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Abstract
This thesis introduces and studies an alternative concept of two-way finite automata referred
to as input-erasing two-way finite automata. Like the original model, these new automata
can also move their read heads freely left or right on their input tapes. However, each time
they read a symbol, they also erase it from their tapes. The thesis demonstrates that these
automata define precisely the family of linear languages and are thus strictly stronger than
their original versions. Furthermore, it introduces a variety of restrictions placed upon these
automata and the way they work and investigates the effect of these restrictions on their
accepting power. In particular, it explores mutual relations between the language families
resulting from these restrictions and shows that some of them reduce the power of these
automata to that of even linear grammars or even ordinary finite automata.

Abstrakt
Tato práce zavádí a studuje alternativní koncept dvousměrných konečných automatů, který
je označován jako vstup vymazávající dvousměrné konečné automaty. Podobně jako původní
model mohou i tyto automaty posunovat čtecí hlavu po vstupní pásce libovolně doleva či
doprava, avšak každý přečtený symbol ze vstupní pásky vymazávají. Práce demonstruje, že
tyto automaty definují přesně třídu lineárních jazyků a jsou tedy silnější než jejich původní
verze. Dále zavádí různá omezení kladená na tyto automaty a způsob, kterým pracují,
a zkoumá vliv těchto omezení na jejich přijímací sílu. Zabývá se především vzájemnými
vztahy mezi jazykovými rodinami, které z těchto omezení vyplývají, a ukazuje, že něk-
terá z nich snižují sílu těchto automatů na úroveň vyrovnaných lineárních gramatik nebo
dokonce běžných konečných automatů.

Keywords
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Rozšířený abstrakt
Konečné automaty, představené již před více než osmdesáti lety v [28], vždy plnily a plní
v informatice mimořádně důležitou roli, a to jak v teorii, tak v praxi. Z toho důvodu bylo
definováno mnoho jejich různých variant s cílem poskytnout každé oblasti informatiky tu,
která jejím potřebám vyhovuje co možná nejvíce. Jednou z těchto variant jsou dvousměrné
konečné automaty, jež se vyznačují tím, že umožňují pohyb čtecí hlavy po vstupní pásce
oběma směry, nikoli pouze postupně zleva doprava, jako je tomu u původních (jednos-
měrných) konečných automatů. Tyto automaty byly nezávisle na sobě představeny v [39]
a [43] a od té doby jsou neustále intenzivně zkoumány z různých úhlů pohledu (viz například
[2, 3, 4, 13, 21, 22, 47]).

Tato diplomová práce pokračuje v tomto dlouhodobě aktivním výzkumu dvousměrných
konečných automatů tím, že zavádí jejich alternativní koncept označovaný jako vstup vy-
mazávající dvousměrné konečné automaty, který disponuje vyšší přijímací sílou než jejich
koncept původní. Vzhledem k tomuto navýšení síly pak může být zajímavé, že myšlenka,
na níž je tohle jejich nové pojetí založeno, v zásadě vychází z původní koncepce jednos-
měrných konečných automatů, jež mohou číst každý vstupní symbol pouze jednou. Vstup
vymazávající dvousměrné konečné automaty totiž fungují podobně jako klasické dvousměrné
konečné automaty, avšak (1) odstraňují již přečtené vstupní symboly, čímž zamezují jejich
opětovnému zpracování, a navíc (2) mohou zahájit výpočet z kterékoli pozice na vstupní
pásce, nikoli pouze z jejího levého okraje.

Práce nejprve opakuje veškerou terminologii nezbytnou k jejímu ucelenému pochopení.
Zahrnuje jak základní pojmy, jako jsou řetězce a jazyky, tak i některé typy formálních gra-
matik a jednosměrné konečné automaty. Následně popisuje klasický koncept dvousměrných
konečných automatů. Uvádí, jakým způsobem fungují, a demonstruje jejich vlastnosti.

Klíčová část této práce pak zavádí a studuje vstup vymazávající dvousměrné konečné au-
tomaty. Formálně je definuje, včetně jejich dílčích verzí, poukazuje na jejich stěžejní rozdíly
oproti klasickým dvousměrným konečným automatům a ilustruje jejich schopnosti. Hlavním
výsledkem je, že tyto nové automaty charakterizují přesně třídu lineárních jazyků, jež plně
zahrnuje třídu jazyků regulárních definovanou klasickými jednosměrnými a dvousměrnými
konečnými automaty. Toto zjištění je založeno na tom, že libovolný vstup vymazávající
dvousměrný konečný automat lze převést na ekvivalentní lineární gramatiku (generující to-
tožný jazyk) a naopak. Navíc je ukázáno, že jednotlivé definované verze těchto automatů
jsou stejně silné.

Dále se práce zabývá několika omezeními kladenými na způsob výpočtu vstup vymazáva-
jících dvousměrných konečných automatů, jež jsou založena na střídavém provádění levých
a pravých přechodů. Je studován jejich vliv na výpočetní sílu těchto automatů, přičemž
jsou stanoveny vzájemné vztahy jazykových rodin z těchto omezení plynoucích.

Nakonec práce zkoumá různá omezení vstupu nově zavedených automatů. Studuje tedy
jejich přijímací sílu za předpokladu, že jejich vstupní řetězce či jejich části náleží do jazyků
z nějakých předem stanovených jazykových rodin. Je ukázáno, že omezení vstupu založená
na regulárních jazycích nevedou k žádnému zvýšení síly těchto automatů. Některá z nich
ji dokonce přímo snižují do třídy regulárních jazyků. Oproti tomu však omezení vstupu
založená na lineárních jazycích mohou rozšířit jejich přijímací schopnosti i na některé jazyky,
které nejsou bezkontextově volné.

Součástí této práce je rovněž implementace programu, který vstup vymazávající dvous-
měrné konečné automaty simuluje. Jedná se o konzolovou aplikaci implementovanou v jazy-
ce Python, která umožňuje simulovat jejich výpočetně omezené i neomezené běhy a jejímž



hlavním účelem je demonstrovat, jak tyto nové automaty fungují a jak se mohou chovat
v praxi.
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Chapter 1

Introduction

Finite automata, introduced more than eight decades ago in [28], have always fulfilled
a crucially important role in computer science both in theory and in practice. Thus, it
comes as no surprise that the theory of computation has defined a great variety of these
automata in order to provide every computer science area with the version that fits its
needs as optimally as possible. Two-way finite automata, independently introduced in
[39] and [43], represent significant versions of this kind, which have been constantly and
intensively investigated since their introduction from various angles. First of all, in terms
of these automata, the theory of computation has studied most of its classical topics, such
as nondeterminism, time and space complexity, or purely mathematical properties (see
[3, 4, 5, 6, 10, 18, 20, 22, 33, 35, 36, 41]). Furthermore, this theory has introduced various
formal models closely related to two-way finite automata in many respects, such as their
power or the way they work (see [19, 27]). The theory of computation has also defined
and studied several new versions of these automata based upon concepts used in its latest
investigation trends, such as the formalization of quantum or jumping computation (see
[2, 12, 38, 45, 46, 47]). In addition, apart from the models mentioned above, many other
versions of two-way finite automata have been introduced to formalize various features of
computation in such terms as probability, alternation, and others (see [13, 14, 21, 25, 40]).

The present thesis continues with this long-time vivid investigation trend by introducing
other versions of two-way finite automata, which are, however, stronger than their origi-
nals. Indeed, these newly introduced versions characterize the linear language family, which
properly contains the regular language family defined by two-way finite automata. Consid-
ering this increase in power, it is surprising that the fundamental idea underlying these new
versions actually comes from the very original concept of one-way finite automata, which
can read every input symbol only once. That is to say, once an input symbol is read, it
is also erased, so it cannot be re-read again. To give an insight into these new versions as
well as the way they work, we first briefly informally recall the basic notion of a (one-way)
finite automaton as well as that of its two-way variant while pointing out the features that
have inspired the introduction of the new versions.

The notion of a (one-way) finite automaton describes a machine that, directed by its
finite state control, reads an input string on its input tape symbol by symbol in a left-to-
right way. Since the entire string is processed in a single pass, reading an occurrence of
a symbol can also be considered as its erasure. Indeed, once the occurrence of the symbol
is read, it is, in effect, gone as well because the automaton can never re-read this particular
occurrence of the symbol during the rest of its computation.

2



The notion of a two-way finite automaton closely resembles its one-way counterpart.
However, as opposed to its strictly left-to-right behavior, the two-way finite automaton can
freely move its read head either left or right on its input tape. Consequently, the same
occurrence of a symbol can be re-read over and over again, so the automaton never erases
it from the tape.

Based upon a combination of the two previous models, we now sketch the new notion
of a two-way finite automaton referred to as an input-erasing two-way finite automaton.
This automaton functions similarly to the classical two-way finite automaton; however, it
erases the input symbols just as the one-way finite automaton does and, in addition, can
start its computation at any position on the input tape. As a result, despite its ability to
move the read head on the tape in both directions, this automaton can never read the same
occurrence of a symbol more than once during its computation.

As its fundamental result, this thesis demonstrates that input-erasing two-way finite
automata are stronger than one-way or two-way finite automata, which both characterize
the regular language family. Indeed, it shows that the input-erasing two-way versions
define the linear language family, which properly contains the regular language family. In
addition, this thesis discusses two kinds of restrictions placed upon input-erasing two-way
finite automata and the way they work. The first kind concerns their computation. More
precisely, it restricts the performance of left and right moves in a variety of evenly alternating
ways and investigates how these restrictions affect their computational power. The other
kind explores input-related restrictions. That is, it studies the power of these automata
working under the assumption that their input strings or their parts belong to languages
from some prescribed language families, such as the regular and linear language families.

The present thesis is organized as follows. Chapter 2 recalls all the terminology needed
in this thesis, covering formal languages and their families, various types of formal gram-
mars, and finite automata. Chapter 3 introduces two-way finite automata, including their
accepting capabilities. Chapter 4 describes and formally defines input-erasing two-way finite
automata—the new type of two-way finite automata. Chapter 5 presents the fundamental
results achieved in this thesis. Namely, it demonstrates that input-erasing two-way finite
automata and linear grammars have the same expressive power and that different versions
of these automata have the same accepting capabilities. Chapter 6 investigates a variety
of evenly alternating restrictions placed upon the way these automata work. Chapter 7 ex-
plores the various input-related restrictions of these automata. Chapter 8 closes the present
study by summarizing its results and pointing out important open problem areas.
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Chapter 2

Preliminaries

This chapter covers the concepts and terminology that are necessary for a comprehen-
sive understanding of this thesis. In particular, it introduces terms such as alphabets,
strings, and languages, along with two fundamental models—formal grammars and finite
automata—including some of their versions. The reader is assumed to be familiar with the
basics of set theory, elementary logic, and the theory of automata and formal languages
(see, for instance, [17, 29, 44]). The definitions, conventions, and theorems presented in
this chapter are inspired by [15, 23, 29, 30, 32, 42].

Convention 2.1. For any finite set of nonnegative integers 𝑋, max(𝑋) denotes its maxi-
mum. For any integer 𝑛, abs(𝑛) denotes its absolute value. For a set 𝑋, card(𝑋) denotes
the cardinality of 𝑋—the number of members of 𝑋.

Definition 2.2. Let 𝑋 and 𝑌 be sets; we say that 𝑋 and 𝑌 are incomparable if 𝑋 ⊈ 𝑌 ,
𝑌 ⊈ 𝑋, and 𝑋 ∩ 𝑌 ̸= ∅.

Convention 2.3. Throughout this thesis, N denotes the set of natural numbers—that is,
N = {1, 2, . . .}, and N0 = {0} ∪ N.

Convention 2.4. In what follows, we sometimes abbreviate 𝑠1 if and only if 𝑠2, where 𝑠1
and 𝑠2 are two statements, to 𝑠1 iff 𝑠2.

2.1 Strings and Languages
This section introduces strings and languages in terms of formal language theory, including
some operations over them.

Definition 2.5. An alphabet is a finite, nonempty set of elements, which are called symbols.

Definition 2.6. Let Σ be an alphabet. Any finite sequence of symbols from Σ is a string
over Σ. The string that contains no symbols is called the empty string and is denoted by 𝜀.
The set of all strings over Σ (including 𝜀) is denoted by Σ*, and Σ+ = Σ* ∖ {𝜀}.

Convention 2.7. In what follows, for a string (𝑎1, 𝑎2, . . . , 𝑎𝑛), for some 𝑛 ∈ N, we write
𝑎1𝑎2 . . . 𝑎𝑛 instead of the sequential notation.

Definition 2.8. Let Σ be an alphabet, and let 𝑥 = 𝑎1𝑎2 . . . 𝑎𝑛 be a string over Σ, where
𝑎𝑖 ∈ Σ, for all 𝑖 = 1, 2, . . . , 𝑛, for some 𝑛 ∈ N0 (the case when 𝑛 = 0 means that 𝑥 = 𝜀);
that is, 𝑥 ∈ Σ*. The length of 𝑥, denoted by |𝑥|, is defined as |𝑥| = 𝑛. The reversal of
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𝑥, denoted by reversal(𝑥), is defined as reversal(𝑥) = 𝑎𝑛𝑎𝑛−1 . . . 𝑎1. For 𝑎 ∈ Σ, occur(𝑥, 𝑎)
denotes the number of occurrences of 𝑎 in 𝑥.

Notice that |𝜀| = 0 and reversal(𝜀) = 𝜀.

Definition 2.9. Let Σ be an alphabet, and let 𝑥, 𝑦 ∈ Σ* be two strings over Σ. The
concatenation of 𝑥 and 𝑦, denoted by 𝑥𝑦, is the string obtained by appending 𝑦 to 𝑥.

Note that for every string 𝑥, 𝜀𝑥 = 𝑥𝜀 = 𝑥.

Definition 2.10. Let Σ be an alphabet, and let 𝑥 ∈ Σ* be a string over Σ. For all 𝑛 ∈ N0,
the 𝑛th power of 𝑥, denoted by 𝑥𝑛, is recursively defined as

(1) 𝑥0 = 𝜀, and

(2) 𝑥𝑛 = 𝑥𝑥𝑛−1, for 𝑛 ≥ 1.

Definition 2.11. Let Σ be an alphabet. Any subset 𝐿 ⊆ Σ* is a (formal) language over
Σ. 𝐿 is finite if card(𝐿) = 𝑛, for some 𝑛 ∈ N; otherwise, 𝐿 is infinite. 𝐿 is singular if
card(𝐿) = 1. 𝐿 is regular if it is expressible using a regular expression (see, for instance,
Definition 3.23 in [30]).

Definition 2.12. Let Σ be an alphabet, and let 𝐿1, 𝐿2 ∈ Σ* be two languages over Σ. The
concatenation of 𝐿1 and 𝐿2, denoted by 𝐿1𝐿2, is defined as 𝐿1𝐿2 = {𝑥𝑦 | 𝑥 ∈ 𝐿1, 𝑦 ∈ 𝐿2}.

Definition 2.13. Let Σ be an alphabet, and let 𝐿 ∈ Σ* be a language over Σ. For all
𝑛 ∈ N0, the 𝑛th power of 𝐿, denoted by 𝐿𝑛, is recursively defined as

(1) 𝐿0 = {𝜀}, and

(2) 𝐿𝑛 = 𝐿𝐿𝑛−1, for 𝑛 ≥ 1.

Definition 2.14. Any set whose members are languages is called a family of languages (or
a language family).

Convention 2.15. Let singΦ, finΦ, and regΦ denote the families of singular, finite, and
regular languages, respectively. Furthermore, let evenΦ and oddΦ denote the families of
languages consisting of even-length and odd-length strings, respectively.

2.2 Grammars
Formal grammars constitute one of the fundamental concepts in formal language theory.
Informally, they represent language-generating devices that produce strings by repeatedly
rewriting symbols according to some rewriting rules until no symbol can be rewritten. In
this section, we introduce several different types of grammars and define the families of
languages they generate.

Definition 2.16. A phrase-structure grammar (PSG for short) is a quadruple

𝐺 = (𝑁,𝑇, 𝑃, 𝑆),

where

• 𝑁 is an alphabet of nonterminals;
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• 𝑇 is an alphabet of terminals such that 𝑁 ∩ 𝑇 = ∅;

• 𝑃 ⊆ (𝑁 ∪ 𝑇 )*𝑁(𝑁 ∪ 𝑇 )* × (𝑁 ∪ 𝑇 )* is a finite relation called the set of (rewriting)
rules;

• 𝑆 ∈ 𝑁 is the start nonterminal.

Convention 2.17. In what follows, instead of (𝑥, 𝑦) ∈ 𝑃 , we write 𝑥→ 𝑦 ∈ 𝑃 .

Definition 2.18. Let 𝐺 = (𝑁,𝑇, 𝑃, 𝑆) be a PSG. Over (𝑁 ∪ 𝑇 )*, we define the binary
direct derivation relation, symbolically denoted by ⇒, as follows: for all 𝑥 → 𝑦 ∈ 𝑃 and
𝑢, 𝑣 ∈ (𝑁 ∪ 𝑇 )*, 𝑢𝑥𝑣 ⇒ 𝑢𝑦𝑣 in 𝐺. In other words, 𝐺 makes a derivation step from 𝑢𝑥𝑣 to
𝑢𝑦𝑣 according to a rule of the form 𝑥 → 𝑦. Let ⇒𝑛, for some 𝑛 ≥ 0, ⇒+, and ⇒* denote
the 𝑛th power of ⇒, the transitive closure of ⇒, and the reflexive-transitive closure of ⇒,
respectively. If 𝛼⇒* 𝛽 in 𝐺, where 𝛼 ∈ (𝑁 ∪𝑇 )*𝑁(𝑁 ∪𝑇 )* and 𝛽 ∈ (𝑁 ∪𝑇 )*, we say that
𝐺 makes a derivation from 𝛼 to 𝛽. The language generated by 𝐺, denoted by 𝐿(𝐺), is the
set of strings defined as 𝐿(𝐺) = {𝑤 ∈ 𝑇 * | 𝑆 ⇒* 𝑤}. Let 𝑤 ∈ 𝑇 *. We say that 𝐺 generates
𝑤 if and only if 𝑤 ∈ 𝐿(𝐺).

Definition 2.19. Let 𝐺 = (𝑁,𝑇, 𝑃, 𝑆) be a PSG. 𝐺 is a context-sensitive grammar (CSG
for short) if each rule in 𝑃 is of the form 𝑥𝐴𝑦 → 𝑥𝑧𝑦, where 𝑥, 𝑦 ∈ (𝑁 ∪ 𝑇 )*, 𝐴 ∈ 𝑁 , and
𝑧 ∈ (𝑁 ∪ 𝑇 )+. One possible exception is allowed; that is, a rule of the form 𝑆 → 𝜀, whose
occurrence in 𝑃 implies that 𝑆 does not occur on the right-hand side of any rule in 𝑃 . 𝐺
is a context-free grammar (CFG for short) if each rule in 𝑃 is of the form 𝐴 → 𝑥, where
𝐴 ∈ 𝑁 and 𝑥 ∈ (𝑁 ∪ 𝑇 )*. 𝐺 is a linear grammar (LG for short) if each rule in 𝑃 is of the
form 𝐴→ 𝑥𝐵𝑦 or 𝐴→ 𝑥, where 𝐴,𝐵 ∈ 𝑁 and 𝑥, 𝑦 ∈ 𝑇 *. 𝐺 is a regular grammar (RG for
short) if each rule in 𝑃 is of the form 𝐴→ 𝑥, where 𝐴 ∈ 𝑁 and 𝑥 ∈ 𝑇𝑁 ∪ 𝑇 ∪ {𝜀}.

Definition 2.20. Let 𝐺 = (𝑁,𝑇, 𝑃, 𝑆) be an LG. 𝐺 is an even linear grammar (ELG for
short) if 𝐴→ 𝑥𝐵𝑦 ∈ 𝑃 , where 𝐴,𝐵 ∈ 𝑁 and 𝑥, 𝑦 ∈ 𝑇 *, implies that |𝑥| = |𝑦|.

Figure 2.1 visually illustrates a sequence of derivation steps in an LG.

𝑆

⇓ 𝑆 → 𝑥𝐴𝑦

. . . 𝑎 𝐴 𝑏 . . .

𝑥 𝑦⇓
...
⇓

. . . 𝑎 . . . 𝑐 𝐵 𝑑 . . . 𝑏 . . .

𝑥 𝑢 𝑣 𝑦

⇓ 𝐵 → 𝑧

. . . 𝑎 . . . 𝑐 𝑒 . . . 𝑓 𝑑 . . . 𝑏 . . .

𝑥 𝑢 𝑧 𝑣 𝑦

Figure 2.1: A sequence of derivation steps in an LG, where 𝑆 is the start nonterminal, 𝐴
and 𝐵 are nonterminals, 𝑥, 𝑦, 𝑢, 𝑣, and 𝑧 are strings of terminals, 𝑆 → 𝑥𝐴𝑦 and 𝐵 → 𝑧
are rewriting rules, and 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, and 𝑓 are terminals.

Next, we give two examples demonstrating how the previously defined grammars work.
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Example 2.21. Consider the CSG

𝐺 = ({𝑆,𝐴,𝐵}, {𝑎, 𝑏, 𝑐}, 𝑃, 𝑆)

with the following six rules in 𝑃 :

𝑆 → 𝜀, 𝐴→ 𝑎𝐴𝐵𝑐, 𝑐𝐵 → 𝐵𝑐,

𝑆 → 𝐴, 𝐴→ 𝑎𝑏𝑐, 𝑏𝐵 → 𝑏𝑏.

Observe that 𝐺 generates the language 𝐿(𝐺) = {𝑎𝑛𝑏𝑛𝑐𝑛 | 𝑛 ≥ 0}. Indeed, first, 𝐺 rewrites
𝑆 to 𝐴. Then, it generates the same number of 𝑎s, 𝐵s, and 𝑐s by repeatedly replacing 𝐴
with 𝑎𝐴𝐵𝑐. Thus, all occurrences of 𝑎 precede all occurrences of 𝐵 and 𝑐. Furthermore,
𝐺 also replaces each occurrence of 𝑐𝐵 with 𝐵𝑐 to ensure that all occurrences of 𝐵 precede
all occurrences of 𝑐. Once 𝐺 rewrites 𝐴 to 𝑎𝑏𝑐, it gradually removes all 𝐵s by successively
replacing occurrences of 𝑏𝐵 with 𝑏𝑏; thus, 𝐺 eliminates all remaining nonterminals and
generates 𝑎𝑖𝑏𝑖𝑐𝑖, for some 𝑖 ≥ 1. Note that 𝐺 can also generate the empty string by simply
replacing 𝑆 with 𝜀 at the beginning of a derivation process.

For example, the string 𝑎𝑎𝑎𝑏𝑏𝑏𝑐𝑐𝑐 can be generated by 𝐺 in the following way:

𝑆 ⇒ 𝐴⇒ 𝑎𝐴𝐵𝑐⇒ 𝑎𝑎𝐴𝐵𝑐𝐵𝑐⇒ 𝑎𝑎𝑎𝑏𝑐𝐵𝑐𝐵𝑐⇒ 𝑎𝑎𝑎𝑏𝐵𝑐𝑐𝐵𝑐⇒ 𝑎𝑎𝑎𝑏𝑏𝑐𝑐𝐵𝑐

⇒ 𝑎𝑎𝑎𝑏𝑏𝑐𝐵𝑐𝑐⇒ 𝑎𝑎𝑎𝑏𝑏𝐵𝑐𝑐𝑐⇒ 𝑎𝑎𝑎𝑏𝑏𝑏𝑐𝑐𝑐.

Recall that 𝐿(𝐺) in Example 2.21 is a well-known non-context-free, context-sensitive
language (see Example 8.1 in [30]).
Example 2.22. Consider the LG

𝐺 = ({𝑆,𝐴}, {𝑎, 𝑏, 𝑐}, 𝑃, 𝑆),

with 𝑃 containing the following rules:

𝑆 → 𝑆𝑐, 𝐴→ 𝑎𝐴𝑏𝑏,

𝑆 → 𝜀, 𝐴→ 𝜀,

𝑆 → 𝑎𝐴𝑏𝑏.

𝐺 starts every derivation by generating an arbitrary number of 𝑐s to the right of 𝑆. After this
initial phase, 𝐺 either rewrites 𝑆 to 𝜀 or replaces 𝑆 with 𝑎𝐴𝑏𝑏 and continues the derivation
by repeatedly generating 𝑏𝑏 to the right and 𝑎 to the left of 𝐴 until 𝐴 is rewritten to 𝜀. As
a result, the languages generated by 𝐺 is 𝐿(𝐺) = {𝑎𝑛𝑏2𝑛𝑐𝑚 | 𝑚,𝑛 ≥ 0}.

For instance, the string 𝑎𝑎𝑏𝑏𝑏𝑏𝑐𝑐𝑐 is generated by 𝐺 as follows:

𝑆 ⇒ 𝑆𝑐⇒ 𝑆𝑐𝑐⇒ 𝑆𝑐𝑐𝑐⇒ 𝑎𝐴𝑏𝑏𝑐𝑐𝑐⇒ 𝑎𝑎𝐴𝑏𝑏𝑏𝑏𝑐𝑐𝑐⇒ 𝑎𝑎𝑏𝑏𝑏𝑏𝑐𝑐𝑐.

Convention 2.23. Let CSGΦ, CFGΦ, LGΦ, ELGΦ, and RGΦ denote the families of languages
generated by CSGs, CFGs, LGs, ELGs, and RGs, respectively. That is, for all 𝑋 ∈ {CSG ,
CFG , LG , ELG , RG}, set XΦ = {𝐿(𝐺) | 𝐺 is an X}.
Theorem 2.24. singΦ ⊂ finΦ ⊂ regΦ = RGΦ ⊂ ELGΦ ⊂ LGΦ ⊂ CFGΦ ⊂ CSGΦ.

Proof. singΦ ⊂ finΦ is clear from the definitions of the corresponding languages. finΦ ⊂
regΦ ⊂ ELGΦ ⊂ LGΦ ⊂ CFGΦ ⊂ CSGΦ follows from the Chomsky Hierarchy (see [8, 9]).
regΦ = RGΦ is obvious (see, for instance, Section 7.2 in [29]). regΦ ⊂ ELGΦ is established
in [1], and ELGΦ ⊂ LGΦ can be proven using the pumping lemma for even linear languages
(see [26]). In fact, 𝐿(𝐺) from Example 2.22 is a linear language that cannot be generated
by any ELG; that is, 𝐿(𝐺) ∈ LGΦ ∖ ELGΦ.

7



2.3 Finite Automata
Finite automata are language-recognizing devices that represent one of the fundamental
models for regular languages. In this section, we formally introduce (one-way) finite au-
tomata, including some of their variants (namely, general, simple, and 𝜀-free versions), and
give some of their basic properties.

Conceptually, a (one-way) finite automaton consists of a finite set of states, an input
tape, a read head, and a finite state control. The input tape is divided into squares, each of
which contains one symbol. On the tape, in a left-to-right manner, the automaton operates
by performing a sequence of moves directed by its finite state control. During each of these
moves, the automaton changes its current state, reads the current input symbol under its
read head, and shifts the read head precisely one square to the right on the input tape.
Note that there are also types of finite automata that, during their moves, do not have
to read any symbols or can read multiple consecutive symbols at once and shift their read
heads accordingly. Notice that since the automaton always shifts its read head to the right,
no occurrence of any symbol can be re-read during the rest of the move sequence. The
automaton has one state defined as the start state and some states designated as final
states. With an input string on the input tape, the automaton starts each computation
from the start state with the leftmost symbol of the string under the read head. If it can
read the entire input string by a sequence of moves sketched above and, in addition, enter
a final state, then the input string is accepted.

A general schema of a finite automaton is shown in Figure 2.2.

Finite state
control . . . 𝑎 𝑏 . . .

Input tape

−→

Figure 2.2: General schema of a (one-way) finite automaton.

Definition 2.25. A general finite automaton (GFA for short) is a quintuple

𝑀 = (𝑄,Σ, 𝑅, 𝑠, 𝐹 ),

where

• 𝑄 is a finite, nonempty set of states;

• Σ is an input alphabet such that 𝑄 ∩ Σ = ∅;

• 𝑅 ∈ 𝑄Σ* ×𝑄 is a finite relation called the set of rules;

• 𝑠 ∈ 𝑄 is the start state;

• 𝐹 ⊆ 𝑄 is the set of final states.

Convention 2.26. In what follows, instead of (𝛼, 𝑞) ∈ 𝑅, we write 𝛼→ 𝑞 ∈ 𝑅.

Definition 2.27. Let 𝑀 = (𝑄,Σ, 𝑅, 𝑠, 𝐹 ) be a GFA. Over 𝑄Σ*, we define the binary
move relation, symbolically denoted by ⇒, as follows: for all 𝛼 → 𝑞 ∈ 𝑅 and 𝑢 ∈ Σ*,
𝛼𝑢 ⇒ 𝑞𝑢 in 𝑀 . That is, 𝑀 makes a move (or a computational step) from 𝛼𝑢 to 𝑞𝑢
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according to a rule of the form 𝛼→ 𝑞. As usual, ⇒𝑛, for some 𝑛 ≥ 0, ⇒+, and ⇒* denote
the 𝑛th power of ⇒, the transitive closure of ⇒, and the reflexive-transitive closure of ⇒,
respectively. If 𝛽 ⇒* 𝛾 in 𝑀 , where 𝛽, 𝛾 ∈ 𝑄Σ*, we say that 𝑀 makes a computation from
𝛽 to 𝛾. The language accepted by 𝑀 , denoted by 𝐿(𝑀), is the set of strings defined as
𝐿(𝑀) = {𝑤 ∈ Σ* | 𝑠𝑤 ⇒* 𝑓, 𝑓 ∈ 𝐹}. Let 𝑤 ∈ Σ*. We say that 𝑀 accepts 𝑤 if and only if
𝑤 ∈ 𝐿(𝑀); otherwise, 𝑀 rejects 𝑤.

Less formally, by applying a rule of the form 𝑝𝑥 → 𝑞, where 𝑝, 𝑞 ∈ 𝑄 and 𝑥 ∈ Σ*, 𝑀
reads 𝑥 from its input tape and changes its current state from 𝑝 to 𝑞. In this fashion, then,
𝑀 reads each input string 𝑤 ∈ Σ* sequentially from left to right and accepts it if, starting
from 𝑠 with the leftmost symbol of 𝑤 being the current input symbol, it ends up in a final
state after reading all the symbols of 𝑤.

Definition 2.28. Let 𝑀 = (𝑄,Σ, 𝑅, 𝑠, 𝐹 ) be a GFA. 𝑀 is 𝜀-free if and only if for all
𝑝, 𝑞 ∈ 𝑄 and 𝑥 ∈ Σ*, 𝑝𝑥 → 𝑞 ∈ 𝑅 implies that |𝑥| ≥ 1. 𝑀 is said to be a simple finite
automaton (SFA for short) if and only if for all 𝑝, 𝑞 ∈ 𝑄 and 𝑥 ∈ Σ*, 𝑝𝑥 → 𝑞 ∈ 𝑅 implies
that |𝑥| ≤ 1.

Figure 2.3 illustrates a GFA move.

𝑎 . . . 𝑏 . . .

𝑝

𝑝𝑥→ 𝑞
======⇒ 𝑎 . . . 𝑏 . . .

𝑞

𝑥 𝑢 𝑥 𝑢

Figure 2.3: A GFA move, where 𝑝 and 𝑞 are states, 𝑥 and 𝑢 are strings, 𝑝𝑥 → 𝑞 is a rule,
and 𝑎 and 𝑏 are symbols.

Next, we demonstrate the previously defined automata by two examples.

Example 2.29. Consider the 𝜀-free SFA

𝑀 = ({𝑠, 𝑞, 𝑓}, {𝑎, 𝑏}, 𝑅, 𝑠, {𝑓})

with the following five rules in 𝑅 (see Figure 2.4):

𝑠𝑎→ 𝑠, 𝑞𝑎→ 𝑞, 𝑓𝑎→ 𝑓

𝑠𝑏→ 𝑞, 𝑞𝑏→ 𝑓.

Starting from 𝑠, 𝑀 reads an arbitrary number of 𝑎s and then moves from 𝑠 to 𝑞, reading 𝑏.
In 𝑞, like in 𝑠, 𝑀 reads any number of 𝑎s and then moves from 𝑞 to 𝑓 , reading another
𝑏. Finally, in 𝑓 , 𝑀 reads an arbitrary number of 𝑎s once again. As a result, the language
accepted by 𝑀 is 𝐿(𝑀) = {𝑎}*{𝑏}{𝑎}*{𝑏}{𝑎}*.

𝑠 𝑞 𝑓

𝑎

𝑏

𝑎

𝑏

𝑎

Figure 2.4: State diagram of the 𝜀-free SFA 𝑀 from Example 2.29.
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For example, the string 𝑎𝑏𝑎𝑎𝑏𝑎𝑎𝑎 is accepted by 𝑀 as follows:

𝑠𝑎𝑏𝑎𝑎𝑏𝑎𝑎𝑎⇒ 𝑠𝑏𝑎𝑎𝑏𝑎𝑎𝑎⇒ 𝑞𝑎𝑎𝑏𝑎𝑎𝑎⇒ 𝑞𝑎𝑏𝑎𝑎𝑎⇒ 𝑞𝑏𝑎𝑎𝑎⇒ 𝑓𝑎𝑎𝑎⇒ 𝑓𝑎𝑎⇒ 𝑓𝑎⇒ 𝑓.

Example 2.30. Consider the 𝜀-free SFA

𝑀 = ({𝑠, 𝑞1, 𝑞2, 𝑞3, 𝑞4, 𝑞5, 𝑞6, 𝑞7}, {𝑎, 𝑏}, 𝑅, 𝑠, {𝑠})

with 𝑅 containing the following rules (see Figure 2.5):

𝑠𝑎→ 𝑞1, 𝑞1𝑎→ 𝑞2, 𝑞2𝑎→ 𝑞3, 𝑞3𝑎→ 𝑠, 𝑞4𝑎→ 𝑞5, 𝑞5𝑎→ 𝑞6, 𝑞6𝑎→ 𝑞7, 𝑞7𝑎→ 𝑞4

𝑠𝑏→ 𝑞4, 𝑞1𝑏→ 𝑞5, 𝑞2𝑏→ 𝑞6, 𝑞3𝑏→ 𝑞7, 𝑞4𝑏→ 𝑠, 𝑞5𝑏→ 𝑞1, 𝑞6𝑏→ 𝑞2, 𝑞7𝑏→ 𝑞3.

Observe that 𝑀 accepts the language 𝐿(𝑀) = {𝑤 ∈ Σ* | occur(𝑤, 𝑎) = 4𝑚, occur(𝑤, 𝑏) =
2𝑛,𝑚, 𝑛 ∈ N0}. That is, 𝑀 accepts only strings over {𝑎, 𝑏} in which the number of 𝑎s is
a multiple of four and, simultaneously, the number of 𝑏s is even. During a computation,
each state of 𝑀 corresponds to a unique combination of remainders when the number of 𝑎s
read so far is divided by four and the number of 𝑏s read so far is divided by two. Specifically,
the states 𝑠, 𝑞1, 𝑞2, and 𝑞3 correspond to the remainders 0, 1, 2, and 3 of the number of
𝑎s, respectively, when the number of 𝑏s is even, and similarly, the states 𝑞4, 𝑞5, 𝑞6, and 𝑞7
correspond to the same remainders of the number of 𝑎s when the number of 𝑏s is odd.

𝑠 𝑞1 𝑞2 𝑞3

𝑞4 𝑞5 𝑞6 𝑞7

𝑎

𝑏

𝑎

𝑏

𝑎

𝑏

𝑎

𝑏

𝑎

𝑏

𝑎

𝑏

𝑎

𝑏

𝑎

𝑏

Figure 2.5: State diagram of the 𝜀-free SFA 𝑀 from Example 2.30.

For instance, 𝑀 accepts the string 𝑏𝑏𝑎𝑏𝑎𝑎𝑏𝑎 in the following way:

𝑠𝑏𝑏𝑎𝑏𝑎𝑎𝑏𝑎⇒ 𝑞4𝑏𝑎𝑏𝑎𝑎𝑏𝑎⇒ 𝑠𝑎𝑏𝑎𝑎𝑏𝑎⇒ 𝑞1𝑏𝑎𝑎𝑏𝑎⇒ 𝑞5𝑎𝑎𝑏𝑎⇒ 𝑞6𝑎𝑏𝑎⇒ 𝑞7𝑏𝑎⇒ 𝑞3𝑎⇒ 𝑠.

Convention 2.31. Let 𝜀
GFAΦ, GFAΦ, 𝜀

SFAΦ, and SFAΦ denote the families of languages
accepted by GFAs, 𝜀-free GFAs, SFAs, and 𝜀-free SFAs, respectively.

Theorem 2.32 (see [44]). For every GFA 𝑀 , there is an 𝜀-free SFA 𝑀 ′ such that 𝐿(𝑀 ′) =
𝐿(𝑀). That is, 𝜀

GFAΦ = GFAΦ = 𝜀
SFAΦ = SFAΦ.

Theorem 2.33 (see [44]). A language 𝐾 is regular if and only if there is an 𝜀-free SFA
𝑀 such that 𝐿(𝑀) = 𝐾. Therefore, regΦ = SFAΦ.

Theorems 2.32 and 2.33 clearly show that finite automata characterize precisely the
family of regular languages.
Corollary 2.34. regΦ = 𝜀

GFAΦ = GFAΦ = 𝜀
SFAΦ = SFAΦ.
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Chapter 3

Two-Way Finite Automata

The present chapter introduces two-way finite automata, a model based on classical finite
automata (see Section 2.3) that extends their behavior by allowing the read head to move
both to the left and right on the input tape during the computational process. It formally
defines these automata, provides illustrative examples, and presents their accepting power.
The information in this chapter is based on [39, 43], with examples inspired by [24, 36].

As mentioned above, a two-way finite automaton works just like a standard (one-way)
finite automaton, except that it does not have to operate on its input tape strictly in a left-
to-right manner; instead, during each computational step, it can move its read head either
to the left or right. This ability to move the read head in both directions allows it to
re-read any occurrence of any symbol on the tape arbitrarily many times. Consequently,
the automaton can traverse input strings (or their parts) repeatedly, checking their various
properties separately. Like its one-way counterpart, the automaton starts each computation
from its start state with its read head placed over the leftmost symbol of an input string
on its input tape. If it can make a sequence of moves such that it shifts the head off the
right end of the tape and, in addition, enters a final state, the input string is accepted.

Figure 3.1 shows a general schema of a two-way finite automaton.

Finite state
control . . . 𝑎 𝑏 𝑐 . . .

Input tape

←− −→

Figure 3.1: General schema of a two-way finite automaton.

Definition 3.1. A two-way finite automaton (2FA for short) is a quintuple

𝑀 = (𝑄,Σ, 𝑅, 𝑠, 𝐹 ),

where

• 𝑄 is a finite, nonempty set of states;

• Σ is an input alphabet such that 𝑄 ∩ Σ = ∅;

• 𝑅 ⊆ 𝑄Σ × 𝑄{↰, ↱} is a finite relation called the set of rules, where ↰ and ↱ are two
special symbols such that {↰, ↱} ∩ (𝑄 ∪ Σ) = ∅;
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• 𝑠 ∈ 𝑄 is the start state;

• 𝐹 ⊆ 𝑄 is the set of final states.

Convention 3.2. In what follows, instead of (𝛼, 𝛽) ∈ 𝑅, we write 𝛼→ 𝛽 ∈ 𝑅.

Definition 3.3. Let 𝑀 = (𝑄,Σ, 𝑅, 𝑠, 𝐹 ) be a 2FA. Over Σ*𝑄Σ*, we define the binary move
relation, symbolically denoted by ⇒, as follows: (i) for all 𝑝𝑎 → 𝑞↱ ∈ 𝑅, where 𝑝, 𝑞 ∈ 𝑄
and 𝑎 ∈ Σ, and 𝑢, 𝑣 ∈ Σ*, 𝑢𝑝𝑎𝑣 ⇒ 𝑢𝑎𝑞𝑣 in 𝑀 , and (ii) for all 𝑝𝑎→ 𝑞↰ ∈ 𝑅, where 𝑝, 𝑞 ∈ 𝑄
and 𝑎 ∈ Σ, 𝑢, 𝑣 ∈ Σ*, and 𝑏 ∈ Σ, 𝑢𝑏𝑝𝑎𝑣 ⇒ 𝑢𝑞𝑏𝑎𝑣 in 𝑀 . That is, (i) 𝑀 makes a right move
from 𝑢𝑝𝑎𝑣 to 𝑢𝑎𝑞𝑣 according to a rule of the form 𝑝𝑎 → 𝑞↱, and similarly, (ii) 𝑀 makes
a left move from 𝑢𝑏𝑝𝑎𝑣 to 𝑢𝑞𝑏𝑎𝑣 according to a rule of the form 𝑝𝑎 → 𝑞↰. As usual, ⇒𝑛,
for some 𝑛 ≥ 0, ⇒+, and ⇒* denote the 𝑛th power of ⇒, the transitive closure of ⇒, and
the reflexive-transitive closure of ⇒, respectively. If 𝛼 ⇒* 𝛽 in 𝑀 , where 𝛼, 𝛽 ∈ Σ*𝑄Σ*,
we say that 𝑀 makes a computation from 𝛼 to 𝛽. The language accepted by 𝑀 , denoted by
𝐿(𝑀), is the set of strings defined as 𝐿(𝑀) = {𝑤 ∈ Σ* | 𝑠𝑤 ⇒* 𝑤𝑓, 𝑓 ∈ 𝐹}. Let 𝑤 ∈ Σ*.
We say that 𝑀 accepts 𝑤 if and only if 𝑤 ∈ 𝐿(𝑀); otherwise, 𝑀 rejects 𝑤.

Figure 3.2 schematize 2FA moves.

. . . 𝑏 𝑎 𝑐 . . .

𝑝

𝑝𝑎
→ 𝑞↰

⇐==
==
===

𝑝𝑎→
𝑞↱

=======⇒

. . . 𝑏 𝑎 𝑐 . . .

𝑞

. . . 𝑏 𝑎 𝑐 . . .

𝑞

𝑢 𝑣

𝑢 𝑣 𝑢 𝑣

Figure 3.2: A left 2FA move and a right 2FA move, where 𝑝 and 𝑞 are states, 𝑢 and 𝑣 are
strings, 𝑝𝑎⇒ 𝑞↰ and 𝑝𝑎⇒ 𝑞↱ are rules, and 𝑎, 𝑏, and 𝑐 are symbols.

Next, we present two examples to illustrate the behavior of these automata.

Example 3.4. Consider the 2FA

𝑀 = ({𝑠, 𝑞1, 𝑞2, 𝑞3, 𝑞4, 𝑞5, 𝑞6, 𝑓}, {𝑎, 𝑏,⊢,⊣}, 𝑅, 𝑠, {𝑓})

with the following rules in 𝑅 (see Figure 3.3):

𝑠⊢ → 𝑞1↱, 𝑞1⊣ → 𝑞2↰, 𝑞3𝑎→ 𝑞4↰, 𝑞5𝑎→ 𝑞6↱, 𝑞6𝑏→ 𝑞6↱

𝑞1𝑎→ 𝑞1↱, 𝑞2𝑎→ 𝑞3↰, 𝑞3𝑏→ 𝑞4↰, 𝑞6𝑎→ 𝑞6↱, 𝑞6⊣ → 𝑓↱,

𝑞1𝑏→ 𝑞1↱, 𝑞2𝑏→ 𝑞3↰, 𝑞4𝑏→ 𝑞5↰.

With a string on its input tape, 𝑀 first scans the string from left to right and checks
that it starts with ⊢ (the left end marker of the tape), ends with ⊣ (the right end marker
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of the tape), and contains only 𝑎s and 𝑏s in between these two symbols. Next, starting
with ⊣ under its read head, 𝑀 performs a sequence of left moves to shift the read head
three positions back on the tape and then checks that the string contains the sequence 𝑎𝑏
precisely two symbols before ⊣. After this, 𝑀 finally shifts its read head off ⊣, entering the
final state 𝑓 . Clearly, the language accepted by 𝑀 is 𝐿(𝑀) = {⊢}{𝑎, 𝑏}*{𝑎𝑏}{𝑎, 𝑏}2{⊣}.

𝑠 𝑞1 𝑞2 𝑞3

𝑞4𝑞5𝑞6𝑓

⊢, ↱

𝑎, ↱

𝑏, ↱
⊣, ↰

𝑎, ↰

𝑏, ↰

𝑎, ↰

𝑏, ↰

𝑏, ↰𝑎, ↱

𝑎, ↱

𝑏, ↱

⊣, ↱

Figure 3.3: State diagram of the 2FA 𝑀 from example 3.4.

𝑀 accepts, for instance, the string ⊢𝑎𝑎𝑏𝑎𝑏⊣ as follows:

𝑠⊢𝑎𝑎𝑏𝑎𝑏⊣ ⇒ ⊢𝑞1𝑎𝑎𝑏𝑎𝑏⊣ ⇒ ⊢𝑎𝑞1𝑎𝑏𝑎𝑏⊣ ⇒ ⊢𝑎𝑎𝑞1𝑏𝑎𝑏⊣ ⇒ ⊢𝑎𝑎𝑏𝑞1𝑎𝑏⊣ ⇒ ⊢𝑎𝑎𝑏𝑎𝑞1𝑏⊣
⇒ ⊢𝑎𝑎𝑏𝑎𝑏𝑞1⊣ ⇒ ⊢𝑎𝑎𝑏𝑎𝑞2𝑏⊣ ⇒ ⊢𝑎𝑎𝑏𝑞3𝑎𝑏⊣ ⇒ ⊢𝑎𝑎𝑞4𝑏𝑎𝑏⊣ ⇒ ⊢𝑎𝑞5𝑎𝑏𝑎𝑏⊣
⇒ ⊢𝑎𝑎𝑞6𝑏𝑎𝑏⊣ ⇒ ⊢𝑎𝑎𝑏𝑞6𝑎𝑏⊣ ⇒ ⊢𝑎𝑎𝑏𝑎𝑞6𝑏⊣ ⇒ ⊢𝑎𝑎𝑏𝑎𝑏𝑞6⊣ ⇒ ⊢𝑎𝑎𝑏𝑎𝑏⊣𝑓.

Example 3.5. Consider the 2FA

𝑀 = ({𝑠, 𝑞1, 𝑞2, 𝑞3, 𝑞4, 𝑞5, 𝑞6, 𝑞7, 𝑓}, {𝑎, 𝑏,⊢,⊣}, 𝑅, 𝑠, {𝑓})

with 𝑅 containing the following rules (see Figure 3.4):

𝑠⊢ → 𝑞1↱, 𝑞2𝑏→ 𝑞2↱, 𝑞3𝑎→ 𝑞4↱, 𝑞1⊣ → 𝑞5↰, 𝑞6𝑎→ 𝑞6↰, 𝑞7𝑎→ 𝑞7↱,

𝑞1𝑏→ 𝑞1↱, 𝑞2𝑎→ 𝑞3↱, 𝑞4𝑏→ 𝑞4↱, 𝑞5𝑎→ 𝑞5↰, 𝑞6𝑏→ 𝑞5↰, 𝑞7𝑏→ 𝑞7↱,

𝑞1𝑎→ 𝑞2↱, 𝑞3𝑏→ 𝑞3↱, 𝑞4𝑎→ 𝑞1↱, 𝑞5𝑏→ 𝑞6↰, 𝑞5⊢ → 𝑞7↱, 𝑞7⊣ → 𝑓↱.

𝑀 starts every computation by traversing its input tape from left to right, checking that it
contains a string consisting only of 𝑎s and 𝑏s and delimited by ⊢ on the left and ⊣ on the
right, and that the number of 𝑎s in the string is a multiple of four. After this, 𝑀 continues
by scanning the string from right to left to ensure that it also contains an even number of 𝑏s.
Finally, by a sequence of right moves, 𝑀 traverses the tape once again, shifts its read head
off ⊣, and enters 𝑓 . Hence, 𝑀 accepts the language 𝐿(𝑀) = {⊢}{𝑤 ∈ Σ* | occur(𝑤, 𝑎) =
4𝑚, occur(𝑤, 𝑏) = 2𝑛,𝑚, 𝑛 ∈ N0}{⊣}.

Consider the string ⊢𝑎𝑏𝑎𝑎𝑏𝑎⊣. 𝑀 accepts this string by the following sequence of moves:

𝑠⊢𝑎𝑏𝑎𝑎𝑏𝑎⊣ ⇒ ⊢𝑞1𝑎𝑏𝑎𝑎𝑏𝑎⊣ ⇒ ⊢𝑎𝑞2𝑏𝑎𝑎𝑏𝑎⊣ ⇒ ⊢𝑎𝑏𝑞2𝑎𝑎𝑏𝑎⊣ ⇒ ⊢𝑎𝑏𝑎𝑞3𝑎𝑏𝑎⊣ ⇒ ⊢𝑎𝑏𝑎𝑎𝑞4𝑏𝑎⊣
⇒ ⊢𝑎𝑏𝑎𝑎𝑏𝑞4𝑎⊣ ⇒ ⊢𝑎𝑏𝑎𝑎𝑏𝑎𝑞1⊣ ⇒ ⊢𝑎𝑏𝑎𝑎𝑏𝑞5𝑎⊣ ⇒ ⊢𝑎𝑏𝑎𝑎𝑞5𝑏𝑎⊣ ⇒ ⊢𝑎𝑏𝑎𝑞6𝑎𝑏𝑎⊣
⇒ ⊢𝑎𝑏𝑞6𝑎𝑎𝑏𝑎⊣ ⇒ ⊢𝑎𝑞6𝑏𝑎𝑎𝑏𝑎⊣ ⇒ ⊢𝑞5𝑎𝑏𝑎𝑎𝑏𝑎⊣ ⇒ 𝑞5⊢𝑎𝑏𝑎𝑎𝑏𝑎⊣ ⇒ ⊢𝑞7𝑎𝑏𝑎𝑎𝑏𝑎⊣
⇒ ⊢𝑎𝑞7𝑏𝑎𝑎𝑏𝑎⊣ ⇒ ⊢𝑎𝑏𝑞7𝑎𝑎𝑏𝑎⊣ ⇒ ⊢𝑎𝑏𝑎𝑞7𝑎𝑏𝑎⊣ ⇒ ⊢𝑎𝑏𝑎𝑎𝑞7𝑏𝑎⊣ ⇒ ⊢𝑎𝑏𝑎𝑎𝑏𝑞7𝑎⊣
⇒ ⊢𝑎𝑏𝑎𝑎𝑏𝑎𝑞7⊣ ⇒ ⊢𝑎𝑏𝑎𝑎𝑏𝑎⊣𝑓.
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𝑠 𝑞1 𝑞2 𝑞3 𝑞4

𝑞5𝑞6 𝑞7 𝑓

⊢, ↱

𝑏, ↱

𝑎, ↱

⊣, ↰

𝑏, ↱

𝑎, ↱

𝑏, ↱

𝑎, ↱

𝑏, ↱

𝑎, ↱

𝑎, ↰

𝑏, ↰

⊢, ↱
𝑏, ↰

𝑎, ↰
⊣, ↱

𝑎, ↱

𝑏, ↱

Figure 3.4: State diagram of the 2FA 𝑀 from example 3.5.

Notice that the language accepted by the 2FA from Example 3.5 is the same, except for
the delimitation of its strings by ⊢ and ⊣, as that accepted by the SFA from Example 2.30.
In fact, although 2FAs can be modeled to work in the same way as one-way finite automata,
Example 3.5 demonstrates how they can address the same problems differently.

Convention 3.6. Let 2FAΦ denote the family of languages accepted by 2FAs. That is, set
2FAΦ = {𝐿(𝑀) |𝑀 is a 2FA}.

As the following theorem states, 2FAs, like classical (one-way) finite automata (see
Section 2.3), accept precisely the family of regular languages.
Theorem 3.7 (see Theorem 1 in [43] or Theorem 15 in [39]).

regΦ = SFAΦ = 2FAΦ.
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Chapter 4

Input-Erasing Two-Way Finite
Automata

In this chapter, we introduce input-erasing two-way finite automata, a model based on two-
way finite automata (see Chapter 3) that, just like classical (one-way) finite automata (see
Section 2.3), does not re-read any symbols on the input tape. Specifically, we formally define
the general and simple versions of these automata, including their 𝜀-free alternatives. Just
as with classical finite automata, during every move, the former can read a string, which
may consist of several symbols, while the latter always reads no more than one input symbol.
The 𝜀-free versions behave the same as their originals, except they cannot perform moves
without reading any input symbols.

As already mentioned, an input-erasing two-way finite automaton works, in essence,
like a two-way finite automaton, except that it erases the input symbols. Indeed, once an
occurrence of an input symbol is read on the input tape, it is erased from it (mathemat-
ically speaking, this occurrence of the input symbol is changed to the empty string), so
the automaton can never re-read it again later during its computation. The automaton
starts working on an input string on its input tape from the start state with its read head
positioned anywhere within the string. If it can read (and therefore erase) the entire string
by a sequence of left, right, or stationary moves and, in addition, enter a final state, it
accepts the input string.

A general schema of an input-erasing two-way finite automaton is given in Figure 4.1.

Finite state
control. . . 𝑎 𝑏 . . .

Input tape

←− −→

Figure 4.1: General schema of an input-erasing two-way finite automaton.

Definition 4.1. An input-erasing two-way general finite automaton (IE2GFA for short) is
a quintuple

𝑀 = (𝑄,Σ, 𝑅, 𝑠, 𝐹 ),

where

• 𝑄 is a finite, nonempty set of states;
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• Σ is an input alphabet such that 𝑄 ∩ Σ = ∅;

• 𝑅 ⊆ (𝑄Σ* ∪ Σ*𝑄)×𝑄 is a finite relation called the set of rules;

• 𝑠 ∈ 𝑄 is the start state;

• 𝐹 ⊆ 𝑄 is the set of final states.

Convention 4.2. In what follows, instead of (𝛼, 𝑞) ∈ 𝑅, we write 𝛼→ 𝑞 ∈ 𝑅.

Definition 4.3. Let 𝑀 = (𝑄,Σ, 𝑅, 𝑠, 𝐹 ) be an IE2GFA. Let 𝒞 = Σ*𝑄Σ* be the set of all
configurations of 𝑀 . Over 𝒞, we define the binary move relation, symbolically denoted by
⇒, as follows: for all 𝛼→ 𝑞 ∈ 𝑅 and 𝑢, 𝑣 ∈ Σ*, 𝑢𝛼𝑣 ⇒ 𝑣𝑞𝑢 in 𝑀 . In other words, 𝑀 makes
a move (or a computational step) from 𝑢𝛼𝑣 to 𝑢𝑞𝑣 according to a rule of the form 𝛼 → 𝑞.
As usual, ⇒𝑛, for some 𝑛 ≥ 0, ⇒+, and ⇒* denote the 𝑛th power of ⇒, the transitive
closure of ⇒, and the reflexive-transitive closure of ⇒, respectively. If 𝛽 ⇒* 𝛾 in 𝑀 , where
𝛽, 𝛾 ∈ 𝒞, we say that 𝑀 makes a computation from 𝛽 to 𝛾. The language accepted by 𝑀 ,
denoted by 𝐿(𝑀), is the set of strings defined as 𝐿(𝑀) = {𝑢𝑣 | 𝑢, 𝑣 ∈ Σ*, 𝑢𝑠𝑣 ⇒* 𝑓, 𝑓 ∈ 𝐹}.
Let 𝑤 ∈ Σ*. We say that 𝑀 accepts 𝑤 if and only if 𝑤 ∈ 𝐿(𝑀); otherwise, 𝑀 rejects 𝑤.

Convention 4.4. Let 𝑀 = (𝑄,Σ, 𝑅, 𝑠, 𝐹 ) be an IE2GFA, and let 𝑟 ∈ 𝑅 be a rule of the
form 𝛼→ 𝑞. Then, lhs(𝑟) and rhs(𝑟) denote 𝛼, called the left-hand side of 𝑟, and 𝑞, called
the right-hand side of 𝑟, respectively.

Definition 4.5. Let 𝑀 = (𝑄,Σ, 𝑅, 𝑠, 𝐹 ) be an IE2GFA, and let 𝑟 ∈ 𝑅. If lhs(𝑟) = 𝑥𝑞,
where 𝑞 ∈ 𝑄 and 𝑥 ∈ Σ*, then 𝑟 is left. Analogously, if lhs(𝑟) = 𝑞𝑥, where 𝑞 ∈ 𝑄 and
𝑥 ∈ Σ*, then 𝑟 is right. A move made by 𝑀 according to a left rule is a left move, and
a move made by 𝑀 according to a right rule is a right move. If |lhs(𝑟)| ≤ 2, then 𝑟 is
simple. If 𝑅 contains only simple rules, 𝑀 is said to be an input-erasing two-way simple
finite automaton (IE2SFA for short). If |lhs(𝑟)| = 1, then 𝑟 is an 𝜀-rule (therefore, every
𝜀-rule is simple). If 𝑅 contains no 𝜀-rules, 𝑀 is said to be 𝜀-free.

Figure 4.2, given below, visually illustrates IE2GFA moves.

. . . 𝑎 . . . 𝑏 𝑝 𝑐 . . . 𝑑 . . .

𝑥𝑝
→ 𝑞

⇐==
===

=
𝑝𝑦 →

𝑞
======⇒

. . . 𝑎 𝑞 𝑐 . . . 𝑑 . . . 𝑑 . . .𝑞. . . 𝑎 . . . 𝑏

𝑢 𝑥 𝑦 𝑣

𝑢 𝑦 𝑣 𝑢 𝑥 𝑣

Figure 4.2: A left IE2GFA move and a right IE2GFA move, where 𝑝 and 𝑞 are states, 𝑢, 𝑣,
𝑥, and 𝑦 are strings, 𝑥𝑝⇒ 𝑞 and 𝑝𝑦 ⇒ 𝑞 are rules, and 𝑎, 𝑏, 𝑐, and 𝑑 are symbols.

Convention 4.6. In what follows, without any loss of generality, we assume that for every
IE2GFA 𝑀 = (𝑄,Σ, 𝑅, 𝑠, 𝐹 ), (𝑄 ∪ Σ) ∩ {↰, ↱} = ∅, as we use ↰ and ↱ to represent move
directions (left and right) in state diagrams of IE2GFAs. Note that we do not specify any
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direction for any move that 𝑀 makes according to an 𝜀-rule, as it is a left move and a right
move at the same time.

Next, we show two examples demonstrating the behavior of the automata defined here.

Example 4.7. Consider the 𝜀-free IE2SFA

𝑀 = ({𝑠, 𝑞1, 𝑞2, 𝑞3, 𝑓}, {𝑎, 𝑏}, 𝑅, 𝑠, {𝑓}),

where 𝑅 consists of the following rules (see Figure 4.3):

𝑠𝑎→ 𝑞1, 𝑞2𝑎→ 𝑞3, 𝑞3𝑎→ 𝑓, 𝑎𝑓 → 𝑓,

𝑞1𝑏→ 𝑞2, 𝑞2𝑏→ 𝑞3, 𝑞3𝑏→ 𝑓, 𝑏𝑓 → 𝑓.

Starting from 𝑠, 𝑀 first makes two right moves, reading the string 𝑎𝑏 and entering the
state 𝑞2. From 𝑞2, 𝑀 makes two additional right moves, each of which reads 𝑎 or 𝑏,
and together, they bring 𝑀 to the state 𝑓 . Finally, 𝑀 completes its computation with
a series of left moves, ensuring that the portion of its input tape to the left of the initial
position of its read head contains only 𝑎s and 𝑏s. Therefore, the language accepted by 𝑀
is 𝐿 = {𝑎, 𝑏}*{𝑎𝑏}{𝑎, 𝑏}2.

𝑠 𝑞1 𝑞2 𝑞3 𝑓
↱, 𝑎 ↱, 𝑏

↱, 𝑎

↱, 𝑏

↱, 𝑎

↱, 𝑏

↰, 𝑎

↰, 𝑏

Figure 4.3: State diagram of the 𝜀-free IE2SFA 𝑀 from Example 4.7.

Consider the string 𝑏𝑏𝑎𝑎𝑏𝑎𝑎. 𝑀 accepts this string by the following computation:

𝑏𝑏𝑎𝑠𝑎𝑏𝑎𝑎⇒ 𝑏𝑏𝑎𝑞1𝑏𝑎𝑎⇒ 𝑏𝑏𝑎𝑞2𝑎𝑎⇒ 𝑏𝑏𝑎𝑞3𝑎⇒ 𝑏𝑏𝑎𝑓 ⇒ 𝑏𝑏𝑓 ⇒ 𝑏𝑓 ⇒ 𝑓.

Observe that the language accepted by the IE2SFA from Example 4.7 is the same as
that accepted by the 2FA from Example 3.4 (except for the delimitation of the strings by
⊢ and ⊣ in the latter language). In fact, Example 4.7 demonstrates how the ability to erase
symbols and start processing the input tape from an arbitrary position could be beneficial
for modeling languages with IE2GFAs.

Example 4.8. Consider the IE2SFA

𝑀 = ({𝑠, 𝑞1, 𝑞2, 𝑓1, 𝑓2}, {𝑎, 𝑏, 𝑐}, 𝑅, 𝑠, {𝑓1, 𝑓2})

with 𝑅 containing the following rules (see Figure 4.4):

𝑠𝑏→ 𝑞1, 𝑠→ 𝑓1, 𝑠𝑐→ 𝑞2, 𝑓2𝑐→ 𝑞2,

𝑎𝑞1 → 𝑠, 𝑓1𝑐→ 𝑓1, 𝑎𝑞2 → 𝑓2.

𝑀 starts by repeatedly making two consecutive moves—a right move from 𝑠 to 𝑞1 that
reads 𝑏, and a left move from 𝑞1 back to 𝑠 that reads 𝑎. This process allows 𝑀 to read
any string of the form 𝑎𝑖𝑏𝑖, where 𝑖 ≥ 0. After this initial phase, 𝑀 either changes its
current state from 𝑠 to 𝑓1 without reading any input symbol or makes a right move from 𝑠
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to 𝑞2, reading 𝑐. In 𝑓1, 𝑀 performs a sequence of right moves, reading an arbitrary number
of 𝑐s. From 𝑞2, 𝑀 makes a left move, reading 𝑎 and entering 𝑓2. Then, 𝑀 continues
by repeatedly making two consecutive moves—a right move from 𝑓2 to 𝑞2 that reads 𝑐,
and a left move from 𝑞2 back to 𝑓2 that reads 𝑎. In this way, 𝑀 ensures that for every
read occurrence of 𝑐, an occurrence of 𝑎 is also read. As a result, 𝑀 accepts the language
𝐿 = {𝑎𝑛𝑏𝑛𝑐𝑚, 𝑎𝑚+𝑛𝑏𝑛𝑐𝑚 | 𝑚,𝑛 ≥ 0}.

𝑠𝑞1 𝑞2 𝑓2

𝑓1

↱, 𝑏
↱, 𝑐

𝜀
↰, 𝑎

↰, 𝑎

↱, 𝑐

↱, 𝑐

Figure 4.4: State diagram of the IE2SFA 𝑀 from Example 4.8.

Let 𝑎𝑎𝑎𝑎𝑏𝑏𝑐𝑐 be an input string. Using 𝑀 , it can be accepted as follows:

𝑎𝑎𝑎𝑎𝑠𝑏𝑏𝑐𝑐⇒ 𝑎𝑎𝑎𝑎𝑞1𝑏𝑐𝑐⇒ 𝑎𝑎𝑎𝑠𝑏𝑐𝑐⇒ 𝑎𝑎𝑎𝑞1𝑐𝑐⇒ 𝑎𝑎𝑠𝑐𝑐⇒ 𝑎𝑎𝑞2𝑐⇒ 𝑎𝑓2𝑐⇒ 𝑎𝑞2 ⇒ 𝑓2.

Notice that the language 𝐿(𝑀) from Example 4.8 is not regular. Specifically, it is a non-
regular linear language (𝐿(𝑀) = LGΦ ∖ regΦ). This clearly indicates that IE2GFAs have
different accepting power than both GFAs and 2FAs.

Convention 4.9. Let 𝜀
IE2GFAΦ, IE2GFAΦ, 𝜀

IE2SFAΦ, and IE2SFAΦ denote the families of lan-
guages accepted by IE2GFAs, 𝜀-free IE2GFAs, IE2SFAs, and 𝜀-free IE2SFAs, respectively.
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Chapter 5

Accepting Power

The present chapter demonstrates that IE2GFAs and LGs are equally powerful because
they both define the linear language family. Thus, IE2GFAs are stronger than GFAs,
which characterize the regular language family, a proper subset of the linear language
family. Furthermore, this chapter shows that IE2GFAs and IE2SFAs, along with their
𝜀-free alternatives, possess the same accepting power.

5.1 Equivalence with Linear Grammars
We begin by demonstrating that IE2GFAs and LGs are mutually convertible and thus have
the same expressive power.
Lemma 5.1. For every IE2GFA 𝑀 , there is an LG 𝐺 such that 𝐿(𝐺) = 𝐿(𝑀).

Proof. Let 𝑀 = (𝑄,Σ, 𝑅, 𝑠, 𝐹 ) be an IE2GFA 𝑀 . From 𝑀 , we next construct an LG 𝐺 =
(𝑁,𝑇, 𝑃, 𝑆) such that 𝐿(𝐺) = 𝐿(𝑀). Introduce a new symbol 𝑆—the start nonterminal
symbol of 𝐺. Without any loss of generality, assume that 𝑆 /∈ 𝑄. Set 𝑁 = 𝑄 ∪ {𝑆} and
𝑇 = Σ. Initially, set 𝑃 = {𝑠→ 𝜀}. Next, extend 𝑃 in the following manner:

(1) for each 𝑓 ∈ 𝐹 , add 𝑆 → 𝑓 to 𝑃 ;

(2) for each 𝑥𝑞 → 𝑝 ∈ 𝑅, where 𝑝, 𝑞 ∈ 𝑄 and 𝑥 ∈ Σ*, add 𝑝→ 𝑥𝑞 to 𝑃 ;

(3) for each 𝑞𝑥→ 𝑝 ∈ 𝑅, where 𝑝, 𝑞 ∈ 𝑄 and 𝑥 ∈ Σ*, add 𝑝→ 𝑞𝑥 to 𝑃 ;

Basic Idea. 𝐺 simulates any computation of 𝑀 in reverse. It starts from the generation of
a final state (see step (1)). After this initial derivation step, 𝐺 simulates every left move
made by 𝑀 according to a rule of the form 𝑥𝑞 → 𝑝, where 𝑝, 𝑞 ∈ 𝑄 and 𝑥 ∈ Σ*, by using
a rule of the form 𝑝 → 𝑥𝑞 (see step (2)). The right moves are simulated analogously (see
step (3)). This simulation process is completed by using 𝑠→ 𝜀, thus erasing the start state
𝑠 in order to get a string of terminal symbols in 𝐺.

In order to demonstrate 𝐿(𝐺) = 𝐿(𝑀) rigorously, we first establish the following claim.

Claim 5.1.A. For all 𝑢, 𝑣 ∈ Σ* and 𝑝, 𝑞 ∈ 𝑄,

𝑞 ⇒* 𝑢𝑝𝑣 in 𝐺 iff 𝑢𝑝𝑣 ⇒* 𝑞 in 𝑀.

Proof of Claim 5.1.A. First, we establish the only-if part of this equivalence. That is, by in-
duction on the number of derivation steps 𝑖 ≥ 0, we show that 𝑞 ⇒𝑖 𝑢𝑝𝑣 in 𝐺 implies 𝑢𝑝𝑣 ⇒*

𝑞 in 𝑀 .
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Basis. Let 𝑖 = 0, so 𝑞 ⇒0 𝑢𝑝𝑣 in 𝐺. Then, 𝑞 = 𝑝 and 𝑢𝑣 = 𝜀. Since 𝑞 ⇒0 𝑞 in 𝑀 , the basis
holds true.
Induction Hypothesis. Assume that the implication holds for all derivations consisting of
no more than 𝑗 steps, for some 𝑗 ∈ N0.
Induction Step. Consider any derivation of the form 𝑞 ⇒𝑗+1 𝑢𝑝𝑣 in 𝐺. Let this derivation
start with the application of a rule of the form

𝑞 → 𝑥𝑜

from 𝑃 , where 𝑜 ∈ 𝑄 and 𝑥 ∈ Σ*. Recall that 𝑄 = 𝑁 ∖ {𝑆}, and observe that 𝑆 cannot
occur on the right-hand side of any rule. Thus, we can express 𝑞 ⇒𝑗+1 𝑢𝑝𝑣 as

𝑞 ⇒ 𝑥𝑜⇒𝑗 𝑥𝑢′𝑝𝑣

in 𝐺, where 𝑥𝑢′ = 𝑢. Then, by the induction hypothesis, 𝑢′𝑝𝑣 ⇒* 𝑜 in 𝑀 . As described
above, step (2) constructs 𝑞 → 𝑥𝑜 ∈ 𝑃 from 𝑥𝑜→ 𝑞 ∈ 𝑅, so

𝑥𝑢′𝑝𝑣 ⇒* 𝑥𝑜⇒ 𝑞

in 𝑀 . Because 𝑥𝑢′ = 𝑢, 𝑢𝑝𝑣 ⇒* 𝑞 in 𝑀 .
In the case that the derivation 𝑞 ⇒𝑗+1 𝑢𝑝𝑣 in 𝐺 starts with the application of a rule of

the form 𝑞 → 𝑜𝑥 from 𝑃 , where 𝑜 ∈ 𝑄 and 𝑥 ∈ Σ*, proceed by analogy.
Thus, the induction step is completed.
Next, we establish the if part of the equivalence stated in Claim 5.1.A, so we prove that

𝑢𝑝𝑣 ⇒𝑖 𝑞 in 𝑀 implies 𝑞 ⇒* 𝑢𝑝𝑣 in 𝐺 by induction on the number of moves 𝑖 ≥ 0.
Basis. For 𝑖 = 0, 𝑢𝑝𝑣 ⇒0 𝑞 occurs in 𝑀 only for 𝑝 = 𝑞 and 𝑢𝑣 = 𝜀. Clearly, 𝑞 ⇒0 𝑞 in 𝐺.
Therefore, the basis holds true.
Induction Hypothesis. Assume that the implication holds for all computations consisting of
no more than 𝑗 moves, for some 𝑗 ∈ N0.
Induction Step. Let 𝑢𝑝𝑣 ⇒𝑗+1 𝑞 in 𝑀 , and let this computation end with the application
of a rule of the form

𝑥𝑜→ 𝑞

from 𝑅, where 𝑜 ∈ 𝑄 and 𝑥 ∈ Σ*. Now, we express 𝑢𝑝𝑣 ⇒𝑗+1 𝑞 as

𝑥𝑢′𝑝𝑣 ⇒𝑗 𝑥𝑜⇒ 𝑞

in 𝑀 , where 𝑥𝑢′ = 𝑢. By the induction hypothesis, 𝑜 ⇒* 𝑢′𝑝𝑣 in 𝐺. From 𝑥𝑜 → 𝑞 ∈ 𝑅,
step (2) above constructs 𝑞 → 𝑥𝑜 ∈ 𝑃 . Thus, 𝐺 makes

𝑞 ⇒ 𝑥𝑜⇒* 𝑥𝑢′𝑝𝑣

with 𝑢 = 𝑥𝑢′.
If the computation 𝑢𝑝𝑣 ⇒𝑗+1 𝑞 in 𝑀 ends with the application of a rule of the form

𝑜𝑥→ 𝑞 from 𝑅, where 𝑜 ∈ 𝑄 and 𝑥 ∈ Σ*, proceed analogously.
Thus, the induction step is completed, and Claim 5.1.A holds.

Considering Claim 5.1.A for 𝑝 = 𝑠, we see that for all 𝑢, 𝑣 ∈ Σ* and 𝑞 ∈ 𝑄, 𝑞 ⇒*

𝑢𝑠𝑣 in 𝐺 iff 𝑢𝑠𝑣 ⇒* 𝑞 in 𝑀 . As follows from the construction technique presented above,
𝐺 starts every derivation by applying a rule of the form 𝑆 → 𝑓 , where 𝑓 ∈ 𝐹 , and ends it
by applying a rule of the form 𝑠→ 𝜀. Consequently, 𝑆 ⇒ 𝑓 ⇒* 𝑢𝑠𝑣 ⇒ 𝑢𝑣 in 𝐺 iff 𝑢𝑠𝑣 ⇒*

𝑓 in 𝑀 , so 𝐿(𝐺) = 𝐿(𝑀). Thus, Lemma 5.1 holds.
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To illustrate the technique from the proof of Lemma 5.1, we give the following example.

Example 5.2. Consider the IE2SFA 𝑀 from Example 4.8. Recall that

𝑀 = ({𝑠, 𝑞1, 𝑞2, 𝑓1, 𝑓2}, {𝑎, 𝑏, 𝑐}, 𝑅, 𝑠, {𝑓1, 𝑓2}),

where 𝑅 = {𝑠𝑏 → 𝑞1, 𝑎𝑞1 → 𝑠, 𝑠 → 𝑓1, 𝑓1𝑐 → 𝑓1, 𝑠𝑐 → 𝑞2, 𝑎𝑞2 → 𝑓2, 𝑓2𝑐 → 𝑞2}, and
𝐿(𝑀) = {𝑎𝑛𝑏𝑛𝑐𝑚, 𝑎𝑚+𝑛𝑏𝑛𝑐𝑚 | 𝑚,𝑛 ≥ 0}. From 𝑀 , the construction technique described
in the proof of Lemma 5.1 produces the LG

𝐺 = ({𝑆, 𝑠, 𝑞1, 𝑞2, 𝑓1, 𝑓2}, {𝑎, 𝑏, 𝑐}, 𝑃, 𝑆)

with 𝑃 consisting of the following rules:

𝑆 → 𝑓1, 𝑓1 → 𝑠, 𝑓2 → 𝑎𝑞2, 𝑞2 → 𝑠𝑐, 𝑞1 → 𝑠𝑏,

𝑆 → 𝑓2, 𝑓1 → 𝑓1𝑐, 𝑞2 → 𝑓2𝑐, 𝑠→ 𝑎𝑞1, 𝑠→ 𝜀.

𝐺 first rewrites 𝑆 to either 𝑓1 or 𝑓2. From 𝑓1, it generates an arbitrary number of 𝑐s to the
right by repeatedly rewriting 𝑓1 to 𝑓1𝑐. After that, it replaces 𝑓1 with 𝑠, thus generating
𝑠𝑐𝑖, for some 𝑖 ≥ 0. From 𝑓2, it generates 𝑎𝑗𝑠𝑐𝑗 , for some 𝑗 ≥ 1. This is done by repeatedly
replacing 𝑓2 with 𝑎𝑞2 and 𝑞2 with 𝑓2𝑐 and then rewriting 𝑞2 to 𝑠𝑐. After generating either
𝑠𝑐𝑖 or 𝑎𝑗𝑠𝑐𝑗 , 𝐺 continues by repeatedly replacing 𝑠 with 𝑎𝑞1 and 𝑞1 with 𝑠𝑏. Thus, from
𝑠, it generates 𝑎𝑘𝑠𝑏𝑘, for some 𝑘 ≥ 0. Finally, 𝐺 rewrites 𝑠 to 𝜀. Clearly, 𝐺 generates the
language 𝐿(𝐺) = {𝑎𝑛𝑏𝑛𝑐𝑚, 𝑎𝑚+𝑛𝑏𝑛𝑐𝑚 | 𝑚,𝑛 ≥ 0}. Hence, 𝐿(𝐺) = 𝐿(𝑀).

Observe that 𝐺 exhibits behavior that is completely inverse to that of 𝑀 . For instance,
the string 𝑎𝑎𝑏𝑏𝑐𝑐 that 𝑀 accepts by the computation

𝑎𝑎𝑠𝑏𝑏𝑐𝑐⇒ 𝑎𝑎𝑞1𝑏𝑐𝑐⇒ 𝑎𝑠𝑏𝑐𝑐⇒ 𝑎𝑞1𝑐𝑐⇒ 𝑠𝑐𝑐⇒ 𝑓1𝑐𝑐⇒ 𝑓1𝑐⇒ 𝑓1

is derived by 𝐺 as follows:

𝑆 ⇒ 𝑓1 ⇒ 𝑓1𝑐⇒ 𝑓1𝑐𝑐⇒ 𝑠𝑐𝑐⇒ 𝑎𝑞1𝑐𝑐⇒ 𝑎𝑠𝑏𝑐𝑐⇒ 𝑎𝑎𝑞1𝑏𝑐𝑐⇒ 𝑎𝑎𝑠𝑏𝑏𝑐𝑐⇒ 𝑎𝑎𝑏𝑏𝑐𝑐.

Lemma 5.3. For every LG 𝐺, there is an IE2GFA 𝑀 such that 𝐿(𝑀) = 𝐿(𝐺).

Proof. Let 𝐺 = (𝑁,𝑇, 𝑃, 𝑆) be an LG. From 𝐺, we next construct an IE2GFA 𝑀 =
(𝑄,Σ, 𝑅, 𝑠, 𝐹 ) such that 𝐿(𝑀) = 𝐿(𝐺). Introduce a new symbol 𝑠—the start state of
𝑀 . Set 𝑄′ = {⟨𝐴→ 𝑥𝐵𝑦⟩ | 𝐴 → 𝑥𝐵𝑦 ∈ 𝑃,𝐴,𝐵 ∈ 𝑁, 𝑥, 𝑦 ∈ 𝑇 *}. Without any loss of
generality, assume that 𝑄′ ∩ 𝑁 = ∅ and 𝑠 /∈ 𝑄′ ∪ 𝑁 . Set 𝑄 = 𝑄′ ∪ 𝑁 ∪ {𝑠}, Σ = 𝑇 , and
𝐹 = {𝑆}. 𝑅 is constructed as follows:

(1) for each 𝐴→ 𝑥 ∈ 𝑃 , where 𝐴 ∈ 𝑁 and 𝑥 ∈ 𝑇 *, add 𝑠𝑥→ 𝐴 to 𝑅;

(2) for each 𝐴 → 𝑥𝐵𝑦 ∈ 𝑃 , where 𝐴,𝐵 ∈ 𝑁 and 𝑥, 𝑦 ∈ 𝑇 *, add 𝑥𝐵 → ⟨𝐴→ 𝑥𝐵𝑦⟩ and
⟨𝐴→ 𝑥𝐵𝑦⟩𝑦 → 𝐴 to 𝑅.

Basic Idea. 𝑀 simulates any derivation of 𝐺 in reverse. It starts by reading a string of
terminals generated by 𝐺 in the last step of a derivation (see step (1)). After this initial
computational step, 𝑀 simulates every derivation step made by 𝐺 according to a rule of
the form 𝐴 → 𝑥𝐵𝑦, where 𝐴,𝐵 ∈ 𝑁 and 𝑥, 𝑦 ∈ 𝑇 *, by using two consecutive rules of the
forms 𝑥𝐵 → ⟨𝐴→ 𝑥𝐵𝑦⟩ and ⟨𝐴→ 𝑥𝐵𝑦⟩𝑦 → 𝐴, where ⟨𝐴→ 𝑥𝐵𝑦⟩ is a newly introduced
state with the rule record to which it relates (see step (2)). The entire simulation process
is completed by reaching the state 𝑆, which represents the start nonterminal symbol of 𝐺,
and emptying the input tape.
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To establish 𝐿(𝑀) = 𝐿(𝐺) formally, we first prove the following claim.

Claim 5.3.A. For all 𝑢, 𝑣 ∈ 𝑇 * and 𝐴,𝐵 ∈ 𝑁 ,

𝑢𝐵𝑣 ⇒* 𝐴 in 𝑀 iff 𝐴⇒* 𝑢𝐵𝑣 in 𝐺.

Proof of Claim 5.3.A. First, we establish the only-if part of this equivalence. By induction
on the number of moves 𝑖 ≥ 0, we prove that 𝑢𝐵𝑣 ⇒𝑖 𝐴 in 𝑀 implies 𝐴⇒* 𝑢𝐵𝑣 in 𝐺.
Basis. Let 𝑖 = 0, so 𝑢𝐵𝑣 ⇒0 𝐴 in 𝑀 . Then, 𝐴 = 𝐵 and 𝑢𝑣 = 𝜀. Clearly, 𝐴 ⇒0 𝐴 in
𝐺. For 𝑖 = 1, 𝑢𝐵𝑣 ⇒ 𝐴 never occurs in 𝑀 for any 𝑢, 𝑣 ∈ 𝑇 *, since, by the construction
technique described above, 𝑀 does not have any rule of the form 𝑥𝐵 → 𝐴 or 𝐵𝑦 → 𝐴 for
any 𝑥, 𝑦 ∈ 𝑇 *. Recall that 𝐴,𝐵 ∈ (𝑄 ∖𝑄′) ∖ {𝑠} = 𝑁 , so no rules added by step (1) can be
applied here. Hence, the basis holds true.
Induction Hypothesis. Assume that the implication holds for all computations consisting of
no more than 𝑗 moves, for some 𝑗 ∈ N0.
Induction Step. Consider any computation of the form 𝑢𝐵𝑣 ⇒𝑗+2 𝐴 in 𝑀 . Let this com-
putation start with the application of two consecutive rules of the forms

𝑥𝐵 → ⟨𝐶 → 𝑥𝐵𝑦⟩ and ⟨𝐶 → 𝑥𝐵𝑦⟩𝑦 → 𝐶

from 𝑅, where 𝐶 ∈ 𝑁 , 𝑥, 𝑦 ∈ 𝑇 *, and 𝐶 → 𝑥𝐵𝑦 ∈ 𝑃 . Thus, we can express 𝑢𝐵𝑣 ⇒𝑗+2 𝐴
as

𝑢′𝑥𝐵𝑦𝑣′ ⇒ 𝑢′⟨𝐶 → 𝑥𝐵𝑦⟩𝑦𝑣′ ⇒ 𝑢′𝐶𝑣′ ⇒𝑗 𝐴

in 𝑀 , where 𝑢′𝑥 = 𝑢 and 𝑦𝑣′ = 𝑣. Clearly, by the induction hypothesis, 𝐴⇒* 𝑢′𝐶𝑣′ in 𝐺.
Step (2) constructs 𝑥𝐵 → ⟨𝐶 → 𝑥𝐵𝑦⟩, ⟨𝐶 → 𝑥𝐵𝑦⟩𝑦 → 𝐶 ∈ 𝑅 from 𝐶 → 𝑥𝐵𝑦 ∈ 𝑃 , so

𝐴⇒* 𝑢′𝐶𝑣′ ⇒ 𝑢′𝑥𝐵𝑦𝑣′

in 𝐺. Because 𝑢′𝑥 = 𝑢 and 𝑦𝑣′ = 𝑣, 𝐴⇒* 𝑢𝐵𝑣 in 𝐺, and the induction step is completed.
Next, we establish the if part of the equivalence stated in Claim 5.3.A, so we show that

𝐴 ⇒𝑖 𝑢𝐵𝑣 in 𝐺 implies 𝑢𝐵𝑣 ⇒* 𝐴 in 𝑀 by induction on the number of derivation steps
𝑖 ≥ 0.
Basis. For 𝑖 = 0, 𝐴⇒0 𝑢𝐵𝑣 occurs in 𝐺 only for 𝐴 = 𝐵 and 𝑢𝑣 = 𝜀. Since 𝐴⇒0 𝐴 in 𝑀 ,
the basis holds true.
Induction Hypothesis. Assume that the implication holds for all derivations consisting of
no more than 𝑗 steps, for some 𝑗 ∈ N0.
Induction Step. Let 𝐴⇒𝑗+1 𝑢𝐵𝑣 in 𝐺, and let this derivation end with the application of
a rule of the form

𝐶 → 𝑥𝐵𝑦

from 𝑃 , where 𝐶 ∈ 𝑁 and 𝑥, 𝑦 ∈ 𝑇 *. Now, we express 𝐴⇒𝑗+1 𝑢𝐵𝑣 as

𝐴⇒𝑗 𝑢′𝐶𝑣′ ⇒ 𝑢′𝑥𝐵𝑦𝑣′

in 𝐺, where 𝑢′𝑥 = 𝑢 and 𝑦𝑣′ = 𝑣. Hence, by the induction hypothesis, 𝑢′𝐶𝑣′ ⇒* 𝐴 in 𝑀 .
From 𝐶 → 𝑥𝐵𝑦 ∈ 𝑃 , step (2) above constructs 𝑥𝐵 → ⟨𝐶 → 𝑥𝐵𝑦⟩, ⟨𝐶 → 𝑥𝐵𝑦⟩𝑦 → 𝐶 ∈ 𝑅.
Thus, 𝑀 makes

𝑢′𝑥𝐵𝑦𝑣′ ⇒ 𝑢′⟨𝐶 → 𝑥𝐵𝑦⟩𝑦𝑣′ ⇒ 𝑢′𝐶𝑣′ ⇒* 𝐴

with 𝑢′𝑥 = 𝑢 and 𝑦𝑣′ = 𝑣, so 𝑢𝐵𝑣 ⇒* 𝐴 in 𝑀 . Thus, the induction step is completed.
Therefore, Claim 5.3.A holds.
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Considering Claim 5.3.A for 𝐴 = 𝑆, we have that for all 𝑢, 𝑣 ∈ 𝑇 * and 𝐵 ∈ 𝑁 ,
𝑢𝐵𝑣 ⇒* 𝑆 in 𝑀 iff 𝑆 ⇒* 𝑢𝐵𝑣 in 𝐺. As follows from the above construction technique,
𝑀 starts every computation by applying a rule of the form 𝑠𝑧 → 𝐶, where 𝐶 ∈ 𝑁 and
𝑧 ∈ 𝑇 *, constructed from 𝐶 → 𝑧 ∈ 𝑃 , and 𝑆 is the only final state of 𝑀 . Consequently,
𝑢𝑠𝑧𝑣 ⇒ 𝑢𝐶𝑣 ⇒* 𝑆 in 𝑀 iff 𝑆 ⇒* 𝑢𝐶𝑣 ⇒ 𝑢𝑧𝑣 in 𝐺, so 𝐿(𝑀) = 𝐿(𝐺). Hence, Lemma 5.3
holds.

The following example demonstrates the technique used in the proof of Lemma 5.3.

Example 5.4. Return to the LG 𝐺 from Example 2.22. Recall that

𝐺 = ({𝑆,𝐴}, {𝑎, 𝑏, 𝑐}, 𝑃, 𝑆),

where 𝑃 = {𝑆 → 𝑆𝑐, 𝑆 → 𝜀, 𝑆 → 𝑎𝐴𝑏𝑏,𝐴→ 𝑎𝐴𝑏𝑏,𝐴→ 𝜀}, and 𝐿(𝐺) = {𝑎𝑛𝑏2𝑛𝑐𝑚 | 𝑚,𝑛 ≥
0}. By applying the technique from the proof of Lemma 5.3 to 𝐺, we construct the IE2GFA

𝑀 = ({𝑠, 𝑆,𝐴, ⟨𝑆 → 𝑆𝑐⟩, ⟨𝑆 → 𝑎𝐴𝑏𝑏⟩, ⟨𝐴→ 𝑎𝐴𝑏𝑏⟩}, {𝑎, 𝑏, 𝑐}, 𝑅, 𝑠, {𝑆})

with the following rules in 𝑅 (see Figure 5.1):

𝑠→ 𝑆, 𝑆 → ⟨𝑆 → 𝑆𝑐⟩, 𝑎𝐴→ ⟨𝐴→ 𝑎𝐴𝑏𝑏⟩, 𝑎𝐴→ ⟨𝑆 → 𝑎𝐴𝑏𝑏⟩,
𝑠→ 𝐴, ⟨𝑆 → 𝑆𝑐⟩𝑐→ 𝑆, ⟨𝐴→ 𝑎𝐴𝑏𝑏⟩𝑏𝑏→ 𝐴, ⟨𝑆 → 𝑎𝐴𝑏𝑏⟩𝑏𝑏→ 𝑆.

𝑀 starts each computation by moving from 𝑠 to either 𝐴 or 𝑆 without reading any input
symbols. From 𝐴, it can arbitrarily many times perform two consecutive moves—a left
move from 𝐴 to ⟨𝐴→ 𝑎𝐴𝑏𝑏⟩ that reads 𝑎, and a right move from ⟨𝐴→ 𝑎𝐴𝑏𝑏⟩ back to 𝐴
that reads 𝑏𝑏. After that, 𝑀 makes a left move from 𝐴 to ⟨𝑆 → 𝑎𝐴𝑏𝑏⟩, reading 𝑎, and
then a right move from ⟨𝑆 → 𝑎𝐴𝑏𝑏⟩ to 𝑆, reading 𝑏𝑏. Finally, by cycling between 𝑆 and
⟨𝑆 → 𝑆𝑐⟩, 𝑀 can read an arbitrary number of 𝑐s to the right. Hence, the language accepted
by 𝑀 is 𝐿(𝑀) = {𝑎𝑛𝑏2𝑛𝑐𝑚 | 𝑚,𝑛 ≥ 0}, and thus 𝐿(𝑀) = 𝐿(𝐺).

𝑠

𝑆𝐴 ⟨1⟩⟨2⟩

⟨3⟩

𝜀𝜀
𝜀

↱, 𝑐

↰, 𝑎

↱, 𝑏𝑏
↰, 𝑎 ↱, 𝑏𝑏

Figure 5.1: State diagram of the IE2GFA 𝑀 from Example 5.4, where the labels 1, 2, and
3 stand for 𝑆 → 𝑆𝑐, 𝐴→ 𝑎𝐴𝑏𝑏, and 𝑆 → 𝑎𝐴𝑏𝑏, respectively.

Observe that 𝑀 works in a completely inverse way to 𝐺. For instance, consider the
string 𝑎𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏𝑐𝑐, which 𝐺 generates by the derivation

𝑆 ⇒ 𝑆𝑐⇒ 𝑆𝑐𝑐⇒ 𝑎𝐴𝑏𝑏𝑐𝑐⇒ 𝑎𝑎𝐴𝑏𝑏𝑏𝑏𝑐𝑐⇒ 𝑎𝑎𝑎𝐴𝑏𝑏𝑏𝑏𝑏𝑏𝑐𝑐⇒ 𝑎𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏𝑐𝑐.

𝑀 accepts this string by the computation

𝑎𝑎𝑎𝑠𝑏𝑏𝑏𝑏𝑏𝑏𝑐𝑐⇒ 𝑎𝑎𝑎𝐴𝑏𝑏𝑏𝑏𝑏𝑏𝑐𝑐⇒ 𝑎𝑎⟨𝐴→ 𝑎𝐴𝑏𝑏⟩𝑏𝑏𝑏𝑏𝑏𝑏𝑐𝑐⇒ 𝑎𝑎𝐴𝑏𝑏𝑏𝑏𝑐𝑐

⇒ 𝑎⟨𝐴→ 𝑎𝐴𝑏𝑏⟩𝑏𝑏𝑏𝑏𝑐𝑐⇒ 𝑎𝐴𝑏𝑏𝑐𝑐⇒ ⟨𝑆 → 𝑎𝐴𝑏𝑏⟩𝑏𝑏𝑐𝑐
⇒ 𝑆𝑐𝑐⇒ ⟨𝑆 → 𝑆𝑐⟩𝑐𝑐⇒ 𝑆𝑐⇒ ⟨𝑆 → 𝑆𝑐⟩𝑐⇒ 𝑆.
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Theorem 5.5. 𝜀
IE2GFAΦ = 𝜀

LGΦ.

Proof. The inclusion 𝜀
IE2GFAΦ ⊆ 𝜀

LGΦ follows from Lemma 5.1. The opposite inclusion,
𝜀

LGΦ ⊆ 𝜀
IE2GFAΦ, follows from Lemma 5.3, so the theorem holds.

5.2 Equivalence of Variants of Input-Erasing Two-Way Fi-
nite Automata

In this section, we show that IE2GFAs, 𝜀-free IE2GFAs, IE2SFAs, and 𝜀-free IE2SFAs have
the same accepting power.
Theorem 5.6. 𝜀

IE2GFAΦ = 𝜀
IE2SFAΦ = IE2SFAΦ.

Proof. As every IE2SFA is a special case of an IE2GFA, we have 𝜀
IE2SFAΦ ⊆ 𝜀

IE2GFAΦ. To
prove 𝜀

IE2GFAΦ ⊆ 𝜀
IE2SFAΦ, consider any IE2GFA 𝑀 . From 𝑀 , we construct an equivalent

IE2SFA 𝑀 ′ based upon the following idea. Let 𝑀 read an 𝑛-symbol string, 𝑎1 . . . 𝑎𝑛, to
the right during a single move. 𝑀 ′ simulates this move as follows:

(1) 𝑀 ′ records 𝑎1 . . . 𝑎𝑛 into its current state,

(2) 𝑀 ′ makes 𝑛 subsequent right moves during which it reads 𝑎1 . . . 𝑎𝑛 symbol by symbol,
proceeding from 𝑎1 towards 𝑎𝑛.

The left moves in 𝑀 are simulated by 𝑀 ′ analogously. The details are left to the reader.
Thus, 𝜀

IE2GFAΦ ⊆ 𝜀
IE2SFAΦ, and 𝜀

IE2GFAΦ = 𝜀
IE2SFAΦ holds.

As is obvious, IE2SFAΦ ⊆ 𝜀
IE2SFAΦ. The opposite inclusion can be established straight-

forwardly using the standard technique for removing 𝜀-rules (see, for instance, Section 3.2.1
in [30]). Consequently, 𝜀

IE2SFAΦ = IE2SFAΦ, and Theorem 5.6 holds.

As every 𝜀-free IE2SFA is also an 𝜀-free IE2GFA, we clearly obtain the following corollary
from the previous theorem.
Corollary 5.7. 𝜀

IE2GFAΦ = IE2GFAΦ = 𝜀
IE2SFAΦ = IE2SFAΦ.
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Chapter 6

Computational Restrictions

In this chapter, we introduce a variety of restrictions that require the performance of left
and right moves in an alternating way, and we investigate how these restrictions affect the
computational power of IE2GFAs and IE2SFAs. First, we formally define these computa-
tional restrictions. Then, we establish some relations between their corresponding language
families, as well as relations between these restricted language families and their original un-
restricted variants. Finally, we show that under one of these restrictions, IE2GFAs possess
the same expressive power as ELGs.

6.1 Definitions and Examples
In this section, we formally define the computational restrictions of input-erasing two-way
finite automata and illustrate them with an example.

Definition 6.1. Let 𝑀 = (𝑄,Σ, 𝑅, 𝑠, 𝐹 ) be an IE2GFA, and let 𝒞 = Σ*𝑄Σ* be the set of
all configurations over 𝑀 . Let 𝛼⇒* 𝛽 in 𝑀 , where 𝛼, 𝛽 ∈ 𝒞. If, in 𝛼⇒* 𝛽, every sequence
of two consecutive moves satisfies the condition that the first of these two moves reads
symbols in one direction while the second move reads symbols in the opposite direction;
more precisely, if for every two consecutive moves, 𝑖 and 𝑗, in 𝛼 ⇒* 𝛽, 𝑖 is left if and only
if 𝑗 is right, then 𝛼⇒* 𝛽 is alternating, symbolically written as 𝛼⇒*

alt 𝛽.
Let 𝛼⇒*

alt 𝛽 in 𝑀 consist of 𝑛 moves, for some even 𝑛 ≥ 0, where 𝛼, 𝛽 ∈ 𝐾.

(1) If, in 𝛼 ⇒*
alt 𝛽, for each odd 𝑖 such that 0 ≤ 𝑖 ≤ 𝑛, both the 𝑖th and the (𝑖 + 1)th

moves read the same number of input symbols, then 𝛼⇒*
alt 𝛽 is an even computation,

symbolically written as 𝛼⇒*
even 𝛽.

(2) If 𝛾 ∈ 𝒞, 𝛾 ⇒ 𝛼 in 𝑀 , and 𝛼 ⇒*
even 𝛽 in 𝑀 , then 𝛾 ⇒ 𝛼 ⇒*

even 𝛽 is an initialized
even computation, symbolically written as 𝛾 ⇒*

init-even 𝛽.

The languages accepted by 𝑀 using alternating computation, even computation, and
initialized even computation are defined as follows:

𝐿(𝑀)alt = {𝑢𝑣 | 𝑢, 𝑣 ∈ Σ*, 𝑢𝑠𝑣 ⇒*
alt 𝑓, 𝑓 ∈ 𝐹},

𝐿(𝑀)even = {𝑢𝑣 | 𝑢, 𝑣 ∈ Σ*, 𝑢𝑠𝑣 ⇒*
even 𝑓, 𝑓 ∈ 𝐹},

𝐿(𝑀)init-even = {𝑢𝑣 | 𝑢, 𝑣 ∈ Σ*, 𝑢𝑠𝑣 ⇒*
init-even 𝑓, 𝑓 ∈ 𝐹}.

To illustrate the previous definition, we give the following example.
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Example 6.2. Consider the IE2GFA

𝑀 = ({𝑠, 𝑞1, 𝑞2, 𝑞3, 𝑓}, {𝑎, 𝑏, 𝑐, 𝑑, 𝑒}, 𝑅, 𝑠, {𝑠, 𝑓}),

where 𝑅 contains the following rules (see Figure 6.1):

𝑠𝑎→ 𝑞1, 𝑠𝑏→ 𝑞2, 𝑠𝑐→ 𝑞3, 𝑠→ 𝑓,

𝑞1𝑎→ 𝑞1, 𝑞2𝑏→ 𝑞2, 𝑞3𝑐→ 𝑞3, 𝑑𝑓 → 𝑓,

𝑎𝑞1 → 𝑠, 𝑏𝑞2 → 𝑠, 𝑐𝑞3 → 𝑠, 𝑓𝑒𝑒→ 𝑓.

Without any computational restrictions placed upon it, 𝑀 first reads, for each occurrence
of 𝑎, 𝑏, or 𝑐 that it reads to the left, a nonempty sequence of consecutive occurrences of
that exact same symbol (𝑎, 𝑏, or 𝑐) to the right. After that, 𝑀 continues by reading an
arbitrary number of 𝑑s to the left and any even number of 𝑒s to the right. Hence, the
language accepted by 𝑀 is 𝐿(𝑀) = {𝑑}*{𝑥1 . . . 𝑥𝑚𝑥𝑛𝑚

𝑚 . . . 𝑥𝑛1
1 | 𝑥1, . . . , 𝑥𝑚 ∈ {𝑎, 𝑏, 𝑐},𝑚 ≥

0, 𝑛1, . . . , 𝑛𝑚 ≥ 1}{𝑒𝑒}*.

𝑠

𝑞1

𝑞2 𝑞3

𝑓

↱, 𝑎

↱, 𝑏

↱, 𝑐

↱, 𝑎
↰, 𝑎

↱, 𝑏

↰, 𝑏

↱, 𝑐
↰, 𝑐

𝜀

↰, 𝑑

↱, 𝑒𝑒

Figure 6.1: State diagram of the IE2GFA 𝑀 from Example 6.2.

For instance, consider the string 𝑤 = 𝑑𝑐𝑏𝑎𝑎𝑎𝑏𝑐𝑐𝑐𝑒𝑒. 𝑀 can accept 𝑤 by the following
sequence of moves:

𝑑𝑐𝑏𝑎𝑠𝑎𝑎𝑏𝑐𝑐𝑐𝑒𝑒⇒ 𝑑𝑐𝑏𝑎𝑞1𝑎𝑏𝑐𝑐𝑐𝑒𝑒⇒ 𝑑𝑐𝑏𝑎𝑞1𝑏𝑐𝑐𝑐𝑒𝑒⇒ 𝑑𝑐𝑏𝑠𝑏𝑐𝑐𝑐𝑒𝑒⇒ 𝑑𝑐𝑏𝑞2𝑐𝑐𝑐𝑒𝑒⇒ 𝑑𝑐𝑠𝑐𝑐𝑐𝑒𝑒

⇒ 𝑑𝑐𝑞3𝑐𝑐𝑒𝑒⇒ 𝑑𝑐𝑞3𝑐𝑒𝑒⇒ 𝑑𝑐𝑞3𝑒𝑒⇒ 𝑑𝑠𝑒𝑒⇒ 𝑑𝑓𝑒𝑒⇒ 𝑑𝑓 ⇒ 𝑓.

Now, suppose that 𝑀 uses alternating computation. Under this restriction, 𝑀 rejects
𝑤, as it can never make two consecutive moves in the same direction. In fact, the language
accepted by 𝑀 in this way is 𝐿(𝑀)alt = {𝑑𝑚𝑤 reversal(𝑤)𝑒2𝑛, 𝑑𝑛𝑒2𝑚 | 𝑤 ∈ {𝑎, 𝑏, 𝑐}*, 0 ≤
𝑛 ≤ 𝑚,𝑚 − 𝑛 ≤ 1}. Observe that for any string of the form 𝑑𝑚𝑤 reversal(𝑤)𝑒2𝑛, where
0 ≤ 𝑛 ≤ 𝑚, 𝑚 − 𝑛 ≤ 1, and 𝑤 ∈ {𝑎, 𝑏, 𝑐}+, the move according to 𝑠 → 𝑓 ∈ 𝑅 always acts
as a right move. For any string of the form 𝑑𝑛−1𝑒2𝑛, where 𝑛 ≥ 1, that exact same move
always acts as a left move, and for any other string in 𝐿(𝑀)alt , it can act either as a left
move or a right move depending on the performed accepting computation on the string.

Next, assume that 𝑀 works under even computation. Compared to alternating com-
putation, this further restricts the behavior of 𝑀 so that it can never accept any input in
𝑓 , regardless of its form. Consequently, this restriction reduces the language accepted by
𝑀 to 𝐿(𝑀)even = {𝑤 reversal(𝑤) | 𝑤 ∈ {𝑎, 𝑏, 𝑐}*}.

Finally, consider 𝑀 operating under initialized even computation. In this case, starting
from 𝑠, 𝑀 moves to 𝑓 without reading any symbols (thus, 𝜀 can be accepted) or to 𝑞1, 𝑞2,
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or 𝑞3, reading 𝑎, 𝑏, or 𝑐 to the right, respectively. In 𝑞1, 𝑞2, and 𝑞3, 𝑀 must continue by
reading the corresponding symbol to the right again without changing its state; otherwise,
it cannot reach a final state at the end of any computation of this type. After that, 𝑀
moves back to 𝑠, reading the corresponding symbol to the left, and then continues to work
the same way as under even computation. This behavior of 𝑀 results in the language
𝐿(𝑀)init-even = {𝑤𝑥 reversal(𝑤) | 𝑥 ∈ {𝑎𝑎𝑎, 𝑏𝑏𝑏, 𝑐𝑐𝑐}, 𝑤 ∈ {𝑎, 𝑏, 𝑐}*} ∪ {𝜀}.

Convention 6.3. Let 𝜀
IE2GFAΦalt , 𝜀

IE2GFAΦeven , 𝜀
IE2GFAΦinit-even , 𝜀

IE2SFAΦalt , 𝜀
IE2SFAΦeven ,

and 𝜀
IE2SFAΦinit-even denote the families of languages accepted by IE2GFAs and IE2SFAs

using alternating computation, even computation, and initialized even computation, respec-
tively. Analogously, let IE2GFAΦalt , IE2GFAΦeven , IE2GFAΦinit-even , IE2SFAΦalt , IE2SFAΦeven ,
and IE2SFAΦinit-even denote the corresponding families of languages in terms of 𝜀-free ver-
sions of these automata.

6.2 Effect on Accepting Power
In this section, we investigate the effect of the previously defined restrictions on the accept-
ing power of IE2GFAs and their variants.
Lemma 6.4. For every IE2GFA 𝑀 , there is an IE2GFA 𝑀 ′ such that 𝐿(𝑀 ′)alt = 𝐿(𝑀 ′) =
𝐿(𝑀).

Proof. Let 𝑀 = (𝑄,Σ, 𝑅, 𝑠, 𝐹 ) be an IE2GFA. From 𝑀 , we construct the IE2GFA

𝑀 ′ = (𝑄,Σ, 𝑅 ∪ {𝑞 → 𝑞 | 𝑞 ∈ 𝑄}, 𝑠, 𝐹 ).

Clearly, 𝐿(𝑀 ′) = 𝐿(𝑀). Observe, however, that between every two consecutive moves that
𝑀 can make, 𝑀 ′ can always perform an additional move that does not read any symbols
(and thus acts as both a left move and a right move at the same time). This allows 𝑀 ′ to
simulate any computation of 𝑀 as an alternating one. Hence, 𝐿(𝑀 ′)alt = 𝐿(𝑀).

Theorem 6.5. 𝜀
IE2GFAΦ = 𝜀

IE2GFAΦalt =
𝜀

IE2SFAΦalt .

Proof. The inclusions 𝜀
IE2SFAΦalt ⊆ 𝜀

IE2GFAΦalt ⊆ 𝜀
IE2GFAΦ follow directly from the definition

of an IE2SFA and the definition of alternating computation (see Definitions 4.5 and 6.1).
The opposite inclusions, 𝜀

IE2GFAΦ ⊆ 𝜀
IE2GFAΦalt ⊆ 𝜀

IE2SFAΦalt , follow from Theorem 5.6 and
Lemma 6.4.

Theorem 6.6. IE2SFAΦalt ⊂ 𝜀
IE2SFAΦalt .

Proof (Basic Idea). Clearly, IE2SFAΦalt ⊆ 𝜀
IE2SFAΦalt . To demonstrate that IE2SFAΦalt ⊂

𝜀
IE2SFAΦalt , consider 𝐿 = {𝑎𝑛𝑏𝑛𝑐𝑚 | 𝑛,𝑚 ≥ 0}. Clearly, 𝐿 ∈ 𝜀

IE2SFAΦalt . Next, we sketch
how to prove 𝐿 /∈ IE2SFAΦalt by contradiction. Assume that there exists an 𝜀-free IE2SFA
𝑀 such that 𝐿(𝑀)alt = 𝐿. Take any 𝑎𝑖𝑏𝑖𝑐𝑗 , for some 𝑖, 𝑗 ≥ 0. 𝑀 has to start its successful
computation in between 𝑎s and 𝑏s in order to verify the same number of occurrences of those
symbols. After this verification, 𝑀 has to read the remaining 𝑗 𝑐s to the right. However,
this reading cannot be performed by 𝑀 working under alternating computation. Thus,
𝐿 ∈ 𝜀

IE2SFAΦalt ∖ IE2SFAΦalt , so Theorem 6.6 holds.

Theorem 6.7. 𝜀
IE2GFAΦeven ⊂ evenΦ.
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Proof. As each even computation consists of an even number of moves, each language in
𝜀

IE2GFAΦeven clearly contains only even-length strings. Thus, 𝜀
IE2GFAΦeven ⊂ evenΦ.

Theorem 6.8. 𝜀
IE2GFAΦeven is incomparable with any of these language families—singΦ,

finΦ, and regΦ.

Proof. Let 𝐿 ∈ 𝜀
IE2GFAΦeven . By Theorem 6.7, 𝑥 ∈ 𝐿 implies that |𝑥| is even. Thus, any

{𝑦} ∈ singΦ with |𝑦| being odd, such as {𝑎}, is outside of 𝜀
IE2GFAΦeven . Clearly, {𝑎𝑎} ∈

𝜀
IE2GFAΦeven ∩ singΦ. Notice that {𝑎𝑛𝑏𝑛 | 𝑛 ≥ 0} ∈ 𝜀

IE2GFAΦeven ∖ singΦ. The rest of this
proof is left to the reader, as it follows the same reasoning.

Lemma 6.9. For every IE2GFA 𝑀 , there exists an 𝜀-free IE2SFA 𝑀 ′ such that 𝐿(𝑀 ′) =
𝐿(𝑀 ′)even = 𝐿(𝑀)even .

Proof. Let 𝑀 = (𝑄,Σ, 𝑅, 𝑠, 𝐹 ) be an IE2GFA. From 𝑀 , we next construct an 𝜀-free IE2SFA
𝑀 ′ = (𝑄′,Σ, 𝑅′, 𝑠′, 𝐹 ′) such that 𝐿(𝑀 ′) = 𝐿(𝑀 ′)even = 𝐿(𝑀)even . Introduce a new symbol
𝑠′—the start state of 𝑀 ′. Let 𝑘 = max{|lhs(𝑟)| − 1 | 𝑟 ∈ 𝑅}. Set 𝑄̂ = {⟨𝑥𝑞𝑦↰⟩, ⟨𝑦𝑞𝑥↱⟩ | 𝑞 ∈
𝑄, 𝑥, 𝑦 ∈ Σ*, |𝑥| + |𝑦| ≤ 2𝑘 − 1, 0 ≤ |𝑦| − |𝑥| ≤ 1}. Without any loss of generality, assume
that 𝑠′ /∈ 𝑄̂. Set 𝑄′ = 𝑄̂ ∪ {𝑠′}. Initially, set 𝑅′ = ∅ and 𝐹 ′ = {⟨𝑓↰⟩, ⟨𝑓↱⟩ | 𝑓 ∈ 𝐹}. If
𝑠 ∈ 𝐹 , add 𝑠′ to 𝐹 ′. Extend 𝑅′ by performing steps (1) through (4), given next, until no
more rules can be added to 𝑅′.

(1) If 𝑎1 . . . 𝑎𝑛𝑝→ 𝑞, 𝑞𝑎𝑛+1 . . . 𝑎2𝑛 → 𝑜 ∈ 𝑅, where 𝑝, 𝑞, 𝑜 ∈ 𝑄 and 𝑎𝑖 ∈ Σ, 1 ≤ 𝑖 ≤ 2𝑛, for
some 𝑛 ≥ 1, extend 𝑅′ by adding

𝑎𝑛⟨𝑝↰⟩ → ⟨𝑎1 . . . 𝑎𝑛−1𝑜𝑎𝑛+1 . . . 𝑎2𝑛↰⟩,
⟨𝑎1 . . . 𝑎𝑛−1𝑜𝑎𝑛+1 . . . 𝑎2𝑛↰⟩𝑎𝑛+1 → ⟨𝑎1 . . . 𝑎𝑛−1𝑜𝑎𝑛+2 . . . 𝑎2𝑛↰⟩,
𝑎𝑛−1⟨𝑎1 . . . 𝑎𝑛−1𝑜𝑎𝑛+2 . . . 𝑎2𝑛↰⟩ → ⟨𝑎1 . . . 𝑎𝑛−2𝑜𝑎𝑛+2 . . . 𝑎2𝑛↰⟩,

...
⟨𝑜𝑎2𝑛↰⟩𝑎2𝑛 → ⟨𝑜↰⟩.

In addition, if 𝑝 = 𝑠, also include 𝑎𝑛𝑠
′ → ⟨𝑎1 . . . 𝑎𝑛−1𝑜𝑎𝑛+1 . . . 𝑎2𝑛↰⟩ in 𝑅′.

(2) If 𝑝𝑎𝑛 . . . 𝑎1 → 𝑞, 𝑎2𝑛 . . . 𝑎𝑛+1𝑞 → 𝑜 ∈ 𝑅, where 𝑝, 𝑞, 𝑜 ∈ 𝑄 and 𝑎𝑖 ∈ Σ, 1 ≤ 𝑖 ≤ 2𝑛, for
some 𝑛 ≥ 1, extend 𝑅′ by adding

⟨𝑝↱⟩𝑎𝑛 → ⟨𝑎2𝑛 . . . 𝑎𝑛+1𝑜𝑎𝑛−1 . . . 𝑎1↱⟩,
𝑎𝑛+1⟨𝑎2𝑛 . . . 𝑎𝑛+1𝑜𝑎𝑛−1 . . . 𝑎1↱⟩ → ⟨𝑎2𝑛 . . . 𝑎𝑛+2𝑜𝑎𝑛−1 . . . 𝑎1↱⟩,
⟨𝑎2𝑛 . . . 𝑎𝑛+2𝑜𝑎𝑛−1 . . . 𝑎1↱⟩𝑎𝑛−1 → ⟨𝑎2𝑛 . . . 𝑎𝑛+2𝑜𝑎𝑛−2 . . . 𝑎1↱⟩,

...
𝑎2𝑛⟨𝑎2𝑛𝑜↱⟩ → ⟨𝑜↱⟩.

In addition, if 𝑝 = 𝑠, add 𝑠′𝑎𝑛 → ⟨𝑎2𝑛 . . . 𝑎𝑛+1𝑜𝑎𝑛−1 . . . 𝑎1↱⟩ to 𝑅′, too.

(3) For each 𝑝 → 𝑞, 𝑞 → 𝑜 ∈ 𝑅 and 𝑟′ ∈ 𝑅′, where 𝑜, 𝑝, 𝑞 ∈ 𝑄 and lhs(𝑟′) = 𝑎⟨𝑜↰⟩, for
some 𝑎 ∈ Σ, add 𝑎⟨𝑝↰⟩ → rhs(𝑟′) to 𝑅′; in addition, if 𝑝 = 𝑠, add 𝑎𝑠′ → rhs(𝑟′) to 𝑅′,
too.
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(4) For each 𝑝 → 𝑞, 𝑞 → 𝑜 ∈ 𝑅 and 𝑟′ ∈ 𝑅′, where 𝑜, 𝑝, 𝑞 ∈ 𝑄 and lhs(𝑟′) = ⟨𝑜↱⟩𝑎, for
some 𝑎 ∈ Σ, add ⟨𝑝↱⟩𝑎→ rhs(𝑟′) to 𝑅′; moreover, if 𝑝 = 𝑠, add 𝑠′𝑎→ rhs(𝑟′) to 𝑅′ as
well.

Repeat the following extension of 𝐹 ′ until no more states can be included in 𝐹 ′.

(5) For each 𝑝 → 𝑞, 𝑞 → 𝑜 ∈ 𝑅, where 𝑜, 𝑝, 𝑞 ∈ 𝑄 and ⟨𝑜↰⟩, ⟨𝑜↱⟩ ∈ 𝐹 ′, add ⟨𝑝↰⟩ and ⟨𝑝↱⟩
to 𝐹 ′; in addition, if 𝑝 = 𝑠, also add 𝑠′ to 𝐹 ′.

Basic Idea. As is obvious, 𝑀 ′ represents an 𝜀-free IE2SFA. 𝑀 ′ simulates any even computa-
tion in 𝑀 by making sequences of moves, each of which reads (and thereby erases) a single
symbol. To explain step (1), assume that 𝑀 performs a two-move even computation by
rules 𝑎1 . . . 𝑎𝑛𝑝 → 𝑞, 𝑞𝑎𝑛+1 . . . 𝑎2𝑛 → 𝑜 ∈ 𝑅, where 𝑜, 𝑝, 𝑞 ∈ 𝑄 and 𝑎𝑖 ∈ Σ, 1 ≤ 𝑖 ≤ 2𝑛, for
some 𝑛 ≥ 1. Consider the sequence of rules introduced into 𝑅′ in step (1). Observe that
once 𝑀 ′ applies its first rule, it has to apply all the remaining rules of this sequence in an
uninterrupted one-by-one way, and thereby, it simulates the two-move computation in 𝑀 .
Notice that the first rule, 𝑎𝑛⟨𝑝↰⟩ → ⟨𝑎1 . . . 𝑎𝑛−1𝑜𝑎𝑛+1 . . . 𝑎2𝑛↰⟩, is a left rule. Step (2) is
analogous to step (1), except that the first rule of the introduced sequence is a right rule.
To explain step (3), assume that (i) 𝑀 performs an even computation according to two
𝜀-rules 𝑝→ 𝑞, 𝑞 → 𝑜 ∈ 𝑅, where 𝑜, 𝑝, 𝑞 ∈ 𝑄, and that (ii) 𝑅′ contains 𝑟′ with lhs(𝑟′) = 𝑎⟨𝑜↰⟩
(𝑟′ is introduced into 𝑅′ in step (1) or (3)). Then, this step introduces 𝑎⟨𝑝↰⟩ → rhs(𝑟′)
into 𝑅′. By using this newly introduced rule, 𝑎⟨𝑝↰⟩ → rhs(𝑟′), 𝑀 ′ actually skips over the
two-move even computation according to 𝑝 → 𝑞 and 𝑞 → 𝑜 in 𝑀 , after which it enters
the state rhs(𝑟′), which occurs as the right-hand side of the first rule of a rule sequence
introduced in step (1). Step (4) parallels step (3), except that 𝑟′ is a right rule in step (4),
while it is a left rule in step (3).

Consider 𝐹 ′. Assume that an accepting even computation in 𝑀 ends with an even
sequence of moves according to 𝜀-rules (including the empty sequence). Observe that at
this point, by the extension of 𝐹 ′ in step (5), 𝑀 ′ accepts, too.

To establish 𝐿(𝑀 ′)even = 𝐿(𝑀)even formally, we first prove the following two claims.

Claim 6.9.A. When 𝑀 is 𝜀-free, for all 𝑢, 𝑣 ∈ Σ* and 𝑝, 𝑞 ∈ 𝑄,

𝑢⟨𝑝↰⟩𝑣 ⇒*
even ⟨𝑞↰⟩ in 𝑀 ′ iff 𝑢𝑝𝑣 ⇒*

even 𝑞 in 𝑀,

where 𝑢𝑝𝑣 ⇒*
even 𝑞 starts with a left move (unless it consists of no moves).

Proof of Claim 6.9.A. We begin by proving the only-if part of this equivalence. That is, by
induction on the number of moves 𝑖 ≥ 0, we show that for 𝜀-free 𝑀 , 𝑢⟨𝑝↰⟩𝑣 ⇒𝑖

even ⟨𝑞↰⟩ in 𝑀 ′

implies that there is 𝑢𝑝𝑣 ⇒*
even 𝑞 in 𝑀 that starts with a left move (or consists of no moves

at all).
Basis. Let 𝑖 = 0, so 𝑢⟨𝑝↰⟩𝑣 ⇒0

even ⟨𝑞↰⟩ in 𝑀 ′. Then, 𝑝 = 𝑞 and 𝑢𝑣 = 𝜀. Clearly, 𝑞 ⇒0
even 𝑞

in 𝑀 . For 𝑖 = 1, 𝑢⟨𝑝↰⟩𝑣 ⇒1
even ⟨𝑞↰⟩ never occurs in 𝑀 ′, since, by Definition 6.1, each even

computation is supposed to have an even number of moves; however, 𝑢⟨𝑝↰⟩𝑣 ⇒1
even ⟨𝑞↰⟩

has one move. Thus, the basis holds true.
Induction Hypothesis. Assume that the implication holds for all computations consisting of
no more than 𝑗 moves in 𝑀 ′, for some 𝑗 ∈ N0.
Induction Step. Consider any computation of the form 𝑢⟨𝑝↰⟩𝑣 ⇒𝑗+2𝑛

even ⟨𝑞↰⟩ in 𝑀 ′, for some
𝑛 ≥ 1. Let this computation start with the application of 2𝑛 consecutive rules of the forms

𝑎𝑛⟨𝑝↰⟩ → ⟨𝑎1 . . . 𝑎𝑛−1𝑜𝑎𝑛+1 . . . 𝑎2𝑛↰⟩,
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⟨𝑎1 . . . 𝑎𝑛−1𝑜𝑎𝑛+1 . . . 𝑎2𝑛↰⟩𝑎𝑛+1 → ⟨𝑎1 . . . 𝑎𝑛−1𝑜𝑎𝑛+2 . . . 𝑎2𝑛↰⟩,
𝑎𝑛−1⟨𝑎1 . . . 𝑎𝑛−1𝑜𝑎𝑛+2 . . . 𝑎2𝑛↰⟩ → ⟨𝑎1 . . . 𝑎𝑛−2𝑜𝑎𝑛+2 . . . 𝑎2𝑛↰⟩,

...
⟨𝑜𝑎2𝑛↰⟩𝑎2𝑛 → ⟨𝑜↰⟩

from 𝑅′, where 𝑜 ∈ 𝑄 and 𝑎𝑘 ∈ Σ for all 1 ≤ 𝑘 ≤ 2𝑛. Thus, we can express 𝑢⟨𝑝↰⟩𝑣 ⇒𝑗+2𝑛
even

⟨𝑞↰⟩ as

𝑢′𝑎1 . . . 𝑎𝑛⟨𝑝↰⟩𝑎𝑛+1 . . . 𝑎2𝑛𝑣
′ ⇒ 𝑢′𝑎1 . . . 𝑎𝑛−1⟨𝑎1 . . . 𝑎𝑛−1𝑜𝑎𝑛+1 . . . 𝑎2𝑛↰⟩𝑎𝑛+1 . . . 𝑎2𝑛𝑣

′

⇒ 𝑢′𝑎1 . . . 𝑎𝑛−1⟨𝑎1 . . . 𝑎𝑛−1𝑜𝑎𝑛+2 . . . 𝑎2𝑛↰⟩𝑎𝑛+2 . . . 𝑎2𝑛𝑣
′

⇒ 𝑢′𝑎1 . . . 𝑎𝑛−2⟨𝑎1 . . . 𝑎𝑛−2𝑜𝑎𝑛+2 . . . 𝑎2𝑛↰⟩𝑎𝑛+2 . . . 𝑎2𝑛𝑣
′

...
⇒ 𝑢′⟨𝑜𝑎2𝑛↰⟩𝑎2𝑛𝑣′ ⇒ 𝑢′⟨𝑜↰⟩𝑣′ ⇒𝑗

even ⟨𝑞↰⟩

in 𝑀 ′, where 𝑢′𝑎1 . . . 𝑎𝑛 = 𝑢 and 𝑎𝑛+1 . . . 𝑎2𝑛𝑣
′ = 𝑣. According to the induction hypothesis,

𝑢′𝑜𝑣′ ⇒*
even 𝑞 in 𝑀 , and this computation starts with a left move (or consists of no moves).

Step (1) above constructs 𝑎𝑛⟨𝑝↰⟩ → ⟨𝑎1 . . . 𝑎𝑛−1𝑜𝑎𝑛+1 . . . 𝑎2𝑛↰⟩, . . . , ⟨𝑜𝑎2𝑛↰⟩𝑎2𝑛 → ⟨𝑜↰⟩ ∈ 𝑅′

from 𝑎1 . . . 𝑎𝑛𝑝→ 𝑡, 𝑡𝑎𝑛+1 . . . 𝑎2𝑛 → 𝑜 ∈ 𝑅, for some 𝑡 ∈ 𝑄, so 𝑀 makes

𝑢′𝑎1 . . . 𝑎𝑛𝑝𝑎𝑛+1 . . . 𝑎2𝑛𝑣
′ ⇒ 𝑢′𝑡𝑎𝑛+1 . . . 𝑎2𝑛𝑣

′ ⇒ 𝑢′𝑜𝑣′ ⇒*
even 𝑞.

Taking into account the properties of the computation 𝑢′𝑜𝑣′ ⇒*
even 𝑞, since 𝑢′𝑎1 . . . 𝑎𝑛 = 𝑢

and 𝑎𝑛+1 . . . 𝑎2𝑛𝑣
′ = 𝑣, it follows that 𝑢𝑝𝑣 ⇒*

even 𝑞 in 𝑀 . As we can see, 𝑢𝑝𝑣 ⇒*
even 𝑞 starts

with a left move, which completes the induction step.
Next, we prove the if part of the equivalence stated in Claim 6.9.A. By induction on

the number of moves 𝑖 ≥ 0, we show that for 𝜀-free 𝑀 , if there is 𝑢𝑝𝑣 ⇒𝑖
even 𝑞 in 𝑀 that

starts with a left move (or consists of no moves), then 𝑢⟨𝑝↰⟩𝑣 ⇒*
even ⟨𝑞↰⟩ in 𝑀 ′.

Basis. Let 𝑖 = 0, so 𝑢𝑝𝑣 ⇒0
even 𝑞 in 𝑀 . Then, 𝑝 = 𝑞 and 𝑢𝑣 = 𝜀. Clearly, ⟨𝑞↰⟩ ⇒0

even ⟨𝑞↰⟩ in
𝑀 ′. For 𝑖 = 1, 𝑢𝑝𝑣 ⇒1

even 𝑞 never occurs in 𝑀 , since, by the definition of even computation
(see Definition 6.1), every 𝑢𝑝𝑣 ⇒*

even 𝑞 consists of an even number of moves; however,
𝑢𝑝𝑣 ⇒1

even 𝑞 consists of a single move. Thus, the basis holds true.
Induction Hypothesis. Assume that the implication holds for all computations consisting of
no more than 𝑗 moves in 𝑀 , for some 𝑗 ∈ N0.
Induction Step. Consider any computation of the form 𝑢𝑝𝑣 ⇒𝑗+2

even 𝑞 in 𝑀 . Let this compu-
tation start with the application of two consecutive rules of the forms

𝑎1 . . . 𝑎𝑛𝑝→ 𝑡 and 𝑡𝑎𝑛+1 . . . 𝑎2𝑛 → 𝑜

from 𝑅, where 𝑜, 𝑡 ∈ 𝑄 and 𝑎𝑘 ∈ Σ for all 1 ≤ 𝑘 ≤ 2𝑛, for some 𝑛 ≥ 1. Hence, we can
express 𝑢𝑝𝑣 ⇒𝑗+2

even 𝑞 as

𝑢′𝑎1 . . . 𝑎𝑛𝑝𝑎𝑛+1 . . . 𝑎2𝑛𝑣
′ ⇒ 𝑢′𝑡𝑎𝑛+1 . . . 𝑎2𝑛𝑣

′ ⇒ 𝑢′𝑜𝑣′ ⇒𝑗
even 𝑞

in 𝑀 , where 𝑢′𝑎1 . . . 𝑎𝑛 = 𝑢 and 𝑎𝑛+1 . . . 𝑎2𝑛𝑣
′ = 𝑣. According to the induction hypothesis,

𝑢′⟨𝑜↰⟩𝑣′ ⇒*
even ⟨𝑞↰⟩ in 𝑀 ′. From 𝑎1 . . . 𝑎𝑛𝑝→ 𝑡, 𝑡𝑎𝑛+1 . . . 𝑎2𝑛 → 𝑜 ∈ 𝑅, step (1) constructs

𝑎𝑛⟨𝑝↰⟩ → ⟨𝑎1 . . . 𝑎𝑛−1𝑜𝑎𝑛+1 . . . 𝑎2𝑛↰⟩,

30



⟨𝑎1 . . . 𝑎𝑛−1𝑜𝑎𝑛+1 . . . 𝑎2𝑛↰⟩𝑎𝑛+1 → ⟨𝑎1 . . . 𝑎𝑛−1𝑜𝑎𝑛+2 . . . 𝑎2𝑛↰⟩,
𝑎𝑛−1⟨𝑎1 . . . 𝑎𝑛−1𝑜𝑎𝑛+2 . . . 𝑎2𝑛↰⟩ → ⟨𝑎1 . . . 𝑎𝑛−2𝑜𝑎𝑛+2 . . . 𝑎2𝑛↰⟩,

...
⟨𝑜𝑎2𝑛↰⟩𝑎2𝑛 → ⟨𝑜↰⟩ ∈ 𝑅′,

so 𝑀 ′ makes

𝑢′𝑎1 . . . 𝑎𝑛⟨𝑝↰⟩𝑎𝑛+1 . . . 𝑎2𝑛𝑣
′ ⇒ 𝑢′𝑎1 . . . 𝑎𝑛−1⟨𝑎1 . . . 𝑎𝑛−1𝑜𝑎𝑛+1 . . . 𝑎2𝑛↰⟩𝑎𝑛+1 . . . 𝑎2𝑛𝑣

′

⇒ 𝑢′𝑎1 . . . 𝑎𝑛−1⟨𝑎1 . . . 𝑎𝑛−1𝑜𝑎𝑛+2 . . . 𝑎2𝑛↰⟩𝑎𝑛+2 . . . 𝑎2𝑛𝑣
′

⇒ 𝑢′𝑎1 . . . 𝑎𝑛−2⟨𝑎1 . . . 𝑎𝑛−2𝑜𝑎𝑛+2 . . . 𝑎2𝑛↰⟩𝑎𝑛+2 . . . 𝑎2𝑛𝑣
′

...
⇒ 𝑢′⟨𝑜𝑎2𝑛↰⟩𝑎2𝑛𝑣′ ⇒ 𝑢′⟨𝑜↰⟩𝑣′ ⇒*

even ⟨𝑞↰⟩.

Notice that by the construction technique of 𝑀 ′, 𝑢′⟨𝑜↰⟩𝑣′ ⇒*
even ⟨𝑞↰⟩ can never start with

a right move. This, together with the fact that 𝑢′𝑎1 . . . 𝑎𝑛 = 𝑢 and 𝑎𝑛+1 . . . 𝑎2𝑛𝑣
′ = 𝑣, implies

that 𝑢⟨𝑝↰⟩𝑣 ⇒*
even ⟨𝑞↰⟩ in 𝑀 ′. Thus, the induction step is completed, and Claim 6.9.A holds.

Claim 6.9.B. When 𝑀 is 𝜀-free, for all 𝑢, 𝑣 ∈ Σ* and 𝑝, 𝑞 ∈ 𝑄,

𝑢⟨𝑝↱⟩𝑣 ⇒*
even ⟨𝑞↱⟩ in 𝑀 ′ iff 𝑢𝑝𝑣 ⇒*

even 𝑞 in 𝑀,

where 𝑢𝑝𝑣 ⇒*
even 𝑞 starts with a right move (unless it consists of no moves).

Proof of Claim 6.9.B. Prove this claim by analogy with the proof of Claim 6.9.A.
Claims 6.9.A and 6.9.B demonstrate the correctness of steps (1) and (2) from the above

construction technique. However, they do not address the elimination of 𝜀-rules of 𝑀 in
steps (3), (4), and (5). For this reason, we next establish Claims 6.9.C, 6.9.D, and 6.9.E.
Claim 6.9.C. For all 𝑥 ∈ Σ*, 𝑦 ∈ Σ+, 𝑎 ∈ Σ, and 𝑝, 𝑡 ∈ 𝑄 such that |𝑥|+ 1 = |𝑦|,

𝑎⟨𝑝↰⟩ ⇒ ⟨𝑥𝑡𝑦↰⟩ in 𝑀 ′ iff there are 𝑜, 𝑞 ∈ 𝑄 such that 𝑥𝑎𝑝𝑦 ⇒*
even 𝑥𝑎𝑞𝑦 ⇒ 𝑜𝑦 ⇒ 𝑡 in 𝑀.

Proof of Claim 6.9.C. First, we establish the only-if part of this equivalence. By induction
on the number of iterations of step (3) 𝑖 ≥ 0, we show that 𝑎⟨𝑝↰⟩ ⇒ ⟨𝑥𝑡𝑦↰⟩ in 𝑀 ′ implies
that there are 𝑜, 𝑞 ∈ 𝑄 such that 𝑥𝑎𝑝𝑦 ⇒*

even 𝑥𝑎𝑞𝑦 ⇒ 𝑜𝑦 ⇒ 𝑡 in 𝑀 .
Basis. For 𝑖 = 0, 𝑎⟨𝑝↰⟩ ⇒ ⟨𝑥𝑡𝑦↰⟩ in 𝑀 ′ can only be performed using a rule of the form
𝑎⟨𝑝↰⟩ → ⟨𝑥𝑡𝑦↰⟩ added to 𝑅′ in step (1). Then, since step (1) constructs 𝑎⟨𝑝↰⟩ → ⟨𝑥𝑡𝑦↰⟩ ∈ 𝑅′

from 𝑥𝑎𝑝→ 𝑔, 𝑔𝑦 → 𝑡 ∈ 𝑅, for some 𝑔 ∈ 𝑄, it follows that 𝑥𝑎𝑝𝑦 ⇒ 𝑔𝑦 ⇒ 𝑡 in 𝑀 . Thus, the
basis holds true.
Induction Hypothesis. Assume that the implication holds for no more than 𝑗 iterations of
step (3), for some 𝑗 ∈ N0.
Induction Step. Consider any 𝑎⟨𝑝↰⟩ ⇒ ⟨𝑥𝑡𝑦↰⟩ in 𝑀 ′ performed using a rule of the form
𝑎⟨𝑝↰⟩ → ⟨𝑥𝑡𝑦↰⟩ that belongs to 𝑅′ from the (𝑗 + 1)th iteration of step (3). From this, it
follows that there exist 𝑝→ 𝑔, 𝑔 → ℎ ∈ 𝑅, for some 𝑔, ℎ ∈ 𝑄, and 𝑎⟨ℎ↰⟩ → ⟨𝑥𝑡𝑦↰⟩ ∈ 𝑅′ that
was added to 𝑅′ during the 𝑗th iteration of step (3). Then, by the induction hypothesis,
there are 𝑜, 𝑞 ∈ 𝑄 such that 𝑥𝑎ℎ𝑦 ⇒*

even 𝑥𝑎𝑞𝑦 ⇒ 𝑜𝑦 ⇒ 𝑡 in 𝑀 , so 𝑀 can make

𝑥𝑎𝑝𝑦 ⇒ 𝑥𝑎𝑔𝑦 ⇒ 𝑥𝑎ℎ𝑦 ⇒*
even 𝑥𝑎𝑞𝑦 ⇒ 𝑜𝑦 ⇒ 𝑡.

By the definition of even computation, 𝑥𝑎𝑝𝑦 ⇒*
even 𝑥𝑎𝑞𝑦 ⇒ 𝑜𝑦 ⇒ 𝑡 in 𝑀 . Hence, the

induction step is completed.
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Next, we establish the if part of the equivalence stated in Claim 6.9.C. By induction on
the number of moves 𝑖 ≥ 0, we show that 𝑥𝑎𝑝𝑦 ⇒𝑖

even 𝑥𝑎𝑞𝑦 ⇒ 𝑜𝑦 ⇒ 𝑡 in 𝑀 implies 𝑎⟨𝑝↰⟩ ⇒
⟨𝑥𝑡𝑦↰⟩ in 𝑀 ′.
Basis. Let 𝑖 = 0, so 𝑥𝑎𝑝𝑦 ⇒0

even 𝑥𝑎𝑞𝑦 ⇒ 𝑜𝑦 ⇒ 𝑡 in 𝑀 . Then, 𝑝 = 𝑞. Clearly, according to
step (1), 𝑎⟨𝑞↰⟩ → ⟨𝑥𝑡𝑦↰⟩ ∈ 𝑅′, so 𝑎⟨𝑞↰⟩ ⇒ ⟨𝑥𝑡𝑦↰⟩ in 𝑀 ′. Let 𝑖 = 1, so 𝑥𝑎𝑝𝑦 ⇒1

even 𝑥𝑎𝑞𝑦 ⇒
𝑜𝑦 ⇒ 𝑡 in 𝑀 . This can never happen because, by Definition 6.1, every even computation
consists of an even number of moves; however, 𝑝⇒1

even 𝑞 consists of one move, which is an
odd number of moves. Thus, the basis holds true.
Induction Hypothesis. Assume that the implication holds for all computations of the form
𝑥𝑎𝑝𝑦 ⇒𝑘

even 𝑥𝑎𝑞𝑦 ⇒ 𝑜𝑦 ⇒ 𝑡 in 𝑀 with 0 ≤ 𝑘 ≤ 𝑗, for some 𝑗 ∈ N0.
Induction Step. Consider any computation of the form 𝑥𝑎𝑝𝑦 ⇒𝑗+2

even 𝑥𝑎𝑞𝑦 ⇒ 𝑜𝑦 ⇒ 𝑡 in 𝑀 ,
and let it start with the application of two consecutive rules of the forms

𝑝→ 𝑔 and 𝑔 → ℎ

from 𝑅, where 𝑔, ℎ ∈ 𝑄. Then, we can express 𝑥𝑎𝑝𝑦 ⇒𝑗+2
even 𝑥𝑎𝑞𝑦 ⇒ 𝑜𝑦 ⇒ 𝑡 as

𝑥𝑎𝑝𝑦 ⇒ 𝑥𝑎𝑔𝑦 ⇒ 𝑥𝑎ℎ𝑦 ⇒𝑗
even 𝑥𝑎𝑞𝑦 ⇒ 𝑜𝑦 ⇒ 𝑡

in 𝑀 . Clearly, by the induction hypothesis, 𝑎⟨ℎ↰⟩ ⇒ ⟨𝑥𝑡𝑦↰⟩ in 𝑀 ′. Hence, 𝑎⟨ℎ↰⟩ →
⟨𝑥𝑡𝑦↰⟩ ∈ 𝑅′. From 𝑎⟨ℎ↰⟩ → ⟨𝑥𝑡𝑦↰⟩ ∈ 𝑅′ and 𝑝 → 𝑔, 𝑔 → ℎ ∈ 𝑅, step (3) constructs
𝑎⟨𝑝↰⟩ → ⟨𝑥𝑡𝑦↰⟩ ∈ 𝑅′, so 𝑎⟨𝑝↰⟩ ⇒ ⟨𝑥𝑡𝑦↰⟩ in 𝑀 ′. Thus, the induction step is completed, and
Claim 6.9.C holds.

Claim 6.9.D. For all 𝑥 ∈ Σ+, 𝑦 ∈ Σ*, 𝑎 ∈ Σ, and 𝑝, 𝑡 ∈ 𝑄 such that |𝑥| = |𝑦|+ 1,

⟨𝑝↱⟩𝑎→ ⟨𝑥𝑡𝑦↱⟩ ∈ 𝑅′ iff there are 𝑜, 𝑞 ∈ 𝑄 such that 𝑥𝑝𝑎𝑦 ⇒*
even 𝑥𝑞𝑎𝑦 ⇒ 𝑥𝑜⇒ 𝑡 in 𝑀.

Proof of Claim 6.9.D. Prove this claim by analogy with the proof of Claim 6.9.C.

Claim 6.9.E. For all 𝑝 ∈ 𝑄,

⟨𝑝↰⟩, ⟨𝑝↱⟩ ∈ 𝐹 ′ iff there is 𝑓 ∈ 𝐹 such that 𝑝⇒*
even 𝑓 in 𝑀.

Proof of Claim 6.9.E. First, we establish the only-if part of this equivalence. By induction
on the number of iterations of step (5) 𝑖 ≥ 0, we prove that ⟨𝑞↰⟩, ⟨𝑞↱⟩ ∈ 𝐹 ′ implies that
there is 𝑓 ∈ 𝐹 such that 𝑞 ⇒*

even 𝑓 in 𝑀 .
Basis. For 𝑖 = 0, by the above construction technique, only ⟨𝑓↰⟩, ⟨𝑓↱⟩ ∈ 𝐹 ′ for all 𝑓 ∈ 𝐹 .
Clearly, 𝑓 ⇒0

even 𝑓 in 𝑀 , so the basis holds true.
Induction Hypothesis. Assume that the implication holds for no more than 𝑗 iterations of
step (5), for some 𝑗 ∈ N0.
Induction Step. Consider any ⟨𝑝↰⟩, ⟨𝑝↱⟩ ∈ 𝑄′ belonging to 𝐹 ′ from the (𝑗 + 1)th iteration
of step (5). Then, there exist 𝑝→ 𝑞, 𝑝→ 𝑜 ∈ 𝑅, for some 𝑜, 𝑞 ∈ 𝑄, and ⟨𝑜↰⟩, ⟨𝑜↱⟩ ∈ 𝑄′ that
were added to 𝐹 ′ during the 𝑗th iteration of step (5). By the induction hypothesis, there
is 𝑓 ∈ 𝐹 such that 𝑜⇒*

even 𝑓 in 𝑀 , so 𝑀 can make

𝑝⇒ 𝑞 ⇒ 𝑜⇒*
even 𝑓.

Hence, by the definition of even computation, 𝑝⇒*
even 𝑓 in 𝑀 , which completes the induc-

tion step.
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Now, we establish the if part of the equivalence stated in Claim 6.9.E. By induction
on the number of moves 𝑖 ≥ 0, we show that 𝑝 ⇒𝑖

even 𝑓 , where 𝑓 ∈ 𝐹 , in 𝑀 implies
⟨𝑝↰⟩, ⟨𝑝↱⟩ ∈ 𝐹 ′.
Basis. Let 𝑖 = 0, so 𝑝⇒0

even 𝑓 in 𝑀 . Then, 𝑝 = 𝑓 . Clearly, ⟨𝑓↰⟩, ⟨𝑓↱⟩ ∈ 𝐹 ′, as ⟨𝑞↰⟩, ⟨𝑞↱⟩ ∈
𝐹 ′ for all 𝑞 ∈ 𝐹 . For 𝑖 = 1, 𝑝⇒1

even 𝑓 never occurs in 𝑀 because, by Definition 6.1, every
even computation is supposed to have an even number of moves. However, 𝑝 ⇒1

even 𝑓 has
one move. Therefore, the basis holds true.
Induction Hypothesis. Assume that the implication holds for all computations consisting of
no more than 𝑗 moves in 𝑀 , for some 𝑗 ∈ N0.
Induction Step. Consider any computation of the form 𝑝 ⇒𝑗+2

even 𝑓 in 𝑀 with 𝑓 ∈ 𝐹 . Let
this computation start with the application of two consecutive rules of the forms

𝑝→ 𝑞 and 𝑞 → 𝑜

from 𝑅, where 𝑜, 𝑞 ∈ 𝑄. Thus, we can express 𝑝⇒𝑗+2
even 𝑓 as

𝑝⇒ 𝑞 ⇒ 𝑜⇒𝑗
even 𝑓

in 𝑀 . Clearly, by the induction hypothesis, ⟨𝑜↰⟩, ⟨𝑜↱⟩ ∈ 𝐹 ′. Since ⟨𝑜↰⟩, ⟨𝑜↱⟩ ∈ 𝐹 ′ and
𝑝→ 𝑞, 𝑞 → 𝑜 ∈ 𝑅, step (5) adds ⟨𝑝↰⟩ and ⟨𝑝↱⟩ to 𝐹 ′. Thus, the induction step is completed,
and Claim 6.9.E holds.

Based on Claims 6.9.A, 6.9.B, 6.9.C, 6.9.D, and 6.9.E, given above, we can conclude
that for all 𝑢, 𝑣 ∈ Σ* and 𝑝, 𝑞 ∈ 𝑄, 𝑢⟨𝑝↰⟩𝑣 ⇒*

even ⟨𝑞↰⟩ or 𝑢⟨𝑝↱⟩𝑣 ⇒*
even ⟨𝑞↱⟩ in 𝑀 ′, where

⟨𝑞↰⟩, ⟨𝑞↱⟩ ∈ 𝐹 ′, iff there is 𝑓 ∈ 𝐹 such that 𝑢𝑝𝑣 ⇒*
even 𝑞 ⇒*

even 𝑓 in 𝑀 . Considering this
equivalence for 𝑝 = 𝑠, 𝑢⟨𝑠↰⟩𝑣 ⇒*

even ⟨𝑞↰⟩ or 𝑢⟨𝑠↱⟩𝑣 ⇒*
even ⟨𝑞↱⟩ in 𝑀 ′, where ⟨𝑞↰⟩, ⟨𝑞↱⟩ ∈ 𝐹 ′,

iff there is 𝑓 ∈ 𝐹 such that 𝑢𝑠𝑣 ⇒*
even 𝑞 ⇒*

even 𝑓 in 𝑀 . As follows from the construction
technique, 𝑀 ′ starts every computation from its initial state 𝑠′, from which the same moves
can be made as from the states ⟨𝑠↰⟩ and ⟨𝑠↱⟩. In other words, 𝑀 ′ starts each computation
using either a rule of the form 𝑎𝑠′ → 𝑡′, for which 𝑎⟨𝑠↰⟩ → 𝑡′ ∈ 𝑅′, or a rule of the
form 𝑠′𝑎 → 𝑡′, for which ⟨𝑠↱⟩𝑎 → 𝑡′ ∈ 𝑅′, where 𝑎 ∈ Σ and 𝑡′ ∈ 𝑄′. Consequently,
𝑢𝑠′𝑣 ⇒*

even ⟨𝑞↰⟩ or 𝑢𝑠′𝑣 ⇒*
even ⟨𝑞↱⟩ in 𝑀 ′, where ⟨𝑞↰⟩, ⟨𝑞↱⟩ ∈ 𝐹 ′, iff there is 𝑓 ∈ 𝐹 such

that 𝑢𝑠𝑣 ⇒*
even 𝑞 ⇒*

even 𝑓 in 𝑀 . Hence, 𝐿(𝑀 ′)even = 𝐿(𝑀)even .
Obviously, 𝐿(𝑀 ′)even ⊆ 𝐿(𝑀 ′) follows directly from the definition of even computation.

The opposite inclusion, 𝐿(𝑀 ′) ⊆ 𝐿(𝑀 ′)even , follows directly from the construction tech-
nique above. Indeed, for each state of 𝑀 ′ except 𝑠′, according to the construction of 𝑅′, all
moves that lead to it read symbols in one direction, while all moves that can be performed
from it read symbols in the opposite direction. From 𝑠′, both left moves and right moves
can be made, as no move ever leads to this state. Therefore, Lemma 6.9 holds.

To illustrate the technique from the proof of Lemma 6.9, we provide the following
example.

Example 6.10. Consider the IE2GFA

𝑀 = ({𝑠, 𝑞1, 𝑞2, 𝑓}, {𝑎, 𝑏, 𝑐, 𝑑}, 𝑅, 𝑠, {𝑓}),

where 𝑅 contains the following six rules (see Figure 6.2):

𝑠→ 𝑞1, 𝑎𝑎𝑓 → 𝑞2, 𝑓𝑑𝑑→ 𝑞2,

𝑞1 → 𝑓, 𝑞2𝑏𝑏→ 𝑓, 𝑐𝑐𝑞2 → 𝑓.
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𝑠 𝑞1 𝑓 𝑞2
𝜀 𝜀

↰, 𝑎𝑎

↱, 𝑑𝑑

↱, 𝑏𝑏

↰, 𝑐𝑐

Figure 6.2: State diagram of the IE2GFA 𝑀 from Example 6.10.

Clearly, 𝐿(𝑀)even = {𝑎2𝑛𝑏2𝑛, 𝑐2𝑛𝑑2𝑛 | 𝑛 ≥ 0}. Next, we apply the technique from the proof
of Lemma 6.9 to 𝑀 . However, since this technique introduces many unreachable states into
the resulting automaton, we omit them from its definition for simplicity. This gives us the
𝜀-free IE2SFA

𝑀 ′ = (𝑄′, {𝑎, 𝑏, 𝑐, 𝑑}, 𝑅′, 𝑠′, {⟨𝑓↰⟩, ⟨𝑓↱⟩, 𝑠′}),

with 𝑄′ = {𝑠′, ⟨𝑓↰⟩, ⟨𝑎𝑓𝑏𝑏↰⟩, ⟨𝑎𝑓𝑏↰⟩, ⟨𝑓𝑏↰⟩, ⟨𝑓↱⟩, ⟨𝑐𝑐𝑓𝑑↱⟩, ⟨𝑐𝑓𝑑↱⟩, ⟨𝑐𝑓↱⟩} and 𝑅′ consisting of
the following rules (see Figure 6.3):

𝑎𝑠′ → ⟨𝑎𝑓𝑏𝑏↰⟩, 𝑠′𝑑→ ⟨𝑐𝑐𝑓𝑑↱⟩,
⟨𝑎𝑓𝑏𝑏↰⟩𝑏→ ⟨𝑎𝑓𝑏↰⟩, 𝑐⟨𝑐𝑐𝑓𝑑↱⟩ → ⟨𝑐𝑓𝑑↱⟩,
𝑎⟨𝑎𝑓𝑏↰⟩ → ⟨𝑓𝑏↰⟩, ⟨𝑐𝑓𝑑↱⟩𝑑→ ⟨𝑐𝑓↱⟩,
⟨𝑓𝑏↰⟩𝑏→ ⟨𝑓↰⟩, 𝑐⟨𝑐𝑓↱⟩ → ⟨𝑓↱⟩,
𝑎⟨𝑓↰⟩ → ⟨𝑎𝑓𝑏𝑏↰⟩, ⟨𝑓↱⟩𝑑→ ⟨𝑐𝑐𝑓𝑑↱⟩.

𝑠′

⟨𝑓↰⟩ ⟨𝑎𝑓𝑏𝑏↰⟩ ⟨𝑎𝑓𝑏↰⟩ ⟨𝑓𝑏↰⟩

⟨𝑓↱⟩ ⟨𝑐𝑐𝑓𝑑↱⟩ ⟨𝑐𝑓𝑑↱⟩ ⟨𝑐𝑓↱⟩

↰, 𝑎

↰, 𝑎 ↱, 𝑏 ↰, 𝑎

↱, 𝑏

↱, 𝑑

↱, 𝑑 ↰, 𝑐 ↱, 𝑑

↰, 𝑐

Figure 6.3: State diagram of the 𝜀-free IE2SFA 𝑀 ′ from Example 6.10.

On the string 𝑐𝑐𝑐𝑐𝑑𝑑𝑑𝑑, which 𝑀 accepts by the even computation

𝑐𝑐𝑐𝑐𝑠𝑑𝑑𝑑𝑑⇒ 𝑐𝑐𝑐𝑐𝑞1𝑑𝑑𝑑𝑑⇒ 𝑐𝑐𝑐𝑐𝑓𝑑𝑑𝑑𝑑⇒ 𝑐𝑐𝑐𝑐𝑞2𝑑𝑑⇒ 𝑐𝑐𝑓𝑑𝑑⇒ 𝑐𝑐𝑞2 ⇒ 𝑓,
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𝑀 ′ performs the even computation

𝑐𝑐𝑐𝑐𝑠′𝑑𝑑𝑑𝑑⇒ 𝑐𝑐𝑐𝑐⟨𝑐𝑐𝑓𝑑↱⟩𝑑𝑑𝑑⇒ 𝑐𝑐𝑐⟨𝑐𝑓𝑑↱⟩𝑑𝑑𝑑⇒ 𝑐𝑐𝑐⟨𝑐𝑓↱⟩𝑑𝑑⇒ 𝑐𝑐⟨𝑓↱⟩𝑑𝑑
⇒ 𝑐𝑐⟨𝑐𝑐𝑓𝑑↱⟩𝑑⇒ 𝑐⟨𝑐𝑓𝑑↱⟩𝑑⇒ 𝑐⟨𝑐𝑓↱⟩ ⇒ ⟨𝑓↱⟩.

Observe that 𝐿(𝑀 ′) = 𝐿(𝑀 ′)even = 𝐿(𝑀)even .

Theorem 6.11. 𝜀
IE2GFAΦeven = IE2SFAΦeven .

Proof. IE2SFAΦeven ⊆ 𝜀
IE2GFAΦeven follows directly from the definition of an 𝜀-free IE2SFA

(see Definition 4.5). 𝜀
IE2GFAΦeven ⊆ IE2SFAΦeven follows from Lemma 6.9, so this theorem

holds.

Lemma 6.12. For every IE2GFA 𝑀 , there is an IE2GFA 𝑀 ′ such that 𝐿(𝑀 ′)init-even =
𝐿(𝑀)even .

Proof. Let 𝑀 = (𝑄,Σ, 𝑅, 𝑠, 𝐹 ) be an IE2GFA. Without any loss of generality, assume that
𝑠′ /∈ 𝑄. Clearly, the IE2GFA

𝑀 ′ = (𝑄 ∪ {𝑠′},Σ, 𝑅 ∪ {𝑠′ → 𝑠}, 𝑠′, 𝐹 ).

satisfies 𝐿(𝑀 ′)init-even = 𝐿(𝑀)even , so Lemma 6.12 holds.

Theorem 6.13. 𝜀
IE2GFAΦeven ⊂ 𝜀

IE2GFAΦinit-even .

Proof. 𝜀
IE2GFAΦeven ⊆ 𝜀

IE2GFAΦinit-even follows directly from Lemma 6.12. Next, we prove
that 𝜀

IE2GFAΦinit-even ∖ 𝜀
IE2GFAΦeven ̸= ∅. Consider the language 𝐾 = {𝑎}. Clearly,

the IE2GFA
𝑀 = ({𝑠, 𝑓}, {𝑎}, {𝑠𝑎→ 𝑓}, 𝑠, {𝑓})

satisfies 𝐿(𝑀)init-even = 𝐾. However, by Theorem 6.7, there is no IE2GFA 𝑀 ′ such
that 𝐿(𝑀 ′)even = 𝐾, so 𝐾 ∈ 𝜀

IE2GFAΦinit-even ∖ 𝜀
IE2GFAΦeven . Hence, 𝜀

IE2GFAΦeven ⊂
𝜀

IE2GFAΦinit-even .

Lemma 6.14. For every IE2GFA 𝑀 = (𝑄,Σ, 𝑅, 𝑠, 𝐹 ), there exists an IE2SFA 𝑀 ′ =
(𝑄′,Σ, 𝑅′, 𝑠′, 𝐹 ′) such that

(i) 𝑟 ∈ 𝑅′ implies rhs(𝑟) ̸= 𝑠′, |lhs(𝑟)| = 1 implies lhs(𝑟) = 𝑠′, and 𝑠′ /∈ 𝐹 ′;

(ii) 𝐿(𝑀 ′) = 𝐿(𝑀 ′)init-even = 𝐿(𝑀)init-even .

Proof. Let 𝑀 = (𝑄,Σ, 𝑅, 𝑠, 𝐹 ) be an IE2GFA. From 𝑀 , we construct an IE2SFA 𝑀 ′ =
(𝑄′,Σ, 𝑅′, 𝑠′, 𝐹 ′) satisfying the properties of Lemma 6.14. Let 𝑀̂ = (𝑄̂,Σ, 𝑅̂, 𝑠, 𝐹 ) be the
𝜀-free IE2SFA constructed from 𝑀 by the technique described in the proof of Lemma 6.9.
Recall that 𝐿(𝑀̂) = 𝐿(𝑀̂)even = 𝐿(𝑀)even and ⟨𝑞↰⟩, ⟨𝑞↱⟩ ∈ 𝑄̂ for all 𝑞 ∈ 𝑄. Introduce
a new symbol 𝑠′—the start state of 𝑀 ′. Set 𝑄̄ = {⟨𝑥𝑞𝑦⟩ | 𝑞 ∈ 𝑄, 𝑥, 𝑦 ∈ Σ*, 1 ≤ |𝑥| + |𝑦| ≤
𝑘 − 1, abs(|𝑥| − |𝑦|) ≤ 1}, where 𝑘 = max{|lhs(𝑟)| | 𝑟 ∈ 𝑅}. Without any loss of generality,
assume that 𝑄̂ ∩ 𝑄̄ = ∅ and 𝑠′ /∈ 𝑄̂ ∪ 𝑄̄. Set 𝑄′ = (𝑄̂ ∖ {𝑠}) ∪ 𝑄̄ ∪ {𝑠′} and 𝐹 ′ = 𝐹 ∖ {𝑠}.
Initially, set 𝑅′ = 𝑅̂ ∖ {𝑎𝑠 → 𝑞, 𝑠𝑎 → 𝑞 | 𝑞 ∈ 𝑄̂, 𝑎 ∈ Σ}. Then, extend 𝑅′ in the following
way:

(1) for each rule of the form 𝑎𝑠 → 𝑞 or 𝑠𝑎 → 𝑞 from 𝑅, where 𝑎 ∈ Σ ∪ {𝜀} and 𝑞 ∈ 𝑄,
add both 𝑠′𝑎→ ⟨𝑞↰⟩ and 𝑠′𝑎→ ⟨𝑞↱⟩ to 𝑅′;
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(2) for each rule of the form 𝑎1 . . . 𝑎𝑛𝑎𝑛+1 . . . 𝑎2𝑛𝑠→ 𝑞 or 𝑠𝑎1 . . . 𝑎𝑛𝑎𝑛+1 . . . 𝑎2𝑛 → 𝑞 from
𝑅, where 𝑞 ∈ 𝑄, 𝑎𝑖 ∈ Σ, 1 ≤ 𝑖 ≤ 2𝑛, and 𝑛 ≥ 1, extend 𝑅′ by adding

𝑠′ → ⟨𝑎1 . . . 𝑎𝑛𝑞𝑎𝑛+1 . . . 𝑎2𝑛⟩,
𝑎𝑛⟨𝑎1 . . . 𝑎𝑛𝑞𝑎𝑛+1 . . . 𝑎2𝑛⟩ → ⟨𝑎1 . . . 𝑎𝑛−1𝑞𝑎𝑛+1 . . . 𝑎2𝑛⟩,

⟨𝑎1 . . . 𝑎𝑛−1𝑞𝑎𝑛+1 . . . 𝑎2𝑛⟩𝑎𝑛+1 → ⟨𝑎1 . . . 𝑎𝑛−1𝑞𝑎𝑛+2 . . . 𝑎2𝑛⟩,
𝑎𝑛−1⟨𝑎1 . . . 𝑎𝑛−1𝑞𝑎𝑛+2 . . . 𝑎2𝑛⟩ → ⟨𝑎1 . . . 𝑎𝑛−2𝑞𝑎𝑛+2 . . . 𝑎2𝑛⟩,

...
⟨𝑞𝑎2𝑛⟩𝑎2𝑛 → ⟨𝑞↰⟩,

⟨𝑎1 . . . 𝑎𝑛𝑞𝑎𝑛+1 . . . 𝑎2𝑛⟩𝑎𝑛+1 → ⟨𝑎1 . . . 𝑎𝑛𝑞𝑎𝑛+2 . . . 𝑎2𝑛⟩,
𝑎𝑛⟨𝑎1 . . . 𝑎𝑛𝑞𝑎𝑛+2 . . . 𝑎2𝑛⟩ → ⟨𝑎1 . . . 𝑎𝑛−1𝑞𝑎𝑛+2 . . . 𝑎2𝑛⟩,

⟨𝑎1 . . . 𝑎𝑛−1𝑞𝑎𝑛+2 . . . 𝑎2𝑛⟩𝑎𝑛+2 → ⟨𝑎1 . . . 𝑎𝑛−1𝑞𝑎𝑛+3 . . . 𝑎2𝑛⟩,
...

𝑎1⟨𝑎1𝑞⟩ → ⟨𝑞↱⟩;

(3) for each rule of the form 𝑎0 . . . 𝑎𝑛𝑎𝑛+1 . . . 𝑎2𝑛𝑠→ 𝑞 or 𝑠𝑎0 . . . 𝑎𝑛𝑎𝑛+1 . . . 𝑎2𝑛 → 𝑞 from
𝑅, where 𝑞 ∈ 𝑄, 𝑎𝑖 ∈ Σ, 0 ≤ 𝑖 ≤ 2𝑛, and 𝑛 ≥ 1, extend 𝑅′ by adding

𝑠′𝑎𝑛 → ⟨𝑎0 . . . 𝑎𝑛−1𝑞𝑎𝑛+1 . . . 𝑎2𝑛⟩,
𝑎𝑛−1⟨𝑎0 . . . 𝑎𝑛−1𝑞𝑎𝑛+1 . . . 𝑎2𝑛⟩ → ⟨𝑎0 . . . 𝑎𝑛−2𝑞𝑎𝑛+1 . . . 𝑎2𝑛⟩,
⟨𝑎0 . . . 𝑎𝑛−2𝑞𝑎𝑛+1 . . . 𝑎2𝑛⟩𝑎𝑛+1 → ⟨𝑎0 . . . 𝑎𝑛−2𝑞𝑎𝑛+2 . . . 𝑎2𝑛⟩,

...
⟨𝑞𝑎2𝑛⟩𝑎2𝑛 → ⟨𝑞↰⟩,

⟨𝑎0 . . . 𝑎𝑛−1𝑞𝑎𝑛+1 . . . 𝑎2𝑛⟩𝑎𝑛+1 → ⟨𝑎0 . . . 𝑎𝑛−1𝑞𝑎𝑛+2 . . . 𝑎2𝑛⟩,
𝑎𝑛−1⟨𝑎0 . . . 𝑎𝑛−1𝑞𝑎𝑛+2 . . . 𝑎2𝑛⟩ → ⟨𝑎0 . . . 𝑎𝑛−2𝑞𝑎𝑛+2 . . . 𝑎2𝑛⟩,

...
𝑎0⟨𝑎0𝑞⟩ → ⟨𝑞↱⟩.

Basic Idea. 𝑀 ′ simulates any initialized even computation in 𝑀 by a sequence of moves,
the first of which reads at most one symbol, while all the remaining moves read exactly
one symbol at a time and can, in fact, always be made in such a way that they form an
even computation. To explain step (1), simply assume that 𝑀 performs the first move of
an initialized even computation according to a rule of the form 𝑎𝑠 → 𝑞 or 𝑠𝑎 → 𝑞, where
𝑞 ∈ 𝑄 and 𝑎 ∈ Σ. Then, this step introduces 𝑠′𝑎→ ⟨𝑞↰⟩ and 𝑠′𝑎→ ⟨𝑞↱⟩ into 𝑅′. Clearly, by
applying one of these rules, 𝑀 ′ simulates the first move of the initialized even computation
in 𝑀 . Notice that both of the newly introduced rules, 𝑠′𝑎 → ⟨𝑞↰⟩ and 𝑠′𝑎 → ⟨𝑞↱⟩, are
right because, by the definition of initialized even computation, there are no restrictions
based on the direction of the first move of this computation. To explain step (2), assume
that 𝑀 performs the first move of an initialized even computation according to a rule of
the form 𝑎1 . . . 𝑎𝑛𝑎𝑛+1 . . . 𝑎2𝑛𝑠 → 𝑞 or 𝑠𝑎1 . . . 𝑎𝑛𝑎𝑛+1 . . . 𝑎2𝑛 → 𝑞, where 𝑞 ∈ 𝑄 and 𝑎𝑖 ∈ Σ,
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1 ≤ 𝑖 ≤ 2𝑛, for some 𝑛 ≥ 1. Consider the sequence of rules introduced into 𝑅′ in step (2).
Observe that once 𝑀 ′ applies its first rule, it has to continue by applying the rules from
this sequence until it reaches either the state ⟨𝑞↰⟩ or ⟨𝑞↱⟩. During this process, 𝑀 ′ reads
the string 𝑎1 . . . 𝑎𝑛𝑎𝑛+1 . . . 𝑎2𝑛. Thus, the first move of the initialized even computation
in 𝑀 is simulated. Notice that the first rule, 𝑠′ → ⟨𝑎1 . . . 𝑎𝑛𝑞𝑎𝑛+1 . . . 𝑎2𝑛⟩, is an 𝜀-rule.
This is because the sequence 𝑎1 . . . 𝑎𝑛𝑎𝑛+1 . . . 𝑎2𝑛 contains an even number of symbols, but
any initialized even computation always consists of an odd number of moves. Step (3)
is analogous to step (2), except that the first rule of the introduced sequence is of the
form 𝑠′𝑎𝑛 → ⟨𝑎0 . . . 𝑎𝑛−1𝑞𝑎𝑛+1 . . . 𝑎2𝑛⟩, where 𝑞 ∈ 𝑄 and 𝑎𝑖 ∈ Σ, 0 ≤ 𝑖 ≤ 2𝑛, 𝑛 ≥ 1, as
𝑎0 . . . 𝑎𝑛𝑎𝑛+1 . . . 𝑎2𝑛 consists of an odd number of symbols. The rest of an initialized even
computation in 𝑀 , more precisely, its even part, is simulated by 𝑀 ′ in the same way as by
𝑀̂ (for details see the proof of Lemma 6.9).

Now, we establish 𝐿(𝑀 ′)init-even = 𝐿(𝑀)init-even formally. From the proof of Lemma 6.9,
it follows that for all 𝑝, 𝑞 ∈ 𝑄 and 𝑢, 𝑣 ∈ Σ*, 𝑢⟨𝑞↰⟩𝑣 ⇒*

even ⟨𝑝↰⟩ or 𝑢⟨𝑞↱⟩𝑣 ⇒*
even ⟨𝑝↱⟩ in

𝑀 ′, where ⟨𝑝↰⟩, ⟨𝑝↱⟩ ∈ 𝐹 ′, iff there is 𝑓 ∈ 𝐹 such that 𝑢𝑞𝑣 ⇒*
even 𝑝 ⇒*

even 𝑓 in 𝑀 . Then,
according to steps (1), (2), and (3) of the construction technique of 𝑀 ′, the following holds:

(i) 𝑢𝑠′𝑎𝑣 ⇒ 𝑢⟨𝑞↰⟩𝑣 ⇒*
even ⟨𝑝↰⟩ or 𝑢𝑠′𝑎𝑣 ⇒ 𝑢⟨𝑞↱⟩𝑣 ⇒*

even ⟨𝑝↱⟩ in 𝑀 ′, where ⟨𝑝↰⟩, ⟨𝑝↱⟩ ∈
𝐹 ′, iff there is 𝑓 ∈ 𝐹 such that 𝑢𝑎𝑠𝑣 ⇒ 𝑢𝑞𝑣 ⇒*

even 𝑝 ⇒*
even 𝑓 or 𝑢𝑠𝑎𝑣 ⇒ 𝑢𝑞𝑣 ⇒*

even

𝑝⇒*
even 𝑓 in 𝑀 , where 𝑎 ∈ Σ ∪ {𝜀};

(ii) for all 𝑛 ≥ 1,

𝑢𝑎1 . . . 𝑎𝑛𝑠
′𝑎𝑛+1 . . . 𝑎2𝑛𝑣 ⇒ 𝑢𝑎1 . . . 𝑎𝑛⟨𝑎1 . . . 𝑎𝑛𝑞𝑎𝑛+1 . . . 𝑎2𝑛⟩𝑎𝑛+1 . . . 𝑎2𝑛𝑣

⇒ 𝑢𝑎1 . . . 𝑎𝑛−1⟨𝑎1 . . . 𝑎𝑛−1𝑞𝑎𝑛+1 . . . 𝑎2𝑛⟩𝑎𝑛+1 . . . 𝑎2𝑛𝑣

⇒ 𝑢𝑎1 . . . 𝑎𝑛−1⟨𝑎1 . . . 𝑎𝑛−1𝑞𝑎𝑛+2 . . . 𝑎2𝑛⟩𝑎𝑛+2 . . . 𝑎2𝑛𝑣

⇒ 𝑢𝑎1 . . . 𝑎𝑛−2⟨𝑎1 . . . 𝑎𝑛−2𝑞𝑎𝑛+2 . . . 𝑎2𝑛⟩𝑎𝑛+2 . . . 𝑎2𝑛𝑣

...
⇒ 𝑢⟨𝑞𝑎2𝑛⟩𝑎2𝑛𝑣 ⇒ 𝑢⟨𝑞↰⟩𝑣 ⇒*

even ⟨𝑝↰⟩

or

𝑢𝑎1 . . . 𝑎𝑛𝑠
′𝑎𝑛+1 . . . 𝑎2𝑛𝑣 ⇒ 𝑢𝑎1 . . . 𝑎𝑛⟨𝑎1 . . . 𝑎𝑛𝑞𝑎𝑛+1 . . . 𝑎2𝑛⟩𝑎𝑛+1 . . . 𝑎2𝑛𝑣

⇒ 𝑢𝑎1 . . . 𝑎𝑛⟨𝑎1 . . . 𝑎𝑛𝑞𝑎𝑛+2 . . . 𝑎2𝑛⟩𝑎𝑛+2 . . . 𝑎2𝑛𝑣

⇒ 𝑢𝑎1 . . . 𝑎𝑛−1⟨𝑎1 . . . 𝑎𝑛−1𝑞𝑎𝑛+2 . . . 𝑎2𝑛⟩𝑎𝑛+2 . . . 𝑎2𝑛𝑣

⇒ 𝑢𝑎1 . . . 𝑎𝑛−1⟨𝑎1 . . . 𝑎𝑛−1𝑞𝑎𝑛+3 . . . 𝑎2𝑛⟩𝑎𝑛+3 . . . 𝑎2𝑛𝑣

...
⇒ 𝑢𝑎1⟨𝑎1𝑞⟩𝑣 ⇒ 𝑢⟨𝑞↱⟩𝑣 ⇒*

even ⟨𝑝↱⟩

in 𝑀 ′, where ⟨𝑝↰⟩, ⟨𝑝↱⟩ ∈ 𝐹 ′, iff there is 𝑓 ∈ 𝐹 such that

𝑢𝑎1 . . . 𝑎2𝑛𝑠𝑣 ⇒ 𝑢𝑞𝑣 ⇒*
even 𝑝⇒*

even 𝑓 or 𝑢𝑠𝑎1 . . . 𝑎2𝑛𝑣 ⇒ 𝑢𝑞𝑣 ⇒*
even 𝑝⇒*

even 𝑓

in 𝑀 , where 𝑎𝑖 ∈ Σ, 1 ≤ 𝑖 ≤ 2𝑛;

(iii) for all 𝑛 ≥ 1,

𝑢𝑎0 . . . 𝑎𝑛−1𝑠
′𝑎𝑛 . . . 𝑎2𝑛𝑣 ⇒ 𝑢𝑎0 . . . 𝑎𝑛−1⟨𝑎0 . . . 𝑎𝑛−1𝑞𝑎𝑛+1 . . . 𝑎2𝑛⟩𝑎𝑛+1 . . . 𝑎2𝑛𝑣

⇒ 𝑢𝑎0 . . . 𝑎𝑛−2⟨𝑎0 . . . 𝑎𝑛−2𝑞𝑎𝑛+1 . . . 𝑎2𝑛⟩𝑎𝑛+1 . . . 𝑎2𝑛𝑣
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⇒ 𝑢𝑎0 . . . 𝑎𝑛−2⟨𝑎0 . . . 𝑎𝑛−2𝑞𝑎𝑛+2 . . . 𝑎2𝑛⟩𝑎𝑛+2 . . . 𝑎2𝑛𝑣

...
⇒ 𝑢⟨𝑞𝑎2𝑛⟩𝑎2𝑛𝑣 ⇒ 𝑢⟨𝑞↰⟩𝑣 ⇒*

even ⟨𝑝↰⟩

or

𝑢𝑎0 . . . 𝑎𝑛−1𝑠
′𝑎𝑛 . . . 𝑎2𝑛𝑣 ⇒ 𝑢𝑎1 . . . 𝑎𝑛−1⟨𝑎0 . . . 𝑎𝑛−1𝑞𝑎𝑛+1 . . . 𝑎2𝑛⟩𝑎𝑛+1 . . . 𝑎2𝑛𝑣

⇒ 𝑢𝑎1 . . . 𝑎𝑛−1⟨𝑎0 . . . 𝑎𝑛−1𝑞𝑎𝑛+2 . . . 𝑎2𝑛⟩𝑎𝑛+2 . . . 𝑎2𝑛𝑣

⇒ 𝑢𝑎1 . . . 𝑎𝑛−2⟨𝑎0 . . . 𝑎𝑛−2𝑞𝑎𝑛+2 . . . 𝑎2𝑛⟩𝑎𝑛+2 . . . 𝑎2𝑛𝑣

...
⇒ 𝑢𝑎0⟨𝑎0𝑞⟩𝑣 ⇒ 𝑢⟨𝑞↱⟩𝑣 ⇒*

even ⟨𝑝↱⟩

in 𝑀 ′, where ⟨𝑝↰⟩, ⟨𝑝↱⟩ ∈ 𝐹 ′, iff there is 𝑓 ∈ 𝐹 such that

𝑢𝑎0 . . . 𝑎2𝑛𝑠𝑣 ⇒ 𝑢𝑞𝑣 ⇒*
even 𝑝⇒*

even 𝑓 or 𝑢𝑠𝑎0 . . . 𝑎2𝑛𝑣 ⇒ 𝑢𝑞𝑣 ⇒*
even 𝑝⇒*

even 𝑓

in 𝑀 , where 𝑎𝑖 ∈ Σ, 0 ≤ 𝑖 ≤ 2𝑛.

Clearly, from states of the forms ⟨𝑞↰⟩ and ⟨𝑞↱⟩, where 𝑞 ∈ 𝑄, 𝑀 ′ can only make left moves
and right moves, respectively. Thus, by the definition of initialized even computation, we
can express the previous equivalences as follows:

(i) 𝑢𝑠′𝑎𝑣 ⇒*
init-even ⟨𝑝↰⟩ or 𝑢𝑠′𝑎𝑣 ⇒*

init-even ⟨𝑝↱⟩ in 𝑀 ′, where ⟨𝑝↰⟩, ⟨𝑝↱⟩ ∈ 𝐹 ′, iff there is
𝑓 ∈ 𝐹 such that 𝑢𝑎𝑠𝑣 ⇒*

init-even 𝑝⇒*
even 𝑓 or 𝑢𝑠𝑎𝑣 ⇒*

init-even 𝑝⇒*
even 𝑓 in 𝑀 , where

𝑎 ∈ Σ ∪ {𝜀};

(ii) for all 𝑛 ≥ 1,

𝑢𝑎1 . . . 𝑎𝑛𝑠
′𝑎𝑛+1 . . . 𝑎2𝑛𝑣 ⇒*

init-even ⟨𝑝↰⟩ or 𝑢𝑎1 . . . 𝑎𝑛𝑠
′𝑎𝑛+1 . . . 𝑎2𝑛𝑣 ⇒*

init-even ⟨𝑝↱⟩

in 𝑀 ′, where ⟨𝑝↰⟩, ⟨𝑝↱⟩ ∈ 𝐹 ′, iff there is 𝑓 ∈ 𝐹 such that

𝑢𝑎1 . . . 𝑎2𝑛𝑠𝑣 ⇒*
init-even 𝑝⇒*

even 𝑓 or 𝑢𝑠𝑎1 . . . 𝑎2𝑛𝑣 ⇒*
init-even 𝑝⇒*

even 𝑓

in 𝑀 , where 𝑎𝑖 ∈ Σ, 1 ≤ 𝑖 ≤ 2𝑛;

(iii) for all 𝑛 ≥ 1,

𝑢𝑎0 . . . 𝑎𝑛−1𝑠
′𝑎𝑛 . . . 𝑎2𝑛𝑣 ⇒*

init-even ⟨𝑝↰⟩ or 𝑢𝑎0 . . . 𝑎𝑛−1𝑠
′𝑎𝑛 . . . 𝑎2𝑛𝑣 ⇒*

init-even ⟨𝑝↱⟩

in 𝑀 ′, where ⟨𝑝↰⟩, ⟨𝑝↱⟩ ∈ 𝐹 ′, iff there is 𝑓 ∈ 𝐹 such that

𝑢𝑎0 . . . 𝑎2𝑛𝑠𝑣 ⇒*
init-even 𝑝⇒*

even 𝑓 or 𝑢𝑠𝑎0 . . . 𝑎2𝑛𝑣 ⇒*
init-even 𝑝⇒*

even 𝑓

in 𝑀 , where 𝑎𝑖 ∈ Σ, 0 ≤ 𝑖 ≤ 2𝑛.

Based on the above information, we can safely conclude that for all 𝑤1, 𝑤2 ∈ Σ* and 𝑝 ∈ 𝑄,
𝑤1𝑠

′𝑤2 ⇒*
init-even ⟨𝑝↰⟩ or 𝑤1𝑠

′𝑤2 ⇒*
init-even ⟨𝑝↱⟩, where ⟨𝑝↰⟩, ⟨𝑝↱⟩ ∈ 𝐹 ′, iff there is 𝑓 ∈ 𝐹

such that 𝑤1𝑠𝑤2 ⇒*
init-even 𝑝⇒*

even 𝑓 in 𝑀 . Hence, 𝐿(𝑀 ′)init-even = 𝐿(𝑀)init-even .
Obviously, 𝐿(𝑀 ′)init-even ⊆ 𝐿(𝑀 ′). Observe, however, that by the construction of 𝑀 ′,

there is no 𝑤 ∈ Σ* such that 𝑤 ∈ 𝐿(𝑀 ′)∖𝐿(𝑀 ′)init-even , so also 𝐿(𝑀 ′) ⊆ 𝐿(𝑀 ′)init-even . In
addition, notice that 𝑠′ can never occur on the right side of any rule, that every 𝜀-rule always
has 𝑠′ on its left-hand side, and that 𝑠′ can never be a final state. Therefore, Lemma 6.12
holds.
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The next example demonstrates the construction technique described in the previous
proof of Lemma 6.14.

Example 6.15. Consider the 𝜀-free IE2GFA

𝑀 = ({𝑠, 𝑞, 𝑓}, {𝑎, 𝑏, 𝑐}, 𝑅, 𝑠, {𝑓})

with the following five rules in 𝑅 (see Figure 6.4):

𝑎𝑠→ 𝑓, 𝑓𝑏→ 𝑞,

𝑠𝑐𝑐→ 𝑓, 𝑏𝑞 → 𝑓,

𝑐𝑏𝑐𝑠→ 𝑓.

𝑠 𝑓 𝑞

↰, 𝑎

↱, 𝑐𝑐

↰, 𝑐𝑏𝑐
↱, 𝑏

↰, 𝑏

Figure 6.4: State diagram of the 𝜀-free IE2GFA 𝑀 from Example 6.15.

Now, we apply the technique from the proof of Lemma 6.14 to 𝑀 . Note that, as in
Example 6.10, we do not list the unreachable states of the resulting automaton for simplicity.
Thus, we obtain the IE2SFA

𝑀 ′ = ({𝑠′, ⟨𝑐𝑓𝑐⟩, ⟨𝑓𝑐⟩, ⟨𝑐𝑓⟩, ⟨𝑓↰⟩, ⟨𝑓↱⟩, ⟨𝑏𝑓↱⟩}, {𝑎, 𝑏, 𝑐}, 𝑅′, 𝑠′, {⟨𝑓↰⟩, ⟨𝑓↱⟩})

with 𝑅′ containing the following rules (see Figure 6.5):

𝑠′𝑎→ ⟨𝑓↰⟩, 𝑠′ → ⟨𝑐𝑓𝑐⟩, 𝑐⟨𝑐𝑓𝑐⟩ → ⟨𝑓𝑐⟩, 𝑐⟨𝑐𝑓⟩ → ⟨𝑓↱⟩, ⟨𝑓↱⟩𝑏→ ⟨𝑏𝑓↱⟩,
𝑠′𝑎→ ⟨𝑓↱⟩, 𝑠′𝑏→ ⟨𝑐𝑓𝑐⟩, ⟨𝑐𝑓𝑐⟩𝑐→ ⟨𝑐𝑓⟩, ⟨𝑓𝑐⟩𝑐→ ⟨𝑓↰⟩, 𝑏⟨𝑏𝑓↱⟩ → ⟨𝑓↱⟩.

𝑠′ ⟨𝑐𝑓𝑐⟩ ⟨𝑐𝑓⟩ ⟨𝑓↱⟩ ⟨𝑏𝑓↱⟩

⟨𝑓𝑐⟩⟨𝑓↰⟩

𝜀

↱, 𝑏

↱, 𝑎

↱, 𝑐 ↰, 𝑐
↱, 𝑏

↰, 𝑏

↰, 𝑐

↱, 𝑐

↱, 𝑎

Figure 6.5: State diagram of the IE2SFA 𝑀 ′ from Example 6.15.

Consider the string 𝑏𝑏𝑐𝑏𝑐𝑏𝑏, which 𝑀 accepts by the initialized even computation

𝑏𝑏𝑐𝑏𝑐𝑠𝑏𝑏⇒ 𝑏𝑏𝑓𝑏𝑏⇒ 𝑏𝑏𝑞𝑏⇒ 𝑏𝑓𝑏⇒ 𝑏𝑞 ⇒ 𝑓.
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𝑀 ′ accepts this string by the initialized even computation

𝑏𝑏𝑐𝑠′𝑏𝑐𝑏𝑏⇒ 𝑏𝑏𝑐⟨𝑐𝑓𝑐⟩𝑐𝑏𝑏⇒ 𝑏𝑏𝑐⟨𝑐𝑓⟩𝑏𝑏⇒ 𝑏𝑏⟨𝑓↱⟩𝑏𝑏⇒ 𝑏𝑏⟨𝑏𝑓↱⟩𝑏⇒ 𝑏⟨𝑓↱⟩𝑏⇒ 𝑏⟨𝑏𝑓↱⟩ ⇒ ⟨𝑓↱⟩.

Observe that 𝐿(𝑀 ′) = 𝐿(𝑀 ′)init-even = 𝐿(𝑀)init-even = {𝑏𝑛𝑥𝑏𝑛 | 𝑥 ∈ {𝑎, 𝑐𝑐, 𝑐𝑏𝑐}, 𝑛 ≥ 0}.

Theorem 6.16. 𝜀
IE2GFAΦinit-even = 𝜀

IE2SFAΦinit-even .

Proof. The inclusion 𝜀
IE2SFAΦinit-even ⊆ 𝜀

IE2GFAΦinit-even is obvious. The opposite inclusion,
𝜀

IE2GFAΦinit-even ⊆ 𝜀
IE2SFAΦinit-even , follows from Lemma 6.14.

Theorem 6.17. IE2SFAΦinit-even ⊂ oddΦ.

Proof. According to Definition 6.1, each initialized even computation consists of an odd
number of moves. Therefore, no 𝜀-free IE2SFA can ever accept any even-length string in
this way, since it always reads exactly one symbol per move. Consequently, each language
in IE2SFAΦinit-even consists of odd-length strings only, so IE2SFAΦinit-even ⊂ oddΦ.

From Theorems 6.7 and 6.17, we obtain the following corollary.
Corollary 6.18. 𝜀

IE2GFAΦeven ∩ IE2SFAΦinit-even = ∅.
Theorem 6.19. IE2SFAΦinit-even ⊂ 𝜀

IE2SFAΦinit-even .

Proof. Clearly, IE2SFAΦinit-even ⊆ 𝜀
IE2SFAΦinit-even . Next, we show that this inclusion is

proper. Consider the language 𝐾 = {𝜀}. Clearly, 𝐾 ∈ 𝜀
IE2SFAΦinit-even . However, as follows

from Theorem 6.17, there is no 𝜀-free IE2SFA 𝑀 satisfying 𝐿(𝑀)init-even = 𝐾. Therefore,
𝜀

IE2SFAΦinit-even ∖ IE2SFAΦinit-even ̸= ∅, and Theorem 6.19 holds.

Theorem 6.20. IE2SFAΦinit-even is incomparable with any of these families of languages—
singΦ, finΦ, and regΦ.

Proof. Let 𝐿 ∈ IE2SFAΦinit-even . By Theorem 6.17, 𝑥 ∈ 𝐿 implies that |𝑥| is odd, so
{𝑎𝑎} /∈ IE2SFAΦinit-even . However, {𝑎𝑎} ∈ singΦ. Clearly, {𝑎} ∈ IE2SFAΦinit-even ∩ singΦ and
{𝑎𝑛𝑏𝑐𝑛 | 𝑛 ≥ 0} ∈ IE2SFAΦinit-even∖singΦ. Thus, IE2SFAΦinit-even and singΦ are incomparable.
The rest of this proof proceeds analogously.

Lemma 6.21. For every IE2GFA 𝑀 , there is an 𝜀-free IE2SFA 𝑀 ′ such that 𝐿(𝑀 ′) =
𝐿(𝑀 ′)alt = 𝐿(𝑀)init-even .

Proof. Let 𝑀 = (𝑄,Σ, 𝑅, 𝑠, 𝐹 ) be an IE2GFA, and let 𝑀̂ = (𝑄̂,Σ, 𝑅̂, 𝑠, 𝐹 ) be the IE2SFA
constructed from 𝑀 by the technique from the proof of Lemma 6.14. Recall that 𝐿(𝑀̂) =
𝐿(𝑀̂)init-even = 𝐿(𝑀)init-even , 𝑟 ∈ 𝑅̂ implies rhs(𝑟) ̸= 𝑠, |lhs(𝑟)| = 1 implies lhs(𝑟) = 𝑠, and
𝑠 /∈ 𝐹 . Next, we construct the 𝜀-free IE2SFA

𝑀 ′ = ((𝑄̂ ∖ {𝑠}) ∪ {𝑠′},Σ, 𝑅′, 𝑠′, 𝐹 ′),

where 𝑠′ /∈ 𝑄̂,

𝑅′ = (𝑅̂ ∖ {𝑠𝑎→ 𝑞 |, 𝑞 ∈ 𝑄̂, 𝑎 ∈ Σ ∪ {𝜀}})
∪ {𝑎𝑠′ → 𝑞, 𝑠′𝑎→ 𝑞 | 𝑠𝑎→ 𝑞 ∈ 𝑅̂, 𝑞 ∈ 𝑄̂, 𝑎 ∈ Σ}
∪ {𝑎𝑠′ → 𝑞 | 𝑠→ 𝑝, 𝑎𝑝→ 𝑞 ∈ 𝑅̂, 𝑝, 𝑞 ∈ 𝑄̂, 𝑎 ∈ Σ}
∪ {𝑠′𝑎→ 𝑞 | 𝑠→ 𝑝, 𝑝𝑎→ 𝑞 ∈ 𝑅̂, 𝑝, 𝑞 ∈ 𝑄̂, 𝑎 ∈ Σ}
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and

𝐹 ′ =

{︃
𝐹 ∪ {𝑠′} if {𝑓 ∈ 𝐹 | 𝑠→ 𝑓 ∈ 𝑅̂} ≠ ∅,

𝐹 otherwise.

Note that the construction of 𝑀̂ implies that there are no rules of the form 𝑎𝑠 → 𝑞 in 𝑅̂,
where 𝑞 ∈ 𝑄̂ and 𝑎 ∈ Σ, so we do not need to consider them in the construction of 𝑅′.
Observe that 𝐿(𝑀 ′) = 𝐿(𝑀 ′)alt = 𝐿(𝑀)init-even . Therefore, Lemma 6.21 holds.

Lemma 6.22. For each 𝜀-free IE2SFA 𝑀 , there is an IE2SFA 𝑀 ′ such that 𝐿(𝑀 ′)init-even =
𝐿(𝑀)alt .

Proof. Let 𝑀 = (𝑄,Σ, 𝑅, 𝑠, 𝐹 ) be an 𝜀-free IE2SFA, and let 𝑄̂ = {⟨𝑞↰⟩, ⟨𝑞↱⟩ | 𝑞 ∈ 𝑄}.
Without any loss of generality, assume that 𝑄 ∩ 𝑄̂ = ∅ and 𝑠′ /∈ 𝑄 ∪ 𝑄̂. Now, construct
the IE2SFA

𝑀 ′ = (𝑄 ∪ 𝑄̂ ∪ {𝑠′},Σ, 𝑅′, 𝑠′, 𝐹 ′),

where

𝑅′ = 𝑅 ∪ {𝑠′𝑎→ ⟨𝑝↱⟩ | 𝑎𝑠→ 𝑝 ∈ 𝑅, 𝑝 ∈ 𝑄, 𝑎 ∈ Σ}
∪ {𝑠′𝑎→ ⟨𝑝↰⟩ | 𝑠𝑎→ 𝑝 ∈ 𝑅, 𝑝 ∈ 𝑄, 𝑎 ∈ Σ}
∪ {⟨𝑝↱⟩𝑎→ 𝑞 | 𝑝𝑎→ 𝑞 ∈ 𝑅, 𝑝, 𝑞 ∈ 𝑄, 𝑎 ∈ Σ}
∪ {𝑎⟨𝑝↰⟩ → 𝑞 | 𝑎𝑝→ 𝑞 ∈ 𝑅, 𝑝, 𝑞 ∈ 𝑄, 𝑎 ∈ Σ}
∪ {𝑠′ → 𝑠}

and 𝐹 ′ = 𝐹 ∪ {⟨𝑓↰⟩, ⟨𝑓↱⟩ | 𝑓 ∈ 𝐹}. Observe that 𝐿(𝑀 ′)init-even = 𝐿(𝑀)alt . Hence,
Lemma 6.22 holds.

Theorem 6.23. 𝜀
IE2GFAΦinit-even = IE2SFAΦalt .

Proof. 𝜀
IE2GFAΦinit-even ⊆ IE2SFAΦalt follows from Lemma 6.21. The opposite inclusion,

IE2SFAΦalt ⊆ 𝜀
IE2GFAΦinit-even , follows from Lemma 6.22.

6.3 Equivalence with Even Linear Grammars
This section demonstrates that the computational power of IE2GFAs working under ini-
tialized even computation is the same as the generative power of ELGs.
Lemma 6.24. For every IE2GFA 𝑀 , there is an ELG 𝐺 such that 𝐿(𝐺) = 𝐿(𝑀)init-even .

Proof. Let 𝑀 = (𝑄,Σ, 𝑅, 𝑠, 𝐹 ) be an IE2GFA. From 𝑀 , we next construct an ELG
𝐺 = (𝑁,𝑇, 𝑃, 𝑆) such that 𝐿(𝐺) = 𝐿(𝑀)init-even . Introduce a new symbol 𝑆—the start
nonterminal of 𝐺. Set 𝑁 ′ = {⟨𝑞𝑑⟩ | 𝑞 ∈ 𝑄, 𝑑 ∈ {↰, ↱}}. Without any loss of generality,
assume that 𝑆 /∈ 𝑁 ′. Set 𝑁 = 𝑁 ′ ∪ {𝑆} and 𝑇 = Σ. 𝑃 is then constructed as follows:

(1) for each 𝑓 ∈ 𝐹 , add 𝑆 → ⟨𝑓↰⟩ and 𝑆 → ⟨𝑓↱⟩ to 𝑃 ;

(2) for each rule of the form 𝑥𝑠 → 𝑞 or 𝑠𝑥 → 𝑞 from 𝑅, where 𝑞 ∈ 𝑄 and 𝑥 ∈ Σ*, add
⟨𝑞↰⟩ → 𝑥 and ⟨𝑞↱⟩ → 𝑥 to 𝑃 ;

(3) for each 𝑥𝑞 → 𝑝, 𝑝𝑦 → 𝑜 ∈ 𝑅, where 𝑜, 𝑝, 𝑞 ∈ 𝑄, 𝑥, 𝑦 ∈ Σ*, and |𝑥| = |𝑦|, add
⟨𝑜↰⟩ → 𝑥⟨𝑞↰⟩𝑦 to 𝑃 ;
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(4) for each 𝑞𝑦 → 𝑝, 𝑥𝑝 → 𝑜 ∈ 𝑅, where 𝑜, 𝑝, 𝑞 ∈ 𝑄, 𝑥, 𝑦 ∈ Σ*, and |𝑥| = |𝑦|, add
⟨𝑜↱⟩ → 𝑥⟨𝑞↱⟩𝑦 to 𝑃 ;

Basic Idea. 𝐺 simulates any initialized even computation of 𝑀 in reverse. It starts by
generating a nonterminal of the form ⟨𝑓↰⟩ or ⟨𝑓↱⟩ with 𝑓 ∈ 𝐹 , which corresponds to a final
state (see step (1)). After this initial derivation step, 𝐺 simulates every two-move even
computation made by 𝑀 according to two consecutive rules of the forms 𝑥𝑞 → 𝑝 and
𝑝𝑦 → 𝑜, where 𝑜, 𝑝, 𝑞 ∈ 𝑄 and 𝑥, 𝑦 ∈ Σ*, by using a rule of the form ⟨𝑜↰⟩ → 𝑥⟨𝑞↰⟩𝑦 (see
step (3)). Notice that the first rule, 𝑥𝑞 → 𝑝, is a left rule. Step (4) is analogous to step (3),
except that the first of the two consecutive rules is a right rule. As can be seen, if the even
part of an initialized even computation in 𝑀 starts with a left rule, it is simulated in 𝐺
by a derivation over nonterminals of the form ⟨𝑞↰⟩, where 𝑞 ∈ 𝑄; otherwise, it is simulated
by a derivation over nonterminals of the form ⟨𝑞↱⟩ with 𝑞 ∈ 𝑄. The simulation process is
completed by applying a rule of the form ⟨𝑞↰⟩ → 𝑥 or ⟨𝑞↱⟩ → 𝑥, where 𝑞 ∈ 𝑄 and 𝑥 ∈ Σ*.
Thus, the symbol sequence read by the first move of an initialized even computation in 𝑀
is generated, and a string of terminals in 𝐺 is obtained (see step (2)).

Let us now establish 𝐿(𝐺) = 𝐿(𝑀)init-even formally. We start by proving the following
two claims.

Claim 6.24.A. For all 𝑢, 𝑣 ∈ Σ* and 𝑝, 𝑞 ∈ 𝑄,

⟨𝑞↰⟩ ⇒* 𝑢⟨𝑝↰⟩𝑣 in 𝐺 iff 𝑢𝑝𝑣 ⇒*
even 𝑞 in 𝑀,

where 𝑢𝑝𝑣 ⇒*
even 𝑞 starts with a left move (unless it is an empty sequence of moves).

Proof of Claim 6.24.A. First, we establish the only-if part of this equivalence. By induction
on the number of derivation steps 𝑖 ≥ 0, we prove that ⟨𝑞↰⟩ ⇒𝑖 𝑢⟨𝑝↰⟩𝑣 in 𝐺 implies that
there is 𝑢𝑝𝑣 ⇒*

even 𝑞 in 𝑀 that starts with a left move (or consists of no moves).
Basis. Let 𝑖 = 0, so ⟨𝑞↰⟩ ⇒0 𝑢⟨𝑝↰⟩𝑣 in 𝐺. Then, 𝑞 = 𝑝 and 𝑢𝑣 = 𝜀. Since 𝑞 ⇒0

even 𝑞 in 𝑀 ,
the basis holds true.
Induction Hypothesis. Assume that the implication holds for all derivations consisting of
no more than 𝑗 steps, for some 𝑗 ∈ N0.
Induction Step. Consider any derivation of the form ⟨𝑞↰⟩ ⇒𝑗+1 𝑢⟨𝑝↰⟩𝑣 in 𝐺. Let this
derivation start with the application of a rule of the form

⟨𝑞↰⟩ → 𝑥⟨𝑜↰⟩𝑦

from 𝑃 , where 𝑜 ∈ 𝑄, 𝑥, 𝑦 ∈ Σ*, and |𝑥| = |𝑦|. Thus, we can express ⟨𝑞↰⟩ ⇒𝑗+1 𝑢⟨𝑝↰⟩𝑣 as

⟨𝑞↰⟩ ⇒ 𝑥⟨𝑜↰⟩𝑦 ⇒𝑗 𝑥𝑢′⟨𝑝↰⟩𝑣′𝑦

in 𝐺, where 𝑥𝑢′ = 𝑢 and 𝑣′𝑦 = 𝑣. By the induction hypothesis, 𝑢′𝑝𝑣′ ⇒*
even 𝑜 in 𝑀 , and

this computation starts with a left move (or consists of no moves at all). Step (3) constructs
⟨𝑞↰⟩ → 𝑥⟨𝑜↰⟩𝑦 ∈ 𝑃 from two consecutive rules 𝑥𝑜→ 𝑡, 𝑡𝑦 → 𝑞 ∈ 𝑅, for some 𝑡 ∈ 𝑄, so

𝑥𝑢′𝑝𝑣′𝑦 ⇒*
even 𝑥𝑜𝑦 ⇒ 𝑡𝑦 ⇒ 𝑞

in 𝑀 . Since 𝑥𝑢′ = 𝑢, 𝑣′𝑦 = 𝑣, and |𝑥| = |𝑦|, taking into account the properties of
𝑢′𝑝𝑣′ ⇒*

even 𝑜, it follows that 𝑢𝑝𝑣 ⇒*
even 𝑞 in 𝑀 . As we can see, 𝑢𝑝𝑣 ⇒*

even 𝑞 starts with
a left move. Thus, the induction step is completed.
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Next, we establish the if part of the equivalence stated in Claim 6.24.A. By induction
on the number of moves 𝑖 ≥ 0, we prove that if there is 𝑢𝑝𝑣 ⇒𝑖

even 𝑞 in 𝑀 that starts with
a left move (or consists of no moves), then ⟨𝑞↰⟩ ⇒* 𝑢⟨𝑝↰⟩𝑣 in 𝐺.
Basis. For 𝑖 = 0, 𝑢𝑝𝑣 ⇒0

even 𝑞 occurs in 𝑀 only for 𝑝 = 𝑞 and 𝑢𝑣 = 𝜀. Clearly, ⟨𝑞↰⟩ ⇒0 ⟨𝑞↰⟩
in 𝐺. For 𝑖 = 1, 𝑢𝑝𝑣 ⇒1

even 𝑞 never occurs in 𝑀 , since, by Definition 6.1, every even
computation is supposed to have an even number of moves; however, 𝑢𝑝𝑣 ⇒1

even 𝑞 has one
move. Thus, the basis holds true.
Induction Hypothesis. Assume that the implication holds for all computations consisting of
no more than 𝑗 moves, for some 𝑗 ∈ N0.
Induction Step. Let 𝑢𝑝𝑣 ⇒𝑗+2

even 𝑞 in 𝑀 , and let this computation end with the application
of two consecutive rules of the forms

𝑥𝑜→ 𝑡 and 𝑡𝑦 → 𝑞

from 𝑅, where 𝑜, 𝑡 ∈ 𝑄, 𝑥, 𝑦 ∈ Σ*, and |𝑥| = |𝑦|. Express 𝑢𝑝𝑣 ⇒𝑗+2
even 𝑞 as

𝑥𝑢′𝑝𝑣′𝑦 ⇒𝑗
even 𝑥𝑜𝑦 ⇒ 𝑡𝑦 ⇒ 𝑞

in 𝑀 , where 𝑥𝑢′ = 𝑢 and 𝑣′𝑦 = 𝑣. Observe that 𝑢′𝑝𝑣′ ⇒𝑗
even 𝑜 starts with a left move (or

consists of no moves at all). Thus, by the induction hypothesis, ⟨𝑜↰⟩ ⇒* 𝑢′⟨𝑝↰⟩𝑣′ in 𝐺.
From 𝑥𝑜→ 𝑡, 𝑡𝑦 → 𝑞 ∈ 𝑅, step (3) constructs ⟨𝑞↰⟩ → 𝑥⟨𝑜↰⟩𝑦 ∈ 𝑃 , so 𝐺 can make

⟨𝑞↰⟩ ⇒ 𝑥⟨𝑜↰⟩𝑦 ⇒* 𝑥𝑢′⟨𝑝↰⟩𝑣′𝑦.

Because 𝑥𝑢′ = 𝑢 and 𝑣′𝑦 = 𝑣, it follows that ⟨𝑞↰⟩ ⇒* 𝑢⟨𝑝↰⟩𝑣 in 𝐺. Thus, the induction step
is completed, and Claim 6.24.A holds.

Claim 6.24.B. For all 𝑢, 𝑣 ∈ Σ* and 𝑝, 𝑞 ∈ 𝑄,

⟨𝑞↱⟩ ⇒* 𝑢⟨𝑝↱⟩𝑣 in 𝐺 iff 𝑢𝑝𝑣 ⇒*
even 𝑞 in 𝑀,

where 𝑢𝑝𝑣 ⇒*
even 𝑞 starts with a right move (unless it is an empty sequence of moves).

Proof of Claim 6.24.B. This can be proved analogously with the proof of Claim 6.24.A.

As a consequence of Claims 6.24.A and 6.24.B, for all 𝑢, 𝑣 ∈ Σ* and 𝑝, 𝑞 ∈ 𝑄, we have
⟨𝑞↰⟩ ⇒* 𝑢⟨𝑝↰⟩𝑣 or ⟨𝑞↱⟩ ⇒* 𝑢⟨𝑝↱⟩𝑣 in 𝐺 iff 𝑢𝑝𝑣 ⇒*

even 𝑞 in 𝑀 . As follows from the above
construction technique, 𝐺 starts every derivation by applying a rule of the form 𝑆 → ⟨𝑓𝑑⟩,
where 𝑓 ∈ 𝐹 and 𝑑 ∈ {↰, ↱}, and ends it by applying a rule of the form ⟨𝑝𝑑⟩ → 𝑥, where
𝑝 ∈ 𝑄, 𝑥 ∈ Σ*, and 𝑑 ∈ {↰, ↱}, constructed from 𝑥𝑠 → 𝑝 ∈ 𝑅 or 𝑠𝑥 → 𝑝 ∈ 𝑅 by step (2).
Consequently, 𝑆 ⇒ ⟨𝑓↰⟩ ⇒* 𝑢⟨𝑝↰⟩𝑣 ⇒ 𝑢𝑥𝑣 or 𝑆 ⇒ ⟨𝑓↱⟩ ⇒* 𝑢⟨𝑝↱⟩𝑣 ⇒ 𝑢𝑥𝑣 in 𝐺 iff
𝑢𝑥𝑠𝑣 ⇒ 𝑢𝑝𝑣 ⇒*

even 𝑓 or 𝑢𝑠𝑥𝑣 ⇒ 𝑢𝑝𝑣 ⇒*
even 𝑓 in 𝑀 . Hence, by the definition of initialized

even computation, 𝑆 ⇒ ⟨𝑓↰⟩ ⇒* 𝑢⟨𝑝↰⟩𝑣 ⇒ 𝑢𝑥𝑣 or 𝑆 ⇒ ⟨𝑓↱⟩ ⇒* 𝑢⟨𝑝↱⟩𝑣 ⇒ 𝑢𝑥𝑣 in 𝐺
iff 𝑢𝑥𝑠𝑣 ⇒*

init-even 𝑓 or 𝑢𝑠𝑥𝑣 ⇒*
init-even 𝑓 in 𝑀 . As a result, 𝐿(𝐺) = 𝐿(𝑀)init-even , so

Lemma 6.24 holds.

The technique used in the previous proof of Lemma 6.24 is illustrated in the following
example.
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Example 6.25. Consider the IE2SFA

𝑀 = ({𝑠, 𝑞1, 𝑞2, 𝑓}, {𝑎, 𝑏}, 𝑅, 𝑠, {𝑓}),

where 𝑅 consists of the following rules (see Figure 6.6):

𝑠→ 𝑞1, 𝑎𝑞1 → 𝑞1, 𝑞1 → 𝑞2, 𝑎𝑓 → 𝑓,

𝑠𝑎→ 𝑞1, 𝑞1𝑎→ 𝑞1, 𝑞2 → 𝑓, 𝑓𝑏→ 𝑓.

Observe that 𝐿(𝑀)init-even = {𝑎𝑚𝑏𝑛 | 0 ≤ 𝑛 ≤ 𝑚}. Indeed, under initialized even compu-
tation, 𝑀 first moves from 𝑠 to 𝑞1, reading 𝜀 or 𝑎. Then, it reads an arbitrary even number
of 𝑎s, the same number in each of the two directions. Finally, 𝑀 reads an equal number of
𝑎s to the left and 𝑏s to the right.

𝑠 𝑞1 𝑞2 𝑓

𝜀

↱, 𝑎

↰, 𝑎

↱, 𝑎

𝜀 𝜀

↰, 𝑎

↱, 𝑏

Figure 6.6: State diagram of the IE2SFA 𝑀 from Example 6.25.

From 𝑀 , the construction technique from the proof of Lemma 6.24 produces the ELG

𝐺 = ({𝑆, ⟨𝑓↰⟩, ⟨𝑓↱⟩, ⟨𝑞1↰⟩, ⟨𝑞1↱⟩, ⟨𝑞2↰⟩, ⟨𝑞2↱⟩, ⟨𝑠↰⟩, ⟨𝑠↱⟩}, {𝑎, 𝑏}, 𝑃, 𝑆)

with the following rules in 𝑃 :

𝑆 → ⟨𝑓↰⟩, ⟨𝑓↰⟩ → ⟨𝑞1↰⟩, ⟨𝑞1↰⟩ → 𝜀, ⟨𝑞2↰⟩ → ⟨𝑠↰⟩,
𝑆 → ⟨𝑓↱⟩, ⟨𝑓↱⟩ → ⟨𝑞1↱⟩, ⟨𝑞1↱⟩ → 𝜀, ⟨𝑞2↱⟩ → ⟨𝑠↱⟩,
⟨𝑓↰⟩ → 𝑎⟨𝑓↰⟩𝑏, ⟨𝑞1↰⟩ → 𝑎⟨𝑞1↰⟩𝑎, ⟨𝑞1↰⟩ → 𝑎, ⟨𝑞1↱⟩ → 𝑎⟨𝑠↱⟩𝑎,
⟨𝑓↱⟩ → 𝑎⟨𝑓↱⟩𝑏, ⟨𝑞1↱⟩ → 𝑎⟨𝑞1↱⟩𝑎, ⟨𝑞1↱⟩ → 𝑎.

As we can see, 𝐺 starts each derivation by rewriting 𝑆 to ⟨𝑓𝑑⟩, for some 𝑑 ∈ {↰, ↱}. After
this initial derivation step, 𝐺 continues by generating an equal number of 𝑎s to the left and
𝑏s to the right by repeatedly replacing ⟨𝑓𝑑⟩ with 𝑎⟨𝑓𝑑⟩𝑏. Then, it rewrites ⟨𝑓𝑑⟩ to ⟨𝑞1𝑑⟩
and generates any even number of 𝑎s by repeatedly replacing ⟨𝑞1𝑑⟩ with 𝑎⟨𝑞1𝑑⟩𝑎. Finally,
𝐺 rewrites ⟨𝑞1𝑑⟩ to either 𝜀 or 𝑎. Clearly, 𝐿(𝐺) = 𝐿(𝑀)init-even .

For instance, for the initialized even computation

𝑎𝑎𝑎𝑠𝑎𝑎𝑏𝑏⇒ 𝑎𝑎𝑎𝑞1𝑎𝑏𝑏⇒ 𝑎𝑎𝑎𝑞1𝑏𝑏⇒ 𝑎𝑎𝑞1𝑏𝑏⇒ 𝑎𝑎𝑞2𝑏𝑏⇒ 𝑎𝑎𝑓𝑏𝑏⇒ 𝑎𝑎𝑓𝑏⇒ 𝑎𝑓𝑏⇒ 𝑎𝑓 ⇒ 𝑓

in 𝑀 accepting the string 𝑎𝑎𝑎𝑎𝑎𝑏𝑏, the corresponding derivation in 𝐺 is

𝑆 ⇒ ⟨𝑓↱⟩ ⇒ 𝑎⟨𝑓↱⟩𝑏⇒ 𝑎𝑎⟨𝑓↱⟩𝑏𝑏⇒ 𝑎𝑎⟨𝑞1↱⟩𝑏𝑏⇒ 𝑎𝑎𝑎⟨𝑞1↱⟩𝑎𝑏𝑏⇒ 𝑎𝑎𝑎𝑎𝑎𝑏𝑏.

Lemma 6.26. For every ELG 𝐺, there is an IE2GFA 𝑀 such that 𝐿(𝑀)init-even = 𝐿(𝐺).
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Proof. Let 𝐺 = (𝑁,𝑇, 𝑃, 𝑆) be an ELG and 𝑀 = (𝑄,Σ, 𝑅, 𝑠, 𝐹 ) be an IE2GFA constructed
from 𝐺 using the technique described in the proof of Lemma 5.3. Recall that 𝐹 = {𝑆}. As
follows from the proof of Lemma 5.3, 𝑢𝑠𝑧𝑣 ⇒ 𝑢𝐶𝑣 ⇒* 𝑆 in 𝑀 iff 𝑆 ⇒* 𝑢𝐶𝑣 ⇒ 𝑢𝑧𝑣 in 𝐺
for all 𝐶 ∈ 𝑁 and 𝑢, 𝑣, 𝑧 ∈ 𝑇 *. According to the technique used for the construction of
𝑀 , for each 𝐴 → 𝑥𝐵𝑦 ∈ 𝑃 , where 𝐴,𝐵 ∈ 𝑁 and 𝑥, 𝑦 ∈ 𝑇 *, there are two consecutive
rules 𝑥𝐵 → ⟨𝐴→ 𝑥𝐵𝑦⟩, ⟨𝐴→ 𝑥𝐵𝑦⟩𝑦 → 𝐴 ∈ 𝑅, which are always applied one immediately
after the other in the given order. Thus, 𝑢𝐶𝑣 ⇒* 𝑆 consists of an even number of moves
and is alternating, so 𝑢𝐶𝑣 ⇒*

alt 𝑆. Furthermore, since 𝐺 is even, |𝑥| = |𝑦| always holds;
hence, 𝑢𝐶𝑣 ⇒*

alt 𝑆 is an even computation, so 𝑢𝐶𝑣 ⇒*
even 𝑆. Consequently, 𝑢𝑠𝑧𝑣 ⇒

𝑢𝐶𝑣 ⇒*
even 𝑆 in 𝑀 iff 𝑆 ⇒* 𝑢𝐶𝑣 ⇒ 𝑢𝑧𝑣 in 𝐺. Hence, by the definition of initialized even

computation, 𝑢𝑠𝑧𝑣 ⇒*
init-even 𝑆 in 𝑀 iff 𝑆 ⇒* 𝑢𝐶𝑣 ⇒ 𝑢𝑧𝑣 in 𝐺, so 𝐿(𝑀)init-even = 𝐿(𝐺).

Therefore, Lemma 6.26 holds.

Theorem 6.27. 𝜀
IE2GFAΦinit-even = 𝜀

ELGΦ.

Proof. The inclusion 𝜀
IE2GFAΦinit-even ⊆ 𝜀

ELGΦ follows from Lemma 6.24. The inclusion
𝜀

ELGΦ ⊆ 𝜀
IE2GFAΦinit-even follows from Lemma 6.26. Hence, the theorem holds.

6.4 Summary
Figure 6.7 summarizes the achieved results concerning the computational restrictions of
input-erasing two-way finite automata studied in this chapter.

LGΦ

ELGΦ

regΦ

finΦ

singΦ

oddΦ evenΦ

𝜀
IE2GFAΦ = IE2SFAΦ

𝜀
IE2GFAΦalt =

𝜀
IE2SFAΦalt

𝜀
IE2GFAΦinit-even = 𝜀

IE2SFAΦinit-even IE2SFAΦalt

IE2SFAΦinit-even
𝜀

IE2GFAΦeven = IE2SFAΦeven

Figure 6.7: Relations between the language families of computationally restricted IE2GFAs
and IE2SFAs and some other language families. A double line denotes equality, a solid
arrow denotes proper inclusion, and a dash-dotted line denotes incomparability.
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Chapter 7

Input-Related Restrictions

This chapter studies input-related restrictions of IE2GFAs. More specifically, it investigates
the accepting power of these automata working under the assumption that their input
strings or their parts belong to languages from some prescribed language families, such as
the regular and linear language families. Theorems 7.1 and 7.2 show that regular-based
input restrictions give rise to no increase in the power of IE2GFAs. Theorems 7.3 and 7.4
demonstrate that regular-based input restrictions can even lead to a decrease in the power of
IE2GFAs to that of ordinary GFAs. These results are of some interest only when compared
to the investigation of similar restrictions placed upon other rewriting systems, in which
these restrictions give rise to a significant increase in their power. For instance, most
selective grammars with regular-based selectors, which restrict the rewritten strings, are as
strong as Turing machines (see Chapter 10 in [11] for a summary). In view of this increase
in power in terms of other rewriting mechanisms, at a glance, we might hastily expect
analogical results in terms of IE2GFAs, but the present chapter demonstrates that this is
not the case. Finally, however, in Theorem 7.5, we show that linear-based input restrictions
can increase the power of IE2GFAs.

Note that since 𝜀
IE2GFAΦ = IE2SFAΦ, we can, without any loss of generality, work with

𝜀-free IE2SFAs instead of IE2GFAs in Theorems 7.1 through 7.4.
Theorem 7.1. Let 𝑀 = (𝑄,Σ, 𝑅, 𝑠, 𝐹 ) be an 𝜀-free IE2SFA, and let 𝐴,𝐵 ⊆ Σ* be regular.
Then, there exists an IE2SFA 𝑀 ′ such that

𝐿(𝑀 ′) = {𝑢𝑣 | 𝑢𝑠𝑣 ⇒* 𝑓 in 𝑀,𝑓 ∈ 𝐹, 𝑢 ∈ 𝐴, 𝑣 ∈ 𝐵},

so 𝐿(𝑀 ′) is linear.

Proof. Let 𝑀 = (𝑄,Σ, 𝑅, 𝑠, 𝐹 ) be an 𝜀-free IE2SFA, and let 𝐴,𝐵 ⊆ Σ* be regular. Let
𝐴 = 𝐿(𝑀1) and 𝐵 = 𝐿(𝑀2), where 𝑀𝑖 = (𝑄𝑖,Σ, 𝑅𝑖, 𝑠𝑖, 𝐹𝑖) is an 𝜀-free SFA for all 𝑖 ∈
{1, 2}. From 𝑀 , 𝑀1, and 𝑀2, we construct an IE2SFA 𝑀 ′ = (𝑄′,Σ, 𝑅′, 𝑠′, 𝐹 ′) such that
𝐿(𝑀 ′) = {𝑢𝑣 | 𝑢𝑠𝑣 ⇒* 𝑓 in 𝑀,𝑓 ∈ 𝐹, 𝑢 ∈ 𝐴, 𝑣 ∈ 𝐵}. Introduce a new symbol 𝑠′—the start
state of 𝑀 ′. Set 𝑄̂ = {⟨𝑞𝑞1𝑞2⟩ | 𝑞 ∈ 𝑄, 𝑞𝑖 ∈ 𝑄𝑖, 𝑖 ∈ {1, 2}}. Without any loss of generality,
assume that 𝑠′ /∈ 𝑄̂. Set 𝑄′ = 𝑄̂ ∪ {𝑠′} and 𝐹 ′ = {⟨𝑓𝑠1𝑓2⟩ | 𝑓 ∈ 𝐹, 𝑓2 ∈ 𝐹2}. Initially, set
𝑅′ = ∅. Then, extend 𝑅′ by performing steps (1) through (3), given next.

(1) For each 𝑓1 ∈ 𝐹1, add 𝑠′ → ⟨𝑠𝑓1𝑠2⟩ to 𝑅′.

(2) For each 𝑎𝑝→ 𝑞 ∈ 𝑅 and 𝑞1𝑎→ 𝑝1 ∈ 𝑅1, where 𝑝, 𝑞 ∈ 𝑄, 𝑝1, 𝑞1 ∈ 𝑄1, and 𝑎 ∈ Σ, add
𝑎⟨𝑝𝑝1𝑞2⟩ → ⟨𝑞𝑞1𝑞2⟩ to 𝑅′ for all 𝑞2 ∈ 𝑄2.
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(3) For each 𝑝𝑎→ 𝑞 ∈ 𝑅 and 𝑝2𝑎→ 𝑞2 ∈ 𝑅2, where 𝑝, 𝑞 ∈ 𝑄, 𝑝2, 𝑞2 ∈ 𝑄2, and 𝑎 ∈ Σ, add
⟨𝑝𝑞1𝑝2⟩𝑎→ ⟨𝑞𝑞1𝑞2⟩ to 𝑅′ for all 𝑞1 ∈ 𝑄1.

Basic Idea. 𝑀 ′, in effect, works in a two-directional way. To the right, it simulates a com-
putation made by 𝑀 and, simultaneously, a computation made by 𝑀2 (see step (3)).
To the left, it simulates a computation made by 𝑀 and, simultaneously, a computation
made by 𝑀1 in reverse (see step (2)). Consider step (1) to see that 𝑀 ′ accepts its input
if and only if all the three automata—𝑀 , 𝑀1, and 𝑀2—accept their inputs as well, so
𝐿(𝑀 ′) = {𝑢𝑣 | 𝑢𝑠𝑣 ⇒* 𝑓 in 𝑀,𝑓 ∈ 𝐹, 𝑢 ∈ 𝐴, 𝑣 ∈ 𝐵}.

Let us now establish 𝐿(𝑀 ′) = {𝑢𝑣 | 𝑢𝑠𝑣 ⇒* 𝑓 in 𝑀,𝑓 ∈ 𝐹, 𝑢 ∈ 𝐴, 𝑣 ∈ 𝐵} formally. We
start by proving the following claim.

Claim 7.1.A. For all 𝑢, 𝑣 ∈ Σ*, 𝑝, 𝑞 ∈ 𝑄, 𝑝1, 𝑞1 ∈ 𝑄1, and 𝑝2, 𝑞2 ∈ 𝑄2,

𝑢⟨𝑝𝑝1𝑝2⟩𝑣 ⇒* ⟨𝑞𝑞1𝑞2⟩ in 𝑀 ′ iff 𝑢𝑝𝑣 ⇒* 𝑞 in 𝑀, 𝑞1𝑢⇒* 𝑝1 in 𝑀1, and 𝑝2𝑣 ⇒* 𝑞2 in 𝑀2.

Proof of Claim 7.1.A. First, we establish the only if part of this equivalence. By induction
on the number of moves 𝑖 ≥ 0, we prove that 𝑢⟨𝑝𝑝1𝑝2⟩𝑣 ⇒𝑖 ⟨𝑞𝑞1𝑞2⟩ in 𝑀 ′ implies 𝑢𝑝𝑣 ⇒* 𝑞
in 𝑀 , 𝑞1𝑢⇒* 𝑝1 in 𝑀1, and 𝑝2𝑣 ⇒* 𝑞2 in 𝑀2.
Basis. Let 𝑖 = 0, so 𝑢⟨𝑝𝑝1𝑝2⟩𝑣 ⇒0 ⟨𝑞𝑞1𝑞2⟩ in 𝑀 ′. Then, 𝑝 = 𝑞, 𝑝1 = 𝑞1, 𝑝2 = 𝑞2, and 𝑢𝑣 = 𝜀.
Clearly, 𝑝⇒0 𝑝 in 𝑀 , 𝑝1 ⇒0 𝑝1 in 𝑀1, and 𝑝2 ⇒0 𝑝2 in 𝑀2, so the basis holds true.
Induction Hypothesis. Assume that the implication holds for all computations consisting of
no more than 𝑗 moves in 𝑀 ′, for some 𝑗 ∈ N0.
Induction Step. Consider any computation of the form 𝑢⟨𝑝𝑝1𝑝2⟩𝑣 ⇒𝑗+1 ⟨𝑞𝑞1𝑞2⟩ in 𝑀 ′. Let
this computation start with the application of a rule of the form

𝑎⟨𝑝𝑝1𝑝2⟩ → ⟨𝑜𝑜1𝑝2⟩

from 𝑅′, where 𝑜 ∈ 𝑄, 𝑜1 ∈ 𝑄1, and 𝑎 ∈ Σ. Thus, we can express 𝑢⟨𝑝𝑝1𝑝2⟩𝑣 ⇒𝑗+1 ⟨𝑞𝑞1𝑞2⟩
as

𝑢′𝑎⟨𝑝𝑝1𝑝2⟩𝑣 ⇒ 𝑢′⟨𝑜𝑜1𝑝2⟩𝑣 ⇒𝑗 ⟨𝑞𝑞1𝑞2⟩

in 𝑀 ′, where 𝑢′𝑎 = 𝑢. By the induction hypothesis, 𝑢′𝑜𝑣 ⇒* 𝑞 in 𝑀 , 𝑞1𝑢′ ⇒* 𝑜1 in 𝑀1, and
𝑝2𝑣 ⇒* 𝑞2 in 𝑀2. Since step (2) constructs 𝑎⟨𝑝𝑝1𝑝2⟩ → ⟨𝑜𝑜1𝑝2⟩ ∈ 𝑅′ from 𝑜1𝑎 → 𝑝1 ∈ 𝑅1

and 𝑎𝑝→ 𝑜 ∈ 𝑅,
𝑢′𝑎𝑝𝑣 ⇒ 𝑢′𝑜𝑣 ⇒* 𝑞

in 𝑀 and
𝑞1𝑢

′𝑎⇒* 𝑜1𝑎⇒ 𝑝1

in 𝑀1. Because 𝑢′𝑎 = 𝑢, 𝑢𝑝𝑣 ⇒* 𝑞 in 𝑀 and 𝑞1𝑢⇒* 𝑝1 in 𝑀1.
In the case that the computation 𝑢⟨𝑝𝑝1𝑝2⟩𝑣 ⇒𝑗+1 ⟨𝑞𝑞1𝑞2⟩ in 𝑀 ′ starts with the appli-

cation of a rule of the form ⟨𝑝𝑝1𝑝2⟩𝑎→ ⟨𝑜𝑝1𝑜2⟩ from 𝑅′, where 𝑜 ∈ 𝑄, 𝑜2 ∈ 𝑄2, and 𝑎 ∈ Σ,
we can proceed analogously.

Thus, the induction step is completed.
Now, we establish the if part of the equivalence stated in Claim 7.1.A, so we show

that 𝑢𝑝𝑣 ⇒𝑖 𝑞 in 𝑀 , 𝑞1𝑢 ⇒𝑗 𝑝1 in 𝑀1, and 𝑝2𝑣 ⇒𝑘 𝑞2 in 𝑀2, where 𝑗 + 𝑘 = 𝑖, implies
𝑢⟨𝑝𝑝1𝑝2⟩𝑣 ⇒* ⟨𝑞𝑞1𝑞2⟩ in 𝑀 ′ by induction on the number of moves 𝑖 ≥ 0.
Basis. Let 𝑖 = 0, so 𝑗 = 0, 𝑘 = 0, 𝑢𝑝𝑣 ⇒0 𝑞 in 𝑀 , 𝑞1𝑢⇒0 𝑝1 in 𝑀1, and 𝑝2𝑣 ⇒0 𝑞2 in 𝑀2.
Then, 𝑝 = 𝑞, 𝑝1 = 𝑞1, 𝑝2 = 𝑞2, and 𝑢𝑣 = 𝜀. Since ⟨𝑝𝑝1𝑝2⟩ ⇒0 ⟨𝑝𝑝1𝑝2⟩ in 𝑀 ′, the basis holds
true.
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Induction Hypothesis. Assume that the implication holds for all computations consisting of
no more than 𝑙 moves in 𝑀 , for some 𝑙 ∈ N0.
Induction Step. Consider any 𝑢𝑝𝑣 ⇒𝑙+1 𝑞 in 𝑀 , 𝑞1𝑢⇒𝑚+1 𝑝1 in 𝑀1, and 𝑝2𝑣 ⇒𝑛 𝑞2 in 𝑀2,
where 𝑚+ 𝑛 = 𝑙. Let 𝑢𝑝𝑣 ⇒𝑙+1 𝑞 in 𝑀 start with the application of a rule of the form

𝑎𝑝→ 𝑜

from 𝑅 and 𝑞1𝑢⇒𝑚+1 𝑝1 in 𝑀1 end with the application of a rule of the form

𝑜1𝑎→ 𝑝1

from 𝑅1, where 𝑜 ∈ 𝑄, 𝑜1 ∈ 𝑄1, and 𝑎 ∈ Σ. Express 𝑢𝑝𝑣 ⇒𝑙+1 𝑞 as

𝑢′𝑎𝑝𝑣 ⇒ 𝑢′𝑜𝑣 ⇒𝑙 𝑞

in 𝑀 and 𝑞1𝑢⇒𝑚+1 𝑝1 as
𝑞1𝑢

′𝑎⇒𝑚 𝑜1𝑎⇒ 𝑝1

in 𝑀1, where 𝑢′𝑎 = 𝑢. By the induction hypothesis, we have 𝑢′⟨𝑜𝑜1𝑝2⟩𝑣 ⇒* ⟨𝑞𝑞1𝑞2⟩ in 𝑀 ′.
From 𝑎𝑝→ 𝑜 ∈ 𝑅 and 𝑜1𝑎→ 𝑝1 ∈ 𝑅1, step (2) constructs 𝑎⟨𝑝𝑝1𝑝2⟩ → ⟨𝑜𝑜1𝑝2⟩ ∈ 𝑅′. Thus,
𝑀 ′ makes

𝑢′𝑎⟨𝑝𝑝1𝑝2⟩𝑣 ⇒ 𝑢′⟨𝑜𝑜1𝑝2⟩𝑣 ⇒* ⟨𝑞𝑞1𝑞2⟩.
Since 𝑢′𝑎 = 𝑢, 𝑢⟨𝑝𝑝1𝑝2⟩𝑣 ⇒* ⟨𝑞𝑞1𝑞2⟩ in 𝑀 ′.

Next, consider any 𝑢𝑝𝑣 ⇒𝑙+1 𝑞 in 𝑀 , 𝑞1𝑢⇒𝑚 𝑝1 in 𝑀1, and 𝑝2𝑣 ⇒𝑛+1 𝑞2 in 𝑀2, where
𝑚+𝑛 = 𝑙. Let 𝑢𝑝𝑣 ⇒𝑙+1 𝑞 in 𝑀 start with the application of a rule of the form 𝑝𝑎→ 𝑜 from
𝑅 and 𝑝2𝑣 ⇒𝑛+1 𝑞2 in 𝑀2 start with the application of a rule of the form 𝑝2𝑎 → 𝑜2 from
𝑅2, where 𝑜 ∈ 𝑄, 𝑜2 ∈ 𝑄2, and 𝑎 ∈ Σ. Then, proceed by analogy with the previous case.

Thus, the induction step is completed, and Claim 7.1.A holds.

Consider Claim 7.1.A for 𝑝 = 𝑠, 𝑞1 = 𝑠1, and 𝑝2 = 𝑠2. At this point, for all 𝑢, 𝑣 ∈ Σ*,
𝑞 ∈ 𝑄, 𝑝1 ∈ 𝑄1, and 𝑞2 ∈ 𝑄2, 𝑢⟨𝑠𝑝1𝑠2⟩𝑣 ⇒* ⟨𝑞𝑠1𝑞2⟩ in 𝑀 ′ iff 𝑢𝑠𝑣 ⇒* 𝑞 in 𝑀 , 𝑠1𝑢 ⇒* 𝑝1
in 𝑀1, and 𝑠2𝑣 ⇒* 𝑞2 in 𝑀2. As follows from the construction of 𝑅′, 𝑀 ′ starts every
computation by applying a rule of the form 𝑠′ → ⟨𝑠𝑓1𝑠2⟩ with 𝑓1 ∈ 𝐹1. Consequently,
𝑢𝑠′𝑣 ⇒ 𝑢⟨𝑠𝑓1𝑠2⟩𝑣 ⇒* ⟨𝑞𝑠1𝑞2⟩ in 𝑀 ′ iff 𝑢𝑠𝑣 ⇒* 𝑞 in 𝑀 , 𝑠1𝑢 ⇒* 𝑓1 in 𝑀1, and 𝑠2𝑣 ⇒* 𝑞2
in 𝑀2. Considering this equivalence for 𝑞 = 𝑓 and 𝑞2 = 𝑓2, where 𝑓 ∈ 𝐹 and 𝑓2 ∈ 𝐹2,
we obtain 𝑢𝑠′𝑣 ⇒ 𝑢⟨𝑠𝑓1𝑠2⟩𝑣 ⇒* ⟨𝑓𝑠1𝑓2⟩ in 𝑀 ′ iff 𝑢𝑠𝑣 ⇒* 𝑓 in 𝑀 , 𝑠1𝑢 ⇒* 𝑓1 in 𝑀1, and
𝑠2𝑣 ⇒* 𝑓2 in 𝑀2. Recall that 𝐹 ′ = {⟨𝑓𝑠1𝑓2⟩ | 𝑓 ∈ 𝐹, 𝑓2 ∈ 𝐹2}. Therefore, 𝐿(𝑀 ′) =
{𝑢𝑣 | 𝑢𝑠𝑣 ⇒* 𝑓 in 𝑀,𝑓 ∈ 𝐹, 𝑢 ∈ 𝐿(𝑀1), 𝑣 ∈ 𝐿(𝑀2)}. Since 𝐿(𝑀1) = 𝐴 and 𝐿(𝑀2) = 𝐵,
𝐿(𝑀 ′) = {𝑢𝑣 | 𝑢𝑠𝑣 ⇒* 𝑓 in 𝑀,𝑓 ∈ 𝐹, 𝑢 ∈ 𝐴, 𝑣 ∈ 𝐵}, so Theorem 7.1 holds.

Theorem 7.2. Let 𝑀 = (𝑄,Σ, 𝑅, 𝑠, 𝐹 ) be an 𝜀-free IE2SFA, and let 𝐴 ⊆ Σ* be regular.
Then, there exists an IE2SFA 𝑀 ′ satisfying

𝐿(𝑀 ′) = {𝑢𝑣 | 𝑢𝑠𝑣 ⇒* 𝑓 in 𝑀,𝑓 ∈ 𝐹, 𝑢𝑣 ∈ 𝐴},

so 𝐿(𝑀 ′) is linear.

Proof. Let 𝑀 = (𝑄,Σ, 𝑅, 𝑠, 𝐹 ) be an 𝜀-free IE2SFA, and let 𝐴 ⊆ Σ* be regular. Let 𝐴 =
𝐿(𝑀̂), where 𝑀̂ = (𝑄̂,Σ, 𝑅̂, 𝑠, 𝐹 ) is an 𝜀-free SFA. From 𝑀 and 𝑀̂ , we next construct an
IE2SFA 𝑀 ′ = (𝑄′,Σ, 𝑅′, 𝑠′, 𝐹 ′) such that 𝐿(𝑀 ′) = {𝑢𝑣 | 𝑢𝑠𝑣 ⇒* 𝑓 in 𝑀,𝑓 ∈ 𝐹, 𝑢𝑣 ∈ 𝐴}.
Introduce a new symbol 𝑠′—the start state of 𝑀 ′. Set 𝑄̄ = {⟨𝑞𝑝𝑞⟩ | 𝑞 ∈ 𝑄, 𝑝, 𝑞 ∈ 𝑄̂}.
Without any loss of generality, assume that 𝑠′ /∈ 𝑄̄. Set 𝑄′ = 𝑄̄ ∪ {𝑠′} and 𝐹 ′ = {⟨𝑓𝑠𝑓⟩ |
𝑓 ∈ 𝐹, 𝑓 ∈ 𝐹}. Initially, set 𝑅′ = ∅. Then, extend 𝑅′ by performing the following steps:
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(1) for each 𝑞 ∈ 𝑄̂, add 𝑠′ → ⟨𝑠𝑞𝑞⟩ to 𝑅′;

(2) for each 𝑎𝑝 → 𝑞 ∈ 𝑅 and 𝑞𝑎 → 𝑝 ∈ 𝑅̂, where 𝑝, 𝑞 ∈ 𝑄, 𝑝, 𝑞 ∈ 𝑄̂, and 𝑎 ∈ Σ, add
𝑎⟨𝑝𝑝𝑜⟩ → ⟨𝑞𝑞𝑜⟩ to 𝑅′ for all 𝑜 ∈ 𝑄̂;

(3) for each 𝑝𝑎 → 𝑞 ∈ 𝑅 and 𝑝𝑎 → 𝑞 ∈ 𝑅̂, where 𝑝, 𝑞 ∈ 𝑄, 𝑝, 𝑞 ∈ 𝑄̂, and 𝑎 ∈ Σ, add
⟨𝑝𝑜𝑝⟩𝑎→ ⟨𝑞𝑜𝑞⟩ to 𝑅′ for all 𝑜 ∈ 𝑄̂.

Basic Idea. As can be seen, 𝑀 ′ works in a two-directional way. To the right, it simulates
a computation made by 𝑀 and, simultaneously, a computation made by 𝑀̂ (see step (3)).
To the left, it simulates a computation made by 𝑀 and, simultaneously, a computation
made by 𝑀̂ in reverse (see step (2)). Considering step (1), observe that 𝑀 ′ accepts its
input if and only if both 𝑀 and 𝑀̂ accept their inputs, too, so 𝐿(𝑀 ′) = {𝑢𝑣 | 𝑢𝑠𝑣 ⇒*

𝑓 in 𝑀,𝑓 ∈ 𝐹, 𝑢𝑣 ∈ 𝐴}.
Complete this proof by analogy with the proof of Theorem 7.1.

Theorem 7.3. Let 𝑀 = (𝑄,Σ, 𝑅, 𝑠, 𝐹 ) be an 𝜀-free IE2SFA, 𝐴 ⊆ Σ* be finite, and 𝐵 ⊆ Σ*

be regular. Then, there exists an SFA 𝑀 ′ such that

𝐿(𝑀 ′) = {𝑢𝑣 | 𝑢𝑠𝑣 ⇒* 𝑓 in 𝑀,𝑓 ∈ 𝐹, 𝑢 ∈ 𝐴, 𝑣 ∈ 𝐵},

so 𝐿(𝑀 ′) is regular.

Proof. Let 𝑀 = (𝑄,Σ, 𝑅, 𝑠, 𝐹 ) be an 𝜀-free IE2SFA, 𝐴 ⊆ Σ* be finite, and 𝐵 ⊆ Σ* be
regular. Next, we construct an SFA 𝑀 ′ = (𝑄′,Σ, 𝑅′, 𝑠′, 𝐹 ′) such that 𝐿(𝑀 ′) = {𝑢𝑣 | 𝑢𝑠𝑣 ⇒*

𝑓 in 𝑀,𝑓 ∈ 𝐹, 𝑢 ∈ 𝐴, 𝑣 ∈ 𝐵}. Let 𝑛 = max{|𝑥| | 𝑥 ∈ 𝐴}. Let 𝑀̂ = (𝑄̂,Σ, 𝑅̂, 𝑠, 𝐹 ) be an
𝜀-free SFA such that 𝐿(𝑀̂) = 𝐵. Set 𝑄′ = {⟨𝑥⟩, ⟨𝑥𝑞𝑞⟩ | 𝑥 ∈ Σ*, 0 ≤ |𝑥| ≤ 𝑛, 𝑞 ∈ 𝑄, 𝑞 ∈ 𝑄̂},
𝑠′ = ⟨𝜀⟩, and 𝐹 ′ = {⟨𝑓𝑓⟩ | 𝑓 ∈ 𝐹, 𝑓 ∈ 𝐹}. 𝑅′ is constructed in the following way:

(1) for each ⟨𝑥⟩, ⟨𝑥𝑎⟩ ∈ 𝑄′, where 𝑥 ∈ Σ* and 𝑎 ∈ Σ, add ⟨𝑥⟩𝑎→ ⟨𝑥𝑎⟩ to 𝑅′;

(2) for each 𝑥 ∈ 𝐴, add ⟨𝑥⟩ → ⟨𝑥𝑠𝑠⟩ to 𝑅′;

(3) for each 𝑎𝑝 → 𝑞 ∈ 𝑅 and ⟨𝑥𝑎𝑝𝑞⟩, ⟨𝑥𝑞𝑞⟩ ∈ 𝑄′, where 𝑝, 𝑞 ∈ 𝑄, 𝑞 ∈ 𝑄̂, 𝑎 ∈ Σ and
𝑥 ∈ Σ*, add ⟨𝑥𝑎𝑝𝑞⟩ → ⟨𝑥𝑞𝑞⟩ to 𝑅′;

(4) for each 𝑝𝑎 → 𝑞 ∈ 𝑅, 𝑝𝑎 → 𝑞 ∈ 𝑅̂, and ⟨𝑥𝑝𝑝⟩, ⟨𝑥𝑞𝑞⟩ ∈ 𝑄′, where 𝑝, 𝑞 ∈ 𝑄, 𝑝, 𝑞 ∈ 𝑄̂,
and 𝑥 ∈ Σ*, add ⟨𝑥𝑝𝑝⟩𝑎→ ⟨𝑥𝑞𝑞⟩ to 𝑅′.

Basic Idea. 𝑀 ′ starts every computation by reading a string from the language 𝐴 and
recording it into its current state (see step (1)). After this initial phase, 𝑀 ′ begins to
simulate computations made by 𝑀 and 𝑀̂ (see step (2)). All left moves made by 𝑀
are simulated by 𝑀 ′ exclusively within its states by successively erasing symbols from the
recorded string (see step (3)). All right moves made by 𝑀 and, simultaneously, a computa-
tion made by 𝑀̂ are simulated by 𝑀 ′ simply by processing the remaining part of the input
tape (see step (4)).

Next, we demonstrate 𝐿(𝑀 ′) = {𝑢𝑣 | 𝑢𝑠𝑣 ⇒* 𝑓 in 𝑀,𝑓 ∈ 𝐹, 𝑢 ∈ 𝐴, 𝑣 ∈ 𝐵} rigorously.
We start by proving the following claim.

Claim 7.3.A. For all 𝑢, 𝑣 ∈ Σ*, 𝑝, 𝑞 ∈ 𝑄, and 𝑝, 𝑞 ∈ 𝑄̂ such that 0 ≤ |𝑢| ≤ 𝑛,

⟨𝑢𝑝𝑝⟩𝑣 ⇒* ⟨𝑞𝑞⟩ in 𝑀 ′ iff 𝑢𝑝𝑣 ⇒* 𝑞 in 𝑀 and 𝑝𝑣 ⇒* 𝑞 in 𝑀̂.
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Proof of Claim 7.3.A. First, we establish the only if part of this equivalence. By induc-
tion on the number of moves 𝑖 ≥ 0, we show that ⟨𝑢𝑝𝑝⟩𝑣 ⇒𝑖 ⟨𝑞𝑞⟩ in 𝑀 ′ implies 𝑢𝑝𝑣 ⇒*

𝑞 in 𝑀 and 𝑝𝑣 ⇒* 𝑞 in 𝑀̂ .
Basis. Let 𝑖 = 0, so ⟨𝑢𝑝𝑝⟩𝑣 ⇒0 ⟨𝑞𝑞⟩ in 𝑀 ′. Then, 𝑝 = 𝑞, 𝑝 = 𝑞, and 𝑢𝑣 = 𝜀. Clearly,
𝑝⇒0 𝑝 in 𝑀 and 𝑝⇒0 𝑝 in 𝑀̂ , so the basis holds true.
Induction Hypothesis. Assume that the implication holds for all computations consisting of
no more than 𝑗 moves in 𝑀 ′, for some 𝑗 ∈ N0.
Induction Step. Consider any computation of the form ⟨𝑢𝑝𝑝⟩𝑣 ⇒𝑗+1 ⟨𝑞𝑞⟩ in 𝑀 ′. Let this
computation start with the application of a rule of the form⟨︀

𝑢′𝑎𝑝𝑝
⟩︀
→

⟨︀
𝑢′𝑜𝑝

⟩︀
from 𝑅′, where 𝑜 ∈ 𝑄, 𝑢′𝑎 = 𝑢, and 𝑎 ∈ Σ. Thus, we can express ⟨𝑢𝑝𝑝⟩𝑣 ⇒𝑗+1 ⟨𝑞𝑞⟩ as⟨︀

𝑢′𝑎𝑝𝑝
⟩︀
𝑣 ⇒

⟨︀
𝑢′𝑜𝑝

⟩︀
𝑣 ⇒𝑗 ⟨𝑞𝑞⟩

in 𝑀 ′. Since ⟨𝑢′𝑜𝑝⟩𝑣 ⇒𝑗 ⟨𝑞𝑞⟩ in 𝑀 ′, by the induction hypothesis, 𝑢′𝑜𝑣 ⇒* 𝑞 in 𝑀 and
𝑝𝑣 ⇒* 𝑞 in 𝑀̂ . Step (3) constructs ⟨𝑢′𝑎𝑝𝑝⟩ → ⟨𝑢′𝑜𝑝⟩ ∈ 𝑅′ from 𝑎𝑝→ 𝑜 ∈ 𝑅, so

𝑢′𝑎𝑝𝑣 ⇒ 𝑢′𝑜𝑣 ⇒* 𝑞

in 𝑀 . Since 𝑢′𝑎 = 𝑢, we have 𝑢𝑝𝑣 ⇒* 𝑞 in 𝑀 .
Next, suppose that the computation ⟨𝑢𝑝𝑝⟩𝑣 ⇒𝑗+1 ⟨𝑞𝑞⟩ in 𝑀 ′ starts with the application

of a rule of the form
⟨𝑢𝑝𝑝⟩𝑎→ ⟨𝑢𝑜𝑜⟩

from 𝑅′, where 𝑜 ∈ 𝑄, 𝑜 ∈ 𝑄̂, and 𝑎 ∈ Σ. Express ⟨𝑢𝑝𝑝⟩𝑣 ⇒𝑗+1 ⟨𝑞𝑞⟩ as

⟨𝑢𝑝𝑝⟩𝑎𝑣′ ⇒ ⟨𝑢𝑜𝑜⟩𝑣′ ⇒𝑗 ⟨𝑞𝑞⟩

in 𝑀 ′, where 𝑣′𝑎 = 𝑣. By the induction hypothesis, 𝑢𝑜𝑣′ ⇒* 𝑞 in 𝑀 and 𝑜𝑣′ ⇒* 𝑞 in 𝑀̂ .
Since step (4) constructs ⟨𝑢𝑝𝑝⟩𝑎→ ⟨𝑢𝑜𝑜⟩ ∈ 𝑅′ from 𝑝𝑎→ 𝑜 ∈ 𝑅 and 𝑝𝑎→ 𝑜 ∈ 𝑅̂, it follows
that

𝑢𝑝𝑎𝑣′ ⇒ 𝑢𝑜𝑣′ ⇒* 𝑞

in 𝑀 and
𝑝𝑎𝑣′ ⇒ 𝑜𝑣′ ⇒* 𝑞

in 𝑀̂ . Because 𝑎𝑣′ = 𝑣, 𝑢𝑝𝑣 ⇒* 𝑞 in 𝑀 and 𝑝𝑣 ⇒* 𝑞 in 𝑀̂ .
Thus, the induction step is completed.
Now, we establish the if part of the equivalence stated in Claim 7.3.A, so we show that

𝑢𝑝𝑣 ⇒𝑖 𝑞 in 𝑀 and 𝑝𝑣 ⇒𝑗 𝑞 in 𝑀̂ , where 𝑗 ≤ 𝑖, implies ⟨𝑢𝑝𝑝⟩𝑣 ⇒* ⟨𝑞𝑞⟩ in 𝑀 ′ by induction
on the number of moves 𝑖 ≥ 0.
Basis. Let 𝑖 = 0, so 𝑗 = 0, 𝑢𝑝𝑣 ⇒0 𝑞 in 𝑀 , and 𝑝𝑣 ⇒0 𝑞 in 𝑀̂ . Then, 𝑝 = 𝑞, 𝑝 = 𝑞, and
𝑢𝑣 = 𝜀. Since ⟨𝑝𝑝⟩ ⇒0 ⟨𝑝𝑝⟩ in 𝑀 ′, the basis holds true.
Induction Hypothesis. Assume that the implication holds for all computations consisting of
no more than 𝑘 moves in 𝑀 , for some 𝑘 ∈ N0.
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Induction Step. Consider any 𝑢𝑝𝑣 ⇒𝑘+1 𝑞 in 𝑀 and 𝑝𝑣 ⇒𝑙 𝑞 in 𝑀̂ , where 𝑙 ≤ 𝑘. Let
𝑢𝑝𝑣 ⇒𝑘+1 𝑞 in 𝑀 start with the application of a rule of the form

𝑎𝑝→ 𝑜

from 𝑅, where 𝑜 ∈ 𝑄 and 𝑎 ∈ Σ. Then, express 𝑢𝑝𝑣 ⇒𝑘+1 𝑞 as

𝑢′𝑎𝑝𝑣 ⇒ 𝑢′𝑜𝑣 ⇒𝑘 𝑞

in 𝑀 , where 𝑢 = 𝑢′𝑎. Since 𝑢′𝑜𝑣 ⇒𝑘 𝑞 in 𝑀 and 𝑝𝑣 ⇒𝑙 𝑞 in 𝑀̂ , by the induction hypothesis,
⟨𝑢′𝑜𝑝⟩𝑣 ⇒* ⟨𝑞𝑞⟩ in 𝑀 ′. From 𝑎𝑝→ 𝑜 ∈ 𝑅, step (3) constructs ⟨𝑢′𝑎𝑝𝑝⟩ → ⟨𝑢′𝑜𝑝⟩ ∈ 𝑅′, so⟨︀

𝑢′𝑎𝑝𝑝
⟩︀
𝑣 ⇒

⟨︀
𝑢′𝑜𝑝

⟩︀
𝑣 ⇒* ⟨𝑞𝑞⟩

in 𝑀 ′. Because 𝑢′𝑎 = 𝑢, ⟨𝑢𝑝𝑝⟩𝑣 ⇒* ⟨𝑞𝑞⟩ in 𝑀 ′.
Next, consider any 𝑢𝑝𝑣 ⇒𝑘+1 𝑞 in 𝑀 and 𝑝𝑣 ⇒𝑙+1 𝑞 in 𝑀̂ with 𝑙 ≤ 𝑘. Let 𝑢𝑝𝑣 ⇒𝑘+1

𝑞 in 𝑀 start with the application of a rule of the form

𝑝𝑎→ 𝑜

from 𝑅 and 𝑝𝑣 ⇒𝑙+1 𝑞 in 𝑀̂ start with the application of a rule of the form

𝑝𝑎→ 𝑜

from 𝑅̂, where 𝑜 ∈ 𝑄, 𝑜 ∈ 𝑄̂, and 𝑎 ∈ Σ. Express 𝑢𝑝𝑣 ⇒𝑘+1 𝑞 as

𝑢𝑝𝑎𝑣′ ⇒ 𝑢𝑜𝑣′ ⇒𝑘 𝑞

in 𝑀 and 𝑝𝑣 ⇒𝑙+1 𝑞 as
𝑝𝑎𝑣′ ⇒ 𝑜𝑣′ ⇒𝑙 𝑞

in 𝑀̂ , where 𝑎𝑣′ = 𝑣. By the induction hypothesis, ⟨𝑢𝑜𝑜⟩𝑣′ ⇒* ⟨𝑞𝑞⟩ in 𝑀 ′. From 𝑝𝑎→ 𝑜 ∈
𝑅 and 𝑝𝑎→ 𝑜 ∈ 𝑅̂, step (4) constructs ⟨𝑢𝑝𝑝⟩𝑎→ ⟨𝑢𝑜𝑜⟩ ∈ 𝑅′, so

⟨𝑢𝑝𝑝⟩𝑎𝑣′ ⇒ ⟨𝑢𝑜𝑜⟩𝑣′ ⇒* ⟨𝑞𝑞⟩

in 𝑀 ′. Since 𝑎𝑣′ = 𝑣, ⟨𝑢𝑝𝑝⟩𝑣 ⇒* ⟨𝑞𝑞⟩ in 𝑀 ′.
Thus, the induction step is completed, and Claim 7.3.A holds.

Considering Claim 7.3.A for 𝑝 = 𝑠 and 𝑝′ = 𝑠′, we see that for all 𝑢, 𝑣 ∈ Σ*, 𝑞 ∈ 𝑄, and
𝑞 ∈ 𝑄̂ such that 0 ≤ |𝑢| ≤ 𝑛, ⟨𝑢𝑠𝑠⟩𝑣 ⇒* ⟨𝑞𝑞⟩ in 𝑀 ′ iff 𝑢𝑠𝑣 ⇒* 𝑞 in 𝑀 and 𝑠𝑣 ⇒* 𝑞 in 𝑀̂ .
As follows from the construction of 𝑅′, 𝑀 ′ starts every accepting computation by a sequence
of moves of the form ⟨𝜀⟩ ⇒* ⟨𝑥⟩ ⇒ ⟨𝑥𝑠𝑠⟩, where 𝑥 ∈ 𝐴. Consequently, ⟨𝜀⟩𝑣 ⇒* ⟨𝑢⟩𝑣 ⇒
⟨𝑢𝑠𝑠⟩𝑣 ⇒* ⟨𝑞𝑞⟩ in 𝑀 ′ iff 𝑢𝑠𝑣 ⇒* 𝑞 in 𝑀 , 𝑠𝑣 ⇒* 𝑞 in 𝑀̂ , and 𝑢 ∈ 𝐴. Now, consider this
equivalence for 𝑞 = 𝑓 and 𝑞 = 𝑓 , where 𝑓 ∈ 𝐹 and 𝑓 ∈ 𝐹 . That is, ⟨𝜀⟩𝑣 ⇒* ⟨𝑢⟩𝑣 ⇒
⟨𝑢𝑠𝑠⟩𝑣 ⇒* ⟨𝑓𝑓⟩ in 𝑀 ′ iff 𝑢𝑠𝑣 ⇒* 𝑓 in 𝑀 , 𝑠𝑣 ⇒* 𝑓 in 𝑀̂ , and 𝑢 ∈ 𝐴. Since 𝐹 ′ = {⟨𝑓𝑓⟩ |
𝑓 ∈ 𝐹, 𝑓 ∈ 𝐹}, it follows that 𝐿(𝑀 ′) = {𝑢𝑣 | 𝑢𝑠𝑣 ⇒* 𝑓 in 𝑀,𝑓 ∈ 𝐹, 𝑢 ∈ 𝐴, 𝑣 ∈ 𝐿(𝑀̂)}.
Thus, given that 𝐿(𝑀̂) = 𝐵, we have 𝐿(𝑀 ′) = {𝑢𝑣 | 𝑢𝑠𝑣 ⇒* 𝑓 in 𝑀,𝑓 ∈ 𝐹, 𝑢 ∈ 𝐴, 𝑣 ∈ 𝐵}.
Therefore, Theorem 7.3 holds.

Theorem 7.4. Let 𝑀 = (𝑄,Σ, 𝑅, 𝑠, 𝐹 ) be an 𝜀-free IE2SFA, and let 𝐴,𝐵,𝐶 ⊆ Σ* be
regular. Then, there exists an SFA 𝑀 ′ such that

𝐿(𝑀 ′) = {𝑣 | 𝑢𝑠𝑣𝑤 ⇒* 𝑓 in 𝑀,𝑓 ∈ 𝐹, 𝑢 ∈ 𝐴, 𝑣 ∈ 𝐵,𝑤 ∈ 𝐶},

so 𝐿(𝑀 ′) is regular.
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Proof. Let 𝑀 = (𝑄,Σ, 𝑅, 𝑠, 𝐹 ) be an 𝜀-free IE2SFA and 𝐴,𝐵,𝐶 ⊆ Σ* be regular. Let
𝐴 = 𝐿(𝑀1), 𝐵 = 𝐿(𝑀2), and 𝐶 = 𝐿(𝑀3), where 𝑀𝑖 = (𝑄𝑖,Σ𝑖, 𝑅𝑖, 𝑠𝑖, 𝐹𝑖) is an 𝜀-free SFA
for all 𝑖 ∈ {1, 2, 3}. From 𝑀 , 𝑀1, 𝑀2, and 𝑀3, we construct an SFA 𝑀 ′ = (𝑄′,Σ, 𝑅′, 𝑠′, 𝐹 ′)
satisfying 𝐿(𝑀 ′) = {𝑣 | 𝑢𝑠𝑣𝑤 ⇒* 𝑓 in 𝑀,𝑓 ∈ 𝐹, 𝑢 ∈ 𝐴, 𝑣 ∈ 𝐵,𝑤 ∈ 𝐶}. Introduce a new
symbol 𝑠′—the start state of 𝑀 ′. Set 𝑄̂ = {⟨𝑞𝑞1𝑞2𝑠31⟩, ⟨𝑞𝑞1𝑓2𝑞32⟩ | 𝑞 ∈ 𝑄, 𝑞𝑖 ∈ 𝑄𝑖, 𝑖 ∈
{1, 2, 3}, 𝑓2 ∈ 𝐹2}. Without any loss of generality, assume that 𝑠′ /∈ 𝑄̂. Set 𝑄′ = 𝑄̂ ∪ {𝑠′}
and 𝐹 ′ = {⟨𝑓𝑠1𝑓2𝑓32⟩ | 𝑓 ∈ 𝐹, 𝑓𝑖 ∈ 𝐹𝑖, 𝑖 ∈ {2, 3}}. 𝑅′ is constructed by performing steps
(1) through (5), given next.

(1) For each 𝑓1 ∈ 𝐹1, add 𝑠′ → ⟨𝑠𝑓1𝑠2𝑠31⟩ to 𝑅′.

(2) For each 𝑞 ∈ 𝑄, 𝑞1 ∈ 𝑄1, and 𝑓2 ∈ 𝐹2, add ⟨𝑞𝑞1𝑓2𝑠31⟩ → ⟨𝑞𝑞1𝑓2𝑠32⟩ to 𝑅′.

(3) For each 𝑎𝑝→ 𝑞 ∈ 𝑅 and 𝑞1𝑎→ 𝑝1 ∈ 𝑅1, where 𝑝, 𝑞 ∈ 𝑄, 𝑝1, 𝑞1 ∈ 𝑄1, and 𝑎 ∈ Σ, add
⟨𝑝𝑝1𝑞2𝑠31⟩ → ⟨𝑞𝑞1𝑞2𝑠31⟩ and ⟨𝑝𝑝1𝑓2𝑞32⟩ → ⟨𝑞𝑞1𝑓2𝑞32⟩ to 𝑅′ for all 𝑞2 ∈ 𝑄2, 𝑞3 ∈ 𝑄3,
and 𝑓2 ∈ 𝐹2.

(4) For each 𝑝𝑎→ 𝑞 ∈ 𝑅 and 𝑝2𝑎→ 𝑞2 ∈ 𝑅2, where 𝑝, 𝑞 ∈ 𝑄, 𝑝2, 𝑞2 ∈ 𝑄2, and 𝑎 ∈ Σ, add
⟨𝑝𝑞1𝑝2𝑠31⟩𝑎→ ⟨𝑞𝑞1𝑞2𝑠31⟩ to 𝑅′ for all 𝑞1 ∈ 𝑄1.

(5) For each 𝑝𝑎→ 𝑞 ∈ 𝑅 and 𝑝3𝑎→ 𝑞3 ∈ 𝑅3, where 𝑝, 𝑞 ∈ 𝑄, 𝑝3, 𝑞3 ∈ 𝑄3, and 𝑎 ∈ Σ, add
⟨𝑝𝑞1𝑓2𝑝32⟩ → ⟨𝑞𝑞1𝑓2𝑞32⟩ to 𝑅′ for all 𝑞1 ∈ 𝑄1 and 𝑓2 ∈ 𝐹2.

Basic Idea. 𝑀 ′ works in two phases. During the first phase, it simulates all right moves
made by 𝑀 and, simultaneously, a computation made by 𝑀2 by processing the input tape
(see step (4)). During the second phase, it simulates all right moves made by 𝑀 and,
simultaneously, a computation made by 𝑀3, entirely without reading any input symbols
(see step (5)). In addition, during both of these phases, 𝑀 ′ simulates all left moves made
by 𝑀 and, simultaneously, a computation made by 𝑀1 in reverse, again, using only 𝜀-rules
(see step (3)). Finally, consider steps (1) and (2) to see that 𝑀 ′ accepts its input if and only
if 𝑀 , 𝑀1, 𝑀2, and 𝑀3 accept their inputs as well, so 𝐿(𝑀 ′) = {𝑣 | 𝑢𝑠𝑣𝑤 ⇒* 𝑓 in 𝑀,𝑓 ∈
𝐹, 𝑢 ∈ 𝐴, 𝑣 ∈ 𝐵,𝑤 ∈ 𝐶}.

To establish 𝐿(𝑀 ′) = {𝑣 | 𝑢𝑠𝑣𝑤 ⇒* 𝑓 in 𝑀,𝑓 ∈ 𝐹, 𝑢 ∈ 𝐴, 𝑣 ∈ 𝐵,𝑤 ∈ 𝐶} formally, we
first prove the following two claims.

Claim 7.4.A. For all 𝑣 ∈ Σ*, 𝑝, 𝑞 ∈ 𝑄, 𝑝1, 𝑞1 ∈ 𝑄1, and 𝑝2, 𝑞2 ∈ 𝑄2,

⟨𝑝𝑝1𝑝2𝑠31⟩𝑣 ⇒* ⟨𝑞𝑞1𝑞2𝑠31⟩ in 𝑀 ′ iff there is 𝑥 ∈ Σ* such that

⎧⎪⎨⎪⎩
𝑥𝑝𝑣 ⇒* 𝑞 in 𝑀,

𝑞1𝑥⇒* 𝑝1 in 𝑀1, and
𝑝2𝑣 ⇒* 𝑞2 in 𝑀2.

Proof of Claim 7.4.A. First, we establish the only if part of this equivalence. By induction
on the number of moves 𝑖 ≥ 0, we show that ⟨𝑝𝑝1𝑝2𝑠31⟩𝑣 ⇒𝑖 ⟨𝑞𝑞1𝑞2𝑠31⟩ in 𝑀 ′ implies that
there is 𝑥 ∈ Σ* such that 𝑥𝑝𝑣 ⇒* 𝑞 in 𝑀 , 𝑞1𝑥⇒* 𝑝1 in 𝑀1, and 𝑝2𝑣 ⇒* 𝑞2 in 𝑀2.
Basis. Let 𝑖 = 0, so ⟨𝑝𝑝1𝑝2𝑠31⟩𝑣 ⇒0 ⟨𝑞𝑞1𝑞2𝑠31⟩ in 𝑀 ′. Then, 𝑝 = 𝑞, 𝑝1 = 𝑞1, 𝑝2 = 𝑞2, and
𝑣 = 𝜀. Clearly, 𝑝⇒0 𝑝 in 𝑀 , 𝑝1 ⇒0 𝑝1 in 𝑀1, and 𝑝2 ⇒0 𝑝2 in 𝑀2, so the basis holds true.
Induction Hypothesis. Assume that the implication holds for all computations consisting of
no more than 𝑗 moves in 𝑀 ′, for some 𝑗 ∈ N0.
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Induction Step. Consider any computation of the form ⟨𝑝𝑝1𝑝2𝑠31⟩𝑣 ⇒𝑗+1 ⟨𝑞𝑞1𝑞2𝑠31⟩ in 𝑀 ′.
Let this computation start with the application of a rule of the form

⟨𝑝𝑝1𝑝2𝑠31⟩ → ⟨𝑜𝑜1𝑝2𝑠31⟩

from 𝑅′, where 𝑜 ∈ 𝑄 and 𝑜1 ∈ 𝑄1. Now, express ⟨𝑝𝑝1𝑝2𝑠31⟩𝑣 ⇒𝑗+1 ⟨𝑞𝑞1𝑞2𝑠31⟩ as

⟨𝑝𝑝1𝑝2𝑠31⟩𝑣 ⇒ ⟨𝑜𝑜1𝑝2𝑠31⟩𝑣 ⇒𝑗 ⟨𝑞𝑞1𝑞2𝑠31⟩

in 𝑀 ′. Since ⟨𝑜𝑜1𝑝2𝑠31⟩𝑣 ⇒𝑗 ⟨𝑞𝑞1𝑞2𝑠31⟩ in 𝑀 ′, by the induction hypothesis, 𝑥′𝑜𝑣 ⇒* 𝑞
in 𝑀 , 𝑞1𝑥

′ ⇒* 𝑜1 in 𝑀1, and 𝑝2𝑣 ⇒* 𝑞2 in 𝑀2, for some 𝑥′ ∈ Σ*. Step (3) constructs
⟨𝑝𝑝1𝑝2𝑠31⟩ → ⟨𝑜𝑜1𝑝2𝑠31⟩ ∈ 𝑅′ from 𝑎𝑝→ 𝑜 ∈ 𝑅 and 𝑜1𝑎→ 𝑝1 ∈ 𝑅1, for some 𝑎 ∈ Σ, so

𝑥′𝑎𝑝𝑣 ⇒ 𝑥′𝑜𝑣 ⇒* 𝑞

in 𝑀 and
𝑞1𝑥

′𝑎⇒* 𝑜1𝑎⇒ 𝑝1

in 𝑀1. Hence, assuming that 𝑥 = 𝑥′𝑎, we have 𝑥𝑝𝑣 ⇒* 𝑞 in 𝑀 and 𝑞1𝑥⇒* 𝑝1 in 𝑀1.
If the computation ⟨𝑝𝑝1𝑝2𝑠31⟩𝑣 ⇒𝑗+1 ⟨𝑞𝑞1𝑞2𝑠31⟩ in 𝑀 ′ starts with the application of

a rule of the form ⟨𝑝𝑝1𝑝2𝑠31⟩𝑎 → ⟨𝑜𝑝1𝑜2𝑠31⟩ from 𝑅′, where 𝑜 ∈ 𝑄, 𝑜2 ∈ 𝑄2, and 𝑎 ∈ Σ,
proceed analogously.

Thus, the induction step is completed.
Next, we establish the if part of the equivalence stated in Claim 7.4.A. By induction

on the number of moves 𝑖 ≥ 0, we prove that 𝑥𝑝𝑣 ⇒𝑖 𝑞 in 𝑀 , 𝑞1𝑥 ⇒𝑗 𝑝1 in 𝑀1, and
𝑝2𝑣 ⇒𝑘 𝑞2 in 𝑀2, where 𝑗 + 𝑘 = 𝑖, implies ⟨𝑝𝑝1𝑝2𝑠31⟩𝑣 ⇒* ⟨𝑞𝑞1𝑞2𝑠31⟩ in 𝑀 ′.
Basis. Let 𝑖 = 0, so 𝑗 = 0, 𝑘 = 0, 𝑥𝑝𝑣 ⇒0 𝑞 in 𝑀 , 𝑞1𝑥⇒0 𝑝1 in 𝑀1, and 𝑝2𝑣 ⇒0 𝑞2 in 𝑀2.
Then, 𝑝 = 𝑞, 𝑝1 = 𝑞1, 𝑝2 = 𝑞2, and 𝑥𝑣 = 𝜀. Since ⟨𝑝𝑝1𝑝2𝑠31⟩𝑣 ⇒0 ⟨𝑝𝑝1𝑝2𝑠31⟩ in 𝑀 ′, the
basis holds true.
Induction Hypothesis. Assume that the implication holds for all computations consisting of
no more than 𝑙 moves in 𝑀 , for some 𝑙 ∈ N0.
Induction Step. Consider any 𝑥𝑝𝑣 ⇒𝑙+1 𝑞 in 𝑀 , 𝑞1𝑥⇒𝑚+1 𝑝1 in 𝑀1, and 𝑝2𝑣 ⇒𝑛 𝑞2 in 𝑀2,
where 𝑚+ 𝑛 = 𝑙. Let 𝑥𝑝𝑣 ⇒𝑙+1 𝑞 in 𝑀 start with the application of a rule the form

𝑎𝑝→ 𝑜

from 𝑅 and 𝑞1𝑥⇒𝑚+1 𝑝1 in 𝑀1 end with the application of a rule of the form

𝑜1𝑎→ 𝑝1

from 𝑅1, where 𝑜 ∈ 𝑄, 𝑜1 ∈ 𝑄1, and 𝑎 ∈ Σ. Express 𝑥𝑝𝑣 ⇒𝑙+1 𝑞 as

𝑥′𝑎𝑝𝑣 ⇒ 𝑥′𝑜𝑣 ⇒𝑙 𝑞

in 𝑀 and 𝑞1𝑥⇒𝑚+1 𝑝1 as
𝑞1𝑥

′𝑎⇒𝑚 𝑜1𝑎⇒ 𝑝1

in 𝑀1, where 𝑥′𝑎 = 𝑥. By the induction hypothesis, ⟨𝑜𝑜1𝑝2𝑠31⟩𝑣 ⇒* ⟨𝑞𝑞1𝑞2𝑠31⟩ in 𝑀 ′.
From 𝑎𝑝 → 𝑜 ∈ 𝑅 and 𝑜1𝑎 → 𝑝1 ∈ 𝑅1, step (3) constructs ⟨𝑝𝑝1𝑝2𝑠31⟩ → ⟨𝑜𝑜1𝑝2𝑠31⟩ ∈ 𝑅′,
so

⟨𝑝𝑝1𝑝2𝑠31⟩𝑣 ⇒ ⟨𝑜𝑜1𝑝2𝑠31⟩𝑣 ⇒* ⟨𝑞𝑞1𝑞2𝑠31⟩
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in 𝑀 ′. Therefore, ⟨𝑝𝑝1𝑝2𝑠31⟩𝑣 ⇒* ⟨𝑞𝑞1𝑞2𝑠31⟩ in 𝑀 ′.
Next, consider any 𝑥𝑝𝑣 ⇒𝑙+1 𝑞 in 𝑀 , 𝑞1𝑥⇒𝑚 𝑝1 in 𝑀1, and 𝑝2𝑣 ⇒𝑛+1 𝑞2 in 𝑀2, where

𝑚+𝑛 = 𝑙. Let 𝑥𝑝𝑣 ⇒𝑙+1 𝑞 in 𝑀 start with the application of a rule of the form 𝑝𝑎→ 𝑜 from
𝑅 and 𝑝2𝑣 ⇒𝑛+1 𝑞2 in 𝑀2 start with the application of a rule of the form 𝑝2𝑎 → 𝑜2 from
𝑅2, where 𝑜 ∈ 𝑄, 𝑜2 ∈ 𝑄2, and 𝑎 ∈ Σ. Then, proceed by analogy with the previous case.

Thus, the induction step is completed, and Claim 7.4.A holds.
Claim 7.4.B. For all 𝑞, 𝑜 ∈ 𝑄, 𝑞1, 𝑜1 ∈ 𝑄1, 𝑓2 ∈ 𝐹2, and 𝑞3, 𝑜3 ∈ 𝑄3,

⟨𝑞𝑞1𝑓2𝑞32⟩ ⇒* ⟨𝑜𝑜1𝑓2𝑜32⟩ in 𝑀 ′ iff there are 𝑦, 𝑤 ∈ Σ* such that

⎧⎪⎨⎪⎩
𝑦𝑞𝑤 ⇒* 𝑜 in 𝑀,

𝑜1𝑦 ⇒* 𝑞1 in 𝑀1, and
𝑞3𝑤 ⇒* 𝑜3 in 𝑀3.

Proof of Claim 7.4.B. Prove this claim by analogy with the proof of Claim 7.4.A.
Observe that 𝑀 ′ starts every accepting computation by applying a rule of the form

𝑠′ → ⟨𝑠𝑓1𝑠2𝑠31⟩, where 𝑓1 ∈ 𝐹1, and also uses a rule of the form ⟨𝑞𝑞1𝑓2𝑠31⟩ → ⟨𝑞𝑞1𝑓2𝑠32⟩,
where 𝑞 ∈ 𝑄, 𝑞1 ∈ 𝑄1, and 𝑓2 ∈ 𝐹2, at some point during each such computation (see
steps (1) and (2)). From these observations together with Claims 7.4.A and 7.4.B, it
follows that for all 𝑞, 𝑜 ∈ 𝑄, 𝑞1, 𝑜1 ∈ 𝑄1, 𝑜3 ∈ 𝑄3, 𝑓1 ∈ 𝐹1, 𝑓2 ∈ 𝐹2, and 𝑣 ∈ Σ*,
𝑠′𝑣 ⇒ ⟨𝑠𝑓1𝑠2𝑠31⟩𝑣 ⇒* ⟨𝑞𝑞1𝑓2𝑠31⟩ ⇒ ⟨𝑞𝑞1𝑓2𝑠32⟩ ⇒* ⟨𝑜𝑠1𝑓2𝑜32⟩ in 𝑀 ′ iff there are 𝑢,𝑤 ∈ Σ*

such that 𝑢𝑠𝑣𝑤 ⇒* 𝑜 in 𝑀 , 𝑠1𝑢 ⇒* 𝑓1 in 𝑀1, 𝑠2𝑣 ⇒* 𝑓2 in 𝑀2, and 𝑠3𝑤 ⇒* 𝑜3 in 𝑀3.
Considering this equivalence for 𝑜 = 𝑓 and 𝑜3 = 𝑓3, where 𝑓 ∈ 𝐹 and 𝑓3 ∈ 𝐹3, we can
see that 𝑠′𝑣 ⇒ ⟨𝑠𝑓1𝑠2𝑠31⟩𝑣 ⇒* ⟨𝑞𝑞1𝑓2𝑠31⟩ ⇒ ⟨𝑞𝑞1𝑓2𝑠32⟩ ⇒* ⟨𝑓𝑠1𝑓2𝑓32⟩ in 𝑀 ′ iff there are
𝑢,𝑤 ∈ Σ* such that 𝑢𝑠𝑣𝑤 ⇒* 𝑓 in 𝑀 , 𝑠1𝑢⇒* 𝑓1 in 𝑀1, 𝑠2𝑣 ⇒* 𝑓2 in 𝑀2, and 𝑠3𝑤 ⇒* 𝑓3
in 𝑀3. Recall that 𝐹 ′ = {⟨𝑓𝑠1𝑓2𝑓32⟩ | 𝑓 ∈ 𝐹, 𝑓𝑖 ∈ 𝐹𝑖, 𝑖 ∈ {2, 3}}. Hence, 𝐿(𝑀 ′) = {𝑣 |
𝑢𝑠𝑣𝑤 ⇒* 𝑓 in 𝑀,𝑓 ∈ 𝐹, 𝑢 ∈ 𝐿(𝑀1), 𝑣 ∈ 𝐿(𝑀2), 𝑤 ∈ 𝐿(𝑀3)}. As 𝐿(𝑀1) = 𝐴, 𝐿(𝑀2) = 𝐵,
and 𝐿(𝑀3) = 𝐶, we have 𝐿(𝑀 ′) = {𝑣 | 𝑢𝑠𝑣𝑤 ⇒* 𝑓 in 𝑀,𝑓 ∈ 𝐹, 𝑢 ∈ 𝐴, 𝑣 ∈ 𝐵,𝑤 ∈ 𝐶}.
Therefore, Theorem 7.4 holds.

Theorem 7.5. There exist an IE2GFA 𝑀 = (𝑄,Σ, 𝑅, 𝑠, 𝐹 ), 𝐴 ∈ regΦ, and 𝐵 ∈ LGΦ such
that

{𝑢𝑣 | 𝑢𝑠𝑣 ⇒* 𝑓, 𝑓 ∈ 𝐹, 𝑢 ∈ 𝐴, 𝑣 ∈ 𝐵}
is not linear.

Proof. Consider the 𝜀-free IE2SFA
𝑀 = ({𝑠, 𝑞, 𝑓}, {𝑎, 𝑏, 𝑐}, 𝑅, 𝑠, {𝑓})

with 𝑅 = {𝑠𝑏 → 𝑞, 𝑎𝑞 → 𝑠, 𝑠𝑐 → 𝑓, 𝑓𝑐 → 𝑓} (see Figure 7.1), 𝐴 = {𝑎}*, and 𝐵 = {𝑏𝑛𝑐𝑛 |
𝑛 ≥ 0}. Clearly, 𝐿(𝑀) = {𝑎𝑛𝑏𝑛𝑐𝑚 | 𝑚,𝑛 ≥ 0}, 𝐴 ∈ regΦ, and 𝐵 ∈ LGΦ. However, observe
that the language 𝐾 = {𝑢𝑣 | 𝑢𝑠𝑣 ⇒* 𝑓, 𝑓 ∈ 𝐹, 𝑢 ∈ 𝐴, 𝑣 ∈ 𝐵} = {𝑎𝑛𝑏𝑛𝑐𝑛 | 𝑛 ≥ 0} is not
linear. In fact, 𝐾 ∈ CSGΦ ∖ CFGΦ (see Example 2.21). Thus, the theorem holds.

𝑠𝑞 𝑓

↱, 𝑏
↱, 𝑐

↰, 𝑎

↱, 𝑐

Figure 7.1: State diagram of the 𝜀-free IE2SFA 𝑀 from the proof of Theorem 7.5.
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Chapter 8

Conclusion

The present thesis has proposed and studied new versions of two-way finite automata re-
ferred to as input-erasing two-way finite automata. In essence, they perform their compu-
tation just like the classical versions of these automata, except that (1) they erase the input
symbols just like one-way finite automata do, and (2) they start their computation at any
position on the input tape.

First, we recalled all the terminology necessary for this thesis, ranging from basic notions
such as strings and languages to formal grammars and one-way finite automata. After this,
we described the classical concept of two-way finite automata. We explained how they work
and illustrated their features.

The key part of this thesis then introduced input-erasing two-way finite automata and
investigated their properties. We formally defined these new automata, highlighted their
key differences from the classical model, and demonstrated how they work. The main result
is that these automata define the same language family as linear grammars. We proved this
by showing that any such automaton can be transformed into an equivalent linear grammar
and vice versa. We also demonstrated that general and simple variants of these automata,
including those without 𝜀-rules, are all equally powerful.

Next, we investigated three restrictions imposed on the way the proposed automata
work—namely, alternating, even, and initialized even computations. We established rela-
tions between the language families resulting from these restrictions and demonstrated that
under initialized even computation, these automata are as strong as even linear grammars.

Lastly, we discussed several restrictions placed upon the input of the proposed automata.
We showed that those based on regular languages do not lead to any increase in their com-
putational power. Some even reduce it to the regular language family. In contrast, however,
linear-based input restrictions can extend the accepting capabilities of these automata even
to some non-context-free languages.

As part of this thesis, we also implemented a program that simulates the newly intro-
duced input-erasing two-way finite automata. It is designed as a console application and
can simulate both their restricted (alternating, even, and initialized even) and unrestricted
computations. The primary purpose of this program is to demonstrate how the proposed
automata work and how they can behave in practice. The implementation details of this
program and its manual can be found in Appendix A.

Since the proposed automata possess the same power as linear grammars and are thus
stronger than classical one-way and two-way finite automata, they can be used for more
complex analyses, especially for recognizing linear or palindromic patterns. For example,
in bioinformatics, they could be easily used to identify complementary strands of DNA
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molecules (see [37]). Further investigation of their possible applications in biological se-
quence analysis (see [16]) or in other fields of study could be an interesting subject for
future research.

Although this thesis has established several fundamental results concerning input-era-
sing two-way finite automata and their restricted versions, there still remain several open
problem areas to study. These include

(i) an investigation of more classical topics of automata theory, such as determinism and
minimization;

(ii) a further investigation of input-related restrictions, for instance, in terms of subregular
language families;

(iii) a conceptualization and investigation of input-erasing two-way finite automata in an
alternative way by analogy with other modern concepts of automata, such as regulated
and jumping versions (see [31, 32]); and

(iv) an introduction and investigation of other types of automata, such as pushdown au-
tomata (see [17]), conceptualized by analogy with the input-erasing two-way finite
automata given in the present thesis.

56



Bibliography

[1] Amar, V. and Putzolu, G. On a family of linear grammars. Information and
Control, 1964, vol. 7, no. 3, p. 283–291. ISSN 0019-9958.

[2] Ambainis, A. and Watrous, J. Two-way finite automata with quantum and
classical states. Theoretical Computer Science, 2002, vol. 287, no. 1, p. 299–311.
ISSN 0304-3975.

[3] Balcerzak, M. and Niwiński, D. Two-way deterministic automata with two
reversals are exponentially more succinct than with one reversal. Information
Processing Letters, 2010, vol. 110, no. 10, p. 396–398. ISSN 0020-0190.

[4] Birget, J.-C. Basic techniques for two-way finite automata. In: Proceedings of the
LITP Spring School on Theoretical Computer Science: Formal Properties of Finite
Automata and Applications. Berlin, Heidelberg: Springer-Verlag, 1987, p. 56–64.
ISBN 978-3-540-51631-6.

[5] Birget, J.-C. Positional simulation of two-way automata: Proof of a conjecture of
R. Kannan and generalizations. Journal of Computer and System Sciences, 1992,
vol. 45, no. 2, p. 154–179. ISSN 0022-0000.

[6] Birget, J.-C. Two-way automata and length-preserving homomorphisms.
Mathematical systems theory, june 1996, vol. 29, no. 3, p. 191–226. ISSN 1433-0490.

[7] Bryant. Graph-Based Algorithms for Boolean Function Manipulation. IEEE
Transactions on Computers, 1986, C-35, no. 8, p. 677–691. ISSN 0018-9340.

[8] Chomsky, N. Three models for the description of language. I.R.E. transactions on
information theory. The Institute of Radio Engineers, Inc, 1956, vol. 2, no. 3,
p. 113–124. ISSN 0096-1000.

[9] Chomsky, N. On certain formal properties of grammars. Information and control.
Elsevier B.V, 1959, vol. 2, no. 2, p. 137–167. ISSN 0019-9958.

[10] Chrobak, M. Finite automata and unary languages. Theoretical Computer Science,
1986, vol. 47, p. 149–158. ISSN 0304-3975.

[11] Dassow, J. and Paun, G. Regulated Rewriting in Formal Language Theory. Springer
Berlin Heidelberg, 2011. Monographs in Theoretical Computer Science. An EATCS
Series. ISBN 978-3-642-74934-6.

[12] Fazekas, S. Z.; Hoshi, K. and Yamamura, A. Two-way deterministic automata
with jumping mode. Theoretical Computer Science, 2021, vol. 864, p. 92–102. ISSN
0304-3975.

57



[13] Frei, F.; Hromkovič, J.; Královič, R. and Královič, R. Two-Way Non-uniform
Finite Automata. In: Moreira, N. and Reis, R., ed. Developments in Language
Theory. Cham: Springer International Publishing, 2021, p. 155–166. ISBN
978-3-030-81508-0.

[14] Freivalds, R. Probabilistic two-way machines. In: Gruska, J. and Chytil, M.,
ed. Mathematical Foundations of Computer Science 1981. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1981, p. 33–45. ISBN 978-3-540-38769-5.

[15] Grzegorz, R. and Salomaa, A. Handbook of Formal Languages: Volume 1 Word,
Language, Grammar. Springer Berlin, Heidelberg, 1997. ISBN 978-3-540-60420-4.

[16] Gusfield, D. Algorithms on strings, trees, and sequences: computer science and
computational biology. Cambridge University Press, 1997. ISBN 978-0-521-58519-4.

[17] Hopcroft, J. E. and Ullman, J. D. Introduction to Automata Theory, Languages,
and Computation. Addison-Wesley, 1979. Addison-Wesley Series in Computer
Science and Information Processing. ISBN 978-0-201-02988-8.

[18] Hromkovič, J. and Schnitger, G. Nondeterminism versus Determinism for
Two-Way Finite Automata: Generalizations of Sipser’s Separation. In: Baeten, J.
C. M.; Lenstra, J. K.; Parrow, J. and Woeginger, G. J., ed. Automata,
Languages and Programming. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003,
p. 439–451. ISBN 978-3-540-45061-0.

[19] Jirásková, G. and Klíma, O. On linear languages recognized by deterministic
biautomata. Information and Computation, july 2022, vol. 286, p. 1–22. ISSN
0890-5401. Article 104778.

[20] Kapoutsis, C. Removing Bidirectionality from Nondeterministic Finite Automata.
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Appendix A

Input-Erasing Two-Way Finite
Automaton Simulator

In this appendix, we describe the implemented tool that simulates IE2GFAs (see Def-
inition 4.3). This tool can simulate any IE2GFA under alternating computation, even
computation, and initialized even computation (see Definition 6.1), as well as without any
computational restrictions. First, we give a brief overview of the technologies chosen for
its implementation. Then, we describe the implementation itself, including the design of
this tool, and provide a comprehensive usage manual. Finally, we test the tool and discuss
some of its properties and future improvements.

Technology
Since the simulator is intended primarily for demonstration purposes, it is implemented
in Python 3.131 for its ease of use, extensive standard library, and broad support. These
factors compensate for the potentially slower execution speed of the resulting program,
caused mainly by the interpreted nature and high level of abstraction of this programming
language.

Furthermore, for lexical and syntax analysis of input IE2GFA specifications, the sim-
ulator uses a parser generated by ANTLR v42 (ANother Tool for Language Recognition)
[34]. This tool can generate any parser using only a grammar specification that defines
its desired behavior. It can also be easily used with Python by means of the packages
antlr4-tools3 and antlr4-python3-runtime4.

Design and Implementation
The simulator is implemented as a console application. As its input, it expects a file
containing the specification of an IE2GFA, and strings on which it should simulate this au-
tomaton. Simulation results are then printed either to the standard output or to a specified
file, depending on its input arguments.

1The documentation for Python 3.13 is available at https://docs.python.org/3.13/.
2ANTLR v4 is available at https://www.antlr.org.
3antlr4-tools is available at https://pypi.org/project/antlr4-tools/.
4antlr4-python3-runtime is available at https://pypi.org/project/antlr4-python3-runtime/.
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The source code of the simulator is divided into several modules (files). The entry
point of the program is the main function in the main.py module. The args.py module
provides the parse_cmd_args function that processes the input arguments of the program,
which are described below in this appendix. It is implemented using ArgumentParser from
the argparse module, which belongs to the standard library. Next, the file_helpers.py
module provides helper functions for file handling, the output_helpers.py module offers
helper functions for formatting simulation results, and the shared.py module contains
constants shared by several other modules. The core of the simulator, however, consists
of the ie2gfa_listener_interp.py and ie2gfa modules. The former is responsible for
parsing input IE2GFAs, while the latter simulates them. We describe these two parts of
the simulator in more detail.

Parsing Input IE2GFA Specification

As mentioned above, the simulator performs lexical and syntax analysis of input IE2GFA
specifications using a parser generated by ANTLR. The source grammar5 describing the
expected structure of these specifications, which is used to generate the parser, is located
in the ie2gfa.g4 file. The parser is listener-based6. First, it builds a parse tree of an
input IE2GFA (more precisely, of its specification) and checks for any lexical and syntax
errors. Then, it traverses the parse tree. During this process, for each internal parse tree
node, the parser calls the enter and exit methods corresponding to the nonterminal that
the node represents. The enter method is called the first time the node is encountered,
and the exit method is called after all its children have been processed. ANTLR pro-
vides all these enter and exit methods with empty implementations in the automatically
generated ie2gfaListener class. However, it is possible to override them in a subclass of
this class. Therefore, the IE2GFAListenerInterp class is implemented. This subclass of
the ie2gfaListener class, located in the ie2gfa_listener_interp.py module, checks for
semantic errors in the input IE2GFA and prepares its internal representation used by the
simulator.

IE2GFA Simulation

Internally, the simulator represents and simulates every input IE2GFA using the IE2GFA
class located in the ie2gfa.py module. Although the states of the input IE2GFA are
denoted by nonempty strings in its specification (the structure of which is described later
in this appendix), the simulator maps them to nonnegative integers and works with them
in this form. Since the input IE2GFA can be any IE2GFA, even nondeterministic, its
simulation process is based on searching its configuration space in a depth-first manner.
Thus, if the input IE2GFA can make several different moves from its current configuration,
the simulator simulates one of them and later backtracks to continue with another one.

In general, the simulation process of an input IE2GFA on an input string is as follows.
The simulator selects one of the start configurations of the IE2GFA for the given string
and starts applying the rules of this automaton to it. This way, the simulator either
finds a computation through which the IE2GFA accepts the string or determines that no
such computation exists from the selected start configuration. If the string is accepted,

5The general ANTLR grammar form is described in Chapter 15 in [34] or at https://github.com/antlr/
antlr4/blob/4.13.2/doc/grammars.md.

6ANTLR parse-tree listeners are described in Section 2.5 in [34] or at https://github.com/antlr/
antlr4/blob/4.13.2/doc/listeners.md.
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the simulation ends; otherwise, the simulator repeats the same process with one of the
remaining start configurations. If no such configuration remains, the simulated IE2GFA
rejects the string.

Although each simulation is performed as described above, certain IE2GFA moves can
be simulated simultaneously. These are the moves that read the same symbol sequence
in the same direction. Therefore, at each point during the simulation, instead of a single
current state, the simulator maintains a set of states in which the simulated IE2GFA can
currently be. This allows it to perform certain IE2GFA computations simultaneously and
thus speed up the simulation process.

In its default setting, the simulator cannot simulate IE2GFAs that contain cycles con-
sisting of 𝜀-rules (in their diagrams), as it could cycle in them indefinitely. However, it can
be run in a mode that avoids re-exploring already explored IE2GFA configurations. This
allows it to simulate IE2GFAs with 𝜀-rule cycles and also speed up simulations of some
other IE2GFAs at the cost of a significant increase in memory requirements for simulations.

Note that all simulations of restricted (alternating, even, and initialized even) and un-
restricted IE2GFA computations are performed in the same way. The only difference lies
in the strategy of selecting moves for simulation.

Usage
This section provides instructions for installing and running the simulator.

Instalation

In order to use the simulator, all its dependencies must first be resolved. For convenience,
it is highly recommended to use a Python virtual environment, which can be created using
the venv module7. To create the virtual environment with all necessary packages installed,
run the command make venv. Alternatively, use the following two commands:

python3 -m venv .ie2gfa_sim-venv
.ie2gfa_sim-venv/bin/pip install -r requirements.txt

Next, to generate the parser for input IE2GFA specifications from its grammar specification
in the ie2gfa.g4 file using ANTLR, run the command make parser. Alternatively, use
the command

.ie2gfa_sim-venv/bin/antlr4 -Dlanguage=Python3 -o src/antlr4parser ie2gfa.g4

Finally, before running the simulator, activate the virtual environment using the command

source .ie2gfa_sim-venv/bin/activate

To resolve the dependencies and generate the parser without using the virtual environ-
ment, run the following two commands:

pip install -r requirements.txt
antlr4 -Dlanguage=Python3 -o src/antlr4parser ie2gfa.g4

7The documentation for the venv module is available at https://docs.python.org/3/library/venv.html.
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Running

The simulator can be run using the following command:
./ie2gfa_sim [-h] [-d DATA_FILE] [-o OUTPUT_FILE] [-u|-a|-e|-i] [-c] [-p] SPEC_FILE

The only mandatory positional argument, SPEC_FILE, represents the file containing the
specification of an IE2GFA that is to be simulated. The remaining arguments are described
as follows:

(1) -h, --help: Print the help message to the standard output.

(2) -d, --data_file DATA_FILE: The file containing strings on which the IE2GFA is to
be simulated. Each string should be on a separate line. All leading and trailing spaces
on each line are ignored. Any blank line represents 𝜀. If this file is not specified, these
strings are read from the standard input.

(3) -o, --output_file OUTPUT_FILE: The file for storing the simulation results. If not
specified, the results are printed to the standard output.

(4) -u, --unrestricted: Simulate the IE2GFA without any computational restrictions
(the default simulation mode).

(5) -a, --alternating: Simulate the IE2GFA under alternating computation.

(6) -e, --even: Simulate the IE2GFA under even computation.

(7) -i, --initialized_even: Simulate the IE2GFA under initialized even computation.

(8) -c, --computation_details: For each accepted input string, extend the simulation
results with the sequence of rules used to accept it.

(9) -p, --prune: During the simulation of the IE2GFA on each input string, avoid re-
exploring already explored IE2GFA configurations. This can speed up simulations of
nondeterministic IE2GFAs, whose nondeterministic choices lead to different positions
of the read head on the input tape, and it also allows the simulator to simulate
IE2GFAs with 𝜀-rule cycles. However, it comes with a significant increase in memory
requirements for simulations.

Note that the options -u, -a, -e, and -i are mutually exclusive, so no two of them can be
set simultaneously. The simulator uses UTF-8 encoding to work with files.

Return Codes

After a successful run, the simulator prints the simulation results to the standard output or
to the specified output file and returns 0. However, if the simulator fails to run correctly,
an error message is printed to the standard error, and one of the following error codes is
returned:

• 2: Invalid input arguments.

• 11: Syntax error in the input IE2GFA specification.

• 12: Semantic error in the input IE2GFA specification (occurrence of a state that is
not listed in the set of states or of a symbol that is not in the input alphabet).

• 99: Internal error of the simulator (for example, when the simulator cannot open the
specification file, the data file, or the output file).
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IE2GFA Specification Format

The simulator supports two formats of the input IE2GFA specification—complete and
short. The former is based on the structure of the formal description of IE2GFAs (see
Definition 4.3) and follows these rules:

• Each line comment must be prefixed with //. The text following this prefix is then
ignored until the end of the line. Similarly, each block comment must start with /*
and end with */. The text between these two markers is then ignored.

• Each symbol in the input alphabet of an input IE2GFA must belong to the set of
symbols defined by the regular expression [!-’*+.-;=?-z|~]. Similarly, each state
of an input IE2GFA must be a nonempty string over that same set of symbols.

• In each IE2GFA rule, the state and the read symbol sequence on the left-hand side
of the rule (if the symbol sequence is nonempty) must be separated by < if the rule is
left and by > if the rule is right. If the rule does not read any symbols, neither < nor
> should be used on its left-hand side. The left-hand side and the right-hand side of
the rule must be separated by ->.

• All whitespace characters are ignored; however, they must never split -> in any
IE2GFA rule.

The short IE2GFA specification format is defined similarly to the complete one, except
that it does not require the explicit specification of the set of states and the input alphabet.
Examples of both of these IE2GFA specification formats are given below.

Examples

Here, we provide two examples of the usage of the simulator.

Example 1

Consider the file ie2gfa_spec_complete.txt containing the following IE2GFA specifica-
tion (in the complete IE2GFA specification format):

( // L = {a^nb^nc^m | m, n >= 0}
{s, q, f}, // the set of states
{a, b, c}, // the input alphabet
{

s>b -> q,
a<q -> s,
s>c -> f,
f>c -> f

}, // the set of rules
s, // the start state
{s, f} // the set of final states

)

Further, consider the file data_file1.txt containing the following strings:
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aaabbbccc
aaaaaaabbb
cccc

Running the simulator using the command

./ie2gfa_sim ie2gfa_spec_complete.txt -d data_file1.txt

produces the following results:

==================================================================
Simulated IE2GFA: ie2gfa_spec_complete.txt
Computation type: unrestricted
==================================================================
Simulation 1

String: aaabbbccc
Result: ACCEPTED
------------------------------------------------------------------
Simulation 2

String: aaaaaaabbb
Result: REJECTED
------------------------------------------------------------------
Simulation 3

String: cccc
Result: ACCEPTED
------------------------------------------------------------------

Example 2

Consider the file ie2gfa_spec_short.txt containing the following IE2GFA specification
corresponding to the IE2GFA from Example 4.7 (in the short IE2GFA specification format):

( // L = {a,b}^*{ab}{a, b}^2
s, // the start state
{

s>a -> q1,
q1>b -> q2,
q2>a -> q3,
q2>b -> q3,
q3>a -> f,
q3>b -> f,
a<f -> f,
b<f -> f

}, // the set of rules
{f} // the set of final states

)

Additionally, consider the file data_file2.txt containing the following strings:
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abab
abbabaa
ababbaab

Running the simulator with the command

./ie2gfa_sim ie2gfa_spec_short.txt -d data_file2.txt -c

results in the following:

==================================================================
Simulated IE2GFA: ie2gfa_spec_short.txt
Computation type: unrestricted
==================================================================
Simulation 1

String: abab
Result: ACCEPTED

Used sequence of rules:
1: s>a -> q1
2: q1>b -> q2
3: q2>a -> q3
4: q3>b -> f
------------------------------------------------------------------
Simulation 2

String: abbabaa
Result: ACCEPTED

Used sequence of rules:
1: s>a -> q1
2: q1>b -> q2
3: q2>a -> q3
4: q3>a -> f
5: b<f -> f
6: b<f -> f
7: a<f -> f
------------------------------------------------------------------
Simulation 3

String: ababbaab
Result: REJECTED
------------------------------------------------------------------

Testing and Evaluation
The simulator was tested on the example inputs provided in the examples directory. How-
ever, even though it works correctly on them, testing confirmed the following problem
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related to the simulation of certain nondeterministic IE2GFAs. Consider the 𝜀-free IE2SFA
𝑀 given in Figure A.1 below with 𝑤 = 𝑏𝑎𝑛𝑏𝑛, for some 𝑛 ≥ 0, as its input string. Clearly,
𝑀 rejects 𝑤. However, to reach this conclusion, the simulator must perform all possible
computations of 𝑀 on 𝑤. Since, starting from the configuration 𝑏𝑎𝑛𝑠𝑏𝑛, 𝑀 can make moves
according to both of its rules from the majority of the configurations that it reaches, the
number of such computations grows exponentially with 𝑛. However, as no two different
moves from the same configuration can be simulated simultaneously due to their opposite
directions, the simulator performs these computations, in essence, one at a time. Unfortu-
nately, this becomes quite time-consuming, even for smaller values of 𝑛. This problem is
partially solved by the option not to re-explore any already explored configurations. For
this reason, however, the simulator must be able to store these configurations, which sig-
nificantly increases its memory requirements. In the current implementation, this is done
by recording sets of already explored states for all positions of the read head on the input
tape reached during a simulation. Since the number of such positions is upper-bounded by
the function (𝑚 + 1) +𝑚 + . . . + 1 = 1

2(𝑚 + 2)(𝑚 + 1), where 𝑚 represents the length of
an input string, the number of such records can grow relatively quickly.

𝑠

↰, 𝑎

↱, 𝑏

Figure A.1: State diagram of the 𝜀-free IE2SFA 𝑀 = ({𝑠}, {𝑎, 𝑏}, {𝑎𝑠→ 𝑠, 𝑠𝑏→ 𝑠}, 𝑠, {𝑠}).

As mentioned earlier, the simulator works with sets of states of an input IE2GFA.
Each such set encountered during a simulation is mapped to a unique integer value that
represents it, so it is stored only once. However, to further reduce the memory requirements
of a simulation, these sets could be represented more efficiently, for instance, by binary
decision diagrams (see [7]). Furthermore, the simulator could also be extended in the
future with a graphical user interface or the ability to simulate IE2GFA computations step
by step.
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Appendix B

Contents of the External
Attachments

The external attachments are organized as follows:

/
ie2gfa-simulator/.....................IE2GFA simulator implementation

examples/...........................Examples of input IE2GFA specifications
and strings

ie2gfa_sim..........................Script to run the simulator
ie2gfa.g4...........................Grammar for generating the IE2GFA spe-

cification parser for the simulator with
ANTLR

Makefile............................To prepare the environment for running
the simulator

README.md...........................Running instructions and usage examples
requirements.txt...................Python dependencies of the simulator
src/.................................Source files of the simulator

thesis-text/...........................Directory related to the text of this thesis
src/.................................LATEX source files of this thesis
xnejed09-thesis.pdf................PDF version of this thesis
xnejed09-thesis-print.pdf.........PDF version of this thesis for printing
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