally, for the evaluation of experiments, a proximity-based detector of
new states will be employed. It checks whether the distance between the
extracted features of a new state and those of a previously observed states
exceeds a predefined threshold, in order to determine whether the state has
been encountered before.

4.4 Reinforcement Learning Agent Setup
The reinforcement learning agent consists of two parts, the policy network
and the module for intrinsic motivation. How they communicate is illustrated
in Figure 4.4. They both can be implemented in various ways, the following

Reinforcement Learning Agent Setup 54

Physical
Environment

Feature
Extractor

Policy
Network

Intrinsic
Motivation

Screenshot

State St

Reward Rt

Action At

Figure 4.4 An overview of the system learning process. The information used
by policy network for intrinsic motivation depends on the specific implementation.
Action At is mapped to a real-world action.

sections describe the implementations used in this work.

4.4.1 Policy Network
This work uses PPO procedure described in Section 2.4. Specifically its im-
plementation from Stable-Baselines3 [65]. This implementation uses slightly
different approaches than the original to make the learning process more sta-
ble. The objective of the policy network is to model the probabilities of actions
as a discrete, uniformly distributed set of points on the screen, where the robot
can click. The actions of the robot are limited to click only; methods of how
this can be extended will be discussed at the end of this work. The implemen-
tations use 15×25 distribution of these points, reflecting the dimensions of the
device. Stable-Baselines3 allows for defining a custom policy network.

The primary approach explored in this thesis takes a screenshot as an input
and utilizes a trainable convolutional network. Stable-Baselines3 includes an
implementation of convolutional neural network from [66], which comprises
three convolutional layers. Their output is mapped to a feature vector of
size 512 (by default) using a linear layer. While the network expects images
in a channel-first format, (C, H, W), Stable-Baselines3 provides a wrapper
(VecTransposeImage) that automatically transposes the image.

An alternative approach is to use a fully connected neural network ap-
plied to features produced by a separate pre-trained feature extractor. Stable-
Baselines3’s default MLP policy uses two hidden layers of 64 units each for
both policy network and the value function network. This approach is only
used with ICM to test whether it is a viable alternative.

While the size of the MLP in the alternative approach may seem small given
the large action space, it could be well-suited for the task for two main reasons.

Reinforcement Learning Agent Setup 55

First, smaller networks learn faster and are more stable. Note that the robot
is very slow, executing around only 500 actions in an hour. Unlike typical
reinforcement learning settings that rely on fast simulation and parallelism,
the real-world setting limits data collection speed. Second, although the action
space is large, it is highly structured. Many actions represent nearby points
on a screen and have similar effects.

The rewards of the basic setup are defined using the proximity-based de-
tector of new states. The agent is awarded 1, if it discovers a new state, and
0 otherwise. Note, however, that the detector using a distance of features to
determine if a new state was reached only approximates state novelty. Some
applications, where the robot can freely change the state (such as writing and
sending SMS, or refocusing camera) may lead to robot recognizing new state
was reached and awarding reward after every action, even though practically
the robot remains on the same screen. On the other hand, small changes that
should be perceived as a state change may not be caught.

4.4.2 Implementation of Intrinsic Motivation
The cornerstone of this thesis is intrinsic motivation, which is explored through
two approaches: the Intrinsic Curiosity Module (ICM) and Random Network
Distillation (RND), both discussed in Section 2.5. Both are implemented in
PyTorch [39].

4.4.2.1 ICM Implementation

The forward model of ICM concatenates the extracted features of current state
St (LayoutLMv3 uses size 768) with one-hot encoded action At. This tensor is
passed to a MLP with a single hidden layer of size 256. The MLP is optimized
to predict the state St+1 representing the screen the UI ends up with, using
MSE loss function LMSE(St+1, Ŝt+1). Ŝt+1 is the predicted next state.

Because an external feature extractor is used, the ICM’s inverse model is
redundant. This is done not only to reduce the number of parameters that
must be optimized during training to make the learning process more efficient,
but also to eliminate the need to tune the weighting hyperparameter between
the forward and inverse losses.

The loss function is then reduced only to

LICM = LMSE(St+1, Ŝt+1),

and this loss function is optimized using Adam optimizer with a standard
learning rate of 1 × 10−3. PyTorch’s automatic differentiation makes this
process very straightforward. ICM’s parameters are updated after each step
in the environment.

Reinforcement Learning Agent Setup 56

The value used as intrinsic reward is

Ri
t =

1

n

n∑︂
j=1

(︂
S
(j)
t+1 − Ŝ

(j)
t+1

)︂2

where n is a feature dimension of the state vectors. This value is essentialy
the mean squared error multiplied by coefficient α, but the implementation
doesn’t use LMSE and averages over dimension 1 (dimension 0 corresponds to
the batch axis) so that it can be used for larger batch size. With the AIVA
robot used in this work, however, batch size is always one, so the values are
equal.

The training of the agent using ICM used episodes of length 100, after
which the environment was reset.

4.4.2.2 RND Implementation

The RND implementation uses the same architecture for both the predictor
and the random network. It comprises two fully connected layers, each pro-
jecting the input to a tensor of size 512. Another crucial component of RND
is observation normalization. A Stable-Baselines3’s [65] RunningMeanStd is
used to track running mean and variance of the inputs. The same class is
used to keep track of variance of intrinsic reward. The class actually tracks
variance, but the standard deviation (root square of variance) is used in the
normalization formula.

The input observation, which are the extracted features from the screen-
shot using feature extractor, is normalized exactly how it is described in Sec-
tion 2.5.2. The standard normalization formula is used,

o′ =
o− µ

σ
,

where o is observation, µ is running mean and σ is the running standard
deviation. The result is then clipped in the [−5, 5] range.

The normalized observation is then passed into both neural networks, the
predictor f̂ and the random f , and a mean-squared error is used as the loss
function. The predictor network is optimized using the SGD.

Reward is calculated similarly to how it is done in the ICM. The mean-
squared error of each sample in the batch, in case of this work, the one sample,
is divided by the running mean of the reward. This value is multiplied by
coefficient α, which would be used to configure the ratio between intrinsic and
extrinsic reward. Since experiments in this work will use only the intrinsic
reward, this parameter is unimportant.

The original paper states that in experiments that only used intrinsic re-
ward, “treating the problem as non-episodic resulted in better exploration” [42].
Because of this, the RND is implemented to continuously explore the environ-
ment (non-episodically).

The Physical Environment 57

4.4.3 Tuning and Optimization
Due to the use of a real-world robot, training was constrained by physical time,
unlike in most reinforcement learning applications in a simulated environment.
This made full-scale hyperparameter optimization highly infeasible. Measuring
policy improvement was also challenging, as evaluation itself takes a lot of time.
While the primary quantitative metric of the training performance was the
evolution of the reward function, qualitative observation played an important
role.

Fortunately, the methods of intrinisic motivation don’t need tuning, as in
this work’s implementation, they do not contain other hyperparameters (than
for example the neural network size) whose selection wasn’t justified in the text
above. Stable-Baselines3 [65] also provides robust default hyperparameters for
PPO, which served as a reliable baseline.

Changes in PPO hyperparameters did not lead to an improvement in train-
ing speed and only led to instability. In one training run, increasing the learn-
ing rate 10× to 3×10−3 led to a policy collapse, where the agent was repeatedly
selecting single action (that did not change the state, resulting in low rewards).

Balancing exploration/exploitation was briefly discussed in Section 1.5.3,
but the idea of exploration in context of this task is not intuitive, as it may
seem that the objective is to maximize the exploration of the robot. However,
that is not true. The exploration in this context means that the agent selects
actions that are not necessarily the actions expected to yield high reward. A
typical state in this task may contain few actions that change the state (which
is ideally always preferred) and the majority of actions that do not. Using
more explorative policy will lead to selecting more actions that do not change
the state, which is undesirable.

The PPO parameter that has direct influence on exploration is the en-
tropy coefficient. Higher value keeps the policy more stochastic, promoting
exploration. It was already discussed that excessive exploration of the agent is
undesirable, so this value should be kept as low as possible. Stable-Baselines3
defaults this value to 0, so further tuning was not attempted. Another param-
eter that indirectly affects the exploration is learning rate, the complication
its finetuning led to was described.

The final hyperparameters used for the PPO are listed in Table 4.1. It was
experimented with various values of rollout length, the number of steps the
agent collects before an update, and of minibatch size. Tampering with these
led to a large training instability, which caused the robot to perform unoptimal
actions and the model needed to be retrained.

4.5 The Physical Environment

The agent was trained to explore the user interface of an iPhone SE (2016).
One of the actions of the RL agent was mapped to the Home button, ensuring

The Physical Environment 58

Parameter Value
Learning rate 3× 10−4

Rollout length 2048
Minibatch size 64
Epochs per update 10
Discount factor (γ) 0.99
Clipping range (ε) 0.2
Entropy coefficient 0

Table 4.1 Summary of key PPO hyperparameters used for training.

that it could always return to Home screen and continue exploring. An example
of a failure state, where the robot would get stuck otherwise, is an application
that requires an internet connection. The application usually presents only a
‘Retry’ button that doesn’t change the screen, as the device remains offline.

Using an operating system of iPhone, iOS, as a learning and testing en-
vironment has a high practical relevance. Its UI structure is consistent and
relatively clear and can be used to highlight practical usability of the imple-
mented methods. For a full scale, commercial testing, however, it would be
beneficial to setup a dedicated user environment that provides direct feedback.
Additionally, such environment could be used to train the agent in simulation,
which would be much faster and could benefit from using parallel runs. The
approaches, however, could remain the same.

Mapping of RL agent to the physical screen is straightforward. An action
is an integer a ∈ {0, . . . , 375}. These form a 15×25 grid overlaid on the 50 mm
× 88 mm screen, where each action corresponds a specific grid cell. The last
action, 375, is reserved for the Home button.

For testing, a sparser environment with fewer applications was used. These
applications excluded those that frequently misled the proximity-based detec-
tor of a new state, such as Camera, whose refocusing led the state detector to
think that a new state was reached.

Chapter 5

Experiments

This chapter concludes this thesis with a summary of results, offers a dis-
cussion of their implications and outlines potential directions for future
work.

5.1 YOLO Element Detection
The YOLOv5 model used for detection of clickable elements has shown a sig-
nificant improvement during training. Key metrics displayed in Figure 5.2
are distribution focal loss and box loss, as these evaluate how well the model
predicts positions and shapes of detected elements. The Distribution Focal
Loss (DFL) treats bounding box localization as a classification task over dis-
crete bins — the model produces a distribution over possible positions for
each bounding box edge and DFL penalizes it based on the distance from the
ground truth distribution. Box loss, as discussed in Section 3.1.1 typically uses
some form of IoU-based function to quantify the difference between detected
bounding box and ground truth. Both of these loss functions are decreasing,
which signals improvement in model’s prediction capabilities.

(a) Incorrectly labeled data. (b) YOLO-detected interactive elements.

Figure 5.1 YOLO generalization: relatively accurate detection achieved despite
substantial label noise in the training data. Detected bounding boxes are green.

59

YOLO Element Detection 60

Figure 5.2 Training and validation metrics from the YOLOv5 model. The x-axis’
represents training epochs. The metrics show improvement during training.

Figure 5.1 is an example of an improvement in generalization of the model.
Despite the inaccuracies in the dataset annotations described in Section 4.2,
the model learned to generalize and relatively correctly find the interactive
elements. However, the figure still reveals some imperfections in the model’s
predictions.

Measuring the method’s portability to other mobile operating systems is
limited by the lack of available datasets. Figure 5.3 shows that the method
manages to detect the elements relatively correctly on some simpler screens,
but fails on more complex ones. The model incorrectly detects the time as
an interactive element and tends to detect the whole screen. The latter may
be caused by advertisements often appearing in the training data, where the
whole screen was clickable.

Some of the problems in this approach were already discussed, such as the
necessity of training data and the requirement of high accuracy for practical
use. Another problem is that the clickable elements may not always be dis-
tinguishable. For example, a gallery application might display a photo in full
screen. Clicking on the right side of the photo, without any indication, could
switch to the next photo in the gallery. Since there is no clickable element to
be detected, this approach would fail.

While YOLO was able to learn from noisy data and showed promising
generalization, its requirement of a training dataset and the portability limi-
tations resulting from it, as well as its reliance on visual indication of clickable
elements, make this method impractical as a solution for the objective of this
thesis.

YOLO Element Detection 61

Figure 5.3 Generalization of YOLO to other mobile OS is limited. Even when
the confidence threshold was reduced, several icons on the home screen remained
undetected.

Reinforcement Learning Methods 62

50 100 150 200 250 300 350 400
Epoch

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

Ro
llin

g
Av

er
ag

e
Re

wa
rd

Basic PPO Setup

(a) The rolling average reward (averaged
per steps using window size of 3000 training
steps, one epoch is 100 steps) of the basic
PPO setup.

0 20 40 60 80 100
Step

2

4

6

8

10

Un
iq

ue
 S

ta
te

s V
isi

te
d

Basic PPO
Random Baseline

(b) Cumulative discovered new states of RL
agent using the basic PPO setup.

Figure 5.4 Training performance and exploration behaviour of the basic PPO
setup.

5.2 Reinforcement Learning Methods
The rewards of reinforcement learning model were recorded during training.
Because of the nature of how the reward is defined, this value also translates
to how many new states the agent discovered on average. For example, an
average of 0.1 means that the agent discovered 10 new states per 100 actions
performed on average.

Due to a technical issue with servomotors, the robot’s movement was slowed
down. As a result, some tap actions were incorrectly registered as hold actions,
allowing the robot to unintentionally select and remove applications from the
environment. This likely contributed to the drop in rewards shown in Fig-
ure 5.4a.

Figure 5.4b shows that the performance of the policy actually decreased.
This, as well as all the other graphs and results in this chapter, are based
on an average of 6 traversals. The number of repetitions is limited by time
constraints inherent to the real-world nature of the task, as the robot takes a
long time to perform the actions.

The results suggest that the basic reinforcement learning setup isn’t suit-
able for the task of this thesis. The rest of this section reflects on why this
might be the case.

First of all, the iOS user interface is relatively sparse. Most of actions
taken by the agent do not change the state. This system only rewards actions
that not only result in state change, but also lead to a state that hasn’t been

Reinforcement Learning Methods 63

previously visited. The values in Figure 5.4a do not capture how sparse this
environment really is, as every 100 steps, the environment is reset, making the
exploration task simpler — before an agent gets deeper in the exploration, the
environment is reset again. A solution may be to make the episodes longer,
but this would make the task harder and since the policy did not improve even
on the 100 steps, it is unlikely that extending the episode length would lead
to an improvement and it is certainly not addressing the core learning issue.

Another possible problem may be with the Home button. Since Home
screen is the initial state, the action that corresponds to pressing a home button
is never rewarded. Imagine an optimal exploration path through all states in
the environment. Such path would require returning to the Home screen to
switch between applications. When using the discretized 15×25 action space,
at the beginning of training, the probability of selecting the Home button
action is 1:375. Selecting this action near the end of an episode or before a
long sequence without rewards would make this probability even smaller, until
the agent starts to purposely avoid it.

These challenges highlight the need for a different implementation of the re-
ward signal. A viable approach may be an intrinsic motivation. The following
sections evaluate its effectiveness.

5.2.1 Intrinsically Motivated Learning
The ICM training encountered several difficulties. While some technical issues
were mentioned in Section 4.1.1, a notable practical issue involved lighting
conditions, as direct sunlight interfered with the learning process. The direct
sunlight shining on the screen caused the camera to capture only a completely
white image. The ICM quickly learned to predict this white image, so the
rewards dropped. This is captured in Figure 5.5a. What is more interesting,
the peaks of the rewards have grown and Figure 5.5b shows that the policy
improved.

The reason may be that the policy was updated minimally due to advan-
tage function values dropping near zero. Once the agent started receiving
meaningful rewards again, the policy updates became more substantial again
and allowed the performance to rapidly recover.

Figure 5.5a also displays an initial drop in ICM rewards, as the model
becomes more familiar with the environment.

Another example of how the policy improves during training is depicted
in Figure 5.6, which displays histograms of actions taken during training of
the PPO model using LayoutLMv3 as a feature extractor. In the first 3,000
steps, the histogram shows high uniformity. After 30,000 steps of training, the
histogram inclines toward the last action, which is clicking the Home button.
This is expected behaviour — the agent may explore one application, and
after there are no more available states to be discovered, the agent prefers
to return to the Home screen. Note that some applications contained only

Reinforcement Learning Methods 64

50 100 150 200 250 300 350 400
Epoch

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Ro
llin

g
Av

er
ag

e
Re

wa
rd

ICM + CNN Policy Network
ICM + LayoutLMv3
ICM + Swin

(a) Comparison of rolling averages (averaged
per steps using window size of 3000 training
steps, one epoch is 100 steps) of ICM rewards
during training.

0 20 40 60 80 100
Step

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Un
iq

ue
 S

ta
te

s V
isi

te
d

ICM + CNN Policy Network
ICM + LayoutLMv3
ICM + Swin
Random Baseline

(b) Cumulative discovered new states of RL
agents using ICM intrinsic motivation.

Figure 5.5 Training performance and exploration behaviour of ICM-based setup.

a single screen because the device was not connected to the internet, so an
optimal policy would always select the Home button action in such state.

Figure 5.5b shows mean cumulative new states discovered in each step. A
sample of six traversals was used, due to the high time cost of each evaluation.
Standard deviation is included to capture variability in the outcomes. The
graphs shows that both CNN and MLP over LayoutLMv3 features implemen-
tations of the policy network improved when using ICM as a sole reward signal
and they both can achieve very similar performance. They also suggest that
the exploration slows down more slowly than the random baseline, suggest-
ing an ability to quickly exit states that yield low return (such as the screen

0 50 100 150 200 250 300 350
Action

0.0

0.1

0.2

0.3

0.4

0.5

Pe
rc

en
ta

ge

(a) First 3,000 steps.

0 50 100 150 200 250 300 350
Action

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Pe
rc

en
ta

ge

(b) After 30,000 steps.

Figure 5.6 Histograms of actions taken during training of the PPO model using
LayoutLMv3 and ICM reward.

Reinforcement Learning Methods 65

30 20 10 0 10 20 30 40 50
PCA-1

20

10

0

10

20

30

PC
A-

2
Discovered States and Transitions (PCA 2D)

Figure 5.7 A PCA 2D projection of extracted features of the discovered unique
states, edges highlight transistions between them.

displaying that the device is not connected to the internet).
The CNN policy shows the highest explorative performance, achieving

14.83 ± 5.78 unique states and 32.33 ± 9.91 unique transitions explored on
average, per 100 steps. Results when using MLP policy over LayoutLMv3-
extracted features are comparable.

5.2.2 A Closer Look at the Feature Extraction
The intrinsic motivation methods used in this thesis use LayoutLMv3 feature
extractor to obtain image features that preserve a strong sense of spatial layout.
Figure 5.7 displays a PCA projection of extracted features of explored states
in 500 steps into 2D space. The state with the most edges from it is the Home
screen.

The states in the lower left corner mostly come from the Settings applica-
tion. The layout used there is very consistent, so this is expected behaviour.
The reason why these states often contain a transition to the Home screen is
that iOS remembers the state the application was left in when the Home but-
ton was clicked. After relaunching, the applications return to the state they
were in.

These findings suggest that the LayoutLMv3 feature extractor — even its
pre-trained, non-fine-tuned variant — may be well-suited for the task.

Reinforcement Learning Methods 66

1000 1100 1200 1300 1400 1500 1600 1700
Training Step

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200
In

tri
ns

ic
Re

wa
rd

RND

Figure 5.8 RND intrinsic rewards of an agent stuck in a state escapable only via
the Home button.

An agent was also trained using ICM with a more general Swin Transformer
under the same settings. Despite showing an upward trend, the rewards in
Figure 5.5a were much lower than with the LayoutLMv3 extractor, and the
final model performed slightly worse than even the random baseline agent, as
Figure 5.5b shows. A coefficient could be used to scale the rewards, but this
result supports the expectation that the states are much closer in the feature
space, which is not ideal for this task.

5.2.3 Random Network Distillation
Unlike ICM, the training with RND rewards was performed non-episodically.
This may have led to agent being stuck in a state escapable only using the
Home button, causing an extended period during which the reward gradually
decreased as the predictor network improved in the approximation of the ran-
dom network in that one state. Unlike in ICM, these periods could have lasted
several hundreds training steps, causing the learning process to stagnate. This
behaviour is demonstrated in Figure 5.8. Note that this is not an inherent
characteristic of RND, rather a consequence of the high transition sparsity
between actions in the environment.

This is also visible in Figure 5.9a, displaying intrinsic rewards during train-
ing. The initial drop and the sudden spike is caused by the agent first being
stuck in a state, such as in Figure 5.8, and then suddenly escaping this state,
allowing him to explore again.

Due to these issues, the RND reward may become very low for certain
states. As a result, revisiting these may yield a small reward that won’t lead
to a significant update in the policy parameters. While this method is designed
to promote exploration by rewarding novel states, this also introduces some

Results 67

50 100 150 200 250 300 350 400
Epoch

0.03

0.04

0.05

0.06

0.07

Ro
llin

g
Av

er
ag

e
Re

wa
rd

RND

(a) Rolling average (averaged per steps using
window size of 3000 training steps, one epoch
is 100 steps) of RND reward during training.

0 20 40 60 80 100
Step

2

4

6

8

10

12

Un
iq

ue
 S

ta
te

s V
isi

te
d

RND
Random Baseline

(b) Cumulative discovered new states of RL
agent using RND intrinsic motivation.

Figure 5.9 Training performance and exploration behaviour of the RND setup.

effects that are not desirable.
For instance, pressing the Home button leads to a transition to a Home

screen, which still provides some reward. But because this state was visited
frequently, the reward will be much lower, even though the action is essentially
correct. The agent may then spend time on the Home screen, accumulating low
rewards, until it transitions to a state that was previously visited, receiving
little reward again. It was observed that some state transitions resulted in
lower reward than the rewards obtained in the preceding state.

Despite this, the measurements and Figure 5.9b show that using RND leads
to an improvement in policy, discovering 11.33± 1.21 states on average in an
episode of 100 steps. This method even outperforms ICM in terms of number
of unique transitions found, with 36.16±7.81 discovered transitions on average,
suggesting that RND can actually work as a driver for efficient learning.

The histogram of actions performed near the end of training in Figure 5.10
indicates that the agent becomes less inclined to return to the Home screen,
which may explain the high number of discovered transitions. This behav-
ior suggests that the agent is effectively exploring unique states within the
application, such as various sub-menus and contextual windows.

5.3 Results
The results are summarized in Table 5.1. The measured values clearly demon-
strate that using methods of intrinsic motivation can lead to an improvement
in explorative performance of reinforcement learning agent. The naïve ap-
proach of using a reward of 1 for discovering a new state doesn’t work, as it

Results 68

0 50 100 150 200 250 300 350
Action

0.0

0.5

1.0

1.5

2.0

2.5

Pe
rc

en
ta

ge

Figure 5.10 Histogram of actions performed near the end of RND training.

Model Unique States Transitions
Random baseline 7.67± 2.25 18.5± 6.66
Basic PPO setup 6.5± 2.88 15± 7.77
ICM + CNN Policy 14.83± 5.78 32.33± 9.91
ICM + MLP Policy (LayoutLMv3) 14.5± 4.93 31.5± 11.15
RND + CNN Policy 11.33± 1.21 36.16± 7.81

Table 5.1 Model performance comparison: average unique states visited and state
transitions discovered in 100 steps (mean ± std over 6 traversals)

didn’t show any signs of improvement compared to the random baseline.

5.3.1 Training Instability
Since the RL models learned slowly, it was experimented with adjusting the
PPO parameters to make the process faster. In one of the training runs of
the agent with RND rewards, the rollout length was reduced to make a policy
update every 512 steps (originally 2048) and the batch size was reduced to 16
(from 64) to retain the number of actual updates that was performed. This
caused the policy to degenerate and the agent to select mostly one action
corresponding to a place in the lower left corner of the screen, as seen in action
histogram in Figure 5.11.

This may have been caused by higher variance in the gradient estimates and
insufficient exploration, which lead to premature convergence to a suboptimal
policy.

Results 69

0 50 100 150 200 250 300 350
Action

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Pe
rc

en
ta

ge

Figure 5.11 Histogram of actions selected by a degenerated policy caused by change
in PPO training parameters.

5.3.2 Episodic vs. Non-Episodic Learning
Both ICM and RND employ different strategy of splitting the traversals into
episodes. The agent used in the original ICM paper [41] is tested on a Doom
3-D navigation task and its episodes are terminated after 2100 time steps, or
when the agent finds the goal and the objective is accomplished. The RND
paper [42] states that treating the problem as non-episodic resulted in better
exploration, mostly argumenting with the fact that truncating the episode
causes the agent to work with incorrect intrinsic returns, similar to what was
discussed in Section 5.2.

The RND paper also references [40], where it is argued that using ‘done’
signal at the end of the episode can cause the reward signal to leak information
about the environment and bias the agent. The agent can then learn to perform
well in the span of an episode, but its performance may drastically drop after.

A simplified example that breaks this task is an app with exactly 100
states, where each tap leads to a new, unseen state at random, and resets after
all are discovered. The basic PPO approach would fail, achieving maximum
reward per episode without any generalization. ICM would struggle as well,
since it doesn’t handle stochastic transitions. RND only uses the next state,
so it could handle this scenario. However, since most environments are less
stochastic, this example won’t practically occur and using shorter episodes
may lead to a generalization and a faster training.

To evaluate this, the ICM-trained agent was run for 500 steps, that is 5×
longer than the episodes the model was trained on. It managed to discover
55 unique states and 122 unique transitions. A PCA map of the states it
discovered is shown in Figure 5.7. For comparison, a randomly initialized
agent was run for the same duration and discovered 34 unique states and 76
unique transitions. This yields a ratio of 1.62 between the methods in terms of

Future Work 70

unique states visited, and 1.61 for unique transitions. Compared to the results
in Table 5.1, where the ratios are 1.93 and 1.75, respectively, the performance
slightly decreases, but the ICM agent still maintains a clear advantage.

5.4 Future Work
This work focused on integrating the intrinsic motivation into a system in-
tended for an effective exploration of an interface of a touchscreen device. The
relatively slow operation of the real-world systems compared to environments
typically employed in reinforcement learning research remains a key challenge.
More significant training progress would require long training time, which is
impractical. The effects of this can be mitigated by refining other components
of the system.

A possible area of improvement that was mentioned is reducing the action
space. A suitable approach could be the Action Elimination Network [59]. It
is trained to filter out actions that are unlikely to be useful, such as those that
do not lead to meaningful state changes. An interesting experiment may be to
measure not only whether the agent’s policy improved, but also if the ratio of
actions that led to a state change increased.

In the future, the interface could be modeled using a continuous action
space. Methods such as Deep Deterministic Policy Gradient (DDPG) [67], its
successor Twin Delayed DDPG (TD3) [68] or Soft Actor-Critic (SAC) [69] are
designed for such spaces. The problem of these methods and generally of mod-
ern reinforcement learning is a low sample efficiency. A lot of newer methods
address this, such as Randomized Ensembled Double Q-Learning (REDQ) [70]
that promises a greater sample efficiency by updating the critic multiple times
per environment step. How these methods would be implemented and whether
this would lead to an improvement would need to be determined through fur-
ther research.

The methods used in this work relied on advanced feature extractors. The
performance of the methods presented here may be improved by collecting rel-
evant data and finetuning the feature extractors. This may seem similar to the
approach of element detection that was dismissed, but unlike in that method,
finetuning feature extractors can be done in a semi-supervised manner.

One of the steps in the distant future could be completing the action space
by allowing the robot to perform other actions, such as double tap, swipe or
hold. These actions are supported by AIVA. An interestingly defined struc-
tured, combinatorial action space is in [48]. It allows each action to consist
of multiple selections, such as action type, action target, etc. This approach
may be worth investigating as a possible method of incorporating the other
actions.

Conclusion

The objective of this work was to explore intrinsic motivation as a driver
for reinforcement learning in a system designed to explore a complex user
interface. It was shown that a simple, naïve approach is not sufficient and that
using intrinsic motivation can lead to an improvement in performance of the
explorative agent.

An alternative approach of using YOLO model to detect interactive ele-
ments was also evaluated. This approach was deemed impractical due to its
reliance on a labeled training dataset, limited portability across platforms, and
dependency on visually distinctive interactive elements.

Both intrinsic motivation techniques explored in this thesis — Intrinsic
Curiosity Module and Random Network Distillation — led to an improvement
and enabled the agent to perform more efficient exploration.

However, the ultimate end goal, building a system that, after a period of
time, learns to efficiently explore the complex system of a touch-screen device
is far from done. The performance is far from optimal, discretized action space
is too large and does not contain all the actions, and the learning progresses
slowly.

Despite these challenges, this work represents a meaningful step toward this
ultimate end goal and makes it possible for an autonomous agent to improve
in the task of navigation and understanding a complex system.

71

Bibliography

1. Y SOFT CORPORATION. Reliable Test Automation Done Right. 2025.
Available also from: https://www.ysoft.com/aiva. Accessed: 2025-03-
19.

2. WHITTINGTON, James C.R.; BOGACZ, Rafal. Theories of Error Back-
Propagation in the Brain. Trends in Cognitive Sciences. 2019, vol. 23, no.
3, pp. 235–250. issn 1364-6613. Available from doi: https://doi.org/1
0.1016/j.tics.2018.12.005.

3. LÖWEL, Siegrid; SINGER, Wolf. Selection of intrinsic horizontal connec-
tions in the visual cortex by correlated neuronal activity. Science. 1992,
vol. 255, no. 5041, pp. 209–212. Available from doi: https://doi.org/1
0.1126/science.1372754.

4. HEBB, Donald O. The organization of behavior: A neuropsychological
theory. Psychology press, 2005. Available from doi: https://doi.org/1
0.4324/9781410612403.

5. SUTTON, Richard S.; BARTO, Andrew G. Reinforcement Learning:
An Introduction. Cambridge, MA, USA: A Bradford Book, 2018. isbn
0262039249. Available also from: http://incompleteideas.net/book
/RLbook2020.pdf. Accessed 2025-04-06.

6. HRABAK, Pavel. Discrete-time Markov Chains [University Lecture]. 2024.
Available also from: https://courses.fit.cvut.cz/NI-VSM/lectures
/files/NI-VSM-Lec-14-Slides.pdf. Accessed 2025-04-05. (In Czech).

7. MARKOV, Andrey A. Extension of the Limit Theorems of Probability
Theory to a Sum of Variables Connected in a Chain. The Notes of the
Imperial Academy of Sciences of St. Petersburg, VIII Series, Physio-
Mathematical College. 1907, vol. 22, no. 9. (In Russian).

8. SILVER, David. Lectures on Reinforcement Learning [University Course].
2015. Available also from: https://www.davidsilver.uk/teaching/.
Accessed 2025-04-05.

72

https://www.ysoft.com/aiva
https://doi.org/https://doi.org/10.1016/j.tics.2018.12.005
https://doi.org/https://doi.org/10.1016/j.tics.2018.12.005
https://doi.org/https://doi.org/10.1126/science.1372754
https://doi.org/https://doi.org/10.1126/science.1372754
https://doi.org/https://doi.org/10.4324/9781410612403
https://doi.org/https://doi.org/10.4324/9781410612403
http://incompleteideas.net/book/RLbook2020.pdf
http://incompleteideas.net/book/RLbook2020.pdf
https://courses.fit.cvut.cz/NI-VSM/lectures/files/NI-VSM-Lec-14-Slides.pdf
https://courses.fit.cvut.cz/NI-VSM/lectures/files/NI-VSM-Lec-14-Slides.pdf
https://www.davidsilver.uk/teaching/

Bibliography 73

9. BELLMAN, Richard. Dynamic Programming. 1st ed. Princeton, NJ, USA:
Princeton University Press, 1957.

10. PUTERMAN, Martin L. Markov decision processes: discrete stochastic
dynamic programming. John Wiley & Sons, 1994. Available from doi:
https://doi.org/10.1002/9780470316887.

11. CORMEN, Thomas H. et al. Introduction to Algorithms, Third Edition.
3rd. The MIT Press, 2009. isbn 0262033844.

12. HOWARD, Ronald A. Dynamic Programming and Markov Processes.
Cambridge, USA: The MIT Press, 1960.

13. SZEPESVARI, Csaba. Algorithms for Reinforcement Learning. Morgan
and Claypool Publishers, 2010. isbn 1608454924.

14. SINGH, Satinder P.; SUTTON, Richard S. Reinforcement learning with
replacing eligibility traces. Mach. Learn. 1996, vol. 22, no. 1–3, pp. 123–
158. issn 0885-6125. Available from doi: 10.1007/BF00114726.

15. SUTTON, Richard Stuart. Temporal credit assignment in reinforcement
learning. 1984. PhD thesis. University of Massachusetts Amherst.

16. SUTTON, Richard S. Learning to Predict by the Methods of Temporal
Differences. Mach. Learn. 1988, vol. 3, no. 1, pp. 9–44. issn 0885-6125.
Available from doi: https://doi.org/10.1023/A:1022633531479.

17. RUMMERY, G.; NIRANJAN, Mahesan. On-Line Q-Learning Using Con-
nectionist Systems. Technical Report CUED/F-INFENG/TR 166. 1994.

18. SINGH, Satinder et al. Convergence Results for Single-Step On-Policy
Reinforcement-Learning Algorithms. Machine Learning. 2000, vol. 38, no.
3, pp. 287–308. issn 1573-0565. Available from doi: https://doi.org/1
0.1023/A:1007678930559.

19. WATKINS, Christopher J. C. H. Learning from delayed rewards. 1989.
PhD thesis. University of Cambridge, England.

20. WATKINS, Christopher J. C. H.; DAYAN, Peter. Q-learning. Machine
Learning. 1992, vol. 8, no. 3, pp. 279–292. issn 1573-0565. Available from
doi: https://doi.org/10.1007/BF00992698.

21. TROMP, John. Chess Position Ranking [online] [https://github.com
/tromp/ChessPositionRanking]. GitHub, 2022. Accessed: 2025-04-15.

22. SILVER, David et al. Mastering the game of Go without human knowl-
edge. Nature. 2017, vol. 550, no. 7676, pp. 354–359. issn 1476-4687. Avail-
able from doi: https://doi.org/10.1038/nature24270.

23. MNIH, Volodymyr et al. Playing Atari with Deep Reinforcement Learning.
2013. Available from doi: https://doi.org/10.48550/arXiv.1312.56
02.

https://doi.org/https://doi.org/10.1002/9780470316887
https://doi.org/10.1007/BF00114726
https://doi.org/https://doi.org/10.1023/A:1022633531479
https://doi.org/https://doi.org/10.1023/A:1007678930559
https://doi.org/https://doi.org/10.1023/A:1007678930559
https://doi.org/https://doi.org/10.1007/BF00992698
https://github.com/tromp/ChessPositionRanking
https://github.com/tromp/ChessPositionRanking
https://doi.org/https://doi.org/10.1038/nature24270
https://doi.org/https://doi.org/10.48550/arXiv.1312.5602
https://doi.org/https://doi.org/10.48550/arXiv.1312.5602

Bibliography 74

24. BARNARD, Etienne. Temporal-Difference Methods and Markov Models.
Systems, Man and Cybernetics, IEEE Transactions on. 1993, vol. 23,
pp. 357–365. Available from doi: https://doi.org/10.1109/21.22944
9.

25. BAIRD, Leemon C. Residual algorithms: reinforcement learning with
function approximation. In: Proceedings of the Twelfth International Con-
ference on International Conference on Machine Learning. Tahoe City,
California, USA: Morgan Kaufmann Publishers Inc., 1995, pp. 30–37.
ICML’95. isbn 1558603778.

26. ZHANG, Shangtong; YAO, Hengshuai; WHITESON, Shimon. Breaking
the Deadly Triad with a Target Network. CoRR. 2021, vol. abs/2101.08862.
Available from doi: https://doi.org/10.48550/arXiv.2101.08862.

27. WILLIAMS, Ronald J. Simple statistical gradient-following algorithms
for connectionist reinforcement learning. Machine Learning. 1992, vol. 8,
no. 3, pp. 229–256. issn 1573-0565. Available from doi: https://doi.o
rg/10.1007/BF00992696.

28. WITTEN, Ian H. An adaptive optimal controller for discrete-time Markov
environments. Information and Control. 1977, vol. 34, no. 4, pp. 286–295.
issn 0019-9958. Available from doi: https://doi.org/10.1016/S0019-
9958(77)90354-0.

29. KONDA, Vijay; TSITSIKLIS, John. Actor-Critic Algorithms. In: Ad-
vances in Neural Information Processing Systems. MIT Press, 1999, vol. 12,
pp. 1008–1014. Available also from: https://papers.nips.cc/paper_f
iles/paper/1999/file/6449f44a102fde848669bdd9eb6b76fa-Paper
.pdf. Accessed: 2025-04-20.

30. SUTTON, Richard S et al. Policy Gradient Methods for Reinforcement
Learning with Function Approximation. In: Advances in Neural Infor-
mation Processing Systems. MIT Press, 1999, vol. 12, pp. 1057–1063.
Available also from: https://proceedings.neurips.cc/paper_files
/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf.
Accessed: 2025-04-21.

31. KAKADE, Sham M. A Natural Policy Gradient. In: Advances in Neural
Information Processing Systems. MIT Press, 2001, vol. 14, pp. 1531–1538.
Available also from: https://proceedings.neurips.cc/paper_files
/paper/2001/file/4b86abe48d358ecf194c56c69108433e-Paper.pdf.
Accessed: 2025-04-21.

32. PETERS, Jan; VIJAYAKUMAR, Sethu; SCHAAL, Stefan. Natural Actor-
Critic. In: Machine Learning: ECML 2005. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2005, pp. 280–291. isbn 978-3-540-31692-3.

https://doi.org/https://doi.org/10.1109/21.229449
https://doi.org/https://doi.org/10.1109/21.229449
https://doi.org/https://doi.org/10.48550/arXiv.2101.08862
https://doi.org/https://doi.org/10.1007/BF00992696
https://doi.org/https://doi.org/10.1007/BF00992696
https://doi.org/https://doi.org/10.1016/S0019-9958(77)90354-0
https://doi.org/https://doi.org/10.1016/S0019-9958(77)90354-0
https://papers.nips.cc/paper_files/paper/1999/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://papers.nips.cc/paper_files/paper/1999/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://papers.nips.cc/paper_files/paper/1999/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2001/file/4b86abe48d358ecf194c56c69108433e-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2001/file/4b86abe48d358ecf194c56c69108433e-Paper.pdf

Bibliography 75

33. SCHULMAN, John et al. Trust Region Policy Optimization. In: Proceed-
ings of the 32nd International Conference on Machine Learning. Lille,
France: PMLR, 2015, vol. 37, pp. 1889–1897. Proceedings of Machine
Learning Research. Available also from: https://proceedings.mlr.pr
ess/v37/schulman15.html. Accessed: 2025-04-22.

34. HUNTER, David R; LANGE, Kenneth. A Tutorial on MM Algorithms.
The American Statistician. 2004, vol. 58, no. 1, pp. 30–37. Available from
doi: https://doi.org/10.1198/0003130042836.

35. KAKADE, Sham; LANGFORD, John. Approximately Optimal Approx-
imate Reinforcement Learning. In: Proceedings of the Nineteenth Inter-
national Conference on Machine Learning. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 2002, pp. 267–274. ICML ’02. isbn
1558608737.

36. KULLBACK, S.; LEIBLER, R. A. On Information and Sufficiency. The
Annals of Mathematical Statistics. 1951, vol. 22, no. 1, pp. 79–86. Avail-
able from doi: https://doi.org/10.1214/aoms/1177729694.

37. SCHULMAN, John et al. High-Dimensional Continuous Control Using
Generalized Advantage Estimation. 2018. Available from arXiv: 1506.02
438 [cs.LG].

38. SCHULMAN, John et al. Proximal Policy Optimization Algorithms. 2017.
Available from doi: https://doi.org/10.48550/arXiv.1707.06347.

39. PASZKE, Adam et al. PyTorch: An Imperative Style, High-Performance
Deep Learning Library. In: Advances in Neural Information Processing
Systems 32. Curran Associates, Inc., 2019, pp. 8024–8035. Available also
from: http://papers.neurips.cc/paper/9015-pytorch-an-imperati
ve-style-high-performance-deep-learning-library.pdf. Accessed:
2025-04-26.

40. BURDA, Yuri et al. Large-Scale Study of Curiosity-Driven Learning.
2018. Available from doi: https://doi.org/10.48550/arXiv.1808
.04355.

41. PATHAK, Deepak et al. Curiosity-driven Exploration by Self-supervised
Prediction. 2017. Available from doi: https://doi.org/10.48550/arXi
v.1705.05363.

42. BURDA, Yuri et al. Exploration by Random Network Distillation. 2018.
Available from doi: https://doi.org/10.48550/arXiv.1810.12894.

43. KENDALL, Alex; GAL, Yarin. What Uncertainties Do We Need in Bayes-
ian Deep Learning for Computer Vision? In: Advances in Neural Informa-
tion Processing Systems. Curran Associates, Inc., 2017, vol. 30, pp. 5574–
5584. Available also from: https://proceedings.neurips.cc/paper_f
iles/paper/2017/file/2650d6089a6d640c5e85b2b88265dc2b-Paper
.pdf. Accessed: 2025-04-26.

https://proceedings.mlr.press/v37/schulman15.html
https://proceedings.mlr.press/v37/schulman15.html
https://doi.org/https://doi.org/10.1198/0003130042836
https://doi.org/https://doi.org/10.1214/aoms/1177729694
https://arxiv.org/abs/1506.02438
https://arxiv.org/abs/1506.02438
https://doi.org/https://doi.org/10.48550/arXiv.1707.06347
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/https://doi.org/10.48550/arXiv.1808.04355
https://doi.org/https://doi.org/10.48550/arXiv.1808.04355
https://doi.org/https://doi.org/10.48550/arXiv.1705.05363
https://doi.org/https://doi.org/10.48550/arXiv.1705.05363
https://doi.org/https://doi.org/10.48550/arXiv.1810.12894
https://proceedings.neurips.cc/paper_files/paper/2017/file/2650d6089a6d640c5e85b2b88265dc2b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/2650d6089a6d640c5e85b2b88265dc2b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/2650d6089a6d640c5e85b2b88265dc2b-Paper.pdf

Bibliography 76

44. SICILIANO, B.; KHATIB, O. Springer Handbook of Robotics. Springer
Berlin Heidelberg, 2008. isbn 9783540239574. Available from doi: https
://doi.org/10.1007/978-3-540-30301-5.

45. REDMON, Joseph et al. You Only Look Once: Unified, Real-Time Object
Detection. 2016. Available from doi: https://doi.org/10.48550/arXi
v.1506.02640.

46. KHANAM, Rahima; HUSSAIN, Muhammad. What is YOLOv5: A deep
look into the internal features of the popular object detector. 2024. Avail-
able from doi: https://doi.org/10.48550/arXiv.2407.20892.

47. TIAN, Yunjie; YE, Qixiang; DOERMANN, David. YOLOv12: Attention-
Centric Real-Time Object Detectors. 2025. Available from doi: https://d
oi.org/10.48550/arXiv.2502.12524.

48. VINYALS, Oriol et al. Grandmaster level in StarCraft II using multi-
agent reinforcement learning. Nature. 2019, vol. 575, no. 7782, pp. 350–
354. issn 1476-4687. Available from doi: https://doi.org/10.1038/s4
1586-019-1724-z.

49. OPENAI et al. Dota 2 with Large Scale Deep Reinforcement Learning.
2019. Available from doi: https://doi.org/10.48550/arXiv.1912.06
680.

50. LOWE, D.G. Object recognition from local scale-invariant features. In:
Proceedings of the Seventh IEEE International Conference on Computer
Vision. 1999, vol. 2, 1150–1157 vol.2. Available from doi: 10.1109/ICCV
.1999.790410.

51. LECUN, Yann et al. Handwritten Digit Recognition with a Back-Propa-
gation Network. In: Advances in Neural Information Processing Systems.
Morgan-Kaufmann, 1989, vol. 2, pp. 396–404. Available also from: http
s://proceedings.neurips.cc/paper_files/paper/1989/file/53c3b
ce66e43be4f209556518c2fcb54-Paper.pdf. Accessed: 2025-04-28.

52. GU, Jiuxiang et al. Recent Advances in Convolutional Neural Networks.
2017. Available from arXiv: 1512.07108 [cs.CV].

53. KRIZHEVSKY, Alex; SUTSKEVER, Ilya; HINTON, Geoffrey E. Ima-
geNet Classification with Deep Convolutional Neural Networks. In: Ad-
vances in Neural Information Processing Systems. Curran Associates,
Inc., 2012, vol. 25, pp. 1097–1105. Available also from: https://procee
dings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b7
6c8436e924a68c45b-Paper.pdf.

54. DOSOVITSKIY, Alexey et al. An Image is Worth 16x16 Words: Trans-
formers for Image Recognition at Scale. 2021. Available from doi: https
://doi.org/10.48550/arXiv.2010.11929.

https://doi.org/https://doi.org/10.1007/978-3-540-30301-5
https://doi.org/https://doi.org/10.1007/978-3-540-30301-5
https://doi.org/https://doi.org/10.48550/arXiv.1506.02640
https://doi.org/https://doi.org/10.48550/arXiv.1506.02640
https://doi.org/https://doi.org/10.48550/arXiv.2407.20892
https://doi.org/https://doi.org/10.48550/arXiv.2502.12524
https://doi.org/https://doi.org/10.48550/arXiv.2502.12524
https://doi.org/https://doi.org/10.1038/s41586-019-1724-z
https://doi.org/https://doi.org/10.1038/s41586-019-1724-z
https://doi.org/https://doi.org/10.48550/arXiv.1912.06680
https://doi.org/https://doi.org/10.48550/arXiv.1912.06680
https://doi.org/10.1109/ICCV.1999.790410
https://doi.org/10.1109/ICCV.1999.790410
https://proceedings.neurips.cc/paper_files/paper/1989/file/53c3bce66e43be4f209556518c2fcb54-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1989/file/53c3bce66e43be4f209556518c2fcb54-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1989/file/53c3bce66e43be4f209556518c2fcb54-Paper.pdf
https://arxiv.org/abs/1512.07108
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://doi.org/https://doi.org/10.48550/arXiv.2010.11929
https://doi.org/https://doi.org/10.48550/arXiv.2010.11929

Bibliography 77

55. VASWANI, Ashish et al. Attention is All you Need. In: GUYON, I. et
al. (eds.). Advances in Neural Information Processing Systems. Curran
Associates, Inc., 2017, vol. 30, pp. 5998–6008. Available also from: http
s://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee
243547dee91fbd053c1c4a845aa-Paper.pdf. Accessed: 2025-04-28.

56. LIU, Ze et al. Swin Transformer: Hierarchical Vision Transformer using
Shifted Windows. 2021. Available from doi: https://doi.org/10.4855
0/arXiv.2103.14030.

57. HUANG, Yupan et al. LayoutLMv3: Pre-training for Document AI with
Unified Text and Image Masking. In: Proceedings of the 30th ACM In-
ternational Conference on Multimedia. Lisboa, Portugal: Association for
Computing Machinery, 2022, pp. 4083–4091. MM ’22. isbn 9781450392037.
Available from doi: https://doi.org/10.1145/3503161.3548112.

58. DULAC-ARNOLD, Gabriel et al. Deep Reinforcement Learning in Large
Discrete Action Spaces. 2016. Available from doi: https://doi.org/10
.48550/arXiv.1512.07679.

59. ZAHAVY, Tom et al. Learn What Not to Learn: Action Elimination
with Deep Reinforcement Learning. In: Advances in Neural Information
Processing Systems. Curran Associates, Inc., 2018, vol. 31, pp. 3562–3573.
Available also from: https://proceedings.neurips.cc/paper_files
/paper/2018/file/645098b086d2f9e1e0e939c27f9f2d6f-Paper.pdf.
Accessed: 2025-05-01.

60. OPENAPI GENERATOR CONTRIBUTORS. OpenAPI Generator [on-
line]. GitHub, 2025. Available also from: https://github.com/Open
APITools/openapi-generator. Accessed: 2025-05-01.

61. JOCHER, Glenn. Ultralytics YOLOv5. 2020. Version 7.0. Available from
doi: 10.5281/zenodo.3908559.

62. DEKA, Biplab et al. Rico: A Mobile App Dataset for Building Data-
Driven Design Applications. In: Proceedings of the 30th Annual Sympo-
sium on User Interface Software and Technology. 2017. UIST ’17.

63. LEWIS, D. et al. Building a test collection for complex document in-
formation processing. In: Proceedings of the 29th Annual International
ACM SIGIR Conference on Research and Development in Information
Retrieval. Seattle, Washington, USA: Association for Computing Machin-
ery, 2006, pp. 665–666. SIGIR ’06. isbn 1595933697. Available from doi:
https://doi.org/10.1145/1148170.1148307.

64. DENG, Jia et al. Imagenet: A large-scale hierarchical image database. In:
2009 IEEE conference on computer vision and pattern recognition. IEEE,
2009, pp. 248–255.

https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/https://doi.org/10.48550/arXiv.2103.14030
https://doi.org/https://doi.org/10.48550/arXiv.2103.14030
https://doi.org/https://doi.org/10.1145/3503161.3548112
https://doi.org/https://doi.org/10.48550/arXiv.1512.07679
https://doi.org/https://doi.org/10.48550/arXiv.1512.07679
https://proceedings.neurips.cc/paper_files/paper/2018/file/645098b086d2f9e1e0e939c27f9f2d6f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/645098b086d2f9e1e0e939c27f9f2d6f-Paper.pdf
https://github.com/OpenAPITools/openapi-generator
https://github.com/OpenAPITools/openapi-generator
https://doi.org/10.5281/zenodo.3908559
https://doi.org/https://doi.org/10.1145/1148170.1148307

Bibliography 78

65. RAFFIN, Antonin et al. Stable-Baselines3: Reliable Reinforcement Learn-
ing Implementations. Journal of Machine Learning Research. 2021, vol. 22,
no. 268, pp. 1–8. Available also from: http://jmlr.org/papers/v22/20
-1364.html.

66. MNIH, Volodymyr et al. Human-level control through deep reinforcement
learning. Nature. 2015, vol. 518, no. 7540, pp. 529–533. issn 1476-4687.
Available from doi: https://doi.org/10.1038/nature14236.

67. LILLICRAP, Timothy P. et al. Continuous control with deep reinforce-
ment learning. 2019. Available from arXiv: 1509.02971 [cs.LG].

68. FUJIMOTO, Scott; HOOF, Herke van; MEGER, David. Addressing Func-
tion Approximation Error in Actor-Critic Methods. 2018. Available from
arXiv: 1802.09477 [cs.AI].

69. HAARNOJA, Tuomas et al. Soft Actor-Critic: Off-Policy Maximum En-
tropy Deep Reinforcement Learning with a Stochastic Actor. 2018. Avail-
able from arXiv: 1801.01290 [cs.LG].

70. CHEN, Xinyue et al. Randomized Ensembled Double Q-Learning: Learn-
ing Fast Without a Model. 2021. Available from arXiv: 2101 . 05982
[cs.LG].

http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html
https://doi.org/https://doi.org/10.1038/nature14236
https://arxiv.org/abs/1509.02971
https://arxiv.org/abs/1802.09477
https://arxiv.org/abs/1801.01290
https://arxiv.org/abs/2101.05982
https://arxiv.org/abs/2101.05982

Contents of the attachment

readme.txt a brief description of the attachments
src

thesis thesis LATEX source files
impl source codes for the implementation

yolo..................................training of the YOLO model
aiva_explore_mlp....................RL agent using MLP policy
aiva_explore_cnn....................RL agent using CNN policy

text.. thesis text
thesis.pdf thesis text in PDF format

79

	Acknowledgments
	Declaration
	Abstract
	List of abbreviations
	Introduction
	Foundations of Reinforcement Learning
	Definition of Reinforcement Learning
	Markov Decision Process
	Value Function, Bellman Equations
	Solving MDPs with Dynamic Programming
	Model-Free Value-Based Methods
	Monte-Carlo Methods
	Temporal Difference (TD) Methods
	Policy Improvement in Model-Free Methods
	SARSA and Q-learning
	Eligibility Traces

	Function Approximation in RL
	Gradient Descent

	Policy Gradient Methods
	Actor-Critic Methods
	Policy Gradient Theorem

	Advanced Methods in Reinforcement Learning
	Natural Policy Gradient
	Natural Actor-Critic

	Trust Region Policy Optimization (TRPO)
	Defining the Trust Region
	Importance Sampling for Practical Use

	Generalized Advantage Estimation (GAE)
	Proximal Policy Optimization (PPO)
	Intrinsic Motivation
	Intrinsic Curiosity Module (ICM)
	Random Network Distillation (RND)

	Robotic Interface Interaction
	Detection of Clickable Elements
	Element Detection with YOLO
	Interaction with the Elements

	Feature Extraction for Decision-Making
	Extracting Features from Screenshot
	Large Action Spaces

	Experimental Setup
	The AIVA Testing Robot
	Error Handling

	Element Detection Approach Setup
	Feature Extraction Approach Setup
	Reinforcement Learning Agent Setup
	Policy Network
	Implementation of Intrinsic Motivation
	ICM Implementation
	RND Implementation

	Tuning and Optimization

	The Physical Environment

	Experiments
	YOLO Element Detection
	Reinforcement Learning Methods
	Intrinsically Motivated Learning
	A Closer Look at the Feature Extraction
	Random Network Distillation

	Results
	Training Instability
	Episodic vs. Non-Episodic Learning

	Future Work

	Contents of the attachment

