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Abstrakt 

Detekce anomálií ve vícerozměrných časových řadách je klíčovou výzvou v mnoha oblastech 

typu financí, zdravotnictví, kybernetické bezpečnosti, obchodu a mnoha dalších. Schopnost 

identifikovat neočekávané odchylky v rozsáhlých datových souborech má významné dopady 

na rozhodování a efektivitu provozu. Tato práce se zaměřuje na detekci odlehlých pozorování 

v hierarchických, vícedimenzionálních časových řadách. 

Dataset představuje specifickou výzvu kvůli své hierarchické struktuře, která obsahuje více 

obchodů a oddělení s vzájemně závislými vzory prodejů v čase, což z práce činí komplexní 

problém časových řad. První část této práce poskytuje rozsáhlý přehled teorie a metod 

detekce anomálií, přičemž hodnotí jejich vhodnost pro rozsáhlá a hierarchická data časových 

řad. 

Na základě závěrů z teoretické části jsou vybrány a implementovány vybrané metody detekce 

anomálií. Druhá část práce se věnuje aplikaci těchto metod na data a porovnává jejich 

efektivitu v identifikaci významných odlehlých hodnot. Výsledky aplikace jsou následně 

analyzovány s cílem posoudit jejich praktické dopady na reálné aplikace. 

Tato práce přispívá v oblasti detekce anomálií identifikací robustních metodologií pro 

hierarchická časová data a poskytuje využitelné poznatky pro podniky zabývající se rozsáhlým 

predikováním prodejů. Získané výsledky mohou podpořit informovanější rozhodování, snížit 

finanční ztráty nebo zlepšit strategické řízení provozu. 

Klíčová slova  

Bodová detekce anomálií, rozsáhlé hierarchické multivariační časové řady, dekompozice, 

nesupervizované modely, interpretovatelnost, škálovatelnost, evaluace, přesnost, 

hierarchická rekonciliace. 

 

 

 



 

Abstract  

Anomaly detection in multivariate time series data is a critical challenge in various domains, 

including finance, healthcare, cyber security, retail, and many other fields. The ability to 

identify unexpected patterns or deviations in large-scale datasets has significant implications 

for decision-making and operational efficiency. This thesis focuses on the detection of 

outliers in hierarchical, high-dimensional time series data. 

The dataset presents a unique challenge due to its hierarchical structure of multiple stores 

and departments with interdependent sales patterns over time, making it a complex time 

series problem. In the first part of this thesis, a comprehensive review of theory and anomaly 

detection models is conducted, assessing their suitability for large scale hierarchical time 

series data. 

Based on the findings from the research phase, anomaly detection methods are selected and 

implemented on the dataset. The second part of the thesis applies these approaches to the 

data, comparing their effectiveness in identifying significant outliers. The results are then 

analyzed to assess their practical implications for real-world applications. 

This study contributes to the field by identifying robust methodologies for outlier detection in 

hierarchical time series data and providing actionable insights for businesses dealing with 

large-scale sales forecasting. The findings can support more informed decision-making, 

reducing financial losses and enhancing operational strategies. 

Keywords  

Point-wise anomaly detection, large-scale hierarchical multivariate time series, 

decomposition, unsupervised models, interpretability, scalability, evaluation, precision, 

hierarchical reconciliation. 
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Introduction 

In the Introduction chapter, motivation for this work, research questions and objectives, and 

used methodology are described. 

Motivation 

In today’s data-driven world, the ability to detect anomalies in time series data is crucial for 

numerous applications, including finance, healthcare, industrial monitoring, and retail. 

Anomalous data points can indicate events such as fraud, system failures, or shifts in 

consumer behavior. Timely detection of such outliers allows organizations to make informed 

decisions, mitigate risks, and optimize operational strategies. 

A particularly challenging domain of anomaly detection lies in hierarchical and multivariate 

time series data. These datasets with complex dependencies across levels require specialized 

methods to identify meaningful deviations from forecast. An example is the retail sector, 

where sales data is structured hierarchically by regions, stores, and product categories. 

This thesis focuses on the anomaly detection using the Walmart Store Sales Forecasting 

dataset from Kaggle as a case study.  

Addressing the gap in methods for interpretable point-wise anomaly detection in large-scale 

hierarchical multivariate time series is essential for advancing anomaly detection models and 

methodologies and improving real-world decision-making processes. 

Research Questions and Objectives 

The goal of this research is to explore, implement, and evaluate anomaly detection methods 

for hierarchical multivariate time series point-wise anomaly detection. The key research 

questions guiding this study are: 

1.​ What are the most suitable anomaly detection methods for large-scale hierarchical 

multivariate time series? 

2.​ How do different approaches compare in terms of accuracy, scalability and 

interpretability? 

3.​ Can an effective anomaly detection framework be developed to support real-world 

applications in hierarchical time series analysis? 

To address these questions, the study is structured around the following objectives: 

●​ Review methods for point-wise anomaly detection in multivariate and hierarchical 

time series, assessing their theoretical foundations and practical applicability. 
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●​ Implement and benchmark selected methods on the Walmart Store Sales Forecasting 

dataset. 

●​ Compare the results of different approaches to determine their strengths, weaknesses, 

and suitability for real-world scenarios. 

●​ Propose recommendations and insights based on the findings to contribute to the 

development of scalable and interpretable anomaly detection techniques for 

hierarchical time series data. 

Methodology 

In this thesis, the robust and well-proven methodology Cross-Industry Process for Data 

Mining (CRISP-DM) is followed (Smart Vision Europe, 2025).​
​
Work begins with Business Understanding. This chapter describes the business context and 

the real-world problems addressed by this thesis. 

Next is Machine Learning Understanding, where suitable models are introduced and their 

applicability in interpretable point-wise anomaly detection in large-scale hierarchical 

multivariate time series assessed. 

In Data Understanding, it is demonstrated that the available data is appropriate for solving 

the problem as defined in the Business and Machine Learning Understanding chapters. 

Data Preparation summarizes the initial technical steps taken to obtain and preprocess the 

dataset for modeling. 

The Modelling chapter is one of the most important sections of this thesis. It details the 

process of training, validation, model configuration, and method selection. All decisions are 

supported by results, and alternatives are compared directly. The best-performing method is 

identified. 

Business Use chapter outlines how the best-performing pipeline could be deployed within the 

company and used by decision-makers. 

In Evaluation, the results of the modeling phase are interpreted based on the criteria 

established in the Introduction chapter. 

Finally, in the Conclusion, the research questions from the Introduction are answered, the 

main insights are summarized, limitations discussed, and directions for future work are 

proposed. 
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1​Business Understanding  

Walmart is currently the world’s largest retailer, with 2023 retail revenue of $635 billion and 

10,569 stores across 19 countries. In the United States alone, Walmart generated $534 billion 

in domestic retail sales across 5,321 locations, maintaining its position as the country’s 

leading retailer. It is followed by Amazon, Costco, Home Depot, Kroger, Walgreens, CVS, 

Target, and others (Capital One, 2025; The Produce News, 2024). 

In 2012, the time period relevant to this work, Walmart recorded approximately $444 billion 

in sales. If Walmart had been a country at that time, it would have ranked as the 26th largest 

economy in the world (Spector, 2012). Since 1988, Walmart (then Wal-Mart) has been the 

most profitable retailer in the United States (Hayes & Times, 1990). 

Remaining at the top for such a long period, while continuing to grow, requires strong 

strategy, operational excellence, and outstanding data analytics, which is essential for 

grounding strategic and operational decision-making in real insights and facts. Forecasting 

future performance based on historical trends is one critical part of that process. The other, 

and the focus of this thesis, is identifying and understanding why outcomes differ from 

forecasts. In the data science world, this is known as anomaly detection. 

In the retail context, many types of anomalies can occur in the sales data. For the purposes of 

this work, two primary categories are defined and analyzed: 

●​ Unexpected sales drops — These events occur when actual sales fall below forecasted 

values during periods of markdowns and/or holidays, which would typically boost 

sales. Such drops are particularly critical because they may indicate direct revenue 

loss. The risk is even greater when these anomalies go undetected across the 

organizational hierarchy, as no one may be connecting the dots. Possible causes 

include stockouts, operational failures, or ineffective promotions. 

●​ Unexpected sales spikes — These events happen when actual sales exceed forecasts 

despite the absence of markdowns or holidays. While not as urgent as drops, they are 

important to investigate. Understanding the root cause can lead to valuable business 

insights and opportunities for growth. 

Other, more specific anomaly types — such as flatlining sales, inconsistent promotion effects, 

or shifts in price sensitivity — may be business-relevant but are outside the scope of this 

thesis. 

In practice, forecast values and detected anomalies are typically reported to store managers. 

For these reports to be useful, context is essential. Managers reviewing weekly reports need 

to understand their store’s performance, baseline, and also comparison to other stores and 

national level — not just detecting individual outliers, but identifying hierarchically 

consistent patterns and providing clear explanations of what happened and why. 
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To achieve that, the hierarchical structure of the data must be leveraged. Detecting anomalies 

only at the lowest level (e.g., a department in a store) risks missing larger patterns that 

emerge across higher levels of aggregation. In cases of severe, undetected drops, this could 

lead to significant financial losses. Additionally, it is important that anomalies are 

communicated in understandable, business-relevant terms — not overly technical or 

statistical language. 

Finally, it is essential not to overwhelm store managers with many flags that turn out to be a 

false alarm. Even statistically valid anomalies must be filtered through a business lens: if they 

do not imply a meaningful financial impact, they should not be surfaced. Toward the end of 

this thesis, the focus shifts to delivering concise, reliable, and actionable outputs, enriched 

with sufficient business context to support informed decision-making. 
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2​Machine Learning Understanding 

This chapter defines the anomaly detection problem addressed in this thesis and presents the 

theoretical foundations of the chosen approach. It outlines the challenges of point-wise 

detection in hierarchical, multivariate, large-scale time series. The chapter also explains the 

rationale behind the selected decomposition methods, detection algorithms, meta-classifier, 

and interpretability tools. 

2.1​ Problem Definition  

Problem Definition chapter translates the business goal, detecting unexpected sales events 

across departments and stores, into a machine learning problem: point anomaly detection of 

spikes and drops relative to forecasted values in large-scale hierarchical, multivariate time 

series. 

2.1.1​ Point-Wise Anomaly Detection 

Anomaly detection refers to identifying data points that deviate significantly from expected 

behavior or patterns (Bajaj, 2021). It distinguishes between inliers, which follow normal 

patterns, and outliers, which differ so substantially from the rest of the data that they may 

have been generated by a different process (Bajaj, 2021; Blázquez-García et al., 2021; 

Tuychiyev & DataCamp, 2021). Statistically, an outlier is a data point with significantly 

abnormal features. However, the final decision, whether a data point is or is not an outlier,  

often depends on human judgment (Tuychiyev & DataCamp, 2021). In time series contexts, 

outliers are typically referred to as anomalies (Bajaj, 2021). 

There are several types of anomalies: 

●​ Point-wise anomalies (or point outliers) are individual values that behave unusually 

either compared to the entire series (global) or to their immediate context (local) 

(Bajaj, 2021; Blázquez-García et al., 2021; Lai et al., 2021). These are often the focus 

of anomaly detection research due to their potential impact. 

●​ Contextual anomalies are values that are only anomalous within a specific context 

(e.g., time of day, season), but not when viewed globally (Lai et al., 2021). 

●​ Collective anomalies involve groups of values that are anomalous as a sequence, even 

if individual values are not. These are common in time series due to temporal 

dependencies (Lai et al., 2021). 

●​ Subsequence anomalies (or pattern-wise outliers), a subclass of collective anomalies, 

are consecutive data points whose joint behavior is unusual. They can result from 

unusual shapes, seasonal disruptions, or trend changes (Bajaj, 2021; Blázquez-García 

et al., 2021; Lai et al., 2021). 
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●​ Time series–level anomalies refer to entire sequences that behave abnormally in 

comparison to other sequences (Blázquez-García et al., 2021). 

2.1.2​ Large-Scale Hierarchical Multivariate Time Series 

Time series are a fundamental data structure across domains. Their defining characteristic is 

the temporal dependency between observations, known as autocorrelation, which makes 

traditional modeling techniques insufficient (Bajaj, 2021; Blázquez-García et al., 2021; 

Tuychiyev & DataCamp, 2021). This sequential nature requires specialized approaches for 

effective anomaly detection (Rajan, 2021). 

In many real-world scenarios, time series are multivariate, with each timestamped 

observation accompanied by additional features such as calendar effects or external variables. 

This structure introduces complex temporal and cross-variable dependencies, especially in 

domains where contextual factors heavily influence behavior (Sun et al., 2024). As a result, 

multivariate time series anomaly detection has emerged as a fast-growing research field, with 

modern deep learning models achieving state-of-the-art results on benchmark datasets 

(Challu et al., 2022). 

In addition to temporal and multivariate complexity, many systems produce time series with 

an inherent hierarchical structure. In retail, for example, data may be nested by department, 

store, region, and national level, with higher-level series representing aggregated values from 

lower levels (Hyndman & Athanasopoulos, 2021). In such settings, maintaining coherence — 

ensuring that forecasts or anomalies at aggregate levels align with the sum of their parts — is 

essential for interpretability and decision-making consistency (Mancuso et al., 2021). 

In hierarchical time series, coherence means ensuring that forecasts or anomaly signals 

remain consistent across all levels of aggregation. Several reconciliation strategies address 

this. Top-down approaches begin at the highest level and allocate forecasts downward using 

historical ratios or model-based weights. While efficient, they risk masking important 

low-level variations (Hyndman & Athanasopoulos, 2021). Middle-out methods forecast from 

an intermediate level and reconcile both upward and downward, but they rely on the 

existence of a meaningful middle tier, which is not always available (Hyndman & 

Athanasopoulos, 2021). In contrast, the bottom-up approach models the most granular time 

series and aggregates upward to produce coherent higher-level signals. This preserves 

maximum detail and is especially suited to point-wise anomaly detection, where subtle, 

localized deviations are most relevant. Anomalies are identified directly in the raw, 

disaggregated data, then propagated upward to inform store-wide or national insights. While 

modeling bottom-level series can be noisier and more complex, the added precision and 

interpretability make this tradeoff worthwhile in large-scale hierarchical systems (Hyndman 

& Athanasopoulos, 2021). 

A major challenge in anomaly detection is the lack of labeled ground truth. Historical 

anomalies are rarely annotated, and new anomalies are inherently unpredictable, making 

supervised learning difficult to apply. As a result, most models operate in unsupervised or 

semi-supervised settings, learning normal patterns and flagging deviations without labeled 

anomalies (Chen et al., 2023; Darban et al., 2024). 
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2.2​ Choice of Decomposition Methods  

This chapter discusses suitable decomposition methods to separate signal, the forecast (trend 

and seasonal components), from noise (residuals) and briefly describes their mechanisms, 

advantages, and limitations in the context of this use case. 

2.2.1​ Prophet Forecasting Mechanism 

Prophet by Meta is a modular, additive forecasting model designed for business time series 

with strong seasonality and historical depth (Facebook, 2019; Taylor & Letham, 2017). It 

decomposes the signal into trend, seasonality, and holiday effects, plus an error term. Trends 

can follow piecewise linear or logistic growth, seasonality is modeled via Fourier series, and 

holidays are handled using indicator variables with Gaussian priors. The model is robust to 

missing data, outliers, and structural changes, and is fit using maximum a posteriori 

estimation (Taylor & Letham, 2017). 

Prophet is well-suited for detecting anomalies in sales time series due to its ability to 

explicitly model key retail patterns through separate trend, seasonality, and holiday 

components. It handles multiple seasonalities, allows inclusion of domain-specific events via 

custom regressors, and is robust to missing or irregular data. This makes it both flexible, easy 

to use, and practical for large-scale retail forecasting tasks (Melanie, 2024). 

Despite its flexibility, Prophet has limitations when applied to hierarchical, multivariate retail 

data. It models each time series independently, requiring post-hoc reconciliation to maintain 

consistency across aggregation levels. It does not support multivariate modeling beyond 

external regressors and lacks mechanisms to capture temporal autocorrelation or residual 

structure. Additionally, it may overfit when changepoint flexibility is high or underperform 

on series with abrupt trend shifts (Melanie, 2024). 

2.2.2​ Seasonal-Trend Decomposition using LOESS Forecasting 
Mechanism 

STL, Seasonal-Trend Decomposition using LOESS (Locally Estimated Scatterplot 

Smoothing),  is a classical, non-parametric method for decomposing time series into trend, 

seasonal, and residual components, making it a strong baseline for anomaly detection. It uses 

LOESS smoothing to estimate the trend and seasonal patterns without assuming a global 

model form. The residual component captures irregularities and potential anomalies. While 

STL does not perform forecasting itself, it is often paired with models like ARIMA 

(AutoRegressive Integrated Moving Average) for forward prediction using the cleaned 

components (Cleveland et al., 1990; Statsmodels, 2025). 

The non-parametric decomposition of trend and seasonality could be an advantage, which 

adapts to evolving patterns across departments and stores. Its LOESS smoothing makes it 

robust to outliers (Cleveland et al., 1990; Statsmodels, 2025). 
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Despite its flexibility, STL has several limitations for anomaly detection in hierarchical, 

multivariate sales data. It is strictly univariate, requiring separate decomposition per series 

with no cross-series information sharing or built-in reconciliation. It lacks support for 

external regressors, so key drivers like holidays or markdowns are not modeled explicitly. It 

does not handle missing data out of the box and expects evenly spaced data — requiring 

precise preprocessing (Cleveland et al., 1990; Statsmodels, 2025). 

2.2.3​ TimeGPT Forecasting Mechanism 

TimeGPT by Nixtla is a transformer-based forecasting model trained on millions of global 

time series to learn generalizable temporal patterns. It generates forecasts using pretrained 

weights, with no local training required, and supports anomaly detection via residuals 

between actual and predicted values. Anomalies are flagged using the detect_anomalies() 

method, which returns forecast. TimeGPT-based detection is non-parametric and does not 

involve local training or changepoint modeling. Instead, it relies on the generalization 

capabilities of the foundation model, which has been trained to implicitly capture seasonal, 

trend, and event-based patterns through its transformer architecture (Nixtla, 2025). 

TimeGPT is a pretrained, transformer-based forecasting model that enables fast, scalable 

prediction across thousands of time series without local training or manual configuration. Its 

standardized input format and lack of seasonality or holiday tuning make it ideal for large, 

heterogeneous datasets. By capturing both short- and long-term temporal patterns, it 

produces residuals suitable for anomaly detection across complex hierarchies (Nixtla, 2025). 

Despite its scalability, TimeGPT has several limitations for anomaly detection in structured 

retail settings. It functions as a black box, offering no interpretable components like 

changepoints or seasonal effects, which limits explainability. The model's anomaly scoring 

relies on fixed internal thresholds that cannot be tuned, potentially leading to over- or 

under-detection. It does not support hierarchical reconciliation, requiring external 

aggregation logic for consistency across store and national levels. TimeGPT also lacks true 

multivariate modeling. Additionally, it is sensitive to missing or irregular timestamps, 

requiring careful preprocessing. In some structured domains, traditional statistical models 

have outperformed TimeGPT in forecasting accuracy, highlighting that pretrained deep 

models are not universally superior (Lee, 2024, Netsch, 2024; Nixtla, 2025). 

2.3​ Choice of Anomaly Detection Methods  

This chapter presents the selected anomaly detection methods, briefly describing their 

mechanisms, advantages, and limitations in the context of this use case. 

2.3.1​ Z-Scores Anomaly Detection Mechanism 

The Z-Score method is a statistical technique that detects anomalies by measuring how far a 

data point deviates from the average, relative to the overall variability in the dataset. In time 

series, this involves computing the distance of each point from the mean in terms of standard 
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deviations (STD) and flagging those that exceed a predefined threshold. It assumes the data 

follows a normal distribution and is particularly effective for univariate time series where 

anomalies appear as large, isolated deviations from the typical pattern (Kumar, 2023; 

Peixeiro, 2023; RisingWave, 2024). Data points with Z-Scores beyond a certain threshold 

(commonly ±3 or 4) are considered anomalies (Peixeiro, 2023; Srivastava, 2023). 

The Z-Score method is simple to implement and interpret, making it accessible even to 

non-experts and easily understood by business stakeholders. Its high computational 

efficiency allows it to scale to large datasets and enables real-time anomaly detection in 

high-volume environments. As a lightweight baseline, it offers a fast way to assess data before 

applying more complex models (MindBridge, 2025; Moffitt, 2024;  RisingWave, 2024; 

Romeu, 2021). 

The Z-Score method assumes a normal distribution, but this often fails in real-world business 

data, reducing detection accuracy. Outliers can distort the mean and standard deviation, 

further undermining reliability. The standard approach is univariate and does not naturally 

extend to multivariate series without additional methods. Moreover, it does not account for 

temporal dependencies or seasonality, making it prone to false positives or negatives unless 

additional safeguards are applied (Kumar, 2023; MindBridge, 2025; Peixeiro, 2023; 

RisingWave, 2024). 

2.3.2​ Thresholding Anomaly Detection Mechanism 

Thresholding methods detect anomalies by comparing values against predefined or adaptive 

cutoffs, using simple and interpretable rules. Approaches include absolute thresholds (fixed 

constants), interquartile range (IQR) filtering (e.g., 1.5× IQR), percentile-based cutoffs (e.g., 

10th/90th percentiles), and adaptive thresholds that adjust to evolving data distributions. 

These techniques are computationally efficient. (Eslava, 2023; Zwingmann, 2022;) 

Thresholding methods, especially adaptive ones, scale efficiently across thousands of time 

series by avoiding model training and requiring minimal computation (Ebenezer & Sharma, 

2023). Techniques like percentile cutoffs and IQR rules are intuitive and easily explainable to 

stakeholders (Eslava, 2023). Thresholds can be applied globally or per group (e.g., by 

department or store) without complex tuning, and they require no retraining, fitting, or 

specialized infrastructure. 

Thresholding treats each time series independently. It typically operates on single variables 

(e.g., residuals) and does not capture inter-feature dependencies. Static thresholds can 

perform poorly in non-stationary or seasonal data unless dynamically adapted (Ebenezer & 

Sharma, 2023) or supported by a business reasoning. Choosing an inappropriate cutoff (e.g., 

90th vs. 99.9th percentile) can result in excessive false positives or missed anomalies 

(Zwingmann, 2022). 

2.3.3​ Isolation Forest Anomaly Detection Mechanism 

Isolation Forest is a tree-based anomaly detection algorithm that isolates anomalies rather 

than modeling normal behavior. It assumes anomalies are “few and different,” making them 
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easier to separate through recursive random partitioning. The method builds multiple 

isolation trees by randomly selecting features and split values, with anomaly scores based on 

how quickly a point is isolated—shorter paths indicating greater anomaly likelihood (Liu et 

al., 2008; Yoon, 2022). 

Isolation Forest is well-suited for detecting anomalies in high-dimensional, large-scale retail 

data due to its linear time complexity, low memory footprint, and strong performance 

without assuming any specific data distribution (Lu et al., 2023; Yoon, 2022). It scales 

efficiently across thousands of series and performs robustly even when features are noisy or 

sparse (Agyemang, 2024; Carletti et al., 2020). Its ability to isolate outliers without needing 

feature selection or prior distributional knowledge makes it ideal for retail pipelines with 

heterogeneous multivariate inputs (Lu et al., 2023). 

Despite its efficiency, Isolation Forest suffers from poor interpretability due to its use of 

random, axis-aligned splits (Carletti et al., 2020; Konefal, 2023). The model requires manual 

threshold tuning, and performance can degrade when anomalies are not sharply distinct from 

normal data (Agyemang, 2024; Konefal, 2023). It also lacks native mechanisms for 

hierarchical aggregation or temporal awareness, limiting its ability to reconcile anomaly 

patterns across store or national levels (Liu et al., 2024). Isolation Forest can overfit when 

too many trees are used, leading to reduced accuracy and poor generalization (Yadav, 2023). 

2.3.4​ K-Nearest Neighbors Anomaly Detection Mechanism 

K-Nearest Neighbors (KNN) is a non-parametric, distance-based method that identifies 

anomalies by measuring how far each data point is from its k nearest neighbors in the feature 

space. Points that lie far from others are flagged as outliers. The algorithm memorizes the 

entire dataset and computes distances during prediction, making it unsupervised and highly 

interpretable (Bajaj, 2023; Schmidl et al., 2022; Tuychiyev & DataCamp, 2021). Anomaly 

scores are based on the average or minimum distance to neighboring points. The choice of 

distance metric (e.g., Euclidean, Manhattan, or Minkowski) and the n_neighbors parameter 

significantly affects sensitivity, especially in high-dimensional or scaled data (Schmidl et al., 

2022; Tuychiyev & DataCamp, 2021). 

The method is intuitive, easy to interpret, and highly accessible for anomaly detection (Bajaj, 

2023; Schmidl et al., 2022). It requires only one core parameter — the number of neighbors 

— and makes no statistical assumptions about the data distribution, which increases its 

applicability across varied datasets (Tuychiyev & DataCamp, 2021). Because KNN does not 

require model training, it is computationally efficient during fitting and scales well in batch 

detection scenarios (Tuychiyev & DataCamp, 2021). Its simplicity makes results easier to 

explain to non-technical stakeholders. KNN can also be adapted to various distance metrics 

to better accommodate high-dimensional or categorical feature spaces (Tuychiyev & 

DataCamp, 2021). 

Despite its simplicity, KNN suffers from several limitations in anomaly detection. Its 

computational complexity makes it inefficient for large multivariate datasets (Bajaj, 2023). 

The method is memory-inefficient, as it must retain the entire dataset and compute distances 

at prediction time, which can be slow in practice (Tuychiyev & DataCamp, 2021). It is also 

19 



 

sensitive to feature scaling and may perform poorly if features have disproportionate 

magnitudes or relevance — a problem partially mitigated through scaling techniques 

(Tuychiyev & DataCamp, 2021). Additionally, in high-dimensional spaces, KNN suffers from 

the curse of dimensionality, where distances become less meaningful and anomalies harder 

to distinguish (Bajaj, 2023). Finally, tuning the number of neighbors is non-trivial when the 

contamination ratio is unknown, and Euclidean distance performs poorly in more than two 

or three dimensions, requiring careful metric selection (Tuychiyev & DataCamp, 2021). 

2.3.5​ Local Outlier Factor Anomaly Detection Mechanism 

Local Outlier Factor (LOF) is a density-based anomaly detection algorithm that identifies 

outliers by comparing the local density of a point to the densities of its nearest neighbors 

(Eslava, 2023; Tuychiyev & DataCamp, 2021). Each point’s local density is measured using 

the local reachability density (LRD), and its LOF score is computed as the ratio of the average 

LRD of its neighbors to its own (Shabou, n.d.). Points that lie in areas of significantly lower 

density than their neighbors are flagged as outliers. This local focus allows LOF to detect both 

global and subtle local anomalies, especially in datasets with varying density (Eslava, 2023; 

Eyer, 2024). 

LOF is particularly effective in detecting anomalies in datasets with varying local densities, as 

it compares each point’s density only to that of its neighbors rather than the entire dataset 

(Eslava, 2023; Shabou, n.d.). This local sensitivity allows it to identify both global and 

nuanced local outliers, making it well-suited for complex, heterogeneous data (Tuychiyev & 

DataCamp, 2021). It performs well in moderately high-dimensional settings and does not 

assume any specific data distribution (Eyer, 2024). LOF is also advantageous in finding 

clusters of anomalous points and capturing subtle patterns that global methods might miss 

(Eyer, 2024). 

Because LOF relies on comparing a point’s density to its neighbors, LOF may miss outliers 

that do not strongly deviate from their immediate context, even if they differ from the global 

pattern (Eslava, 2023; Shabou, n.d., Tuychiyev & DataCamp, 2021). It is also sensitive to the 

choice of the n_neighbors parameter, which can impact its ability to detect anomalies in 

regions with varying density (Tuychiyev & DataCamp, 2021). Additionally, LOF can be 

computationally intensive and prone to overfitting small local variations in complex datasets 

(Eyer, 2024). 

2.3.6​ HDBSCAN Anomaly Detection Mechanism 

Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN) is a 

hierarchical, density-based clustering algorithm that identifies clusters of varying densities 

and classifies low-density points as noise (Blachowicz et al., 2025). Unlike DBSCAN 

(Density-Based Spatial Clustering of Applications with Noise), it does not require a fixed 

number of clusters and automatically adapts to data structure by pruning unstable clusters 

from a hierarchy (Iuhasz et al., 2025). It is especially useful in time series anomaly detection 

for spotting those missed by traditional methods (Ruberts, 2020).  
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HDBSCAN offers key advantages for anomaly detection in complex time series. It 

automatically determines the number of clusters, making it more adaptive than k-means or 

DBSCAN (Blachowicz et al., 2025, Iuhasz et al., 2025). Its ability to model clusters of varying 

density and exclude noise points improves detection of true anomalies while avoiding 

overfitting (Blachowicz et al., 2025). HDBSCAN has been shown to detect both spikes and 

drops, including cases missed by classical models (Ruberts, 2020), and its outputs, such as 

real-time noise volume and cluster counts, support operational monitoring and visual 

interpretation (Blachowicz et al., 2025). 

Despite its strengths, HDBSCAN has several limitations. It is a transductive method, 

meaning new data cannot be evaluated without retraining, which leads to long inference 

times and scalability issues (Iuhasz et al., 2025). It is primarily designed for clustering, not 

anomaly detection, and may struggle to identify subtle anomalies—especially when trained 

on short time spans (Iuhasz et al., 2025). Its effectiveness is also sensitive to parameter 

tuning, such as the minimum cluster size or quantile threshold, which requires careful 

adjustment to avoid mislabeling (Ruberts, 2020). 

2.3.7​ One Class SVM Anomaly Detection Mechanism 

The One-Class Support Vector Machine (OCSVM) is a one-class unsupervised anomaly 

detection method that learns a decision boundary around the normal data in a transformed 

feature space. Using kernel functions OCSVM maps inputs into a higher-dimensional space 

where it separates the majority (normal) class from potential anomalies (Dey, 2024). Unlike 

traditional binary classifiers, it trains solely on normal data and flags deviations from the 

learned boundary as outliers (Kumar, 2023). This makes it especially useful in domains 

where anomalies are rare or unlabeled. 

OCSVM offers strong advantages in settings where only normal data is available, making it 

well-suited for unsupervised anomaly detection in highly imbalanced datasets (Dey, 2024). 

The method supports various kernel functions, allowing flexibility across different data 

structures (Dey, 2024). Its decision boundaries may be interpretable using gradient-based 

methods, which adds transparency to its otherwise opaque kernel mappings (Nguyen and 

Vien, 2018). 

Despite its strengths, One-Class SVM struggles with scalability on large or high-dimensional 

data due to its computationally intensive optimization process (Dey, 2024; Nguyen & Vien, 

2018). It is also highly sensitive to kernel and hyperparameter choices, requiring careful 

tuning for good performance (Dey, 2024). Moreover, OCSVM does not natively capture 

temporal or hierarchical structures, limiting its flexibility in complex multivariate time series. 

2.3.8​ COPOD Anomaly Detection Mechanism 

COPOD (Copula-Based Outlier Detection) is a parameter-free, unsupervised anomaly 

detection algorithm that estimates how extreme a data point is within the multivariate 

distribution. It works in three stages: first, it computes empirical cumulative distribution 

functions (ECDFs) for each feature; second, it constructs an empirical copula to capture joint 

dependencies across variables; and third, it estimates tail probabilities for each point to 
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quantify its level of outlyingness. Higher tail scores indicate more likely anomalies. COPOD 

does not require training, scales efficiently to high-dimensional data, and produces 

interpretable results through per-feature anomaly contributions (Feasel, 2022; Li et al., 

2020). 

COPOD offers strong advantages for multivariate anomaly detection due to its 

parameter-free design, computational efficiency, and interpretability. It estimates tail 

probabilities using empirical copulas, avoiding the need for training or hyperparameter 

tuning (Li et al., 2020). By modeling the joint distribution through ECDFs, it scales well to 

high-dimensional datasets and large sample sizes with minimal overhead (Feasel, 2022). Its 

deterministic scoring and ability to attribute anomaly contributions to individual dimensions 

make it especially useful for explainable outlier detection across diverse domains (Li et al., 

2020). 

Despite its efficiency, COPOD has notable limitations. It assumes feature independence when 

computing ECDFs, which may not hold in complex real-world data (Feasel, 2022). This can 

reduce detection accuracy when strong feature interactions are present. COPOD also breaks 

temporal order, as it evaluates all points jointly rather than respecting sequence, making it 

unsuitable for time series anomaly detection without major adaptation. Its reliance on static 

distributions may lead to poor performance in dynamic or evolving data (Feasel, 2022; Li et 

al., 2020). 

Although COPOD’s copula‐based algorithm initially appeared promising, it was excluded 

from the modelling because no implementation of sliding‐window or train/test‐split 

configurations can enforce the chronological ordering needed to maintain temporal integrity, 

leading to irrecoverable distortions at sequence boundaries. 

2.3.9​ Bayesian Change Point Detection Anomaly Detection Mechanism 

Bayesian Change Point Detection (BCPD), implemented via the Binseg algorithm with the L2 

cost function, is a fast and interpretable method for detecting structural breaks in time series 

(Perry, 2019; ruptures, n.d.). Binseg recursively partitions the series by identifying change 

points that mark significant shifts in the mean under the assumption of normally distributed 

segments (Rajasekaran, 2025). 

The method offers fast, interpretable segmentation (Rajasekaran, 2025; ruptures, n.d.). Its 

computational efficiency makes it suitable for large datasets like retail sales (ruptures, 2017), 

and each detected change point corresponds to a clear structural shift, aiding business 

interpretability (Perry, 2019).  

Despite its efficiency, BCPD with Binseg has key limitations in this use case. The algorithm 

detects multiple change points in a time series, rather than point-wise anomalies (ruptures, 

n.d.). It treats each time series independently, lacking the ability to capture dependencies 

across hierarchical or multivariate structures (Perry, 2019). It also assumes changes occur as 

mean shifts under normality (Rajasekaran, 2025), which may not capture more complex 

retail patterns like variance changes or seasonal distortions. 
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2.3.10​ Mahalanobis Distance Anomaly Detection Mechanism 

This method detects anomalies in multivariate data by computing the Mahalanobis distance 

between each point and the dataset's multivariate centroid, adjusting for correlations 

between features. Robust estimation is achieved via covariance, which fits a Gaussian model 

resistant to outliers. Points with large Mahalanobis distances, indicating they are far from the 

mean in a covariance-adjusted space, are flagged as outliers. This approach is best suited for 

unimodal, symmetric data and captures anomalies even in correlated or anisotropic feature 

spaces (Holbert, 2022; Kaya, 2020; Zhao, 2022). 

Mahalanobis distance, particularly when paired with the Minimum Covariance Determinant 

(MCD), offers several advantages for multivariate anomaly detection. Unlike Euclidean 

distance, it accounts for correlations between variables and scales appropriately for skewed, 

non-isotropic data (Holbert, 2022; Kaya, 2020). This makes it effective in high-dimensional 

retail datasets where features often exhibit strong dependencies. Mahalanobis-based 

methods are mathematically principled, measuring how far a point deviates from the 

multivariate mean in standard deviation units, and can isolate subtle anomalies that occur in 

low-variance directions of the feature space (Kamoi & Kobayashi, 2020). 

Despite its strengths, the Mahalanobis distance with MCD has notable limitations. It assumes 

that data follows a unimodal, symmetric Gaussian distribution, and may perform poorly on 

multimodal or irregular datasets (Zhao, 2022). The method is sensitive to high-dimensional 

geometry and relies on meaningful covariance estimates, which can degrade in small sample 

sizes or highly noisy settings (Kamoi & Kobayashi, 2020). Its effectiveness also depends on 

the stability of low-variance directions in the data, making it less robust when feature 

variance is unstable or when distributional assumptions are violated (Holbert, 2022). 

2.3.11​ Gaussian Mixture Model Anomaly Detection Mechanism 

Gaussian Mixture Model (GMM) is a probabilistic model that assumes data points are 

generated from a mixture of multiple Gaussian distributions, each representing a latent 

subpopulation. GMM allows overlapping, elliptical clusters and estimates the probability of 

each point belonging to each component (Edge Impulse, 2024; Sayago, 2024). Anomalies are 

identified as points with low likelihood under the learned mixture distribution (Apgar, 2023; 

Edge Impulse, 2024). The model uses the Expectation-Maximization algorithm to iteratively 

refine component means, variances, and weights, guided by Bayes’ Theorem. This flexible 

framework enables unsupervised classification and density-based anomaly scoring across 

multimodal data. (Apgar, 2023; Edge Impulse, 2024; Sayago, 2024) 

GMM is well-suited for detecting both isolated outliers and anomalous subgroups in complex 

retail sales data, due to its ability to model multimodal and elliptical distributions (Apgar, 

2023; Edge Impulse, 2024). Unlike hard clustering methods like K-means, GMM assigns soft 

probabilistic cluster memberships, allowing flexible detection in noisy and overlapping series 

(Sayago, 2024). It handles variable cluster shapes and captures hidden structure without 

requiring labeled data, making it effective in unsupervised, high-variance retail environments 

(Apgar, 2023). 
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GMM assumes that data is generated from a mixture of Gaussian distributions, which may 

not hold in real-world retail datasets with irregular, seasonal, or hierarchical patterns (Edge 

Impulse, 2024; Sayago, 2024). The model is sensitive to initialization and may converge to 

suboptimal solutions, especially when clusters are poorly separated or the number of 

components is misestimated (Sayago, 2024). GMM also treats observations as independent 

and identically distributed (Apgar, 2023).  

2.3.12​ Autoencoders Anomaly Detection Mechanism 

Autoencoders (AEs) are neural networks trained to reconstruct their input by encoding data 

into a compressed latent space and decoding it back to its original form. This bottleneck 

architecture forces the model to learn the essential structure of normal data, and 

reconstruction error becomes a natural anomaly score—high error signals potential 

anomalies (Despois, 2017; Chollet, 2016; Singh, 2024; Schmidl et al., 2022). The approach is 

typically semi-supervised, trained only on normal data using sliding windows to preserve 

temporal context (Schmidl et al., 2022). Variants such as Variational Autoencoders (VAEs), 

Long Short-Term Memory (LSTM) Autoencoders, Transformer-based Autoencoders (TAEs), 

and Temporal Convolutional Autoencoders (TCNs) extend this principle to probabilistic, 

sequential, and convolutional architectures (Govindaraj, 2024; Neloy & Turgeon, 2024; Thill, 

2020; Tuhin et al., 2025). 

Autoencoders are highly effective for detecting point anomalies in high-dimensional, 

multivariate time series, especially when patterns are non-linear or hard to capture with 

classical models (Bajaj, 2023; Kumar, 2023). Their ability to extract meaningful latent 

representations allows them to model complex temporal and cross-feature 

dependencies—such as promotional cycles or economic indicators — especially when 

extended via LSTM or Transformer layers (Hong, 2024; Govindaraj, 2024; Tuhin et al., 

2025). These models scale well across large hierarchical datasets and support flexible 

architectures suited for different input modalities (Neloy & Turgeon, 2024). 

Despite their flexibility, autoencoders require clean and representative normal data, which 

may be difficult to guarantee in domains with structural noise or concept drift (Hong, 2024; 

Teuwens, 2021). Deep variants like LSTM or Transformer AEs are also computationally 

intensive, requiring careful tuning and significant resources (Tuhin et al., 2025; Lawton, 

2024). Furthermore, interpretability remains limited due to opaque latent features, 

complicating real-world deployment and anomaly explanation (Tuhin et al., 2025). 

Further in this thesis, autoencoder variants summarized in Table 2.1 Specific Autoencoder 

Variants below will be used. 
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Table 2.1  

Specific Autoencoder Variants 

Type Architecture 
Temporal​
Modelling 

Latent Space​
Type 

Anomaly​
Detection​
Mechanism 

Strengths Weaknesses 

Plain AE 

Fully connected 

encoder and 

decoder with 

bottleneck layer 

Not temporal; 

input often 

flattened​
 

Deterministic 

fixed-size latent 

representation​
 

High 

reconstruction 

error on unseen 

patterns 

Simple, 

effective, 

non-linear 

encoding 

Cannot capture 

temporal 

dependencies​
 

VAE 

Probabilistic 

encoder/ 

decoder; learned 

latent space 

distribution 

Assumes 

independent 

samples​
​
 

Probabilistic; 

usually Gaussian​
​
​
 

Outliers fall in 

low-probability 

regions; latent 

uncertainty as 

score 

Captures 

variability, 

robust to noise​
​
 

Complex loss 

function; 

unstable 

optimization​
 

LSTM AE 

Stacked LSTM 

layers in 

encoder and 

decoder​
​
 

Explicitly 

models temporal 

dependencies​
​
​
 

Deterministic 

temporal latent 

vector​
​
​
 

High 

reconstruction 

error on 

abnormal time 

sequences​
 

Good memory 

for time 

patterns; detects 

contextual or 

collective 

anomalies 

High compute 

and memory 

cost; hard to 

interpret​
​
 

TAE 

Self-attention 

layers process 

sequences in 

parallel 

Captures 

long-range 

dependencies 

via attention 

Deterministic 

embeddings 

updated by 

context 

High error 

signals 

anomalous 

deviation 

Efficient for long 

sequences; 

highly parallel​
 

Requires large 

datasets and 

compute power​
 

TCN AE 

Dilated 

convolutions for 

encoding and 

decoding 

sequences 

Models temporal 

dependencies 

with dilation​
 

Deterministic 

compressed 

sequence 

encoding​
 

High 

reconstruction 

error at 

anomalies + 

distance 

Fast training; 

large receptive 

field​
​
 

Sensitive to 

dilation/kernel 

tuning​
​
 

AE = Autoencoder, VAE = Variational Autoencoder, LSTM = Long Short-Term Memory, TAE = Transformer-based Autoencoder, TCN = Temporal Convolutional Network. 

Note: Table created by the author based on multiple sources including: (Al-Marie, 2023; Al-Selwi et al., 2023; Asperti & Trentin, 2020; Bajaj, 2023; Brownlee, 2018; Cai et 

al., 2023; Chollet, 2016; Despois, 2017; Dhapre, 2024; GeeksForGeeks, 2019; GeeksForGeeks, 2020; Govindaraj, 2024; Helen, 2019; Hong, 2024; IBM, 2024; IBM, 2025; 

Intel, 2024; Ippolito, 2023; Kar, 2024; Kennedy, 2025; Lachekhab et al., 2024; Lawton, 2024; Lozovsky, 2024; Neloy & Turgeon, 2024; Ögretir et al., 2023; Owoh et al., 

2024; Pykes, 2024; Schmidl et al., 2022; Singh, 2024; Teuwens, 2021; Thill, 2020; Thill et al., 2021; Tuhin et al., 2025; Xu & Duraisamy, 2020; Yadav, 2024). 

2.3.13​ Deep SVDD Anomaly Detection Mechanism 

Deep Support Vector Data Description (Deep SVDD) is a one-class anomaly detection 

method that trains a neural network to map normal data into a minimal-volume hypersphere 

in latent space (Ruff et al., 2018; Sendera et al., 2021; Yi, 2020). The center of this 

hypersphere is fixed, typically set from an initial forward pass, to prevent collapse 

(Pérez-Carrasco et al., 2023). At inference, the anomaly score is the distance from an input’s 

representation to the center — larger distances suggest higher anomaly likelihood (Sendera et 

al., 2021). 

Deep SVDD bypasses input reconstruction by learning compact, discriminative latent 

features from normal data alone (Ruff et al., 2018; Sendera et al., 2021). This makes it 

well-suited to unsupervised settings with limited anomaly labels (Pérez-Carrasco et al., 

2023). The model is end-to-end trainable, architecture-agnostic, and effective even in 

high-dimensional or structured inputs like multivariate time series (Sendera et al., 2021; Yi, 

2020). Its tight latent embeddings support robust anomaly separation across diverse tasks 

(Ruff et al., 2018). 

A key issue is representation collapse, where the network maps all inputs, normal and 

anomalous, to the same latent point, undermining anomaly detection (Ruff et al., 2018; 
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Sendera et al., 2021). This is mitigated by removing bias terms and fixing the center, but it 

doesn’t address the deeper problem of multi-modal normal data. When normal behavior 

spans diverse patterns, as in hierarchical or multivariate time series, the assumption of a 

single compact latent region breaks down, leading to poor generalization (Pérez-Carrasco et 

al., 2023; Ruff et al., 2018). 

2.4​ Ensemble Detection 

Ensemble strategies have proven highly effective in anomaly detection by combining the 

strengths of diverse methods. Instead of relying on a single detector, recent studies 

emphasize combining outputs from univariate, multivariate, and deep models to boost 

robustness and recall (Furnari et al., 2021; Xin et al., 2023). These ensemble approaches 

perform particularly well in complex or noisy datasets, where individual models often miss 

complementary anomaly signals.  

To systematically learn from such heterogeneity, a meta-learning approach is recognized. 

Following the stacked generalization paradigm, a second-level classifier is trained on the 

binary outputs of base detectors to synthesize their decisions into a single, refined prediction 

(Brownlee, 2020). This layer learns which models to trust under which conditions, increasing 

precision and reducing false positives without compromising sensitivity (Jeffrey et al., 2024; 

Milvus, 2025). 

Weighted voting or simple unions can be used to create the ensemble, but also gradient 

boosting methods, like LightGBM can be used as the meta-classifier due to its scalability and 

strong empirical performance in prior stacking studies. Its leaf-wise tree growth and support 

for mixed inputs make it ideal for aggregating detector outputs in large-scale, structured time 

series. This design enables flexible, interpretable, and high-performance anomaly detection 

across diverse retail scenarios (Muruganandham et al., 2024; Muslim et al., 2023).  

2.5​ Interpretability 

As machine learning systems increasingly influence real-world decisions, interpretability 

becomes essential for trust, transparency, and accountability. This is especially important in 

high-stakes applications like fraud detection or anomaly surveillance, where understanding a 

model’s behavior is critical (Awan, 2023; Mesameki, 2025). 

To interpret complex or black-box models, surrogate modeling was adopted — a 

well-established approach where a simple, interpretable model is trained to approximate the 

decisions of a more complex one (Chen et al., 2022). For each anomaly detector, a supervised 

surrogate model was trained to mimic binary outputs, then applied SHAP (SHapley Additive 

exPlanations) to extract feature attributions (Mesameki, 2025). 

SHAP is based on Shapley values from cooperative game theory and offers consistent, locally 

accurate, and additive feature importance values (Awan, 2023; Huang & Marques-Silva, 

2024). Although originally developed for tree models like LightGBM, it also generalizes to 
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black-box models (Mesameki, 2025). Since unsupervised models lack native interpretability, 

the surrogate approach allows SHAP-like models to be used reliably across all detectors 

(Chen et al., 2022; Mesameki, 2025), preserving a unified explanation layer for 

heterogeneous methods. 

2.6​ Chapter Summary 

This chapter defined the theoretical foundations and design choices behind the proposed 

anomaly detection framework. The problem was framed as point-wise anomaly detection in 

large-scale, hierarchical, and multivariate time series, with thousands of department–store 

sales series influenced by holidays, markdowns, and macroeconomic factors. Given the 

absence of labeled anomalies, this is an unsupervised learning problem. 

Decomposition methods, Prophet, STL, and TimeGPT, representing additive, 

non-parametric, and deep learning-based modeling approaches, were described to 

distinguish the signal space from residual space. Seventeen anomaly detection methods were 

selected across four categories: statistical methods, classical unsupervised models, 

probabilistic approaches, and deep learning techniques. Each was evaluated against six 

criteria: point-wise detection, scalability, multivariate fit, hierarchical compatibility, temporal 

awareness, and interpretability, as shown in Table 2.2: Anomaly Detection Methods 

Comparison. 

To enhance robustness, ensemble learning was introduced to combine individual model 

outputs for higher accuracy, robustness, and prediction ability, ince no single model proved 

sufficient across all criteria. Importance of interpretability of the results was highlighted and 

a method via SHAP, using supervised surrogate models to explain both base detectors and 

the ensemble, described. 

Together, these components define the complete machine learning strategy that is 

implemented and evaluated in the following chapters.  
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Table 2.2  

Anomaly Detection Methods Comparison 

Anomaly​
Detection​
Method 

Point-Wise​
Detection 

Large-Scale​
Suitability 

Multivariate​
Capability 

Hierarchical​
Compatibility 

Temporal 

Awareness 
Interpretability 

Z-Scores Yes Yes No No* No* Yes 

Threshold Yes Yes No No* No* Yes 

IF Yes Yes Yes No* No* Partial* 

KNN Yes Yes Yes No* No* Yes 

LOF Yes Partial Yes No* No* Yes 

HDBSCAN Yes Yes Yes Yes No* Partial* 

OCSVM Yes No Yes No* No* Partial* 

COPOD Yes Yes Yes No* No Yes 

BCPD Partial Yes No No* Yes Yes 

GMM Yes Partial Yes No* No* Yes 

Mahalanobis Yes Yes Yes No* No* Partial* 

Plain AE Yes Partial Yes No* No* No* 

VAE Yes Partial Yes No* No* No* 

LSTM AE Yes No Yes No* No* No* 

TAE Yes Partial Yes No* No* No* 

TCN AE Yes Partial Yes No* No* No* 

Deep SVDD Yes Partial Yes No* No* No* 

 

IF = Isolation Forest, KNN = K-Nearest Neighbors, LOF = Local Outlier Factor, HDBSCAN = Hierarchical Density-Based Spatial Clustering of Applications with Noise, 

OCSVM = One-Class Support Vector Machine, COPOD = Copula-Based Outlier Detection, GMM = Gaussian Mixture Model, AE = Autoencoder, VAE = Variational 

Autoencoder, LSTM = Long Short-Term Memory, TAE = Transformer-based Autoencoder, TCN = Temporal Convolutional Network, SVDD = Support Vector Data 

Description. 

Note: (i) “Point-Wise Detection” indicates whether the method is capable of identifying individual anomalous time points. 

(ii) “Large-Scale Suitability” denotes whether the method can scale to thousands of time series in realistic runtimes. 

(iii) “Multivariate Capability” refers to a method’s ability to natively process multiple input features. 

(iv) “Hierarchical Compatibility” assesses whether the method can be applied across multiple organizational levels with coherent aggregation. 

(v) “Temporal Awareness” assesses whether the method inherently captures temporal dependencies without preprocessing. 

(vi) “Interpretability” evaluates whether the method inherently offers explainable outputs. 

(vii) * This limitation is partially addressable through a practical workaround. 

(viii) Table created by the author based on multiple sources including: (Al-Marie, 2023; Apgar, 2023; Asperti & Trentin, 2020; Bajaj, 2023; Blachowicz et al., 2025; 

Brownlee, 2018; Cai et al., 2023; Carletti et al., 2020; Dey, 2024; Despois, 2017; Dhapre, 2024; Edge Impuls, 2024; Ebenezer & Sharma, 2023; Eslava, 2023; Eyer, 2024; 

Feasel, 2022; Govindaraj, 2024; Helen, 2019; Holbert, 2022; Hong, 2024; Iuhasz et al., 2025; Kar, 2024; Kaya, 2020; Kennedy, 2025; Kumar, 2023; Lachekhab et al., 

2024; Lawton, 2024; Li et al., 2020; Liu et al., 2008; Lozovsky, 2024; Lu et al., 2023; MindBridge, 2025; Moffitt, 2024; Neloy & Turgeon, 2024; Nguyen & Vien, 2018; 

Ögretir et al., 2023; Owoh et al., 2024; Perry, 2019; Pérez-Carrasco et al., 2023; Peixeiro, 2023; Pykes, 2024; Rajasekaran, 2025; RisingWave, 2024; Romeu, 2021; 

Ruberts, 2020; Ruff et al., 2018; Kamoi & Kobayashi, 2020; Sayago, 2024; Schmidl et al., 2022; Sendera et al., 2021; Srivastava, 2023; Teuwens, 2021; Thill, 2020; Thill et 

al., 2021; Tuhin et al., 2025; Tuychiyev & DataCamp, 2021; Xu & Duraisamy, 2020; Xu et al., 2023; Yadav, 2023; Yadav, 2024; Yi, 2020; Yoon, 2022; Zhang et al., 2021; 

Zhao, 2022). 
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3​Data Understanding 

This chapter outlines the dataset’s structure, content, and relevance to the anomaly detection 

task. It summarizes the source, key features, high-level patterns, and data quality to confirm 

suitability for modeling and prepare for the preprocessing steps that follow. 

3.1​ Initial Data Collection 

The dataset used in this thesis was obtained from the Walmart Recruiting – Store Sales 

Forecasting competition, hosted on the Kaggle platform (Kaggle, 2014). It was provided as a 

ZIP archive containing several structured CSV files. Three of these, train.csv, stores.csv, and 

features.csv, were used for this project. Each file served a distinct purpose: train.csv contains 

weekly sales data per store and department, stores.csv provides additional store-level 

attributes such as type and size, and features.csv includes external variables such as 

temperature, fuel price, and economic indicators, alongside markdown and holiday-related 

information. These files formed the basis for constructing a multivariate time series dataset 

suitable for forecasting and anomaly detection tasks. No issues were encountered during the 

acquisition or loading of the raw data. 

3.2​ Data Description 

The dataset used in this project was constructed by merging three sources: train.csv (weekly 

sales), features.csv (economic indicators, markdowns, holiday flags), and stores.csv (store 

metadata). The merged data preserves the original weekly granularity for each 

Store–Department combination, resulting in 421,570 rows across 17 columns. 

The summary statistics suggest the influence of outliers: the median sales value is $7,612.03, 

while the mean is substantially higher at $15,981.26, maximum at $693,099.36, and 

minimum at $–4,988.94, as depicted in Table 3.1 Descriptive Statistics of Weekly Sales 

Values below.  
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Table 3.1  

Descriptive Statistics of Weekly Sales Values 

Statistic Weekly Sales 

Count 421,570 

Mean 15,981.26 

Standard deviation 22,711.18 

Minimum -4,988.94 

25th Percentile 2,079.65 

Median 7,612.03 

75th Percentile 20,205.85 

Maximum 693,099.36 

Note: Table created by the author based on the original dataset. 

 

Each row represents a weekly observation for a specific department in a specific store. In 

total, the dataset covers 45 stores, 81 departments, and 143 weeks, forming a hierarchical 

structure of 3,331 unique time series. The time series spans from the week of 2010-02-05 to 

2012-10-26. 

The feature set includes external variables such as temperature, fuel prices, consumer price 

index (CPI), unemployment rates, and five markdown columns (interpreted as promotional 

campaigns). One binary feature is_holiday represents national holidays. 

3.3​ Data Description 

This section presents an initial exploration of the dataset, with the aim of validating its 

suitability for time series anomaly detection. The focus is on uncovering temporal patterns, 

detecting seasonal effects, and understanding how external factors such as holidays and 

markdowns influence sales behavior. 

3.3.1​ Distribution of Weekly Sales 

To better understand the underlying sales behavior, the distribution of the target variable 

weekly sales was analyzed across all Store–Department combinations. As visualized in Figure 

3.1 Distribution of Weekly Sales, the distribution is highly right-skewed, with the majority of 

weekly sales clustered below $50,000 and a long tail of extreme values reaching up to 

$693,099.36.  
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Figure 3.1  

Distribution of Weekly Sales 

 

Note: Figure created by the author based on the original dataset. 

The calculated skewness of 3.26 quantitatively reinforces this heavy-tailed distribution. These 

patterns highlight the importance of robust anomaly detection methods that can account for 

high variance and asymmetry in the data. 

3.3.2​ Trend and Seasonality 

A clear seasonal structure is immediately apparent when visualizing the national-level weekly 

sales over time (see Figure 3.2 Weekly National Sales Over Time).  

Figure 3.2  

Weekly National Sales Over Time 

 

Note: Figure created by the author based on the original dataset. 

Regular spikes, most prominently during late November and December, highlight recurring 

holiday-driven peaks in consumer activity. This visual pattern strongly suggests seasonality 

and temporal dependencies in the data. To further validate this, a year-over-year comparison 
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was plotted by aggregating sales across calendar weeks for 2010, 2011, and 2012 (see Figure 

3.3 Year-over-Year Sales Patterns by Week Number). The near-identical shape of the curves 

across years confirms consistent seasonal effects on the national level.  

Figure 3.3  

Year-over-Year Sales Patterns by Week Number 

 

Note: Figure created by the author based on the original dataset. 

Finally, a 4-week rolling average was applied to the national time series to emphasize the 

underlying trend (see Figure 3.4 Trend in Weekly National Sales), further supporting the 

presence of long-range temporal structure. These findings justify the application of time 

series decomposition methods and temporally-aware anomaly detection models throughout 

this thesis. 

Figure 3.4  

Trend in Weekly National Sales 

 

Note: Figure created by the author based on the original dataset. 

3.3.3​ Feature Relationships 

To better understand how the numerical features relate to each other and to the target 

variable, a correlation heatmap was generated (see Figure 3.5 Correlation Heatmap of 
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Numeric Features). As expected, the strongest correlation with weekly sales was observed for 

the size of the store (r = 0.24), which aligns with the assumption that larger stores tend to 

generate higher sales. Moderate positive correlations were also noted with markdown_1 (r = 

0.17) and markdown_5 (r = 0.22), suggesting that certain promotional activities may be 

associated with elevated sales volumes. Interestingly, no strong correlations were found 

between economic indicators (e.g., CPI, unemployment) and weekly sales, indicating that 

these features may have more localized or indirect effects. Overall, the low to moderate 

correlations support the inclusion of these variables in multivariate modeling, where 

non-linear and interaction effects can be more effectively captured. 

Figure 3.5  

Correlation Heatmap of Numeric Features 

 

Note: Figure created by the author based on the original dataset. 

To assess how binary features influence sales behavior, distribution of weekly_sales across 

two categorical indicators: is_holiday and has_markdown is visualized. As shown in Figure 

3.6 Weekly Sales Distribution on Holiday vs. Non-Holiday, holiday weeks tend to show a 

wider distribution of weekly sales, with multiple high-value outliers, suggesting the presence 

of holiday-driven spikes.  
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Figure 3.6  

Weekly Sales Distribution on Holiday vs. Non-Holiday 

Note: Figure created by the author based on the original dataset. 

As seen in Figure 3.7 Weekly Sales Distribution With and Without Promotions, weeks with 

and without markdown promotions have a comparable median and overall spread in weekly 

sales. However, non-promotion weeks display more extreme outliers, suggesting that 

unusually high sales spikes can occur even in the absence of promotions. 

Figure 3.7  

Weekly Sales Distribution With and Without Promotions 

Note: Figure created by the author based on the original dataset. 
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3.3.4​ Data Quality Verification 

A numerical analysis of missing values (see Table 3.2 Summary of Missing Values) revealed 

substantial gaps in the five markdown features. 

Table 3.2  

Summary of Missing Values 

Column Count Percentage 

markdown_2 310,322​  73.61 

markdown_4 286,603​ 67.98 

markdown_3 284,479​  67.48 

markdown_1 270,889​ 64.26 

markdown_5 270,138 64.08 

Note: Table created by the author based on the original dataset. 

 

A detailed quality check revealed that 671 individual Store–Department time series (20.14% 

of the total 3,331) contained irregularities in their weekly continuity. These gaps reflected 

implicitly missing data — i.e., weeks for which no entry was present in the dataset at all. The 

number of missing weeks per affected series ranged from just 1 to as many as 142, with a 

median of 94. These inconsistencies would have made direct modeling or decomposition 

unreliable and required targeted preprocessing steps to reconstruct a consistent weekly 

structure. The specific correction strategy is described in Section 4.2. 

Next, the weekly_sales column was examined for invalid or unexpected values. A total of 

1,285 records contained negative sales, with most values close to zero and a few larger 

outliers, such as the global minimum of $–4,988.94. These negative values likely reflect 

product returns or internal sales corrections and were retained in the dataset, as they may 

carry important signals for anomaly detection.  

Overall, the dataset is of high quality and well-suited for the modeling and evaluation tasks 

that follow. 

3.4​ Chapter Summary 

This chapter outlined the structure and content of the dataset, which spans 143 weeks across 

45 stores and 81 departments. Skewed sales distribution, seasonal trends, and contextual 

influences were found. Missing weeks were identified in 20% Store–Department series. 

Establishing the key data challenges and patterns, this chapter set the stage for the cleaning 

and transformation steps detailed in the next chapter. 
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4​Data Preparation 

This chapter explains how the raw sales data was transformed into a modeling-ready format 

for hierarchical, multivariate, point-wise anomaly detection. The preparation process 

included cleaning and merging inputs, handling missing values, creating derived features, 

injecting synthetic anomalies, and scaling. 

4.1​ Data Selection and Integration 

In this particular case, the data were obtained in a ZIP file from the Kaggle Website as part of 

the Walmart Recruiting — Store Sales Forecasting Prediction Competition (Kaggle, 2014). 

It contains four CSV files: 

●​ stores.csv containing additional information about each store — its size and type 

(anonymized as either A, B, or C), 

●​ train.csv containing weekly sales for each Store–Department–Date combination, 

including a column to indicate holidays in a particular week, 

●​ test.csv containing further Store–Department–Date combinations and the holiday 

column, but without weekly sales (intended only for the original prediction task), 

●​ features.csv containing additional data related to the store, department, and regional 

activity for the given dates — including temperature, fuel price, CPI, unemployment, 

and five markdown columns related to promotional markdowns. 

To prepare the dataset for anomaly detection, three sources were merged — train.csv, 

stores.csv, and features.csv. The merged dataset preserved the original Store–Dept–Date 

granularity, resulting in a total of 421,570 rows — one for each department in each store for 

each week. 

4.2​ Data Cleaning 

Several cleaning steps were necessary to prepare the dataset for modeling. Column names 

were standardized to snake_case, and redundant fields introduced by merging (e.g., 

IsHoliday_x, IsHoliday_y) were removed to maintain a clean schema. 

The five markdown-related features (markdown_1 to markdown_5) showed between 64% 

and 74% of values absent. These were filled with 0, based on the assumption that missing 

values indicate the absence of a promotion. 

Although the column weekly_sales did not contain nulls at the dataset level, a detailed audit 

revealed that 671 Store–Department time series (20.14%) were incomplete. To address this, 

missing values were filled using mean imputation per Store–Dept group. 
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After these steps, the dataset was fully cleaned and confirmed to be complete, consistent, and 

suitable for hierarchical, multivariate time-series modeling. 

4.3​ Feature Construction 

To support robust anomaly detection, several new features were derived from the raw 

dataset. The five promotional columns (markdown_1 through markdown_5) were retained. 

In addition, a new binary column, has_markdown, was created to flag whether any 

markdown was active in a given week. The categorical feature type, representing store format 

as A, B, or C, was one-hot encoded into binary indicators to ensure compatibility with 

machine learning models. 

Finally, a special label column injected_anomaly was added, marking known artificial 

anomalies for model evaluation. This label was never used in training and was preserved 

throughout all downstream transformations to enable fair and reproducible benchmarking. 

Values in weekly_sales were modified with injected anomalies, but original weekly sales 

values were retained in the weekly_sales_original column. 

4.4​ Injecting Anomalies 

To enable robust and repeatable evaluation of anomaly detection models, a controlled set of 

artificial anomalies was injected into the multivariate time series. These synthetic anomalies 

were added after data cleaning and before forecasting to simulate realistic sales deviations 

while preserving the underlying time series structure. 

Two types of point anomalies were injected according to defined business logic: 

●​ Spike anomalies (n = 2,107) were introduced into weeks where there was no holiday 

or promotion. These simulate unexpected surges in sales that would typically trigger 

business curiosity or investigation. 

●​ Drop anomalies (n = 2,107) were injected into weeks that contained a holiday or 

promotion. These represent concerning underperformance during periods that would 

normally be expected to yield higher sales. 

Each anomaly was introduced by modifying the original weekly sales value based on the 

group-level rolling mean and standard deviation (window = 8 weeks). Specifically, the 

anomaly was created by adding or subtracting 4 times the rolling standard deviation from the 

rolling mean. Anomaly positions were randomized across the timeline. This approach was 

designed to produce statistically significant deviations that are detectable yet remain within a 

plausible range, simulating realistic irregularities rather than extreme outliers. 

To validate the injection mechanism, Z-scores were recalculated post-injection using a 

separate rolling baseline. The resulting anomalies had an average Z-score magnitude of 3.73. 

Only 0.05% of anomalies had an absolute Z-score ≥ 5, meaning that the injected points were 
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subtle enough to challenge detection models, while still being anomalous by statistical 

standards. 

The injected anomaly labels were stored in the injected_anomaly column and strictly 

reserved for evaluation only, never used for training. 

To validate the correctness and realism of the injected anomalies, they were also inspected 

visually. Plots comparing the original and modified sales clearly confirmed that anomalies 

appeared in plausible locations and magnitude (see example on Figure 4.1 Store 45 — Dept 

29 – Anomaly Injection Check). This visual inspection served as a sanity check to ensure that 

injected anomalies would not trivially dominate the time series but instead pose a meaningful 

challenge for detection models. 

Figure 4.1  

Store 45 — Dept 29 – Anomaly Injection Check 

Note: Figure created by the author based on the created dataset. 

4.5​ Scaling 

To prepare the dataset for machine learning, all numeric features were scaled to stabilize 

input distributions while preserving anomaly-relevant signals. Given the presence of outliers, 

skewed distributions, and heavy tails in the sales data, the RobustScaler from scikit-learn was 

selected. Unlike standard techniques such as StandardScaler or MinMaxScaler, RobustScaler 

uses the median and IQR to mitigate the influence of extreme values (Scikit Learn, 2018). 

This choice was particularly important for ensuring that downstream models, especially those 

sensitive to feature magnitude, would not misinterpret outliers as distributional noise. 

Crucially, this scaling was applied only after decomposition, targeting the residual 

component of the signal, which reflects deviations from trend and seasonality. By isolating 

and scaling only the residuals, the models received a normalized view of the "unexpected" 

behavior. 

For real-time anomaly detection, it was essential to avoid using future data when scaling past 

observations. Global scaling approaches, which compute scaling parameters across the full 

series, inadvertently leak information from the future into the past. To address this, the 
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pipeline applies rolling-window robust scaling, ensuring that each point is transformed based 

only on values available up to that point in time. 

Among the tested configurations, an 8-week rolling window emerged as the most suitable 

choice. It provides a responsive scaling horizon—short enough to highlight recent 

distributional shifts and sharp deviations, yet long enough to remain robust to volatility and 

avoid overfitting to local noise. 

4.6​ Chapter Summary 

The dataset was assembled by merging three source files into a unified 

Store–Department–Date format at weekly resolution. After column standardization and 

removal of redundancies, the final dataset contained 421,570 rows. All column names were 

converted to snake_case, and categorical features such as type and is_holiday were cleaned 

for consistency. Missing values in the markdown columns were filled with zeroes. A new 

binary feature has_markdown was introduced to indicate promotional activity. The type 

column was one-hot encoded to convert store categories A, B, and C into binary features. 

20% Store–Department time series with missing weeks were aligned to a complete timeline 

(February 2010–October 2012) and missing entries were filled using groupwise mean 

imputation. 

Artificial anomalies were then injected into the cleaned weekly_sales column: 2,107 spikes 

and 2,107 drops. Injection logic was based on contextual business rules and calibrated using 

local rolling statistics. Anomalies were labeled using injected_anomaly and anomaly_type, 

and used strictly for evaluation. 

Scaling was deferred until after decomposition. Residuals from each decomposition method 

were scaled independently to ensure comparability across models, while preserving the raw 

signal structure for injection and forecasting. 
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5​Modelling 

This chapter applies the selected models from Chapter 2 Machine Learning Understanding to 

the prepared dataset from Chapter 4 Data Preparation, evaluates their performance across all 

decomposition sources and anomaly detection methods, and identifies the best-performing 

approach for reliable anomaly detection. 

5.1​ Model Assessment 

To ensure an unbiased comparison across models and decomposition sources, a fair 

evaluation window was defined as the intersection of all weeks where valid residuals were 

available from all three decomposition methods. 

Each anomaly detection method was then evaluated under two distinct evaluation windows: 

●​ Fair window: The overlapping weeks across all decomposition sources, used for fair 

cross-method comparison. In the comparative setting, the Fair window spanned 

2011-04-22 to 2011-10-28, covering 27 weeks, as shown in Figure 5.1 Valid Residual 

Weeks per Method (Filtered). 

●​ Full window: The full original date range available, capturing the method’s overall 

detection behavior (143 weeks, from 2010-02-05 to 2012-10-26). 

Figure 5.1  

Valid Residual Weeks per Method (Filtered) 

Note: Figure created by the author based on the created dataset. 

The evaluation process computed the following for each method and source: 

●​ confusion matrix components — true positives (TP) and its breakdown into spikes 

and drops, false positives (FP), false negatives (FN), true negatives (TN), 

●​ standard metrics: precision, recall, and F1 score (harmonic mean of precision and 

recall). 
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To ensure consistency, the entire evaluation process was fully automated. A custom pipeline 

dynamically identified the correct prediction column from each detection result dataframe, 

inferred method and decomposition source names from variable names, created the two 

evaluation windows, computed and logged all metrics into a global results log. 

This setup enabled comprehensive comparison combining 16 detection methods and 3 

decomposition strategies, as depicted in detail in Table 5.1 Best Runs per Anomaly Detection 

Method and Decomposition Combination. Evaluation results were used for model tuning, 

ranking, and the training of the final ensemble. 

Table 5.1 

Best Runs per Anomaly Detection Method and Decomposition Combination 

Anomaly Detection ​
Model 

Decomposition ​
Method 

Time Fair F1 Full F1  Anomaly Detection ​
Model 

Decomposition ​
Method 

Time Fair F1 Full F1 

Z-Scores Prophet 36.3s 0.2943 0.1949  Mahalanobis Prophet 77.5s 0.0547 0.0451 

Z-Scores STL 35.3s 0.0802 0.0205  Mahalanobis STL 78.8s 0.0129 0.0081 

Z-Scores TimeGPT 33.42s 0.2159 0.1096  Mahalanobis TimeGPT 131.9s 0.0471 0.0375 

Threshold Prophet 36.03s 0.0747 0.0652  GMM Prophet 59.9s 0.0255 0.0216 

Threshold STL 35.59s 0.0201 0.0138  GMM STL 58.5s 0.0092 0.0135 

Threshold TimeGPT 34.29s 0.0485 0.0567  GMM TimeGPT 116.2s 0.0248 0.0211 

IF Prophet 46.55s 0.0482 0.0357  Plain AE Prophet 725.1ss 0.0131 0.0128 

IF STL 44.23s 0.0143 0.0089  Plain AE STL 702.3s 0.0048 0.0023 

IF TimeGPT 44.50s 0.0402 0.0305  Plain AE TimeGPT 690.5ss 0.0067 0.0028 

KNN Prophet 52.1s 0.1318 0.0852  VAE Prophet 138.2s 0.0144 0.0121 

KNN STL 50.0s 0.0499 0.0327  VAE STL 137.6s 0 0 

KNN TimeGPT 45.7s 0.1116 0.0774  VAE TimeGPT 136.4s 0 0 

LOF Prophet 8.9s 0.0044 0.0099  LSTM AE Prophet 2400.s - - 

LOF STL 9.0s 0.0052 0.0059  LSTM AE STL 2400.s - - 

LOF TimeGPT 8.4s 0.0033 0.0054  LSTM AE TimeGPT 2400.s - - 

HDBSCAN Prophet 73.3s 0.0238 0.0280  TAE Prophet 785.3s 0.0104 0.0101 

HDBSCAN STL 70.9s 0.0094 0.0082  TAE STL 804.6s 0.0042 0.0037 

HDBSCAN TimeGPT 71.7s 0.0120 0.0157  TAE TimeGPT 778.9s 0.0137 0.0110 

OCSVM Prophet 1130.6s 0.0098 0.0091  TCN AE Prophet 113.3s 0 0.0074 

OCSVM STL 750.5s 0.0035 0.0032  TCN AE STL 112.4s 0 0.0069 

OCSVM TimeGPT 1432.3s 0.0085 0.0079  TCN AE TimeGPT 112.0s 0 0.0082 

BCPD Prophet 31.5s 0.0090 0.0101  Deep SVDD Prophet 631.7s 0.0084 0.0071 

BCPD STL 26.2s 0.0057 0.0061  Deep SVDD STL 627.8s 0.0069 0.0069 

BCPD TimeGPT 26.5s 0.0061 0.0072  Deep SVDD TimeGPT 632.5s 0 0 

​
AE = Autoencoder, COPOD = Copula-Based Outlier Detection, GMM = Gaussian Mixture Model, HDBSCAN = Hierarchical Density-Based Spatial Clustering of 

Applications with Noise, IF = Isolation Forest, KNN = K-Nearest Neighbors, LOF = Local Outlier Factor, LSTM = Long Short-Term Memory, OCSVM = One-Class Support 

Vector Machine, SVDD = Support Vector Data Description, VAE = Variational Autoencoder, TAE = Transformer-based Autoencoder, TCN = Temporal Convolutional 

Network. 

Note: (i) “Time” indicates only runtime of the Anomaly Detection Model. (ii) Table created by the author based on the created dataset. 
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5.2​ Decomposition Methods 

Due to the clear seasonality and trend patterns in the sales data, decomposition was applied 

to separate predictable components from unpredictable residuals used for anomaly detection. 

Three methods, Prophet, STL, and TimeGPT, were selected for their diverse modeling 

approaches. Comparing results of anomaly detection models across these residuals allows for 

a robust evaluation of model performance. 

5.2.1​ Prophet Decomposition 

This model was chosen to decompose weekly sales to trend, seasonality, and residuals. 

Multivariate form of Prophet with .add_regressor() with external features was tested. A 

separate Prophet instance was trained per Store–Department combination. 

Modelling Assumptions 

Prophet models trend and seasonality additively and works best with regularly spaced data. It 

assumes residuals are independent and doesn’t capture interactions between observations. It 

naturally handles missing values without special treatment. External regressors are assumed 

to have linear, independent effects, meaning no interactions or nonlinearities are modeled. 

Test Design 

Prophet decomposition results were not evaluated directly; instead, their impact was 

assessed via anomaly detection model outputs. Precision, recall and F1 were computed in 

both the Fair and Full windows against known, injected spikes and drops. A visual inspection 

of decomposition quality and of residuals was conducted for representative 

Store–Department combinations. 

Parameter Setting 

The highest F1 score was achieved using only the weekly_sales column with 

weekly_seasonality=True, yearly_seasonality=True, daily_seasonality=False, without 

additional regressors or tweaks. 

Model Assessment 

Residuals produced by Prophet consistently outperformed those from STL and TimeGPT 

across nearly all detection methods. In 12 anomaly-detection models, higher Full F1 scores 

were achieved by Prophet-based residuals, while for the Fair window, Prophet achieved 

highest F1 in 11 models (see Table 5.1 Best Runs per Anomaly Detection Method and 

Decomposition Combination). 

Average runtime in the univariate setting was 7.5 minutes, while the full multivariate 

configuration required just over 2 hours. 
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In Figure 5.2 Store 45 — Dept 29: Prophet Decomposition, decomposition into trend and 

seasonality and residuals with highlighted injected anomalies are shown, confirming 

consistency across the full timeline. 

Figure 5.2  

Store 45 — Dept 29: Prophet Decomposition 

 

Note: Figure created by the author based on the created dataset. 

Given its superior F1, precision and recall across most models and its reasonable 

computational time, Prophet was chosen for the final model. 

Model Refinement and Observations 

Multiple Prophet configurations were evaluated; residuals from each were processed through 

the anomaly detection pipeline and underperformed relative to the basic univariate 

weekly_sales model. SHAP-style analysis was applied to all candidate regressors, revealing 

CPI, unemployment and temperature as the only meaningful contributors (Figure 5.3 Mean 

Regressor Contribution to the Prophet Forecast below). Runs using all business variables or 

the top seven SHAP-ranked features yielded F1 = 0.0000, while the second-best 

configuration, incorporating just two best regressors, achieved only half the F1 of the 

univariate setup in the same anomaly detection models. 
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Figure 5.3  

Mean Regressor Contribution to Prophet Forecast 

Note: Figure created by the author based on the created dataset. 

5.2.2​ STL Decomposition 

The STL decomposition was run across each Store–Department series. The outputs included 

three new columns per observation: stl_trend, stl_seasonal, and residual (calculated 

manually as weekly_sales – stl_trend – stl_seasonal). The implementation was based on 

statsmodels.tsa.seasonal.STL. 

Modelling Assumptions 

STL assumes a univariate, regularly spaced time series with stable, approximately additive 

seasonality. While it can accommodate some missing values via interpolation, it is not 

intended for irregular gaps or heavily censored sequences. External regressors, 

autocorrelation, and structural breaks are not explicitly modeled. 

Test Design 

STL decomposition results were not evaluated directly; instead, their impact was assessed via 

anomaly detection model outputs. Precision, recall and F1 were computed in both the Fair 

and Full windows against known, injected spikes and drops. A visual inspection of 

decomposition quality and of residuals was conducted for representative Store–Department 

combinations. 
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Parameter Setting 

The highest F1 score was achieved applying STL separately to each group using a fixed 

period=52 to match weekly seasonality. 

Model Assessment 

STL was the weakest of the three decomposition methods tested. Across all evaluated 

anomaly-detection models, STL never produced the best-performing residuals in either the 

Full evaluation window and only once in the Fair window (see Table 5.1 Best Runs per 

Anomaly Detection Method and Decomposition Combination). These issues are likely due to 

LOESS smoothing’s reduced support near the edges, which prevents reliable trend estimation 

without sufficient surrounding data. This severely impacted anomaly detection, as noise at 

the series boundaries led to both false positives and missed injected anomalies. 

STL decompositions were extremely fast to compute — finished in 2 minutes and 10 seconds. 

In Figure 5.4 Store 45 — Dept 29: STL Decomposition below, the trend and seasonality 

components and the residuals with highlighted injected anomalies are presented, showing 

major residual inconsistency between the incomplete years 2010 and 2012 and the full 

middle year 2011. 

Figure 5.4  

Store 45 — Dept 29: STL Decomposition 

Note: Figure created by the author based on the created dataset. 
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The low runtime did not compensate for the instability observed in the residuals and 

therefore, STL was not chosen as the final decomposition method. 

Model Refinement and Observations 

The period = 52 value was retained, as consistent weekly periodicity was assumed across all 

series. Significant modifications were applied during preprocessing in an attempt to make 

STL fit adequately in 2010 and 2012 (including various backfill and forward-fill techniques 

and filling missing weeks at the beginning and end of each series with the mean). Padding 

was applied before STL to enforce a complete weekly timestamp range across all units, 

ensuring equal decomposition windows and later comparability. However, all downstream 

evaluations were restricted to the original rows (is_filled == False) to avoid contamination 

from artificially added timestamps. 

Because major residual issues in the incomplete years were observed and remained 

unresolved, no further extensive tuning was performed. The decomposition method was 

retained in the comparison pipeline only in case STL outperformed the other two methods in 

the Fair window; however, that did not occur. 

5.2.3​ TimeGPT Decomposition 

The TimeGPT decomposition was run across each Store–Department series. For this study, 

the detect_anomalies() function was used to extract forecasts across each Store–Dept series. 

Residuals were then computed as the difference between weekly sales and predicted values 

(yhat). 

Modelling Assumptions 

As a pretrained black-box model, TimeGPT makes several implicit assumptions. Input series 

must be continuous, regularly spaced. Series should have minimal missing timestamps; 

dense, clean inputs yield better forecasts. Model internally assumes that sales patterns follow 

trends learned from general time series behavior. Forecasts are generated only after an initial 

context window. No custom holiday, event, or regressor data is supported. Exogenous feature 

support is limited or disabled in the free version. 

Test Design 

TimeGPT decomposition results were not evaluated directly; instead, their impact was 

assessed via anomaly detection model outputs. Precision, recall and F1 were computed in 

both the Fair and Full windows against known, injected spikes and drops. A visual inspection 

of decomposition quality and of residuals was conducted for representative 

Store–Department combinations. 

Parameter Setting 

The highest F1 score was achieved using detect_anomalies() in its basic configuration: 

time_col="date", target_col="y", freq="W-FRI". 
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Model Assessment 

Across the all evaluated anomaly detection models, TimeGPT produced better results than 

Prophet only twice in the Full window and twice in the Fair window. In the Full window, 

TimeGPT provided better results in certain deep learning anomaly detection settings — 

Transformer-based Autoencoder and TCN Autoencoder (see Table 5.1 Best Runs per 

Anomaly Detection Method and Decomposition Combination).  

The decomposition across the series completed in approximately 32 minutes. 

In Figure 5.5 Store 45 — Dept 29: TimeGPT Decomposition below, the trend and seasonality 

components and the residuals with highlighted injected anomalies are presented, beginning 

forecast only in 2011-04-22, but then showing well formed forecast and residuals. 

Figure 5.5  

Store 45 — Dept 29: TimeGPT Decomposition 

Note: Figure created by the author based on the created dataset. 

Overall, while TimeGPT delivered a few competitive results, it was ultimately outperformed 

by Prophet in accuracy, transparency, control, and speed. TimeGPT was not chosen as the 

final decomposition method. 
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Model Refinement and Observations 

TimeGPT was used solely for decomposition and residual extraction, not for forward 

forecasting. Early attempts to call .forecast() or specify h=length repeatedly failed (returning 

NaNs, missing outputs, or errors about overly long horizons) due to undocumented free-tier 

API constraints. As a workaround, detect_anomalies() was tried to obtain residuals, but only 

the yhat forecast column was returned. Expected fields for anomalies, confidence levels, or 

pointwise flags were absent. Consistent weekly padding and interpolation were applied to all 

series before decomposition, yet the first few weeks of each series were omitted from the API 

response, presumably because the model requires a minimum warm-up context, so those 

timestamps were excluded from the Fair window evaluation. The black-box nature of the 

service precluded any internal inspection, customization of horizons or confidence intervals, 

and advanced anomaly-detection tuning beyond basic decomposition. 

5.3​ Anomaly Detection Models 

This section details the anomaly detection models applied to the residuals generated by each 

decomposition method. The models are presented individually to highlight their strengths, 

limitations, and suitability for large-scale, hierarchical, multivariate anomaly detection. 

5.3.1​ Z-Scores Anomaly Detection Model 

The following section documents the application of Z-score-based anomaly detection. 

Modelling Assumptions 

Z-scores assume a normal distribution of input features and that anomalies are extreme 

deviations from the mean. It assumes stationarity within the window used to compute the 

mean and standard deviation, and requires complete data without missing values. 

Test Design 

No explicit train/test split was performed. Instead, an 8-week centered sliding window was 

applied directly over each Store–Dept series to compute local mean and STD to preserve 

temporality. Model results are evaluated against injected anomalies in both the Fair and Full 

windows using precision, recall, and F1 score. This approach preserves temporality without 

look-ahead while validating detection on held-out anomaly injections. 

Parameter Setting 

The best F1 results in Full window were achieved with z_threshold = 2 on residual_scaled 

and sliding window set at 8 weeks. 
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Model Assessment 

Under the best parameter settings, on Prophet decomposed residuals, results depicted in 

Table 5.2 Z-Scores Anomaly Detection Model Best Results achieved Full F1 of 0.1949. This 

model finished 1st across all anomaly detection models. The runtime was 36.3  seconds. This 

model was excluded from the final ensemble because its detection logic directly mirrors the 

anomaly injection process, which could lead to biased results. It is retained solely for baseline 

comparison, as Z-Scores represent a standard benchmark in anomaly detection. 

Table 5.2 

Z-Scores Anomaly Detection Model Best Results 

Window F1 Precision Recall 

Fair 0.2943 0.2153 0.4643 

Full 0.1949 0.1203 0.5105 

 

Note: Table created by the author based on the created dataset. 

 

Model Refinement and Observations 

Several alternative parameter settings were tested, including thresholds of 3, 4, 5, and 6, as 

well as window sizes of 4 and 16. However, none of these configurations outperformed the 

combination of threshold 2 with an 8-week window. This particular setting achieved the 

highest F1 score, making it the most effective configuration overall. 

5.3.2​ Thresholding Anomaly Detection Model 

The following section documents the application of quantile-based Thresholding anomaly 

detection. 

Modelling Assumptions 

The approach assumes that anomalies lie in the tails of the residual distribution and that 

normal behavior is centered. It makes no distributional assumption beyond rankability, but 

requires no missing values in the thresholded variable. 

Test Design 

No explicit train/test split was performed. Instead, an 8-week centered sliding window was 

applied directly over each Store–Dept series to compute rolling lower and upper quantile 

thresholds, enabling local anomaly detection while preserving temporal context. Model 

results are evaluated against injected anomalies in both the Fair and Full windows using 

precision, recall, and F1 score. This approach preserves temporality without look-ahead while 

validating detection on held-out anomaly injections. 
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Parameter Setting 

The best F1 results in Full window were achieved with upper threshold at 99,5% and lower 

threshold at 0.5% on residual_scaled with a sliding window set at 8 weeks. 

Model Assessment 

Under the best parameter settings, on Prophet decomposed residuals, results depicted in 

Table 5.3 Thresholding Anomaly Detection Model Best Results achieved Full F1 of 0.0652. 

This model finished 3rd across all anomaly detection models. The runtime was 36.0  seconds. 

This model was selected for the final ensemble. 

Table 5.3 

Thresholding Anomaly Detection Model Best Results 

Window F1 Precision Recall 

Fair 0.0747 0.0395 0.6821 

Full 0.0652 0.0339 0.8497 

 

Note: Table created by the author based on the created dataset. 

 

Model Refinement and Observations 

Several percentile thresholds were tested (1st/99th, 0.25th/99.75th), but the 0.5th/99.5th 

percentile setting yielded the best F1 score and was retained as the most effective 

configuration. 

5.3.3​ Isolation Forest Anomaly Detection Model 

The following section documents the application of Isolation Forest anomaly detection. 

Modelling Assumptions 

Isolation Forest assumes that anomalies are rare and different from normal observations, 

and that the feature space provides useful separation. It does not rely on any distributional 

assumptions but assumes all input features are continuous, scaled, and complete. 

Test Design 

Model was applied independently to each Store–Dept series. A 5-fold TimeSeriesSplit was 

applied across the full dataset, where each fold trains on past observations and tests on future 

data, preserving temporal causality. The Isolation Forest model was refit in each fold using 

only past data to predict on unseen future windows. Model results are evaluated against 

injected anomalies in both the Fair and Full windows using precision, recall, and F1 score. 

This approach ensures robust validation without look-ahead, aligning with the temporal 

structure of the data. 
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Parameter Setting 

The best F1 results in Full window were achieved with n_estimators = 200, max_samples = 

auto, contamination = 0.01 and jobs = -1. Final input features were residual_scaled, 

has_markdown and is_holiday. 

Model Assessment 

Under the best parameter settings, on Prophet decomposed residuals, results depicted in 

Table 5.4 Isolation Forest Anomaly Detection Model Best Results achieved Full F1 of 0.0357. 

This model finished 5th across all anomaly detection models. The runtime was 46.55  

seconds. This model was selected for the final ensemble. 

Table 5.4 

Isolation Forest Anomaly Detection Model Best Results 

Window F1 Precision Recall 

Fair 0.0482 0.1034 0.0315 

Full 0.0357 0.0325 0.0397 

 

Note: Table created by the author based on the created dataset. 

 

Model Refinement and Observations 

Extensive tuning was performed on the Isolation Forest model by varying contamination 

levels (0.008 to 0.01), max_samples settings (auto, 256), jobs not specified or –1, and input 

feature sets ranging from minimal to full multivariate representations including all 

markdowns, economic indicators, and store type encodings. Despite these variations, none of 

the alternative configurations delivered F1 scores comparable to the final selected setup. 

5.3.4​ K-Nearest Neighbors Anomaly Detection Model 

The following section documents the application of K-Nearest Neighbors anomaly detection. 

Modelling Assumptions 

KNN assumes that normal observations are located in dense regions of the feature space, 

while anomalies are isolated and lie in sparse regions. It requires that all features be 

numerical and properly scaled, assumes no missing values, and does not make assumptions 

about underlying distributions.  

Test Design 

Model was applied independently to each Store–Dept series. A 5-fold TimeSeriesSplit was 

applied across the full dataset, where each fold trains on past observations and tests on future 

data, preserving temporal causality. The KNN model was refit in each fold using only past 

data to predict on unseen future windows. Model results are evaluated against injected 
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anomalies in both the Fair and Full windows using precision, recall, and F1 score. This 

approach ensures robust validation without look-ahead, aligning with the temporal structure 

of the data. 

Parameter Setting 

The best F1 results in Full window were achieved with k = 20, metric = Chebyshev, and 

threshold = 98. Final input features were residual_scaled, cpi_scaled, and 

unemployment_scaled. 

Model Assessment 

Under the best parameter settings, on Prophet decomposed residuals, results depicted in 

Table 5.5 Local Outlier Factor Anomaly Detection Model Best Results achieved Full F1 of 

0.0852. This model finished 2nd across all anomaly detection models. The runtime was 52.12  

seconds. This model was not selected for the final ensemble. 

Table 5.5 

K-Nearest Neighbors Anomaly Detection Model Best Results 

Window F1 Precision Recall 

Fair 0.1318 0.1378 0.1257 

Full 0.0852 0.0716 0.1049 

 

Note: Table created by the author based on the created dataset. 
 
Model Refinement and Observations 
KNN was tuned by varying k (20, 50), percentile thresholds (98, 99), and distance metrics 

(minkowski, manhattan, chebyshev, euclidean). Baseline runs used residual_scaled, 

has_markdown, and is_holiday; later runs added cpi_scaled, unemployment_scaled, and 

temperature_scaled. Chebyshev with k=20 and extended features was tested extensively. 

Threshold lowering from 99th to 98th percentile aimed to improve sensitivity to subtle 

anomalies. 

5.3.5​ Local Outlier Factor Anomaly Detection Model 

The following section documents the application of Local Outlier Factor anomaly detection. 

Modelling Assumptions 

LOF assumes that normal data points reside in high-density clusters, while anomalies appear 

in sparser regions. It requires scaled, numerical features, no missing values, and is sensitive 

to the choice of distance metric and neighborhood size.  
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Test Design 

Model was applied independently to each Store–Dept series. A 5-fold TimeSeriesSplit was 

applied across the full dataset, where each fold trains on past observations and tests on future 

data, preserving temporal causality. The LOF model was refit in each fold using only past 

data to predict on unseen future windows. Model results are evaluated against injected 

anomalies in both the Fair and Full windows using precision, recall, and F1 score. This 

approach ensures robust validation without look-ahead, aligning with the temporal structure 

of the data. 

Parameter Setting 

The best F1 results in Full window were achieved with n_neighbors = 20, contamination = 

0.02, metric = minkowski, and novelty = false. Final input features were residual_scaled, 

unemployment_scaled, and cpi_scaled. 

Model Assessment 

Under the best parameter settings, on Prophet decomposed residuals, results depicted in 

Table 5.6 Local Outlier Factor Anomaly Detection Model Best Results achieved Full F1 of 

0.0099. This model finished 12th across all anomaly detection models. The runtime was 8.90  

seconds. This model was not selected for the final ensemble. 

Table 5.6 

Local Outlier Factor Anomaly Detection Model Best Results 

Window F1 Precision Recall 

Fair 0.0044 0.0034 0.0063 

Full 0.0099 0.0051 0.1594 

 

Note: Table created by the author based on the created dataset. 
 
Model Refinement and Observations 
LOF was tuned by varying n_neighbors (5, 10, 20, 30), contamination levels (0.01, 0.02), and 

distance metrics (minkowski, manhattan). Initial runs used core features (residual_scaled, 

has_markdown, is_holiday), followed by broader multivariate inputs including cpi_scaled, 

unemployment_scaled, fuel_price_scaled, and temperature_scaled. 

5.3.6​ HDBSCAN Anomaly Detection Model 

The following section documents the application of HDBSCAN anomaly detection. 

Modelling Assumptions 

HDBSCAN assumes that normal data forms dense, hierarchically clusterable regions, and 

anomalies occur as sparse or noisy points that do not belong to any stable cluster. It requires 
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continuous, scaled input data and does not support missing values or categorical features. It 

requires no assumptions about data stationarity or distribution.  

Test Design 

Model was applied independently to each Store–Dept series. A 5-fold TimeSeriesSplit was 

applied across the full dataset, where each fold trains on past observations and tests on future 

data, preserving temporal causality. The HDBSCAN model was refit in each fold using only 

past data to predict on unseen future windows. Model results are evaluated against injected 

anomalies in both the Fair and Full windows using precision, recall, and F1 score. This 

approach ensures robust validation without look-ahead, aligning with the temporal structure 

of the data. 

Parameter Setting 

The best F1 results in Full window were achieved with min_cluster_size = 10, min_samples = 

1, metric = euclidean, and cluster_selection = eom. Final input features were residual_scaled, 

has_markdown, is_holiday, unemployment_scaled, cpi_scaled, and temperature_scaled. 

Model Assessment 

Under the best parameter settings, on Prophet decomposed residuals, results depicted in 

Table 5.7 HDBSCAN Anomaly Detection Model Best Results achieved Full F1 of 0.0280. This 

model finished 6th across all anomaly detection models. The runtime was 73.33  seconds. 

This model was selected for the final ensemble. 

Table 5.7 

HDBSCAN Anomaly Detection Model Best Results 

Window F1 Precision Recall 

Fair 0.0238 0.0121 0.6907 

Full 0.0280 0.0143 0.6900 

 

Note: Table created by the author based on the created dataset. 
 
Model Refinement and Observations 
Initial attempts with non-hierarchical DBSCAN on residual_scaled failed due to extreme 

runtimes and scalability issues. HDBSCAN was then tuned by varying min_cluster_size (10, 

15, 20, 25, 30, 40), min_samples (1, 5, 7, 10), and cluster selection methods (eom, leaf). Early 

runs used core features (residual_scaled, has_markdown, is_holiday); later ones added 

economic signals (cpi_scaled, unemployment_scaled, temperature_scaled). Euclidean and 

Manhattan metrics were tested. 

5.3.7​ One-Class SVM Anomaly Detection Model 

The following section documents the application of OCSVM anomaly detection. 
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Modelling Assumptions 

One-Class SVM assumes that anomalies lie outside a compact, high-density region of normal 

data and can be separated from it by a hyperplane in a transformed feature space. It assumes 

the distribution of normal data is relatively stable. OCSVM assumes no missing values. 

Test Design 

Model was applied independently to each Store–Dept series. A 5-fold TimeSeriesSplit was 

applied across the full dataset, where each fold trains on past observations and tests on future 

data, preserving temporal causality. The OCSVM model was refit in each fold using only past 

data to predict on unseen future windows. Model results are evaluated against injected 

anomalies in both the Fair and Full windows using precision, recall, and F1 score. This 

approach ensures robust validation without look-ahead, aligning with the temporal structure 

of the data. 

Parameter Setting 

The best F1 results in Full window were achieved with kernel = 20, nu = 0.03, and gamma = 

scale. Final input features were residual_scaled, unemployment_scaled, cpi_scaled, and 

temperature_scaled. 

Model Assessment 

Under the best parameter settings, on Prophet decomposed residuals, results depicted in 

Table 5.8 OCSVM Anomaly Detection Model Best Results achieved Full F1 of 0.0091. This 

model finished 13th across all anomaly detection models. The runtime was 1130.6 seconds. 

This model was not selected for the final ensemble. 

Table 5.8 

OCSVM Anomaly Detection Model Best Results 

Window F1 Precision Recall 

Fair 0.0098 0.0056 0.0381 

Full 0.0091 0.0052 0.0361 

 

Note: Table created by the author based on the created dataset. 
 
Model Refinement and Observations 
OCSVM was refined through a series of tuning experiments. Both linear and rbf kernels were 

tested, with nu values of 0.01 and 0.03, and gamma set to either scale or auto. Due to high 

computational time, initial runs used a 0.2 subsample, but were excluded from comparison. 

Various feature sets were tested from residual_scaled only to a multivariate set of 

residual_scaled, cpi_scaled, unemployment_scaled, and temperature_scaled. 
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5.3.8​ Bayesian Change Point Detection Anomaly Detection Model 

The following section documents the application of BCPD anomaly detection. 

Modelling Assumptions 

BCPD assumes that time series exhibit regime shifts, sustained changes in mean or trend, 

rather than isolated outliers. The method also assumes enough continuity and variance in the 

input series. It requires complete data without missing values and no categorical inputs. 

Test Design 

BCPD was applied independently to each Store–Dept series using the full residual sequence. 

The method processes data sequentially, updating change point probabilities based only on 

past and current observations, thereby preserving temporal causality. Model results are 

evaluated against injected anomalies in both the Fair and Full windows using precision, 

recall, and F1 score. This approach ensures robust validation without look-ahead, aligning 

with the temporal structure of the data. 

Parameter Setting 

The best F1 results in Full window were achieved with model = l2 and penalty = 7. Final input 

feature was only residual_scaled. 

Model Assessment 

Under the best parameter settings, on Prophet decomposed residuals, results depicted in 

Table 5.9 BCPD Anomaly Detection Model Best Results achieved Full F1 of 0.0101. This 

model finished 11th across all anomaly detection models. The runtime was 31.5 seconds. This 

model was not selected for the final ensemble. 

Table 5.9 

BCPD Anomaly Detection Model Best Results 

Window F1 Precision Recall 

Fair 0.0090 0.0060 0.0179 

Full 0.0101 0.0071 0.0176 

 

Note: Table created by the author based on the created dataset. 
 
Model Refinement and Observations 
BCPD was implemented using the Binary Segmentation (Binseg) algorithm from the ruptures 

library, with the L2 cost function as the primary model. Tuning focused on the penalty 

parameter, which controls the sensitivity of change point detection: values of 3, 5, 7, and 10 

were tested. Most runs used only residual_scaled as input, while one multivariate variant 

incorporated economic features (cpi_scaled, unemployment_scaled, temperature_scaled). 

Additional experiments explored the RBF model, but L2 consistently yielded better results.  
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5.3.9​ Mahalanobis Distance Anomaly Detection Model 

The following section documents the application of Mahalanobis distance anomaly detection. 

Modelling Assumptions 

This method assumes that normal points follow a multivariate distribution with measurable 

covariance, and that anomalies deviate significantly from the distribution center. It is 

sensitive to feature scaling and correlation structure. 

Test Design 

Model was applied independently to each Store–Dept series. A 5-fold TimeSeriesSplit was 

applied across the full dataset, where each fold trains on past observations and tests on future 

data, preserving temporal causality. The Mahalanobis model was refit in each fold using only 

past data to predict on unseen future windows. Model results are evaluated against injected 

anomalies in both the Fair and Full windows using precision, recall, and F1 score. This 

approach ensures robust validation without look-ahead, aligning with the temporal structure 

of the data. 

Parameter Setting 

The best F1 results in Full window were achieved with threshold = 0.99 and estimator = 

MinCovDet. Final input features were residual_scaled, has_markdown, and is_holiday 

Model Assessment 

Under the best parameter settings, on Prophet decomposed residuals, results depicted in 

Table 5.10 Mahalanobis Distance Anomaly Detection Model Best Results achieved Full F1 of 

0.0451. This model finished 4th across all anomaly detection models. The runtime was 77.46 

seconds. This model was selected for the final ensemble. 

Table 5.10 

Mahalanobis Distance Anomaly Detection Model Best Results 

Window F1 Precision Recall 

Fair 0.0547 0.0771 0.0424 

Full 0.0451 0.0495 0.0413 

 

Note: Table created by the author based on the created dataset. 
 
Model Refinement and Observations 
Tuning involved systematically comparing multiple covariance estimators (MinCovDet, 

EmpiricalCovariance, LedoitWolf, and OAS) to assess their robustness under multivariate 

noise. Various feature sets were tested from residual_scaled, has_markdown, is_holiday, 

cpi_scaled, and unemployment_scaled. Thresholds were adjusted from 0.99 to 0.995. 

57 



 

5.3.10​ Gaussian Mixture Model Anomaly Detection Model 

The following section documents the application of Gaussian Mixture Model anomaly 

detection. 

Modelling Assumptions 

GMM assumes the data is generated from a mixture of multiple Gaussian distributions, and 

that anomalies correspond to points with low likelihood under the fitted mixture. It requires 

complete and continuous input features. 

Test Design 

Model was applied independently to each Store–Dept series. A 5-fold TimeSeriesSplit was 

applied across the full dataset, where each fold trains on past observations and tests on future 

data, preserving temporal causality. The GMM model was refit in each fold using only past 

data to predict on unseen future windows. Model results are evaluated against injected 

anomalies in both the Fair and Full windows using precision, recall, and F1 score. This 

approach ensures robust validation without look-ahead, aligning with the temporal structure 

of the data. 

Parameter Setting 

The best F1 results in Full window were achieved with n_components = 4, covariance  = full, 

and threshold = 0.01. Final input features were residual_scaled, has_markdown, is_holiday, 

and cpi_scaled. 

Model Assessment 

Under the best parameter settings, on Prophet decomposed residuals, results depicted in 

Table 5.11 GMM Anomaly Detection Model Best Results achieved Full F1 of 0.0216. This 

model finished 7th across all anomaly detection models. The runtime was 59.92 seconds. This 

model was selected for the final ensemble. 

Table 5.11 

GMM Anomaly Detection Model Best Results 

Window F1 Precision Recall 

Fair 0.0255 0.0314 0.0213 

Full 0.0216 0.0238 0.0198 

 

Note: Table created by the author based on the created dataset. 
 
Model Refinement and Observations 
During GMM tuning, several key parameters were varied to evaluate their impact on anomaly 

detection performance. The number of components (n_components) was tested at values 3, 

4, and 5 to balance model complexity and overfitting risk. Both full and diag covariance 
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structures were explored. A regularization term (reg_covar = 1e-3) was introduced to 

stabilize estimates in full-covariance settings. Threshold strategies included thresholds (e.g., 

<0.01, <0.05) and test runs without thresholding that stored raw log-likelihood scores. Initial 

experiments used only residual_scaled, has_markdown, and is_holiday as features, while 

later runs expanded inputs to include cpi_scaled.  

5.3.11​ Plain Autoencoder Anomaly Detection Model 

The following section documents the application of Plain Autoencoder anomaly detection. 

Modelling Assumptions 

The model assumes that normal patterns in the input features can be compactly 

reconstructed through a lower-dimensional latent space, while anomalies cause larger 

reconstruction errors. It requires complete data without missing values and assumes a 

consistent feature scale and distribution. 

Test Design 

Model was applied independently to each Store–Dept series. A 5-fold TimeSeriesSplit was 

applied across the full dataset, where each fold trains on past observations and tests on future 

data, preserving temporal causality. The Autoencoder model was refit in each fold using only 

past data to predict on unseen future windows. Model results are evaluated against injected 

anomalies in both the Fair and Full windows using precision, recall, and F1 score. This 

approach ensures robust validation without look-ahead, aligning with the temporal structure 

of the data. 

Parameter Setting 

The best F1 results in the Full window were achieved using a plain feedforward autoencoder 

with a symmetric architecture: two dense ReLU-activated layers in both the encoder and 

decoder, and a linear activation in the output layer. The model used a latent dimension = 4 

and sequence length = 7. Training was performed for 10 epochs with a batch size of 64 using 

the Adam optimizer and mean squared error (MSE) loss. Anomalies were identified using a 

90th percentile threshold on the reconstruction error. Final input features included 

residual_scaled, has_markdown, is_holiday, and cpi_scaled. 

Model Assessment 

Under the best parameter settings, on Prophet decomposed residuals, results depicted in 

Table 5.12 Plain Autoencoder Anomaly Detection Model Best Results achieved Full F1 of 

0.0128. This model finished 8th across all anomaly detection models. The runtime was 725.1 

seconds. This model was not selected for the final ensemble. 

 

59 



 

Table 5.12 

Plain Autoencoder Anomaly Detection Model Best Results 

Window F1 Precision Recall 

Fair 0.0131 0.0073 0.0886 

Full 0.0128 0.0069 0.0884 

 

Note: Table created by the author based on the created dataset. 
 
Model Refinement and Observations 
Multiple configurations were tested by varying the latent dimension (2, 4, 8), sequence length 

(5, 7, 14), batch size (32, 64), and number of training epochs (10, 25, 50), while consistently 

using MSE loss and the Adam optimizer. Input features were incrementally expanded 

starting from residual_scaled and progressively including has_markdown, is_holiday, 

cpi_scaled, fuel_price_scaled, and unemployment_scaled to evaluate multivariate 

sensitivity. Thresholds on reconstruction error were set using quantile-based methods, with 

the 90th percentile yielding the best results. 

5.3.12​ Variational Autoencoder Anomaly Detection Model 

The following section documents the application of Variational Autoencoder anomaly 

detection. 

Modelling Assumptions 

The model assumes that normal data lies near a continuous latent distribution learned during 

training, and that anomalies deviate from this space and yield higher reconstruction errors. It 

assumes a roughly smooth underlying data distribution and complete input features without 

missing values. 

Test Design 

Model was applied independently to each Store–Dept series. A 5-fold TimeSeriesSplit was 

applied across the full dataset, where each fold trains on past observations and tests on future 

data, preserving temporal causality. The Variational Autoencoder model was refit in each fold 

using only past data to predict on unseen future windows. Model results are evaluated 

against injected anomalies in both the Fair and Full windows using precision, recall, and F1 

score. This approach ensures robust validation without look-ahead, aligning with the 

temporal structure of the data. 

Parameter Setting 

The best F1 results in the Full window were achieved using a variational autoencoder with a 

symmetric architecture: two dense layers with ReLU (rectified linear unit) activation in both 

the encoder and decoder, followed by a latent sampling layer. The decoder ended with a 

linear output layer. The model used a latent dimension of 4. It was trained for 10 epochs with 
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a batch size of 64 using the Adam optimizer. The loss function combined MSE with KL 

(Kullback–Leibler) divergence to regularize the latent space. Anomalies were identified using 

a 0.95 quantile threshold on reconstruction error. Final input features included 

residual_scaled, has_markdown, is_holiday, and cpi_scaled. 

Model Assessment 

Under the best parameter settings, on Prophet decomposed residuals, results depicted in 

Table 5.13 Variational Autoencoder Anomaly Detection Model Best Results achieved Full F1 

of 0.0121. This model finished 9th across all anomaly detection models. The runtime was 

138.24 seconds. This model was not selected for the final ensemble. 

Table 5.13 

Variational Autoencoder Anomaly Detection Model Best Results 

Window F1 Precision Recall 

Fair 0.0144 0.0088 0.0433 

Full 0.0121 0.0073 0.0363 

 

Note: Table created by the author based on the created dataset. 
 
Model Refinement and Observations 
Tuning for the variational autoencoder involved systematic variation of key hyperparameters. 

Latent dimensionality was tested at values of 32, 16, and 4. Thresholds on reconstruction 

error were evaluated at both 0.99 and 0.95. The batch size was fixed at 64 and the Adam 

optimizer was used consistently across all runs. Input features were expanded incrementally, 

starting from a minimal set (residual_scaled, has_markdown, is_holiday) and later including 

cpi_scaled, which contributed to better anomaly detection performance. 

5.3.13​ LSTM Autoencoder Anomaly Detection Model 

The following section documents the application of Long Short-Term Memory Autoencoder 

anomaly detection. 

Modelling Assumptions 

The model assumes that normal temporal sequences of multivariate features can be 

accurately reconstructed, and that anomalies produce higher reconstruction error due to 

temporal deviation. It assumes meaningful sequence structure and no missing values in the 

input data. 

Test Design 

Model was applied independently to each Store–Dept series. A 5-fold TimeSeriesSplit was 

applied across the full dataset, where each fold trains on past observations and tests on future 

data, preserving temporal causality. The LSTM Autoencoder model was refit in each fold 

61 



 

using only past data to predict on unseen future windows. Model results are evaluated 

against injected anomalies in both the Fair and Full windows using precision, recall, and F1 

score. This approach ensures robust validation without look-ahead, aligning with the 

temporal structure of the data. 

Parameter Setting 

The LSTM autoencoder followed a sequence-to-sequence design, where input sequences were 

passed through an encoder LSTM layer with ReLU activation and transformed into a 

fixed-length representation. A RepeatVector layer ensured that the decoder received the 

appropriate sequence length. The decoder consisted of an LSTM layer followed by a 

TimeDistributed dense layer with a linear activation function to reconstruct the input. The 

model was trained using the Adam optimizer and MSE loss. Input data was processed as 

rolling sequences over time within each Store–Dept group. Anomalies were identified using a 

0.95 quantile threshold on reconstruction error. 

Model Assessment 

Although extensive tuning and optimization were attempted, no LSTM Autoencoder run was 

able to complete on the full dataset in a comparative setting alongside other models. This was 

true for all decomposition sources, Prophet, STL, and TimeGPT, as each run was eventually 

interrupted by the kernel after tens of minutes of execution. 

Model Refinement and Observations 
 
In earlier non-comparative runs, a series of tuning experiments were conducted to identify 

optimal parameters for the LSTM Autoencoder. Key hyperparameters tested included 

sequence length (5, 10, and 20), hidden units (64 and 128), number of epochs (5, 10, and 20), 

and batch size (64 and 128). All runs used the Adam optimizer with MSE loss. Input features 

varied across configurations, including both minimal sets (residual_scaled, has_markdown, 

is_holiday) and extended markdown inputs (economical factors and markdown_1 to 

markdown_5).  

5.3.14​ Transformer Autoencoder Anomaly Detection Model 

The following section documents the application of Transformer Autoencoder anomaly 

detection. 

Modelling Assumptions 

The model assumes that attention-based mechanisms can capture long-range temporal 

dependencies in multivariate sequences and reconstruct normal patterns effectively. 

Anomalies are expected to cause reconstruction errors due to disruption of attention weights. 

It assumes sequential data with consistent structure and no missing values. 
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Test Design 

Model was applied independently to each Store–Dept series. A 5-fold TimeSeriesSplit was 

applied across the full dataset, where each fold trains on past observations and tests on future 

data, preserving temporal causality. The Transformer Autoencoder model was refit in each 

fold using only past data to predict on unseen future windows. Model results are evaluated 

against injected anomalies in both the Fair and Full windows using precision, recall, and F1 

score. This approach ensures robust validation without look-ahead, aligning with the 

temporal structure of the data. 

Parameter Setting 

The best F1 results in the Full window were achieved using a transformer-based autoencoder 

with a single transformer encoder block. The architecture included multi-head self-attention, 

residual skip connections, feedforward dense layers with ReLU activation, and layer 

normalization. The model received static input vectors (sequence length = 1) and 

reconstructed them through a final dense output layer. It was trained for 10 epochs with a 

batch size of 64 using the Adam optimizer and MSE loss. Anomalies were identified using a 

95th percentile threshold on the reconstruction error. Final input features included 

residual_scaled, has_markdown, is_holiday, and cpi_scaled. 

Model Assessment 

Under the best parameter settings, on TimeGPT decomposed residuals, results depicted in 

Table 5.14 Transformer Autoencoder Anomaly Detection Model Best Results achieved Full 

F1 of 0.0110. This model finished 10th across all anomaly detection models. The runtime was 

778.90 seconds. This model was not selected for the final ensemble. 

Table 5.14 

Transformer Autoencoder Anomaly Detection Model Best Results 

Window F1 Precision Recall 

Fair 0.0137 0.0075 0.0937 

Full 0.0110 0.0059 0.0878 

 

Note: Table created by the author based on the created dataset. 
 
Model Refinement and Observations 
The Transformer Autoencoder was tuned across several dimensions. Sequence length was 

tested at 5, and latent dimension at 64 in earlier exploratory runs. Later configurations 

included 10 to 30 epochs and batch sizes of 64 and 128. Both MSE and Huber (SmoothL1) 

loss functions were tested with the Adam optimizer. Thresholds for anomaly detection were 

varied between the 90th and 95th percentiles of reconstruction error. The input features 

remained consistent: residual_scaled, has_markdown, is_holiday, and cpi_scaled. 
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5.3.15​ TCN Autoencoder Anomaly Detection Model 

The following section documents the application of TCN Autoencoder anomaly detection. 

Modelling Assumptions 

The model assumes that normal temporal patterns can be reconstructed using dilated causal 

convolutions, and that anomalies disrupt local or multi-scale temporal filters, leading to 

higher reconstruction errors. It assumes fixed-length sequences, consistent time intervals, 

and no missing values. 

Test Design 

Model was applied independently to each Store–Dept series. A 5-fold TimeSeriesSplit was 

applied across the full dataset, where each fold trains on past observations and tests on future 

data, preserving temporal causality. The TCN Autoencoder model was refit in each fold using 

only past data to predict on unseen future windows. Model results are evaluated against 

injected anomalies in both the Fair and Full windows using precision, recall, and F1 score. 

This approach ensures robust validation without look-ahead, aligning with the temporal 

structure of the data. 

Parameter Setting 

The best F1 results in the Full window were achieved using a TCN autoencoder with two 

stacked 1D convolutional layers with ReLU activation in the encoder, followed by a symmetric 

decoder composed of two transposed convolutional layers. The architecture operated on 

sequences of length 5, constructed from residual-scaled features over time. The latent 

representation was flattened to a 32-dimensional vector before reconstruction. The model 

was trained for 5 epochs with a batch size of 128 using the Adam optimizer and MSE loss. 

Anomalies were identified using a 99th percentile threshold on the reconstruction error. 

Final input features included residual_scaled, markdown_1 to markdown_5, and is_holiday. 

Model Assessment 

Under the best parameter settings, on TimeGPT decomposed residuals, results depicted in 

Table 5.15 TCN Autoencoder Anomaly Detection Model Best Results achieved Full F1 of 

0.0082. This model finished 14th across all anomaly detection models. The runtime was 

112.01 seconds. This model was not selected for the final ensemble. 

Table 5.15 

TCN Autoencoder Anomaly Detection Model Best Results 

Window F1 Precision Recall 

Fair 0 0 0 

Full 0.0082 0.0083 0.0081 

 

Note: Table created by the author based on the created dataset. 
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Model Refinement and Observations 
The TCN Autoencoder was tuned across sequence lengths (5, 10, 14), latent dimensions (16, 

32), and loss functions (Huber and MSE). Early runs tested long training configurations (30 

epochs) with Huber loss, followed by aggressive reductions in epochs (down to 1) to manage 

runtime. Latent dimension was varied to test model capacity, and the batch size was 

consistently held at 128. Input features ranged from residual-only to extended multivariate 

inputs including markdowns and holidays. Features ranged from residual_scaled to the full 

feature set including markdown_1–5. 

5.3.16​ Deep SVDD Anomaly Detection Model 

The following section documents the application of Deep SVDD Autoencoder anomaly 

detection. 

Modelling Assumptions 

The method assumes that normal data points cluster tightly in a learned feature space, and 

that anomalies lie further from this compact hypersphere. It assumes access to mostly normal 

training data, consistent input scale, and no missing values. It makes no explicit 

distributional assumptions but relies on structural compactness. 

Test Design 

Model was applied independently to each Store–Dept series. A 5-fold TimeSeriesSplit was 

applied across the full dataset, where each fold trains on past observations and tests on future 

data, preserving temporal causality. The Deep SVDD model was refit in each fold using only 

past data to predict on unseen future windows. Model results are evaluated against injected 

anomalies in both the Fair and Full windows using precision, recall, and F1 score. This 

approach ensures robust validation without look-ahead, aligning with the temporal structure 

of the data. 

Parameter Setting 

The best F1 results in the Full window were achieved using a Deep SVDD model with a 

feedforward encoder architecture composed of three dense layers: 64, 32, and 8 neurons 

respectively, all with ReLU activation except for the final latent layer. The model operated on 

flattened sequences of 7 time steps across 6 input features, resulting in input vectors of length 

42. After initializing a hypersphere center from the latent embeddings, the model was trained 

for 10 epochs with a batch size of 64 using the Adam optimizer. The custom loss minimized 

the distance between predictions and the hypersphere center, encouraging compact 

representations. Anomalies were identified using a 95th percentile threshold on the squared 

distance from the center. Final input features included residual_scaled, has_markdown, 

is_holiday, cpi_scaled, fuel_price_scaled, and unemployment_scaled. 
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Model Assessment 

Under the best parameter settings, on TimeGPT decomposed residuals, results depicted in 

Table 5.16 Deep SVDD Anomaly Detection Model Best Results achieved Full F1 of 0.0071. 

This model finished 15th across all anomaly detection models. The runtime was 631.71 

seconds. This model was not selected for the final ensemble. 

Table 5.16 

Deep SVDD Anomaly Detection Model Best Results 

Window F1 Precision Recall 

Fair 0.0084 0.0044 0.091 

Full 0.0071 0.0043 0.0216 

 

Note: Table created by the author based on the created dataset. 
 
Model Refinement and Observations 
Tuning explored multiple aspects: the anomaly threshold was varied between the 90th and 

95th percentile; training duration was extended from 10 to 30 epochs; dropout was added to 

reduce overfitting; and the model center was recompiled after training to improve scoring 

stability. All runs used a fixed encoder structure (64 → 32 → 8) over flattened temporal 

windows and a consistent batch size of 64. 

5.4​ Ensemble Anomaly Detection Methods 

To overcome the limitations of individual models this section evaluates ensemble strategies, 

ranging from simple logic-based unions to a supervised meta-classifier, designed to combine 

the strengths of multiple methods and deliver more robust anomaly detection in a complex 

retail setting. Anomaly detection models summarized in table 5.17 Best Performing Anomaly 

Detection Models were chosen based on Full window F1 and are used in following ensembles. 

Table 5.17 

Best Performing Anomaly Detection Models 

Model F1 Precision Recall 

KNN 0.0852 0.0716 0.1049 

Threshold 0.0652 0.0339 0.8497 

Mahalanobis 0.0451 0.0495 0.0413 

Isolation Forest 0.0357 0.0325 0.0397 

HDBSCAN 0.0280 0.0143 0.6900 

GMM 0.0216 0.0238 0.0198 

 

GMM = Gaussian Mixture Model, HDBSCAN = Hierarchical Density-Based Spatial Clustering of Applications with Noise, KNN = K-Nearest Neighbors.​
Note: Table created by the author based on the created dataset. 

66 



 

 

The best results in ensemble anomaly detection were achieved by first combining high-recall 

models to maximize detection coverage, followed by a tailored “business shave” step that 

filters results using domain-informed criteria to boost precision — yielding a final detection 

set that captures both injected anomalies (true positives) and plausible real-world anomalies, 

aligned with business relevance (false positives). 

5.4.1​ Soft Union Ensemble Strategy 

The following section presents the Soft Union strategy, which combines the outputs of 

multiple anomaly detection models using a logical OR operation to maximize recall.  

Modelling Assumptions 

It was assumed that different anomaly detection models would capture different aspects of 

the data structure, and that their combination would minimize false negatives. All models 

were applied independently before aggregation. 

Test Design 

Model results are evaluated against injected anomalies only in Full window using precision, 

recall, and F1 score. 

Parameter Setting 

The best recall was achieved with all six models unified using simple OR logical parameter. 

Model Assessment 

As depicted in Table 5.18 Soft Union Ensemble Runs Performance, the best recall of 0.9355 

was achieved by unioning all six models. The runtime was only 0.2 seconds. This method is 

further combined with the “business shave” strategy for precision and business relevance. 

Table 5.18 

Soft Union Ensemble Runs Performance 

Ensemble Setting F1 Precision Recall Time 

Soft Union 1 

KNN 

Threshold 

Mahalanobis 

0.0650 0.0338 0.8550 0.1s 

Soft Union 2 

KNN 

Threshold 

Mahalanobis 

Isolation Forest 

HDBSCAN 

GMM 

0.0307 0.0156 0.9355 0.2s 

GMM = Gaussian Mixture Model, HDBSCAN = Hierarchical Density-Based Spatial Clustering of Applications with Noise, KNN = K-Nearest Neighbors.​
Note: Table created by the author based on the created dataset. 
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Model Refinement and Observations 
 
Two settings were tested — three best performing and all six best performing anomaly 

detection models. Naturally, combining all models yielded the highest recall.  

 

To analyze how various models contribute to detecting injected anomalies, Figure 5.6 True 

Positives Overlap Heatmap was constructed. It clearly shows that Thresholding and 

HDBSCAN, the two models with the highest recall, identify the largest share of true positives. 

 

Figure 5.6  

True Positives Overlap Heatmap 

 

Note: Figure created by the author based on the created dataset. 

As shown in Table 5.19 Unique True Positives per Model, it may be tempting to discard 

models like GMM, KNN, Mahalanobis, and especially Isolation Forest due to their lower 

standalone contribution. However, their inclusion is justified by their minimal runtimes and 

their complementary detection mechanisms. While they may not have captured many 

anomalies in this dataset, their unique strengths could prove valuable under different 

anomaly types or data distributions, preserving ensemble robustness. 
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Table 5.19 

Unique True Positives per Model 

Model Unique TP 

Threshold 903 

HDBSCAN 321 

KNN 6 

GMM 5 

Mahalanobis 2 

Isolation Forest 0 

 

GMM = Gaussian Mixture Model, HDBSCAN = Hierarchical Density-Based Spatial Clustering of Applications with Noise, KNN = K-Nearest Neighbors, TP = True 

Positives.​
Note: Table created by the author based on the created dataset. 

5.4.2​ Weighted Ensemble Strategy 

The following section presents the Weighted Voting ensemble, which aggregates the outputs 

of multiple anomaly detection models using weighted contributions and a voting threshold to 

balance detection coverage and precision. 

Modelling Assumptions 

It was assumed that different anomaly detection models would capture different aspects of 

the data structure, and that their combination would minimize false negatives. All models 

were applied independently before aggregation. 

Test Design 

Model results are evaluated against injected anomalies only in Full window using precision, 

recall, and F1 score. 

Parameter Setting 

The highest recall was achieved by combining all six candidate anomaly detection models in a 

voting ensemble, where each model contributed one vote and anomalies were flagged when at 

least two models agreed. 

Model Assessment 

As shown in Table 5.20 Weighted Vote Ensemble Runs Performance, the best recall of 0.6417 

was achieved with a runtime of just 0.1 seconds. While this recall does not outperform the 

best soft union run, it offers a strong alternative in scenarios where business constraints 

require at least two models to agree on an anomaly candidate before applying the business 

shave. 
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Table 5.20 

Weighted Vote Ensemble Runs Performance 

Ensemble Setting Weights Threshold F1 Precision Recall Time 

Weighted Ensemble 1 

KNN 

Threshold 

Mahalanobis 

3 

2 

1 

4 0.0901 0.0809 0.1018 0.1s 

Weighted Ensemble 2 

KNN 

Threshold 

Mahalanobis 

Isolation Forest 

3 

2 

1 

1 

3 0.0932 0.0741 0.1255 0.1s 

Weighted Ensemble 3 

HDBSCAN 

Thresholding 

Isolation Forest 

GMM 

KNN 

Mahalanobis 

1 

1 

1 

1 

1 

1 

3 0.0894 0.0746 0.1115 0.1s 

Weighted Ensemble 4 

HDBSCAN 

Thresholding 

Isolation Forest 

GMM 

KNN 

Mahalanobis 

1 

1 

1 

1 

1 

1 

2 0.0810 0.0432 0.6417 0.1s 

GMM = Gaussian Mixture Model, HDBSCAN = Hierarchical Density-Based Spatial Clustering of Applications with Noise, KNN = K-Nearest Neighbors.​
Note: Table created by the author based on the created dataset. 

 
Model Refinement and Observations 
 
The weighted vote ensemble was tuned by adjusting both the weights assigned to each 

individual detector and the voting threshold required to classify an observation as 

anomalous. Initial runs tested unweighted combinations of 3 to 6 models, including KNN, 

Thresholding, Mahalanobis, Isolation Forest, GMM, and HDBSCAN. Subsequent 

experiments explored strategic weighting (e.g., emphasizing KNN or Thresholding) and 

reduced the consensus threshold from 4 to 2. This systematic tuning revealed that recall was 

maximized when all six models were weighted equally and a low threshold of 2 was used, 

allowing more potential anomalies to pass through. 

5.4.3​ LightGBM Meta-Classifier 

The following section presents the LightGBM meta-classifier, a supervised stacked ensemble 

designed to integrate outputs from multiple unsupervised anomaly detectors alongside key 

contextual features. 

Modelling Assumptions 

It was assumed that different anomaly detection models would capture different aspects of 

the data structure, and that their combination would minimize false negatives. All models 

were applied independently before aggregation. Anomaly class is well labeled. No missing 

values are preferred. 
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Test Design 

Applied globally, a 5-fold TimeSeriesSplit was applied across the full dataset, where each fold 

trains on past observations and tests on future data, preserving temporal causality. The 

meta-classifier model was refit in each fold using only past data to predict on unseen future 

windows. Model results are evaluated against injected anomalies only in Full window using 

precision, recall, and F1 score. 

Parameter Setting 

The highest recall was achieved by configuration which used all six base model outputs 

alongside contextual features and residual_scaled, and applied a probability threshold of 0.2 

with balanced class weighting to maximize sensitivity. 

Model Assessment 

As shown in Table 5.21 Meta-Classifier Runs Performance, the best recall of 0.7119 was 

achieved with a runtime of 38.0 seconds. While this recall does not outperform the top soft 

union run, it offers a strong alternative in business scenarios where labeled anomalies are 

available and a supervised learning approach is preferred. 

Table 5.21 

Meta-Classifier Runs Performance 

Ensemble Setting Predict 

Proba 

Class​
Weighting 

F1 Precision Recall Time 

Meta-Classifier 1 

residual_scaled​
is_holiday​
has_markdown 

HDBSCAN 

Thresholding 

Isolation Forest 

GMM 

KNN 

Mahalanobis 

≥ 0.3 balanced 0.1450 0.0811 0.6844 38.0s 

Meta-Classifier 2 

residual_scaled​
is_holiday​
has_markdown 

HDBSCAN 

Thresholding 

Isolation Forest 

GMM 

KNN 

Mahalanobis 

≥ 0.4 balanced 0.1596 0.0909 0.6545 38.0s 

Meta-Classifier 3 

residual_scaled​
is_holiday​
has_markdown 

HDBSCAN 

Thresholding 

Isolation Forest 

GMM 

KNN 

Mahalanobis 

≥ 0.2 balanced 0.1264 0.0693 0.7119 38.0s 

GMM = Gaussian Mixture Model, HDBSCAN = Hierarchical Density-Based Spatial Clustering of Applications with Noise, KNN = K-Nearest Neighbors.​
Note: Table created by the author based on the created dataset. 
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Model Refinement and Observations 
 
Tuning focused on varying the prediction threshold (0.2–0.4) and applying 

class_weight='balanced' to handle label imbalance. Earlier runs tested different class 

weightings, thresholds, and additional feature combinations, and insights from those were 

used to select the final settings shown here, balancing recall and precision through threshold 

adjustment. 

5.4.4​ Business Logic Post-Processing 

In this final modeling step, additional business-based post-processing is applied to refine 

anomaly detection outputs using realistic rules, ensuring greater precision without sacrificing 

recall of real anomalies. 

Modelling Assumptions 

The business logic post-processing step assumes that true business-relevant anomalies fall 

into two interpretable categories: unexpected spikes (high residuals without holidays or 

markdowns) and unexpected drops (low residuals during weeks with holidays or 

markdowns). It further assumes that a minimum sales impact is required for an anomaly to 

be considered meaningful, introducing a domain-specific relevance threshold. This approach 

preserves temporal causality by avoiding any lookahead operations — all decisions are made 

using information available at the current or prior time points only. 

Test Design 

Model results are evaluated against injected anomalies only in Full window using precision, 

recall, and F1 score. Furthermore, detailed visual and statistical analysis was performed to 

assess the results. 

Parameter Setting 

The best F1 was achieved with a financial threshold set at $5,000 and consistent rules to 

determine spikes (occurring at no holiday and no markdown week) and drops (occurring 

when either holiday or markdown event is present). 

Model Assessment 

As shown in Table 5.22 Business Logic Post-Processing Runs Performance, the best F1 of 

0.2011 was achieved with a runtime of 0.1s seconds. The threshold of $5,000 was selected for 

the final model. 
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Table 5.22 

Business Logic Post-Processing Runs Performance 

Ensemble Threshold F1 Precision Recall TP FP FN TN Time 

Business Logic 1 $5,000 0.2011 0.1402 0.3557 1,499 9,195 2,715 408,161 0.1s 

Business Logic 2 $10,000 0.1929 0.1970 0.1889 3,086 43,797 1,128 373,559 0.1s 

Business Logic 3 $1,000 0.1208 0.0658 0.7323 796 3,245 3,418 414,111 0.1s 

TP = True Positives, FP = False Positives, FN = False Negatives, TN = True Negatives.​
Note: Table created by the author based on the created dataset. 
 
Figure 5.7 Residual Distribution: FP vs FN after Business Post-Processing visualizes the 

distributions of residual values for false positives and false negatives using kernel density 

estimation. The y-axis labeled “Density” shows a probability density function normalized 

such that the area under each curve equals one. This allows for fair comparison of the shape 

and spread of the two distributions. The broader, heavy-tailed shape of false positives 

indicates that these model-flagged anomalies, while not part of the injected set, often 

involved large deviations from the forecast and may represent real, high-impact anomalies 

within the dataset. In contrast, false negatives are sharply concentrated around zero, 

suggesting they were minor deviations unlikely to trigger concern in practice. This supports 

the rationale behind applying a $5,000 residual threshold in the business logic step, which 

was designed to prioritize large, actionable anomalies over small injected ones that may not 

hold practical significance. 

Figure 5.7  

Residual Distribution: FP vs FN after Business Post-Processing 

​
FP = False Positives, FN = False Negatives,​
Note: Figure created by the author based on the created dataset. 

Visual inspection in Figure 5.8  Store 45, Dept 29: Soft Union Business Logic 

Post-Processing confirms that detected meaningful anomalies occur outside the ±$5,000 
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residual threshold, indicating that the method effectively captures meaningful deviations 

beyond expected variability. 

 

Figure 5.8  

Store 45 – Dept 29: Soft Union Business Logic Post-Processing 

​
Note: Figure created by the author based on the created dataset. 

Model Refinement and Observations 
 
In earlier iterations of the pipeline, both STD and ECDF thresholds were explored as 

candidates for the precision-enhancing “business shave” step. While these methods can be 

effective in retrospective anomaly scoring, they traditionally rely on global statistics 

computed over the full time series, rather than on data available up to the current timestep. 

Since both STD and ECDF inherently depend on the entire dataset to establish thresholds, 

they were deemed unsuitable for deployment-oriented detection. Instead, a domain-driven 

thresholding strategy was adopted, using fixed dollar-value cutoffs for weekly sales 

anomalies. Although the thesis performs retrospective evaluation, the detection logic was 

designed to be compatible with online deployment constraints. Three thresholds were tested: 

$10,000, $5,000, and $1,000. 

 

Moreover, the “business shave” step explicitly uses the thesis’s original definitions of 

unexpected spikes and unexpected drops, as these represent the only types of anomalies 

relevant to the targeted business use case. Spikes are defined as unusually high sales 

occurring in the absence of holidays or markdowns, while drops are defined as unusually low 

sales occurring during weeks that feature either a holiday or a markdown. These definitions 

align the anomaly detection process with real-world retail dynamics and ensure the filtered 

results are business-meaningful. 
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5.5​ Reconciliation Model 

In order to escalate anomalies from department level to store and national levels, a 

hierarchical reconciliation strategy was designed and tuned. This step ensures that local 

department anomalies can be meaningfully interpreted at broader business levels while 

maintaining focus on severe, business-relevant deviations. 

Anomalies confirmed at the department level were aggregated upward using a bottom-up, 

soft-voting reconciliation strategy. At each higher level, the proportion of underlying 

anomalies of each type (spikes and drops) was computed for every week. If at least a fixed 

percentage of underlying entities (departments within a store, or stores within the nation) 

exhibited spike-like or drop-like anomalies in the same week, the parent level was flagged 

accordingly. At the national level, if both spike and drop criteria were met in a given week, 

the signal was marked as a conflict, indicating ambiguity in the aggregate anomaly direction. 

Modelling Assumptions 

It is assumed that department-level anomalies detected after soft union and business logic 

post-processing represent a high-quality filtered signal. The model also assumes that sales 

are additive across levels. 

Test Design 

The reconciliation model is evaluated through both and the number of anomalies propagated 

to higher hierarchical levels and visual inspection of results. 

Parameter Setting 

The best results were achieved at reconciliation threshold of 0.05. 

Model Assessment 

The final reconciliation threshold of 5% was chosen as it maintained strong national-level 

signal retention (45 spikes, 38 drops) while substantially reducing the volume of store-level 

anomalies compared to more permissive thresholds (as shown in Figure 5.23 Reconciliation 

Runs Results), achieving balance between coverage and business interpretability. 

Table 5.23  

Reconciliation Runs Results 

Threshold Dept 

Spikes 

Dept ​
Drops 

Store 

Spikes 

Store 

Drops 

Store 

Conflicts 

National 

Spikes 

National 

Drops 

National 

Conflicts 

0.01 5,637 5,057 2,065 1,574 0 86 57 0 

0.05 5,637 5,057 435 407 0 45 38 0 

0.1 5,637 5,057 123 125 0 6 5 0 

Note: Table created by the author based on the created dataset. 
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Figure 5.9 Dept 29 – Store 45 confirms that the post-processed soft union method detects 

anomalies with business-relevant sales beyond the set threshold. 

Figure 5.9  

Store 45 – Dept 29 

​
Note: Figure created by the author based on the created dataset. 

In Figure 5.10 Store Level: Store 45, aggregated detections clearly surface identified 

anomalies from the lower department level. 

Figure 5.10  

Store Level: Store 45 

​
Note: Figure created by the author based on the created dataset. 

Finally, Figure 5.11 National Level demonstrates that the bottom-up reconciliation strategy 

surfaces only the most consistent and impactful patterns at the national level — yielding 

clear, interpretable anomalies aligned with macro-level deviations in weekly sales.  
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Figure 5.11  

National Level 

​
Note: Figure created by the author based on the created dataset. 

Together, these plots validate the robustness, business alignment, and hierarchical 

consistency of the entire detection pipeline. 

Model Refinement and Observations 
 
The reconciliation threshold was empirically tuned to balance anomaly coverage with signal 

quality across hierarchical levels. As shown in Table 5.23 Reconciliation Runs Results, 

lowering the threshold to 0.01 substantially increased the number of spikes and drops 

detected at the store and national levels but risked introducing noise. Conversely, higher 

threshold 0.1 significantly reduced detection rates, potentially overlooking meaningful 

patterns. A threshold of 0.05 was selected as the optimal compromise, offering sufficient 

national-level signals without overwhelming volume. For simplification and easier business 

understanding, the same threshold was eventually kept at both department and store level. 

5.6​ Interpretability Model 

To improve interpretability of individual anomaly detection models and assess feature 

influence across the pipeline, SHAP (SHapley Additive exPlanations) values were computed 

using a surrogate modeling strategy. Since many of the detection algorithms are not 

inherently explainable, a standard gradient boosting classifier was trained post-hoc for each 

method to approximate its prediction logic. SHAP-like values were then computed on this 

surrogate to estimate feature contributions. 
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To analyze feature importance systematically, a two-step aggregation process was applied: 

1.​ Per-model SHAP-like surrogate aggregation: For each model, the absolute mean 

SHAP-like values were computed separately for detected anomalies and 

non-anomalies. 

2.​ Global aggregation across models: To identify which base features contributed most 

consistently across all models, contributions were grouped by feature. Contributions 

were summed across models, yielding a global ranking of feature importance. 

Table 5.24 Aggregated Department Level SHAP-like Contributions by Feature summarizes 

the relative importance of input features in differentiating anomalies from normal points 

across the entire pipeline. The column Mean Absolute Contributor to Anomaly captures the 

average absolute SHAP-like value for each feature on records flagged as anomalies, indicating 

how strongly a feature contributed to the model’s decision in those cases. Conversely, Mean 

Absolute Contributor to Normal reflects the same metric on normal (non-anomalous) points. 

Contributor to Anomaly Store shows the signed difference between the two values and 

reveals the direction and magnitude of the feature’s overall shift toward anomaly detection. 

As expected, residual_scaled emerged as the most influential variable. Features like 

has_markdown, is_holiday, and cpi_scaled had moderate contribution scores to anomalous 

points, however, when compared with contribution to normal points, their impact was 

negative.  

Table 5.24  

Aggregated Department Level SHAP-like Contributions by Feature 

Feature Mean Absolute 

Contributor to Anomaly 

Mean Absolute 

Contributor to Normal 

Contributor to Anomaly 

Store 

residual_scaled 3.633311 3.292823 0.340488 

temperature_scaled 0.149606 0.165134 -0.015528 

is_holiday 0.649432 0.668787 -0.019355 

unemployment_scaled 0.275200 0.339871 -0.064671 

has_markdown 0.768487 0.859387 -0.090901 

cpi_scaled 0.523950 0.673979 -0.150028 

Note: Table created by the author based on the created dataset. 

 

This pipeline-level interpretability approach provided consistent insights across models, 

helping to demystify otherwise unclear detection logic. The resulting SHAP-like explanations 

can support business-facing anomaly summaries, improving user trust and facilitating 

informed decision-making. 
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5.7​ Chapter Summary 

First, across the three tested decomposition methods, Prophet consistently delivered the best 

anomaly detection results, with the highest F1 scores achieved across nearly all models. At 

the same time, runtime was very reasonable at 8 minutes. TimeGPT, although showing better 

results in two deep learning models, overall underperformed. This decomposition also ran for 

the longest time — over 30 minutes. STL decomposition was extremely quick, around 2 

minutes, but suffered greatly in quality due to incomplete years and its produced residuals 

underperformed in all models. As a result, Prophet decomposition was selected as the default 

base for downstream modeling and evaluation.  

Second, out of 16 tested anomaly detection models, only six models were selected for 

ensemble construction based on their F₁ scores exceeding 0.0200 and reasonable 

computational times: KNN, Thresholding, Mahalanobis, Isolation Forest, HDBSCAN, and 

GMM. Together, these models cover distance-based, density-based, probabilistic, statistical, 

and rule-based methods, ensuring diverse perspectives on anomaly formation and 

minimizing shared blind spots. Notably, none of the deep learning models tested surpassed 

these classical methods in terms of achieved accuracy or runtime. 

Third, three ensemble strategies were developed to combine the strengths of the base 

detectors: a soft union, a weighted voting ensemble, and a LightGBM meta-classifier. The soft 

union achieved the highest recall (0.9355) by flagging any data point detected by at least one 

of the six models, offering a simple and fast method for maximum anomaly coverage. This 

approach was chosen for the final pipeline and further post-processing step. The weighted 

voting ensemble enforced a stricter condition, requiring at least two models to agree, yielding 

lower recall (0.6417) but offering an alternative to business setting with needs for wider 

consensus before surfacing anomalies. The supervised LightGBM meta-classifier offered a 

third alternative, achieving a recall of 0.7119 using labeled injected anomalies. Though  

computationally more intensive, it provides a learnable, tunable solution where labeled data 

is available. Each ensemble serves a distinct role: soft union maximizes recall, weighted vote 

enforces cross-model agreement, and the meta-classifier tailors detection to hypothetical 

supervised settings. 

Fourth, to increase business relevance and improve precision, a final post-processing step, 

referred to as the “business shave”, was introduced. This stage filters anomalies based on a 

fixed magnitude threshold of $5,000 and contextual rules aligned with retail expectations. 

Specifically, spikes are retained only if they occur during non-holiday, non-markdown 

periods, while drops are kept only if they coincide with holidays or markdowns. The $5,000 

residual threshold ensures only substantial deviations are flagged, preventing minor 

fluctuations from cluttering the anomaly set, while maximizing interpretability of flagged 

anomalies. 

Fifth, following post-processing, anomalies were reconciled bottom-up to the store and 

national levels using a simple, interpretable aggregation strategy. At the store level, a spike 

(or drop) was confirmed if at least 5% of departments within that store exhibited a spike (or 

drop) in the same week after passing the business logic filters. At the national level, the same 

rule was applied: a week was flagged nationally if ≥5% of stores had a confirmed store-level 
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anomaly of the same type. This approach ensures that only coherent, distributed patterns are 

surfaced at higher levels, avoiding false alarms from isolated department-level signals. The 

5% threshold was applied consistently across levels to simplify business communication.​
​
Lastly, interpretability was integrated directly into the anomaly detection pipeline using 

surrogate models to provide SHAP-like explanations for each method. For every anomaly 

detection model, a gradient boosting classifier was trained post hoc to mimic the model's 

outputs, enabling SHAP-like contribution value computation over the original input features. 

These values were saved during detection and later aggregated to produce global 

interpretability insights. 

Throughout the entire pipeline, temporality is strictly preserved, with all models, evaluations, 

and post-processing steps using only past or current information at each time point — 

ensuring full compatibility with real-time deployment scenarios. 
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6​Business Use 

This chapter outlines how the developed anomaly detection pipeline can be applied in a real 

business context, focusing on generating managerial insights and outlining key 

considerations for deployment. 

6.1​ Managerial Summaries and Operational Insights 

The anomaly detection pipeline developed in this thesis transforms raw weekly retail data 

into actionable business information. Its primary business value lies in supporting 

higher-level decision-making and operational oversight. By surfacing statistically and 

contextually significant anomalies, the system enables retail managers to track emerging 

issues or unexpected trends and take appropriate action. This data-to-insight transformation 

aligns directly with the strategic goals of modern retail management: early awareness, 

operational agility, and data-driven response. 

Given the weekly cadence of the data, it is proposed that every Monday morning, each store 

manager receives an automatically generated summary of the past week's performance and 

anomalies. These summaries are designed to be concise, human-readable narratives that 

highlight unexpected spikes or drops in performance. For demonstration, this thesis used 

OpenAI API to generate such summaries using only data created by the pipeline. An example 

is provided in Figure 6.1 Managerial Summary: Store 45, Week 2011-12-02, illustrating how 

such communication could look in practice. 
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Figure 6.1  

Managerial Summary: Store 45, Week 2011-12-02 

​
Note: Figure created by the  author based on the created dataset. 

To complement the summaries and build managerial trust, interactive dashboards, although 

out of scope in this thesis, would be expected to be built. These dashboards allow business 

users to drill down from national and store-level anomalies, explore affected departments, 

and inspect detailed metadata for each detected deviation. This combination of proactive 

reporting and transparent visual exploration ensures the system serves not just as an alerting 

tool but as a practical assistant to human decision-makers. 

Depending on the managerial level and organizational hierarchy, this reporting framework 

can be tailored to serve not only individual store managers, but also department-level 

supervisors, regional directors, national operations leaders, and even financial controllers 

monitoring sales performance across the chain. 
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6.2​ Deployment 

While the pipeline developed in this thesis is ready to detect business-meaningful anomalies 

using only unsupervised models, deploying it in practice requires important adaptations. 

First, the injection logic used for benchmarking must be removed, preserving only the 

detection components. Since all final models are unsupervised, this transition is feasible 

without retraining or requiring labeled data. 

If the company has access to daily-level data or lower hierarchies (e.g., product or SKU level), 

the pipeline can be extended to that granularity. Doing so would yield even more actionable 

and localized insights, helping managers intervene with higher precision. 

To support production use, the pipeline should be redesigned for incremental operation — 

rather than reprocessing all historical data weekly, it should append new weekly observations 

to the existing output. This would improve runtime efficiency and align more closely with 

real-time decision-making. 

In addition, a deployment-ready version should also include automated weekly summary 

generation, and dashboard refresh triggers. Ideally, results should be written to a centralized 

database accessible to analysts and managers, while summaries and alerts could be 

distributed via scheduled emails or messaging integrations, as outlined in Figure 6.1 

Managerial Summary: Store 45, Week 2011-12-02. 

Lastly, monitoring logic should be implemented to detect pipeline failures, data quality issues 

(e.g., missing values, data delays), or model drift. Although the models are unsupervised, 

recurring anomalies over time may indicate changing behavior patterns. This could suggest 

the future need for either retraining or integrating limited supervised learning if labeled 

anomalies become available. 
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7​Evaluation 

In this Evaluation chapter, first, the results of the data mining process. Then, the approved 

models are revisited and summarized. Finally, the overall process is reviewed through the 

lens of the CRISP-DM framework. 

7.1​ Assessment of Data Mining Results 

The data mining results are evaluated against the goals defined in the Introduction chapter. 

Specifically, the models are assessed in terms of accuracy, scalability, interpretability, and 

explainability. 

7.1.1​ Results in Terms of Accuracy 

Each model in the pipeline was validated against injected anomalies on the department level 

using standard metrics: true and false positives and negatives, precision, recall, and F1 score. 

Each detection method and decomposition strategy was evaluated using both a Fair window 

(aligned timeframes of available quality residuals across decompositions) and a Full window 

(entire timeline). Final decisions were based solely on the Full window. In later stages, only 

Full window evaluation was used. Where relevant, additional statistical and visual analyses 

supported the results. 

A key design choice was to prioritize recall in early stages, accepting false positives as a 

strength rather than a flaw. This is because many anomalies labeled as false positives could in 

fact be meaningful deviations in the original data. To first maximize recall, an ensemble was 

constructed as a soft union of the best-performing individual models based on Full window 

F1 scores. It combined diverse methods: statistical (Thresholding), classical unsupervised 

(Isolation Forest, KNN, HDBSCAN), and probabilistic (GMM, Mahalanobis). To improve 

precision and reduce noise from irrelevant anomalies, a post-processing step called the 

"business shave" was applied. It retained only anomalies with an absolute residual above 

$5,000. In addition, spikes were kept only if no holiday or markdown occurred, while drops 

were kept only if a holiday or markdown was present. This ensured that final anomalies were 

not only statistically significant but also aligned with real-world business relevance. 

To ensure the approach is not biased toward the single anomaly injection set used throughout 

the thesis, additional reruns were conducted with varied configurations, as shown in Table 7.1 

Pipeline Evaluation Across Varying Anomaly Injection Configurations. The first columns 

describe the injection settings. The Soft Union columns report performance immediately 

after the ensemble combination step (maximizing recall), while the Business Shave columns 

reflect results after applying the post-processing rules (maximizing precision). As expected, 

lowering the standard deviation of injected anomalies made detection harder, with a final 

Business Shave F1 of only 0.1091. In contrast, increasing the standard deviation improved 
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detectability, yielding a Business Shave F1 of 0.3003. Varying the percentage of injected 

anomalies had a similar, though less extreme, effect — injecting only 0.5% resulted in an F1 

of 0.1234, while 2% led to an F1 of 0.2817. Changing the random seed (42 vs. 17) produced 

nearly identical results, confirming consistency. Modifying the rolling window size had 

minimal impact — shorter windows resulted in an F1 of 0.2012 (just 0.0001 above baseline), 

and longer windows reached 0.2039. Overall, pipeline runtime remained stable around 14 

minutes, with approximately 7.5 minutes spent on Prophet decomposition. 

Table 7.1  

Pipeline Evaluation Across Varying Anomaly Injection Configurations 

Injected 

Anomalies 

Rolling 

Window 

Injected 

Anomalies 

STD 

Injected 

Anomalies 

Random 

State 

Injected 

Anomalies 

Percentage 

Soft 

Union 

Precision 

Soft 

Union 

Recall 

Soft 

Union 

F1 

Business 

Shave 

Precision 

Business 

Shave 

Recall 

Business 

Shave F1 

Full 

Pipeline 

Runtime 

8 4 42 1 0.0156 0.9355 0.0307 0.1402 0.3557 0.2011 14m 

8 2 42 1 0.0138 0.8242 0.0271 0.0776 0.1837 0.1091 14m 

8 10 42 1 0.0161 0.9606 0.0316 0.2034 0.5733 0.3003 14m 

8 4 17 1 0.0157 0.9374 0.0310 0.1364 0.3450 0.1955 14m 

16 4 42 1 0.0155 0.9312 0.0306 0.1421 0.3607 0.2039 15m 

4 4 42 1 0.0156 0.9343 0.0307 0.1403 0.3552 0.2012 14m 

8 4 42 0.5 0.0078 0.9292 0.0155 0.0747 0.3542 0.1234 14m 

8 4 42 1 0.0310 0.9293 0.0600 0.2413 0.3384 0.2817 13m 

Note: Table created by the author based on the created dataset. 

 

The chosen strategy successfully meets the objective of uncovering actionable anomalies, 

rather than merely detecting all injected ones. It was shown in Figure 5.7 Residual 

Distribution: FP vs FN after Business Post-Processing and Figure 5.8 Store 45 – Dept 29: 

Soft Union Business Logic Post-Processing that the anomalies identified through this method 

include both significant injected anomalies and meaningful anomalies naturally present in 

the original data. This confirms the method's effectiveness for the intended task. 

7.1.2​ Results in Terms of Scalability 

The dataset consists of 421,570 data points across 3,331 department-level time series, 

representing a large-scale time series setting. Scalability was assessed both in terms of 

runtime efficiency and infrastructure feasibility. 

All final runs in this thesis were executed on Deepnote’s GPU L4 instance, which provides 16 

vCPUs, 64 GB of memory, and 24 GB of dedicated VRAM, at a cost of $1.56 per hour (Figure 

7.1 Available Machines in Deepnote). The final pipeline runs in about 14 minutes on the GPU 

(L4) instance, compared to 28 minutes on the free CPU (Basic) instance. Even on the paid 

GPU, the cost remains financially negligible (roughly $0.39 per run), especially considering 

that the process is only executed once per week and detects sales anomalies exceeding 

$5,000. If this task were to be done manually, identifying anomalies across 3,331 

department-level series would be impractical. Moreover, failing to detect these patterns could 

result in missed revenue opportunities, overlooked operational issues, or poor decisions. 
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Figure 7.1  

Available Machines in Deepnote 

 

Note: From Deepnote (2025). 

Each of the anomaly detection models included in the final pipeline finishes in under one 

minute. Longer runtimes were observed in models not selected for the final ensemble, such 

as One-Class SVM, autoencoders, and Deep SVDD. Of the total 14-minute runtime, the 

Prophet decomposition accounts for approximately 7.5 minutes on average. It was retained 

due to its clear superiority in detection accuracy compared to other decomposition methods. 

Given that this analysis is performed weekly, the total runtime is entirely acceptable.  

In conclusion, the pipeline demonstrates strong scalability, making it both computationally 

and financially viable for continuous, real-world monitoring of large-scale, hierarchical, 

multivariate time series data. 

7.1.3​ Results in Terms of Interpretability 

Interpretability was a key objective in this thesis, ensuring that anomalies could be 

understood both technically and from a business perspective. 

The chosen framework prioritizes understandability over complexity — six anomaly detection 

models run anomaly detection, and if any of them flags a point that exceeds a $5,000 

deviation from forecast (while following specified holiday/markdown rules), it is marked as 

an anomaly. At higher levels, an anomaly is propagated if at least 5% of the underlying level 

series flag one. This simple rule-based design avoids edge cases and is easy to explain and 

remember. 

Two mechanisms were employed for interpretability and explainability. SHAP-like feature 

contributions on department-level anomalies (explaining why a point was flagged) and 

managerial summaries (explaining what it means and what actions may follow). While these 
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summaries could be extended into full dashboards, that lies outside the scope of this thesis 

and is suggested for future work.  

A minor limitation is that SHAP-like values were not aggregated beyond the department 

level, due to the reconciliation strategy. However, this was intentional — anomalies at store 

or national level are triggered not by individual features, but by the collective signal from 

multiple flagged departments, providing a clear and actionable drill-down path. 

7.2​ Approved Models 

After extensive evaluation against both technical and business criteria, a final model strategy 

was selected.  

No single anomaly detection model performed well enough across all evaluation dimensions, 

so an ensemble approach was introduced. The final ensemble combined the best-performing 

models (KNN, Thresholding, Mahalanobis Distance, Isolation Forest, HDBSCAN, and 

GMM), capturing strengths from statistical, classical unsupervised, and probabilistic 

methods.  

The most effective ensemble strategy was a soft union, where anomalies detected by any of 

the selected models were included, maximizing recall. This was followed by a business 

logic–based post-processing step to improve precision. This step applied stable business 

rules — only spikes without holidays or markdowns and only drops with either a holiday or 

markdown were retained, along with a fixed $5,000 residual threshold to ensure financial 

significance. 

Because all modeling was done at the department level, a hierarchical bottom-up 

reconciliation step was introduced after post-processing. This logic propagates anomalies to 

the store or national level only when at least 5% of underlying departments flag an anomaly 

of the same type. This ensured that higher-level anomalies represent consistent underlying 

signals, and the approach proved effective in surfacing interpretable, scalable, and actionable 

results. 

7.3​ Review of the Process 

The modeling process followed the CRISP-DM methodology end to end, covering all core 

phases without omitting any key steps.  

Throughout the project, learnings, evaluation results and insights from later stages were 

continuously fed back into earlier steps, creating an iterative loop between data preparation, 

modeling, and evaluation to improve each successive version’s reliability and accuracy. 

The modular pipeline structure allowed decomposition methods, detection models, and 

evaluation strategies to be developed and compared independently. All modeling steps were 

versioned and consistently named, with detailed evaluation logs and serialized outputs 
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enabling traceability across large-scale experiments. Quality controls were built in to preserve 

injected anomalies, apply uniform residual scaling, and enforce consistent evaluation logic 

across decomposition methods. These practices supported reliable comparison and 

consistent results throughout the research process. 

The project ultimately relied solely on historical Walmart data. While two informal interviews 

with retail professionals informed the early phase of the project, this thesis did not include 

formal input from end users. The absence of review by operational decision-makers is a 

known limitation. For any real-world deployment, direct validation and co-design with users 

such as store managers, merchandisers, or planners would be essential to ensure business 

relevance, interpretability, and trust. 
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Conclusion 

This conclusion answers the research questions and objectives by summarizing the most 

suitable anomaly detection methods for large-scale hierarchical multivariate time series, 

comparing their performance across key criteria, and reflecting on the development of a 

practical detection framework, along with limitations and directions for future work. 

Answering Research Questions and Objectives 

What are the most suitable anomaly detection methods for large-scale 
hierarchical multivariate time series? 

Methods for interpretable point-wise anomaly detection in multivariate and hierarchical time 

series were reviewed, and their theoretical foundations and practical applicability were 

assessed. 

It was determined that for highly seasonal time series, such as those in retail, the most 

effective approach is to first apply decomposition to separate signal from noise, followed by 

anomaly detection in the noise space. 

From the literature, three suitable decomposition methods were identified: Prophet, STL, 

and TimeGPT. In addition, seventeen anomaly detection models were selected as candidates 

for the task, including statistical methods (Z-Scores, Thresholding), classical unsupervised 

models (Isolation Forest, K-Nearest Neighbors, Local Outlier Factor, HDBSCAN, One-Class 

SVM), probabilistic approaches (COPOD, BCPD, Mahalanobis Distance, Gaussian Mixture 

Model), and deep learning models (Plain, Variational, LSTM, Transformer-based, and TCN 

Autoencoders, as well as Deep SVDD). 

Their suitability for interpretable point-wise anomaly detection in large-scale hierarchical 

multivariate time series was assessed in Table 2.2 Anomaly Detection Methods Comparison. 

However, no single model met all criteria. While some limitations could be addressed, for 

example, using surrogate models for interpretability or sliding windows and time-aware 

cross-validation to preserve temporal structure, no method was sufficient on its own. 

Due to this, a pipeline and ensemble approach were developed to overcome individual model 

shortcomings and create a robust framework for interpretable point-wise anomaly detection 

in large-scale hierarchical multivariate time series. 

How do different approaches compare in terms of accuracy, scalability, and  
interpretability? 

Selected methods were implemented and benchmarked on the Walmart Store Sales 

Forecasting dataset. 
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To assess accuracy and scalability, all combinations of candidate anomaly detection models 

were run and tuned on residuals from each decomposition method. Table 5.1 Best Runs per 

Anomaly Detection Method and Decomposition Combination summarizes their accuracy and 

runtime. The most accurate models were KNN, Thresholding, Mahalanobis Distance, 

Isolation Forest, HDBSCAN, and Gaussian Mixture Model. These models also showed 

reasonable runtimes, ranging from 36 to 78 seconds on Prophet residuals. In contrast, 

lower-performing models, mainly deep learning approaches and One-Class SVM, took over 

15 minutes or failed to complete at this data scale. 

Interpretability was first assessed theoretically, as summarized in Table 2.2 Anomaly 

Detection Methods Comparison, and then consistently applied throughout the pipeline using 

SHAP-like surrogate models to capture feature contributions. These contributions were 

aggregated in an additive manner to provide interpretability across the entire process. 

Since simply flagging anomalies without linking them to a meaningful deviation from 

prediction is of limited value, this principle was emphasized in the demo managerial 

summaries, such as in Figure 6.1 Managerial Summary: Store 45, Week 2011-12-02. These 

summaries go beyond stating that an anomaly occurred — they provide context and highlight 

hierarchical relationships essential for recognizing patterns, enabling action, and supporting 

decision-making in a business setting. 

In summary, individual models showed significant variation in accuracy and scalability and 

natively also in interpretability, but that was addressed and standardized through surrogate 

models that captured feature contributions. 

Can an effective anomaly detection framework be developed to support 
real-world applications in hierarchical time series analysis? 

Yes, this thesis demonstrates that a working framework can be developed. The results of 

different approaches were compared to identify their strengths, weaknesses, and real-world 

applicability. Based on these findings, recommendations and insights were proposed to 

support the development of scalable and interpretable anomaly detection techniques for 

hierarchical time series data. 

The core idea is that the framework first optimizes for high recall — not only to capture 

injected anomalies as true positives, but also to detect real, naturally occurring anomalies 

that appear as false positives in the confusion matrix. A business lens is then applied to 

improve precision by filtering for anomalies that are truly relevant from an operational 

perspective. 

The final framework consists of five sequential steps: (1) Prophet decomposition to separate 

signal from noise in highly seasonal data, (2) six best-performing anomaly detection models 

applied to residuals — covering statistical (Thresholding), classical unsupervised (Isolation 

Forest, KNN, HDBSCAN), and probabilistic (GMM, Mahalanobis) approaches, (3) a soft 

union of their outputs to maximize recall, (4) business logic post-processing to improve 

precision using a fixed financial threshold and specific holiday and markdown rules to 

classify spikes and drops, and (5) hierarchical reconciliation to propagate anomalies to higher 

levels. SHAP-like surrogate models were used consistently throughout for interpretability. 
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This framework was developed and proven to be effective in point-wise anomaly detection in 

large-scale hierarchical multivariate time series even under varying anomaly injection 

scenarios. 

Limitations 

A key limitation is the use of artificially injected anomalies for validation, which were 

generated using a statistical approach without underlying patterns or temporal complexity. 

This may have favored simpler models and disadvantaged deep learning methods. 

Another limitation is the limited amount of data — only one full year and two incomplete 

years were available. This was not sufficient for decomposition methods like STL and 

TimeGPT to demonstrate their full potential. With more data, they may outperform Prophet 

— especially TimeGPT, which is a strong candidate for incremental use. In fact, its residuals 

showed promising quality toward the end of the timeline, as seen in Figure 5.3 Store 45 — 

Dept 29: TimeGPT Decomposition. 

Resource and infrastructure constraints limited the experimental scope. Several deep 

learning models, such as LSTM Autoencoders and Deep SVDD, could not be fully trained or 

tuned on the complete dataset due to GPU memory limitations. Some experiments required 

sampling or feature reduction, which may have introduced bias. Although tests were run on 

Deepnote’s high-performance L4 GPU tier, full-scale deep learning experiments would 

require more advanced and costly infrastructure. Additionally, TimeGPT decomposition was 

evaluated only in trial mode without access to enterprise-grade features, preventing a full 

assessment of its operational potential. 

One of the most unexpected findings was that none of the deep learning models 

outperformed the simpler methods. This may be due to the nature of the artificial anomaly 

injection, which lacked underlying patterns, or the limited dataset — only three years, two of 

which were incomplete. This limitation could potentially be addressed with more extensive 

tuning, additional data, or by applying the models to real-world anomalies rather than 

injected ones. Including at least one deep learning model in the ensemble would add a new 

detection mechanism and strengthen the overall framework. Its absence is a limitation of the 

current best-performing ensemble and may impact performance on different datasets or 

injection strategies. 

An important finding was that decomposition quality emerged as the dominant success factor 

in highly seasonal data. During experiments it was proven that the choice of decomposition 

method had a greater impact on detection performance than the choice of anomaly detection 

model. Prophet consistently outperformed STL and TimeGPT by producing stable and 

interpretable residuals that allowed downstream models to perform well. This revealed a key 

dependency — when residuals fail to clearly separate predictable patterns, even strong 

anomaly detectors are unable to compensate. 

This thesis identified a major gap in hierarchical decomposition, which is critical for anomaly 

detection in large industries like retail. Although the dataset had a clear hierarchical 
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structure, no existing decomposition method could natively handle hierarchical multivariate 

time series. As a result, even hierarchical methods like HDBSCAN were run on each series 

individually, limiting their effectiveness. Workarounds, such as bottom-up reconciliation 

using department-level detections, were required. 

The pipeline is currently functional and producing meaningful results on the fixed dataset 

used in this thesis. However, if deployed in a live setting, it would require ongoing monitoring 

and periodic adjustment of parameters to account for new patterns and changes over time. 

While the core strategy, prioritizing recall first and refining precision through business logic, 

should remain unchanged, threshold values and model parameters may need to be tuned 

again to maintain performance. 

A key limitation is the lack of live business feedback. While two informal interviews with 

retail staff informed early assumptions about current trends in anomaly detection, no 

business stakeholders reviewed the results of this thesis. As a result, although technical 

interpretability was achieved, its practical value in real decision-making contexts remains 

unconfirmed. 

Future Work 

Future work should focus on deploying the framework, including building a dashboard and 

alerting tool for store managers, based on the generated summaries.  

It is also recommended to retrain or fine-tune the models on different data granularities, 

such as daily data or SKU-level series, if available, to explore performance across different 

operational layers and even increase business value of this framework. Also, more anomaly 

types can be considered for detection. 

Introducing active learning strategies or feedback loops could help reduce the gap between 

injected and naturally occurring anomalies by incorporating labels over time.  

If resources allow, further exploration of TimeGPT in its paid tier is encouraged, as it may 

yield better results — especially in an incremental setting. In this thesis, its performance was 

limited because accuracy was judged using the Full window, while the Fair window (where 

TimeGPT was available) was too small to showcase its strengths.  

Deep models may also be worth revisiting if more training data or compute time becomes 

available.  

Finally, a clear limitation in this work is the lack of hierarchical decomposition. Once reliable 

hierarchical decomposition methods are available, this innovation should be integrated and 

the framework re-evaluated.  
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