
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

DECISION TREES FORMULTI-ENVIRONMENT
MARKOV DECISION PROCESSES
ROZHODOVACÍ STROMY PRO RODINY MARKOVSKÝCH ROZHODOVACÍCH PROCESŮ

MASTER’S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Bc. LADISLAV DOKOUPIL
AUTOR PRÁCE

SUPERVISOR doc. RNDr. MILAN ČEŠKA, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2025

Institut: Department of Intelligent Systems (DITS)

Student: Dokoupil Ladislav, Bc.

Programme: Information Technology and Artificial Intelligence

Specialization: Mathematical Methods

Category: Formal Verification

Academic year: 2024/25

Assignment:

1. Study the state-of-the-art approaches for solving multi-environment Markov Decision Processes
(MDPs), and for construction of decision trees representing MDP polices.

2. Investigate effective representations of polices for multi-environment MDPs with the focus on
decision trees.

3. Design and implement a method synthetizing effective representations of winning polices in multi-
environment MDPs.

4. Perform a detailed experimental evaluation of the proposed method on practically relevant planning
problems.

Literature:
• Kochenderfer, M.J., Wheeler, T.A., and Wray K.H, Algorithms for Decision Making, MIT Press 2022.
• Andriushchenko, R., Češka, M., Junges, S., Katoen, J.P. and Stupinský, Š. PAYNT: A Tool for

Inductive Synthesis of Probabilistic Programs. In CAV 2021.
• Junges, S., N. Jansen, R. Wimmer, T. Quatmann, L. Winterer, J. P. Katoen, and B. Becker. Finite-

state controllers of POMDPs using parameter synthesis. In UAI 2018.
• Andriushchenko, Roman, Milan Češka, Sebastian Junges, and Filip Macák. ‘Policies Grow on

Trees: Model Checking Families of MDPs’. In Automated Technology for Verification and Analysis,
2024.

• Ashok, P., Jackermeier, M., Křetínský, J., Weinhuber, C., Weininger, M., Yadav, M.: DtControl 2.0:
Explainable strategy representation via decision tree learning steered by experts. In: TACAS 2021.

Requirements for the semestral defence:
Items 1, 2 and partially 3.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/

Supervisor: Češka Milan, doc. RNDr., Ph.D.

Consultant: Andriushchenko Roman, Ing.

Head of Department: Kočí Radek, Ing., Ph.D.

Beginning of work: 1.11.2024

Submission deadline: 21.5.2025

Approval date: 31.10.2024

Master's Thesis Assignment
162927

Decision trees for multi-environment Markov Decision ProcessesTitle:

Faculty of Information Technology, Brno University of Technology / Božetěchova 1/2 / 612 66 / Brno

Abstract
Markov Decision Processes (MDPs) provide a fundamental framework for sequential deci-
sion making under uncertainty. However, practical systems often involve structural vari-
ations, best modeled by families of MDPs (f-MDPs). The challenge lies in synthesizing
compact and interpretable policies covering the entire family, as existing approaches can be
overly conservative, yielding large, difficult-to-interpret policies. This thesis presents novel
techniques to address these issues. We propose two key orthogonal contributions: (1) a
heuristic-based pruning approach to generate minimal controllers from the initial policies,
and (2) a novel transformation that reduces family to an MDP problem, by leveraging a
game abstraction to model worst-case system variations. Such transformation allows us
to synthesize alternative policies using existing synthesis tools, while maintaining correct-
ness. We further introduce a unified decision tree representation, comprising a candidate
mapping tree and a unified policy tree. This structure provides a globally compact and
interpretable solution for the entire f-MDP, minimizing redundancy compared to manag-
ing separate, often tabular, controllers. Implemented as an extension to the PAYNT tool,
our methods are experimentally shown to substantially reduce controller size and improve
interpretability, often with an acceptable trade-off in synthesis time.
Abstrakt
Markovské rozhodovací procesy (MDP) poskytují základní rámec pro sekvenční rozhodování
v podmínkách nejistoty. Praktické systémy však často zahrnují strukturální variace, které
nejlépe modelují rodiny MDP (f-MDP). Výzvou je syntéza kompaktních a interpretovatel-
ných kontrolerů pokrývajících celou rodinu, jelikož existující přístupy mohou být příliš
konzervativní a vést k rozsáhlým, obtížně interpretovatelným kontrolerům. Tato práce
představuje nové techniky k řešení těchto problémů. Navrhujeme dva klíčové, ortogonální
přínosy: (1) heuristický přístup pro generování minimálních kontrolerů z původních kontrol-
erů a (2) novou transformaci, která redukuje problém rodiny MDP na problém klasického
MDP pomocí herní abstrakce, jež modeluje nejhorší možné systémové variace. Tato trans-
formace umožňuje syntetizovat alternativní kontrolery s využitím stávajících nástrojů pro
syntézu, a to při zachování korektnosti. Dále zavádíme sjednocenou reprezentaci pomocí
rozhodovacích stromů, zahrnující strom mapování kandidátů a sjednocený strom kontrol-
erů. Tato struktura poskytuje globálně kompaktní a interpretovatelné řešení pro celou
f-MDP, přičemž minimalizuje redundanci oproti správě samostatných, často tabulárních
kontrolerů. Naše metody, implementované jako rozšíření nástroje PAYNT, experimentálně
prokazují výrazné zmenšení velikosti kontrolerů a zlepšení jejich interpretovatelnosti, často
s přijatelným kompromisem v čase syntézy.
Keywords
Markov Decision Processes, Families of MDPs, Decision Trees, Compact Controllers, Inter-
pretable Controllers, Policy Optimization, Stochastic Games
Klíčová slova
Markovovy rozhodovací procesy, Rodiny MDP, Rozhodovací stromy, Kompaktní kontrolery,
Interpretovatelné kontrolery, Optimalizace kontrolerů, Stochastické hry
Reference
DOKOUPIL, Ladislav. Decision trees for multi-environment Markov Decision Processes.
Brno, 2025. Master’s thesis. Brno University of Technology, Faculty of Information Tech-
nology. Supervisor doc. RNDr. Milan Češka, Ph.D.

Rozšířený abstrakt
Rodiny Markovských rozhodovacích procesů (f-MDP) představují klíčový formalismus pro

modelování sekvenčního rozhodování v systémech s parametrickou nejistotou nebo vari-
abilními provozními podmínkami, jaké se bežně vyskytují v praktických aplikacích, jako
je robotika či autonomní systémy. Syntéza kontrolerů pro tyto systémy vyžaduje nejen
zaručení robustnosti vůči specifikovaným cílům, ale také dosažení kompaktnosti a interpre-
tovatelnosti výsledných řešení. Právě tato kombinace představuje zásadní výzvu, kterou
tato práce adresuje.

Současné přistupy pro syntézu kontrolerů pro f-MDP, zejména ty založené na herních
abstrakcích, sice umožňují generovat robustní kontrolery, avšak často za cenu značných kom-
promisů. Takto vytvořené kontrolery bývají typicky konzervativní, neboť jsou navrhovány
proti nejhorší možné variaci prostředí, což může vést k zahrnutí mnoha nadbytečných stavů
či akcí. Navíc jsou často reprezentovány v tabulární formě, která není pamětově efektivní
a je obtížně interpretovatelná pro člověka. Dále může správa samostatných kontrolerů pro
jednotlivé podrodiny vést k redundanci, pokud se podobná logika opakuje napříč více in-
stancemi.

K překonání těchto omezení tato práce navrhuje sadu nových technik a reprezentačních
strategií. Prvním klíčovým přínosem je vývoj heuristických algoritmů pro systematické
prořezávání nadbytečných stavů a akcí z počátečních robustních kontrolerů. Tento přístup
přímo redukuje jejich konzervatismus a složitost, při plném zachování korektnosti a robust-
nosti vůči celé rodině f-MDP.

Druhým významným přínosem je inovativní transformace problému f-MDP na odvozené
MDP. Tato metoda transformuje vyřešenou herní abstrakci, kde je strategie prostředí
fixována na ekvivalentní MDP. To následně umožňuje aplikaci pokročilých nástrojů pro
syntézu MDP kontrolerů, jako je dtNESt, za účelem generování alternativních kontrolerů,
které jsou kompaktnější a snáze reprezentovatelné, přičemž si zachovávají robustnost pro
celou původní rodinu f-MDP.

Třetím klíčovým přínosem je zavedení nové, sjednocené reprezentace kontroleru ve
formě sjednoceného rozhodovacího stromu (UDT). Tato struktura, skládající se ze stromu
mapování kandidátů (CMT) a sjednoceného stromu kontrolerů (UPT), poskytuje globálně
optimalizované a interpretovatelné řešení pro celou rodinu f-MDP. CMT efektivně ma-
puje podrodiny na příslušné kandidátské kontrolery (reprezentované identifikátory), za-
tímco UPT, syntetizovaný pomocí nástrojů jako dtControl, integruje rozhodovací logiku
všech těchto kandidátů do jednoho kompaktního stromu. Tento přístup minimalizuje re-
dundanci a zlepšuje celkovou srozumitelnost a kompaktnost ve srovnání se správou sady
samostatných, často tabulárních, kontrolerů. Navržené techniky byly implementovány jako
rozšíření nástroje PAYNT. Experimentální vyhodnocení na sadě zavedených benchmarků
prokazuje, že naše metody významně redukují velikost kontrolerů a zvyšují jejich inter-
pretovatelnost a to často za přijatelnou cenu v čase syntézy. Tato práce tak představuje
významný krok k praktičtějšímu nasazení formálních metod pro syntézu srozumitelných a
efektivních kontrolerů pro komplexní parametrizované systémy.

Decision trees for multi-environment Markov De-
cision Processes

Declaration
I hereby declare that this Master’s thesis was prepared as an original work by the author
under the supervision of Mr. doc. RNDr. Milan Češka, Ph.D. The supplementary informa-
tion was provided by Mr. Andriushchenko Roman, Ing. I have listed all the literary sources,
publications, and other sources that were used during the preparation of this thesis.

. .
Ladislav Dokoupil

May 19, 2025

Acknowledgements
I would like to express my sincere gratitude to my supervisor, doc. RNDr. Milan Češka,
Ph.D., for his invaluable guidance, support, and insightful feedback throughout the devel-
opment of this thesis. I am also thankful to Mr. Andriushchenko Roman, Ing., for his
advice regarding implementation. A special thank you goes to my family and friends for
their continuous encouragement, support, and motivation throughout this journey.

Contents

1 Introduction 2

2 Preliminaries and Problem Statement 6
2.1 Markov Decision Processes . 6
2.2 Families of MDPs . 9
2.3 Compact Solution Representation . 11

3 State of the Art 13
3.1 Decision Trees for MDP . 14
3.2 Policy Trees for Families of MDPs . 15

4 Synthesis of Small Policy Trees 20
4.1 Overview . 20
4.2 Pruning Policy States . 22
4.3 Merging Strategies . 28
4.4 Deriving a Markov Decision Process . 29
4.5 Unified Decision Tree Representation . 31

5 Experimental Evaluation 34
5.1 Policy Merging Strategy . 35
5.2 Policy Pruning . 36
5.3 State of the Art Comparison . 38

6 Conclusion 41

Bibliography 43

A Contents of the External Attachment 46

B Installation and Running 47

1

Chapter 1

Introduction

Markov Decision Processes (MDPs) represent a fundamental mathematical framework for
modeling sequential decision-making under uncertainty. Their widespread adoption spans
diverse domains including planning problems, robotics, reinforcement learning, and au-
tonomous systems. A classical synthesis task in MDPs is to compute policies that achieve
given specifications, such as reachability objectives. Several established tools exist for syn-
thesizing such controllers for individual MDPs, including PRISM [15] and Storm [12]. These
tools often tackle large state spaces, where techniques like abstraction refinement are crucial
for managing complexity in probabilistic software [14]. As technological systems grow in-
creasingly complex, there exists a critical need for controllers that not only achieve efficiency
but also exhibit explainability and interpretability to human operators and end-users.

Traditionally, policies for individual MDPs are represented as mappings from states
to actions, commonly implemented in tabular form. While ensuring determinism (i.e.,
each state is assigned exactly one action), this tabular representation presents significant
challenges. It lacks intuitive interpretability and often requires substantial storage capacity,
especially for large-scale MDPs with thousands of states. To address these limitations for
single MDP policies, alternative representations like binary decision diagrams (BDDs) [10]
and decision trees (DTs) [6] have been proposed. BDDs, while efficient for some tasks,
can obscure the MDP’s natural structure and diminish interpretability, particularly due to
encoding complexities and the NP-hard problem of optimal variable ordering [21]. Decision
trees, constructed by algorithms like CART [17], C4.5 [22], or Logistic Regression [16],
offer a more interpretable structure by naturally identifying effective variable splits and
representing decision logic as a hierarchical set of human-readable rules. This approach
has been successfully implemented in the dtControl [7, 8], which synthesizes decision tree
representations of MDP policies and other decision-making problems.

While standard MDPs offer a robust foundation, many real-world systems exhibit com-
plexities, such as uncertain parameters [19], environmental variations [11], or varied opera-
tional configurations like alternative hardware choices [13], that are challenging to capture
with a single, fixed MDP model. To address these scenarios, families of Markov Deci-
sion Processes (f-MDPs) provide a more expressive framework. Following the formalization
in [5], f-MDPs generalize the standard MDP model by representing sets of related MDPs
that typically share common state and action spaces but differ in their transition probabili-
ties. This thesis addresses the significant challenge of synthesizing explainable and compact
controllers for such f-MDPs. The objective for an f-MDP is to synthesize a solution, often
a collection of policies, that together satisfy a given specification across the entire fam-
ily. This work extends the PAYNT tool [4], which facilitates the synthesis of probabilistic

2

programs from high-level specifications, by introducing advanced techniques for controller
representation and synthesis specifically for f-MDPs.

Synthesizing solutions for f-MDPs is more complex than for single MDPs. Naive enu-
meration of individual MDPs is computationally infeasible for large families. A key strategy
involves finding either a single robust policy winning for all family members or, since such
a robust policy for the entire family may not always exist, a policy map is more commonly
employed. This map, often structured as a policy tree [5], partitions the family and assigns a
specific winning policy (or indicates unsatisfiability) to each identified subfamily. The cen-
tral challenge, which this thesis tackles, lies in efficiently constructing this policy map and
representing both its structure and the constituent policies compactly and interpretably. A
promising foundation for this, and the basis for our enhancements, is the approach in [5]
which encodes the f-MDP problem as a two-player stochastic game [23]. Solving this game
allows for the efficient synthesis of robust winning policies for subfamilies, which then form
the leaves of the policy tree.

However, policies generated directly from such game-based abstractions often suffer
from significant limitations. Primarily, these policies are designed against a worst-case
environment, leading to conservative strategies that may include many irrelevant states or
actions not strictly necessary for satisfying the specification in any family member. This
results in unnecessarily large and complex policies. Furthermore, these policies are typically
produced in a tabular format, which, as discussed, lacks interpretability and compactness.
Finally, representing policies independently for each subfamily can lead to redundancy if
similar logic is repeated across multiple policies.

To overcome these shortcomings and to significantly improve the compactness and in-
terpretability of controllers for f-MDPs, this thesis introduces a suite of novel techniques
and representation strategies. First, we develop heuristic algorithms for Policy State
Pruning to simplify the initial robust policies. By systematically eliminating irrelevant
states and actions, these heuristics directly tackle the inherent conservatism, reducing pol-
icy complexity while preserving correctness guarantees. Second, we propose a novel MDP
Transformation for Alternative Policy Synthesis. This method derives an MDP from
the solved game abstraction of an f-MDP (sub)family. By fixing the environment’s choices
according to its optimal worst-case strategy (obtained from the game), we construct an
MDP that models the family operating under these adversarial conditions. This transfor-
mation enables the use of existing MDP synthesis tools, such as dtNESt [3], to generate
alternative policies, which can often be represented by smaller decision trees.

Third, to create a globally optimized controller for the entire family, we introduce a novel
Unified Decision Tree (UDT) Representation. This two-tree structure, comprising a
Candidate Mapping Tree (CMT) and a single Unified Policy Tree (UPT), integrates fam-
ily mapping logic with policy execution logic. The UPT is synthesized using decision tree
learning tools like dtControl from the set of (potentially pruned or dtNESt-generated) can-
didate policies, effectively minimizing redundancy and improving interpretability compared
to collections of separate decision trees.

The effectiveness of these contributions is demonstrated through extensive experimental
evaluation. Our findings show that the proposed UDT representation, particularly when
combined with policy state pruning and the MDP transformation technique for leveraging
tools like dtNESt, achieves significant reductions in controller size, in some cases resulting
in an order of magnitude smaller representation, and enhances interpretability compared
to existing methods. These improvements are often realized with acceptable trade-offs in

3

start

end

y/x

1

1 2 3 4

2

3

4

(a) Robot’s objective: Exit the maze
safely. Hatched areas indicate potential
obstacle locations.

OX={2}

OX=2,OY=2

True

OX=1,OY=2

False

x <= 1.5

right

True

OX <= 1.5

False

up

True

x <= 3.5

False

right

True

up

False

(b) Our unified decision tree concept. Left: Obstacle
position (𝑂𝑋,𝑂𝑌) selects a candidate. Right: This
candidate and the robot’s position (𝑥, 𝑦) determine an
action.

Figure 1.1: Illustrative example for a family MDP and resulting unified decision tree.

synthesis time, underscoring the practical benefits of our approach for generating compact
and understandable controllers for complex f-MDPs.

Illustrative example. We consider a robot navigating a grid maze with obstacles whose
locations (𝑂𝑋,𝑂𝑌) are parameterized. Upon entering, the robot scans the environment
to determine the obstacle configuration and aims to reach the exit while avoiding them
(Figure 1.1a). We need a compact firmware solution for all configurations due to limited
memory. A naive approach of enumerating all maze configurations is prohibitive. Our
approach, as conceptualized in Figure 1.1b, produces a compact Unified Decision Tree
(UDT). This UDT determines the robot’s action through a distinct two-step process: First,
the environmental parameters, specifically the obstacle locations (𝑂𝑋,𝑂𝑌), are processed
by the Candidate Mapping Tree (CMT), which uses them to select an appropriate policy
candidate. Then, in the second step, this chosen policy candidate, along with the robot’s
current state (𝑥, 𝑦), becomes the input for the shared Unified Policy Tree (UPT). The
UPT leverages both the general strategy (represented by the candidate) and the specific
state to decide the final action for the robot. This structure avoids the duplication of
state-dependent decision logic common in conventional approaches that might use separate
controllers for each obstacle configuration. This unified and optimized structure results in a
controller that is not only smaller and more efficient but also easier to interpret and verify.

The remainder of this thesis is structured as follows: Chapter 2 lays the theoreti-
cal groundwork, starting with fundamental concepts such as Markov Decision Processes
(MDPs), their properties, and their generalization to families of MDPs (f-MDPs). It
then introduces decision trees as a representation for policies, discusses compact input
representations for f-MDPs using sketch files, and culminates in a formal problem state-
ment that defines the core challenge of synthesizing compact and explainable controllers
for these families. Chapter 3 reviews existing approaches to policy synthesis. It covers
techniques for generating decision trees for single MDPs, including heuristic, formal, and
hybrid methods, and then examines methods for handling families of MDPs, with a focus
on game-based abstractions and their inherent limitations, thereby contextualizing our con-
tributions. Chapter 4 details our novel contributions. We present our proposed pipeline,
including heuristic-based policy state pruning algorithms, a refined policy merging strategy,
a method for transforming the f-MDP problem into a derived MDP to leverage advanced
synthesis tools like dtNESt, and our unified two-tree (CMT and UPT) representation for

4

compact global controllers. Chapter 5 provides a rigorous empirical evaluation of our pro-
posed methods. We compare their performance against baseline techniques using a suite of
established benchmarks, analyzing aspects such as controller size, synthesis time, and the
impact of different optimization stages. Finally, Chapter 6 summarizes the key findings and
contributions of this thesis, discusses their implications for the field, and suggests promis-
ing avenues for future research in the synthesis of efficient and interpretable controllers for
complex decision-making systems.

5

Chapter 2

Preliminaries and Problem
Statement

This chapter provides a comprehensive theoretical foundation for the thesis, introducing key
concepts, formal models, and tools that underpin the synthesis of explainable controllers
for families of Markov Decision Processes (f-MDPs). We begin by defining MDPs and their
properties, then generalize to families of MDPs, which capture parametric or uncertain
environments. We further introduce a notion of decision trees and policy trees, which will
later serve as compact representations of policies for f-MDPs. For most definitions, we refer
to the standard literature on MDPs [20].

In the second part of this chapter, we introduce the concept of sketch files, which
provide a compact and flexible representation for defining families of Markov Decision Pro-
cesses (f-MDPs). This representation enables efficient modeling of parametric or uncertain
environments. Finally, Section 2.3 formalizes the central problem addressed in this thesis:
the synthesis of explainable and compact controllers for families of MDPs.

2.1 Markov Decision Processes
Markov Decision Processes (MDPs) are a fundamental mathematical framework for mod-
eling sequential decision-making under uncertainty. They have become the standard for-
malism for solving optimization problems in stochastic environments where outcomes are
partly random and partly under the control of a decision maker. The term “Markov” refers
to the Markov property, which asserts that the future state of the system depends solely
on the current state and the action taken, and not the history of states or actions that
preceded it.

Definition 1 (Markov Decision Process). An MDP is defined as a tuple 𝑀 = (𝑆, 𝑠0, 𝐴𝑐𝑡, 𝑃),
where:

• 𝑆 is a countable set of states,

• 𝑠0 ∈ 𝑆 is the initial state,

• 𝐴𝑐𝑡 is a finite set of actions,

• 𝑃 : 𝑆 × 𝐴𝑐𝑡 × 𝑆 → [0, 1]. It is a partial transition function defining the probabilities
of transitioning from one state to another when taking a specific action.

6

For each state 𝑠 ∈ 𝑆 and action 𝛼 ∈ 𝐴𝑐𝑡, the function 𝑃 (𝑠, 𝛼, ·) defines a probability
distribution over the set of states 𝑆 whenever the action 𝛼 is available in that state 𝑠. We
write 𝑃 (𝑠, 𝛼, 𝑠′) = 𝑃 (𝑠, 𝛼)(𝑠′) to denote the probability of transitioning to state 𝑠′ when
taking action 𝛼 in state 𝑠. Available actions can be defined as those actions that have a
non-zero probability of leading to another state. We denote the set of available actions in
state 𝑠 as 𝐴𝑐𝑡𝑀 (𝑠) = {𝛼 ∈ 𝐴𝑐𝑡 | 𝑃 (𝑠, 𝛼) ̸= ⊥}. The transition function 𝑃 is defined as
a partial function, meaning that for some states and actions, the transition may not be
defined (denoted by ⊥).

We omit the subscript 𝑀 whenever the context makes it clear which MDP we are
referring to. Throughout this thesis, we assume 𝐴𝑐𝑡(𝑠) ̸= ∅ for each 𝑠 ∈ 𝑆, meaning there
are no deadlock states where no action can be taken.

Definition 2 (Markov Chain). A Markov chain is a special case of an MDP where |𝐴𝑐𝑡(𝑠)| =
1 for each 𝑠 ∈ 𝑆, that is, there is precisely one action available in each state, eliminating
the decision-making component. A Markov chain (MC) is denoted as a tuple (𝑆, 𝑠0, 𝑃).

A finite path of an MDP is a sequence 𝜋 = 𝑠0𝛼0𝑠1𝛼1 . . . 𝑠𝑛 where 𝑃 (𝑠𝑖, 𝛼𝑖, 𝑠𝑖+1) > 0
for 0 ≤ 𝑖 < 𝑛. This represents a possible trajectory through the MDP, starting from the
initial state 𝑠0 and taking actions 𝛼𝑖 at each step, leading to the subsequent states 𝑠𝑖+1.
The length of the path is denoted as |𝜋| = 𝑛.

A policy (also called a strategy or controller) is a decision rule that specifies which
action to take in each state of the MDP. A deterministic, memoryless policy is a function
𝜎 : 𝑆 → 𝐴𝑐𝑡 where 𝜎(𝑠) ∈ 𝐴𝑐𝑡(𝑠) for all 𝑠 ∈ 𝑆. Such policies select exactly one action
for each state, and the selection depends only on the current state, not on the history of
previously visited states.

We denote by Σ𝑀 the set of all deterministic, memoryless policies for MDP 𝑀 . Each
policy 𝜎 ∈ Σ𝑀 induces a Markov chain 𝑀𝜎 = (𝑆, 𝑠0, 𝑃

𝜎) where 𝑃 𝜎(𝑠, 𝑠′) = 𝑃 (𝑠, 𝜎(𝑠), 𝑠′)
for all 𝑠, 𝑠′ ∈ 𝑆. Intuitively, 𝑀𝜎 represents the behavior of the system when actions are
selected according to policy 𝜎. Set of all paths in 𝑀𝜎 is denoted as 𝜋𝜎. The probability of
a finite path 𝜋 = 𝑠0𝛼0𝑠1𝛼1 . . . 𝑠𝑛 in 𝑀𝜎 is defined as:

𝑃 (𝜋) =
𝑛−1∏︁
𝑖=0

𝑃 (𝑠𝑖, 𝛼𝑖, 𝑠𝑖+1) for 𝑛 ≥ 0

Specification and Winning Policies

MDPs are often analyzed with respect to specific properties, typically expressed as formal
specifications using temporal logic formulas. These specifications enable reasoning about
the system’s behavior over time, including properties such as safety, liveness, and reacha-
bility.

In this work, we focus primarily on indefinite-horizon reachability properties [1], which
are used to ensure safety and liveness guarantees in MDPs. These properties evaluate the
probabilities of reaching or avoiding certain states within the MDP, providing a foundation
for verifying and synthesizing reliable controllers.

Definition 3 (Reachability Property). Let 𝑀 = (𝑆, 𝑠0, 𝑃) be a Markov chain and let 𝑇 ⊆ 𝑆
be a set of target states. We denote by 𝑃 [𝑀 |= ♢𝑇] the probability of reaching any state in
𝑇 from 𝑠0 in 𝑀 .

Reachability probability can be calculated as an integral over the probabilities of all fi-
nite paths starting in 𝑠0 and ending in any state of 𝑇 . Now assume MDP 𝑀 = (𝑆, 𝑠0, 𝐴𝑐𝑡, 𝑃).

7

The maximum reachability probability can be extended as the maximum over all policies
𝜎 ∈ Σ𝑀 : 𝑃max[𝑀 |= ♢𝑇] := sup𝜎∈Σ𝑀

𝑃 [𝑀𝜎 |= ♢𝑇].
For the remainder of this thesis, we consider reachability specifications of the form

𝜙 = 𝑃≥𝜆[𝑀 |= ♢𝑇] for arbitrary thresholds 𝜆 ∈ [0, 1]. A winning policy for MDP 𝑀 with
respect to the specification 𝜙 is a policy 𝜎 such that 𝑃 [𝑀𝜎 |= ♢𝑇] ≥ 𝜆. We also denote this
by 𝑀,𝜎 |= 𝜙. We say that MDP 𝑀 is satisfiable with respect to a specification 𝜙 if there
exists a winning policy for 𝑀 . More detailed formal definitions can be found in standard
references such as [20].

Decision Trees

Decision trees are a widely used representation for policies in MDPs and other decision-
making problems. Traditional methods of representing policies in MDPs, such as tabular
representations, often result in large structures that are difficult to interpret. By leveraging
tree structures, we can create more compact and understandable representations for both
individual policies and policy maps.

To formally define the decision trees used in this work, we begin with the basic structure
of a binary tree, which provides the foundational scaffold for their decision logic. A binary
tree can be described as a tuple 𝑇 = (𝑉, 𝑙, 𝑟), where 𝑉 is a set of nodes, and 𝑙, 𝑟 : 𝑉 → 𝑉
are functions defining the left and right children, respectively.

To obtain a degree of abstraction for specific trees described later, we first define a
generalized version. An abstract decision tree is a tree structure 𝒯 = (𝑇, 𝛾, 𝛿) used to
represent various decision-making processes. Here, 𝑇 is a binary tree as defined above, 𝛾
assigns a decision predicate to each inner node, and 𝛿 assigns a label (e.g., an action or
outcome) to each leaf node. Based on the satisfiability of the predicates assigned by 𝛾, this
tree is traversed from the root to a leaf node, where the label assigned by 𝛿 is obtained as
the decision or action.

Definition 4 (Decision Tree). Given an MDP (𝑆, 𝑠0, 𝐴𝑐𝑡, 𝑃) defined over the set 𝑉 of
variables with domains 𝐷𝑜𝑚, A decision tree (DT) is an Abstract Decision tree 𝒯 = (𝑇, 𝛾, 𝛿)
where:

• 𝛾 assigns to each inner node a predicate in the form 𝑣𝑖 ≤ 𝑏𝑖, where 𝑣𝑖 ∈ 𝑉 and
𝑏𝑖 ∈ 𝐷𝑜𝑚(𝑣𝑖)

• 𝛿 assigns to each leaf node an action 𝑎 ∈ 𝐴𝑐𝑡

A decision tree represents a policy 𝜎 : 𝑆 → 𝐴𝑐𝑡 by partitioning the state space based
on the values of specific variables and assigning actions to each partition. This hierarchical
representation improves the interpretability of the policy and often reduces its size compared
to a tabular format.

The policy encoded by a decision tree 𝒯 , referred to as the policy induced by the decision
tree, is denoted as 𝜎𝒯 . Formally, it is defined as 𝜎𝒯 (𝑠) = 𝒯 (𝑠) for all 𝑠 ∈ 𝑆, where 𝒯 (𝑠)
corresponds to the leaf node reached by traversing the tree based on the evaluation of
predicates in 𝛾.

For clarity, we omit the subscript 𝒯 whenever the context makes it clear which decision
tree we are referring to.

8

2.2 Families of MDPs
Although traditional approaches focus on solving individual Markov Decision Processes
(MDPs), this thesis extends the scope to families of MDPs (f-MDPs). Families of MDPs
generalize the standard MDP model by representing collections of MDPs that share the
same state and action space but differ in their transition functions. This extension is par-
ticularly relevant in scenarios involving parametric uncertainty, environmental variability,
or systems operating in multiple modes. The definitions and concepts used in this work
build upon the foundational framework introduced in [5].

Definition 5 (Family of MDPs). A family of MDPs over the set 𝑆𝑀 of states and set
𝐴𝑐𝑡𝑀 of actions is an indexed set ℳ = {(𝑆𝑀 , 𝑠0, 𝐴𝑐𝑡𝑀 , 𝑃𝑖)}𝑖∈𝐼 of MDPs, where 𝐼 is a
finite index set of identifiers.

We assume that for each state, the sets of available actions coincide in all MDPs in the
family:

∀𝑠 ∈ 𝑆𝑀 : ∀𝑖, 𝑗 ∈ 𝐼 : 𝑃𝑖(𝑠, 𝛼) ̸= ⊥ ⇒ 𝑃𝑗(𝑠, 𝛼) ̸= ⊥

As a consequence, all MDPs in the family have the same set of available policies, which we
denote as Σ𝑀 .

As already mentioned, the key distinction between family members is the transition
function 𝑃𝑖. This may lead to various reachable state spaces and different winning policies
for the same specification.

To efficiently reason about families of MDPs, we define an equivalence relation ∼𝑠,𝛼

on the index set 𝐼 by 𝑖 ∼𝑠,𝛼 𝑗 if and only if 𝑃𝑖(𝑠, 𝛼) = 𝑃𝑗(𝑠, 𝛼), i.e., MDPs 𝑀𝑖 and 𝑀𝑗

have identical transition probabilities for action 𝛼 in state 𝑠. We denote by 𝐼/ ∼𝑠,𝛼 the
corresponding equivalence partitioning of 𝐼 with respect to ∼𝑠,𝛼. This partitioning will be
helpful later when we introduce efficient encodings of MDP families.

Policy Map

Given the introduction of families of MDPs (f-MDPs), new challenges arise in synthesizing
policies that satisfy specification requirements across the entire family. One such challenge
is organizing the solution space effectively, which leads to the concept of a policy map [5].

Formally, a satisficing policy map is a function 𝑃 :ℳ→ Σ𝑀 ∪{∅} that associates each
MDP in family ℳ with either a winning policy from the set Σ𝑀 or explicitly indicates
unsatisfiability with the empty set. For any MDP 𝑀𝑖 ∈ℳ and specification 𝜙:

• 𝑃 (𝑀𝑖) = 𝜎 if and only if 𝑀𝑖, 𝜎 |= 𝜙 (policy satisfies the specification)

• 𝑃 (𝑀𝑖) = ∅ if and only if 𝑀𝑖 ̸|= 𝜙 (no winning policy exists)

A straightforward approach to computing a policy map is to invoke a model checker
for each member of the family. However, this naive approach becomes computationally
infeasible for large families.

This shortcoming motivates the need for a more general solution: a robust policy. Such
a policy satisfies the specification for all MDPs in the family, providing a unified solution
that eliminates the need to compute multiple policies.

9

Robust Policy

Definition 6 (Robust Policy). Given a family of MDPs ℳ and a specification 𝜙, a policy
𝜎 is said to be robust for 𝜙 if it satisfies the specification for all MDPs in the family, i.e.,
∀𝑀𝑖 ∈ℳ,𝑀𝑖, 𝜎 |= 𝜙 [5].

Robust policies are particularly valuable in scenarios where a controller must operate
across diverse environments or under parameter uncertainty without requiring or limiting
runtime parameter detection or policy switching.

However, it is essential to note that not all families of MDPs admit robust policies
for a given specification. This limitation arises when the variations between MDPs in the
family are too significant or when their optimal strategies fundamentally conflict, making
it impossible to satisfy the specification universally with a single policy.

To better understand the structural properties of policies within a family of MDPs, we
introduce the concept of policy consistency. A policy 𝜎 ∈ Σ𝑄 is said to be consistent if and
only if ∃𝑖 ∈ 𝐼 such that ∀𝑠 ∈ 𝑆ℳ : 𝑖 ∈ Γ(𝜎(𝑠)). This means that the policy selects actions
that are consistent with the transition dynamics of a specific MDP 𝑀𝑖 in the family.

While consistency is not a requirement for robustness, understanding this property helps
in analyzing the feasibility of robust policies and guides the development of algorithms for
their synthesis.

Synthesizing robust policies often involves conservative optimization techniques, as the
policy must perform well under worst-case scenarios across the entire family. This makes
the problem inherently more challenging than solving for individual MDPs, as the policy
must account for the full range of variability within the family while ensuring correctness
for all instances.

Policy Tree

Similarly to representing policies, representing policy maps is infeasible in a simple tabular
form. To address this, we introduce the concept of a policy tree that can represent a policy
map for a family of MDPs.

Definition 7 (Policy Tree). Given a family of MDPs ℳ = {𝑀𝑖}𝑖∈𝐼 , a policy tree is a
abstract decision tree 𝒯 = (𝑇, 𝛾, 𝛿) where:

• 𝛾 assigns to each inner node a predicate in the form 𝑣𝑖 ⊆ 𝑏𝑖, where 𝑣𝑖 ⊆ 𝐼 and 𝑏𝑖 ⊆ 𝐼
are sets of MDP identifiers

• 𝛿 assigns to each leaf node a policy 𝜎 ∈ Σ𝑀 ∪ {∅} for the corresponding subfamily of
MDPs

The policy tree 𝒯 maps the family of MDPs to policies by recursively partitioning the
family at each inner node based on the predicate 𝛾(𝑛). Each leaf node 𝑙 represents a
subfamily of MDPs that share the same winning policy 𝛿(𝑙). An example of a policy tree
is shown in Figure 2.1.

Policy trees provide a compact and interpretable representation of policy maps, enabling
efficient reasoning and decision-making. In practical implementations within this work, pol-
icy trees are often N-ary, and their decision nodes typically partition the family’s parameter
space. However, for theoretical analysis, these aspects can be simplified to binary trees with
predicates on MDP identifiers without any loss of generality.

10

COUNTER=2

roz_r_1=4 roz_r_1=5 roz_r_1=1 roz_r_1=2 roz_r_1=3 roz_r_1=6 roz_r_1=7 roz_r_1=8 roz_r_1=9

fd_hole=1

p0

fd_hole: {3,5,7,9}

p0

p_hole: {1,2,4,3}

∅

p_hole=5

fd_hole=1

p0

fd_hole: {3,5,7,9}

p0

p_hole: {1,2,4,3}

∅

p_hole=5

fd_hole=1

p0

fd_hole: {3,5,7,9}

p0

p_hole: {1,2}

∅

p_hole: {3,4,5}

fd_hole=1

p0

fd_hole: {3,5,7,9}

p0

p_hole=1

∅

p_hole: {2,3,4,5}

fd_hole=1

p0

fd_hole: {3,5,7,9}

p0

p_hole: {1,2,4,3}

∅

p_hole=5

fd_hole=1

p0

fd_hole: {3,5,7,9}

p0

p_hole: {1,2,4,3}

∅

p_hole=5

fd_hole=1

p0

fd_hole: {3,5,7,9}

p0

p_hole: {1,2,4,3}

∅

p_hole=5

fd_hole=1

p0

fd_hole: {3,5,7,9}

p0

p_hole: {1,2,4,3}

∅

p_hole=5

fd_hole=1

p0

fd_hole: {3,5,7,9}

p0

p_hole: {1,2,4,3}

∅

p_hole=5

Figure 2.1: Detail of a policy tree segment for benchmark uav_roz.

Compact Input Problem Representation
A direct, tabular representation of a family of MDPs is impractical, as it results in a
representation size that grows proportionally with the number of MDPs in the family. Such
representation also fails to capture the structural similarities between MDPs in the family,
which are essential for efficient synthesis.

To address these limitations, we introduce a compact and flexible representation of
MDP families using sketch files [24]. A sketch is a template-based description of a program
written in an enhanced version of the PRISM language [15]. In this context, a sketch
defines a program with “holes”, placeholders that can take discrete values from finite sets.
By systematically instantiating these holes, the sketch generates a finite family of programs,
where each instantiation corresponds to a specific MDP.

Each program in the family is characterized by shared states and actions, but with
distinct transition probabilities. This approach allows for the efficient representation of
parametric or uncertain environments. A standard PRISM file is structured as a set of
modules, each containing variables, actions, and updates of the form:

[𝑎𝑐𝑡𝑖𝑜𝑛𝐼𝑑] 𝑔𝑢𝑎𝑟𝑑→ 𝑝𝑟𝑜𝑏1 : 𝑢𝑝𝑑𝑎𝑡𝑒1 + . . .+ 𝑝𝑟𝑜𝑏𝑛 : 𝑢𝑝𝑑𝑎𝑡𝑒𝑛;

Here, the guard is a condition that must be satisfied for the action (right side of
the guard) to be taken. Probabilities of action 𝑝𝑟𝑜𝑏1, . . . , 𝑝𝑟𝑜𝑏𝑛 are non-negative real
numbers that sum to 1, between which a non-deterministic choice is made. Updates
𝑢𝑝𝑑𝑎𝑡𝑒1, . . . , 𝑢𝑝𝑑𝑎𝑡𝑒𝑛 are expressions that generally describe how the variables in the mod-
ule are updated when the action is taken. 𝑎𝑐𝑡𝑖𝑜𝑛𝐼𝑑 is an identifier of the action that can be
used to force the synchronous choice of actions in different modules if the name coincides.

The concept of holes extends the PRISM language by allowing the definition of variables
whose values are not fixed but can be filled with any value from a specified set. For example:

hole int startX in {0..maxX};
hole int startY in {0..maxY};

In this example, the holes startX and startY are defined as integer variables that can
take values from the ranges [0,𝑚𝑎𝑥𝑋] and [0,𝑚𝑎𝑥𝑌], respectively. Each unique combina-
tion of hole values generates a distinct MDP instance.

The primary objective is to synthesize a concrete policy or a minimal set of policies that
satisfy a given reachability specification for all possible instantiations of the holes.

2.3 Compact Solution Representation
Building on the formal theoretical framework established thus far, we now articulate the
central problem addressed in this thesis.

11

Given a family of MDPsℳ = {𝑀𝑖}𝑖∈𝐼 defined by a parameterized sketch program and
a reachability objective 𝜙, the goal is to synthesize a minimal representation of a satisfiable
solution for the entire family. Formally, we seek to minimize the representation size of
a policy mapping function 𝑃 : ℳ → Σ𝑀 ∪ {∅} that assigns either a winning policy or
explicitly indicates unsatisfiability for each MDP in the family. This optimization problem
involves two key objectives:

1. Minimizing the representation of individual policies 𝜎 ∈ Σ𝑀 for each identifiable
subfamily of MDPs that shares a common winning strategy.

2. Minimizing the structure that maps these policies to their corresponding families
within the parameter space.

This minimization can be achieved in two alternative ways. One is to minimize the
problem state space, which involves identifying and removing states that are redundant or
unnecessary for solving the problem. This approach aims to reduce the size of individual
policies by eliminating irrelevant choices. By focusing only on states that are essential for
satisfying the specification, we can create more compact policy representations.

The second approach focuses on optimizing the output encoding by leveraging and en-
hancing state-of-the-art decision tree synthesis algorithms. These algorithms encode policies
(and policy maps) as decision trees, which provide a hierarchical structure for represent-
ing the decision-making process. The details of this approach, along with a discussion of
existing techniques and their limitations, will be presented in the next chapter.

12

Chapter 3

State of the Art

This chapter situates our research within the broader context of policy synthesis for Markov
Decision Processes (MDPs) and families of MDPs (f-MDPs). We analyze existing ap-
proaches, identify their limitations, and establish the foundation for the contributions of
this work.

Efficiently representing controllers for MDPs presents significant challenges, particularly
when scaling to families of MDPs. Traditional tabular representations, while precise, be-
come impractical for large state spaces due to their size and lack of interpretability. Existing
compact representations, such as binary decision diagrams (BDDs) and decision trees, ad-
dress some of these issues, but often fail to scale effectively for parameterized models or
sacrifice interpretability.

We begin by reviewing decision tree synthesis techniques for individual MDPs, includ-
ing heuristic-based methods (e.g., dtControl [7]), formal verification approaches (e.g., dt-
Paynt [6]), and hybrid methodologies (e.g., dtNESt [3]). These techniques have demon-
strated success in generating compact and interpretable policies for single MDPs. We then
explore how these techniques extend or fail to extend to families of MDPs, discussing the
critical gaps that emerge when moving from single MDPs to parameterized families.

Next, we examine existing approaches for synthesizing policies for families of MDPs.
These range from naive enumeration strategies, which solve each MDP independently, to
game-based abstractions that reason about the entire family simultaneously [5]. Although
game-based abstraction avoids the computational infeasibility of enumeration, it often pro-
duces overly complex controllers with redundant states and actions.

Throughout this work, we highlight how our work addresses these limitations through
three complementary approaches: (1) systematic elimination of irrelevant states, (2) im-
proved encoding of decision structures, and (3) unification of policy and decision trees into
a single coherent representation.

By addressing these challenges, our work aims to advance the state of the art in pol-
icy synthesis for f-MDPs, enabling more interpretable solutions. The remainder of this
chapter provides a detailed review of existing techniques, their limitations, and how our
contributions build upon and extend these methods.

13

3.1 Decision Trees for MDP
Decision trees have emerged as a practical approach for representing controllers in MDPs
due to their interpretability and compact form. We review key algorithms and approaches
for constructing decision trees to represent policies.

The most basic representation of a policy is a tabular format that maps states to actions:
𝜎 : 𝑆 → 𝐴𝑐𝑡. While this representation is precise, it becomes impractical for large MDPs,
as the size of the table grows proportionally with the number of states.

Due to the limitations of large table representations, decision trees have gained promi-
nence. Decision trees provide a hierarchical partitioning of the state space, capturing the
underlying structure of the decision-making process while significantly reducing the repre-
sentation size. Several approaches exist for constructing these tree representations, each
with distinct advantages and limitations.

dtControl

dtControl [7] is a specialized tool for compressing and optimizing memoryless policies for
MDPs. It encodes the policies as a reinforcement learning problem and applies a set of
well-known machine learning algorithms to generate decision trees, such as C4.5, CART,
ID3, or logistic regression.

These algorithms work by iteratively splitting the data into subsets based on the value of
input features, leading to a tree-like structure where each leaf node represents a classification
(in our case, an action). The splitting criteria typically include information gain, Gini
impurity, and mean squared error.

The main advantage of dtControl is its computational efficiency, as the algorithms are
designed to work with large datasets and can handle high-dimensional data. However, since
these algorithms are greedy, they may converge at local optima and fail to find the globally
optimal decision tree.

dtPaynt

dtPaynt [6] has been developed as an extension of the PAYNT program to find potentially
more efficient decision trees than those generated by dtControl. This framework formulates
the tree encoding problem as an SMT (Satisfiability Modulo Theories) encoding task.

The process begins by constructing an abstract decision tree of fixed depth, with free
predicates and actions assigned to its nodes. Using SMT encoding, the algorithm verifies
whether the policy can be represented by the given tree. The SMT solver either returns a
valid assignment of predicates and actions (SAT) or identifies an unsatisfiable core, which
highlights the constraints causing the failure. The UNSAT core is then used to refine the
abstract decision tree predicates, and the process repeats until a valid decision tree is found
or the maximum number of iterations is reached. If no solution is found, the tree depth is
increased, and the process is restarted.

The primary advantage of dtPaynt is its ability to generate decision trees with minimal
depth, offering a more predictable structure compared to the heuristic-based approach of
dtControl. However, this method is computationally expensive, as SMT solving becomes
impractical for trees with depths exceeding 8. Additionally, dtPaynt does not explicitly
optimize the number of nodes in the tree, which may result in suboptimal tree sizes despite
achieving minimal depth.

14

dtNESt

dtNESt [3] represents a hybrid approach that combines the strengths of heuristic-based
methods (dtControl) and formal verification techniques (dtPaynt). It addresses fundamen-
tal limitations in existing approaches by generating more compact, interpretable decision
trees for MDPs.

The core innovation of dtNESt lies in its novel abstraction refinement technique, which
operates through a bidirectional optimization process:

• Top-down heuristic tree construction: Starts by constructing a decision tree
from the starting optimal policy using heuristic methods.

• Bottom-up formal verification: Problematic or suboptimal subtrees are identified
and refined using formal verification techniques.

• Iterative refinement: The optimized subtrees are reintegrated into the overall struc-
ture, iteratively repeating the process.

This hybrid methodology enables dtNESt to overcome the limitations of both ap-
proaches used in isolation. While dtNESt is less restrictive than dtPaynt in terms of depth
limitations, its scalability remains a challenge for very large MDPs.

Limitations of Existing Approaches

Current research provides methods for synthesizing decision trees for individual MDPs.
However, these approaches are not directly applicable to families of MDPs.

The most obvious alternative, often termed naive enumeration, involves exhaustively
generating each MDP within the family and applying established synthesis algorithms in-
dividually. This brute-force technique suffers from two significant drawbacks: Firstly, its
computational cost is typically prohibitive for families of non-trivial size. Secondly, treating
each MDP in isolation disregards the potential to exploit structural similarities across the
family. Consequently, there is a pressing need for more efficient methods that can synthesize
robust decision trees for families of MDPs.

3.2 Policy Trees for Families of MDPs
Synthesizing controllers for families of MDPs presents unique challenges. As discussed
previously, representing the solution often requires a policy map, potentially structured as
a policy tree (defined in Section 2.2). However, constructing this map efficiently is non-
trivial. Naive approaches are computationally infeasible for large families, such as those
that require enumerating or solving each MDP 𝑀𝑖 ∈ ℳ individually. Moreover, we are
interested in a small set of robust policies to reduce the overall solution size. Similarly to
the dtPaynt approach, one could encode the entire family synthesis problem as a single
monolithic SMT formula. However, this quickly becomes intractable.

A more sophisticated approach, proposed in [5], leverages a game-based abstraction to
reason about the entire family simultaneously, avoiding costly enumeration. This method
forms the basis upon which parts of our work are built and extended. The core idea involves
modeling the f-MDP synthesis problem as a two-player stochastic game.

15

Quotient MDP

To efficiently represent the shared structure and variations within an f-MDP, the concept of
a quotient MDP is introduced. This serves as a compact representation and the foundation
for the game abstraction.

Definition 8 (Quotient MDP). Let ℳ = {𝑀𝑖}𝑖∈𝐼 be a family of MDPs. The quotient
MDP is a pair (𝑄ℳ,Γ), where 𝑄ℳ = (𝑆ℳ, 𝑠0,Act𝑄, 𝑃𝑄) is an MDP over the set of actions
Act𝑄 = Actℳ × 2𝐼 , and:

• The action set is defined as:

Act𝑄(𝑠) = {(𝛼, 𝐼) | 𝛼 ∈ Act(𝑠), 𝐼 ∈ 𝐼∼𝑠,𝛼}

Action (𝛼, 𝐼) is denoted as 𝛼𝐼 . Action 𝛼{𝑖} is denoted as 𝛼𝑖 for brevity.

• The transition function is defined as:

𝑃𝑄(𝑠, 𝛼
𝐼 , 𝑠′) = 𝑃𝑖(𝑠, 𝛼, 𝑠

′) where 𝑖 ∈ 𝐼

• The function Γ : 𝛼𝐼 ↦→ 𝐼 maps an action to its set of identifiers.

Essentially, the quotient MDP 𝑄ℳ allows executing action 𝛼 in state 𝑠 from an arbitrary
𝑀𝑖 ∈ℳ. The shape (𝛼, 𝐼) of actions allows us to efficiently encode families of MDPs where
action 𝛼 coincides in many family members. Figure 3.1b illustrates this, by merging action
𝛾 shared by MDPs 1 and 2 into 𝛾{1,2}. We omit the subscriptℳ when the context is clear.

(a) (b) (c)

Figure 3.1: (a) Family ℳ of two MDPs. (b) Quotient MDP 𝑄ℳ for the family ℳ. (c)
Game abstraction for familyℳ. Circles (squares) denote states of Player 1 (2) Transitions
without explicit probability have a probability of 1. States 𝑠𝑇 and 𝑠𝐹 are absorbing, and
their action with the self-loop is omitted. Taken from [5].

16

Stochastic Game Formulation

The synthesis problem is framed as a zero-sum, two-player stochastic game [23] (SG) played
on a structure derived from the quotient MDP.

Definition 9 (Stochastic Game). A stochastic game (SG) is a tuple 𝐺 = (ℳ′, 𝑆1, 𝑆2)
where ℳ′ = (𝑆, 𝑠0,Act, 𝑃) is an underlying MDP (in our case, derived from 𝑄ℳ) and
(𝑆1, 𝑆2) is a partition of the state set 𝑆 into Player 1 and Player 2 states.

Player 1 (the agent) aims to maximize the probability of satisfying the specification
(e.g., reaching 𝑇), while Player 2 (the environment or parameter selector) aims to minimize
it. Policies 𝜎1 for Player 1 and 𝜎2 for Player 2 determine the actions taken in 𝑆1 and 𝑆2

respectively. A pair (𝜎1, 𝜎2) induces a Markov chain 𝐺𝜎1,𝜎2 . Alternatively, we can denote
this set as (𝜎agent, 𝜎env). For such reachability games, optimal memoryless deterministic
policies exist for both players. The value of the game for a reachability objective is:

Pmax[𝐺 |= ♢𝑇] := sup
𝜎1∈Σ1

ℳ

inf
𝜎2∈Σ2

ℳ

P[𝐺𝜎1,𝜎2 |= ♢𝑇]

Game Abstraction

The specific game abstraction 𝐺ℳ for an f-MDP ℳ is constructed to separate the agent’s
choices from the environmental uncertainty (i.e., the choice of 𝑀𝑖).

Definition 10 (Game Abstraction [5]). Letℳ = {𝑀𝑖}𝑖∈𝐼 be a family of MDPs. The game
abstraction forℳ is a stochastic game 𝐺ℳ = (ℳ′, 𝑆1, 𝑆2) with 𝑆1 = 𝑆ℳ, 𝑆2 = 𝑆ℳ×Actℳ,
and an underlying MDP ℳ′ = (𝑆1 ∪ 𝑆2, 𝑠0,Act𝐺, 𝑃𝐺) where:

• Act𝐺 = Actℳ ∪ {𝐼 ′ | 𝐼 ′ ∈ 𝐼∼𝑠,𝛼 for some 𝑠, 𝛼}

• Player 1 states 𝑠 ∈ 𝑆1: Player 1 chooses an action 𝛼 ∈ Actℳ(𝑠). The transition is
deterministic: 𝑃𝐺(𝑠, 𝛼, (𝑠, 𝛼)) = 1.

• Player 2 states (𝑠, 𝛼) ∈ 𝑆2: Player 2 chooses an equivalence class 𝐼 ∈ 𝐼∼𝑠,𝛼 representing
a set of MDPs with identical transitions for (𝑠, 𝛼). The transition probabilities are
determined by any 𝑀𝑖 with 𝑖 ∈ 𝐼: 𝑃𝐺((𝑠, 𝛼), 𝐼, 𝑠

′) = 𝑃𝑖(𝑠, 𝛼, 𝑠
′).

As illustrated figure 3.1c in this game, Player 1 chooses the intended action 𝛼, and
then Player 2 chooses the specific transition dynamics (represented by 𝐼) that will occur,
effectively selecting the worst-case MDP from the perspective of Player 1 for that state-
action pair.

Policy Synthesis via Game Solving

Solving this game yields optimal policies 𝜎*
1 and 𝜎*

2 for Player 1 and Player 2, respectively.
The key insight is the connection between the game solution and policies for the original
f-MDP.

Definition 11 (Consistent Game Policy). We say that Player 2 policy 𝜎2 ∈ Σ2
ℳ is consis-

tent in identifier 𝑖 if ∃𝑖 ∈ 𝐼 ∀(𝑠, 𝛼) ∈ 𝑆2 : 𝑖 ∈ 𝜎2(𝑠, 𝛼). That is, Player 2 consistently selects
transitions corresponding to a single MDP 𝑀𝑖.

Lemma 1. If 𝜎2 is consistent in 𝑖, then for any Player 1 policy 𝜎1:

P[𝐺𝜎1,𝜎2

ℳ |= ♢𝑇] = P[𝑀𝜎1
𝑖 |= ♢𝑇]

17

This lemma connects the game outcome under a consistent Player 2 strategy to the
outcome in a specific MDP 𝑀𝑖. The main theorem provides the basis for synthesizing
robust policies:

Theorem 1 (Policy from Winning Game [5]). Let ℳ = {𝑀𝑖}𝑖∈𝐼 and its game abstraction
𝐺ℳ. Let 𝜎*

1 be an optimal policy for Player 1. If the value of the game satisfies Pmax[𝐺ℳ |=
♢𝑇] ≥ 𝜆, then 𝜎*

1 is a robust winning policy for the entire family ℳ:

∀𝑀𝑖 ∈ℳ : P[𝑀𝜎*
1

𝑖 |= ♢𝑇] ≥ 𝜆

If the game value is below the threshold 𝜆, a robust policy for the entire familyℳ might
not exist or cannot be found by this conservative abstraction. In such cases, the native ap-
proach uses the optimal Player 2 strategy 𝜎*

2 to identify how to partition the familyℳ into
smaller subfamilies. The process is then applied recursively to these subfamilies. This recur-
sive partitioning naturally generates a policy tree structure where internal nodes represent
splits in the family based on Player 2’s choices (predicates on parameters/identifiers).

Properties and Limitations of the Game Abstraction

The game abstraction provides a sound method for synthesizing robust policies, as estab-
lished by Theorem 1. If the game value meets the threshold 𝜆, the resulting Player 1 policy
𝜎*
1 is guaranteed to be winning for the entire family ℳ. This ability to reason about the

whole family simultaneously, leveraging structural similarities, is a key advantage over naive
enumeration.

However, the abstraction is not complete. A game value below the threshold (Pmax[𝐺ℳ |=
♢𝑇] < 𝜆) does not necessarily imply that no robust policy exists for ℳ, nor that any spe-
cific 𝑀𝑖 is unsatisfiable. This incompleteness stems from the structure of the game, which
grants Player 2 significant power: Player 2 chooses the worst-case MDP dynamics (𝐼) after
observing Player 1’s chosen action 𝛼. This information asymmetry allows Player 2 to adapt
its strategy based on Player 1’s move in a way that might not correspond to any single,
fixed MDP 𝑀𝑖 across all states. The resulting 𝜎*

1 policy is therefore conservative, designed
to win against this powerful adversary.

A specific condition exists where unsatisfiability can be deduced: if the optimal Player 2
strategy 𝜎*

2 happens to be consistent in some identifier 𝑖 (meaning Player 2 always chooses
transitions corresponding to 𝑀𝑖) and the game value is below 𝜆, then we can conclude that
𝑀𝑖 itself is unsatisfiable (Pmax[𝑀𝑖 |= ♢𝑇] < 𝜆), and thus no robust policy exists for ℳ.

The conservatism inherent in the game abstraction, while ensuring robustness, presents
two main limitations that motivate the contributions of this thesis:

1. Policy Complexity: The resulting robust policy 𝜎*
1 might be unnecessarily complex

or suboptimal in terms of performance for many individual MDPs 𝑀𝑖 within the
family, as it’s designed for the worst-case scenario dictated by the powerful Player 2.
It may contain actions or cover states that are only relevant for specific, adversarial
choices made by Player 2.

2. Lack of Size Guarantees: The game abstraction provides no guarantees on the size
or interpretability of the resulting policy 𝜎*

1, which is typically generated in a tabular
format.

Our work directly addresses these limitations. Firstly, we introduce pruning techniques
(Section 4.2) to reduce the conservatism by identifying and eliminating states and actions

18

from 𝜎*
1 that are not essential for satisfying the property 𝜙, leading to more compact poli-

cies. Secondly, we propose transforming the solved game back into an MDP by fixing
Player 2’s strategy (Section 4.4). This allows us to leverage state-of-the-art decision tree
synthesis algorithms like dtNESt to generate compact and interpretable policy representa-
tions (Section 4), moving beyond the limitations of tabular formats.

19

Chapter 4

Synthesis of Small Policy Trees

The state-of-the-art approach for synthesizing controllers for families of MDPs (f-MDPs) [5],
based on game abstraction, yields a policy tree. This tree maps subfamilies ofℳ to robust
policies 𝜎agent for Player 1 (the agent). As discussed in Section 3.2, while sound, this method
has limitations:

• The resulting policies 𝜎agent are often conservative and overly complex due to the
nature of the game abstraction.

• The policies are generated in a tabular format, which lacks interpretability.

• Robust policies are represented independently for each subfamily, leading to potential
redundancy and inefficiency in the overall solution.

This chapter introduces novel techniques designed to overcome these limitations by
transforming the output of the game abstraction into more efficient and interpretable tree-
based representations. Our goal is to minimize the overall size of the solution representation,
encompassing both the structure mapping subfamilies to policies and the representation of
the policies themselves.

4.1 Overview

game
 abstraction

prune σagent

use
original σagent

derive MDP
+ dtNESt

policy set
Σ

candidate
mapping

tree

merging
families

single map
M ∪ σ → α dtControl

unified
policy tree

σagent
σenv

Per-subfamily operations Final controller

Figure 4.1: Simplified synthesis pipeline detailing our work. Dashed blocks indicate optional
steps.

Our pipeline, illustrated in Figure 4.1, begins with the policy tree and its associated
robust agent policies 𝜎agent produced by the game abstraction process [5]. While correct,

20

these policies are often conservative and tabular, leading to potentially large and less in-
terpretable solutions. This chapter introduces novel techniques to transform these outputs
into more efficient and compact tree-based controllers. Our approach involves several en-
hancement stages: First, individual policies obtained from the game abstraction can be
refined using per-subfamily operations. Second, the resulting set of candidate policies can
be optimized by reducing the number of distinct policies. Finally, these policies are in-
tegrated into a unified representation. Our contributions, detailed below, provide specific
methods for these stages:

1. Policy State Pruning (Section 4.2): Heuristic algorithms simplify the robust
agent policies by removing irrelevant states and actions, directly addressing the game
abstraction’s conservatism while preserving correctness. This stage corresponds to
the Prune block in Figure 4.1.

2. Deriving an MDP for Alternative Policy Synthesis (Section 4.4): We obtain
an MDP from the solved game abstraction for a given family by fixing the envi-
ronment’s strategy 𝜎env. This enables leveraging tools like dtNESt [3] to synthesize
alternative policies, which are often represented as compact decision trees, as shown
by the Derive MDP + dtNESt block.

3. Enhanced Policy Merging (Section 4.3): Our refined strategy optimizes the
set of candidate policies by reducing the number of distinct policies required for the
overall solution. This corresponds to the merging families block in Figure 4.1.

4. Unified Decision Tree Representation (Section 4.5): We propose a method
to combine the family mapping logic and individual policy behaviors into a single,
globally optimized Unified Decision Tree (UDT), aiming to minimize redundancy
and improve interpretability. This involves constructing a Candidate Mapping Tree
(CMT) and then synthesizing a Unified Policy Tree (UPT) using tools like dtControl
from the set of (refined and merged) candidate policies, corresponding to the final
stages in Figure 4.1.

To illustrate the benefits of our integrated approach, consider the robot navigation ex-
ample introduced in Figure 1.1 (Chapter 1). The initial game-based synthesis for such a
problem might yield a policy tree with numerous leaves, each corresponding to a different
obstacle configuration and potentially leading to a separate, tabular policy. Our techniques
aim to transform this initial, potentially unwieldy solution into a single, more compact, and
interpretable controller. Specifically, policy state pruning (Section 4.2) would simplify each
of these policies. By deriving an MDP for alternative synthesis (Section 4.4), we could alter-
natively generate policies of lower complexity, often representable as more compact decision
trees than the original policies. Subsequently, our enhanced policy merging (Section 4.3)
would reduce the number of distinct policy candidates needed. Finally, the unified decision
tree representation (Section 4.5), particularly the two-tree CMT and UPT structure shown
in Figure 1.1b, would integrate the logic for mapping obstacle configurations to concrete
policies and the execution of those policies into a globally optimized structure. This holis-
tic approach seeks to minimize redundancy and significantly improve both the size and the
interpretability of the final controller for the entire family of maze configurations.

21

4.2 Pruning Policy States
The initial policies targeted by our techniques are synthesized using the stochastic game
abstraction approach from [5]. This method involves solving a two-player game 𝐺ℳ derived
from the quotient MDP for a given (sub)family ℳ. In this game, Player 1 (the agent)
maximizes the property 𝜙 against Player 2 (the environment), who minimizes it by choosing
the worst-case MDP dynamics after observing Player 1’s action. This grants Player 2 an
informational advantage.

Solving this game (e.g., via value iteration) yields optimal policies for both players,
(𝜎agent, 𝜎env). The agent’s policy, 𝜎agent, is guaranteed to be robust for the entire family
ℳ. However, this robustness, stemming from Player 2’s advantage and adversarial nature,
means 𝜎agent is often conservative, stronger than strictly required by the property 𝜙. It
might specify actions in states or handle transitions that are only relevant under the most
adversarial environmental choices dictated by 𝜎env.

This conservatism implies that the policy 𝜎agent might still satisfy the property 𝜙 =
𝑃≥𝜆[♢𝑇] even if some of its state-action pairs (𝑠, 𝜎agent(𝑠)) were removed or replaced with
less effective actions for states not essential to maintain the guarantee. This creates an
opportunity to simplify the policy representation by identifying a core set of relevant states
and actions, and defining a new, potentially smaller policy based on them, without com-
promising the winning guarantee. Our goal is to identify a minimal set of relevant states
𝑆relevant ⊆ 𝑆1 and define a policy 𝜎relevant based on 𝜎agent for these states (using arbitrary
action elsewhere), such that 𝜎relevant is still robust and winning for ℳ.

Pruned Policy

Let (𝜎agent, 𝜎env) be the optimal policy pair obtained from solving the game 𝐺ℳ, such that
the value of the game 𝑉 (𝑠0) = P[𝐺𝜎agent,𝜎env |= ♢𝑇] ≥ 𝜆. The core idea of pruning is to
identify a subset of essential Player 1 states 𝑆relevant ⊆ 𝑆1 and define a policy 𝜎relevant as:

𝜎relevant(𝑠) =

{︃
𝜎agent(𝑠) if 𝑠 ∈ 𝑆relevant

𝛼noop if 𝑠 ∈ 𝑆1 ∖ 𝑆relevant

Where 𝛼noop is a designated action assumed to be no better (and potentially worse) for
Player 1 than any other available action in terms of satisfying 𝜙.

Noop Action Justification: For maximizing reachability (♢𝑇), a common and safe choice
for 𝛼noop is a self-loop action, where 𝑃 (𝑠, 𝛼noop, 𝑠) = 1. Let 𝑉𝜎agent,𝜎env(𝑠) be the reachability
probability from state 𝑠 in the induced Markov chain 𝐺𝜎agent,𝜎env . Since 𝜎agent is optimal
for Player 1, replacing 𝜎1(𝑠) with any action 𝛼 cannot increase the resulting reachability
probability from state 𝑠 when played against the optimal 𝜎env. Specifically, for a self
loop 𝛼noop: ∑︁

𝑠′

𝑃 (𝑠, 𝛼noop, 𝑠
′)𝑉𝜎agent,𝜎env(𝑠

′) = 𝑉𝜎agent,𝜎env(𝑠)

Replacing 𝜎agent(𝑠) with 𝛼noop in states 𝑠 ∈ 𝑆1 ∖ 𝑆relevant can, therefore, only decrease
or maintain the overall reachability probability 𝑉 (𝑠0).
Lemma 2 (Robustness with Relevant States). Let 𝜎relevant be defined as above. If the set
𝑆relevant is chosen such that the reachability probability in the game 𝐺ℳ under the modified
policy pair (𝜎relevant, 𝜎env) still meets the threshold, i.e., P[𝐺𝜎relevant,𝜎env |= ♢𝑇] ≥ 𝜆, then
𝜎relevant is a robust winning policy for the family ℳ.

22

By Theorem 1, if Pmax[𝐺ℳ |= ♢𝑇] ≥ 𝜆, then 𝜎*
agent is robust. Lemma 2 states that

if the policy 𝜎relevant still achieves a value ≥ 𝜆 against the optimal adversary 𝜎env in the
game 𝐺ℳ, it must also be robust for the original family ℳ, as the game value provides a
lower bound on the performance in any individual 𝑀𝑖. The heuristics described below aim
to find such a sufficient set 𝑆relevant.

This approach of identifying relevant states is particularly beneficial when followed
by decision tree synthesis tools like dtControl. These tools aim to find a compact tree
representation that mimics the behavior of a given policy. After pruning, the states 𝑆1 ∖
𝑆relevant can be treated as irrelevant states with regard to property satisfaction, allowing
flexibility in action choice by subsequent synthesis tools.

Theorem 2 (Correctness of DT Synthesis with Relevant States). Let 𝜎relevant be a robust
winning policy obtained by identifying a sufficient set 𝑆relevant (Lemma 2). Let 𝜎DT be a
policy represented by a decision tree such that:

• For 𝑠 ∈ 𝑆relevant, 𝜎DT(𝑠) = 𝜎relevant(𝑠) = 𝜎agent(𝑠).

• For 𝑠 ∈ 𝑆1 ∖ 𝑆relevant, 𝜎DT(𝑠) can be any action 𝛼 ∈ 𝐴𝑐𝑡(𝑠).

Then 𝜎DT is also a robust winning policy for ℳ.

We know P[𝐺𝜎relevant,𝜎env |= ♢𝑇] ≥ 𝜆, where 𝜎relevant uses 𝛼noop in 𝑆1 ∖ 𝑆relevant. Since
𝜎agent was optimal against 𝜎env, any action 𝛼 ∈ 𝐴𝑐𝑡(𝑠) chosen by dtControl for 𝑠 ∈ 𝑆1 ∖
𝑆relevant cannot yield a higher reachability probability from 𝑠 than 𝜎agent(𝑠) did. Crucially,
assuming 𝛼noop represents the worst possible outcome for Player 1, any action 𝛼 chosen
by dtControl cannot be worse than 𝛼noop. Therefore, the overall reachability probability
under (𝜎DT, 𝜎env) cannot be lower than under (𝜎relevant, 𝜎env). Thus, P[𝐺𝜎DT,𝜎env |= ♢𝑇] ≥
P[𝐺𝜎relevant,𝜎env |= ♢𝑇] ≥ 𝜆. By Theorem 1, 𝜎DT is robust winning for ℳ.

This theorem justifies allowing dtControl the freedom to choose any action for the
irrelevant states 𝑆1 ∖ 𝑆relevant in the interest of creating a smaller decision tree, without
violating the correctness guarantee.

Heuristic Pruning Algorithms

The pruning process aims to identify a minimal set of states 𝑆relevant such that the policy
𝜎relevant satisfies the property 𝜙.

While the above provides theoretical justification, finding the absolute minimal set
𝑆relevant that satisfies Lemma 2 is computationally hard. Instead, we employ heuristic
algorithms to identify a reasonably small, sufficient subset of states. These algorithms
explore the state space of the Markov Chain induced by (𝜎agent, 𝜎env), starting from 𝑠0, and
incrementally build 𝑆relevant.

The core idea is to prioritize exploring states deemed more important for reaching the
target set 𝑇 . We use exploration-based algorithms guided by priority queues, effectively
performing a guided search. The exploration stops once the partially built policy 𝜎relevant
(defined only on the currently visited states 𝒱 = 𝑆relevant and using 𝛼noop elsewhere) is
verified to satisfy 𝜙. To achieve this, we introduce two complementary heuristics to guide
this exploration:

1. Reachability-based Exploration: Prioritizes exploring states 𝑠 with higher reach-
ability values 𝑉𝜎agent,𝜎env(𝑠). These values, representing the probability of reaching 𝑇

23

from 𝑠 under (𝜎agent, 𝜎env) in the induced Markov chain, are typically available from
the game-solving phase. This heuristic focuses on paths most likely to lead to the
target set 𝑇 . (Details in Algorithm 1).

2. Maximum Probability Transition Exploration: Prioritizes exploring transitions
(𝑠, 𝜎agent(𝑠), 𝑠′) with the highest probability 𝑃 (𝑠, 𝜎agent(𝑠), 𝑠′). This heuristic focuses
on the most likely execution paths within the induced MC. (Details in Algorithm 2).

Both heuristics implicitly rely on the existence of the 𝛼noop action (e.g., a self-loop imple-
mented as part of this work) to define the behavior in unvisited states during the verification
step. As part of this work, we implemented the self-loop action as a noop action to allow the
verification of the pruned policy 𝜎relevant. However, for non-reachability or minimizing prop-
erties, the noop action must be explicitly defined in the PRISM model, as identifying the
worst-case action/transition for the agent may be nontrivial. Our experiments (Section 5)
show that combining these heuristics, typically by running reachability-based exploration
first, yields the best results in practice.

.91

1

.9

sf

st
.9

.1

.9
.1

(a) Maximum probability transition method
finds a smaller winning set 𝑆relevant.

.73

.65

1

.7

sf

st
.9

.1

.7
.3

.4

.4.6

.75

.25

(b) Reachability method finds a smaller winning
set 𝑆relevant.

Figure 4.2: Comparison of 𝑆relevant (solid black) found by the two heuristics for 𝜆 = 0.5.
Using the non-optimal heuristic in each case results in 𝑆relevant ≈ 𝑆. Numbers in states
represent reachability values 𝑉𝜎agent,𝜎env(𝑠). Self-loops and probabilities for deterministic
transitions are omitted for clarity.

Figure 4.2 illustrates why neither heuristic universally dominates the other in finding
the smallest sufficient set 𝑆relevant. The figure depicts two scenarios where the chosen
exploration method leads to different outcomes. In Figure 4.2a (left), prioritizing states
reachable via high-probability transitions (Maximum Probability Transition Exploration)
identifies a smaller winning sub-MC compared to prioritizing states with high reachability
values. Conversely, in Figure 4.2b (right), prioritizing states with high reachability values
(Reachability-based Exploration) finds the smaller winning sub-MC. This demonstrates
that the optimal exploration strategy depends on the specific structure and probabilities of
the underlying Markov chain, justifying the use of both heuristics.

Reachability-Based Exploration

The first heuristic prioritizes exploring states within the induced Markov chain 𝐺𝜎agent,𝜎env

that have higher reachability values 𝑉𝜎agent,𝜎env(𝑠). The intuition is that states in the induced
Markov chain that are more likely to lead to the target should be included in 𝑆relevant first.

24

Algorithm 1 Reachability Gradient-based Policy Optimization
Require: Original policy 𝜎orig, reachability function 𝑉 : 𝒮 → R, target states 𝑇 ⊂ 𝒮
Ensure: Policy 𝜎relevant

1: Initialize empty policy 𝜎relevant ← ∅
2: Initialize visited set 𝒱 ← ∅
3: Get initial state 𝑠0 ∈ 𝒮
4: Initialize priority queue 𝒬 ← {𝑠0} ◁ Prioritized by 𝑉 (𝑠) in descending order
5: while 𝒬 ≠ ∅ do
6: Extract state 𝑠← argmax𝑠∈𝒬 𝑉 (𝑠)
7: Remove 𝑠 from 𝒬
8: if 𝑠 ∈ 𝒱 then
9: continue ◁ Skip already visited states

10: Copy action 𝜎relevant(𝑠)← 𝜎orig(𝑠)
11: Mark state as visited 𝒱 ← 𝒱 ∪ {𝑠}
12: for 𝑠′ ∈ Succ(𝑠, 𝜎orig(𝑠)) do
13: if 𝑇 ⊈ 𝒱 then
14: Insert 𝑠′ into 𝒬 with priority 𝑉 (𝑠′)
15: else
16: Append 𝑠′ into 𝒬
17: if 𝑇 ⊆ 𝒱 and IsCheckpoint() then
18: if VerifyPolicy(𝜎relevant) then
19: return 𝜎relevant ◁ Early termination if criteria met
20: return 𝜎relevant

Algorithm 1 implements this heuristic using a priority queue ordered by reachability
values in descending order. The exploration starts from 𝑠0. When a state 𝑠 is extracted,
its action 𝜎agent(𝑠) is added to the partial policy 𝜎relevant, and its successors under 𝜎agent(𝑠)
are added to the queue if not already visited.

To optimize performance, the algorithm verifies the current partial policy 𝜎relevant (using
𝛼noop for unvisited states) against the property 𝜙 only periodically and only after at least
one target state 𝑇 has been visited (𝒱), see Line 17. If verification succeeds, the algorithm
terminates early, returning the current sufficient 𝑆relevant = 𝒱. The frequency of verification
balances computational cost against the potential for earlier termination.

A key feature of this algorithm is the shift in exploration strategy once the target
set 𝑇 has been reached (i.e., 𝑇 ⊆ 𝒱). Initially, before any path to 𝑇 is secured in 𝒱,
the priority queue strictly follows reachability values 𝑉 (𝑠), resembling a best-first search
focused on efficiently finding paths to 𝑇 . However, once 𝑇 is included in 𝒱, continuing
to strictly prioritize states with the highest individual 𝑉 (𝑠) values might lead to excessive
exploration around already identified high-reachability paths leading to 𝑇 . This could
delay the inclusion of other states that, while having lower individual 𝑉 (𝑠) values (i.e.,
being further from 𝑇), are crucial for accumulating sufficient overall probability mass from
the initial state 𝑠0 to satisfy the global property 𝜙 = 𝑃≥𝜆[♢𝑇]. Therefore, after 𝑇 is reached,
successors are added without strict priority ordering (Lines 13–16), transitioning towards
a broader, breadth-first-like exploration of the remaining state space. This aims to ensure
that a diverse set of states, collectively contributing to meeting the probability threshold 𝜆

25

st

(a) Exploration with strategy switch.
Demonstrates a broader search for global
property satisfaction.

st

(b) Exploration without strategy switch.
Demonstrates over-focusing on local op-
tima.

Figure 4.3: Conceptual illustration of exploration strategies on an example MC, highlighting
the benefit of a strategy switch after target discovery. States are colored by exploration
order (darker is earlier), transition probabilities are assumed equal, and omitted for clarity.

from 𝑠0, is identified efficiently, rather than over-focusing on states that are merely locally
optimal for reaching an already-found target.

Figure 4.3 illustrates this strategic shift. Figure 4.3a depicts the exploration pattern with
the strategy switch. After reaching 𝑇 (darker states), the exploration broadens (medium
grey states), ensuring that various contributing paths are considered. This can lead to a
sufficient 𝑆relevant more efficiently by not getting trapped exploring only the vicinity of the
first-found target state. In contrast, Figure 4.3b shows exploration without the switch.
Here, after finding initial paths to 𝑇 , the algorithm might continue to explore states with
high individual reachability to 𝑇 (more dark/medium grey states concentrated near already
included target state). This risks neglecting other states (lighter grey) that are needed to
secure enough overall probability from 𝑠0 to satisfy the property 𝜙. These essential lower-
value states might be significantly delayed if the search remains too narrowly focused on
local reachability to target maxima after 𝑇 is initially found.

Maximum Probability Transition Exploration

Our second heuristic prioritizes exploring transitions that have the highest probability, given
by 𝑃 (𝑠, 𝜎agent(𝑠), 𝑠′). The intuition here is to follow the most likely execution paths within
the Markov chain induced by (𝜎agent, 𝜎env).

Algorithm 2 implements this using a priority queue ordered by the transition proba-
bility leading into the state being added, Line 14. When a state 𝑠 is extracted, its action
𝜎agent(𝑠) is added to 𝜎relevant, and its successors 𝑠′ are added to the queue, prioritized by
the probability 𝑃 (𝑠, 𝜎agent(𝑠), 𝑠′). Similar to the reachability-based heuristic, verification
for early termination occurs periodically after 𝑇 is visited.

Unlike the reachability-based approach, this method does not explicitly switch explo-
ration strategy. The focus remains on exploring paths that are high-probability throughout
the process. This is because the maximum transition probability metric naturally maintains
exploration focus even after reaching the target, as it approximates reachability from the
start state rather than distance to the goal state.

26

Algorithm 2 Probability-driven Policy Optimization
Require: Original policy 𝜎orig, transition probability matrix 𝑃 : 𝒮 × 𝒮 → [0, 1], target

states 𝑇 ⊂ 𝒮
Ensure: Policy 𝜎relevant

1: Initialize empty policy 𝜎relevant ← ∅
2: Initialize visited set 𝒱 ← ∅
3: 𝑠0 ← initial state
4: Initialize priority queue 𝒬 ← {𝑠0} ◁ Prioritized by max transition probability
5: while 𝒬 ≠ ∅ do
6: 𝑠← argmax𝑠∈𝒬,𝑠′∈𝒮 𝑃 (𝑠′, 𝑠) ◁ Get highest probability transition
7: Remove 𝑠 from 𝒬
8: if 𝑠 ∈ 𝒱 then
9: continue

10: 𝜎relevant(𝑠)← 𝜎orig(𝑠)
11: 𝒱 ← 𝒱 ∪ {𝑠}
12: for 𝑠′ ∈ Succ(𝑠, 𝜎orig(𝑠)) do
13: if 𝑠′ /∈ 𝒱 then
14: Insert 𝑠′ into 𝒬 with priority 𝑃 (𝑠, 𝑠′)

15: if 𝑇 ⊆ 𝒱 and IsCheckpoint() then
16: if VerifyPolicy(𝜎relevant) then
17: return 𝜎relevant
18: return 𝜎relevant

Incremental Steady State Analysis

The heuristic pruning algorithms rely on periodically verifying if the currently constructed
partial policy 𝜎relevant satisfies the property 𝜙 (Line 16). In our implementation, this veri-
fication is performed by invoking an external model checker (Storm) on the Markov chain
induced by (𝜎relevant, 𝜎env), where undefined actions in 𝜎relevant are treated as 𝛼noop.

An alternative theoretical approach involves incrementally computing the reachability
probabilities within the partially constructed Markov chain. Consider the example MC
induced by some (𝜎agent, 𝜎env) shown in Figure 4.4. The reachability probability 𝑉 (𝑠) for
each state 𝑠 (probability to reach 𝑇 = 𝑆𝑡) can be described by a system of linear equations
based on the Bellman equation for reachability [9]:

.73 .75

.65 sf

st.75

.25

.75

.1

.9 .25

SCC
𝑆0 = 0.75 · 𝑆1 + 0.25 · 𝑆2

𝑆1 = 0.75 · 𝑆𝑡 + 0.25 · 𝑆𝑓

𝑆2 = 0.9 · 𝑆2 + 0.1

𝑆𝑡 = 1

𝑆𝑓 = 0

Figure 4.4: Example Markov chain featuring a Strongly Connected Component (left), and
its corresponding system of linear equations for computing reachability probabilities (right).

Solving this system yields the reachability probabilities for all states. Now, consider the
pruning process starting with 𝑆relevant = {𝑆0, 𝑆1, 𝑆𝑡}. We only evaluate transitions within

27

this subset. The initial computation yields 𝑆0 = 0.75 · 0.75 = 0.5625, but for 𝜆 = 0.6, this
partial policy is insufficient.

Exploring additional states, such as 𝑆2, increases the complexity due to the formation of
a Strongly Connected Component (SCC) between 𝑆0 and 𝑆2. In this case, the equation gives
𝑆2 = 0.9 · 0.5625 = 0.50625. This change propagates back to 𝑆0, requiring its recalculation
as 𝑆0 = 0.75 · 0.75 + 0.25 · 0.50625 = 0.689.

The presence of SCCs complicates simple incremental updates. Changes within an SCC
require solving a system of equations for all states in that component. In contrast, adding
states that only extend acyclic paths allows for straightforward local updates. This can
be demonstrated with 𝑆relevant = {𝑆𝑡}. If we subsequently explore 𝑆1, we can compute
𝑆1 = 0.75 · 1 = 0.75. This value is stable and corresponds exactly to the solution in the
complete Markov chain.

While theoretically feasible, implementing efficient incremental reachability verification,
especially handling SCCs dynamically, adds significant complexity. Given that our empiri-
cal evaluation shows external model checking with Storm performs sufficiently well for the
benchmarked scenarios, this incremental approach was not pursued in our final implemen-
tation. However, it remains a potentially valuable optimization for scenarios with very large
state spaces dominated by acyclic structures, or where repeated model checker invocations
become a bottleneck.

4.3 Merging Strategies
The original work [5] introduced a post-processing step to reduce policy tree size by merging
leaves corresponding to compatible subfamilies. Two subfamilies ℳ𝑖,ℳ𝑗 with respective
winning policies 𝜎𝑖, 𝜎𝑗 were considered mergeable if a combined policy could be found that
was winning for the union ℳ𝑖 ∪ℳ𝑗 . The algorithm checked two candidate policies:

• 𝜎𝑖⊕𝑗 : Prefers actions from 𝜎𝑖 and uses 𝜎𝑗 only for states undefined in 𝜎𝑖.

• 𝜎𝑗⊕𝑖: Prefers actions from 𝜎𝑗 and uses 𝜎𝑖 only for states undefined in 𝜎𝑗 .

If either candidate was verified as winning for ℳ𝑖 ∪ℳ𝑗 , the families were merged using
that candidate policy.

However, our analysis revealed a potential correctness issue stemming from the original
algorithm’s greedy approach, which permitted multiple merges involving the same family
within a single pass. This lack of sequential validation could lead to transitive compatibility
violations. For example, consider families ℳ1,ℳ2,ℳ3 with policies 𝜎1, 𝜎2, 𝜎3. If, in one
pass, ℳ1 is found compatible with ℳ2 (using 𝜎1⊕2) and later compatible with ℳ3 (using
𝜎(1⊕2)⊕3), the algorithm might implicitly create a merged policy forℳ1 ∪ℳ2 ∪ℳ3 based
on these pairwise checks. However, the validity of the resulting combined policy 𝜎(1⊕2)⊕3

for all three families was not explicitly guaranteed for ℳ2.
To address this inconsistency and ensure the soundness of the merged policy tree, we

propose a refined merging strategy with two key modifications:

1. Single-merge constraint: In each pass of the merging process, only a single com-
patible pair of families is merged.

2. Smallest policy selection: Together with current candidate policies 𝜎𝑖⊕𝑗 and 𝜎𝑗⊕𝑖,
we also consider the original policies 𝜎𝑖 and 𝜎𝑗 . If multiple candidates are valid, the

28

smallest (in terms of state-action pairs) policy is selected. This size-based selection
was not an explicit criterion in the original work [5], but it is important for our
approach, which aims to minimize the overall representation size.

This refined strategy guarantees the correctness of the merged policies by avoiding
transitive compatibility violations. While potentially requiring more iterations than the
original greedy approach, it ensures the soundness of the final policy tree and explicitly
prefers smaller policy representations. This makes it particularly relevant when dealing
with pruned policies of varying sizes, and accordingly, this enhanced merging strategy is
adopted for all experiments involving policy trees.

4.4 Deriving a Markov Decision Process
We now present the second orthogonal approach for optimizing policy representations:
Transforming the f-MDP synthesis problem back into a standard MDP problem to leverage
state-of-the-art MDP synthesis tools. The core idea is to fix the environment’s behavior
based on its optimal strategy derived from the game abstraction, thereby creating an MDP
for which alternative policy synthesis algorithms can be applied. We specifically utilize
dtNESt [3] for this purpose.

Recall from Section 3.2 that the game abstraction 𝐺ℳ models the f-MDP problems as a
two-player game. Player 1 (agent) chooses an action 𝛼, and Player 2 (environment) subse-
quently chooses the MDP dynamics 𝐼 ∈ 𝐼∼𝑠,𝛼 to minimize the agent’s objective. Solving this
game yields optimal policies (𝜎agent, 𝜎env) (also referred to as 𝜎1, 𝜎2). The resulting 𝜎agent
is robust winning but potentially conservative and unoptimized for representation size.

Instead of directly using 𝜎agent, a derived MDP can be constructed. Let’s call it 𝑀𝜎env ,
by resolving Player 2’s choices in the game abstraction with its optimal strategy 𝜎env.

Definition 12 (Derived MDP 𝑀𝜎env). Let ℳ = {𝑀𝑖}𝑖∈𝐼 be the family and 𝐺ℳ its game
abstraction with optimal policies (𝜎agent, 𝜎env). The derived MDP is defined as 𝑀𝜎env =
(𝑆ℳ, 𝑠0,Actℳ, 𝑃 𝜎env), where:

• The state space 𝑆ℳ and initial state 𝑠0 are the same as in the original family members.

• The action space Actℳ contains only the agent’s actions (Player 1’s actions in the
game).

• The transition function 𝑃 𝜎env : 𝑆ℳ × Actℳ × 𝑆ℳ → [0, 1] is defined by fixing
the environment’s choice according to 𝜎env. For a state 𝑠 ∈ 𝑆ℳ and agent action
𝛼 ∈ Actℳ(𝑠), the environment chooses the dynamics 𝐼 = 𝜎env(𝑠, 𝛼). The resulting
transition probabilities are taken from any 𝑀𝑖 where 𝑖 ∈ 𝐼:

𝑃 𝜎env(𝑠, 𝛼, 𝑠′) = 𝑃𝑖(𝑠, 𝛼, 𝑠
′) for any 𝑖 ∈ 𝜎env(𝑠, 𝛼)

Recall that all 𝑖 ∈ 𝐼 lead to the same 𝑃𝑖(𝑠, 𝛼, ·) distribution.

Essentially, 𝑀𝜎env represents the dynamics when the agent plays against the fixed,
optimal (worst-case) environment strategy 𝜎env derived from the game solution.

29

Correctness Guarantee

The crucial property of this transformation is that solving the derived MDP 𝑀𝜎env still
provides guarantees for the original family ℳ.

Theorem 3 (Robustness via Derived MDP). Letℳ = {𝑀𝑖}𝑖∈𝐼 be an f-MDP, 𝜙 = 𝑃≥𝜆[♢𝑇]
a reachability specification, and 𝑀𝜎env the MDP derived using the optimal environment
strategy 𝜎env from the game abstraction 𝐺ℳ. If a policy 𝜎 satisfies the specification in the
derived MDP, i.e.,

P[(𝑀𝜎env)𝜎 |= ♢𝑇] ≥ 𝜆

then 𝜎 is a robust winning policy for the original family ℳ, i.e.,

∀𝑀𝑖 ∈ℳ : P[𝑀𝜎
𝑖 |= ♢𝑇] ≥ 𝜆

Proof Sketch. The optimal environment strategy 𝜎env represents the worst-case choice of
dynamics for the agent at each step, considering the agent’s potential actions. The value
achieved by any agent policy 𝜎 in the derived MDP 𝑀𝜎env corresponds to the value achieved
by 𝜎 against the fixed adversary 𝜎env in the game 𝐺ℳ:

P[(𝑀𝜎env)𝜎 |= ♢𝑇] = P[𝐺𝜎,𝜎env
ℳ |= ♢𝑇]

Since 𝜎env is the optimal (minimizing) strategy for Player 2, the value against 𝜎env provides a
lower bound on the value against any other Player 2 strategy, including strategies consistent
with a single 𝑀𝑖:

P[𝐺𝜎,𝜎env
ℳ |= ♢𝑇] ≤ P[𝐺𝜎,𝜎env,𝑖

ℳ |= ♢𝑇] = P[𝑀𝜎
𝑖 |= ♢𝑇]

where 𝜎env,𝑖 is a Player 2 strategy consistent with 𝑀𝑖. Therefore, if P[(𝑀𝜎env)𝜎 |= ♢𝑇] ≥ 𝜆,
it follows that P[𝑀𝜎

𝑖 |= ♢𝑇] ≥ 𝜆 for all 𝑀𝑖 ∈ℳ.

Theorem 3 provides the formal justification for using standard MDP solvers on 𝑀𝜎env

to find robust policies for ℳ.

Synthesizing Alternative Policies (𝜎alt)

While the original agent policy 𝜎agent (from the game solution) is optimal for maximizing
the property value in 𝑀𝜎env (and robustly for ℳ), this policy is typically derived from
value iteration or policy iteration on the game structure. These methods do not prioritize
the compactness of the policy representation, often resulting in tabular policies or policies
derived directly from value functions that lead to large and complex decision trees when
converted naively.

Decision tree synthesis tools like dtNESt, however, are specifically designed to find
compact decision tree representations of policies, often by accepting a small, controllable
trade-off in optimality (𝜖-optimality). For a given MDP, dtNESt aims to find a decision tree
𝒯dtNESt such that the policy induced by it, 𝜎𝒯dtNESt (as per the definition in Section 2), has
a value 𝑉 𝜎𝒯dtNESt close to the optimal value 𝑉 * (i.e., 𝑉 𝜎𝒯dtNESt ≥ 𝑉 * − 𝜖) while minimizing
the size of the decision tree 𝒯dtNESt.

Therefore, we apply dtNESt to the derived MDP 𝑀𝜎env to synthesize such a compact
decision tree, which we denote 𝒯alt. From this tree, we induce an alternative policy, 𝜎alt =
𝜎𝒯alt . This policy 𝜎alt (and its compact representation 𝒯alt) aims to:

30

1. Achieve a compact and interpretable decision tree representation (the primary goal
of using dtNESt).

2. Maintain robust correctness for the family ℳ. This is guaranteed by Theorem 3,
provided the value achieved by 𝜎alt in 𝑀𝜎env remains ≥ 𝜆. To ensure this condition,
the 𝜖 parameter of dtNESt must be chosen carefully. If 𝑉 * is the optimal value for
𝑀𝜎env , then 𝜖 must be set such that 𝑉 𝜎alt ≥ 𝑉 *−𝜖 ≥ 𝜆. This typically means choosing
𝜖 ≤ 𝑉 * − 𝜆 (assuming 𝑉 * ≥ 𝜆). If 𝑉 * < 𝜆 initially, then no policy, even the optimal
one for 𝑀𝜎env , can satisfy the constraint, and thus no robust policy satisfying 𝜆 can
be found for ℳ via this derived MDP.

This transformation allows us to leverage the strengths of specialized MDP-to-DT syn-
thesis tools like dtNESt to obtain compact, robust policies for the original f-MDP problem,
addressing the size and interpretability limitations of directly using 𝜎agent. The resulting
policy 𝜎alt, induced from its compact decision tree representation 𝒯alt, can then be used as
a candidate policy within the unified tree structure described in Section 4.5.

4.5 Unified Decision Tree Representation
Having discussed methods to obtain potentially more compact policy representations (prun-
ing in Section 4.2 or alternative policy synthesis via MDP transformation in Section 4.4),
we now introduce a novel structure to represent the entire solution i.e. mapping subfamilies
to policies within a single, optimized tree: the unified decision tree.

Definition 13 (Unified Decision Tree (UDT)). A unified decision tree for a family ℳ =
{𝑀𝑖}𝑖∈𝐼 over state variables 𝑉𝑠𝑡𝑎𝑡𝑒 and family parameters/identifiers 𝑉𝑓𝑎𝑚𝑖𝑙𝑦 is an abstract
decision tree 𝒯 = (𝑇, 𝛾, 𝛿) (as defined in Section 2) where:

• 𝛾 assigns to each inner node 𝑛 a predicate 𝛾(𝑛) of one of two types:

1. Family Predicate: A condition on the family parameters/identifiers 𝑉𝑓𝑎𝑚𝑖𝑙𝑦

(e.g., 𝑝𝑎𝑟𝑎𝑚 ≤ 𝑐; 𝑖𝑑 ∈ {𝑖1, 𝑖2}). These predicates partition the family ℳ.
2. State Predicate: A condition on the state variables 𝑉𝑠𝑡𝑎𝑡𝑒 in the form 𝑣 ≤ 𝑐.

These predicates partition the state space 𝑆ℳ.

• 𝛿 assigns to each leaf node an action 𝛼 ∈ Actℳ or the symbol ∅ (indicating unsatisfi-
ability for the corresponding subfamily and state partition).

The UDT interleaves decisions based on family parameters/identifiers and decisions
based on the current state, mapping a specific MDP 𝑀𝑖 and a state 𝑠 directly to an action
𝛼 = 𝒯 (𝑀𝑖, 𝑠) or ∅.

Construction Approaches

Realizing the benefits of the UDT hinges on its effective construction. We will now examine
different strategies for building such a unified structure, beginning with a straightforward,
albeit potentially redundant, approach and then detailing our proposed optimized method
designed for enhanced compactness and efficiency.

Trivial Construction (Policy Tree + DTs): A UDT can be trivially constructed
by taking an existing policy tree (Section 2.2) and replacing each leaf node ℓ (representing

31

OX= {2}

State Action

S0 α0

S1 α1

Sn αn

True

State Action

S0 β0

S1 β1

Sn βn

False

(a) Policy Tree (PT) with tabular leaf
policies.

OX= {2}

x <= 3.5

True

y <= 3.5

False

right

True

up

False

x <= 1.5

True

right

False

right

True

up

False

(b) Trivial UDT: PT with individual DT leaf policies.

OX={2}

OX=2,OY=2

True

OX=1,OY=2

False

x <= 1.5

right

True

OX <= 1.5

False

up

True

x <= 3.5

False

right

True

up

False

(c) Proposed UDT: candidate mapping tree (left) + unified policy tree (right).

Figure 4.5: Comparison of controller representations for MDP families.

subfamily ℳℓ with policy 𝜎ℓ) with the root of a decision tree 𝒯ℓ that implements 𝜎ℓ. This
approach is illustrated conceptually in Figure 4.5b. While straightforward, this often leads
to significant redundancy as identical subtrees may appear multiple times across different 𝒯ℓ.

Optimized Construction using dtControl (Proposed): To overcome the limita-
tions of the trivial construction and achieve a more compact UDT, we propose leveraging
a decision tree learning tool like dtControl. The challenge is to formulate the problem such
that dtControl can learn a single tree representing the complex mapping (𝑀𝑖, 𝑠) ↦→ 𝛼.

We treat this as a classification problem. The input features would ideally include both
the state variables 𝑉𝑠𝑡𝑎𝑡𝑒 and the family parameters/identifiers 𝑉𝑓𝑎𝑚𝑖𝑙𝑦. The target classes
are the actions Actℳ ∪ {∅}. However, a naive approach requiring training data for every
state 𝑠 ∈ 𝑆ℳ and every MDP 𝑀𝑖 ∈ℳ is computationally infeasible due to the potentially
vast number of (𝑀𝑖, 𝑠) combinations.

Instead, we employ a two-tree representation (illustrated in Figure 4.5c) that decouples
family mapping from state-based decisions, making the learning task tractable:

1. Candidate Mapping Tree (CMT): This tree retains the structure of the original
policy tree obtained from the existing approach (potentially refined by our merging
strategy, Section 4.3). However, instead of mapping to full policies 𝜎ℓ, its leaves map
to candidate identifiers 𝑐ℓ. Each 𝑐ℓ represents a distinct policy required by the overall
solution. Let this mapping be 𝐶𝑀𝑇 (𝑀𝑖) = 𝑐ℓ.

2. Unified Policy Tree (UPT): This is the main decision tree learned by a tool like
dtControl. Its input features include the state variables 𝑉𝑠𝑡𝑎𝑡𝑒 and the candidate
identifier 𝑐ℓ (treated as an additional categorical feature). The UPT is learned using

32

input-output mappings of ((𝑠, 𝑐ℓ), 𝛼), where 𝛼 = 𝜎ℓ(𝑠) is the action prescribed by the
policy 𝜎ℓ associated with candidate 𝑐ℓ for state 𝑠.

The final action for a given MDP 𝑀𝑖 and state 𝑠 is determined by first finding the candidate
identifier 𝑐ℓ = 𝐶𝑀𝑇 (𝑀𝑖) and then evaluating the action 𝛼 = 𝑈𝑃𝑇 (𝑠, 𝑐ℓ).

This two-tree approach significantly reduces the complexity for the decision tree learning
tool (dtControl):

• The UPT only needs to distinguish between different policies (represented by 𝑐ℓ)
rather than all individual MDPs 𝑀𝑖. The number of distinct policies is typically
much smaller than the number of MDPs (|{𝑐ℓ}| ≪ |𝐼|).

• dtControl can effectively find redundancies and shared logic across the different poli-
cies 𝜎ℓ when learning the UPT, leading to a more compact representation.

Although this approach introduces a two-tree structure, the combined size (CMT nodes
+ UPT nodes) is often significantly smaller than the trivially constructed UDT or the sum
of individual policy DTs, as demonstrated later in our experiments.

33

Chapter 5

Experimental Evaluation

In this chapter, we present a comprehensive empirical evaluation of our proposed methods
for synthesizing and optimizing controllers for families of MDPs (f-MDPs). We systemat-
ically compare our approaches against the state-of-the-art game abstraction technique [5],
focusing on the effectiveness of the enhancements introduced in Chapter 4: the refined
policy merging strategy (Section 4.3), the policy state pruning heuristics (Section 4.2),
the transformation to a derived MDP for alternative policy synthesis using dtNESt (Sec-
tion 4.4), and the unified decision tree representation (Section 4.5). Our evaluation focuses
on answering the following key questions:

• Q1: What are the effects of the refined merging strategy compared to the original
approach?

• Q2: How does policy state pruning affect the size of the final unified decision tree
(UDT) representation?

• Q3: What are the effects of using the MDP transformation approach with dtNESt on
the size of the UDT representation?

• Q4: What controller size improvements does the proposed UDT offer compared to
the baseline (individual DTs for policy tree leaves)?

Experimental Setting: Our methodologies are built as an extension of the PAYNT
tool [4] and integrate with dtControl [7] for decision tree synthesis from policies, as well as
the dtNESt component [3] for synthesizing alternative policies from derived MDPs. dtNESt,
in turn, employs the Z3 SMT solver [18] as its internal constraint-solving engine. All ex-
periments were conducted on a machine equipped with an Intel Core i7-1280P processor
(20 cores) and 32GB of RAM. Each benchmark problem was allocated a single CPU core
with a minimum timeout threshold of 4 hours.

Benchmarks: Our evaluation utilized publicly available benchmarks initially used in
the original work on game-based abstraction for f-MDPs [5].1 These benchmarks required
a slight modification to ensure compatibility with our enhanced framework, particularly
for the dtNESt component. Original problems utilize constraint-based properties, while
dtNESt requires properties in a maximization format to find an 𝜖-optimal policy. To address
this, we created alternative property specifications with the suffix “_alt.prop” for each
benchmark, transforming the constraint P≥𝜆[. . .] into a maximization objective Pmax=?[. . .].

1All benchmarks are available at https://github.com/randriu/synthesis in models

34

https://github.com/randriu/synthesis

Verification of Correctness: Ensuring that a synthesized policy (or set of policies) satis-
fies the specification for every member of an f-MDP is crucial. Verifying this by testing the
policy against each individual MDP instance is computationally intractable for large fam-
ilies. Therefore, for policies associated with subfamilies in a policy tree (generated by the
game abstraction, potentially with merging or pruning), we rely on the verification mech-
anism inherent in the game-based synthesis framework [5]. A policy 𝜎agent for a subfamily
ℳ′ ⊆ ℳ is verified as correct by fixing Player 1’s strategy to 𝜎agent (thereby defining an
MDP where Player 2, the environment, makes choices constrained by ℳ′), and then en-
suring that Player 2, playing optimally to minimize the property’s value, cannot force this
value below the threshold 𝜆. This process is effectively equivalent to checking the property
in the Markov Chain induced by both Player 1’s strategy (𝜎agent) and Player 2’s optimal
counter-strategy (𝜎env) for ℳ′.

For alternative policies 𝜎alt synthesized using dtNESt from a derived MDP 𝑀𝜎env (Sec-
tion 4.4), Theorem 3 guarantees robustness for the family ℳ if 𝜎alt achieves a value ≥ 𝜆
in 𝑀𝜎env . In our dtNESt experiments, we use a standard 𝜖 = 0.05 for 𝜖-optimality. This is
justified as the optimal value 𝑉 *(𝑀𝜎env) typically exceeds the original threshold 𝜆 by more
than 𝜖. Consequently, the 𝜖-optimal policy 𝜎alt, satisfying 𝑉 ((𝑀𝜎env)𝜎alt) ≥ 𝑉 *(𝑀𝜎env)−𝜖, is
still expected to meet the 𝜆 requirement. Occasional minor deviations, where 𝑉 *(𝑀𝜎env)−𝜖
falls slightly below 𝜆, are considered negligible, potentially due to the floating-point numer-
ical precision of the model checker. The property transformation to Pmax=?[. . .] for dtNESt
is thus deemed practically equivalent for evaluation.

Throughout this chapter, the symbol † indicates experiments that exceeded either mem-
ory constraints or the four-hour timeout threshold, representing cases where the correspond-
ing approach faced scalability challenges.

5.1 Policy Merging Strategy
The game-based synthesis approach [5] can result in a policy tree with numerous distinct
policies. Reducing this number is key for a more compact and interpretable controller. The
original work [5] included a merging post-processing step, but as discussed in Section 4.3,
its greedy nature could lead to soundness issues.

For this evaluation, we employ our refined merging strategy to ensure soundness. This
enhanced strategy is used in all subsequent experiments. The limitations of the original
merging strategy become more pronounced when combined with further optimizations.
Consequently, direct comparisons under such advanced settings would not provide a fair or
meaningful assessment and are thus considered outside the scope of this work.

Table 5.1 provides a comparison of the original policy merging strategy and our en-
hanced strategy, applied before any other optimizations like pruning or UDT synthesis.
The leftmost columns characterize each benchmark: |ℳ| denotes the total number of fam-
ily members, |𝑆𝑀 | signifies the number of states, and

∑︀
Act represents the total number

of actions in the quotient MDP 𝑄ℳ. SAT% indicates the percentage of MDPs in the
family for which a winning policy exists with respect to the original property specification.
Columns labeled Original correspond to the PAYNT framework’s original algorithm [5],
while Enhanced merging corresponds to our refined strategy. The table evaluates these
strategies based on synthesis time, the number of distinct policies at the policy tree leaves
(#Pols), and the total policy tree nodes (#Nodes).

35

Table 5.1: Comparison of the original policy merging strategy [5] and our enhanced strategy
(Section 4.3).

Model Model Information Original Enhanced merging

|𝑆𝑀 |
∑︀

Act |ℳ| SAT% Time (s) #Pol #Node Time (s) #Pol #Node

av-8-2 2e4 9e4 4e3 95 208 27 460 340 16 433
av-8-2-e 2e4 9e4 4e3 100 8 3 4 8 1 1
dodge-2 2e5 7e5 3e4 100 575 29 44 1e3 19 31
dodge-32 2e5 7e5 9e7 100 † † † † † †
dpm-10 2e3 1e4 2e4 18 37 97 1e3 59 106 1e3
dpm-10-b 9e3 1e5 1e5 23 425 6 89 789 12 89
obs-8-6 5e2 9e2 5e4 90 13 267 1e3 27 372 1e3
obs-10-6 8e2 3e3 3e6 98 6 90 301 12 169 364
obs-10-9 1e3 2e3 4e8 100 606 3e3 7e3 1e3 4e3 7e3
rov-100 2e3 5e4 2e7 47 2e3 246 9e4 2e3 246 9e4
rov-1000 2e4 5e5 4e6 100 3e3 3e3 2e4 4e3 3e3 2e4
uav-roz 2e4 2e5 5e3 99 40 2 124 87 2 124
uav-work 9e3 1e5 2e6 100 263 7 3e3 512 7 3e3
virus 2e3 1e5 7e4 83 770 541 7e3 1e3 537 7e3
rocks-6-4 3e3 7e3 7e3 100 540 3e3 6e3 974 2e3 7e3

The results in Table 5.1 indicate that our enhanced merging strategy often achieves a
comparable or reduced number of distinct policies (#Pol) and policy tree nodes (#Node)
when compared to the original approach. For instance, benchmarks like av-8-2-e and dodge-
2 show a notable reduction in both policy count and tree size. However, the original greedy
strategy sometimes produces a smaller number of policies or nodes, as seen in benchmarks
like obs-10-6 or dpm-10-b. While the synthesis time for the enhanced strategy is sometimes
higher due to the more rigorous, sound verification process, the resulting policy sets provide
a more reliable foundation for subsequent optimizations, which is the primary motivation
for its adoption.

It is worth noting that in some benchmarks, such as uav-roz, the policy tree struc-
ture appears disproportionately large compared to the number of contained policies. This
phenomenon occurs because the family structure may require complex decision-making
pathways to differentiate between subfamilies that ultimately map to the same policy, as
illustrated in Figure 2.1. This structural complexity represents an inherent characteristic
of particular problem domains rather than a limitation of our merging strategy.

Q1: Effects of the new merging strategy on policy trees? The empirical results
demonstrate that our enhanced merging strategy generally maintains or improves compact-
ness compared to the original approach. While the sounder verification process can increase
synthesis time, this trade-off is justified by the creation of a reduced set of distinct policies,
which is crucial for subsequent optimizations. Therefore, this enhanced strategy is utilized
for all the following experiments.

5.2 Policy Pruning
We now evaluate the effects of policy state pruning (Section 4.2) on the final controller repre-
sentation. This analysis focuses on the size of the Unified Decision Tree (UDT), particularly
its Unified Policy Tree (UPT) component, as depicted in Figure 4.5c. Our heuristic pruning
techniques (Algorithms 1 and 2) aim to reduce policy complexity by removing irrelevant

2dodge-3 is not included in any other results as it didn’t terminate due to memory constraints (even for
original approach)

36

Table 5.2: Policy pruning effects on UDT size (#Node) and total policy actions (Act).
Comparison focus is Unpruned UPT vs 100%.

Model Unpruned UPT 100% 90% 80%

SAT% #Node Act SAT% #Node Act Δ𝑡(𝑠) SAT% #Node Act SAT% #Node Act

av-8-2 95 6e3 6e4 † † † † † † † 100 867 7e3
av-8-2-e 100 203 4e3 100 39 879 446 100 33 880 100 37 880
dodge-2 100 9e4 1e6 † † † † † † † † † †
dpm-10 18 2e3 4e4 18 2e3 7e3 125 67 4e3 2e4 98 659 3e4
dpm-10-b 23 247 2e4 23 149 1e3 442 † † † † † †
obs-8-6 90 3e3 2e4 90 853 5e3 129 90 727 4e3 98 611 3e3
obs-10-6 98 2e3 2e4 98 401 3e3 71 98 263 1e3 100 211 1e3
obs-10-9 100 2e4 4e5 100 7e3 6e4 1e3 100 7e3 6e4 100 325 1e3
rov-100 47 3e3 2e4 47 585 2e3 2e3 † † † † † †
rov-1000 † † † † † † † 100 1 1e3 100 1 1e3
uav-roz 99 21 1e4 99 11 1e3 1e4 100 21 9e3 100 21 9e3
uav-work 100 41 2e4 † † † † 100 25 3e3 100 25 2e3
virus 83 7e3 2e5 83 3e3 4e4 1e4 83 3e3 3e4 83 2e3 3e4
rocks-6-4 100 2e4 4e5 100 2e4 9e4 3e3 100 2e4 9e4 100 2e4 8e4

states while maintaining correctness guarantees. The Candidate Mapping Tree (CMT)
structure is largely determined by the family partitioning, remaining relatively unaffected
by state pruning within the policies themselves. Consequently, this analysis of pruning
effects focuses on the UPT component, and any impact on the CMT size is considered
negligible and not the primary subject of this specific comparison.

Table 5.2 presents comprehensive results of applying our pruning heuristics. We compare
four configurations:

• Unpruned UPT: Represents the UPT synthesized without any pruning applied.

• 100%: Pruning preserves the original property specification 𝜆 as per Section 4.2.

• 90%: Allowing pruned policies to satisfy a relaxed property with threshold 0.9 · 𝜆.

• 80%: Allowing a threshold of 0.8 · 𝜆.

Measuring relaxed properties allows us to evaluate the trade-off between policy size and
the satisfaction threshold. When comparing the 100% pruning configuration against the
Unpruned UPT, the better values are highlighted in bold. The SAT% column indicates the
percentage of MDPs in the family for which a winning policy exists. #Node denotes the
number of nodes in the UPT component. The Act sums the number of state-action pairs
defined across all distinct policies, giving a measure of raw policy complexity. Finally, Δ𝑡(𝑠)
represents the additional synthesis time for the 100% pruning configuration compared to
the unpruned UPT. The synthesis time for the Unpruned UPT, which serves as the baseline
for Δ𝑡(𝑠), is given by the Enhanced merging times presented in Table 5.1.

Interestingly, pruning does not universally improve results across all benchmarks. We
observe two principal situations where pruning may produce unintuitive outcomes:

First, property relaxation can substantially increase the percentage of satisfiable families
within the total model space. This is evident in the dpm-10 model, where relaxing from
100% to 90% increases the number of satisfiable families. This dramatic expansion of
the solution space necessitates encoding significantly more families and information in the
unified tree, increasing its complexity rather than reducing it. Furthermore, there are
many cases where further relaxation rendered the problem unsolvable (†) due to the same

37

increase in satisfiable families. On the contrary, some problems become solvable with further
relaxation (e.g. av-8-2).

Second, the intrinsic limitations of our heuristic-based pruning approach become ap-
parent in examples like the av-8-2-e model. Here, despite maintaining 100% satisfiability
across all pruning levels, we observe variations in encoding complexity. This highlights
a fundamental challenge. Our pruning strategy optimizes for minimal individual policies
without explicitly optimizing for the structure of the unified tree. Consequently, even when
individual policies become smaller through pruning, their collective representation in the
unified tree may become more complex. Lastly, these pruned policies may not encode
as many families as the original approach, potentially requiring additional policies to be
retained in the unified tree.

Q2: effect of pruning on unified decision tree size? Despite the aforementioned
complexities and limitations, our results demonstrate a generally positive effect of pruning
(at 100% property preservation) on reducing both the raw policy action count and the final
UPT size for many benchmarks. For most benchmarks, the pruning approach yields notably
smaller trees while preserving or improving family satisfiability. As we increase property
relaxation, we observe two notable trends. In many cases, such as obs-8-6 and obs-10-6,
further relaxation continues to reduce tree size. However, in other cases, such as av-8-2-e,
relaxation beyond 100% yields minimal additional benefits or even slight degradation in
tree structure. The computational overhead of pruning, which increased synthesis time on
average 20-fold (with a median increase of 4-fold, influenced by outliers), is often justified
by the resulting compactness, but for large or complex families, it may lead to timeouts †.

5.3 State of the Art Comparison
In this final evaluation, we compare our proposed methodologies against alternative ap-
proaches for synthesizing controllers for f-MDPs. This comparison provides insights into
the relative strengths and limitations of each technique. We evaluate the following config-
urations:

• Baseline: The standard policy tree structure where each leaf policy is synthesized
individually as a decision tree using dtControl. Corresponds conceptually to Fig-
ure 4.5b.

• dtPaynt: Similar to the baseline, but dtPaynt [6] is used instead of dtControl for
synthesizing the decision trees.

• Unified Tree (UT): Our proposed two-tree representation (CMT + UPT) as de-
scribed in Section 4.5. The UPT is synthesized using dtControl based on the unpruned
policies from the game abstraction. Corresponds to the Unpruned UPT configuration
in Table 5.2 and conceptually to Figure 4.5c.

• UT+Pruning: Our proposed two-tree representation, where individual policies are
pre-processed using our pruning heuristics (Section 4.2). Corresponds to the 100%
configuration in Table 5.2.

• UT+dtNESt: Our proposed two-tree representation, where individual policies are
pre-processed using the MDP transformation approach (Section 4.4) with dtNESt.

38

• UT+dtNESt+Pruning: Our proposed two-tree representation, where individual
policies are pre-processed using both the MDP transformation approach (Section 4.4)
with dtNESt and our pruning heuristics (Section 4.2).

These different structural approaches are illustrated conceptually in Figure 4.5. We
evaluate these approaches using computational time (t), representation size (Size), and
policy count (#Pol). Representation size is the total number of nodes in the resulting tree
structure(s). For the Unified Tree approaches (UT, Pruning, dtNESt), we report size as
𝑥 + 𝑦, where 𝑥 is the CMT size and 𝑦 is the UPT size. Policy count includes all distinct
policies required, including ∅ for unsatisfiable subfamilies.

A significant challenge arose when attempting to include dtPaynt in the quantitative
comparison. Despite extended runtimes, this approach consistently failed to terminate for
any benchmark within the four-hour limit. Qualitative analysis of partial results suggested
its outputs were generally comparable to or larger than those from baseline for these bench-
marks. This might be attributed to dtPaynt’s focus on minimizing tree depth via SMT,
which can be computationally expensive and may not lead to the smallest overall tree size.
This contrasts with findings in [6] on different benchmarks, suggesting the relative perfor-
mance depends heavily on the problem characteristics. Due to the lack of complete results,
this SMT-based approach is omitted from the comparison.

Next, the combined approach of UT+dtNESt+Pruning was explored preliminarily. Ap-
plying pruning before dtNESt did not consistently yield further significant benefits over
dtNESt alone. Suggesting the specific states removed by our pruning heuristics do not
significantly simplify the task for dtNESt’s synthesis algorithm. Therefore, it was also
not included in the final comparison. The comprehensive comparison of the remaining
approaches, based on the metrics defined above, is detailed in Table 5.3.

Table 5.3: Benchmark comparison of different methods for synthesizing controllers for fam-
ilies of MDPs.

Model3 Baseline Unified tree (UT) UT+Pruning UT+dtNESt

Time (t) Size #Pol t Size #Pol t Size #Pol t Size #Pol

av-8-2 405 2e3 16 297 433+6e3 16 † † † † † †
av-8-2-e 17 204 1 11 1+203 1 457 1+39 1 3e4 1+117 1
dodge-2 1e3 2e5 19 1e3 31+9e4 19 † † † † † †
dpm-10 568 7e3 106 56 1e3+2e3 106 181 1e3+2e3 77 377 1e3+5 106
dpm-10-b 830 502 12 943 89+247 12 1e3 89+149 10 3e4 89+107 12
obs-8-6 2e3 2e4 372 17 1e3+3e3 372 140 1e3+853 182 3e4 1e3+5e3 372
obs-10-6 715 1e4 169 11 364+2e3 169 88 346+401 73 2e4 364+2e3 169
obs-10-9 1e3 3e5 4e3 1e3 7e3+2e4 4e3 2e3 7e3+7e3 2e3 3e4 7e3+3e3 4e3
rov-100 4e3 1e5 246 3e3 9e4+3e3 246 5e3 9e4+585 28 † † †
uav-roz 999 145 2 2e3 124+21 2 1e4 124+11 2 † † †
uav-work 2e3 3e3 7 838 3e3+41 7 † † † † † †
virus 2e3 6e4 527 1e3 7e3+7e3 537 1e4 7e3+3e3 327 † † †
rocks-6-4 6e3 2e5 2e3 912 3e3+2e4 2e3 4e3 5e3+2e4 2e3 † † †

Our empirical results reveal several significant patterns. The Unified Tree (UT) ap-
proach consistently demonstrates superior computational efficiency compared to the base-
line across most benchmarks. This is likely due to invoking dtControl once on a combined
dataset for the UPT, rather than multiple times for individual leaf DTs. Exceptions like
dpm-10-b and uav-roz might occur if the overhead of encoding family information (𝑐ℓ)
outweighs the benefits of a single dtControl invocation.

3rov-1000 is not included due to timeout in all approaches

39

Applying additional techniques (Pruning, dtNESt) generally yields more compact tree
representations (smaller Size, particularly the UPT component 𝑦) compared to the base
UT, but at the cost of increased computational time. This often leads to more benchmarks
exceeding the time limit (†).

The UT+dtNESt approach typically produces the most compact UPTs, showcasing
dtNESt’s strength in finding alternative policies with small DT representations for the
individual policies derived via MDP transformation. However, this comes at a substantial
computational cost, often making it the slowest approach. It is important to note that
in our experiments, to manage this cost, dtNESt was applied to the minimized policy set
obtained after family merging. This differs from the strict pipeline (Figure 4.1) where
other enhancements are applied to the larger set of policies existing prior to merging.
Consequently, the reported synthesis times for UT+dtNESt might be optimistic. If applied
strictly according to the pipeline to a larger set of initial policies, the number of timeouts
for dtNESt could be higher.

Such an increase in timeouts for dtNESt under a stricter pipeline application would
potentially highlight the UT+Pruning approach as a more consistently scalable method
for achieving significant UPT size reduction within practical time limits. The pruning
approach, as evaluated, offers a balance, significantly reducing UPT size compared to the
basic UT and is computationally less demanding than UT+dtNESt, although it remains
slower than the basic UT.

Q3: Impact of MDP transformation with dtNESt on UDT size? Using the
MDP transformation with dtNESt reduces the size of the unified policy tree component
on average by 8-fold in most benchmarks where it terminates, often resulting in the most
compact overall representation. However, this substantial size reduction comes with a
significant increase in computational time, making it a trade-off between representation
compactness and synthesis efficiency.

Q4: UDT size improvements compared to baseline? The Unified Tree (UT)
representation, in most cases, outperforms the baseline in terms of computational time
and often yields comparable or smaller total representation as seen in Size. The primary
advantage comes from dtControl’s ability to optimize across policies when learning the
single UPT, eliminating redundancies that exist when synthesizing separate DTs for each
leaf in the baseline approach.

40

Chapter 6

Conclusion

This thesis has addressed the significant challenge of efficiently representing and optimiz-
ing policies for families of Markov Decision Processes (f-MDPs). We have introduced a
comprehensive framework that advances the state of the art by proposing novel policy
merging strategies, a method for transforming the f-MDP problem into a derived MDP
to leverage advanced MDP synthesis tools, a unified two-tree representation for compact
controller synthesis, and effective heuristic-based techniques for policy state pruning. Our
refined merging strategy ensures a sounder basis for policy tree construction, the MDP
transformation enables the use of tools like dtNESt while preserving robustness, the unified
decision tree structure offers a more compact and interpretable representation, and pruning
techniques significantly reduce policy complexity.

Algorithmically, our contributions include two complementary heuristics for state prun-
ing, one guided by reachability analysis and the other by maximum transition probabilities.
We detailed the construction of a derived MDP from the game abstraction’s solution, pro-
viding a formal basis for applying single-MDP solvers to the f-MDP problem. Furthermore,
we proposed an efficient encoding scheme for the Unified Decision Tree (UDT) through
a Candidate Mapping Tree (CMT) and a Unified Policy Tree (UPT), and introduced a
robust method for managing self-loop action, which enables aggressive state pruning while
maintaining policy correctness guarantees.

Our experimental evaluation rigorously validates the effectiveness of these contribu-
tions. The proposed unified decision tree representation (CMT+UPT) consistently yields
smaller and more interpretable controllers compared to baseline methods. State pruning
significantly reduces the raw complexity of policies. Crucially, our MDP transformation
approach allows the successful application of dtNESt, which further shrinks the resulting
decision trees, albeit with an increased computational cost. The two-tree UDT strategy,
in particular, offers a compelling trade-off between controller compactness and synthesis
efficiency, outperforming traditional approaches in most evaluated scenarios.

The results also underscore essential trade-offs inherent in policy optimization. For in-
stance, relaxing property preservation requirements during pruning can lead to more com-
pact trees, but may also increase the number of satisfiable families, potentially expanding
the overall representation needed. Similarly, leveraging dtNESt via our MDP transforma-
tion, while highly effective at minimizing tree size, can face scalability challenges due to its
computational demands. This highlights that employing powerful optimization techniques
like dtNESt through our MDP transformation, while computationally intensive, is the pre-
ferred strategy when the ultimate compactness and interpretability of the controller are the
primary objectives, and longer synthesis times can be accommodated.

41

Beyond the immediate scope of f-MDPs, the principles and methods developed in this
thesis have broader relevance. They can inform approaches in domains such as reinforce-
ment learning, robotics, automated planning, and formal verification, where the synthesis of
compact, interpretable, and efficient policies is increasingly vital, especially in safety-critical
or resource-constrained environments. The unified decision tree approach, in conjunction
with the MDP transformation and intelligent policy simplification techniques, provides a
solid foundation for future research and application in complex decision-making systems,
contributing to the development of more trustworthy and efficient autonomous agents.
The findings emphasize the critical interplay between interpretability, compactness, and
efficiency in policy synthesis, paving the way for further advancements in this important
research area.

Looking ahead, several avenues for future research emerge from this work. One direc-
tion involves exploring more granular policy differentiation: even for subfamilies where a
single robust policy exists, further heuristic partitioning of these subfamilies might yield
even simpler constituent policies, potentially leading to a more compact unified policy tree
when synthesized. Another significant extension would be to adapt the concepts of unified
tree representations and robust synthesis to more complex settings, such as Partially Ob-
servable Markov Decision Processes (POMDPs) or families thereof, where managing policy
complexity and interpretability is even more challenging [2]. Additionally, exploring novel
machine learning approaches, beyond the decision tree induction used for UPT synthesis,
could offer new ways to optimize the overall UDT. This might include techniques for directly
learning the candidate mapping tree structure or for a more integrated, joint synthesis of
the CMT and candidate policies feeding into the UPT, potentially unlocking further gains
in compactness and efficiency. Finally, while our work establishes formal correctness for
the proposed techniques, developing new formal methods or specialized learning algorithms
that could provide stronger guarantees on the global optimality or minimality of the re-
sulting unified decision tree representation presents a challenging but rewarding long-term
research goal.

42

Bibliography

[1] Abdulla, P. A.; Sistla, A. P. and Talupur, M. Handbook of Model Checking.
Springer, 2018. ISBN 978-3-319-10574-1.

[2] ANDRIUSHCHENKO, R.; ALEXANDER, B.; Češka, M.; JUNGES, S.;
KATOEN, J. et al. Search and Explore: Symbiotic Policy Synthesis in POMDPs.
In: Computer Aided Verification. Cham: Springer, 2023, vol. 13966, p. 113–135.
Lecture Notes in Computer Science. ISBN 978-3-031-37708-2.

[3] Andriushchenko, R.; Češka, M.; Chakraborty, D.; Junges, S.; Křetínský, J.
et al. Symbiotic Local Search for Small Decision Tree Policies in MDPs.
In: Proceedings of the Conference on Uncertainty in Artificial Intelligence. 2025.
UAI ’25.

[4] Andriushchenko, R.; Češka, M.; Junges, S.; Katoen, J.-P. and Stupinský
Šimon. PAYNT: A Tool for Inductive Synthesis of Probabilistic Programs.
In: International Conference on Computer Aided Verification. Springer, 2021, vol.
12759, p. 856–869. Lecture Notes in Computer Science. ISBN 978-3-030-81684-1.

[5] Andriushchenko, R.; Češka, M.; Junges, S. and Macák, F. Policies Grow on
Trees: Model Checking Families of MDPs. In: Proceeding of 22nd International
Symposium on Automated Technology for Verification and Analysis. Springer, 2024,
p. 51–75. Lecture Notes in Computer Science. ISBN 978-3-031-78749-2.

[6] Andriushchenko, R.; Češka, M.; Junges, S. and Macák, F. Small Decision Trees
for MDPs with Deductive Synthesis. In: Proceedings of the International Conference
on Computer Aided Verification (CAV’25). 2025. Available at:
https://arxiv.org/abs/2501.10126.

[7] Ashok, P.; Jackermeier, M.; Jagtap, P.; Křetínský, J.; Weininger, M. et al.
DtControl: decision tree learning algorithms for controller representation.
In: Proceedings of the 23rd International Conference on Hybrid Systems:
Computation and Control. New York, NY, USA: Association for Computing
Machinery, 2020. HSCC ’20. ISBN 9781450370189.

[8] Ashok, P.; Jackermeier, M.; Křetínský, J.; Weinhuber, C.; Weininger, M.
et al. DtControl 2.0: Explainable Strategy Representation via Decision Tree Learning
Steered by Experts. In: Tools and Algorithms for the Construction and Analysis of
Systems. Springer International Publishing, 2021, p. 326–345. ISBN 9783030720131.

[9] Bellman, R. Dynamic Programming. Dover Publications, 1957. ISBN
978-0-486-42809-3.

43

https://arxiv.org/abs/2501.10126

[10] Bryant. Graph-Based Algorithms for Boolean Function Manipulation. IEEE
Transactions on Computers, 1986, C-35, no. 8, p. 677–691. Available at:
https://doi.org/10.1109/TC.1986.1676819.

[11] Hallak, A.; Castro, D. D. and Mannor, S. Contextual Markov Decision
Processes, 2015. Available at: https://arxiv.org/abs/1502.02259.

[12] Hensel, C.; Junges, S.; Katoen, J.-P.; Quatmann, T. and Volk, M. The
probabilistic model checker Storm. International Journal on Software Tools for
Technology Transfer, august 2022, vol. 24, p. 589–610. ISSN 1433-2779. Available at:
https://doi.org/10.1007/s10009-021-00633-z.

[13] Jansen, N.; Humphrey, L.; Tumova, J. and Topcu, U. Structured Synthesis for
Probabilistic Systems, 2018. Available at: https://arxiv.org/abs/1807.06106.

[14] Kattenbelt, M.; Kwiatkowska, M.; Norman, G. and Parker, D. Abstraction
Refinement for Probabilistic Software. In: Verification, Model Checking, and Abstract
Interpretation. Springer, January 2009, vol. 5403, p. 182–197. Lecture Notes in
Computer Science. ISBN 978-3-540-93899-6.

[15] Kwiatkowska, M.; Norman, G. and Parker, D. PRISM 4.0: Verification of
Probabilistic Real-time Systems. In: Computer Aided Verification: 23rd International
Conference, CAV 2011. Springer, July 2011, vol. 6806, p. 585–591. ISBN
978-3-642-22109-5.

[16] Landwehr, N.; Hall, M. and Frank, E. Logistic Model Trees. In: Machine
Learning: ECML 2003. Berlin, Heidelberg: Springer, 2003, p. 241–252. ISBN
978-3-540-20121-2.

[17] Loh, W.-Y. Classification and Regression Trees. Wiley Interdisciplinary Reviews:
Data Mining and Knowledge Discovery, january 2011, vol. 1, p. 14–23. Available at:
https://doi.org/10.1002/widm.8.

[18] Moura, L. de and Bjørner, N. Z3: An Efficient SMT Solver. In: Tools and
Algorithms for the Construction and Analysis of Systems. Berlin, Heidelberg:
Springer, 2008, vol. 4963, p. 337–340. Lecture Notes in Computer Science. ISBN
978-3-540-78799-0.

[19] Nilim, A. and Ghaoui, L. Robust Control of Markov Decision Processes with
Uncertain Transition Matrices. Operations Research, october 2005, vol. 53,
p. 780–798.

[20] Puterman, M. L. Markov decision processes: discrete stochastic dynamic
programming. Hoboken, NJ: John Wiley & Sons, 2014. ISBN 978-1-118-62587-3.

[21] Rudell, R. Dynamic variable ordering for ordered binary decision diagrams.
In: Proceedings of 1993 International Conference on Computer Aided Design
(ICCAD). 1993, p. 42–47. ISBN 0-8186-4490-7.

[22] Salzberg, S. and Segre, A. Review of C4.5: Programs for Machine Learning by J.
Ross Quinlan. Machine Learning - ML, september 1994, vol. 16, p. 235–240.
Available at: https://doi.org/10.1007/BF00993309.

44

https://doi.org/10.1109/TC.1986.1676819
https://arxiv.org/abs/1502.02259
https://doi.org/10.1007/s10009-021-00633-z
https://arxiv.org/abs/1807.06106
https://doi.org/10.1002/widm.8
https://doi.org/10.1007/BF00993309

[23] Shapley, L. S. Stochastic Games. In: Stochastic Games And Related Topics: In
Honor of Professor L. S. Shapley. Dordrecht: Springer, 1991, p. 201–206. ISBN
978-94-011-3760-7.

[24] Solar Lezama, A. Program Sketching. International Journal on Software Tools for
Technology Transfer, 2013, vol. 15, no. 5, p. 475–495. ISSN 1433-2787. Available at:
https://doi.org/10.1007/s10009-012-0249-7.

45

https://doi.org/10.1007/s10009-012-0249-7

Appendix A

Contents of the External
Attachment

The submitted media contains the source files of PAYNT with the extensions developed in
this thesis, as well as the source files of this text. The primary components are organized
as follows:

/
docs/ .. LATEX source files of this text
install.sh ..Installation script
models/ Experiment models from section 5
paynt/ ..Source files of PAYNT

cli.py ..Source files for CLI
parser/ ..Source files for parsing input
quotient/Source file for model representation
synthesizer/Source files for synthesizer

payntbind/Source files for C++ bindings
paynt.py PAYNT Synthesizer entry point
README.md .. README file

The docs/ directory houses the LATEX source files for this thesis. An install.sh script
is provided to facilitate dependency setup on Ubuntu-based systems. Benchmark models,
used for the experimental evaluations (Section 5), are located in the models/ directory,
specifically within the archive/atva24-policy-trees/ subdirectory. The core Python
implementation of the synthesizer resides within the paynt/ directory. The payntbind/
directory contains performance-critical parts of the synthesizer together with the C++
bindings for PAYNT. Finally, paynt.py script serves as the entry point for synthesizer
execution.

46

Appendix B

Installation and Running

The project is run using the source files provided in the external attachment. install.sh
script automates dependency setup for Ubuntu-based systems. For other systems, depen-
dencies require manual installation, adapting the instructions within the script. The syn-
thesizer is executed from the command line via the paynt.py script. A typical invocation
is:

python3 paynt.py <model-path> --export-synthesis <name> [options]

Key Command-Line Arguments

<model-path> (Required) Directory path to model files. This directory should contain
sketch.templ, sketch.props, and optionally sketch_alt.props for dtNESt.

––export-synthesis <name> (Required) Base name for output files and the directory for
synthesis results.

––add-dont-care-action Includes a “don’t care” action in the MDPs, essential for the
dtNESt feature’s optimization process.

Thesis-Specific Features

To activate the novel synthesis and optimization techniques developed in this thesis, the
––ldokoupi parameter must be used. If omitted, the synthesizer utilizes its original syn-
thesis algorithm but still incorporates the enhanced family merging strategy (Section 4.3)
developed herein. This parameter accepts one of the following arguments:

unpruned Constructs the Unified Decision Tree (UDT) (Section 4.5) using policies derived
directly from the game-theoretic abstraction, without subsequent processing.

prune Activates the heuristic-based policy state pruning techniques (detailed in Section 4.2)
before constructing the UDT.

dtNESt Employs the MDP transformation method (Section 4.4) and consequently dtNESt.

Further configuration options are available in the README.md file in the repository or via
the help command.

47

	Introduction
	Preliminaries and Problem Statement
	Markov Decision Processes
	Families of MDPs
	Compact Solution Representation

	State of the Art
	Decision Trees for MDP
	Policy Trees for Families of MDPs

	Synthesis of Small Policy Trees
	Overview
	Pruning Policy States
	Merging Strategies
	Deriving a Markov Decision Process
	Unified Decision Tree Representation

	Experimental Evaluation
	Policy Merging Strategy
	Policy Pruning
	State of the Art Comparison

	Conclusion
	Bibliography
	Contents of the External Attachment
	Installation and Running

