
Prague University of Economics and Business

Faculty of Informatics and Statistics

Detection of Point-Wise Anomalies in
Large-Scale Hierarchical Time Series:

Methods and Applications

MASTER THESIS

Study program: Data and Analytics for Business​
​

Author: Bc. Magdalena Marie Šarapatková, MA.

Supervisor: Ing. Pavel Zimmermann, Ph.D.

Prague, May 2025

Acknowledgement

I would like to thank my family for their constant support, patience, and encouragement

throughout my academic and professional journey. Their presence has been invaluable. I also

wish to thank my supervisor, Ing. Pavel Zimmermann, Ph.D., for his guidance and insight,

which were essential in helping me complete this thesis successfully.

Abstrakt

Detekce anomálií ve vícerozměrných časových řadách je klíčovou výzvou v mnoha oblastech

typu financí, zdravotnictví, kybernetické bezpečnosti, obchodu a mnoha dalších. Schopnost

identifikovat neočekávané odchylky v rozsáhlých datových souborech má významné dopady

na rozhodování a efektivitu provozu. Tato práce se zaměřuje na detekci odlehlých pozorování

v hierarchických, vícedimenzionálních časových řadách.

Dataset představuje specifickou výzvu kvůli své hierarchické struktuře, která obsahuje více

obchodů a oddělení s vzájemně závislými vzory prodejů v čase, což z práce činí komplexní

problém časových řad. První část této práce poskytuje rozsáhlý přehled teorie a metod

detekce anomálií, přičemž hodnotí jejich vhodnost pro rozsáhlá a hierarchická data časových

řad.

Na základě závěrů z teoretické části jsou vybrány a implementovány vybrané metody detekce

anomálií. Druhá část práce se věnuje aplikaci těchto metod na data a porovnává jejich

efektivitu v identifikaci významných odlehlých hodnot. Výsledky aplikace jsou následně

analyzovány s cílem posoudit jejich praktické dopady na reálné aplikace.

Tato práce přispívá v oblasti detekce anomálií identifikací robustních metodologií pro

hierarchická časová data a poskytuje využitelné poznatky pro podniky zabývající se rozsáhlým

predikováním prodejů. Získané výsledky mohou podpořit informovanější rozhodování, snížit

finanční ztráty nebo zlepšit strategické řízení provozu.

Klíčová slova

Bodová detekce anomálií, rozsáhlé hierarchické multivariační časové řady, dekompozice,

nesupervizované modely, interpretovatelnost, škálovatelnost, evaluace, přesnost,

hierarchická rekonciliace.

Abstract

Anomaly detection in multivariate time series data is a critical challenge in various domains,

including finance, healthcare, cyber security, retail, and many other fields. The ability to

identify unexpected patterns or deviations in large-scale datasets has significant implications

for decision-making and operational efficiency. This thesis focuses on the detection of

outliers in hierarchical, high-dimensional time series data.

The dataset presents a unique challenge due to its hierarchical structure of multiple stores

and departments with interdependent sales patterns over time, making it a complex time

series problem. In the first part of this thesis, a comprehensive review of theory and anomaly

detection models is conducted, assessing their suitability for large scale hierarchical time

series data.

Based on the findings from the research phase, anomaly detection methods are selected and

implemented on the dataset. The second part of the thesis applies these approaches to the

data, comparing their effectiveness in identifying significant outliers. The results are then

analyzed to assess their practical implications for real-world applications.

This study contributes to the field by identifying robust methodologies for outlier detection in

hierarchical time series data and providing actionable insights for businesses dealing with

large-scale sales forecasting. The findings can support more informed decision-making,

reducing financial losses and enhancing operational strategies.

Keywords

Point-wise anomaly detection, large-scale hierarchical multivariate time series,

decomposition, unsupervised models, interpretability, scalability, evaluation, precision,

hierarchical reconciliation.

Table of Contents

Introduction... 10
Motivation... 10
Research Questions and Objectives..10
Methodology.. 11

1 Business Understanding... 12
2 Machine Learning Understanding.. 14

2.1 Problem Definition.. 14
2.1.1 Point-Wise Anomaly Detection... 14
2.1.2 Large-Scale Hierarchical Multivariate Time Series..15

2.2 Choice of Decomposition Methods... 16
2.2.1 Prophet Forecasting Mechanism.. 16
2.2.2 Seasonal-Trend Decomposition using LOESS Forecasting Mechanism... 16
2.2.3 TimeGPT Forecasting Mechanism... 17

2.3 Choice of Anomaly Detection Methods...17
2.3.1 Z-Scores Anomaly Detection Mechanism...17
2.3.2 Thresholding Anomaly Detection Mechanism.. 18
2.3.3 Isolation Forest Anomaly Detection Mechanism.. 18
2.3.4 K-Nearest Neighbors Anomaly Detection Mechanism..19
2.3.5 Local Outlier Factor Anomaly Detection Mechanism... 20
2.3.6 HDBSCAN Anomaly Detection Mechanism..20
2.3.7 One Class SVM Anomaly Detection Mechanism..21
2.3.8 COPOD Anomaly Detection Mechanism... 21
2.3.9 Bayesian Change Point Detection Anomaly Detection Mechanism..22
2.3.10 Mahalanobis Distance Anomaly Detection Mechanism..23
2.3.11 Gaussian Mixture Model Anomaly Detection Mechanism...23
2.3.12 Autoencoders Anomaly Detection Mechanism..24
2.3.13 Deep SVDD Anomaly Detection Mechanism... 25

2.4 Ensemble Detection..26
2.5 Interpretability..26
2.6 Chapter Summary... 27

3 Data Understanding...29
3.1 Initial Data Collection... 29
3.2 Data Description... 29
3.3 Data Description...30

3.3.1 Distribution of Weekly Sales.. 30
3.3.2 Trend and Seasonality.. 31
3.3.3 Feature Relationships.. 32
3.3.4 Data Quality Verification..35

3.4 Chapter Summary... 35
4 Data Preparation... 36

4.1 Data Selection and Integration... 36
4.2 Data Cleaning..36
4.3 Feature Construction.. 37
4.4 Injecting Anomalies.. 37
4.5 Scaling...38
4.6 Chapter Summary...39

5 Modelling.. 40
5.1 Model Assessment...40
5.2 Decomposition Methods...42

5.2.1 Prophet Decomposition.. 42
5.2.2 STL Decomposition.. 44
5.2.3 TimeGPT Decomposition...46

5.3 Anomaly Detection Models.. 48
5.3.1 Z-Scores Anomaly Detection Model...48
5.3.2 Thresholding Anomaly Detection Model...49
5.3.3 Isolation Forest Anomaly Detection Model...50
5.3.4 K-Nearest Neighbors Anomaly Detection Model...51
5.3.5 Local Outlier Factor Anomaly Detection Model.. 52
5.3.6 HDBSCAN Anomaly Detection Model...53
5.3.7 One-Class SVM Anomaly Detection Model..54
5.3.8 Bayesian Change Point Detection Anomaly Detection Model.. 56
5.3.9 Mahalanobis Distance Anomaly Detection Model...57
5.3.10 Gaussian Mixture Model Anomaly Detection Model...58
5.3.11 Plain Autoencoder Anomaly Detection Model... 59
5.3.12 Variational Autoencoder Anomaly Detection Model...60
5.3.13 LSTM Autoencoder Anomaly Detection Model..61
5.3.14 Transformer Autoencoder Anomaly Detection Model.. 62
5.3.15 TCN Autoencoder Anomaly Detection Model..64
5.3.16 Deep SVDD Anomaly Detection Model..65

5.4 Ensemble Anomaly Detection Methods... 66
5.4.1 Soft Union Ensemble Strategy..67
5.4.2 Weighted Ensemble Strategy... 69
5.4.3 LightGBM Meta-Classifier... 70
5.4.4 Business Logic Post-Processing... 72

5.5 Reconciliation Model.. 75
5.6 Interpretability Model...77
5.7 Chapter Summary... 79

6 Business Use.. 81
6.1 Managerial Summaries and Operational Insights..81
6.2 Deployment...83

7 Evaluation..84
7.1 Assessment of Data Mining Results..84
7.1.1 Results in Terms of Accuracy... 84
7.1.2 Results in Terms of Scalability...85
7.1.3 Results in Terms of Interpretability.. 86
7.2 Approved Models.. 87
7.3 Review of the Process..87

Conclusion... 89
Answering Research Questions and Objectives...89
Limitations.. 91
Future Work..92

References..93

List of Figures

Figure 3.1 Distribution of Weekly Sales... 31
Figure 3.2 Weekly National Sales Over Time...31
Figure 3.3 Year-over-Year Sales Patterns by Week Number...32
Figure 3.4 Trend in Weekly National Sales... 32
Figure 3.5 Correlation Heatmap of Numeric Features..33
Figure 3.6 Weekly Sales Distribution on Holiday vs. Non-Holiday..34
Figure 3.7 Weekly Sales Distribution With and Without Promotions..34
Figure 4.1 Store 45 — Dept 29: Anomaly Injection Check.. 38
Figure 5.1 Valid Residual Weeks per Method (Filtered)... 40
Figure 5.2 Store 45 — Dept 29: Prophet Decomposition.. 43
Figure 5.3 Mean Regressor Contribution to Prophet Forecast... 44
Figure 5.4 Store 45 — Dept 29: STL Decomposition...45
Figure 5.5 Store 45 — Dept 29: TimeGPT Decomposition.. 47
Figure 5.6 True Positives Overlap Heatmap... 68
Figure 5.7 Residual Distribution: FP vs FN after Business Post-Processing.. 73
Figure 5.8 Store 45 – Dept 29: Soft Union Business Logic Post-Processing.. 74
Figure 5.9 Store 45 – Dept 29.. 76
Figure 5.10 Store Level: Store 45... 76
Figure 5.11 National Level.. 77
Figure 6.1 Managerial Summary: Store 45, Week 2011-12-02..82
Figure 7.1 Available Machines in Deepnote...86

7

List of Tables

Table 2.1 Specific Autoencoder Variants... 25

Table 2.2 Anomaly Detection Methods Comparison.. 28

Table 3.1 Descriptive Statistics of Weekly Sales Values.. 30

Table 3.2 Summary of Missing Values...35

Table 5.1 Best Runs per Anomaly Detection Method and Decomposition Combination... 41

Table 5.2 Z-Scores Anomaly Detection Model Best Results... 49

Table 5.3 Thresholding Anomaly Detection Model Best Results..50

Table 5.4 Isolation Forest Anomaly Detection Model Best Results.. 51

Table 5.5 K-Nearest Neighbors Anomaly Detection Model Best Results... 52

Table 5.6 Local Outlier Factor Anomaly Detection Model Best Results...53

Table 5.7 HDBSCAN Anomaly Detection Model Best Results.. 54

Table 5.8 OCSVM Anomaly Detection Model Best Results...55

Table 5.9 BCPD Anomaly Detection Model Best Results..56

Table 5.10 Mahalanobis Distance Anomaly Detection Model Best Results..57

Table 5.11 GMM Anomaly Detection Model Best Results... 58

Table 5.12 Plain Autoencoder Anomaly Detection Model Best Results... 60

Table 5.13 Variational Autoencoder Anomaly Detection Model Best Results.. 61

Table 5.14 Transformer Autoencoder Anomaly Detection Model Best Results... 63

Table 5.15 TCN Autoencoder Anomaly Detection Model Best Results...64

Table 5.16 Deep SVDD Anomaly Detection Model Best Results...66

Table 5.17 Best Performing Anomaly Detection Models...66

Table 5.18 Soft Union Ensemble Runs Performance...67

Table 5.19 Unique True Positives per Model...69

Table 5.20 Weighted Vote Ensemble Runs Performance... 70

Table 5.21 Meta-Classifier Runs Performance... 71

Table 5.22 Business Logic Post-Processing Runs Performance..73

Table 5.23 Reconciliation Runs Results...75

Table 5.24 Aggregated Department Level SHAP-like Contributions by Feature... 78

Table 7.1 Pipeline Evaluation Across Varying Anomaly Injection Configurations...85

8

List of Abbreviations

AE​ ​ Autoencoder​
ARIMA​ AutoRegressive Integrated Moving Average​
BCPD​ ​ Bayesian Change Point Detection​
COPOD​ Copula-Based Outlier Detection​
CPI​ ​ Consumer Price Index​
CRISP-DM​ Cross-Industry Process for Data Mining​
CSV​ ​ Comma-separated Values File​
DBSCAN​ Density-based Spatial Clustering of Applications with Noise​
ECDF​ ​ Empirical Cumulative Distribution Functions​
F1 ​ ​ Score, harmonic mean of precision and recall used to evaluate classification​
FN​ ​ False Negatives​
FP​ ​ False Negatives​
GMM​ ​ Gaussian Mixture Model​
HDBSCAN​ Hierarchical Density-Based Spatial Clustering of Applications with Noise​
IF​ ​ Isolation Forest​
IQR​ ​ Interquartile Range​
KL​ ​ Kullback–Leibler divergence​
KNN​ ​ K-Nearest Neighbors​
LOESS​​ Locally Estimated Scatterplot Smoothing​
LOF​ ​ Local Outlier Factor​
LRD​ ​ Local Reachability Density​
LSTM​ ​ Long Short-Term Memory​
MCD​ ​ Minimum Covariance Determinant​
MSE​ ​ Mean Squared Error​
OCSVM​ One-Class Support Vector Machine​
ReLU​ ​ Rectified Linear Unit​
SHAP​ ​ Shapley Additive Explanations​
STL​ ​ Seasonal-Trend Decomposition using LOESS​
STD​ ​ Standard Deviation​
SVDD​ ​ Support Vector Data Description​
TAE​ ​ Transformer-based Autoencoder​
TCN​ ​ Temporal Convolutional Network​
TN​ ​ True Negatives​
TP​ ​ True Positives​
VAE​ ​ Variational Autoencoder​
ZIP​ ​ Archive file format

9

Introduction

In the Introduction chapter, motivation for this work, research questions and objectives, and

used methodology are described.

Motivation

In today’s data-driven world, the ability to detect anomalies in time series data is crucial for

numerous applications, including finance, healthcare, industrial monitoring, and retail.

Anomalous data points can indicate events such as fraud, system failures, or shifts in

consumer behavior. Timely detection of such outliers allows organizations to make informed

decisions, mitigate risks, and optimize operational strategies.

A particularly challenging domain of anomaly detection lies in hierarchical and multivariate

time series data. These datasets with complex dependencies across levels require specialized

methods to identify meaningful deviations from forecast. An example is the retail sector,

where sales data is structured hierarchically by regions, stores, and product categories.

This thesis focuses on the anomaly detection using the Walmart Store Sales Forecasting

dataset from Kaggle as a case study.

Addressing the gap in methods for interpretable point-wise anomaly detection in large-scale

hierarchical multivariate time series is essential for advancing anomaly detection models and

methodologies and improving real-world decision-making processes.

Research Questions and Objectives

The goal of this research is to explore, implement, and evaluate anomaly detection methods

for hierarchical multivariate time series point-wise anomaly detection. The key research

questions guiding this study are:

1.​ What are the most suitable anomaly detection methods for large-scale hierarchical

multivariate time series?

2.​ How do different approaches compare in terms of accuracy, scalability and

interpretability?

3.​ Can an effective anomaly detection framework be developed to support real-world

applications in hierarchical time series analysis?

To address these questions, the study is structured around the following objectives:

●​ Review methods for point-wise anomaly detection in multivariate and hierarchical

time series, assessing their theoretical foundations and practical applicability.

10

●​ Implement and benchmark selected methods on the Walmart Store Sales Forecasting

dataset.

●​ Compare the results of different approaches to determine their strengths, weaknesses,

and suitability for real-world scenarios.

●​ Propose recommendations and insights based on the findings to contribute to the

development of scalable and interpretable anomaly detection techniques for

hierarchical time series data.

Methodology

In this thesis, the robust and well-proven methodology Cross-Industry Process for Data

Mining (CRISP-DM) is followed (Smart Vision Europe, 2025).​
​
Work begins with Business Understanding. This chapter describes the business context and

the real-world problems addressed by this thesis.

Next is Machine Learning Understanding, where suitable models are introduced and their

applicability in interpretable point-wise anomaly detection in large-scale hierarchical

multivariate time series assessed.

In Data Understanding, it is demonstrated that the available data is appropriate for solving

the problem as defined in the Business and Machine Learning Understanding chapters.

Data Preparation summarizes the initial technical steps taken to obtain and preprocess the

dataset for modeling.

The Modelling chapter is one of the most important sections of this thesis. It details the

process of training, validation, model configuration, and method selection. All decisions are

supported by results, and alternatives are compared directly. The best-performing method is

identified.

Business Use chapter outlines how the best-performing pipeline could be deployed within the

company and used by decision-makers.

In Evaluation, the results of the modeling phase are interpreted based on the criteria

established in the Introduction chapter.

Finally, in the Conclusion, the research questions from the Introduction are answered, the

main insights are summarized, limitations discussed, and directions for future work are

proposed.

11

1​Business Understanding

Walmart is currently the world’s largest retailer, with 2023 retail revenue of $635 billion and

10,569 stores across 19 countries. In the United States alone, Walmart generated $534 billion

in domestic retail sales across 5,321 locations, maintaining its position as the country’s

leading retailer. It is followed by Amazon, Costco, Home Depot, Kroger, Walgreens, CVS,

Target, and others (Capital One, 2025; The Produce News, 2024).

In 2012, the time period relevant to this work, Walmart recorded approximately $444 billion

in sales. If Walmart had been a country at that time, it would have ranked as the 26th largest

economy in the world (Spector, 2012). Since 1988, Walmart (then Wal-Mart) has been the

most profitable retailer in the United States (Hayes & Times, 1990).

Remaining at the top for such a long period, while continuing to grow, requires strong

strategy, operational excellence, and outstanding data analytics, which is essential for

grounding strategic and operational decision-making in real insights and facts. Forecasting

future performance based on historical trends is one critical part of that process. The other,

and the focus of this thesis, is identifying and understanding why outcomes differ from

forecasts. In the data science world, this is known as anomaly detection.

In the retail context, many types of anomalies can occur in the sales data. For the purposes of

this work, two primary categories are defined and analyzed:

●​ Unexpected sales drops — These events occur when actual sales fall below forecasted

values during periods of markdowns and/or holidays, which would typically boost

sales. Such drops are particularly critical because they may indicate direct revenue

loss. The risk is even greater when these anomalies go undetected across the

organizational hierarchy, as no one may be connecting the dots. Possible causes

include stockouts, operational failures, or ineffective promotions.

●​ Unexpected sales spikes — These events happen when actual sales exceed forecasts

despite the absence of markdowns or holidays. While not as urgent as drops, they are

important to investigate. Understanding the root cause can lead to valuable business

insights and opportunities for growth.

Other, more specific anomaly types — such as flatlining sales, inconsistent promotion effects,

or shifts in price sensitivity — may be business-relevant but are outside the scope of this

thesis.

In practice, forecast values and detected anomalies are typically reported to store managers.

For these reports to be useful, context is essential. Managers reviewing weekly reports need

to understand their store’s performance, baseline, and also comparison to other stores and

national level — not just detecting individual outliers, but identifying hierarchically

consistent patterns and providing clear explanations of what happened and why.

12

To achieve that, the hierarchical structure of the data must be leveraged. Detecting anomalies

only at the lowest level (e.g., a department in a store) risks missing larger patterns that

emerge across higher levels of aggregation. In cases of severe, undetected drops, this could

lead to significant financial losses. Additionally, it is important that anomalies are

communicated in understandable, business-relevant terms — not overly technical or

statistical language.

Finally, it is essential not to overwhelm store managers with many flags that turn out to be a

false alarm. Even statistically valid anomalies must be filtered through a business lens: if they

do not imply a meaningful financial impact, they should not be surfaced. Toward the end of

this thesis, the focus shifts to delivering concise, reliable, and actionable outputs, enriched

with sufficient business context to support informed decision-making.

13

2​Machine Learning Understanding

This chapter defines the anomaly detection problem addressed in this thesis and presents the

theoretical foundations of the chosen approach. It outlines the challenges of point-wise

detection in hierarchical, multivariate, large-scale time series. The chapter also explains the

rationale behind the selected decomposition methods, detection algorithms, meta-classifier,

and interpretability tools.

2.1​ Problem Definition

Problem Definition chapter translates the business goal, detecting unexpected sales events

across departments and stores, into a machine learning problem: point anomaly detection of

spikes and drops relative to forecasted values in large-scale hierarchical, multivariate time

series.

2.1.1​ Point-Wise Anomaly Detection

Anomaly detection refers to identifying data points that deviate significantly from expected

behavior or patterns (Bajaj, 2021). It distinguishes between inliers, which follow normal

patterns, and outliers, which differ so substantially from the rest of the data that they may

have been generated by a different process (Bajaj, 2021; Blázquez-García et al., 2021;

Tuychiyev & DataCamp, 2021). Statistically, an outlier is a data point with significantly

abnormal features. However, the final decision, whether a data point is or is not an outlier,

often depends on human judgment (Tuychiyev & DataCamp, 2021). In time series contexts,

outliers are typically referred to as anomalies (Bajaj, 2021).

There are several types of anomalies:

●​ Point-wise anomalies (or point outliers) are individual values that behave unusually

either compared to the entire series (global) or to their immediate context (local)

(Bajaj, 2021; Blázquez-García et al., 2021; Lai et al., 2021). These are often the focus

of anomaly detection research due to their potential impact.

●​ Contextual anomalies are values that are only anomalous within a specific context

(e.g., time of day, season), but not when viewed globally (Lai et al., 2021).

●​ Collective anomalies involve groups of values that are anomalous as a sequence, even

if individual values are not. These are common in time series due to temporal

dependencies (Lai et al., 2021).

●​ Subsequence anomalies (or pattern-wise outliers), a subclass of collective anomalies,

are consecutive data points whose joint behavior is unusual. They can result from

unusual shapes, seasonal disruptions, or trend changes (Bajaj, 2021; Blázquez-García

et al., 2021; Lai et al., 2021).

14

●​ Time series–level anomalies refer to entire sequences that behave abnormally in

comparison to other sequences (Blázquez-García et al., 2021).

2.1.2​ Large-Scale Hierarchical Multivariate Time Series

Time series are a fundamental data structure across domains. Their defining characteristic is

the temporal dependency between observations, known as autocorrelation, which makes

traditional modeling techniques insufficient (Bajaj, 2021; Blázquez-García et al., 2021;

Tuychiyev & DataCamp, 2021). This sequential nature requires specialized approaches for

effective anomaly detection (Rajan, 2021).

In many real-world scenarios, time series are multivariate, with each timestamped

observation accompanied by additional features such as calendar effects or external variables.

This structure introduces complex temporal and cross-variable dependencies, especially in

domains where contextual factors heavily influence behavior (Sun et al., 2024). As a result,

multivariate time series anomaly detection has emerged as a fast-growing research field, with

modern deep learning models achieving state-of-the-art results on benchmark datasets

(Challu et al., 2022).

In addition to temporal and multivariate complexity, many systems produce time series with

an inherent hierarchical structure. In retail, for example, data may be nested by department,

store, region, and national level, with higher-level series representing aggregated values from

lower levels (Hyndman & Athanasopoulos, 2021). In such settings, maintaining coherence —

ensuring that forecasts or anomalies at aggregate levels align with the sum of their parts — is

essential for interpretability and decision-making consistency (Mancuso et al., 2021).

In hierarchical time series, coherence means ensuring that forecasts or anomaly signals

remain consistent across all levels of aggregation. Several reconciliation strategies address

this. Top-down approaches begin at the highest level and allocate forecasts downward using

historical ratios or model-based weights. While efficient, they risk masking important

low-level variations (Hyndman & Athanasopoulos, 2021). Middle-out methods forecast from

an intermediate level and reconcile both upward and downward, but they rely on the

existence of a meaningful middle tier, which is not always available (Hyndman &

Athanasopoulos, 2021). In contrast, the bottom-up approach models the most granular time

series and aggregates upward to produce coherent higher-level signals. This preserves

maximum detail and is especially suited to point-wise anomaly detection, where subtle,

localized deviations are most relevant. Anomalies are identified directly in the raw,

disaggregated data, then propagated upward to inform store-wide or national insights. While

modeling bottom-level series can be noisier and more complex, the added precision and

interpretability make this tradeoff worthwhile in large-scale hierarchical systems (Hyndman

& Athanasopoulos, 2021).

A major challenge in anomaly detection is the lack of labeled ground truth. Historical

anomalies are rarely annotated, and new anomalies are inherently unpredictable, making

supervised learning difficult to apply. As a result, most models operate in unsupervised or

semi-supervised settings, learning normal patterns and flagging deviations without labeled

anomalies (Chen et al., 2023; Darban et al., 2024).

15

2.2​ Choice of Decomposition Methods

This chapter discusses suitable decomposition methods to separate signal, the forecast (trend

and seasonal components), from noise (residuals) and briefly describes their mechanisms,

advantages, and limitations in the context of this use case.

2.2.1​ Prophet Forecasting Mechanism

Prophet by Meta is a modular, additive forecasting model designed for business time series

with strong seasonality and historical depth (Facebook, 2019; Taylor & Letham, 2017). It

decomposes the signal into trend, seasonality, and holiday effects, plus an error term. Trends

can follow piecewise linear or logistic growth, seasonality is modeled via Fourier series, and

holidays are handled using indicator variables with Gaussian priors. The model is robust to

missing data, outliers, and structural changes, and is fit using maximum a posteriori

estimation (Taylor & Letham, 2017).

Prophet is well-suited for detecting anomalies in sales time series due to its ability to

explicitly model key retail patterns through separate trend, seasonality, and holiday

components. It handles multiple seasonalities, allows inclusion of domain-specific events via

custom regressors, and is robust to missing or irregular data. This makes it both flexible, easy

to use, and practical for large-scale retail forecasting tasks (Melanie, 2024).

Despite its flexibility, Prophet has limitations when applied to hierarchical, multivariate retail

data. It models each time series independently, requiring post-hoc reconciliation to maintain

consistency across aggregation levels. It does not support multivariate modeling beyond

external regressors and lacks mechanisms to capture temporal autocorrelation or residual

structure. Additionally, it may overfit when changepoint flexibility is high or underperform

on series with abrupt trend shifts (Melanie, 2024).

2.2.2​ Seasonal-Trend Decomposition using LOESS Forecasting
Mechanism

STL, Seasonal-Trend Decomposition using LOESS (Locally Estimated Scatterplot

Smoothing), is a classical, non-parametric method for decomposing time series into trend,

seasonal, and residual components, making it a strong baseline for anomaly detection. It uses

LOESS smoothing to estimate the trend and seasonal patterns without assuming a global

model form. The residual component captures irregularities and potential anomalies. While

STL does not perform forecasting itself, it is often paired with models like ARIMA

(AutoRegressive Integrated Moving Average) for forward prediction using the cleaned

components (Cleveland et al., 1990; Statsmodels, 2025).

The non-parametric decomposition of trend and seasonality could be an advantage, which

adapts to evolving patterns across departments and stores. Its LOESS smoothing makes it

robust to outliers (Cleveland et al., 1990; Statsmodels, 2025).

16

Despite its flexibility, STL has several limitations for anomaly detection in hierarchical,

multivariate sales data. It is strictly univariate, requiring separate decomposition per series

with no cross-series information sharing or built-in reconciliation. It lacks support for

external regressors, so key drivers like holidays or markdowns are not modeled explicitly. It

does not handle missing data out of the box and expects evenly spaced data — requiring

precise preprocessing (Cleveland et al., 1990; Statsmodels, 2025).

2.2.3​ TimeGPT Forecasting Mechanism

TimeGPT by Nixtla is a transformer-based forecasting model trained on millions of global

time series to learn generalizable temporal patterns. It generates forecasts using pretrained

weights, with no local training required, and supports anomaly detection via residuals

between actual and predicted values. Anomalies are flagged using the detect_anomalies()

method, which returns forecast. TimeGPT-based detection is non-parametric and does not

involve local training or changepoint modeling. Instead, it relies on the generalization

capabilities of the foundation model, which has been trained to implicitly capture seasonal,

trend, and event-based patterns through its transformer architecture (Nixtla, 2025).

TimeGPT is a pretrained, transformer-based forecasting model that enables fast, scalable

prediction across thousands of time series without local training or manual configuration. Its

standardized input format and lack of seasonality or holiday tuning make it ideal for large,

heterogeneous datasets. By capturing both short- and long-term temporal patterns, it

produces residuals suitable for anomaly detection across complex hierarchies (Nixtla, 2025).

Despite its scalability, TimeGPT has several limitations for anomaly detection in structured

retail settings. It functions as a black box, offering no interpretable components like

changepoints or seasonal effects, which limits explainability. The model's anomaly scoring

relies on fixed internal thresholds that cannot be tuned, potentially leading to over- or

under-detection. It does not support hierarchical reconciliation, requiring external

aggregation logic for consistency across store and national levels. TimeGPT also lacks true

multivariate modeling. Additionally, it is sensitive to missing or irregular timestamps,

requiring careful preprocessing. In some structured domains, traditional statistical models

have outperformed TimeGPT in forecasting accuracy, highlighting that pretrained deep

models are not universally superior (Lee, 2024, Netsch, 2024; Nixtla, 2025).

2.3​ Choice of Anomaly Detection Methods

This chapter presents the selected anomaly detection methods, briefly describing their

mechanisms, advantages, and limitations in the context of this use case.

2.3.1​ Z-Scores Anomaly Detection Mechanism

The Z-Score method is a statistical technique that detects anomalies by measuring how far a

data point deviates from the average, relative to the overall variability in the dataset. In time

series, this involves computing the distance of each point from the mean in terms of standard

17

deviations (STD) and flagging those that exceed a predefined threshold. It assumes the data

follows a normal distribution and is particularly effective for univariate time series where

anomalies appear as large, isolated deviations from the typical pattern (Kumar, 2023;

Peixeiro, 2023; RisingWave, 2024). Data points with Z-Scores beyond a certain threshold

(commonly ±3 or 4) are considered anomalies (Peixeiro, 2023; Srivastava, 2023).

The Z-Score method is simple to implement and interpret, making it accessible even to

non-experts and easily understood by business stakeholders. Its high computational

efficiency allows it to scale to large datasets and enables real-time anomaly detection in

high-volume environments. As a lightweight baseline, it offers a fast way to assess data before

applying more complex models (MindBridge, 2025; Moffitt, 2024; RisingWave, 2024;

Romeu, 2021).

The Z-Score method assumes a normal distribution, but this often fails in real-world business

data, reducing detection accuracy. Outliers can distort the mean and standard deviation,

further undermining reliability. The standard approach is univariate and does not naturally

extend to multivariate series without additional methods. Moreover, it does not account for

temporal dependencies or seasonality, making it prone to false positives or negatives unless

additional safeguards are applied (Kumar, 2023; MindBridge, 2025; Peixeiro, 2023;

RisingWave, 2024).

2.3.2​ Thresholding Anomaly Detection Mechanism

Thresholding methods detect anomalies by comparing values against predefined or adaptive

cutoffs, using simple and interpretable rules. Approaches include absolute thresholds (fixed

constants), interquartile range (IQR) filtering (e.g., 1.5× IQR), percentile-based cutoffs (e.g.,

10th/90th percentiles), and adaptive thresholds that adjust to evolving data distributions.

These techniques are computationally efficient. (Eslava, 2023; Zwingmann, 2022;)

Thresholding methods, especially adaptive ones, scale efficiently across thousands of time

series by avoiding model training and requiring minimal computation (Ebenezer & Sharma,

2023). Techniques like percentile cutoffs and IQR rules are intuitive and easily explainable to

stakeholders (Eslava, 2023). Thresholds can be applied globally or per group (e.g., by

department or store) without complex tuning, and they require no retraining, fitting, or

specialized infrastructure.

Thresholding treats each time series independently. It typically operates on single variables

(e.g., residuals) and does not capture inter-feature dependencies. Static thresholds can

perform poorly in non-stationary or seasonal data unless dynamically adapted (Ebenezer &

Sharma, 2023) or supported by a business reasoning. Choosing an inappropriate cutoff (e.g.,

90th vs. 99.9th percentile) can result in excessive false positives or missed anomalies

(Zwingmann, 2022).

2.3.3​ Isolation Forest Anomaly Detection Mechanism

Isolation Forest is a tree-based anomaly detection algorithm that isolates anomalies rather

than modeling normal behavior. It assumes anomalies are “few and different,” making them

18

easier to separate through recursive random partitioning. The method builds multiple

isolation trees by randomly selecting features and split values, with anomaly scores based on

how quickly a point is isolated—shorter paths indicating greater anomaly likelihood (Liu et

al., 2008; Yoon, 2022).

Isolation Forest is well-suited for detecting anomalies in high-dimensional, large-scale retail

data due to its linear time complexity, low memory footprint, and strong performance

without assuming any specific data distribution (Lu et al., 2023; Yoon, 2022). It scales

efficiently across thousands of series and performs robustly even when features are noisy or

sparse (Agyemang, 2024; Carletti et al., 2020). Its ability to isolate outliers without needing

feature selection or prior distributional knowledge makes it ideal for retail pipelines with

heterogeneous multivariate inputs (Lu et al., 2023).

Despite its efficiency, Isolation Forest suffers from poor interpretability due to its use of

random, axis-aligned splits (Carletti et al., 2020; Konefal, 2023). The model requires manual

threshold tuning, and performance can degrade when anomalies are not sharply distinct from

normal data (Agyemang, 2024; Konefal, 2023). It also lacks native mechanisms for

hierarchical aggregation or temporal awareness, limiting its ability to reconcile anomaly

patterns across store or national levels (Liu et al., 2024). Isolation Forest can overfit when

too many trees are used, leading to reduced accuracy and poor generalization (Yadav, 2023).

2.3.4​ K-Nearest Neighbors Anomaly Detection Mechanism

K-Nearest Neighbors (KNN) is a non-parametric, distance-based method that identifies

anomalies by measuring how far each data point is from its k nearest neighbors in the feature

space. Points that lie far from others are flagged as outliers. The algorithm memorizes the

entire dataset and computes distances during prediction, making it unsupervised and highly

interpretable (Bajaj, 2023; Schmidl et al., 2022; Tuychiyev & DataCamp, 2021). Anomaly

scores are based on the average or minimum distance to neighboring points. The choice of

distance metric (e.g., Euclidean, Manhattan, or Minkowski) and the n_neighbors parameter

significantly affects sensitivity, especially in high-dimensional or scaled data (Schmidl et al.,

2022; Tuychiyev & DataCamp, 2021).

The method is intuitive, easy to interpret, and highly accessible for anomaly detection (Bajaj,

2023; Schmidl et al., 2022). It requires only one core parameter — the number of neighbors

— and makes no statistical assumptions about the data distribution, which increases its

applicability across varied datasets (Tuychiyev & DataCamp, 2021). Because KNN does not

require model training, it is computationally efficient during fitting and scales well in batch

detection scenarios (Tuychiyev & DataCamp, 2021). Its simplicity makes results easier to

explain to non-technical stakeholders. KNN can also be adapted to various distance metrics

to better accommodate high-dimensional or categorical feature spaces (Tuychiyev &

DataCamp, 2021).

Despite its simplicity, KNN suffers from several limitations in anomaly detection. Its

computational complexity makes it inefficient for large multivariate datasets (Bajaj, 2023).

The method is memory-inefficient, as it must retain the entire dataset and compute distances

at prediction time, which can be slow in practice (Tuychiyev & DataCamp, 2021). It is also

19

sensitive to feature scaling and may perform poorly if features have disproportionate

magnitudes or relevance — a problem partially mitigated through scaling techniques

(Tuychiyev & DataCamp, 2021). Additionally, in high-dimensional spaces, KNN suffers from

the curse of dimensionality, where distances become less meaningful and anomalies harder

to distinguish (Bajaj, 2023). Finally, tuning the number of neighbors is non-trivial when the

contamination ratio is unknown, and Euclidean distance performs poorly in more than two

or three dimensions, requiring careful metric selection (Tuychiyev & DataCamp, 2021).

2.3.5​ Local Outlier Factor Anomaly Detection Mechanism

Local Outlier Factor (LOF) is a density-based anomaly detection algorithm that identifies

outliers by comparing the local density of a point to the densities of its nearest neighbors

(Eslava, 2023; Tuychiyev & DataCamp, 2021). Each point’s local density is measured using

the local reachability density (LRD), and its LOF score is computed as the ratio of the average

LRD of its neighbors to its own (Shabou, n.d.). Points that lie in areas of significantly lower

density than their neighbors are flagged as outliers. This local focus allows LOF to detect both

global and subtle local anomalies, especially in datasets with varying density (Eslava, 2023;

Eyer, 2024).

LOF is particularly effective in detecting anomalies in datasets with varying local densities, as

it compares each point’s density only to that of its neighbors rather than the entire dataset

(Eslava, 2023; Shabou, n.d.). This local sensitivity allows it to identify both global and

nuanced local outliers, making it well-suited for complex, heterogeneous data (Tuychiyev &

DataCamp, 2021). It performs well in moderately high-dimensional settings and does not

assume any specific data distribution (Eyer, 2024). LOF is also advantageous in finding

clusters of anomalous points and capturing subtle patterns that global methods might miss

(Eyer, 2024).

Because LOF relies on comparing a point’s density to its neighbors, LOF may miss outliers

that do not strongly deviate from their immediate context, even if they differ from the global

pattern (Eslava, 2023; Shabou, n.d., Tuychiyev & DataCamp, 2021). It is also sensitive to the

choice of the n_neighbors parameter, which can impact its ability to detect anomalies in

regions with varying density (Tuychiyev & DataCamp, 2021). Additionally, LOF can be

computationally intensive and prone to overfitting small local variations in complex datasets

(Eyer, 2024).

2.3.6​ HDBSCAN Anomaly Detection Mechanism

Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN) is a

hierarchical, density-based clustering algorithm that identifies clusters of varying densities

and classifies low-density points as noise (Blachowicz et al., 2025). Unlike DBSCAN

(Density-Based Spatial Clustering of Applications with Noise), it does not require a fixed

number of clusters and automatically adapts to data structure by pruning unstable clusters

from a hierarchy (Iuhasz et al., 2025). It is especially useful in time series anomaly detection

for spotting those missed by traditional methods (Ruberts, 2020).

20

HDBSCAN offers key advantages for anomaly detection in complex time series. It

automatically determines the number of clusters, making it more adaptive than k-means or

DBSCAN (Blachowicz et al., 2025, Iuhasz et al., 2025). Its ability to model clusters of varying

density and exclude noise points improves detection of true anomalies while avoiding

overfitting (Blachowicz et al., 2025). HDBSCAN has been shown to detect both spikes and

drops, including cases missed by classical models (Ruberts, 2020), and its outputs, such as

real-time noise volume and cluster counts, support operational monitoring and visual

interpretation (Blachowicz et al., 2025).

Despite its strengths, HDBSCAN has several limitations. It is a transductive method,

meaning new data cannot be evaluated without retraining, which leads to long inference

times and scalability issues (Iuhasz et al., 2025). It is primarily designed for clustering, not

anomaly detection, and may struggle to identify subtle anomalies—especially when trained

on short time spans (Iuhasz et al., 2025). Its effectiveness is also sensitive to parameter

tuning, such as the minimum cluster size or quantile threshold, which requires careful

adjustment to avoid mislabeling (Ruberts, 2020).

2.3.7​ One Class SVM Anomaly Detection Mechanism

The One-Class Support Vector Machine (OCSVM) is a one-class unsupervised anomaly

detection method that learns a decision boundary around the normal data in a transformed

feature space. Using kernel functions OCSVM maps inputs into a higher-dimensional space

where it separates the majority (normal) class from potential anomalies (Dey, 2024). Unlike

traditional binary classifiers, it trains solely on normal data and flags deviations from the

learned boundary as outliers (Kumar, 2023). This makes it especially useful in domains

where anomalies are rare or unlabeled.

OCSVM offers strong advantages in settings where only normal data is available, making it

well-suited for unsupervised anomaly detection in highly imbalanced datasets (Dey, 2024).

The method supports various kernel functions, allowing flexibility across different data

structures (Dey, 2024). Its decision boundaries may be interpretable using gradient-based

methods, which adds transparency to its otherwise opaque kernel mappings (Nguyen and

Vien, 2018).

Despite its strengths, One-Class SVM struggles with scalability on large or high-dimensional

data due to its computationally intensive optimization process (Dey, 2024; Nguyen & Vien,

2018). It is also highly sensitive to kernel and hyperparameter choices, requiring careful

tuning for good performance (Dey, 2024). Moreover, OCSVM does not natively capture

temporal or hierarchical structures, limiting its flexibility in complex multivariate time series.

2.3.8​ COPOD Anomaly Detection Mechanism

COPOD (Copula-Based Outlier Detection) is a parameter-free, unsupervised anomaly

detection algorithm that estimates how extreme a data point is within the multivariate

distribution. It works in three stages: first, it computes empirical cumulative distribution

functions (ECDFs) for each feature; second, it constructs an empirical copula to capture joint

dependencies across variables; and third, it estimates tail probabilities for each point to

21

quantify its level of outlyingness. Higher tail scores indicate more likely anomalies. COPOD

does not require training, scales efficiently to high-dimensional data, and produces

interpretable results through per-feature anomaly contributions (Feasel, 2022; Li et al.,

2020).

COPOD offers strong advantages for multivariate anomaly detection due to its

parameter-free design, computational efficiency, and interpretability. It estimates tail

probabilities using empirical copulas, avoiding the need for training or hyperparameter

tuning (Li et al., 2020). By modeling the joint distribution through ECDFs, it scales well to

high-dimensional datasets and large sample sizes with minimal overhead (Feasel, 2022). Its

deterministic scoring and ability to attribute anomaly contributions to individual dimensions

make it especially useful for explainable outlier detection across diverse domains (Li et al.,

2020).

Despite its efficiency, COPOD has notable limitations. It assumes feature independence when

computing ECDFs, which may not hold in complex real-world data (Feasel, 2022). This can

reduce detection accuracy when strong feature interactions are present. COPOD also breaks

temporal order, as it evaluates all points jointly rather than respecting sequence, making it

unsuitable for time series anomaly detection without major adaptation. Its reliance on static

distributions may lead to poor performance in dynamic or evolving data (Feasel, 2022; Li et

al., 2020).

Although COPOD’s copula‐based algorithm initially appeared promising, it was excluded

from the modelling because no implementation of sliding‐window or train/test‐split

configurations can enforce the chronological ordering needed to maintain temporal integrity,

leading to irrecoverable distortions at sequence boundaries.

2.3.9​ Bayesian Change Point Detection Anomaly Detection Mechanism

Bayesian Change Point Detection (BCPD), implemented via the Binseg algorithm with the L2

cost function, is a fast and interpretable method for detecting structural breaks in time series

(Perry, 2019; ruptures, n.d.). Binseg recursively partitions the series by identifying change

points that mark significant shifts in the mean under the assumption of normally distributed

segments (Rajasekaran, 2025).

The method offers fast, interpretable segmentation (Rajasekaran, 2025; ruptures, n.d.). Its

computational efficiency makes it suitable for large datasets like retail sales (ruptures, 2017),

and each detected change point corresponds to a clear structural shift, aiding business

interpretability (Perry, 2019).

Despite its efficiency, BCPD with Binseg has key limitations in this use case. The algorithm

detects multiple change points in a time series, rather than point-wise anomalies (ruptures,

n.d.). It treats each time series independently, lacking the ability to capture dependencies

across hierarchical or multivariate structures (Perry, 2019). It also assumes changes occur as

mean shifts under normality (Rajasekaran, 2025), which may not capture more complex

retail patterns like variance changes or seasonal distortions.

22

2.3.10​ Mahalanobis Distance Anomaly Detection Mechanism

This method detects anomalies in multivariate data by computing the Mahalanobis distance

between each point and the dataset's multivariate centroid, adjusting for correlations

between features. Robust estimation is achieved via covariance, which fits a Gaussian model

resistant to outliers. Points with large Mahalanobis distances, indicating they are far from the

mean in a covariance-adjusted space, are flagged as outliers. This approach is best suited for

unimodal, symmetric data and captures anomalies even in correlated or anisotropic feature

spaces (Holbert, 2022; Kaya, 2020; Zhao, 2022).

Mahalanobis distance, particularly when paired with the Minimum Covariance Determinant

(MCD), offers several advantages for multivariate anomaly detection. Unlike Euclidean

distance, it accounts for correlations between variables and scales appropriately for skewed,

non-isotropic data (Holbert, 2022; Kaya, 2020). This makes it effective in high-dimensional

retail datasets where features often exhibit strong dependencies. Mahalanobis-based

methods are mathematically principled, measuring how far a point deviates from the

multivariate mean in standard deviation units, and can isolate subtle anomalies that occur in

low-variance directions of the feature space (Kamoi & Kobayashi, 2020).

Despite its strengths, the Mahalanobis distance with MCD has notable limitations. It assumes

that data follows a unimodal, symmetric Gaussian distribution, and may perform poorly on

multimodal or irregular datasets (Zhao, 2022). The method is sensitive to high-dimensional

geometry and relies on meaningful covariance estimates, which can degrade in small sample

sizes or highly noisy settings (Kamoi & Kobayashi, 2020). Its effectiveness also depends on

the stability of low-variance directions in the data, making it less robust when feature

variance is unstable or when distributional assumptions are violated (Holbert, 2022).

2.3.11​ Gaussian Mixture Model Anomaly Detection Mechanism

Gaussian Mixture Model (GMM) is a probabilistic model that assumes data points are

generated from a mixture of multiple Gaussian distributions, each representing a latent

subpopulation. GMM allows overlapping, elliptical clusters and estimates the probability of

each point belonging to each component (Edge Impulse, 2024; Sayago, 2024). Anomalies are

identified as points with low likelihood under the learned mixture distribution (Apgar, 2023;

Edge Impulse, 2024). The model uses the Expectation-Maximization algorithm to iteratively

refine component means, variances, and weights, guided by Bayes’ Theorem. This flexible

framework enables unsupervised classification and density-based anomaly scoring across

multimodal data. (Apgar, 2023; Edge Impulse, 2024; Sayago, 2024)

GMM is well-suited for detecting both isolated outliers and anomalous subgroups in complex

retail sales data, due to its ability to model multimodal and elliptical distributions (Apgar,

2023; Edge Impulse, 2024). Unlike hard clustering methods like K-means, GMM assigns soft

probabilistic cluster memberships, allowing flexible detection in noisy and overlapping series

(Sayago, 2024). It handles variable cluster shapes and captures hidden structure without

requiring labeled data, making it effective in unsupervised, high-variance retail environments

(Apgar, 2023).

23

GMM assumes that data is generated from a mixture of Gaussian distributions, which may

not hold in real-world retail datasets with irregular, seasonal, or hierarchical patterns (Edge

Impulse, 2024; Sayago, 2024). The model is sensitive to initialization and may converge to

suboptimal solutions, especially when clusters are poorly separated or the number of

components is misestimated (Sayago, 2024). GMM also treats observations as independent

and identically distributed (Apgar, 2023).

2.3.12​ Autoencoders Anomaly Detection Mechanism

Autoencoders (AEs) are neural networks trained to reconstruct their input by encoding data

into a compressed latent space and decoding it back to its original form. This bottleneck

architecture forces the model to learn the essential structure of normal data, and

reconstruction error becomes a natural anomaly score—high error signals potential

anomalies (Despois, 2017; Chollet, 2016; Singh, 2024; Schmidl et al., 2022). The approach is

typically semi-supervised, trained only on normal data using sliding windows to preserve

temporal context (Schmidl et al., 2022). Variants such as Variational Autoencoders (VAEs),

Long Short-Term Memory (LSTM) Autoencoders, Transformer-based Autoencoders (TAEs),

and Temporal Convolutional Autoencoders (TCNs) extend this principle to probabilistic,

sequential, and convolutional architectures (Govindaraj, 2024; Neloy & Turgeon, 2024; Thill,

2020; Tuhin et al., 2025).

Autoencoders are highly effective for detecting point anomalies in high-dimensional,

multivariate time series, especially when patterns are non-linear or hard to capture with

classical models (Bajaj, 2023; Kumar, 2023). Their ability to extract meaningful latent

representations allows them to model complex temporal and cross-feature

dependencies—such as promotional cycles or economic indicators — especially when

extended via LSTM or Transformer layers (Hong, 2024; Govindaraj, 2024; Tuhin et al.,

2025). These models scale well across large hierarchical datasets and support flexible

architectures suited for different input modalities (Neloy & Turgeon, 2024).

Despite their flexibility, autoencoders require clean and representative normal data, which

may be difficult to guarantee in domains with structural noise or concept drift (Hong, 2024;

Teuwens, 2021). Deep variants like LSTM or Transformer AEs are also computationally

intensive, requiring careful tuning and significant resources (Tuhin et al., 2025; Lawton,

2024). Furthermore, interpretability remains limited due to opaque latent features,

complicating real-world deployment and anomaly explanation (Tuhin et al., 2025).

Further in this thesis, autoencoder variants summarized in Table 2.1 Specific Autoencoder

Variants below will be used.

24

Table 2.1

Specific Autoencoder Variants

Type Architecture
Temporal​
Modelling

Latent Space​
Type

Anomaly​
Detection​
Mechanism

Strengths Weaknesses

Plain AE

Fully connected

encoder and

decoder with

bottleneck layer

Not temporal;

input often

flattened​

Deterministic

fixed-size latent

representation​

High

reconstruction

error on unseen

patterns

Simple,

effective,

non-linear

encoding

Cannot capture

temporal

dependencies​

VAE

Probabilistic

encoder/

decoder; learned

latent space

distribution

Assumes

independent

samples​
​

Probabilistic;

usually Gaussian​
​
​

Outliers fall in

low-probability

regions; latent

uncertainty as

score

Captures

variability,

robust to noise​
​

Complex loss

function;

unstable

optimization​

LSTM AE

Stacked LSTM

layers in

encoder and

decoder​
​

Explicitly

models temporal

dependencies​
​
​

Deterministic

temporal latent

vector​
​
​

High

reconstruction

error on

abnormal time

sequences​

Good memory

for time

patterns; detects

contextual or

collective

anomalies

High compute

and memory

cost; hard to

interpret​
​

TAE

Self-attention

layers process

sequences in

parallel

Captures

long-range

dependencies

via attention

Deterministic

embeddings

updated by

context

High error

signals

anomalous

deviation

Efficient for long

sequences;

highly parallel​

Requires large

datasets and

compute power​

TCN AE

Dilated

convolutions for

encoding and

decoding

sequences

Models temporal

dependencies

with dilation​

Deterministic

compressed

sequence

encoding​

High

reconstruction

error at

anomalies +

distance

Fast training;

large receptive

field​
​

Sensitive to

dilation/kernel

tuning​
​

AE = Autoencoder, VAE = Variational Autoencoder, LSTM = Long Short-Term Memory, TAE = Transformer-based Autoencoder, TCN = Temporal Convolutional Network.

Note: Table created by the author based on multiple sources including: (Al-Marie, 2023; Al-Selwi et al., 2023; Asperti & Trentin, 2020; Bajaj, 2023; Brownlee, 2018; Cai et

al., 2023; Chollet, 2016; Despois, 2017; Dhapre, 2024; GeeksForGeeks, 2019; GeeksForGeeks, 2020; Govindaraj, 2024; Helen, 2019; Hong, 2024; IBM, 2024; IBM, 2025;

Intel, 2024; Ippolito, 2023; Kar, 2024; Kennedy, 2025; Lachekhab et al., 2024; Lawton, 2024; Lozovsky, 2024; Neloy & Turgeon, 2024; Ögretir et al., 2023; Owoh et al.,

2024; Pykes, 2024; Schmidl et al., 2022; Singh, 2024; Teuwens, 2021; Thill, 2020; Thill et al., 2021; Tuhin et al., 2025; Xu & Duraisamy, 2020; Yadav, 2024).

2.3.13​ Deep SVDD Anomaly Detection Mechanism

Deep Support Vector Data Description (Deep SVDD) is a one-class anomaly detection

method that trains a neural network to map normal data into a minimal-volume hypersphere

in latent space (Ruff et al., 2018; Sendera et al., 2021; Yi, 2020). The center of this

hypersphere is fixed, typically set from an initial forward pass, to prevent collapse

(Pérez-Carrasco et al., 2023). At inference, the anomaly score is the distance from an input’s

representation to the center — larger distances suggest higher anomaly likelihood (Sendera et

al., 2021).

Deep SVDD bypasses input reconstruction by learning compact, discriminative latent

features from normal data alone (Ruff et al., 2018; Sendera et al., 2021). This makes it

well-suited to unsupervised settings with limited anomaly labels (Pérez-Carrasco et al.,

2023). The model is end-to-end trainable, architecture-agnostic, and effective even in

high-dimensional or structured inputs like multivariate time series (Sendera et al., 2021; Yi,

2020). Its tight latent embeddings support robust anomaly separation across diverse tasks

(Ruff et al., 2018).

A key issue is representation collapse, where the network maps all inputs, normal and

anomalous, to the same latent point, undermining anomaly detection (Ruff et al., 2018;

25

Sendera et al., 2021). This is mitigated by removing bias terms and fixing the center, but it

doesn’t address the deeper problem of multi-modal normal data. When normal behavior

spans diverse patterns, as in hierarchical or multivariate time series, the assumption of a

single compact latent region breaks down, leading to poor generalization (Pérez-Carrasco et

al., 2023; Ruff et al., 2018).

2.4​ Ensemble Detection

Ensemble strategies have proven highly effective in anomaly detection by combining the

strengths of diverse methods. Instead of relying on a single detector, recent studies

emphasize combining outputs from univariate, multivariate, and deep models to boost

robustness and recall (Furnari et al., 2021; Xin et al., 2023). These ensemble approaches

perform particularly well in complex or noisy datasets, where individual models often miss

complementary anomaly signals.

To systematically learn from such heterogeneity, a meta-learning approach is recognized.

Following the stacked generalization paradigm, a second-level classifier is trained on the

binary outputs of base detectors to synthesize their decisions into a single, refined prediction

(Brownlee, 2020). This layer learns which models to trust under which conditions, increasing

precision and reducing false positives without compromising sensitivity (Jeffrey et al., 2024;

Milvus, 2025).

Weighted voting or simple unions can be used to create the ensemble, but also gradient

boosting methods, like LightGBM can be used as the meta-classifier due to its scalability and

strong empirical performance in prior stacking studies. Its leaf-wise tree growth and support

for mixed inputs make it ideal for aggregating detector outputs in large-scale, structured time

series. This design enables flexible, interpretable, and high-performance anomaly detection

across diverse retail scenarios (Muruganandham et al., 2024; Muslim et al., 2023).

2.5​ Interpretability

As machine learning systems increasingly influence real-world decisions, interpretability

becomes essential for trust, transparency, and accountability. This is especially important in

high-stakes applications like fraud detection or anomaly surveillance, where understanding a

model’s behavior is critical (Awan, 2023; Mesameki, 2025).

To interpret complex or black-box models, surrogate modeling was adopted — a

well-established approach where a simple, interpretable model is trained to approximate the

decisions of a more complex one (Chen et al., 2022). For each anomaly detector, a supervised

surrogate model was trained to mimic binary outputs, then applied SHAP (SHapley Additive

exPlanations) to extract feature attributions (Mesameki, 2025).

SHAP is based on Shapley values from cooperative game theory and offers consistent, locally

accurate, and additive feature importance values (Awan, 2023; Huang & Marques-Silva,

2024). Although originally developed for tree models like LightGBM, it also generalizes to

26

black-box models (Mesameki, 2025). Since unsupervised models lack native interpretability,

the surrogate approach allows SHAP-like models to be used reliably across all detectors

(Chen et al., 2022; Mesameki, 2025), preserving a unified explanation layer for

heterogeneous methods.

2.6​ Chapter Summary

This chapter defined the theoretical foundations and design choices behind the proposed

anomaly detection framework. The problem was framed as point-wise anomaly detection in

large-scale, hierarchical, and multivariate time series, with thousands of department–store

sales series influenced by holidays, markdowns, and macroeconomic factors. Given the

absence of labeled anomalies, this is an unsupervised learning problem.

Decomposition methods, Prophet, STL, and TimeGPT, representing additive,

non-parametric, and deep learning-based modeling approaches, were described to

distinguish the signal space from residual space. Seventeen anomaly detection methods were

selected across four categories: statistical methods, classical unsupervised models,

probabilistic approaches, and deep learning techniques. Each was evaluated against six

criteria: point-wise detection, scalability, multivariate fit, hierarchical compatibility, temporal

awareness, and interpretability, as shown in Table 2.2: Anomaly Detection Methods

Comparison.

To enhance robustness, ensemble learning was introduced to combine individual model

outputs for higher accuracy, robustness, and prediction ability, ince no single model proved

sufficient across all criteria. Importance of interpretability of the results was highlighted and

a method via SHAP, using supervised surrogate models to explain both base detectors and

the ensemble, described.

Together, these components define the complete machine learning strategy that is

implemented and evaluated in the following chapters.

27

Table 2.2

Anomaly Detection Methods Comparison

Anomaly​
Detection​
Method

Point-Wise​
Detection

Large-Scale​
Suitability

Multivariate​
Capability

Hierarchical​
Compatibility

Temporal

Awareness
Interpretability

Z-Scores Yes Yes No No* No* Yes

Threshold Yes Yes No No* No* Yes

IF Yes Yes Yes No* No* Partial*

KNN Yes Yes Yes No* No* Yes

LOF Yes Partial Yes No* No* Yes

HDBSCAN Yes Yes Yes Yes No* Partial*

OCSVM Yes No Yes No* No* Partial*

COPOD Yes Yes Yes No* No Yes

BCPD Partial Yes No No* Yes Yes

GMM Yes Partial Yes No* No* Yes

Mahalanobis Yes Yes Yes No* No* Partial*

Plain AE Yes Partial Yes No* No* No*

VAE Yes Partial Yes No* No* No*

LSTM AE Yes No Yes No* No* No*

TAE Yes Partial Yes No* No* No*

TCN AE Yes Partial Yes No* No* No*

Deep SVDD Yes Partial Yes No* No* No*

IF = Isolation Forest, KNN = K-Nearest Neighbors, LOF = Local Outlier Factor, HDBSCAN = Hierarchical Density-Based Spatial Clustering of Applications with Noise,

OCSVM = One-Class Support Vector Machine, COPOD = Copula-Based Outlier Detection, GMM = Gaussian Mixture Model, AE = Autoencoder, VAE = Variational

Autoencoder, LSTM = Long Short-Term Memory, TAE = Transformer-based Autoencoder, TCN = Temporal Convolutional Network, SVDD = Support Vector Data

Description.

Note: (i) “Point-Wise Detection” indicates whether the method is capable of identifying individual anomalous time points.

(ii) “Large-Scale Suitability” denotes whether the method can scale to thousands of time series in realistic runtimes.

(iii) “Multivariate Capability” refers to a method’s ability to natively process multiple input features.

(iv) “Hierarchical Compatibility” assesses whether the method can be applied across multiple organizational levels with coherent aggregation.

(v) “Temporal Awareness” assesses whether the method inherently captures temporal dependencies without preprocessing.

(vi) “Interpretability” evaluates whether the method inherently offers explainable outputs.

(vii) * This limitation is partially addressable through a practical workaround.

(viii) Table created by the author based on multiple sources including: (Al-Marie, 2023; Apgar, 2023; Asperti & Trentin, 2020; Bajaj, 2023; Blachowicz et al., 2025;

Brownlee, 2018; Cai et al., 2023; Carletti et al., 2020; Dey, 2024; Despois, 2017; Dhapre, 2024; Edge Impuls, 2024; Ebenezer & Sharma, 2023; Eslava, 2023; Eyer, 2024;

Feasel, 2022; Govindaraj, 2024; Helen, 2019; Holbert, 2022; Hong, 2024; Iuhasz et al., 2025; Kar, 2024; Kaya, 2020; Kennedy, 2025; Kumar, 2023; Lachekhab et al.,

2024; Lawton, 2024; Li et al., 2020; Liu et al., 2008; Lozovsky, 2024; Lu et al., 2023; MindBridge, 2025; Moffitt, 2024; Neloy & Turgeon, 2024; Nguyen & Vien, 2018;

Ögretir et al., 2023; Owoh et al., 2024; Perry, 2019; Pérez-Carrasco et al., 2023; Peixeiro, 2023; Pykes, 2024; Rajasekaran, 2025; RisingWave, 2024; Romeu, 2021;

Ruberts, 2020; Ruff et al., 2018; Kamoi & Kobayashi, 2020; Sayago, 2024; Schmidl et al., 2022; Sendera et al., 2021; Srivastava, 2023; Teuwens, 2021; Thill, 2020; Thill et

al., 2021; Tuhin et al., 2025; Tuychiyev & DataCamp, 2021; Xu & Duraisamy, 2020; Xu et al., 2023; Yadav, 2023; Yadav, 2024; Yi, 2020; Yoon, 2022; Zhang et al., 2021;

Zhao, 2022).

28

3​Data Understanding

This chapter outlines the dataset’s structure, content, and relevance to the anomaly detection

task. It summarizes the source, key features, high-level patterns, and data quality to confirm

suitability for modeling and prepare for the preprocessing steps that follow.

3.1​ Initial Data Collection

The dataset used in this thesis was obtained from the Walmart Recruiting – Store Sales

Forecasting competition, hosted on the Kaggle platform (Kaggle, 2014). It was provided as a

ZIP archive containing several structured CSV files. Three of these, train.csv, stores.csv, and

features.csv, were used for this project. Each file served a distinct purpose: train.csv contains

weekly sales data per store and department, stores.csv provides additional store-level

attributes such as type and size, and features.csv includes external variables such as

temperature, fuel price, and economic indicators, alongside markdown and holiday-related

information. These files formed the basis for constructing a multivariate time series dataset

suitable for forecasting and anomaly detection tasks. No issues were encountered during the

acquisition or loading of the raw data.

3.2​ Data Description

The dataset used in this project was constructed by merging three sources: train.csv (weekly

sales), features.csv (economic indicators, markdowns, holiday flags), and stores.csv (store

metadata). The merged data preserves the original weekly granularity for each

Store–Department combination, resulting in 421,570 rows across 17 columns.

The summary statistics suggest the influence of outliers: the median sales value is $7,612.03,

while the mean is substantially higher at $15,981.26, maximum at $693,099.36, and

minimum at $–4,988.94, as depicted in Table 3.1 Descriptive Statistics of Weekly Sales

Values below.

29

Table 3.1

Descriptive Statistics of Weekly Sales Values

Statistic Weekly Sales

Count 421,570

Mean 15,981.26

Standard deviation 22,711.18

Minimum -4,988.94

25th Percentile 2,079.65

Median 7,612.03

75th Percentile 20,205.85

Maximum 693,099.36

Note: Table created by the author based on the original dataset.

Each row represents a weekly observation for a specific department in a specific store. In

total, the dataset covers 45 stores, 81 departments, and 143 weeks, forming a hierarchical

structure of 3,331 unique time series. The time series spans from the week of 2010-02-05 to

2012-10-26.

The feature set includes external variables such as temperature, fuel prices, consumer price

index (CPI), unemployment rates, and five markdown columns (interpreted as promotional

campaigns). One binary feature is_holiday represents national holidays.

3.3​ Data Description

This section presents an initial exploration of the dataset, with the aim of validating its

suitability for time series anomaly detection. The focus is on uncovering temporal patterns,

detecting seasonal effects, and understanding how external factors such as holidays and

markdowns influence sales behavior.

3.3.1​ Distribution of Weekly Sales

To better understand the underlying sales behavior, the distribution of the target variable

weekly sales was analyzed across all Store–Department combinations. As visualized in Figure

3.1 Distribution of Weekly Sales, the distribution is highly right-skewed, with the majority of

weekly sales clustered below $50,000 and a long tail of extreme values reaching up to

$693,099.36.

30

Figure 3.1

Distribution of Weekly Sales

Note: Figure created by the author based on the original dataset.

The calculated skewness of 3.26 quantitatively reinforces this heavy-tailed distribution. These

patterns highlight the importance of robust anomaly detection methods that can account for

high variance and asymmetry in the data.

3.3.2​ Trend and Seasonality

A clear seasonal structure is immediately apparent when visualizing the national-level weekly

sales over time (see Figure 3.2 Weekly National Sales Over Time).

Figure 3.2

Weekly National Sales Over Time

Note: Figure created by the author based on the original dataset.

Regular spikes, most prominently during late November and December, highlight recurring

holiday-driven peaks in consumer activity. This visual pattern strongly suggests seasonality

and temporal dependencies in the data. To further validate this, a year-over-year comparison

31

was plotted by aggregating sales across calendar weeks for 2010, 2011, and 2012 (see Figure

3.3 Year-over-Year Sales Patterns by Week Number). The near-identical shape of the curves

across years confirms consistent seasonal effects on the national level.

Figure 3.3

Year-over-Year Sales Patterns by Week Number

Note: Figure created by the author based on the original dataset.

Finally, a 4-week rolling average was applied to the national time series to emphasize the

underlying trend (see Figure 3.4 Trend in Weekly National Sales), further supporting the

presence of long-range temporal structure. These findings justify the application of time

series decomposition methods and temporally-aware anomaly detection models throughout

this thesis.

Figure 3.4

Trend in Weekly National Sales

Note: Figure created by the author based on the original dataset.

3.3.3​ Feature Relationships

To better understand how the numerical features relate to each other and to the target

variable, a correlation heatmap was generated (see Figure 3.5 Correlation Heatmap of

32

Numeric Features). As expected, the strongest correlation with weekly sales was observed for

the size of the store (r = 0.24), which aligns with the assumption that larger stores tend to

generate higher sales. Moderate positive correlations were also noted with markdown_1 (r =

0.17) and markdown_5 (r = 0.22), suggesting that certain promotional activities may be

associated with elevated sales volumes. Interestingly, no strong correlations were found

between economic indicators (e.g., CPI, unemployment) and weekly sales, indicating that

these features may have more localized or indirect effects. Overall, the low to moderate

correlations support the inclusion of these variables in multivariate modeling, where

non-linear and interaction effects can be more effectively captured.

Figure 3.5

Correlation Heatmap of Numeric Features

Note: Figure created by the author based on the original dataset.

To assess how binary features influence sales behavior, distribution of weekly_sales across

two categorical indicators: is_holiday and has_markdown is visualized. As shown in Figure

3.6 Weekly Sales Distribution on Holiday vs. Non-Holiday, holiday weeks tend to show a

wider distribution of weekly sales, with multiple high-value outliers, suggesting the presence

of holiday-driven spikes.

33

Figure 3.6

Weekly Sales Distribution on Holiday vs. Non-Holiday

Note: Figure created by the author based on the original dataset.

As seen in Figure 3.7 Weekly Sales Distribution With and Without Promotions, weeks with

and without markdown promotions have a comparable median and overall spread in weekly

sales. However, non-promotion weeks display more extreme outliers, suggesting that

unusually high sales spikes can occur even in the absence of promotions.

Figure 3.7

Weekly Sales Distribution With and Without Promotions

Note: Figure created by the author based on the original dataset.

34

3.3.4​ Data Quality Verification

A numerical analysis of missing values (see Table 3.2 Summary of Missing Values) revealed

substantial gaps in the five markdown features.

Table 3.2

Summary of Missing Values

Column Count Percentage

markdown_2 310,322​ 73.61

markdown_4 286,603​ 67.98

markdown_3 284,479​ 67.48

markdown_1 270,889​ 64.26

markdown_5 270,138 64.08

Note: Table created by the author based on the original dataset.

A detailed quality check revealed that 671 individual Store–Department time series (20.14%

of the total 3,331) contained irregularities in their weekly continuity. These gaps reflected

implicitly missing data — i.e., weeks for which no entry was present in the dataset at all. The

number of missing weeks per affected series ranged from just 1 to as many as 142, with a

median of 94. These inconsistencies would have made direct modeling or decomposition

unreliable and required targeted preprocessing steps to reconstruct a consistent weekly

structure. The specific correction strategy is described in Section 4.2.

Next, the weekly_sales column was examined for invalid or unexpected values. A total of

1,285 records contained negative sales, with most values close to zero and a few larger

outliers, such as the global minimum of $–4,988.94. These negative values likely reflect

product returns or internal sales corrections and were retained in the dataset, as they may

carry important signals for anomaly detection.

Overall, the dataset is of high quality and well-suited for the modeling and evaluation tasks

that follow.

3.4​ Chapter Summary

This chapter outlined the structure and content of the dataset, which spans 143 weeks across

45 stores and 81 departments. Skewed sales distribution, seasonal trends, and contextual

influences were found. Missing weeks were identified in 20% Store–Department series.

Establishing the key data challenges and patterns, this chapter set the stage for the cleaning

and transformation steps detailed in the next chapter.

35

4​Data Preparation

This chapter explains how the raw sales data was transformed into a modeling-ready format

for hierarchical, multivariate, point-wise anomaly detection. The preparation process

included cleaning and merging inputs, handling missing values, creating derived features,

injecting synthetic anomalies, and scaling.

4.1​ Data Selection and Integration

In this particular case, the data were obtained in a ZIP file from the Kaggle Website as part of

the Walmart Recruiting — Store Sales Forecasting Prediction Competition (Kaggle, 2014).

It contains four CSV files:

●​ stores.csv containing additional information about each store — its size and type

(anonymized as either A, B, or C),

●​ train.csv containing weekly sales for each Store–Department–Date combination,

including a column to indicate holidays in a particular week,

●​ test.csv containing further Store–Department–Date combinations and the holiday

column, but without weekly sales (intended only for the original prediction task),

●​ features.csv containing additional data related to the store, department, and regional

activity for the given dates — including temperature, fuel price, CPI, unemployment,

and five markdown columns related to promotional markdowns.

To prepare the dataset for anomaly detection, three sources were merged — train.csv,

stores.csv, and features.csv. The merged dataset preserved the original Store–Dept–Date

granularity, resulting in a total of 421,570 rows — one for each department in each store for

each week.

4.2​ Data Cleaning

Several cleaning steps were necessary to prepare the dataset for modeling. Column names

were standardized to snake_case, and redundant fields introduced by merging (e.g.,

IsHoliday_x, IsHoliday_y) were removed to maintain a clean schema.

The five markdown-related features (markdown_1 to markdown_5) showed between 64%

and 74% of values absent. These were filled with 0, based on the assumption that missing

values indicate the absence of a promotion.

Although the column weekly_sales did not contain nulls at the dataset level, a detailed audit

revealed that 671 Store–Department time series (20.14%) were incomplete. To address this,

missing values were filled using mean imputation per Store–Dept group.

36

After these steps, the dataset was fully cleaned and confirmed to be complete, consistent, and

suitable for hierarchical, multivariate time-series modeling.

4.3​ Feature Construction

To support robust anomaly detection, several new features were derived from the raw

dataset. The five promotional columns (markdown_1 through markdown_5) were retained.

In addition, a new binary column, has_markdown, was created to flag whether any

markdown was active in a given week. The categorical feature type, representing store format

as A, B, or C, was one-hot encoded into binary indicators to ensure compatibility with

machine learning models.

Finally, a special label column injected_anomaly was added, marking known artificial

anomalies for model evaluation. This label was never used in training and was preserved

throughout all downstream transformations to enable fair and reproducible benchmarking.

Values in weekly_sales were modified with injected anomalies, but original weekly sales

values were retained in the weekly_sales_original column.

4.4​ Injecting Anomalies

To enable robust and repeatable evaluation of anomaly detection models, a controlled set of

artificial anomalies was injected into the multivariate time series. These synthetic anomalies

were added after data cleaning and before forecasting to simulate realistic sales deviations

while preserving the underlying time series structure.

Two types of point anomalies were injected according to defined business logic:

●​ Spike anomalies (n = 2,107) were introduced into weeks where there was no holiday

or promotion. These simulate unexpected surges in sales that would typically trigger

business curiosity or investigation.

●​ Drop anomalies (n = 2,107) were injected into weeks that contained a holiday or

promotion. These represent concerning underperformance during periods that would

normally be expected to yield higher sales.

Each anomaly was introduced by modifying the original weekly sales value based on the

group-level rolling mean and standard deviation (window = 8 weeks). Specifically, the

anomaly was created by adding or subtracting 4 times the rolling standard deviation from the

rolling mean. Anomaly positions were randomized across the timeline. This approach was

designed to produce statistically significant deviations that are detectable yet remain within a

plausible range, simulating realistic irregularities rather than extreme outliers.

To validate the injection mechanism, Z-scores were recalculated post-injection using a

separate rolling baseline. The resulting anomalies had an average Z-score magnitude of 3.73.

Only 0.05% of anomalies had an absolute Z-score ≥ 5, meaning that the injected points were

37

subtle enough to challenge detection models, while still being anomalous by statistical

standards.

The injected anomaly labels were stored in the injected_anomaly column and strictly

reserved for evaluation only, never used for training.

To validate the correctness and realism of the injected anomalies, they were also inspected

visually. Plots comparing the original and modified sales clearly confirmed that anomalies

appeared in plausible locations and magnitude (see example on Figure 4.1 Store 45 — Dept

29 – Anomaly Injection Check). This visual inspection served as a sanity check to ensure that

injected anomalies would not trivially dominate the time series but instead pose a meaningful

challenge for detection models.

Figure 4.1

Store 45 — Dept 29 – Anomaly Injection Check

Note: Figure created by the author based on the created dataset.

4.5​ Scaling

To prepare the dataset for machine learning, all numeric features were scaled to stabilize

input distributions while preserving anomaly-relevant signals. Given the presence of outliers,

skewed distributions, and heavy tails in the sales data, the RobustScaler from scikit-learn was

selected. Unlike standard techniques such as StandardScaler or MinMaxScaler, RobustScaler

uses the median and IQR to mitigate the influence of extreme values (Scikit Learn, 2018).

This choice was particularly important for ensuring that downstream models, especially those

sensitive to feature magnitude, would not misinterpret outliers as distributional noise.

Crucially, this scaling was applied only after decomposition, targeting the residual

component of the signal, which reflects deviations from trend and seasonality. By isolating

and scaling only the residuals, the models received a normalized view of the "unexpected"

behavior.

For real-time anomaly detection, it was essential to avoid using future data when scaling past

observations. Global scaling approaches, which compute scaling parameters across the full

series, inadvertently leak information from the future into the past. To address this, the

38

pipeline applies rolling-window robust scaling, ensuring that each point is transformed based

only on values available up to that point in time.

Among the tested configurations, an 8-week rolling window emerged as the most suitable

choice. It provides a responsive scaling horizon—short enough to highlight recent

distributional shifts and sharp deviations, yet long enough to remain robust to volatility and

avoid overfitting to local noise.

4.6​ Chapter Summary

The dataset was assembled by merging three source files into a unified

Store–Department–Date format at weekly resolution. After column standardization and

removal of redundancies, the final dataset contained 421,570 rows. All column names were

converted to snake_case, and categorical features such as type and is_holiday were cleaned

for consistency. Missing values in the markdown columns were filled with zeroes. A new

binary feature has_markdown was introduced to indicate promotional activity. The type

column was one-hot encoded to convert store categories A, B, and C into binary features.

20% Store–Department time series with missing weeks were aligned to a complete timeline

(February 2010–October 2012) and missing entries were filled using groupwise mean

imputation.

Artificial anomalies were then injected into the cleaned weekly_sales column: 2,107 spikes

and 2,107 drops. Injection logic was based on contextual business rules and calibrated using

local rolling statistics. Anomalies were labeled using injected_anomaly and anomaly_type,

and used strictly for evaluation.

Scaling was deferred until after decomposition. Residuals from each decomposition method

were scaled independently to ensure comparability across models, while preserving the raw

signal structure for injection and forecasting.

39

5​Modelling

This chapter applies the selected models from Chapter 2 Machine Learning Understanding to

the prepared dataset from Chapter 4 Data Preparation, evaluates their performance across all

decomposition sources and anomaly detection methods, and identifies the best-performing

approach for reliable anomaly detection.

5.1​ Model Assessment

To ensure an unbiased comparison across models and decomposition sources, a fair

evaluation window was defined as the intersection of all weeks where valid residuals were

available from all three decomposition methods.

Each anomaly detection method was then evaluated under two distinct evaluation windows:

●​ Fair window: The overlapping weeks across all decomposition sources, used for fair

cross-method comparison. In the comparative setting, the Fair window spanned

2011-04-22 to 2011-10-28, covering 27 weeks, as shown in Figure 5.1 Valid Residual

Weeks per Method (Filtered).

●​ Full window: The full original date range available, capturing the method’s overall

detection behavior (143 weeks, from 2010-02-05 to 2012-10-26).

Figure 5.1

Valid Residual Weeks per Method (Filtered)

Note: Figure created by the author based on the created dataset.

The evaluation process computed the following for each method and source:

●​ confusion matrix components — true positives (TP) and its breakdown into spikes

and drops, false positives (FP), false negatives (FN), true negatives (TN),

●​ standard metrics: precision, recall, and F1 score (harmonic mean of precision and

recall).

40

To ensure consistency, the entire evaluation process was fully automated. A custom pipeline

dynamically identified the correct prediction column from each detection result dataframe,

inferred method and decomposition source names from variable names, created the two

evaluation windows, computed and logged all metrics into a global results log.

This setup enabled comprehensive comparison combining 16 detection methods and 3

decomposition strategies, as depicted in detail in Table 5.1 Best Runs per Anomaly Detection

Method and Decomposition Combination. Evaluation results were used for model tuning,

ranking, and the training of the final ensemble.

Table 5.1

Best Runs per Anomaly Detection Method and Decomposition Combination

Anomaly Detection ​
Model

Decomposition ​
Method

Time Fair F1 Full F1 Anomaly Detection ​
Model

Decomposition ​
Method

Time Fair F1 Full F1

Z-Scores Prophet 36.3s 0.2943 0.1949 Mahalanobis Prophet 77.5s 0.0547 0.0451

Z-Scores STL 35.3s 0.0802 0.0205 Mahalanobis STL 78.8s 0.0129 0.0081

Z-Scores TimeGPT 33.42s 0.2159 0.1096 Mahalanobis TimeGPT 131.9s 0.0471 0.0375

Threshold Prophet 36.03s 0.0747 0.0652 GMM Prophet 59.9s 0.0255 0.0216

Threshold STL 35.59s 0.0201 0.0138 GMM STL 58.5s 0.0092 0.0135

Threshold TimeGPT 34.29s 0.0485 0.0567 GMM TimeGPT 116.2s 0.0248 0.0211

IF Prophet 46.55s 0.0482 0.0357 Plain AE Prophet 725.1ss 0.0131 0.0128

IF STL 44.23s 0.0143 0.0089 Plain AE STL 702.3s 0.0048 0.0023

IF TimeGPT 44.50s 0.0402 0.0305 Plain AE TimeGPT 690.5ss 0.0067 0.0028

KNN Prophet 52.1s 0.1318 0.0852 VAE Prophet 138.2s 0.0144 0.0121

KNN STL 50.0s 0.0499 0.0327 VAE STL 137.6s 0 0

KNN TimeGPT 45.7s 0.1116 0.0774 VAE TimeGPT 136.4s 0 0

LOF Prophet 8.9s 0.0044 0.0099 LSTM AE Prophet 2400.s - -

LOF STL 9.0s 0.0052 0.0059 LSTM AE STL 2400.s - -

LOF TimeGPT 8.4s 0.0033 0.0054 LSTM AE TimeGPT 2400.s - -

HDBSCAN Prophet 73.3s 0.0238 0.0280 TAE Prophet 785.3s 0.0104 0.0101

HDBSCAN STL 70.9s 0.0094 0.0082 TAE STL 804.6s 0.0042 0.0037

HDBSCAN TimeGPT 71.7s 0.0120 0.0157 TAE TimeGPT 778.9s 0.0137 0.0110

OCSVM Prophet 1130.6s 0.0098 0.0091 TCN AE Prophet 113.3s 0 0.0074

OCSVM STL 750.5s 0.0035 0.0032 TCN AE STL 112.4s 0 0.0069

OCSVM TimeGPT 1432.3s 0.0085 0.0079 TCN AE TimeGPT 112.0s 0 0.0082

BCPD Prophet 31.5s 0.0090 0.0101 Deep SVDD Prophet 631.7s 0.0084 0.0071

BCPD STL 26.2s 0.0057 0.0061 Deep SVDD STL 627.8s 0.0069 0.0069

BCPD TimeGPT 26.5s 0.0061 0.0072 Deep SVDD TimeGPT 632.5s 0 0

​
AE = Autoencoder, COPOD = Copula-Based Outlier Detection, GMM = Gaussian Mixture Model, HDBSCAN = Hierarchical Density-Based Spatial Clustering of

Applications with Noise, IF = Isolation Forest, KNN = K-Nearest Neighbors, LOF = Local Outlier Factor, LSTM = Long Short-Term Memory, OCSVM = One-Class Support

Vector Machine, SVDD = Support Vector Data Description, VAE = Variational Autoencoder, TAE = Transformer-based Autoencoder, TCN = Temporal Convolutional

Network.

Note: (i) “Time” indicates only runtime of the Anomaly Detection Model. (ii) Table created by the author based on the created dataset.

41

5.2​ Decomposition Methods

Due to the clear seasonality and trend patterns in the sales data, decomposition was applied

to separate predictable components from unpredictable residuals used for anomaly detection.

Three methods, Prophet, STL, and TimeGPT, were selected for their diverse modeling

approaches. Comparing results of anomaly detection models across these residuals allows for

a robust evaluation of model performance.

5.2.1​ Prophet Decomposition

This model was chosen to decompose weekly sales to trend, seasonality, and residuals.

Multivariate form of Prophet with .add_regressor() with external features was tested. A

separate Prophet instance was trained per Store–Department combination.

Modelling Assumptions

Prophet models trend and seasonality additively and works best with regularly spaced data. It

assumes residuals are independent and doesn’t capture interactions between observations. It

naturally handles missing values without special treatment. External regressors are assumed

to have linear, independent effects, meaning no interactions or nonlinearities are modeled.

Test Design

Prophet decomposition results were not evaluated directly; instead, their impact was

assessed via anomaly detection model outputs. Precision, recall and F1 were computed in

both the Fair and Full windows against known, injected spikes and drops. A visual inspection

of decomposition quality and of residuals was conducted for representative

Store–Department combinations.

Parameter Setting

The highest F1 score was achieved using only the weekly_sales column with

weekly_seasonality=True, yearly_seasonality=True, daily_seasonality=False, without

additional regressors or tweaks.

Model Assessment

Residuals produced by Prophet consistently outperformed those from STL and TimeGPT

across nearly all detection methods. In 12 anomaly-detection models, higher Full F1 scores

were achieved by Prophet-based residuals, while for the Fair window, Prophet achieved

highest F1 in 11 models (see Table 5.1 Best Runs per Anomaly Detection Method and

Decomposition Combination).

Average runtime in the univariate setting was 7.5 minutes, while the full multivariate

configuration required just over 2 hours.

42

In Figure 5.2 Store 45 — Dept 29: Prophet Decomposition, decomposition into trend and

seasonality and residuals with highlighted injected anomalies are shown, confirming

consistency across the full timeline.

Figure 5.2

Store 45 — Dept 29: Prophet Decomposition

Note: Figure created by the author based on the created dataset.

Given its superior F1, precision and recall across most models and its reasonable

computational time, Prophet was chosen for the final model.

Model Refinement and Observations

Multiple Prophet configurations were evaluated; residuals from each were processed through

the anomaly detection pipeline and underperformed relative to the basic univariate

weekly_sales model. SHAP-style analysis was applied to all candidate regressors, revealing

CPI, unemployment and temperature as the only meaningful contributors (Figure 5.3 Mean

Regressor Contribution to the Prophet Forecast below). Runs using all business variables or

the top seven SHAP-ranked features yielded F1 = 0.0000, while the second-best

configuration, incorporating just two best regressors, achieved only half the F1 of the

univariate setup in the same anomaly detection models.

43

Figure 5.3

Mean Regressor Contribution to Prophet Forecast

Note: Figure created by the author based on the created dataset.

5.2.2​ STL Decomposition

The STL decomposition was run across each Store–Department series. The outputs included

three new columns per observation: stl_trend, stl_seasonal, and residual (calculated

manually as weekly_sales – stl_trend – stl_seasonal). The implementation was based on

statsmodels.tsa.seasonal.STL.

Modelling Assumptions

STL assumes a univariate, regularly spaced time series with stable, approximately additive

seasonality. While it can accommodate some missing values via interpolation, it is not

intended for irregular gaps or heavily censored sequences. External regressors,

autocorrelation, and structural breaks are not explicitly modeled.

Test Design

STL decomposition results were not evaluated directly; instead, their impact was assessed via

anomaly detection model outputs. Precision, recall and F1 were computed in both the Fair

and Full windows against known, injected spikes and drops. A visual inspection of

decomposition quality and of residuals was conducted for representative Store–Department

combinations.

44

Parameter Setting

The highest F1 score was achieved applying STL separately to each group using a fixed

period=52 to match weekly seasonality.

Model Assessment

STL was the weakest of the three decomposition methods tested. Across all evaluated

anomaly-detection models, STL never produced the best-performing residuals in either the

Full evaluation window and only once in the Fair window (see Table 5.1 Best Runs per

Anomaly Detection Method and Decomposition Combination). These issues are likely due to

LOESS smoothing’s reduced support near the edges, which prevents reliable trend estimation

without sufficient surrounding data. This severely impacted anomaly detection, as noise at

the series boundaries led to both false positives and missed injected anomalies.

STL decompositions were extremely fast to compute — finished in 2 minutes and 10 seconds.

In Figure 5.4 Store 45 — Dept 29: STL Decomposition below, the trend and seasonality

components and the residuals with highlighted injected anomalies are presented, showing

major residual inconsistency between the incomplete years 2010 and 2012 and the full

middle year 2011.

Figure 5.4

Store 45 — Dept 29: STL Decomposition

Note: Figure created by the author based on the created dataset.

45

The low runtime did not compensate for the instability observed in the residuals and

therefore, STL was not chosen as the final decomposition method.

Model Refinement and Observations

The period = 52 value was retained, as consistent weekly periodicity was assumed across all

series. Significant modifications were applied during preprocessing in an attempt to make

STL fit adequately in 2010 and 2012 (including various backfill and forward-fill techniques

and filling missing weeks at the beginning and end of each series with the mean). Padding

was applied before STL to enforce a complete weekly timestamp range across all units,

ensuring equal decomposition windows and later comparability. However, all downstream

evaluations were restricted to the original rows (is_filled == False) to avoid contamination

from artificially added timestamps.

Because major residual issues in the incomplete years were observed and remained

unresolved, no further extensive tuning was performed. The decomposition method was

retained in the comparison pipeline only in case STL outperformed the other two methods in

the Fair window; however, that did not occur.

5.2.3​ TimeGPT Decomposition

The TimeGPT decomposition was run across each Store–Department series. For this study,

the detect_anomalies() function was used to extract forecasts across each Store–Dept series.

Residuals were then computed as the difference between weekly sales and predicted values

(yhat).

Modelling Assumptions

As a pretrained black-box model, TimeGPT makes several implicit assumptions. Input series

must be continuous, regularly spaced. Series should have minimal missing timestamps;

dense, clean inputs yield better forecasts. Model internally assumes that sales patterns follow

trends learned from general time series behavior. Forecasts are generated only after an initial

context window. No custom holiday, event, or regressor data is supported. Exogenous feature

support is limited or disabled in the free version.

Test Design

TimeGPT decomposition results were not evaluated directly; instead, their impact was

assessed via anomaly detection model outputs. Precision, recall and F1 were computed in

both the Fair and Full windows against known, injected spikes and drops. A visual inspection

of decomposition quality and of residuals was conducted for representative

Store–Department combinations.

Parameter Setting

The highest F1 score was achieved using detect_anomalies() in its basic configuration:

time_col="date", target_col="y", freq="W-FRI".

46

Model Assessment

Across the all evaluated anomaly detection models, TimeGPT produced better results than

Prophet only twice in the Full window and twice in the Fair window. In the Full window,

TimeGPT provided better results in certain deep learning anomaly detection settings —

Transformer-based Autoencoder and TCN Autoencoder (see Table 5.1 Best Runs per

Anomaly Detection Method and Decomposition Combination).

The decomposition across the series completed in approximately 32 minutes.

In Figure 5.5 Store 45 — Dept 29: TimeGPT Decomposition below, the trend and seasonality

components and the residuals with highlighted injected anomalies are presented, beginning

forecast only in 2011-04-22, but then showing well formed forecast and residuals.

Figure 5.5

Store 45 — Dept 29: TimeGPT Decomposition

Note: Figure created by the author based on the created dataset.

Overall, while TimeGPT delivered a few competitive results, it was ultimately outperformed

by Prophet in accuracy, transparency, control, and speed. TimeGPT was not chosen as the

final decomposition method.

47

Model Refinement and Observations

TimeGPT was used solely for decomposition and residual extraction, not for forward

forecasting. Early attempts to call .forecast() or specify h=length repeatedly failed (returning

NaNs, missing outputs, or errors about overly long horizons) due to undocumented free-tier

API constraints. As a workaround, detect_anomalies() was tried to obtain residuals, but only

the yhat forecast column was returned. Expected fields for anomalies, confidence levels, or

pointwise flags were absent. Consistent weekly padding and interpolation were applied to all

series before decomposition, yet the first few weeks of each series were omitted from the API

response, presumably because the model requires a minimum warm-up context, so those

timestamps were excluded from the Fair window evaluation. The black-box nature of the

service precluded any internal inspection, customization of horizons or confidence intervals,

and advanced anomaly-detection tuning beyond basic decomposition.

5.3​ Anomaly Detection Models

This section details the anomaly detection models applied to the residuals generated by each

decomposition method. The models are presented individually to highlight their strengths,

limitations, and suitability for large-scale, hierarchical, multivariate anomaly detection.

5.3.1​ Z-Scores Anomaly Detection Model

The following section documents the application of Z-score-based anomaly detection.

Modelling Assumptions

Z-scores assume a normal distribution of input features and that anomalies are extreme

deviations from the mean. It assumes stationarity within the window used to compute the

mean and standard deviation, and requires complete data without missing values.

Test Design

No explicit train/test split was performed. Instead, an 8-week centered sliding window was

applied directly over each Store–Dept series to compute local mean and STD to preserve

temporality. Model results are evaluated against injected anomalies in both the Fair and Full

windows using precision, recall, and F1 score. This approach preserves temporality without

look-ahead while validating detection on held-out anomaly injections.

Parameter Setting

The best F1 results in Full window were achieved with z_threshold = 2 on residual_scaled

and sliding window set at 8 weeks.

48

Model Assessment

Under the best parameter settings, on Prophet decomposed residuals, results depicted in

Table 5.2 Z-Scores Anomaly Detection Model Best Results achieved Full F1 of 0.1949. This

model finished 1st across all anomaly detection models. The runtime was 36.3 seconds. This

model was excluded from the final ensemble because its detection logic directly mirrors the

anomaly injection process, which could lead to biased results. It is retained solely for baseline

comparison, as Z-Scores represent a standard benchmark in anomaly detection.

Table 5.2

Z-Scores Anomaly Detection Model Best Results

Window F1 Precision Recall

Fair 0.2943 0.2153 0.4643

Full 0.1949 0.1203 0.5105

Note: Table created by the author based on the created dataset.

Model Refinement and Observations

Several alternative parameter settings were tested, including thresholds of 3, 4, 5, and 6, as

well as window sizes of 4 and 16. However, none of these configurations outperformed the

combination of threshold 2 with an 8-week window. This particular setting achieved the

highest F1 score, making it the most effective configuration overall.

5.3.2​ Thresholding Anomaly Detection Model

The following section documents the application of quantile-based Thresholding anomaly

detection.

Modelling Assumptions

The approach assumes that anomalies lie in the tails of the residual distribution and that

normal behavior is centered. It makes no distributional assumption beyond rankability, but

requires no missing values in the thresholded variable.

Test Design

No explicit train/test split was performed. Instead, an 8-week centered sliding window was

applied directly over each Store–Dept series to compute rolling lower and upper quantile

thresholds, enabling local anomaly detection while preserving temporal context. Model

results are evaluated against injected anomalies in both the Fair and Full windows using

precision, recall, and F1 score. This approach preserves temporality without look-ahead while

validating detection on held-out anomaly injections.

49

Parameter Setting

The best F1 results in Full window were achieved with upper threshold at 99,5% and lower

threshold at 0.5% on residual_scaled with a sliding window set at 8 weeks.

Model Assessment

Under the best parameter settings, on Prophet decomposed residuals, results depicted in

Table 5.3 Thresholding Anomaly Detection Model Best Results achieved Full F1 of 0.0652.

This model finished 3rd across all anomaly detection models. The runtime was 36.0 seconds.

This model was selected for the final ensemble.

Table 5.3

Thresholding Anomaly Detection Model Best Results

Window F1 Precision Recall

Fair 0.0747 0.0395 0.6821

Full 0.0652 0.0339 0.8497

Note: Table created by the author based on the created dataset.

Model Refinement and Observations

Several percentile thresholds were tested (1st/99th, 0.25th/99.75th), but the 0.5th/99.5th

percentile setting yielded the best F1 score and was retained as the most effective

configuration.

5.3.3​ Isolation Forest Anomaly Detection Model

The following section documents the application of Isolation Forest anomaly detection.

Modelling Assumptions

Isolation Forest assumes that anomalies are rare and different from normal observations,

and that the feature space provides useful separation. It does not rely on any distributional

assumptions but assumes all input features are continuous, scaled, and complete.

Test Design

Model was applied independently to each Store–Dept series. A 5-fold TimeSeriesSplit was

applied across the full dataset, where each fold trains on past observations and tests on future

data, preserving temporal causality. The Isolation Forest model was refit in each fold using

only past data to predict on unseen future windows. Model results are evaluated against

injected anomalies in both the Fair and Full windows using precision, recall, and F1 score.

This approach ensures robust validation without look-ahead, aligning with the temporal

structure of the data.

50

Parameter Setting

The best F1 results in Full window were achieved with n_estimators = 200, max_samples =

auto, contamination = 0.01 and jobs = -1. Final input features were residual_scaled,

has_markdown and is_holiday.

Model Assessment

Under the best parameter settings, on Prophet decomposed residuals, results depicted in

Table 5.4 Isolation Forest Anomaly Detection Model Best Results achieved Full F1 of 0.0357.

This model finished 5th across all anomaly detection models. The runtime was 46.55

seconds. This model was selected for the final ensemble.

Table 5.4

Isolation Forest Anomaly Detection Model Best Results

Window F1 Precision Recall

Fair 0.0482 0.1034 0.0315

Full 0.0357 0.0325 0.0397

Note: Table created by the author based on the created dataset.

Model Refinement and Observations

Extensive tuning was performed on the Isolation Forest model by varying contamination

levels (0.008 to 0.01), max_samples settings (auto, 256), jobs not specified or –1, and input

feature sets ranging from minimal to full multivariate representations including all

markdowns, economic indicators, and store type encodings. Despite these variations, none of

the alternative configurations delivered F1 scores comparable to the final selected setup.

5.3.4​ K-Nearest Neighbors Anomaly Detection Model

The following section documents the application of K-Nearest Neighbors anomaly detection.

Modelling Assumptions

KNN assumes that normal observations are located in dense regions of the feature space,

while anomalies are isolated and lie in sparse regions. It requires that all features be

numerical and properly scaled, assumes no missing values, and does not make assumptions

about underlying distributions.

Test Design

Model was applied independently to each Store–Dept series. A 5-fold TimeSeriesSplit was

applied across the full dataset, where each fold trains on past observations and tests on future

data, preserving temporal causality. The KNN model was refit in each fold using only past

data to predict on unseen future windows. Model results are evaluated against injected

51

anomalies in both the Fair and Full windows using precision, recall, and F1 score. This

approach ensures robust validation without look-ahead, aligning with the temporal structure

of the data.

Parameter Setting

The best F1 results in Full window were achieved with k = 20, metric = Chebyshev, and

threshold = 98. Final input features were residual_scaled, cpi_scaled, and

unemployment_scaled.

Model Assessment

Under the best parameter settings, on Prophet decomposed residuals, results depicted in

Table 5.5 Local Outlier Factor Anomaly Detection Model Best Results achieved Full F1 of

0.0852. This model finished 2nd across all anomaly detection models. The runtime was 52.12

seconds. This model was not selected for the final ensemble.

Table 5.5

K-Nearest Neighbors Anomaly Detection Model Best Results

Window F1 Precision Recall

Fair 0.1318 0.1378 0.1257

Full 0.0852 0.0716 0.1049

Note: Table created by the author based on the created dataset.

Model Refinement and Observations
KNN was tuned by varying k (20, 50), percentile thresholds (98, 99), and distance metrics

(minkowski, manhattan, chebyshev, euclidean). Baseline runs used residual_scaled,

has_markdown, and is_holiday; later runs added cpi_scaled, unemployment_scaled, and

temperature_scaled. Chebyshev with k=20 and extended features was tested extensively.

Threshold lowering from 99th to 98th percentile aimed to improve sensitivity to subtle

anomalies.

5.3.5​ Local Outlier Factor Anomaly Detection Model

The following section documents the application of Local Outlier Factor anomaly detection.

Modelling Assumptions

LOF assumes that normal data points reside in high-density clusters, while anomalies appear

in sparser regions. It requires scaled, numerical features, no missing values, and is sensitive

to the choice of distance metric and neighborhood size.

52

Test Design

Model was applied independently to each Store–Dept series. A 5-fold TimeSeriesSplit was

applied across the full dataset, where each fold trains on past observations and tests on future

data, preserving temporal causality. The LOF model was refit in each fold using only past

data to predict on unseen future windows. Model results are evaluated against injected

anomalies in both the Fair and Full windows using precision, recall, and F1 score. This

approach ensures robust validation without look-ahead, aligning with the temporal structure

of the data.

Parameter Setting

The best F1 results in Full window were achieved with n_neighbors = 20, contamination =

0.02, metric = minkowski, and novelty = false. Final input features were residual_scaled,

unemployment_scaled, and cpi_scaled.

Model Assessment

Under the best parameter settings, on Prophet decomposed residuals, results depicted in

Table 5.6 Local Outlier Factor Anomaly Detection Model Best Results achieved Full F1 of

0.0099. This model finished 12th across all anomaly detection models. The runtime was 8.90

seconds. This model was not selected for the final ensemble.

Table 5.6

Local Outlier Factor Anomaly Detection Model Best Results

Window F1 Precision Recall

Fair 0.0044 0.0034 0.0063

Full 0.0099 0.0051 0.1594

Note: Table created by the author based on the created dataset.

Model Refinement and Observations
LOF was tuned by varying n_neighbors (5, 10, 20, 30), contamination levels (0.01, 0.02), and

distance metrics (minkowski, manhattan). Initial runs used core features (residual_scaled,

has_markdown, is_holiday), followed by broader multivariate inputs including cpi_scaled,

unemployment_scaled, fuel_price_scaled, and temperature_scaled.

5.3.6​ HDBSCAN Anomaly Detection Model

The following section documents the application of HDBSCAN anomaly detection.

Modelling Assumptions

HDBSCAN assumes that normal data forms dense, hierarchically clusterable regions, and

anomalies occur as sparse or noisy points that do not belong to any stable cluster. It requires

53

continuous, scaled input data and does not support missing values or categorical features. It

requires no assumptions about data stationarity or distribution.

Test Design

Model was applied independently to each Store–Dept series. A 5-fold TimeSeriesSplit was

applied across the full dataset, where each fold trains on past observations and tests on future

data, preserving temporal causality. The HDBSCAN model was refit in each fold using only

past data to predict on unseen future windows. Model results are evaluated against injected

anomalies in both the Fair and Full windows using precision, recall, and F1 score. This

approach ensures robust validation without look-ahead, aligning with the temporal structure

of the data.

Parameter Setting

The best F1 results in Full window were achieved with min_cluster_size = 10, min_samples =

1, metric = euclidean, and cluster_selection = eom. Final input features were residual_scaled,

has_markdown, is_holiday, unemployment_scaled, cpi_scaled, and temperature_scaled.

Model Assessment

Under the best parameter settings, on Prophet decomposed residuals, results depicted in

Table 5.7 HDBSCAN Anomaly Detection Model Best Results achieved Full F1 of 0.0280. This

model finished 6th across all anomaly detection models. The runtime was 73.33 seconds.

This model was selected for the final ensemble.

Table 5.7

HDBSCAN Anomaly Detection Model Best Results

Window F1 Precision Recall

Fair 0.0238 0.0121 0.6907

Full 0.0280 0.0143 0.6900

Note: Table created by the author based on the created dataset.

Model Refinement and Observations
Initial attempts with non-hierarchical DBSCAN on residual_scaled failed due to extreme

runtimes and scalability issues. HDBSCAN was then tuned by varying min_cluster_size (10,

15, 20, 25, 30, 40), min_samples (1, 5, 7, 10), and cluster selection methods (eom, leaf). Early

runs used core features (residual_scaled, has_markdown, is_holiday); later ones added

economic signals (cpi_scaled, unemployment_scaled, temperature_scaled). Euclidean and

Manhattan metrics were tested.

5.3.7​ One-Class SVM Anomaly Detection Model

The following section documents the application of OCSVM anomaly detection.

54

Modelling Assumptions

One-Class SVM assumes that anomalies lie outside a compact, high-density region of normal

data and can be separated from it by a hyperplane in a transformed feature space. It assumes

the distribution of normal data is relatively stable. OCSVM assumes no missing values.

Test Design

Model was applied independently to each Store–Dept series. A 5-fold TimeSeriesSplit was

applied across the full dataset, where each fold trains on past observations and tests on future

data, preserving temporal causality. The OCSVM model was refit in each fold using only past

data to predict on unseen future windows. Model results are evaluated against injected

anomalies in both the Fair and Full windows using precision, recall, and F1 score. This

approach ensures robust validation without look-ahead, aligning with the temporal structure

of the data.

Parameter Setting

The best F1 results in Full window were achieved with kernel = 20, nu = 0.03, and gamma =

scale. Final input features were residual_scaled, unemployment_scaled, cpi_scaled, and

temperature_scaled.

Model Assessment

Under the best parameter settings, on Prophet decomposed residuals, results depicted in

Table 5.8 OCSVM Anomaly Detection Model Best Results achieved Full F1 of 0.0091. This

model finished 13th across all anomaly detection models. The runtime was 1130.6 seconds.

This model was not selected for the final ensemble.

Table 5.8

OCSVM Anomaly Detection Model Best Results

Window F1 Precision Recall

Fair 0.0098 0.0056 0.0381

Full 0.0091 0.0052 0.0361

Note: Table created by the author based on the created dataset.

Model Refinement and Observations
OCSVM was refined through a series of tuning experiments. Both linear and rbf kernels were

tested, with nu values of 0.01 and 0.03, and gamma set to either scale or auto. Due to high

computational time, initial runs used a 0.2 subsample, but were excluded from comparison.

Various feature sets were tested from residual_scaled only to a multivariate set of

residual_scaled, cpi_scaled, unemployment_scaled, and temperature_scaled.

55

5.3.8​ Bayesian Change Point Detection Anomaly Detection Model

The following section documents the application of BCPD anomaly detection.

Modelling Assumptions

BCPD assumes that time series exhibit regime shifts, sustained changes in mean or trend,

rather than isolated outliers. The method also assumes enough continuity and variance in the

input series. It requires complete data without missing values and no categorical inputs.

Test Design

BCPD was applied independently to each Store–Dept series using the full residual sequence.

The method processes data sequentially, updating change point probabilities based only on

past and current observations, thereby preserving temporal causality. Model results are

evaluated against injected anomalies in both the Fair and Full windows using precision,

recall, and F1 score. This approach ensures robust validation without look-ahead, aligning

with the temporal structure of the data.

Parameter Setting

The best F1 results in Full window were achieved with model = l2 and penalty = 7. Final input

feature was only residual_scaled.

Model Assessment

Under the best parameter settings, on Prophet decomposed residuals, results depicted in

Table 5.9 BCPD Anomaly Detection Model Best Results achieved Full F1 of 0.0101. This

model finished 11th across all anomaly detection models. The runtime was 31.5 seconds. This

model was not selected for the final ensemble.

Table 5.9

BCPD Anomaly Detection Model Best Results

Window F1 Precision Recall

Fair 0.0090 0.0060 0.0179

Full 0.0101 0.0071 0.0176

Note: Table created by the author based on the created dataset.

Model Refinement and Observations
BCPD was implemented using the Binary Segmentation (Binseg) algorithm from the ruptures

library, with the L2 cost function as the primary model. Tuning focused on the penalty

parameter, which controls the sensitivity of change point detection: values of 3, 5, 7, and 10

were tested. Most runs used only residual_scaled as input, while one multivariate variant

incorporated economic features (cpi_scaled, unemployment_scaled, temperature_scaled).

Additional experiments explored the RBF model, but L2 consistently yielded better results.

56

5.3.9​ Mahalanobis Distance Anomaly Detection Model

The following section documents the application of Mahalanobis distance anomaly detection.

Modelling Assumptions

This method assumes that normal points follow a multivariate distribution with measurable

covariance, and that anomalies deviate significantly from the distribution center. It is

sensitive to feature scaling and correlation structure.

Test Design

Model was applied independently to each Store–Dept series. A 5-fold TimeSeriesSplit was

applied across the full dataset, where each fold trains on past observations and tests on future

data, preserving temporal causality. The Mahalanobis model was refit in each fold using only

past data to predict on unseen future windows. Model results are evaluated against injected

anomalies in both the Fair and Full windows using precision, recall, and F1 score. This

approach ensures robust validation without look-ahead, aligning with the temporal structure

of the data.

Parameter Setting

The best F1 results in Full window were achieved with threshold = 0.99 and estimator =

MinCovDet. Final input features were residual_scaled, has_markdown, and is_holiday

Model Assessment

Under the best parameter settings, on Prophet decomposed residuals, results depicted in

Table 5.10 Mahalanobis Distance Anomaly Detection Model Best Results achieved Full F1 of

0.0451. This model finished 4th across all anomaly detection models. The runtime was 77.46

seconds. This model was selected for the final ensemble.

Table 5.10

Mahalanobis Distance Anomaly Detection Model Best Results

Window F1 Precision Recall

Fair 0.0547 0.0771 0.0424

Full 0.0451 0.0495 0.0413

Note: Table created by the author based on the created dataset.

Model Refinement and Observations
Tuning involved systematically comparing multiple covariance estimators (MinCovDet,

EmpiricalCovariance, LedoitWolf, and OAS) to assess their robustness under multivariate

noise. Various feature sets were tested from residual_scaled, has_markdown, is_holiday,

cpi_scaled, and unemployment_scaled. Thresholds were adjusted from 0.99 to 0.995.

57

5.3.10​ Gaussian Mixture Model Anomaly Detection Model

The following section documents the application of Gaussian Mixture Model anomaly

detection.

Modelling Assumptions

GMM assumes the data is generated from a mixture of multiple Gaussian distributions, and

that anomalies correspond to points with low likelihood under the fitted mixture. It requires

complete and continuous input features.

Test Design

Model was applied independently to each Store–Dept series. A 5-fold TimeSeriesSplit was

applied across the full dataset, where each fold trains on past observations and tests on future

data, preserving temporal causality. The GMM model was refit in each fold using only past

data to predict on unseen future windows. Model results are evaluated against injected

anomalies in both the Fair and Full windows using precision, recall, and F1 score. This

approach ensures robust validation without look-ahead, aligning with the temporal structure

of the data.

Parameter Setting

The best F1 results in Full window were achieved with n_components = 4, covariance = full,

and threshold = 0.01. Final input features were residual_scaled, has_markdown, is_holiday,

and cpi_scaled.

Model Assessment

Under the best parameter settings, on Prophet decomposed residuals, results depicted in

Table 5.11 GMM Anomaly Detection Model Best Results achieved Full F1 of 0.0216. This

model finished 7th across all anomaly detection models. The runtime was 59.92 seconds. This

model was selected for the final ensemble.

Table 5.11

GMM Anomaly Detection Model Best Results

Window F1 Precision Recall

Fair 0.0255 0.0314 0.0213

Full 0.0216 0.0238 0.0198

Note: Table created by the author based on the created dataset.

Model Refinement and Observations
During GMM tuning, several key parameters were varied to evaluate their impact on anomaly

detection performance. The number of components (n_components) was tested at values 3,

4, and 5 to balance model complexity and overfitting risk. Both full and diag covariance

58

structures were explored. A regularization term (reg_covar = 1e-3) was introduced to

stabilize estimates in full-covariance settings. Threshold strategies included thresholds (e.g.,

<0.01, <0.05) and test runs without thresholding that stored raw log-likelihood scores. Initial

experiments used only residual_scaled, has_markdown, and is_holiday as features, while

later runs expanded inputs to include cpi_scaled.

5.3.11​ Plain Autoencoder Anomaly Detection Model

The following section documents the application of Plain Autoencoder anomaly detection.

Modelling Assumptions

The model assumes that normal patterns in the input features can be compactly

reconstructed through a lower-dimensional latent space, while anomalies cause larger

reconstruction errors. It requires complete data without missing values and assumes a

consistent feature scale and distribution.

Test Design

Model was applied independently to each Store–Dept series. A 5-fold TimeSeriesSplit was

applied across the full dataset, where each fold trains on past observations and tests on future

data, preserving temporal causality. The Autoencoder model was refit in each fold using only

past data to predict on unseen future windows. Model results are evaluated against injected

anomalies in both the Fair and Full windows using precision, recall, and F1 score. This

approach ensures robust validation without look-ahead, aligning with the temporal structure

of the data.

Parameter Setting

The best F1 results in the Full window were achieved using a plain feedforward autoencoder

with a symmetric architecture: two dense ReLU-activated layers in both the encoder and

decoder, and a linear activation in the output layer. The model used a latent dimension = 4

and sequence length = 7. Training was performed for 10 epochs with a batch size of 64 using

the Adam optimizer and mean squared error (MSE) loss. Anomalies were identified using a

90th percentile threshold on the reconstruction error. Final input features included

residual_scaled, has_markdown, is_holiday, and cpi_scaled.

Model Assessment

Under the best parameter settings, on Prophet decomposed residuals, results depicted in

Table 5.12 Plain Autoencoder Anomaly Detection Model Best Results achieved Full F1 of

0.0128. This model finished 8th across all anomaly detection models. The runtime was 725.1

seconds. This model was not selected for the final ensemble.

59

Table 5.12

Plain Autoencoder Anomaly Detection Model Best Results

Window F1 Precision Recall

Fair 0.0131 0.0073 0.0886

Full 0.0128 0.0069 0.0884

Note: Table created by the author based on the created dataset.

Model Refinement and Observations
Multiple configurations were tested by varying the latent dimension (2, 4, 8), sequence length

(5, 7, 14), batch size (32, 64), and number of training epochs (10, 25, 50), while consistently

using MSE loss and the Adam optimizer. Input features were incrementally expanded

starting from residual_scaled and progressively including has_markdown, is_holiday,

cpi_scaled, fuel_price_scaled, and unemployment_scaled to evaluate multivariate

sensitivity. Thresholds on reconstruction error were set using quantile-based methods, with

the 90th percentile yielding the best results.

5.3.12​ Variational Autoencoder Anomaly Detection Model

The following section documents the application of Variational Autoencoder anomaly

detection.

Modelling Assumptions

The model assumes that normal data lies near a continuous latent distribution learned during

training, and that anomalies deviate from this space and yield higher reconstruction errors. It

assumes a roughly smooth underlying data distribution and complete input features without

missing values.

Test Design

Model was applied independently to each Store–Dept series. A 5-fold TimeSeriesSplit was

applied across the full dataset, where each fold trains on past observations and tests on future

data, preserving temporal causality. The Variational Autoencoder model was refit in each fold

using only past data to predict on unseen future windows. Model results are evaluated

against injected anomalies in both the Fair and Full windows using precision, recall, and F1

score. This approach ensures robust validation without look-ahead, aligning with the

temporal structure of the data.

Parameter Setting

The best F1 results in the Full window were achieved using a variational autoencoder with a

symmetric architecture: two dense layers with ReLU (rectified linear unit) activation in both

the encoder and decoder, followed by a latent sampling layer. The decoder ended with a

linear output layer. The model used a latent dimension of 4. It was trained for 10 epochs with

60

a batch size of 64 using the Adam optimizer. The loss function combined MSE with KL

(Kullback–Leibler) divergence to regularize the latent space. Anomalies were identified using

a 0.95 quantile threshold on reconstruction error. Final input features included

residual_scaled, has_markdown, is_holiday, and cpi_scaled.

Model Assessment

Under the best parameter settings, on Prophet decomposed residuals, results depicted in

Table 5.13 Variational Autoencoder Anomaly Detection Model Best Results achieved Full F1

of 0.0121. This model finished 9th across all anomaly detection models. The runtime was

138.24 seconds. This model was not selected for the final ensemble.

Table 5.13

Variational Autoencoder Anomaly Detection Model Best Results

Window F1 Precision Recall

Fair 0.0144 0.0088 0.0433

Full 0.0121 0.0073 0.0363

Note: Table created by the author based on the created dataset.

Model Refinement and Observations
Tuning for the variational autoencoder involved systematic variation of key hyperparameters.

Latent dimensionality was tested at values of 32, 16, and 4. Thresholds on reconstruction

error were evaluated at both 0.99 and 0.95. The batch size was fixed at 64 and the Adam

optimizer was used consistently across all runs. Input features were expanded incrementally,

starting from a minimal set (residual_scaled, has_markdown, is_holiday) and later including

cpi_scaled, which contributed to better anomaly detection performance.

5.3.13​ LSTM Autoencoder Anomaly Detection Model

The following section documents the application of Long Short-Term Memory Autoencoder

anomaly detection.

Modelling Assumptions

The model assumes that normal temporal sequences of multivariate features can be

accurately reconstructed, and that anomalies produce higher reconstruction error due to

temporal deviation. It assumes meaningful sequence structure and no missing values in the

input data.

Test Design

Model was applied independently to each Store–Dept series. A 5-fold TimeSeriesSplit was

applied across the full dataset, where each fold trains on past observations and tests on future

data, preserving temporal causality. The LSTM Autoencoder model was refit in each fold

61

using only past data to predict on unseen future windows. Model results are evaluated

against injected anomalies in both the Fair and Full windows using precision, recall, and F1

score. This approach ensures robust validation without look-ahead, aligning with the

temporal structure of the data.

Parameter Setting

The LSTM autoencoder followed a sequence-to-sequence design, where input sequences were

passed through an encoder LSTM layer with ReLU activation and transformed into a

fixed-length representation. A RepeatVector layer ensured that the decoder received the

appropriate sequence length. The decoder consisted of an LSTM layer followed by a

TimeDistributed dense layer with a linear activation function to reconstruct the input. The

model was trained using the Adam optimizer and MSE loss. Input data was processed as

rolling sequences over time within each Store–Dept group. Anomalies were identified using a

0.95 quantile threshold on reconstruction error.

Model Assessment

Although extensive tuning and optimization were attempted, no LSTM Autoencoder run was

able to complete on the full dataset in a comparative setting alongside other models. This was

true for all decomposition sources, Prophet, STL, and TimeGPT, as each run was eventually

interrupted by the kernel after tens of minutes of execution.

Model Refinement and Observations

In earlier non-comparative runs, a series of tuning experiments were conducted to identify

optimal parameters for the LSTM Autoencoder. Key hyperparameters tested included

sequence length (5, 10, and 20), hidden units (64 and 128), number of epochs (5, 10, and 20),

and batch size (64 and 128). All runs used the Adam optimizer with MSE loss. Input features

varied across configurations, including both minimal sets (residual_scaled, has_markdown,

is_holiday) and extended markdown inputs (economical factors and markdown_1 to

markdown_5).

5.3.14​ Transformer Autoencoder Anomaly Detection Model

The following section documents the application of Transformer Autoencoder anomaly

detection.

Modelling Assumptions

The model assumes that attention-based mechanisms can capture long-range temporal

dependencies in multivariate sequences and reconstruct normal patterns effectively.

Anomalies are expected to cause reconstruction errors due to disruption of attention weights.

It assumes sequential data with consistent structure and no missing values.

62

Test Design

Model was applied independently to each Store–Dept series. A 5-fold TimeSeriesSplit was

applied across the full dataset, where each fold trains on past observations and tests on future

data, preserving temporal causality. The Transformer Autoencoder model was refit in each

fold using only past data to predict on unseen future windows. Model results are evaluated

against injected anomalies in both the Fair and Full windows using precision, recall, and F1

score. This approach ensures robust validation without look-ahead, aligning with the

temporal structure of the data.

Parameter Setting

The best F1 results in the Full window were achieved using a transformer-based autoencoder

with a single transformer encoder block. The architecture included multi-head self-attention,

residual skip connections, feedforward dense layers with ReLU activation, and layer

normalization. The model received static input vectors (sequence length = 1) and

reconstructed them through a final dense output layer. It was trained for 10 epochs with a

batch size of 64 using the Adam optimizer and MSE loss. Anomalies were identified using a

95th percentile threshold on the reconstruction error. Final input features included

residual_scaled, has_markdown, is_holiday, and cpi_scaled.

Model Assessment

Under the best parameter settings, on TimeGPT decomposed residuals, results depicted in

Table 5.14 Transformer Autoencoder Anomaly Detection Model Best Results achieved Full

F1 of 0.0110. This model finished 10th across all anomaly detection models. The runtime was

778.90 seconds. This model was not selected for the final ensemble.

Table 5.14

Transformer Autoencoder Anomaly Detection Model Best Results

Window F1 Precision Recall

Fair 0.0137 0.0075 0.0937

Full 0.0110 0.0059 0.0878

Note: Table created by the author based on the created dataset.

Model Refinement and Observations
The Transformer Autoencoder was tuned across several dimensions. Sequence length was

tested at 5, and latent dimension at 64 in earlier exploratory runs. Later configurations

included 10 to 30 epochs and batch sizes of 64 and 128. Both MSE and Huber (SmoothL1)

loss functions were tested with the Adam optimizer. Thresholds for anomaly detection were

varied between the 90th and 95th percentiles of reconstruction error. The input features

remained consistent: residual_scaled, has_markdown, is_holiday, and cpi_scaled.

63

5.3.15​ TCN Autoencoder Anomaly Detection Model

The following section documents the application of TCN Autoencoder anomaly detection.

Modelling Assumptions

The model assumes that normal temporal patterns can be reconstructed using dilated causal

convolutions, and that anomalies disrupt local or multi-scale temporal filters, leading to

higher reconstruction errors. It assumes fixed-length sequences, consistent time intervals,

and no missing values.

Test Design

Model was applied independently to each Store–Dept series. A 5-fold TimeSeriesSplit was

applied across the full dataset, where each fold trains on past observations and tests on future

data, preserving temporal causality. The TCN Autoencoder model was refit in each fold using

only past data to predict on unseen future windows. Model results are evaluated against

injected anomalies in both the Fair and Full windows using precision, recall, and F1 score.

This approach ensures robust validation without look-ahead, aligning with the temporal

structure of the data.

Parameter Setting

The best F1 results in the Full window were achieved using a TCN autoencoder with two

stacked 1D convolutional layers with ReLU activation in the encoder, followed by a symmetric

decoder composed of two transposed convolutional layers. The architecture operated on

sequences of length 5, constructed from residual-scaled features over time. The latent

representation was flattened to a 32-dimensional vector before reconstruction. The model

was trained for 5 epochs with a batch size of 128 using the Adam optimizer and MSE loss.

Anomalies were identified using a 99th percentile threshold on the reconstruction error.

Final input features included residual_scaled, markdown_1 to markdown_5, and is_holiday.

Model Assessment

Under the best parameter settings, on TimeGPT decomposed residuals, results depicted in

Table 5.15 TCN Autoencoder Anomaly Detection Model Best Results achieved Full F1 of

0.0082. This model finished 14th across all anomaly detection models. The runtime was

112.01 seconds. This model was not selected for the final ensemble.

Table 5.15

TCN Autoencoder Anomaly Detection Model Best Results

Window F1 Precision Recall

Fair 0 0 0

Full 0.0082 0.0083 0.0081

Note: Table created by the author based on the created dataset.

64

Model Refinement and Observations
The TCN Autoencoder was tuned across sequence lengths (5, 10, 14), latent dimensions (16,

32), and loss functions (Huber and MSE). Early runs tested long training configurations (30

epochs) with Huber loss, followed by aggressive reductions in epochs (down to 1) to manage

runtime. Latent dimension was varied to test model capacity, and the batch size was

consistently held at 128. Input features ranged from residual-only to extended multivariate

inputs including markdowns and holidays. Features ranged from residual_scaled to the full

feature set including markdown_1–5.

5.3.16​ Deep SVDD Anomaly Detection Model

The following section documents the application of Deep SVDD Autoencoder anomaly

detection.

Modelling Assumptions

The method assumes that normal data points cluster tightly in a learned feature space, and

that anomalies lie further from this compact hypersphere. It assumes access to mostly normal

training data, consistent input scale, and no missing values. It makes no explicit

distributional assumptions but relies on structural compactness.

Test Design

Model was applied independently to each Store–Dept series. A 5-fold TimeSeriesSplit was

applied across the full dataset, where each fold trains on past observations and tests on future

data, preserving temporal causality. The Deep SVDD model was refit in each fold using only

past data to predict on unseen future windows. Model results are evaluated against injected

anomalies in both the Fair and Full windows using precision, recall, and F1 score. This

approach ensures robust validation without look-ahead, aligning with the temporal structure

of the data.

Parameter Setting

The best F1 results in the Full window were achieved using a Deep SVDD model with a

feedforward encoder architecture composed of three dense layers: 64, 32, and 8 neurons

respectively, all with ReLU activation except for the final latent layer. The model operated on

flattened sequences of 7 time steps across 6 input features, resulting in input vectors of length

42. After initializing a hypersphere center from the latent embeddings, the model was trained

for 10 epochs with a batch size of 64 using the Adam optimizer. The custom loss minimized

the distance between predictions and the hypersphere center, encouraging compact

representations. Anomalies were identified using a 95th percentile threshold on the squared

distance from the center. Final input features included residual_scaled, has_markdown,

is_holiday, cpi_scaled, fuel_price_scaled, and unemployment_scaled.

65

Model Assessment

Under the best parameter settings, on TimeGPT decomposed residuals, results depicted in

Table 5.16 Deep SVDD Anomaly Detection Model Best Results achieved Full F1 of 0.0071.

This model finished 15th across all anomaly detection models. The runtime was 631.71

seconds. This model was not selected for the final ensemble.

Table 5.16

Deep SVDD Anomaly Detection Model Best Results

Window F1 Precision Recall

Fair 0.0084 0.0044 0.091

Full 0.0071 0.0043 0.0216

Note: Table created by the author based on the created dataset.

Model Refinement and Observations
Tuning explored multiple aspects: the anomaly threshold was varied between the 90th and

95th percentile; training duration was extended from 10 to 30 epochs; dropout was added to

reduce overfitting; and the model center was recompiled after training to improve scoring

stability. All runs used a fixed encoder structure (64 → 32 → 8) over flattened temporal

windows and a consistent batch size of 64.

5.4​ Ensemble Anomaly Detection Methods

To overcome the limitations of individual models this section evaluates ensemble strategies,

ranging from simple logic-based unions to a supervised meta-classifier, designed to combine

the strengths of multiple methods and deliver more robust anomaly detection in a complex

retail setting. Anomaly detection models summarized in table 5.17 Best Performing Anomaly

Detection Models were chosen based on Full window F1 and are used in following ensembles.

Table 5.17

Best Performing Anomaly Detection Models

Model F1 Precision Recall

KNN 0.0852 0.0716 0.1049

Threshold 0.0652 0.0339 0.8497

Mahalanobis 0.0451 0.0495 0.0413

Isolation Forest 0.0357 0.0325 0.0397

HDBSCAN 0.0280 0.0143 0.6900

GMM 0.0216 0.0238 0.0198

GMM = Gaussian Mixture Model, HDBSCAN = Hierarchical Density-Based Spatial Clustering of Applications with Noise, KNN = K-Nearest Neighbors.​
Note: Table created by the author based on the created dataset.

66

The best results in ensemble anomaly detection were achieved by first combining high-recall

models to maximize detection coverage, followed by a tailored “business shave” step that

filters results using domain-informed criteria to boost precision — yielding a final detection

set that captures both injected anomalies (true positives) and plausible real-world anomalies,

aligned with business relevance (false positives).

5.4.1​ Soft Union Ensemble Strategy

The following section presents the Soft Union strategy, which combines the outputs of

multiple anomaly detection models using a logical OR operation to maximize recall.

Modelling Assumptions

It was assumed that different anomaly detection models would capture different aspects of

the data structure, and that their combination would minimize false negatives. All models

were applied independently before aggregation.

Test Design

Model results are evaluated against injected anomalies only in Full window using precision,

recall, and F1 score.

Parameter Setting

The best recall was achieved with all six models unified using simple OR logical parameter.

Model Assessment

As depicted in Table 5.18 Soft Union Ensemble Runs Performance, the best recall of 0.9355

was achieved by unioning all six models. The runtime was only 0.2 seconds. This method is

further combined with the “business shave” strategy for precision and business relevance.

Table 5.18

Soft Union Ensemble Runs Performance

Ensemble Setting F1 Precision Recall Time

Soft Union 1

KNN

Threshold

Mahalanobis

0.0650 0.0338 0.8550 0.1s

Soft Union 2

KNN

Threshold

Mahalanobis

Isolation Forest

HDBSCAN

GMM

0.0307 0.0156 0.9355 0.2s

GMM = Gaussian Mixture Model, HDBSCAN = Hierarchical Density-Based Spatial Clustering of Applications with Noise, KNN = K-Nearest Neighbors.​
Note: Table created by the author based on the created dataset.

67

Model Refinement and Observations

Two settings were tested — three best performing and all six best performing anomaly

detection models. Naturally, combining all models yielded the highest recall.

To analyze how various models contribute to detecting injected anomalies, Figure 5.6 True

Positives Overlap Heatmap was constructed. It clearly shows that Thresholding and

HDBSCAN, the two models with the highest recall, identify the largest share of true positives.

Figure 5.6

True Positives Overlap Heatmap

Note: Figure created by the author based on the created dataset.

As shown in Table 5.19 Unique True Positives per Model, it may be tempting to discard

models like GMM, KNN, Mahalanobis, and especially Isolation Forest due to their lower

standalone contribution. However, their inclusion is justified by their minimal runtimes and

their complementary detection mechanisms. While they may not have captured many

anomalies in this dataset, their unique strengths could prove valuable under different

anomaly types or data distributions, preserving ensemble robustness.

68

Table 5.19

Unique True Positives per Model

Model Unique TP

Threshold 903

HDBSCAN 321

KNN 6

GMM 5

Mahalanobis 2

Isolation Forest 0

GMM = Gaussian Mixture Model, HDBSCAN = Hierarchical Density-Based Spatial Clustering of Applications with Noise, KNN = K-Nearest Neighbors, TP = True

Positives.​
Note: Table created by the author based on the created dataset.

5.4.2​ Weighted Ensemble Strategy

The following section presents the Weighted Voting ensemble, which aggregates the outputs

of multiple anomaly detection models using weighted contributions and a voting threshold to

balance detection coverage and precision.

Modelling Assumptions

It was assumed that different anomaly detection models would capture different aspects of

the data structure, and that their combination would minimize false negatives. All models

were applied independently before aggregation.

Test Design

Model results are evaluated against injected anomalies only in Full window using precision,

recall, and F1 score.

Parameter Setting

The highest recall was achieved by combining all six candidate anomaly detection models in a

voting ensemble, where each model contributed one vote and anomalies were flagged when at

least two models agreed.

Model Assessment

As shown in Table 5.20 Weighted Vote Ensemble Runs Performance, the best recall of 0.6417

was achieved with a runtime of just 0.1 seconds. While this recall does not outperform the

best soft union run, it offers a strong alternative in scenarios where business constraints

require at least two models to agree on an anomaly candidate before applying the business

shave.

69

Table 5.20

Weighted Vote Ensemble Runs Performance

Ensemble Setting Weights Threshold F1 Precision Recall Time

Weighted Ensemble 1

KNN

Threshold

Mahalanobis

3

2

1

4 0.0901 0.0809 0.1018 0.1s

Weighted Ensemble 2

KNN

Threshold

Mahalanobis

Isolation Forest

3

2

1

1

3 0.0932 0.0741 0.1255 0.1s

Weighted Ensemble 3

HDBSCAN

Thresholding

Isolation Forest

GMM

KNN

Mahalanobis

1

1

1

1

1

1

3 0.0894 0.0746 0.1115 0.1s

Weighted Ensemble 4

HDBSCAN

Thresholding

Isolation Forest

GMM

KNN

Mahalanobis

1

1

1

1

1

1

2 0.0810 0.0432 0.6417 0.1s

GMM = Gaussian Mixture Model, HDBSCAN = Hierarchical Density-Based Spatial Clustering of Applications with Noise, KNN = K-Nearest Neighbors.​
Note: Table created by the author based on the created dataset.

Model Refinement and Observations

The weighted vote ensemble was tuned by adjusting both the weights assigned to each

individual detector and the voting threshold required to classify an observation as

anomalous. Initial runs tested unweighted combinations of 3 to 6 models, including KNN,

Thresholding, Mahalanobis, Isolation Forest, GMM, and HDBSCAN. Subsequent

experiments explored strategic weighting (e.g., emphasizing KNN or Thresholding) and

reduced the consensus threshold from 4 to 2. This systematic tuning revealed that recall was

maximized when all six models were weighted equally and a low threshold of 2 was used,

allowing more potential anomalies to pass through.

5.4.3​ LightGBM Meta-Classifier

The following section presents the LightGBM meta-classifier, a supervised stacked ensemble

designed to integrate outputs from multiple unsupervised anomaly detectors alongside key

contextual features.

Modelling Assumptions

It was assumed that different anomaly detection models would capture different aspects of

the data structure, and that their combination would minimize false negatives. All models

were applied independently before aggregation. Anomaly class is well labeled. No missing

values are preferred.

70

Test Design

Applied globally, a 5-fold TimeSeriesSplit was applied across the full dataset, where each fold

trains on past observations and tests on future data, preserving temporal causality. The

meta-classifier model was refit in each fold using only past data to predict on unseen future

windows. Model results are evaluated against injected anomalies only in Full window using

precision, recall, and F1 score.

Parameter Setting

The highest recall was achieved by configuration which used all six base model outputs

alongside contextual features and residual_scaled, and applied a probability threshold of 0.2

with balanced class weighting to maximize sensitivity.

Model Assessment

As shown in Table 5.21 Meta-Classifier Runs Performance, the best recall of 0.7119 was

achieved with a runtime of 38.0 seconds. While this recall does not outperform the top soft

union run, it offers a strong alternative in business scenarios where labeled anomalies are

available and a supervised learning approach is preferred.

Table 5.21

Meta-Classifier Runs Performance

Ensemble Setting Predict

Proba

Class​
Weighting

F1 Precision Recall Time

Meta-Classifier 1

residual_scaled​
is_holiday​
has_markdown

HDBSCAN

Thresholding

Isolation Forest

GMM

KNN

Mahalanobis

≥ 0.3 balanced 0.1450 0.0811 0.6844 38.0s

Meta-Classifier 2

residual_scaled​
is_holiday​
has_markdown

HDBSCAN

Thresholding

Isolation Forest

GMM

KNN

Mahalanobis

≥ 0.4 balanced 0.1596 0.0909 0.6545 38.0s

Meta-Classifier 3

residual_scaled​
is_holiday​
has_markdown

HDBSCAN

Thresholding

Isolation Forest

GMM

KNN

Mahalanobis

≥ 0.2 balanced 0.1264 0.0693 0.7119 38.0s

GMM = Gaussian Mixture Model, HDBSCAN = Hierarchical Density-Based Spatial Clustering of Applications with Noise, KNN = K-Nearest Neighbors.​
Note: Table created by the author based on the created dataset.

71

Model Refinement and Observations

Tuning focused on varying the prediction threshold (0.2–0.4) and applying

class_weight='balanced' to handle label imbalance. Earlier runs tested different class

weightings, thresholds, and additional feature combinations, and insights from those were

used to select the final settings shown here, balancing recall and precision through threshold

adjustment.

5.4.4​ Business Logic Post-Processing

In this final modeling step, additional business-based post-processing is applied to refine

anomaly detection outputs using realistic rules, ensuring greater precision without sacrificing

recall of real anomalies.

Modelling Assumptions

The business logic post-processing step assumes that true business-relevant anomalies fall

into two interpretable categories: unexpected spikes (high residuals without holidays or

markdowns) and unexpected drops (low residuals during weeks with holidays or

markdowns). It further assumes that a minimum sales impact is required for an anomaly to

be considered meaningful, introducing a domain-specific relevance threshold. This approach

preserves temporal causality by avoiding any lookahead operations — all decisions are made

using information available at the current or prior time points only.

Test Design

Model results are evaluated against injected anomalies only in Full window using precision,

recall, and F1 score. Furthermore, detailed visual and statistical analysis was performed to

assess the results.

Parameter Setting

The best F1 was achieved with a financial threshold set at $5,000 and consistent rules to

determine spikes (occurring at no holiday and no markdown week) and drops (occurring

when either holiday or markdown event is present).

Model Assessment

As shown in Table 5.22 Business Logic Post-Processing Runs Performance, the best F1 of

0.2011 was achieved with a runtime of 0.1s seconds. The threshold of $5,000 was selected for

the final model.

72

Table 5.22

Business Logic Post-Processing Runs Performance

Ensemble Threshold F1 Precision Recall TP FP FN TN Time

Business Logic 1 $5,000 0.2011 0.1402 0.3557 1,499 9,195 2,715 408,161 0.1s

Business Logic 2 $10,000 0.1929 0.1970 0.1889 3,086 43,797 1,128 373,559 0.1s

Business Logic 3 $1,000 0.1208 0.0658 0.7323 796 3,245 3,418 414,111 0.1s

TP = True Positives, FP = False Positives, FN = False Negatives, TN = True Negatives.​
Note: Table created by the author based on the created dataset.

Figure 5.7 Residual Distribution: FP vs FN after Business Post-Processing visualizes the

distributions of residual values for false positives and false negatives using kernel density

estimation. The y-axis labeled “Density” shows a probability density function normalized

such that the area under each curve equals one. This allows for fair comparison of the shape

and spread of the two distributions. The broader, heavy-tailed shape of false positives

indicates that these model-flagged anomalies, while not part of the injected set, often

involved large deviations from the forecast and may represent real, high-impact anomalies

within the dataset. In contrast, false negatives are sharply concentrated around zero,

suggesting they were minor deviations unlikely to trigger concern in practice. This supports

the rationale behind applying a $5,000 residual threshold in the business logic step, which

was designed to prioritize large, actionable anomalies over small injected ones that may not

hold practical significance.

Figure 5.7

Residual Distribution: FP vs FN after Business Post-Processing

​
FP = False Positives, FN = False Negatives,​
Note: Figure created by the author based on the created dataset.

Visual inspection in Figure 5.8 Store 45, Dept 29: Soft Union Business Logic

Post-Processing confirms that detected meaningful anomalies occur outside the ±$5,000

73

residual threshold, indicating that the method effectively captures meaningful deviations

beyond expected variability.

Figure 5.8

Store 45 – Dept 29: Soft Union Business Logic Post-Processing

​
Note: Figure created by the author based on the created dataset.

Model Refinement and Observations

In earlier iterations of the pipeline, both STD and ECDF thresholds were explored as

candidates for the precision-enhancing “business shave” step. While these methods can be

effective in retrospective anomaly scoring, they traditionally rely on global statistics

computed over the full time series, rather than on data available up to the current timestep.

Since both STD and ECDF inherently depend on the entire dataset to establish thresholds,

they were deemed unsuitable for deployment-oriented detection. Instead, a domain-driven

thresholding strategy was adopted, using fixed dollar-value cutoffs for weekly sales

anomalies. Although the thesis performs retrospective evaluation, the detection logic was

designed to be compatible with online deployment constraints. Three thresholds were tested:

$10,000, $5,000, and $1,000.

Moreover, the “business shave” step explicitly uses the thesis’s original definitions of

unexpected spikes and unexpected drops, as these represent the only types of anomalies

relevant to the targeted business use case. Spikes are defined as unusually high sales

occurring in the absence of holidays or markdowns, while drops are defined as unusually low

sales occurring during weeks that feature either a holiday or a markdown. These definitions

align the anomaly detection process with real-world retail dynamics and ensure the filtered

results are business-meaningful.

74

5.5​ Reconciliation Model

In order to escalate anomalies from department level to store and national levels, a

hierarchical reconciliation strategy was designed and tuned. This step ensures that local

department anomalies can be meaningfully interpreted at broader business levels while

maintaining focus on severe, business-relevant deviations.

Anomalies confirmed at the department level were aggregated upward using a bottom-up,

soft-voting reconciliation strategy. At each higher level, the proportion of underlying

anomalies of each type (spikes and drops) was computed for every week. If at least a fixed

percentage of underlying entities (departments within a store, or stores within the nation)

exhibited spike-like or drop-like anomalies in the same week, the parent level was flagged

accordingly. At the national level, if both spike and drop criteria were met in a given week,

the signal was marked as a conflict, indicating ambiguity in the aggregate anomaly direction.

Modelling Assumptions

It is assumed that department-level anomalies detected after soft union and business logic

post-processing represent a high-quality filtered signal. The model also assumes that sales

are additive across levels.

Test Design

The reconciliation model is evaluated through both and the number of anomalies propagated

to higher hierarchical levels and visual inspection of results.

Parameter Setting

The best results were achieved at reconciliation threshold of 0.05.

Model Assessment

The final reconciliation threshold of 5% was chosen as it maintained strong national-level

signal retention (45 spikes, 38 drops) while substantially reducing the volume of store-level

anomalies compared to more permissive thresholds (as shown in Figure 5.23 Reconciliation

Runs Results), achieving balance between coverage and business interpretability.

Table 5.23

Reconciliation Runs Results

Threshold Dept

Spikes

Dept ​
Drops

Store

Spikes

Store

Drops

Store

Conflicts

National

Spikes

National

Drops

National

Conflicts

0.01 5,637 5,057 2,065 1,574 0 86 57 0

0.05 5,637 5,057 435 407 0 45 38 0

0.1 5,637 5,057 123 125 0 6 5 0

Note: Table created by the author based on the created dataset.

75

Figure 5.9 Dept 29 – Store 45 confirms that the post-processed soft union method detects

anomalies with business-relevant sales beyond the set threshold.

Figure 5.9

Store 45 – Dept 29

​
Note: Figure created by the author based on the created dataset.

In Figure 5.10 Store Level: Store 45, aggregated detections clearly surface identified

anomalies from the lower department level.

Figure 5.10

Store Level: Store 45

​
Note: Figure created by the author based on the created dataset.

Finally, Figure 5.11 National Level demonstrates that the bottom-up reconciliation strategy

surfaces only the most consistent and impactful patterns at the national level — yielding

clear, interpretable anomalies aligned with macro-level deviations in weekly sales.

76

Figure 5.11

National Level

​
Note: Figure created by the author based on the created dataset.

Together, these plots validate the robustness, business alignment, and hierarchical

consistency of the entire detection pipeline.

Model Refinement and Observations

The reconciliation threshold was empirically tuned to balance anomaly coverage with signal

quality across hierarchical levels. As shown in Table 5.23 Reconciliation Runs Results,

lowering the threshold to 0.01 substantially increased the number of spikes and drops

detected at the store and national levels but risked introducing noise. Conversely, higher

threshold 0.1 significantly reduced detection rates, potentially overlooking meaningful

patterns. A threshold of 0.05 was selected as the optimal compromise, offering sufficient

national-level signals without overwhelming volume. For simplification and easier business

understanding, the same threshold was eventually kept at both department and store level.

5.6​ Interpretability Model

To improve interpretability of individual anomaly detection models and assess feature

influence across the pipeline, SHAP (SHapley Additive exPlanations) values were computed

using a surrogate modeling strategy. Since many of the detection algorithms are not

inherently explainable, a standard gradient boosting classifier was trained post-hoc for each

method to approximate its prediction logic. SHAP-like values were then computed on this

surrogate to estimate feature contributions.

77

To analyze feature importance systematically, a two-step aggregation process was applied:

1.​ Per-model SHAP-like surrogate aggregation: For each model, the absolute mean

SHAP-like values were computed separately for detected anomalies and

non-anomalies.

2.​ Global aggregation across models: To identify which base features contributed most

consistently across all models, contributions were grouped by feature. Contributions

were summed across models, yielding a global ranking of feature importance.

Table 5.24 Aggregated Department Level SHAP-like Contributions by Feature summarizes

the relative importance of input features in differentiating anomalies from normal points

across the entire pipeline. The column Mean Absolute Contributor to Anomaly captures the

average absolute SHAP-like value for each feature on records flagged as anomalies, indicating

how strongly a feature contributed to the model’s decision in those cases. Conversely, Mean

Absolute Contributor to Normal reflects the same metric on normal (non-anomalous) points.

Contributor to Anomaly Store shows the signed difference between the two values and

reveals the direction and magnitude of the feature’s overall shift toward anomaly detection.

As expected, residual_scaled emerged as the most influential variable. Features like

has_markdown, is_holiday, and cpi_scaled had moderate contribution scores to anomalous

points, however, when compared with contribution to normal points, their impact was

negative.

Table 5.24

Aggregated Department Level SHAP-like Contributions by Feature

Feature Mean Absolute

Contributor to Anomaly

Mean Absolute

Contributor to Normal

Contributor to Anomaly

Store

residual_scaled 3.633311 3.292823 0.340488

temperature_scaled 0.149606 0.165134 -0.015528

is_holiday 0.649432 0.668787 -0.019355

unemployment_scaled 0.275200 0.339871 -0.064671

has_markdown 0.768487 0.859387 -0.090901

cpi_scaled 0.523950 0.673979 -0.150028

Note: Table created by the author based on the created dataset.

This pipeline-level interpretability approach provided consistent insights across models,

helping to demystify otherwise unclear detection logic. The resulting SHAP-like explanations

can support business-facing anomaly summaries, improving user trust and facilitating

informed decision-making.

78

5.7​ Chapter Summary

First, across the three tested decomposition methods, Prophet consistently delivered the best

anomaly detection results, with the highest F1 scores achieved across nearly all models. At

the same time, runtime was very reasonable at 8 minutes. TimeGPT, although showing better

results in two deep learning models, overall underperformed. This decomposition also ran for

the longest time — over 30 minutes. STL decomposition was extremely quick, around 2

minutes, but suffered greatly in quality due to incomplete years and its produced residuals

underperformed in all models. As a result, Prophet decomposition was selected as the default

base for downstream modeling and evaluation.

Second, out of 16 tested anomaly detection models, only six models were selected for

ensemble construction based on their F₁ scores exceeding 0.0200 and reasonable

computational times: KNN, Thresholding, Mahalanobis, Isolation Forest, HDBSCAN, and

GMM. Together, these models cover distance-based, density-based, probabilistic, statistical,

and rule-based methods, ensuring diverse perspectives on anomaly formation and

minimizing shared blind spots. Notably, none of the deep learning models tested surpassed

these classical methods in terms of achieved accuracy or runtime.

Third, three ensemble strategies were developed to combine the strengths of the base

detectors: a soft union, a weighted voting ensemble, and a LightGBM meta-classifier. The soft

union achieved the highest recall (0.9355) by flagging any data point detected by at least one

of the six models, offering a simple and fast method for maximum anomaly coverage. This

approach was chosen for the final pipeline and further post-processing step. The weighted

voting ensemble enforced a stricter condition, requiring at least two models to agree, yielding

lower recall (0.6417) but offering an alternative to business setting with needs for wider

consensus before surfacing anomalies. The supervised LightGBM meta-classifier offered a

third alternative, achieving a recall of 0.7119 using labeled injected anomalies. Though

computationally more intensive, it provides a learnable, tunable solution where labeled data

is available. Each ensemble serves a distinct role: soft union maximizes recall, weighted vote

enforces cross-model agreement, and the meta-classifier tailors detection to hypothetical

supervised settings.

Fourth, to increase business relevance and improve precision, a final post-processing step,

referred to as the “business shave”, was introduced. This stage filters anomalies based on a

fixed magnitude threshold of $5,000 and contextual rules aligned with retail expectations.

Specifically, spikes are retained only if they occur during non-holiday, non-markdown

periods, while drops are kept only if they coincide with holidays or markdowns. The $5,000

residual threshold ensures only substantial deviations are flagged, preventing minor

fluctuations from cluttering the anomaly set, while maximizing interpretability of flagged

anomalies.

Fifth, following post-processing, anomalies were reconciled bottom-up to the store and

national levels using a simple, interpretable aggregation strategy. At the store level, a spike

(or drop) was confirmed if at least 5% of departments within that store exhibited a spike (or

drop) in the same week after passing the business logic filters. At the national level, the same

rule was applied: a week was flagged nationally if ≥5% of stores had a confirmed store-level

79

anomaly of the same type. This approach ensures that only coherent, distributed patterns are

surfaced at higher levels, avoiding false alarms from isolated department-level signals. The

5% threshold was applied consistently across levels to simplify business communication.​
​
Lastly, interpretability was integrated directly into the anomaly detection pipeline using

surrogate models to provide SHAP-like explanations for each method. For every anomaly

detection model, a gradient boosting classifier was trained post hoc to mimic the model's

outputs, enabling SHAP-like contribution value computation over the original input features.

These values were saved during detection and later aggregated to produce global

interpretability insights.

Throughout the entire pipeline, temporality is strictly preserved, with all models, evaluations,

and post-processing steps using only past or current information at each time point —

ensuring full compatibility with real-time deployment scenarios.

80

6​Business Use

This chapter outlines how the developed anomaly detection pipeline can be applied in a real

business context, focusing on generating managerial insights and outlining key

considerations for deployment.

6.1​ Managerial Summaries and Operational Insights

The anomaly detection pipeline developed in this thesis transforms raw weekly retail data

into actionable business information. Its primary business value lies in supporting

higher-level decision-making and operational oversight. By surfacing statistically and

contextually significant anomalies, the system enables retail managers to track emerging

issues or unexpected trends and take appropriate action. This data-to-insight transformation

aligns directly with the strategic goals of modern retail management: early awareness,

operational agility, and data-driven response.

Given the weekly cadence of the data, it is proposed that every Monday morning, each store

manager receives an automatically generated summary of the past week's performance and

anomalies. These summaries are designed to be concise, human-readable narratives that

highlight unexpected spikes or drops in performance. For demonstration, this thesis used

OpenAI API to generate such summaries using only data created by the pipeline. An example

is provided in Figure 6.1 Managerial Summary: Store 45, Week 2011-12-02, illustrating how

such communication could look in practice.

81

Figure 6.1

Managerial Summary: Store 45, Week 2011-12-02

​
Note: Figure created by the author based on the created dataset.

To complement the summaries and build managerial trust, interactive dashboards, although

out of scope in this thesis, would be expected to be built. These dashboards allow business

users to drill down from national and store-level anomalies, explore affected departments,

and inspect detailed metadata for each detected deviation. This combination of proactive

reporting and transparent visual exploration ensures the system serves not just as an alerting

tool but as a practical assistant to human decision-makers.

Depending on the managerial level and organizational hierarchy, this reporting framework

can be tailored to serve not only individual store managers, but also department-level

supervisors, regional directors, national operations leaders, and even financial controllers

monitoring sales performance across the chain.

82

6.2​ Deployment

While the pipeline developed in this thesis is ready to detect business-meaningful anomalies

using only unsupervised models, deploying it in practice requires important adaptations.

First, the injection logic used for benchmarking must be removed, preserving only the

detection components. Since all final models are unsupervised, this transition is feasible

without retraining or requiring labeled data.

If the company has access to daily-level data or lower hierarchies (e.g., product or SKU level),

the pipeline can be extended to that granularity. Doing so would yield even more actionable

and localized insights, helping managers intervene with higher precision.

To support production use, the pipeline should be redesigned for incremental operation —

rather than reprocessing all historical data weekly, it should append new weekly observations

to the existing output. This would improve runtime efficiency and align more closely with

real-time decision-making.

In addition, a deployment-ready version should also include automated weekly summary

generation, and dashboard refresh triggers. Ideally, results should be written to a centralized

database accessible to analysts and managers, while summaries and alerts could be

distributed via scheduled emails or messaging integrations, as outlined in Figure 6.1

Managerial Summary: Store 45, Week 2011-12-02.

Lastly, monitoring logic should be implemented to detect pipeline failures, data quality issues

(e.g., missing values, data delays), or model drift. Although the models are unsupervised,

recurring anomalies over time may indicate changing behavior patterns. This could suggest

the future need for either retraining or integrating limited supervised learning if labeled

anomalies become available.

83

7​Evaluation

In this Evaluation chapter, first, the results of the data mining process. Then, the approved

models are revisited and summarized. Finally, the overall process is reviewed through the

lens of the CRISP-DM framework.

7.1​ Assessment of Data Mining Results

The data mining results are evaluated against the goals defined in the Introduction chapter.

Specifically, the models are assessed in terms of accuracy, scalability, interpretability, and

explainability.

7.1.1​ Results in Terms of Accuracy

Each model in the pipeline was validated against injected anomalies on the department level

using standard metrics: true and false positives and negatives, precision, recall, and F1 score.

Each detection method and decomposition strategy was evaluated using both a Fair window

(aligned timeframes of available quality residuals across decompositions) and a Full window

(entire timeline). Final decisions were based solely on the Full window. In later stages, only

Full window evaluation was used. Where relevant, additional statistical and visual analyses

supported the results.

A key design choice was to prioritize recall in early stages, accepting false positives as a

strength rather than a flaw. This is because many anomalies labeled as false positives could in

fact be meaningful deviations in the original data. To first maximize recall, an ensemble was

constructed as a soft union of the best-performing individual models based on Full window

F1 scores. It combined diverse methods: statistical (Thresholding), classical unsupervised

(Isolation Forest, KNN, HDBSCAN), and probabilistic (GMM, Mahalanobis). To improve

precision and reduce noise from irrelevant anomalies, a post-processing step called the

"business shave" was applied. It retained only anomalies with an absolute residual above

$5,000. In addition, spikes were kept only if no holiday or markdown occurred, while drops

were kept only if a holiday or markdown was present. This ensured that final anomalies were

not only statistically significant but also aligned with real-world business relevance.

To ensure the approach is not biased toward the single anomaly injection set used throughout

the thesis, additional reruns were conducted with varied configurations, as shown in Table 7.1

Pipeline Evaluation Across Varying Anomaly Injection Configurations. The first columns

describe the injection settings. The Soft Union columns report performance immediately

after the ensemble combination step (maximizing recall), while the Business Shave columns

reflect results after applying the post-processing rules (maximizing precision). As expected,

lowering the standard deviation of injected anomalies made detection harder, with a final

Business Shave F1 of only 0.1091. In contrast, increasing the standard deviation improved

84

detectability, yielding a Business Shave F1 of 0.3003. Varying the percentage of injected

anomalies had a similar, though less extreme, effect — injecting only 0.5% resulted in an F1

of 0.1234, while 2% led to an F1 of 0.2817. Changing the random seed (42 vs. 17) produced

nearly identical results, confirming consistency. Modifying the rolling window size had

minimal impact — shorter windows resulted in an F1 of 0.2012 (just 0.0001 above baseline),

and longer windows reached 0.2039. Overall, pipeline runtime remained stable around 14

minutes, with approximately 7.5 minutes spent on Prophet decomposition.

Table 7.1

Pipeline Evaluation Across Varying Anomaly Injection Configurations

Injected

Anomalies

Rolling

Window

Injected

Anomalies

STD

Injected

Anomalies

Random

State

Injected

Anomalies

Percentage

Soft

Union

Precision

Soft

Union

Recall

Soft

Union

F1

Business

Shave

Precision

Business

Shave

Recall

Business

Shave F1

Full

Pipeline

Runtime

8 4 42 1 0.0156 0.9355 0.0307 0.1402 0.3557 0.2011 14m

8 2 42 1 0.0138 0.8242 0.0271 0.0776 0.1837 0.1091 14m

8 10 42 1 0.0161 0.9606 0.0316 0.2034 0.5733 0.3003 14m

8 4 17 1 0.0157 0.9374 0.0310 0.1364 0.3450 0.1955 14m

16 4 42 1 0.0155 0.9312 0.0306 0.1421 0.3607 0.2039 15m

4 4 42 1 0.0156 0.9343 0.0307 0.1403 0.3552 0.2012 14m

8 4 42 0.5 0.0078 0.9292 0.0155 0.0747 0.3542 0.1234 14m

8 4 42 1 0.0310 0.9293 0.0600 0.2413 0.3384 0.2817 13m

Note: Table created by the author based on the created dataset.

The chosen strategy successfully meets the objective of uncovering actionable anomalies,

rather than merely detecting all injected ones. It was shown in Figure 5.7 Residual

Distribution: FP vs FN after Business Post-Processing and Figure 5.8 Store 45 – Dept 29:

Soft Union Business Logic Post-Processing that the anomalies identified through this method

include both significant injected anomalies and meaningful anomalies naturally present in

the original data. This confirms the method's effectiveness for the intended task.

7.1.2​ Results in Terms of Scalability

The dataset consists of 421,570 data points across 3,331 department-level time series,

representing a large-scale time series setting. Scalability was assessed both in terms of

runtime efficiency and infrastructure feasibility.

All final runs in this thesis were executed on Deepnote’s GPU L4 instance, which provides 16

vCPUs, 64 GB of memory, and 24 GB of dedicated VRAM, at a cost of $1.56 per hour (Figure

7.1 Available Machines in Deepnote). The final pipeline runs in about 14 minutes on the GPU

(L4) instance, compared to 28 minutes on the free CPU (Basic) instance. Even on the paid

GPU, the cost remains financially negligible (roughly $0.39 per run), especially considering

that the process is only executed once per week and detects sales anomalies exceeding

$5,000. If this task were to be done manually, identifying anomalies across 3,331

department-level series would be impractical. Moreover, failing to detect these patterns could

result in missed revenue opportunities, overlooked operational issues, or poor decisions.

85

Figure 7.1

Available Machines in Deepnote

Note: From Deepnote (2025).

Each of the anomaly detection models included in the final pipeline finishes in under one

minute. Longer runtimes were observed in models not selected for the final ensemble, such

as One-Class SVM, autoencoders, and Deep SVDD. Of the total 14-minute runtime, the

Prophet decomposition accounts for approximately 7.5 minutes on average. It was retained

due to its clear superiority in detection accuracy compared to other decomposition methods.

Given that this analysis is performed weekly, the total runtime is entirely acceptable.

In conclusion, the pipeline demonstrates strong scalability, making it both computationally

and financially viable for continuous, real-world monitoring of large-scale, hierarchical,

multivariate time series data.

7.1.3​ Results in Terms of Interpretability

Interpretability was a key objective in this thesis, ensuring that anomalies could be

understood both technically and from a business perspective.

The chosen framework prioritizes understandability over complexity — six anomaly detection

models run anomaly detection, and if any of them flags a point that exceeds a $5,000

deviation from forecast (while following specified holiday/markdown rules), it is marked as

an anomaly. At higher levels, an anomaly is propagated if at least 5% of the underlying level

series flag one. This simple rule-based design avoids edge cases and is easy to explain and

remember.

Two mechanisms were employed for interpretability and explainability. SHAP-like feature

contributions on department-level anomalies (explaining why a point was flagged) and

managerial summaries (explaining what it means and what actions may follow). While these

86

summaries could be extended into full dashboards, that lies outside the scope of this thesis

and is suggested for future work.

A minor limitation is that SHAP-like values were not aggregated beyond the department

level, due to the reconciliation strategy. However, this was intentional — anomalies at store

or national level are triggered not by individual features, but by the collective signal from

multiple flagged departments, providing a clear and actionable drill-down path.

7.2​ Approved Models

After extensive evaluation against both technical and business criteria, a final model strategy

was selected.

No single anomaly detection model performed well enough across all evaluation dimensions,

so an ensemble approach was introduced. The final ensemble combined the best-performing

models (KNN, Thresholding, Mahalanobis Distance, Isolation Forest, HDBSCAN, and

GMM), capturing strengths from statistical, classical unsupervised, and probabilistic

methods.

The most effective ensemble strategy was a soft union, where anomalies detected by any of

the selected models were included, maximizing recall. This was followed by a business

logic–based post-processing step to improve precision. This step applied stable business

rules — only spikes without holidays or markdowns and only drops with either a holiday or

markdown were retained, along with a fixed $5,000 residual threshold to ensure financial

significance.

Because all modeling was done at the department level, a hierarchical bottom-up

reconciliation step was introduced after post-processing. This logic propagates anomalies to

the store or national level only when at least 5% of underlying departments flag an anomaly

of the same type. This ensured that higher-level anomalies represent consistent underlying

signals, and the approach proved effective in surfacing interpretable, scalable, and actionable

results.

7.3​ Review of the Process

The modeling process followed the CRISP-DM methodology end to end, covering all core

phases without omitting any key steps.

Throughout the project, learnings, evaluation results and insights from later stages were

continuously fed back into earlier steps, creating an iterative loop between data preparation,

modeling, and evaluation to improve each successive version’s reliability and accuracy.

The modular pipeline structure allowed decomposition methods, detection models, and

evaluation strategies to be developed and compared independently. All modeling steps were

versioned and consistently named, with detailed evaluation logs and serialized outputs

87

enabling traceability across large-scale experiments. Quality controls were built in to preserve

injected anomalies, apply uniform residual scaling, and enforce consistent evaluation logic

across decomposition methods. These practices supported reliable comparison and

consistent results throughout the research process.

The project ultimately relied solely on historical Walmart data. While two informal interviews

with retail professionals informed the early phase of the project, this thesis did not include

formal input from end users. The absence of review by operational decision-makers is a

known limitation. For any real-world deployment, direct validation and co-design with users

such as store managers, merchandisers, or planners would be essential to ensure business

relevance, interpretability, and trust.

88

Conclusion

This conclusion answers the research questions and objectives by summarizing the most

suitable anomaly detection methods for large-scale hierarchical multivariate time series,

comparing their performance across key criteria, and reflecting on the development of a

practical detection framework, along with limitations and directions for future work.

Answering Research Questions and Objectives

What are the most suitable anomaly detection methods for large-scale
hierarchical multivariate time series?

Methods for interpretable point-wise anomaly detection in multivariate and hierarchical time

series were reviewed, and their theoretical foundations and practical applicability were

assessed.

It was determined that for highly seasonal time series, such as those in retail, the most

effective approach is to first apply decomposition to separate signal from noise, followed by

anomaly detection in the noise space.

From the literature, three suitable decomposition methods were identified: Prophet, STL,

and TimeGPT. In addition, seventeen anomaly detection models were selected as candidates

for the task, including statistical methods (Z-Scores, Thresholding), classical unsupervised

models (Isolation Forest, K-Nearest Neighbors, Local Outlier Factor, HDBSCAN, One-Class

SVM), probabilistic approaches (COPOD, BCPD, Mahalanobis Distance, Gaussian Mixture

Model), and deep learning models (Plain, Variational, LSTM, Transformer-based, and TCN

Autoencoders, as well as Deep SVDD).

Their suitability for interpretable point-wise anomaly detection in large-scale hierarchical

multivariate time series was assessed in Table 2.2 Anomaly Detection Methods Comparison.

However, no single model met all criteria. While some limitations could be addressed, for

example, using surrogate models for interpretability or sliding windows and time-aware

cross-validation to preserve temporal structure, no method was sufficient on its own.

Due to this, a pipeline and ensemble approach were developed to overcome individual model

shortcomings and create a robust framework for interpretable point-wise anomaly detection

in large-scale hierarchical multivariate time series.

How do different approaches compare in terms of accuracy, scalability, and
interpretability?

Selected methods were implemented and benchmarked on the Walmart Store Sales

Forecasting dataset.

89

To assess accuracy and scalability, all combinations of candidate anomaly detection models

were run and tuned on residuals from each decomposition method. Table 5.1 Best Runs per

Anomaly Detection Method and Decomposition Combination summarizes their accuracy and

runtime. The most accurate models were KNN, Thresholding, Mahalanobis Distance,

Isolation Forest, HDBSCAN, and Gaussian Mixture Model. These models also showed

reasonable runtimes, ranging from 36 to 78 seconds on Prophet residuals. In contrast,

lower-performing models, mainly deep learning approaches and One-Class SVM, took over

15 minutes or failed to complete at this data scale.

Interpretability was first assessed theoretically, as summarized in Table 2.2 Anomaly

Detection Methods Comparison, and then consistently applied throughout the pipeline using

SHAP-like surrogate models to capture feature contributions. These contributions were

aggregated in an additive manner to provide interpretability across the entire process.

Since simply flagging anomalies without linking them to a meaningful deviation from

prediction is of limited value, this principle was emphasized in the demo managerial

summaries, such as in Figure 6.1 Managerial Summary: Store 45, Week 2011-12-02. These

summaries go beyond stating that an anomaly occurred — they provide context and highlight

hierarchical relationships essential for recognizing patterns, enabling action, and supporting

decision-making in a business setting.

In summary, individual models showed significant variation in accuracy and scalability and

natively also in interpretability, but that was addressed and standardized through surrogate

models that captured feature contributions.

Can an effective anomaly detection framework be developed to support
real-world applications in hierarchical time series analysis?

Yes, this thesis demonstrates that a working framework can be developed. The results of

different approaches were compared to identify their strengths, weaknesses, and real-world

applicability. Based on these findings, recommendations and insights were proposed to

support the development of scalable and interpretable anomaly detection techniques for

hierarchical time series data.

The core idea is that the framework first optimizes for high recall — not only to capture

injected anomalies as true positives, but also to detect real, naturally occurring anomalies

that appear as false positives in the confusion matrix. A business lens is then applied to

improve precision by filtering for anomalies that are truly relevant from an operational

perspective.

The final framework consists of five sequential steps: (1) Prophet decomposition to separate

signal from noise in highly seasonal data, (2) six best-performing anomaly detection models

applied to residuals — covering statistical (Thresholding), classical unsupervised (Isolation

Forest, KNN, HDBSCAN), and probabilistic (GMM, Mahalanobis) approaches, (3) a soft

union of their outputs to maximize recall, (4) business logic post-processing to improve

precision using a fixed financial threshold and specific holiday and markdown rules to

classify spikes and drops, and (5) hierarchical reconciliation to propagate anomalies to higher

levels. SHAP-like surrogate models were used consistently throughout for interpretability.

90

This framework was developed and proven to be effective in point-wise anomaly detection in

large-scale hierarchical multivariate time series even under varying anomaly injection

scenarios.

Limitations

A key limitation is the use of artificially injected anomalies for validation, which were

generated using a statistical approach without underlying patterns or temporal complexity.

This may have favored simpler models and disadvantaged deep learning methods.

Another limitation is the limited amount of data — only one full year and two incomplete

years were available. This was not sufficient for decomposition methods like STL and

TimeGPT to demonstrate their full potential. With more data, they may outperform Prophet

— especially TimeGPT, which is a strong candidate for incremental use. In fact, its residuals

showed promising quality toward the end of the timeline, as seen in Figure 5.3 Store 45 —

Dept 29: TimeGPT Decomposition.

Resource and infrastructure constraints limited the experimental scope. Several deep

learning models, such as LSTM Autoencoders and Deep SVDD, could not be fully trained or

tuned on the complete dataset due to GPU memory limitations. Some experiments required

sampling or feature reduction, which may have introduced bias. Although tests were run on

Deepnote’s high-performance L4 GPU tier, full-scale deep learning experiments would

require more advanced and costly infrastructure. Additionally, TimeGPT decomposition was

evaluated only in trial mode without access to enterprise-grade features, preventing a full

assessment of its operational potential.

One of the most unexpected findings was that none of the deep learning models

outperformed the simpler methods. This may be due to the nature of the artificial anomaly

injection, which lacked underlying patterns, or the limited dataset — only three years, two of

which were incomplete. This limitation could potentially be addressed with more extensive

tuning, additional data, or by applying the models to real-world anomalies rather than

injected ones. Including at least one deep learning model in the ensemble would add a new

detection mechanism and strengthen the overall framework. Its absence is a limitation of the

current best-performing ensemble and may impact performance on different datasets or

injection strategies.

An important finding was that decomposition quality emerged as the dominant success factor

in highly seasonal data. During experiments it was proven that the choice of decomposition

method had a greater impact on detection performance than the choice of anomaly detection

model. Prophet consistently outperformed STL and TimeGPT by producing stable and

interpretable residuals that allowed downstream models to perform well. This revealed a key

dependency — when residuals fail to clearly separate predictable patterns, even strong

anomaly detectors are unable to compensate.

This thesis identified a major gap in hierarchical decomposition, which is critical for anomaly

detection in large industries like retail. Although the dataset had a clear hierarchical

91

structure, no existing decomposition method could natively handle hierarchical multivariate

time series. As a result, even hierarchical methods like HDBSCAN were run on each series

individually, limiting their effectiveness. Workarounds, such as bottom-up reconciliation

using department-level detections, were required.

The pipeline is currently functional and producing meaningful results on the fixed dataset

used in this thesis. However, if deployed in a live setting, it would require ongoing monitoring

and periodic adjustment of parameters to account for new patterns and changes over time.

While the core strategy, prioritizing recall first and refining precision through business logic,

should remain unchanged, threshold values and model parameters may need to be tuned

again to maintain performance.

A key limitation is the lack of live business feedback. While two informal interviews with

retail staff informed early assumptions about current trends in anomaly detection, no

business stakeholders reviewed the results of this thesis. As a result, although technical

interpretability was achieved, its practical value in real decision-making contexts remains

unconfirmed.

Future Work

Future work should focus on deploying the framework, including building a dashboard and

alerting tool for store managers, based on the generated summaries.

It is also recommended to retrain or fine-tune the models on different data granularities,

such as daily data or SKU-level series, if available, to explore performance across different

operational layers and even increase business value of this framework. Also, more anomaly

types can be considered for detection.

Introducing active learning strategies or feedback loops could help reduce the gap between

injected and naturally occurring anomalies by incorporating labels over time.

If resources allow, further exploration of TimeGPT in its paid tier is encouraged, as it may

yield better results — especially in an incremental setting. In this thesis, its performance was

limited because accuracy was judged using the Full window, while the Fair window (where

TimeGPT was available) was too small to showcase its strengths.

Deep models may also be worth revisiting if more training data or compute time becomes

available.

Finally, a clear limitation in this work is the lack of hierarchical decomposition. Once reliable

hierarchical decomposition methods are available, this innovation should be integrated and

the framework re-evaluated.

92

References

Agyemang, E. F. (2024). Anomaly detection using unsupervised machine learning algorithms: A simulation study. Scientific African, 26,

e02386–e02386. https://doi.org/10.1016/j.sciaf.2024.e02386

Al-Marie, M. (2023, April 4). Exploring Neural Network Architectures: Autoencoders, Encoder-Decoders, and Transformers. Medium.

https://medium.com/%40mohd.meri/exploring-neural-network-architectures-autoencoders-encoder-decoders-and-transformers-c0

d3d6bc31d8

Al-Selwi, S. M., Hassan, M. F., Abdulkadir, S. J. & Muneer A.. (2023). LSTM Inefficiency in Long-Term Dependencies Regression

Problems. Journal of Advanced Research in Applied Sciences and Engineering Technology, 30(3), 16–31.

https://doi.org/10.37934/araset.30.3.1631

Apgar, V. (2023, July 27). 3 Use-Cases for Gaussian Mixture Model (GMM) | Towards Data Science. Towards Data Science.

https://towardsdatascience.com/3-use-cases-for-gaussian-mixture-model-gmm-72951fcf8363/

Asperti, A., & Trentin, M. (2020, February 18). Balancing reconstruction error and Kullback-Leibler divergence in Variational

Autoencoders. ArXiv.org. https://doi.org/10.48550/arXiv.2002.07514

Awan, A. A. (2023, June 28). An Introduction to SHAP Values and Machine Learning Interpretability. Datacamp.com; DataCamp.

https://www.datacamp.com/tutorial/introduction-to-shap-values-machine-learning-interpretability

Bajaj, A. (2023, August 22). Anomaly Detection in Time Series. Neptune.ai. https://neptune.ai/blog/anomaly-detection-in-time-series

Blachowicz, T., Wylezek, J., Sokol, Z., & Bondel, M. (2025). Real-Time Analysis of Industrial Data Using the Unsupervised Hierarchical

Density-Based Spatial Clustering of Applications with Noise Method in Monitoring the Welding Process in a Robotic Cell.

Information, 16(2), 79–79. https://doi.org/10.3390/info16020079

Blázquez-García, A., Conde, A., Mori, U., & Lozano, J. A. (2021). A Review on Outlier/Anomaly Detection in Time Series Data. ACM

Computing Surveys, 54(3), 1–33. https://doi.org/10.1145/3444690

Brownlee, J. (2018, November 4). A Gentle Introduction to LSTM Autoencoders - MachineLearningMastery.com.

MachineLearningMastery.com. https://machinelearningmastery.com/lstm-autoencoders

Brownlee, J. (2020, December 17). What Is Meta-Learning in Machine Learning? - MachineLearningMastery.com.

MachineLearningMastery.com. https://machinelearningmastery.com/meta-learning-in-machine-learning

Cai, B., Yang, S., Gao, L., & Xiang, Y. (2023). Hybrid variational autoencoder for time series forecasting. Knowledge-Based Systems, 281,

111079–111079. https://doi.org/10.1016/j.knosys.2023.111079

Capital one. (2025, January 31). Largest Retailers in the U.S. and the World (as of 2023): Full List. Capital One Shopping.

https://capitaloneshopping.com/research/largest-retailers/

Carletti, M., Terzi, M., & Antonio, S. G. (2020). Interpretable Anomaly Detection with DIFFI: Depth-based Isolation Forest Feature

Importance. ArXiv.org. https://arxiv.org/abs/2007.11117

Challu, C., Jiang, P., Wu, Y. N., & Callot, L. (2022). Deep generative model with hierarchical latent factors for time series anomaly

detection. Amazon Science.

https://www.amazon.science/publications/deep-generative-model-with-hierarchical-latent-factors-for-time-series-anomaly-detecti

on

Chen, H., Lundberg, S. M., & Lee, S.-I. (2022). Explaining a series of models by propagating Shapley values. Nature Communications,

13(1). https://doi.org/10.1038/s41467-022-31384-3

Chen, Y., Zhang, C., Ma, M., Liu, Y., Ding, R., Li, B., He, S., Rajmohan, S., Lin, Q., & Zhang, D. (2023). ImDiffusion: Imputed Diffusion

Models for Multivariate Time Series Anomaly Detection. ArXiv.org. https://arxiv.org/abs/2307.00754

Chollet, F. (2016). Building Autoencoders in Keras. Keras.io. https://blog.keras.io/building-autoencoders-in-keras.html

Cleveland, R. B., Cleveland, W. S., McRae, J. E., & Terpenning, I. (1990). STL: A Seasonal-Trend Decomposition Based on Loess . Journal

of Official Statistics, 6(1), 3–33. https://www.math.unm.edu/~lil/Stat581/STL.pdf

Darban, Z. Z., Webb, G., Darban, Z., Pan, S., Aggarwal, C., & Salehi, M. (2024). Deep Learning for Time Series Anomaly Detection: A

Survey. https://arxiv.org/pdf/2211.05244

Deepnote. (2025). Deepnote - Data science notebook for teams. Deepnote. https://deepnote.com/

Despois, J. (2017, February 23). Latent space visualization — Deep Learning bits #2. Hackernoon.com.

https://hackernoon.com/latent-space-visualization-deep-learning-bits-2-bd09a46920df

93

Dey, R. (2024, March 16). Anomaly Detection using Support Vectors. Medium.

https://medium.com/@roshmitadey/anomaly-detection-using-support-vectors-2c1b842213ed

Dhapre, M. (2024, September 16). Using Variational AutoEncoders (VAE) for Time-Series Data Reduction. Medium.

https://medium.com/%40mrunmayee.dhapre/using-variational-autoencoders-vae-for-time-series-data-reduction-9681338a2e17

Ebenezer, I., & Sharma, A. (2023). Adaptive Thresholding Heuristic for KPI Anomaly Detection. ArXiv.org. https://arxiv.org/abs/2308.10504

Edge Impuls. (2024, May 22). Anomaly detection (GMM) | Edge Impulse Documentation. Edgeimpulse.com.

https://docs.edgeimpulse.com/docs/edge-impulse-studio/learning-blocks/anomaly-detection-gmm

Eslava, A. (2023, July 16). Outlier Detection Techniques for Time Series - Alex Eslava - Medium. Medium.

https://medium.com/@alex.eslava96/outlier-detection-techniques-for-time-series-9868db2875c2

Eyer. (2024, March 9). Anomaly Detection in Time Series Data Python: A Starter Guide. Eyer.ai.

https://www.eyer.ai/blog/anomaly-detection-in-time-series-data-python-a-starter-guide/

Facebook. (2019). Prophet. Prophet. https://facebook.github.io/prophet/

Feasel, K. (2022). Copula-Based Outlier Detection (COPOD). Finding Ghosts in Your Data, 217–228.

https://doi.org/10.1007/978-1-4842-8870-2_12

Furnari, G., Vattiato, F., Allegra, D., Milotta, F. L. M., Orofino, A., Rizzo, R., De Palo, R. A., & Stanco, F. (2021). An Ensembled Anomaly

Detector for Wafer Fault Detection. Sensors, 21(16), 5465. https://doi.org/10.3390/s21165465

GeeksForGeeks. (2019, June 21). ML | Auto-Encoders. GeeksforGeeks. https://www.geeksforgeeks.org/auto-encoders/

GeeksForGeeks. (2020, July 20). Variational AutoEncoders. GeeksforGeeks. https://www.geeksforgeeks.org/variational-autoencoders/

Govindaraj, P. (2024, July 19). Self-Attention Mechanism In Transformers - Priyanthan Govindaraj - Medium. Medium.

https://medium.com/%40govindarajpriyanthan/self-attention-mechanism-in-transformers-1e46af9e1afb

Hayes, T. C., & Times, S. T. the N. Y. (1990, February 28). COMPANY NEWS; Wal-Mart Net Jumps By 31.8% (Published 1990). The New

York Times. https://www.nytimes.com/1990/02/28/business/company-news-wal-mart-net-jumps-by-31.8.html

Helen. (2019, December 1). Keras, sequential, and timeseries: should we flatten or not? Stack Overflow.

https://stackoverflow.com/questions/59125775/keras-sequential-and-timeseries-should-we-flatten-or-not

Holbert, C. (2022, March 27). Outlier Identification Using Mahalanobis Distance. Charles Holbert.

https://www.cfholbert.com/blog/outlier_mahalanobis_distance/

Hong, Z. (2024, February 2). Anomaly Detection in Time Series Data using LSTM Autoencoders. Medium.

https://medium.com/%40zhonghong9998/anomaly-detection-in-time-series-data-using-lstm-autoencoders-51fd14946fa3

Huang, X., & Joao Marques-Silva. (2024). On the failings of Shapley values for explainability. International Journal of Approximate

Reasoning, 171, 109112–109112. https://doi.org/10.1016/j.ijar.2023.109112

Hyndman, R. J., & Athanasopoulos, G. (2021). Chapter 11 Forecasting hierarchical and grouped time series | Forecasting: Principles and

Practice (3rd ed). Otexts.com. https://otexts.com/fpp3/hierarchical.html

IBM. (2024, June 12). Variational autoencoder. Ibm.com. https://www.ibm.com/think/topics/variational-autoencoder

IBM. (2025, January 28). Latent Space. Ibm.com. https://www.ibm.com/think/topics/latent-space

Intel. (2024, March 11). How to Apply Transformers to Time Series Models. Intel Tech.

https://medium.com/intel-tech/how-to-apply-transformers-to-time-series-models-spacetimeformer-e452f2825d2e

Iuhasz, G., Teodor-Florin Fortiş, & Silviu Panica. (2025). Exploring machine learning methods for the identification of production cycles and

anomaly detection. Internet of Things, 30, 101508–101508. https://doi.org/10.1016/j.iot.2025.101508

Jeffrey, N., Tan, Q., & Villar, J. R. (2024). Using Ensemble Learning for Anomaly Detection in Cyber–Physical Systems. Electronics, 13(7),

1391. https://doi.org/10.3390/electronics13071391

Kaggle. (2014, February 20). Walmart Recruiting - Store Sales Forecasting. Kaggle.com.

https://www.kaggle.com/competitions/walmart-recruiting-store-sales-forecasting/data

Tuhin, K. H., Nobi, A., Rakib, M. H., & Lee, J. W. (2025). Long short-term memory autoencoder based network of financial indices.

Humanities and Social Sciences Communications, 12(1). https://doi.org/10.1057/s41599-025-04412-y

Kar, S. (2024, November 2). What is Transformer Architecture? The Transformer architecture is a deep learning model introduced in 2017

by Vaswani et al. that revolutionized natural language processing (NLP) and paved the way for many modern AI applications,

including BERT, GPT, and T5. Linkedin.com.

https://www.linkedin.com/pulse/understanding-transformer-architecture-backbone-modern-suman-kar-23u4c/

Kaya, ibrahim. (2020, February 12). Anomaly Detection and Mahalanobis Distance. Medium.

https://medium.com/@ikaya754/anomaly-detection-and-mahalanobis-distance-25b21b7cfe5b

94

Kennedy, W. B. (2025, January 3). Deep Learning for Outlier Detection on Tabular and Image Data. Medium; TDS Archive.

https://medium.com/data-science/deep-learning-for-outlier-detection-on-tabular-and-image-data-90ae518a27b3

Konefal, B. (2023, June 16). LinkedIn. Linkedin.com.

https://www.linkedin.com/pulse/anomaly-detection-isolation-forest-bogus%C5%82aw-konefa%C5%82/

Kumar, K. (2023, August 17). Mastering Anomaly Detection in Time Series Data: Techniques and Insights. Medium; Medium.

https://medium.com/@ketan31kumar/mastering-anomaly-detection-in-time-series-data-techniques-and-insights-98fbe94c4258

Lachekhab, F., Benzaoui, M., Tadjer, S. A., ensmaine, A. B., & Hamma, H. (2024). LSTM-Autoencoder Deep Learning Model for Anomaly

Detection in Electric Motor. Energies, 17(10), 2340–2340. https://doi.org/10.3390/en17102340

Lai, K.-H., Daochen Zha, Xu, J., Zhao, Y., Wang, G., & Hu, X. (2021). Revisiting Time Series Outlier Detection: Definitions and

Benchmarks. OpenReview. https://openreview.net/forum?id=r8IvOsnHchr

Lawton, G. (2024). Generative models: VAEs, GANs, diffusion, transformers, NeRFs. Search Enterprise AI; TechTarget.

https://www.techtarget.com/searchenterpriseai/tip/Generative-models-VAEs-GANs-diffusion-transformers-NeRFs

Lee, I. (2024, July 23). TimeGPT vs Statistical Models for Forecasting SPY | Medium. Medium.

https://medium.com/@_ivylee_/timegpt-vs-statistical-models-for-forecasting-spy-8378ea258a19

Li, Z., Zhao, Y., Botta, N., Ionescu, C., & Hu, X. (2020). COPOD: Copula-Based Outlier Detection. ArXiv (Cornell University).

https://doi.org/10.1109/icdm50108.2020.00135

Liu, F. T., Ting, K. M., & Zhou, Z.-H. (2008). Isolation Forest. 2008 Eighth IEEE International Conference on Data Mining.

https://doi.org/10.1109/icdm.2008.17

Liu, T., Zhou, Z., & Yang, L. (2024). Layered isolation forest: A multi-level subspace algorithm for improving isolation forest.

Neurocomputing, 581, 127525–127525. https://doi.org/10.1016/j.neucom.2024.127525

Lozovsky, D. (2024, February 15). The Limitations of Transformers: A Deep Dive into AI’s Current Shortcomings and Future Potentials.

Www.linkedin.com. https://www.linkedin.com/pulse/limitations-transformers-deep-dive-ais-current-future-lozovsky-mba-vrrdc/

Lu, T., Wang, L., & Zhao, X. (2023). Review of Anomaly Detection Algorithms for Data Streams. Applied Sciences, 13(10), 6353.

https://doi.org/10.3390/app13106353

Mancuso, P., Piccialli, V., & Sudoso, A. M. (2021). A machine learning approach for forecasting hierarchical time series. Expert Systems with

Applications, 115102. https://doi.org/10.1016/j.eswa.2021.115102

Melanie. (2024, March 20). Facebook Prophet : All you need to know. Data Science Courses | DataScientest.

https://datascientest.com/en/facebook-prophet-all-you-need-to-know

Mesameki. (2025, March 26). Model interpretability - Azure Machine Learning. Microsoft.com.

https://learn.microsoft.com/en-us/azure/machine-learning/how-to-machine-learning-interpretability?view=azureml-api-2

Milvus. (2025). What is ensemble anomaly detection? Milvus.io. https://milvus.io/ai-quick-reference/what-is-ensemble-anomaly-detection

MindBridge. (2025, February 19). Anomaly Detection Techniques: How to Uncover Risks, Identify Patterns, and Strengthen Data Integrity.

MindBridge.

https://www.mindbridge.ai/blog/anomaly-detection-techniques-how-to-uncover-risks-identify-patterns-and-strengthen-data-integri

ty/

Moffitt, J. (2024, April 1). Real-Time Anomaly Detection: Use Cases and Code Examples. Www.tinybird.co.

https://www.tinybird.co/blog-posts/real-time-anomaly-detection

Muruganandham, P., Jayaraman, S., Tahiliani, K., Tanna, R., Ghosh, J., Pathak, S. K., & Ramaiya, N. (2024). An advanced double-phase

stacking ensemble technique with active learning classifier: Toward reliable disruption prediction in Aditya tokamak. Review of

Scientific Instruments, 95(9). https://doi.org/10.1063/5.0222189

Muslim, M. A., Nikmah, T. L., Pertiwi, D. A. A., Subhan, Jumanto, Dasril, Y., & Iswanto. (2023). New model combination meta-learner to

improve accuracy prediction P2P lending with stacking ensemble learning. Intelligent Systems with Applications, 18, 200204.

https://doi.org/10.1016/j.iswa.2023.200204

Neloy, A. A., & Turgeon, M. (2024). A comprehensive study of auto-encoders for anomaly detection: Efficiency and trade-offs. Machine

Learning with Applications, 17, 100572–100572. https://doi.org/10.1016/j.mlwa.2024.100572

Netsch, C. (2024, July 2). 3 + 1 Lessons learned from running TimeGPT on Machine Data. Alpamayo.

https://www.alpamayo-solutions.com/en/blog/3-1-lessons-learned-from-running-timegpt-on-machine-data

Nguyen, M.-N., & Vien, N. A. (2018, April 13). Scalable and Interpretable One-class SVMs with Deep Learning and Random Fourier

features. ArXiv.org. https://arxiv.org/abs/1804.04888

95

Nixtla. (2025, January). Anomaly detection. TimeGPT Foundational Model for Time Series Forecasting and Anomaly Detection.

https://docs.nixtla.io/docs/tutorials-anomaly_detection

Ögretir, M., Ramchandran, S., Papatheodorou, D., & Lahdesm, H. (2023, November 20). A Variational Autoencoder for Heterogeneous

Temporal and Longitudinal Data. Arxiv. https://arxiv.org/pdf/2204.09369

Owoh, N., Riley, J., Ashawa, M., Hosseinzadeh, S., Philip, A., & Osamor, J. (2024). An Adaptive Temporal Convolutional Network

Autoencoder for Malicious Data Detection in Mobile Crowd Sensing. Sensors, 24(7), 2353–2353.

https://doi.org/10.3390/s24072353

Peixeiro, M. (2023, March 15). Practical Guide for Anomaly Detection in Time Series with Python. Datasciencewithmarco.com.

https://www.datasciencewithmarco.com/blog/practical-guide-for-anomaly-detection-in-time-series-with-python

Pérez-Carrasco, M., Cabrera-Vives, G., Hernández-García, L., Forster, F., Sánchez-Sáez, P., Arancibia, A. M., Astorga, N., Bauer, F., Bayo,

A., Cádiz-Leyton, M., & Catelan, M. (2023, August 10). Multi-Class Deep SVDD: Anomaly Detection Approach in Astronomy

with Distinct Inlier Categories. ArXiv.org. https://doi.org/10.48550/arXiv.2308.05011

Perry, K. (2019, August 14). A Brief Introduction to Change Point Detection using Python - Tech Rando. Tech Rando.

https://techrando.com/2019/08/14/a-brief-introduction-to-change-point-detection-using-python/

Ippolito, P. P. (2023, December 14). Introduction to Autoencoders: From The Basics to Advanced Applications in PyTorch. Datacamp.com;

DataCamp. https://www.datacamp.com/tutorial/introduction-to-autoencoders

Pykes, K. (2024, August 13). Variational Autoencoders: How They Work and Why They Matter. Datacamp.com; DataCamp.

https://www.datacamp.com/tutorial/variational-autoencoders

Rajan, S. (2021, August 10). Multivariate Time Series Anomaly Detection using VAR model. Analytics Vidhya.

https://www.analyticsvidhya.com/blog/2021/08/multivariate-time-series-anomaly-detection-using-var-model/

Rajasekaran, A. (2025, March 30). Moments That Matter: Identifying Change Points in Time Series. Medium.

https://medium.com/%40anithaamalan/moments-that-matter-identifying-change-points-in-time-series-f5ecfe8855c5

RisingWave. (2024, July 23). Effective Anomaly Detection in Time-Series Using Basic Statistics. Effective Anomaly Detection in

Time-Series Using Basic Statistics. https://risingwave.com/blog/effective-anomaly-detection-in-time-series-using-basic-statistics/

Romeu, A. (2021, June 24). Simple statistics for anomaly detection on time-series data. Tinybird.co.

https://www.tinybird.co/blog-posts/anomaly-detection

Ruberts, A. (2020, July 15). Antons Ruberts. Well Enough. https://antonsruberts.github.io/anomaly-detection-web-2/

Ruff, L., Vandermeulen, R., Goernitz, N., Deecke, L., Siddiqui, S. A., Binder, A., Müller, E., & Kloft, M. (2018, July 3). Deep One-Class

Classification. Proceedings.mlr.press; PMLR. https://proceedings.mlr.press/v80/ruff18a.html

ruptures. (n.d.). Binary segmentation - ruptures. Github.io. Retrieved April 13, 2025, from

https://centre-borelli.github.io/ruptures-docs/user-guide/detection/binseg/

ruptures. (2017). Binary segmentation — ruptures documentation. Cnrs.fr.

https://ctruong.perso.math.cnrs.fr/ruptures-docs/build/html/detection/binseg.html

Kamoi, R., & Kobayashi, K. (2020). Why is the Mahalanobis Distance Effective for Anomaly Detection? ArXiv (Cornell University).

https://doi.org/10.48550/arxiv.2003.00402

Sayago, G. S. (2024, May 29). Decoding Efficiency: GMM (Gaussian Mixture Models) vs KMeans in Anomaly Detection. Medium.

https://medium.com/@surribasg/decoding-efficiency-gmm-gaussian-mixture-models-vs-kmeans-in-anomaly-detection-f695242d7

af1

Schmidl, S., Wenig, P., Papenbrock, T., & Anomaly. (2022). Anomaly Detection in Time Series: A Comprehensive Evaluation. Proceedings

of the VLDB Endowment, 15(9), 2150–8097. https://doi.org/10.14778/3538598.3538602

Scikit Learn. (2018). Compare the effect of different scalers on data with outliers — scikit-learn 0.20.3 documentation. Scikit-Learn.org.

https://scikit-learn.org/stable/auto_examples/preprocessing/plot_all_scaling.html

Sendera, M., Śmieja, M., Maziarka, Ł., Struski, Ł., Spurek, P., & Tabor, J. (2021). Flow-based SVDD for anomaly detection. ArXiv.org.

https://arxiv.org/abs/2108.04907

Shabou, S. (n.d.). Chapter 5 Outlier detection in Time series | Time Series with R. S-Ai-F.github.io. Retrieved April 13, 2025, from

https://s-ai-f.github.io/Time-Series/outlier-detection-in-time-series.html

Singh, H. (2024, February 13). 🚩Anomaly Detection with Autoencoders. Kaggle.com; Kaggle.

https://www.kaggle.com/code/harshsingh2209/anomaly-detection-with-autoencoders

Smart Vision Europe. (2025). Crisp DM methodology. Smart Vision Europe. https://www.sv-europe.com/crisp-dm-methodology/#two

96

Spector, D. (2012, November 15). 18 Facts About Walmart That Will Blow Your Mind. Business Insider.

https://www.businessinsider.com/crazy-facts-about-walmart-2012-11

Srivastava, A. (2023, October). Detecting Anomalies with Z-Scores: A Practical Approach. Medium.

https://medium.com/%40akashsri306/detecting-anomalies-with-z-scores-a-practical-approach-2f9a0f27458d

Statsmodels. (2025, April 2). Seasonal-Trend decomposition using LOESS (STL) — statsmodels. Www.statsmodels.org.

https://www.statsmodels.org/dev/examples/notebooks/generated/stl_decomposition.html

Sun, Q., Li, Y., Hu, Z., Zhou, C., & Liu, L. (2024). Spatial-Temporal Dependency Based Multivariate Time Series Anomaly Detection for

Industrial Processes. Lecture Notes in Computer Science, 212–223. https://doi.org/10.1007/978-981-97-5618-6_18

Taylor, S. J., & Letham, B. (2017, September 27). Forecasting at scale. Peerj.com. https://peerj.com/preprints/3190/

Teuwens, R. (2021). Anomaly Detection with Auto-Encoders. Kaggle.com.

https://www.kaggle.com/code/robinteuwens/anomaly-detection-with-auto-encoders

The Produce News. (2024). Walmart: The world’s largest retailer | Produce News. The Produce News.

https://theproducenews.com/headlines/walmart-worlds-largest-retailer

Thill, M. (2020). Time Series Encodings with Temporal Convolutional Networks.

https://www.gm.th-koeln.de/ciopwebpub/Thill20a.d/bioma2020-tcn.pdf

Thill, M., Konen, W., Wang, H., & Bäck, T. (2021). Temporal convolutional autoencoder for unsupervised anomaly detection in time series.

Applied Soft Computing, 112, 107751. https://doi.org/10.1016/j.asoc.2021.107751

Tuychiyev, B., & DataCamp. (2021, October 1). Anomaly Detection in Python. DataCamp.

https://app.datacamp.com/learn/courses/anomaly-detection-in-python

Xin, R., Liu, H., Chen, P., & Zhao, Z. (2023). Robust and accurate performance anomaly detection and prediction for cloud applications: a

novel ensemble learning-based framework. Journal of Cloud Computing, 12(1). https://doi.org/10.1186/s13677-022-00383-6

Xu, J., & Duraisamy, K. (2020). Multi-level convolutional autoencoder networks for parametric prediction of spatio-temporal dynamics.

Computer Methods in Applied Mechanics and Engineering, 372, 113379. https://doi.org/10.1016/j.cma.2020.113379

Xu, W., He, J., Li, W., He, Y., Wan, H., Qin, W., & Chen, Z. (2023). Long-Short-Term-Memory-Based Deep Stacked Sequence-to-Sequence

Autoencoder for Health Prediction of Industrial Workers in Closed Environments Based on Wearable Devices. Sensors, 23(18),

7874. https://doi.org/10.3390/s23187874

Yadav, A. (2024, November 30). Transformer Encoder Explained - Amit Yadav - Medium. Medium.

https://medium.com/%40amit25173/transformer-encoder-explained-0ed866b69083

Yadav, S. (2023, May 23). Harnessing the Power of Isolation Forest for Anomaly Detection. CloudThat Resources.

https://www.cloudthat.com/resources/blog/harnessing-the-power-of-isolation-forest-for-anomaly-detection

Yi, J. (2020). Patch SVDD: Patch-level SVDD for Anomaly Detection and Segmentation.

https://openaccess.thecvf.com/content/ACCV2020/papers/Yi_Patch_SVDD_Patch-level_SVDD_for_Anomaly_Detection_and_S

egmentation_ACCV_2020_paper.pdf

Yoon, Y. (2022, March 8). Isolation Forest Anomaly Detection — Identify Outliers. Medium.

https://medium.com/%40y.s.yoon/isolation-forest-anomaly-detection-identify-outliers-101123a9ff63

Zhang, L., Zhang, W., McNeil, M. J., Chengwang, N., Matteson, D. S., & Bogdanov, P. (2021). AURORA: A Unified fRamework fOR

Anomaly detection on multivariate time series. Data Mining and Knowledge Discovery, 35(5), 1882–1905.

https://doi.org/10.1007/s10618-021-00771-7

Zhao, Y. (2022). pyod.models.mcd - pyod 2.0.3 documentation. Readthedocs.io.

https://pyod.readthedocs.io/en/latest/_modules/pyod/models/mcd.html

Zwingmann, T. (2022). Auto-Detect Anomalies In Time Series Data Using ML. The Augmented Advantage.

https://blog.tobiaszwingmann.com/p/detect-anomalies-automatically-with-ai

Note: ChatGPT was used to support grammar correction, language clarity, and typographical edits throughout the thesis.

97

	
	Abstrakt
	Abstract
	Introduction
	Motivation
	Research Questions and Objectives
	Methodology

	1​Business Understanding
	2​Machine Learning Understanding
	2.1​Problem Definition
	2.1.1​Point-Wise Anomaly Detection
	2.1.2​Large-Scale Hierarchical Multivariate Time Series

	2.2​Choice of Decomposition Methods
	2.2.1​Prophet Forecasting Mechanism
	2.2.2​Seasonal-Trend Decomposition using LOESS Forecasting Mechanism
	2.2.3​TimeGPT Forecasting Mechanism

	2.3​Choice of Anomaly Detection Methods
	2.3.1​Z-Scores Anomaly Detection Mechanism
	2.3.2​Thresholding Anomaly Detection Mechanism
	2.3.3​Isolation Forest Anomaly Detection Mechanism
	2.3.4​K-Nearest Neighbors Anomaly Detection Mechanism
	2.3.5​Local Outlier Factor Anomaly Detection Mechanism
	2.3.6​HDBSCAN Anomaly Detection Mechanism
	2.3.7​One Class SVM Anomaly Detection Mechanism
	2.3.8​COPOD Anomaly Detection Mechanism
	2.3.9​Bayesian Change Point Detection Anomaly Detection Mechanism
	2.3.10​Mahalanobis Distance Anomaly Detection Mechanism
	2.3.11​Gaussian Mixture Model Anomaly Detection Mechanism
	2.3.12​Autoencoders Anomaly Detection Mechanism
	Table 2.1

	2.3.13​Deep SVDD Anomaly Detection Mechanism

	2.4​Ensemble Detection
	2.5​Interpretability
	2.6​Chapter Summary
	Table 2.2

	3​Data Understanding
	3.1​Initial Data Collection
	3.2​Data Description
	Table 3.1

	3.3​Data Description
	3.3.1​Distribution of Weekly Sales
	Figure 3.1

	3.3.2​Trend and Seasonality
	Figure 3.2
	Figure 3.3
	Figure 3.4

	3.3.3​Feature Relationships
	Figure 3.5
	Figure 3.6
	Figure 3.7

	3.3.4​Data Quality Verification
	Table 3.2

	3.4​Chapter Summary

	4​Data Preparation
	4.1​Data Selection and Integration
	4.2​Data Cleaning
	4.3​Feature Construction
	4.4​Injecting Anomalies
	Figure 4.1

	4.5​Scaling
	4.6​Chapter Summary

	5​Modelling
	5.1​Model Assessment
	Figure 5.1
	Table 5.1

	5.2​Decomposition Methods
	5.2.1​Prophet Decomposition
	Figure 5.2
	Figure 5.3

	5.2.2​STL Decomposition
	Figure 5.4

	5.2.3​TimeGPT Decomposition
	Figure 5.5

	5.3​Anomaly Detection Models
	5.3.1​Z-Scores Anomaly Detection Model
	Table 5.2

	5.3.2​Thresholding Anomaly Detection Model
	Table 5.3

	5.3.3​Isolation Forest Anomaly Detection Model
	Table 5.4

	5.3.4​K-Nearest Neighbors Anomaly Detection Model
	Table 5.5

	5.3.5​Local Outlier Factor Anomaly Detection Model
	Table 5.6

	5.3.6​HDBSCAN Anomaly Detection Model
	Table 5.7

	5.3.7​One-Class SVM Anomaly Detection Model
	Table 5.8

	5.3.8​Bayesian Change Point Detection Anomaly Detection Model
	Table 5.9

	5.3.9​Mahalanobis Distance Anomaly Detection Model
	Table 5.10

	5.3.10​Gaussian Mixture Model Anomaly Detection Model
	Table 5.11

	5.3.11​Plain Autoencoder Anomaly Detection Model
	Table 5.12

	5.3.12​Variational Autoencoder Anomaly Detection Model
	Table 5.13

	5.3.13​LSTM Autoencoder Anomaly Detection Model
	5.3.14​Transformer Autoencoder Anomaly Detection Model
	Table 5.14

	5.3.15​TCN Autoencoder Anomaly Detection Model
	Table 5.15

	5.3.16​Deep SVDD Anomaly Detection Model
	Table 5.16

	5.4​Ensemble Anomaly Detection Methods
	Table 5.17
	5.4.1​Soft Union Ensemble Strategy
	Table 5.18
	Figure 5.6

	Table 5.19

	5.4.2​Weighted Ensemble Strategy
	Table 5.20

	5.4.3​LightGBM Meta-Classifier
	Table 5.21

	5.4.4​Business Logic Post-Processing
	Table 5.22
	Figure 5.7
	Figure 5.8

	5.5​Reconciliation Model
	Table 5.23
	Figure 5.9
	Figure 5.10
	Figure 5.11

	5.6​Interpretability Model
	Table 5.24

	5.7​Chapter Summary

	6​Business Use
	6.1​Managerial Summaries and Operational Insights
	Figure 6.1

	6.2​Deployment

	7​Evaluation
	7.1​Assessment of Data Mining Results
	7.1.1​Results in Terms of Accuracy
	Table 7.1

	7.1.2​Results in Terms of Scalability
	Figure 7.1

	7.1.3​Results in Terms of Interpretability
	7.2​Approved Models
	7.3​Review of the Process

	Conclusion
	Answering Research Questions and Objectives
	Limitations
	Future Work

	References

