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Abstrakt

Extrémne javy vesmírneho počasia predstavujú významné ohrozenie pre mo-

dernú infraštruktúru. Pripravovaná misia Vigil má za úlohu poskytovať monitorova-

nie a predpovedanie slnečnej činnosti. V tejto práci sme vytvorili dataset historicky

extrémnych prejavov vesmírneho počasia s využitím údajov z prístrojov najpodob-

nejších misii Vigil, čo umožňuje štúdie dolovania v dátach pre túto pripravovanú

misiu. Vyvinuli sme softvér umožňujúci prístup k týmto dátam, a poskylti sme ho

vedeckej komunite. Natrénovali sme modely hlbokého učenia na predpovede geomag-

netických búrok. Naša štúdia poskytuje pohľad na zdroje šírenie extrémnych javov

vesmírneho počasia, ale navrhuje aj rámec na porovnávanie týchto javov navzájom.

Kľúčové slová

Vesmírne počasie, geomagnetické búrky, hlboké učenie, predikcia

Abstract

Extreme space weather events pose a significant threat to modern infrastructure.

Upcoming Vigil mission aims to provide monitoring and forecasting solar activity. In

this work, we created a dataset of historically extreme space weather events using

data from the most similar instruments to Vigil, enabling data-driven studies for

this upcoming mission. We developed a pipeline to obtain to these observations,

and provided it to the scientific community. We trained deep learning models for

geomagnetic storm forecasting. Our study provides insights into the sources and

propagation extreme space weather events, and also proposes a framework for com-

paring these events to each other.
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Introduction

Extreme Space Weather events can negatively affect ground-based infrastructure and

satellite communications. European Space Agency plans to launch a new operational

mission, Vigil, to monitor space weather activity and provide timely warnings about

immediate danger. Prediction of solar events and their effect on Earth has been

longstanding challenge. To tackle this, research community utilize both numerical

models based on laws of physics and machine learning models to extract patterns in

large amounts of data.

Machine Learning gained popularity in the field of space weather in recent years

and it does not seem to stop soon. We discuss machine learning theory in chapter 1,

space weather in 2 and finally history and state of the art of the machine learning

in space weather in 2.2 and 2.3. There is also line of work within the research

group at Department of Cybernetic and Artificial Inteligence (KKUI) devoted to this

exploration of machine learning use. Motúzová (2023) predicted Earth’s geomagnetic

state using deep learning and historic parameters of solar wind. Zboray (2024) used

explainable methods for deep learning models that predicted Earth’s geomagnetic

state.

This work serves as pathfinder study for data-driven project for upcoming Vigil

mission. Since machine learning expects historic data, it creates first interesting

challenge - what data can be used for Vigil in order to use machine learning for space

weather prediction? To tackle this challenge, we propose new dataset from periods

of extreme solar activity, MESWE, which we describe in chapter 3.3. This enables

data-driven studies for Vigil. To our knowledge, this is the first study dedicated to

this. Our research findings on this topic has been published in peer reviewed journal

Majirský et al. (2025).

However, main benefit of proposed MESWE dataset is integration of in situ

measurements and images of solar activity. This provides integrated information

from different sources and is worth of exploring. We use deep learning methods to

1
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predict geomagnetic state of the Earth, which is framed as Dst index prediction in

time series. Implementation is described in chapters 3.4.2. Results of experiments

are reported and discussed in 3.4.4.

This work was conducted in collaboration with RNDr. Šimon Mackovjak, PhD.,

affiliated with the Institute of Experimental Physics, Slovak Academy of Sciences.

Outcomes were part of deliverables for the RPA SKR1-23 project "Study toward

enhancing reliability and timeliness of Vigil mission predictions through Machine

Learning", funded by the European Space Agency.

2
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1 Machine Learning

The exponential growth in data generation and collection has created unpreceden-

ted opportunities across various domains, extending far beyond traditional business

applications. However, manually analyzing these vast datasets to identify patterns,

relationships, and underlying rules would be a daunting task for human analysts.

According to LeCun et al. (2015) Machine Learning (ML) offers a framework of

techniques and mathematical approaches to automatically discover these patterns

and relationships, enabling systematic knowledge extraction from data. Deep Lear-

ning (DL), a specialized subfield of ML, employs artificial neural networks (ANNs) as

powerful tools to map input data to meaningful outputs tailored for specific objecti-

ves. The conceptual distinctions between ML and DL are summarized in Table 1 – 1.

Both ML and DL are current philosophies or ways to achieve Artificial Intelligence

(AI).

Since the introduction of AlexNet Krizhevsky et al. (2012), research has con-

sistently demonstrated that DL outperforms traditional ML approaches in tasks

involving high-dimensional and large-scale data, such as Computer Vision (CV) and

Natural Language Processing (NLP). Nonetheless, ML remains valuable in scena-

rios characterized by limited training samples or when model interpretability is of

critical importance.

The most common ways to create ML/DL models are supervised learning and

unsupervised learning. In supervised learning, datasets consist of paired inputs and

corresponding observed or measured outputs. For example, a dataset may include

housing attributes paired with their respective prices or images paired with labels

indicating the presence of a dog or a cat. In this paradigm, a ML or DL model app-

roximates a function that maps inputs to expected outputs based on these provided

pairs. The objective is for the supervised model to generalize and accurately predict

outputs for new inputs for which the observed outputs are not yet known.

Common tasks adapted for ML and DL methodologies are regression and classi-

3
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Table 1 – 1: Comparison between Machine Learning and Deep Learning

Aspect Machine Learning Deep Learning

Data Requirements Suitable for small datasets Requires large datasets for

best performance

Feature Enginee-

ring

Requires manual feature

extraction and selection

Automatically learns and

extracts relevant features

from raw data

Interpretability More transparent and ea-

sier to understand how de-

cisions are made

Often considered a "black

box"with less interpre-

table decision-making

process

Problem Types Better for structured data

and traditional problems

with clear feature definiti-

ons

Excels at complex pat-

terns in unstructured data

(images, text, audio)

Scalability Limited by feature engine-

ering

Scales great with more

data and compute

Model Examples SVM, Random Forests,

Linear Regression

MLP, CNN, RNN

fication Prince (2023). Regression involves predicting a continuous numerical output

based on a set of input features. For instance, estimating the price of a house ba-

sed on attributes such as the number of bedrooms, location, and available utilities

exemplifies a regression task.

In contrast, classification tasks involve assigning input data to predefined discrete

categories. An example of a classification task is identifying whether an input image

contains a dog or a cat.

Unsupervised learning algorithms operate only on input data without correspon-

ding output labels. The primary goal in this context is to uncover the underlying

structure or distribution of the input data without explicit feedback regarding cor-

rectness. An example is a clustering task, where the model groups data points based

4



FEI KKUI

on their proximity or similarity in the feature space.

1.1 Neural Networks

The most simplest unit of a neural network is thought to be Perceptron proposed

by Rosenblatt (1958). Perceptron is simple mathematical construct that takes input

represented as vector of n attributes, X = [x1, · · · , xn]. The inputs are multiplied

by their corresponding weights, W = [w1, · · · , wn] and summed. These weights re-

present the importance of each input xi in determining the computed output ŷ. An

activation function σ then maps the weighted sum to either 1 or -1, representing a

binary ’yes/no’ classification of the output ŷ. We can describe this as follows:

σ(x) =

 −1 if x < 0

+1 if x ≥ 0
(1.1)

ŷ = f(X) = σ(
n∑

i=1
wixi) (1.2)

Weights are unknown and are initialized randomly. These random weights will

provide output ŷ with large loss L when compared to true values y, where L =

|y − ŷ|. The goal of function f(·), in this case perceptron, is to update the weights

to minimize the loss between the true values and the predicted values. Details on

how weights are modified are outlined in chapter 1.4.

Minsky and Papert (1969) argued that Perceptron is not general solution, as

it can not solve tasks, where data are not linearly separable. The primary focus

on the solution to this problem was to provide more layers of perceptrons and use

non-linear activation functions σ. However, the scientific community struggled to

develop an algorithm to modify the weights effectively until the 1980s, when the

backpropagation algorithm was independently discovered by four research groups

Werbos (1974); Parker (1985); Lecun (1985); Rumelhart et al. (1986).

A Multilayer Perceptron (MLP), often referred to as a Feed Forward Network

(FFN) or Artificial Neural Network (ANN), is an extension of the original perceptron

5
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concept. It consists of multiple layers of perceptrons, where the outputs of one layer

serve as the inputs to the next. This architecture typically includes an input layer,

one or more hidden layers, and an output layer, with each layer fully connected to

the subsequent layer. According to Aggarwal (2023) we can express neural network

with n − 1 hidden layers as following:

h1 = σ(W1x), (1.3)

hl+1 = σ(Wl+1hl) ∀l ∈ {1, · · · , n − 1}, (1.4)

o = σ(Wn+1hn), (1.5)

where x is the input vector to the MLP, hl is activations of the l-th hidden layer,

Wl are weight matrix for the l-th layer, where each row of the matrix corresponds

to a single neuron in the l-th layer, and each column corresponds to an input from

the next layer. o is the output vector of this MLP construct. Perceptron and MLP

are shown in figure 1 – 1.

In MLPs, the structure of the layers plays a crucial role which is called capacity:

the number of neurons in a layer, known as the width of the network, and the number

of hidden layers, referred to as the depth. These, along with the choice of activation

function σ, are adjustable.

Why might one choose different activation functions? As noted by Aggarwal

(2023), a neural network with many hidden layers and only linear activation functi-

ons is fundamentally no different from a neural network with just one hidden layer

and linear activation functions. Curious readers are directed to the proof of Theorem

1.5.1 for further details. This observation highlights the importance of nonlinear acti-

vation functions, which allow the model to capture complex, non-linear relationships

in the data.

6
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(a) Perceptron (b) Multilayer Perceptron

(c) Multilayer Perceptron in vector notation

Figure 1 – 1: (a) Shows Perceptron. (b) Shows Multilayer Perceptron with input,

hidden and output layers of Perceptrons interconnected. (c) Shows Multilayer Per-

ceptron in vector notation according to Aggarwal (2023). x and hl are vectors and

Wl are matrices with size depending on size of layers. This notation coresponds to

equations 1.3, 1.4 and 1.5

1.2 Activation Functions

Non-linear activation functions introduce the necessary non-linearity, allowing the

network to learn and represent complex patterns. They enable outputs of one layer to

interact in non-linear ways with subsequent layers, which is crucial for deep networks

7
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that capture hierarchical features in data. Cybenko (1989) and Hornik (1991) shown

that neural network with at least one hidden layer with non-linear activation function

can approximate any function well if number of neurons in hidden layer is large

enough. This is show in figure 1 – 2.

Figure 1 – 2: Approximation of a function with multiple linear pieces. A neural

network creates one extra linear piece per hidden unit. With enough hidden units,

we should be able to approximate any function. Courtesy of Prince (2023).

Sigmoid, hyperbolic tangents and ReLU are the most commonly used activation

functions. Figure 1 – 3 shows their output. They can be denoted as following:

sigmoid(x) = 1
1 + e−x

, (1.6)

tanh(x) = ex − e−x

ex + e−x
, (1.7)

ReLU(x) = max(0, x). (1.8)

ReLU is notably most used function for hidden layers in MLPs, since Glorot

et al. (2011) demonstrated that ReLU activation functions offer significant advanta-

ges over sigmoid and tanh functions. The authors established that both sigmoid and

tanh functions can lead to saturation during training, where the gradients become

8
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(a) ReLU (b) Sigmoid

(c) Tanh

Figure 1 – 3: Activation functions commonly used in neural networks

exceedingly small, thereby impeding the neural network’s convergence rate. This sa-

turation effect occurs because sigmoid and tanh functions compress their inputs into

a finite range, causing the gradients to vanish when the activation values approach

either end of their range. In contrast, ReLU maintains a constant gradient for all

positive inputs, allowing for more efficient training and faster convergence. This was

supported by their empirical evidence of ReLU’s superior performance compared to

sigmoid and tanh functions.

Despite these advantages, ReLU activation functions present their own signifi-

cant limitations. ReLU exhibits ’dying ReLU’ problem, where neurons can become

permanently inactive Lu et al. (2019). This occurs because ReLU produces zero

gradient for all negative inputs, effectively preventing weight updates during backp-

ropagation. This issue becomes especially problematic in neural networks with more

hidden layers, as the cumulative effect of large number of inactive neurons can se-
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verely hinder the model’s ability to train.

Research community have proposed several modified activation functions to add-

ress this problem. Maas et al. (2013) introduces Leaky ReLU a small positive slope

for negative inputs, ensuring that neurons remain partially active even for negative

values, thereby maintaining gradient flow throughout the network. More recently,

Gaussian Error Linear Unit (GELU) proposed by Hendrycks and Gimpel (2016)

has gained prominence. GELU provides a smoother transition between active and

inactive states while incorporating probabilistic properties that can enhance model

regularization. Nevertheless, the efficacy of alternative activation functions to ReLU

exhibits substantial variability across different tasks and datasets. ReLU maintains

its position as a widely adopted activation function due to its straightforward im-

plementation and consistently reliable performance across diverse applications.

1.3 Loss Functions

The loss function quantifies the discrepancy between the predicted outputs of a

model, ŷ, and the corresponding true values, y, and providing this comparison in a

single scalar value. The process of training a neural network involves optimizing its

parameters (or weights, Wl) to minimize this loss function.

A critical property of a loss function is its differentiability, as this enables the use

of backpropagation and gradient-based optimization methods, to iteratively update

the network’s parameters as we shall see in chapter 1.4.

Choice of loss function depends on task. For regression tasks, the Mean Squared

Error is most common and is defined as follows:

MSE = 1
N

N∑
i=1

(yi − ŷi)2, (1.9)

where N is the number of samples, yi are true values and ŷi denotes outputs of

neural network.

For classification tasks, the Cross-Entropy Loss is used and is defined as:
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Cross-Entropy = − 1
N

N∑
i=1

C∑
j=1

yi,j log(ŷi,j), (1.10)

where K is the number of classes, yi,j is a binary indicator denoting the true

class of sample i and ŷi,j is the output probability of the class k.

1.4 Backpropagation and Optimization

We have already mentioned that weights in neural networks are adjusted to minimize

the loss function. Natural question arises, how are these weights updated? We can

start to approach this with an example. Consider finding minimum of this simple

function f : y = x2. One can call back that calculus offers an approach for this task.

At the minimum, the derivative, the rate of change, equals zero, as the slope is flat.

Differentiating f , setting the derivative to zero, and solving for x yields the point

where f(y) achieves its minimum.

However, the result of the loss unction depends on every weight of the neural

network. Consider replacing ŷ in equation 1.9 by o from equation 1.5 which repre-

sents output of MLP with numerous weights as W matrices. Unlike the simple case

discussed above, finding the minimum of this loss function cannot follow the same

direct approach.

Backpropagation Rumelhart et al. (1986) calculates partial differentiation of the

loss function with respect to every weight Wij in neural network. Nowadays, backp-

ropagation is calculated effectively with frameworks as PyTroch Paszke et al. (2017)

or Tensorflow Abadi et al. (2016), reducing complexity of implementation deep le-

arning model. However it is useful to know how automatic differentiation is done

inside these frameworks.

Consider equations 1.3, 1.4 and 1.5 as forward pass of MLP. Then, according

to Aggarwal (2023), backward loss propagation and gradient calculation for weights

can be noted as following:
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δo = ∂L

∂o
.σ′(o), (1.11)

δl = (W T
l+1δl) ⊙ σ′(hl), (1.12)

where δ is error term, or also known as local gradient. This combines backpropa-

gated error from following layer and the derivative of activation function in current

layer σ′(.). Different activation functions have different derivatives, which can be

found for example in Lederer (2021). ⊙ is element-wise product. Then, to calculate

weight gradients at layer l, we multiply error term δl with a values of previous hidden

layer l − 1:

∂L

∂Wl

= δlhl−1, (1.13)

and for the first layer of weights we replace hl−1 for inputs xT :

∂L

∂W1
= δ1x

T . (1.14)

Gradients of all weights are also commonly denoted as ∂L
∂W

= ∇L in literature.

Gradient optimization methods update every weight by subtracting a fraction of

the gradient at step t, from the previous weights Wt−1. Gradients are scaled by the

small constant, learning rate α. This moves the value of the loss function towards

the minimum:

Wt ⇐ Wt−1 − α∇Lt. (1.15)

This is optimization method is known as Gradient Descent and it is calculated

on entire dataset until convergence of a function to a minimum. This is meant by

training deep learning model. Stochastic Gradient Descent uses single data sample

or small batch of data.

There are known other optimization methods that incorporate momentum to

help avoid getting stuck in saddle points of the loss function, where gradient are
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small and can slow down convergence. Including Momentum-based Gradient Des-

cent, RMSprop, AdaGrad. Most used optimizer method is however Adam, proposed

by Kingma (2014). It is designed to combine advantages of RMSprop and AdaGrad.

Adam estimates first mt and second moment vt, that are moving averages of past

gradients. These moments are tracked as follows:

mt = β1mt−1 + (1 − β1)∇Lt (1.16)

vt = β2vt−1 + (1 − β2)∇L2
t (1.17)

Wt ⇐ Wt−1 − α
mt√
vt + ϵ

(1.18)

where betas β1 and β2 are hyperparameters that determinate contribution of

past gradients, α is learning rate and ϵ is small constant to prevent division by zero.

1.5 Deep Learning Training Principles

ML and DL models fundamentally aim to achieve great generalization performance

on previously unseen examples, commonly referred to as test data. During the trai-

ning process, weights of the model are optimized using a training dataset, which is

assumed to be drawn from the same statistical distribution as the future data model

will encounter. Model performance is quantified through two key metrics: the trai-

ning loss, which measures performance on the training data, and the test loss, which

estimates generalization capability. Additionally, a validation dataset is frequently

employed as an intermediate evaluation step to select best hyperparameters or to

utilize early stopping.

The training objective can be formally defined as the optimization of model para-

meters to minimize the training loss while simultaneously maintaining a minimal gap

between training and test loss. Practitioners commonly encounter two phenomena:

underfitting and overfitting. Underfitting occurs when the model fails to achieve
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low training error, indicating insufficient learning capacity. Overfitting occurs when

there exists an excessive gap between training and test errors, indicating that the

model has learned exact solutions or specific details on the training data, which are

not true for test data. To handle underfitting and overfitting correctly, it is impor-

tant to select a model with a capacity that appropriately aligns with the complexity

of the task. Overfitting and underfitting are shown in figure 1 – 4.

Figure 1 – 4: Demonstration of model capacity and its fit on training data points.

(A) Underfitting: linear model is too simple to capture sinusoidal pattern. It has poor

performance on training data and will have poor performance if new, unseen points

are added. (B) Overfitting: High-Degree polynomial is too complex for sinusoidal

pattern and fits training data very closely. It perfectly meets all training data, but

misses sinusoidal patter. New unseen data point will be probably missed by model

prediction badly. (C) Optimal Fit: Model captures sinusoidal patter, although it is

not perfect on training data, it maintains good generalization when new data will

be added.

To prevent model overfitting, we can constrain the model’s complexity by using

techniques of regularization. Most used are:

1. L1 regularization: encourages sparsity in model parameters by driving we-

ights to zero, making effective feature selection. It is useful when dealing with

many input attributes, but only few are relevant to target variable and others

contain noise Ng (2004).
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2. L2 regularization: penalizes large parameter values that encourages model

to use smaller weights across all features Ng (2004).

3. Dropout: randomly deactivates neurons during training with p probability,

while during testing all neurons are present, but outgoing weights of layer are

multiplied by 1
1−p

. It was shown that this improves generalization performance

Srivastava et al. (2014).

However, most simple and most used technique to prevent overfitting is early

stopping. This halts training process when model stops improving on validation set

and saves parameters of the model in optimal performance.

Recently, Belkin et al. (2019) showed that way-over parametrized Machine Le-

arning models can in fact later achieve lower generalization error instead of keep

overfitting. This surprising phenomenon is known as double descent, hence descent

of test loss first, then as model overfits loss increases but after interpolation treshold

of parameters count, test loss starts to decrease again. Figure 1 – 5 shows double

descent in over-parametrized model regime. For interested readers, many literature

is devoted to this research Adlam and Pennington (2020), Nakkiran et al. (2021),

Lafon and Thomas (2024).

Figure 1 – 5: Figure (A) shows bias-variance trade-off to which authors refer as

’Classical’ regime. Figure (B) shows that given large capacity of a model, training

loss becomes zero-close and test loss starts to descent again to even lower value than

optimal point in Classical regime. This second regime author refer as ’Modern’ or

’Overparametrized’ regime. Courtesy of Belkin et al. (2019).
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Hyperparameters, such as the capacity of a neural network, learning rate, or

amount of regularization are configuration settings of the model that have influence

on training and performance. The process of selecting optimal hyperparameters is

referred to as neural architecture search Elsken et al. (2019).

Widely used approach for neural architecture search is grid search, in which all

possible combinations of specified hyperparameters values are systematically explo-

red. However, the computational cost of grid search grows exponentially with the

number of hyperparameters. Moreover, Bergstra and Bengio (2012) demonstrated

that grid search often wastes computational resources by tuning less important hy-

perparameters. Authors proposed random search, which samples hyperparameter

values from predefined probability distributions instead of exhaustively testing all

combinations. This approach enables the exploration of a broader search space and

has been shown to identify better-performing hyperparameters with fewer trials,

thereby reducing computational resources.

We have showed how we can calculate gradient and update weights in neural

network over entire training dataset or each training data point. However, individual

points of the data might be mislabeled or be outliers, thus making training unstable.

Furthermore, computing gradients for each training data point is time consuming.

Updating weights on loss over entire dataset at once makes slower updates and is

memory demanding. To balance those approaches, gradient computation is often

performed on mini-batches of data points from the training set. This approach has

several advantages: it stabilizes training by averaging over multiple samples and

reduces computation time by leveraging data parallelism.

Batch size is frequently included in hyperparameter optimization. However Shal-

lue et al. (2019), argues that this practice is wrong, and provides evidence that

model can achieve comparable performance across different batch sizes, as long as

other hyperparameters are appropriately tuned for each batch size.

A recommended practice for deep learning practitioners is to first determine

the largest batch size that fits within the available memory constraints. Using the
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largest feasible batch size allows the model to train faster by requiring fewer gradient

updates to converge. Once an optimal batch size is identified, other hyperparameters

should be tuned accordingly to maximize model performance.

Initialization of the weights is also important. A simple approach is to initialize

weights using random values drawn from a Normal distribution with zero mean

and a small standard deviation, to have small weights values and therefore small

gradients that provide stable convergence. However, this method does not take into

consideration the number of input and output connections of neurons.

Glorot and Bengio (2010) argues that neurons with fewer input connections are

more sensitive to changes in weights than neurons with a larger number of inputs.

This difference can lead to imbalances in gradient magnitudes during backpropa-

gation and might saturate neurons that use tanh or sigmoid activation function,

which results in near-zero gradients and slows training. Therefore, they propose ini-

tialization of weights drawn from normal distribution with zero mean and standard

deviation as std =
√

2/rin + rout, where rin is number of input connections and rout

denotes number of output connections.

1.6 Convolutional Neural Networks

Convolutional neural networks (CNNs) were designed to process grid-like data struc-

tures, such as images. Their effectiveness was first demonstrated by LeCun et al.

(1989) in the task of handwritten postal zip codes recognition. CNNs gained further

recognition with its application to document recognition LeCun et al. (1998). Howe-

ver, they achieved widespread dominance after Krizhevsky et al. (2012) efficiently

used more compute from GPUs and reported unprecedented performance on the

large-scale ImageNet dataset.

CNNs consist of layers applying n × m filter 1 sliding over whole input data in

vertical and horizontal dimension using convolution operation. Convolution in this
1In literature also mentioned as kernel
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setting basically means that n×m input data values are multiplied with filter element

wise and summed up to output one scalar value. After sliding over entire input data

and getting scalar values, they form feature map. Size of resulting feature map can

be adjusted with size of filter’s stride and padding around input data. Values in filter

are what are parameters to be learned by backpropagation. Resulting feature maps

are than capable of recognizing specific edges, corners or entire objects on input data

(image) Zeiler (2014). Convolution layer can be described as:

O(i, j) =
M∑

m=1

N∑
n=1

F (m, n)I(i + m, j + n) (1.19)

where, I is input image and F is filter, (i,j) are indices of the output feature map

O and (m,n) are indices over the filter.

Feature maps are then passed through a non-linear activation function. To reduce

the computational complexity and dimensionality of the feature maps, max pooling

operation is used. Max pooling divides input into small regions (e.g. 2x2) and outputs

maximum value from each region. This effectively summarizes the dominant features

in small areas of the image. In this layer, no trainable parameters are present. After

max pooling, the reduced feature maps are then flattened into a one-dimensional

vector and passed to the fully connected layer, which is basically MLP described in

1.1. CNN is shown in figure 1 – 6.

Feature maps can be normalized across batch. Batch Normalization, proposed

by Ioffe (2015), ensures that the inputs to each hidden layer maintain a consistent

distribution throughout training. It was shown that it enables larger learning rates

and increases generalization accuracy. The formula for Batch normalization is as

follows:

µB = 1
b

b∑
i=1

(xi) (1.20)

σ2
B = 1

b

b∑
i=1

(xi − µB)2 (1.21)
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Figure 1 – 6: A Convolutional Neural Network consisting of two sequential convolu-

tional and pooling layers, followed by a flattening operation that transforms the 2D

feature map into a 1D representation, which is then processed by a fully connected

classifier. Taken from Sermanet et al. (2012).

yi = γ
xi − µB√

σ2
B + ε

+ β (1.22)

where xi is image in batch represented as tensor with three dimensions: channels,

width, height, b is the number of samples in the batch, µB is mean of input features

across the batch, σ2
B is variance, yi is result of BN where γ and β are learnable

parameters that allow model to scale and shift normalized values to learn optimal

distribution. Batch normalization is applied independently to each channel of xi.

Convolution is commonly used only for one image input (e.g. image classifica-

tion). In cases of sequences images, to capture these not only spatial but temporal

dependencies in sequence, Time Distributed Layer approach is used. This layer app-

lies convolutional operations to each image in the sequence and produces feature

maps for each image in sequence, maintaining the temporal structure of the image

sequence. Once the feature maps are obtained, they are typically flattened and pas-

sed to a recurrent layer such as an LSTM, or GRU.
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1.7 Recurrent Neural Networks

Feed forward networks, as discussed earilier, identify patterns in large amount of

data. However, certain types of data exhibit inherent temporal structures or sequen-

tial dependencies. Examples include time-series data and natural language. Consider

the following two sentences:

• The student finished the thesis.

• The thesis finished the student.

Although these sentences contain the same words, their differing word order

results in distinct meanings.

Recurrent neural networks (RNNs) are designed to process sequential data, where

the current state of parameters depends on the previous one. Unlike feedforward

networks, RNNs share weights across different time steps, allowing information to

flow through the input data rather than assigning separate hidden parameters to

each item in inputed sequence. Training RNNs has been proven to be difficult due to

emerging issues such as vanishing and exploding gradients Bengio et al. (1994). Long

Short-Term Memory (LSTM) Hochreiter (1997) and Gated Recurrent Unit (GRU)

Cho (2014) are RNN architectures address this problem. GRUs, in particular, use

fewer parameters than LSTMs, making them faster to train Chung et al. (2014),

which is why we used them in this work. GRU cell can be noted as following:

zt = σ(Wzxt + Uzht−1 + bz) (1.23)

rt = σ(Wrxt + Urht−1 + br) (1.24)

h̃t = tanh(Whxt + Uh(ht−1 ⊙ rt) + bh) (1.25)

ht = zt ⊙ h̃t + (1 − zt) ⊙ ht−1, (1.26)
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where zt is update gate that controls how much of the previous ht−1 state of

parameters should be passed through a sigmoid function σ to the next state. Reset

gate rt determines how much of previous state should be ignored in candidate hidden

state h̃t. In the final hidden state computation ht is decided, how much of the

previous state should be retain for current time step. Wz, Wr, Wh are parameters of

inputs at time step xt and Uz, Ur, Uh are parameters of previous state ht−1. These

parameters are optimized. For the initial step, hidden state h0 is set to zeros. GRU

cell is shown in figure 1 – 7.

Figure 1 – 7: Structure of GRU cell. Taken from Abboush et al. (2023).
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2 Space Weather

Modern society depends on technologies for its critical infrastructure such as po-

wer grids, communication systems and global transportation. Space weather events

(SWE) occurs in interplanetary space between Sun and Earth and can have negative

impacts on Earth and Space infrastructure (Hapgood et al., 2021).

Numerous SWE phenomenons are known, but for this work, it is sufficient to be

familiar with these basic ones:

• Active region is an area in Sun’s corona with intense magnetic fields and

they appear as bright areas on images of solar corona. These areas are known

to be source of Solar Flares.

• Solar flare is sudden intense emission of energy in Sun’s atmosphere. They

can be recognized as bright flash visible in image sequence. In the form of

electromagnetic radiation and high-energy particles, a strong eruption can so-

metimes cause rapid and significant changes in the environment near Earth.

• Solar wind is a continuous stream of charged particles ejected from the Sun.

Its velocity can range from 400 to 1000 km/s or above. When interacting with

Earth’s magnetosphere, it can lead to geomagnetic storms.

• Coronal mass ejection (CME) is explosion of coronal mass into the sur-

rounding space, consisting primarily of electrons, protons, and heavier ions.

It is associated with a solar flare, which can produce a CME, but this is not

always the case. CMEs propagates within the solar wind and shockwave acce-

lerates its particles.

• Corotating Interaction Region (CIR) are structures in the heliosphere

that rotate with the Sun. They emerge when high speed solar wind streams,

overtake preceding slow speed streams. This interaction increases plasma den-

sity and magnetic field strength. CIRs can persist for multiple solar rotations.,
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and when CIRs reach Earth, their southward-directed interplanetary magne-

tic field component can reconnect with the geomagnetic field, facilitating the

transfer of energy into the magnetosphere causing geomagnetic storms.

• Geomagnetic storms are major disturbances in Earth’s magnetosphere cau-

sed by the interaction of solar wind’s southward magnetic field component with

Earth’s geomagnetic field. Reconnection then transfers energy from the mag-

netosphere into the Earth’s atmosphere.

The most well-known case where space weather affected our technology is the

Carrington Event of 1859 (Giegengack, 2015). A geomagnetic storm caused by a

CME disrupted the emerging telegraph network. In 1989, a geomagnetic storm cau-

sed a power plant outage in Quebec, leaving up to 6 million people without electricity

for 9 hours (Allen et al., 1989). In 2003, a geomagnetic storm caused 50,000 people

to lose power in Sweden and damaged 12 transformers in Africa (Cid et al., 2014).

According to Dang et al. (2022) in February 2022, two geomagnetic storms caused

by solar activity and the passage of CMEs increased atmospheric drag, leading to

the loss of 38 Starlink satellites.

Although the upcoming solar cycle 25 was not expected to be stronger than the

previous 24th cycle, as highlighted by Penza et al. (2023), there is still a risk of solar

flares causing CMEs directed toward Earth that can emerge at any time. Recently,

the intense ’Mother’s Day’ geomagnetic storm in May 2024 Spogli et al. (2024),

one of the strongest in the past 30 years, highlighted this ongoing risk. Therefore,

monitoring and predicting space weather is already important for protecting existing

infrastructure, and its importance will continue to grow for future human-crewed

space missions.

2.1 Solar Activity Monitoring Missions

Over the past decades, Space Agencies have spent much effort for monitoring solar

activity, due to its critical importance for modern society. Data obtained from these
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activities can help scientists understand the specific mechanics and triggers of solar

weather. These data have been collected through a series of missions, which can be

conceptualized as successive generations of solar activity monitoring efforts.

1. Generation: The Solar and Heliospheric Observatory (SOHO), laun-

ched in 1995. SOHO is equipped with 12 instruments that capture solar acti-

vity. They can be divided into 3 categories: instruments for helioseismology,

solar corona investigation instruments and instruments for in-situ space wind

measurements (Domingo et al., 1995). Positioned at Lagrange Point 1 (L1),

SOHO maintains an uninterrupted view of the Sun.

2. Generation: Solar TErrestrial RElations Observatory (STEREO) laun-

ched in 2006, consisted of two spacecraft: STEREO A (Ahead) and STEREO

B (Behind). These spacecraft orbited the Sun, with one positioned ahead of

Earth and the other trailing behind (Kaiser et al., 2008). This unique tra-

jectories enabled scientists to obtain a 3D view of the Sun from two angles.

However, STEREO B was lost in 2014 and contact could not be reestablished.

In August 2023, STEREO A completed a full orbit around the Sun and once

again crossed Earth’s orbital trajectory.

3. Generation: Solar Dynamics Observatory (SDO) launched in 2010. The

SDO satellite is equipped with 3 instruments: Atmospheric Imaging Assembly

(AIA), Extreme Ultraviolet Variability Experiment (EVE) and Helioseismic

and Magnetic Imager (HMI) (Pesnell et al., 2012). These telescopes capture

solar activity in better resolution than SOHO, therefore it is considered the

successor to the SOHO satellite. Since its instruments have a high cadence and

better quality, they generate a lot of data suitable for machine learning tasks.

4. Generation: Geostationary Operational Environmental Satellite (GOES)

Series. GOES satellites are placed in geosynchronous orbit, which keeps them

above a specific location on the Earth’s surface. The first GOES satellite was
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launched in 1975 and monitored Earth’s weather. The latest GOES-R series

consists of four satellites that provide imagery and atmospheric measurements

of Earth’s weather (Goodman et al., 2019). In addition to these objectives,

GOES satellites also have the Solar Ultraviolet Imager (SUVI), which is used

to observe the Sun’s corona. R-series satellite launch dates:

• GOES-16: November 2016

• GOES-17: March 2018

• GOES-18: March 2022

• GOES-19: June 2024

The satellites are scheduled to operate until 2040.

5. Generation (Planned): Vigil scheduled for launch in 2031. The Vigil mission

will monitor solar activity and provide warnings of space weather events that

could threaten critical infrastructure on Earth. Located at Lagrange point 5

(L5), Vigil will orbit the Sun at an angular offset of 60° from Earth’s position.

This will allow Vigil to image an additional 60° of the solar disc that is not

visible from Earth. This additional view can detect potentially dangerous so-

lar activity 4 days before it is visible from Earth (Vourlidas, 2015). Another

advantage of the L5 point is that, thanks to its heliospheric imager, Vigil can

observe the propagation of CMEs in space between the Sun and Earth. The

L5 point is shown in the figure 2 – 1. Vigil will produce a huge amount of data

on solar activity. Therefore, automated knowledge extraction will be key to

identifying potential trends, anomalies, and even discoveries within this data.

Machine learning seems to be a useful tool for this task.

The main payload of the Vigil mission will consist of 6 instruments which are

described in Table 2 – 1. To illustrate the similarity of the categories of Vigil’s ins-

truments and already operated missions’ instruments, we have created a matrix
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Figure 2 – 1: Lagrange points in the two-body Sun-Earth system, according to Lo

et al. (2010).

presented in Table 2 – 2. Notably, the Vigil instruments are currently in develop-

ment. The exact characteristics will be provided once the construction and testing

are finalized. However, for now, it is expected that the Vigil will have the ability to

monitor SWE phenomena within their pathway from Sun to Earth. The solar mag-

netic field in the photosphere will be measured by a Photospheric Magnetic field

Imager (PMI) Staub et al. (2020). Structures in the solar corona will be imaged by

a Joint EUV coronal Diagnostic Investigation (JEDI). CMEs will be captured by

a Compact Coronagraph (CCOR) and their propagation in space will be tracked

by a Heliospheric Imager (HI) Tappin et al. (2023). The interplanetary magnetic

field at L5 point will be measured by Magnetometer (MAG) Eastwood et al. (2024)

and solar wind features like Stream and Corotating Interaction Regions (SIRs and

CIRs) will be detected in-situ by Plasma Analyser (PLA) Zhang et al. (2024). It is

important to consider that all Vigil outcomes will be orchestrated with outcomes

from missions on the Sun-Eart line. It is expected, that multi-perspective coronag-

raph observations for modeling the 3D structure of CMEs, extended magnetogram
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coverage of the solar surface, and in-situ measurements of the ambient solar wind

before its rotating streams become geoeffective, would be essential outputs.

Table 2 – 1: Table of planned Vigil instruments.

Instrument Purpose

Photospheric Magnetic Is designed to provide vector magnetic field

field Imager (PMI) mapping of the solar photosphere.

Joint EUV coronal Is designed to image solar corona.

Diagnostic Investigation (JEDI)

Compact Coronagraph (CCOR)
Is designed to perform solar coronagraphy needed

for identification of CME evolution.

Heliospheric Imager (HI)
Is designed to provide the tracking of the propagation

of CME in space by heliospheric imaging.

Magnetometer (MAG)
Is designed to measure in-situ vector of

Interplanetary Magnetic Field.

Plasma Analyser (PLA)
Is designed to measure in-situ solar wind density,

temperature, and velocity.

Table 2 – 2: The matrix of space missions instruments that are similar to the category of Vigil’s

instruments.

Vigil SOHO SDO SolO STEREO GOES WIND ACE DSCOVR

PMI MDI HMI PHI

JEDI EIT AIA EUI EUVI SUVI

CCOR LASCO COR CCOR

HI HI HI

MAG MAG IMPACT MFI MAG MAG

PLA CELIAS SWA PLASTIC SWE SWEPAM FC

2.2 Machine Learning in Space Weather

The idea of applying neural networks to data from the space weather domain appea-

red as early as 1988 (Fozzard et al., 1988). At that time, a three-layer neural network
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was able to match a rule-based expert system in predicting the classification class

of a solar flare.

With the increase in computer power and the amount of data available, along

with new algorithms that are easier to use thanks to abstract tools and libraries, the

solar weather community has become more interested in and exploring the benefits

that machine learning can bring to understanding and predicting solar phenomena

and their impacts (Camporeale, 2019), (Lilensten et al., 2021). According to (KA

et al., 2023), this growing interest is also visible in the number of total publications

on the use of machine learning in this domain, especially after 2018 and still growing.

Figure 2 – 2 shows the number of annual publications.

Figure 2 – 2: Annual number of publications dedicated to solving machine learning

problems in the space weather domain, according to KA et al. (2023).

2.3 State of The Art for Dst Prediction

A common parameter to measure geomagnetic disturbances is the Disturbance storm

time index (Dst index) (Sugiura and Wilson, 1964). Dst index represents a measure

of the average intensity of the Earth’s external geomagnetic field, derived from data

on north-south magnetic field fluctuations recorded by four strategically positioned
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ground-based magnetometers along the geomagnetic equator: Hermanus, Honolulu,

San Juan, and Kakioka (Sugiura and Kamei, 1991). Although some researchers argue

that the Dst index alone is insufficient to fully characterize extreme space weather

events (Borovsky and Shprits, 2017), Dst index prediction is an extensive area of re-

search within the Space Weather community with many publications dedicated to it.

Two main approaches are Physics-based models and Machine Learning techniques.

In our work, we focus on the latter-mentioned approach.

Lundstedt (1991) was one of the first to predict the Dst index using feed-forward

neural networks with one one-hour lead time. Jankovičová et al. (2002) used Princi-

pal Component Analysis to reduce input parameters for NN. Bala and Reiff (2012)

proposed an improved operational forecast of Dst running in real-time. Lazzús et al.

(2017) proposed NN, where weights were optimized by the Particle Swarm Opti-

mization algorithm. The Bagging Ensemble learning method was proposed by Xu

et al. (2020), combining NN, SVR, and LSTM network. Park et al. (2021) presented

an operational model to predict the Dst index combining NN and Empirical model.

This model was trained on geomagnetic storms data, with the distinction between

storms driven by CME and CIR. Recently, Hu et al. (2022) presented CNN trained

on 51 geomagnetic storms to predict the probability of Dst < -100 nT one day ahead

using remote-sensing data from SOHO mission. Later, Hu et al. (2023) demonstra-

ted a model trained on 66 geomagnetic storms, employing a Gated Recurrent Unit

(GRU) to predict the Dst index up to 6 hours in advance. The model incorporated

uncertainty estimation and a boosting method to improve accuracy.

We see two possible ways to engage in the current discussion on Dst prediction

within this work. First, a community already knows what in-situ measurements are

useful as input parameters to predict the Dst intex (Lethy et al., 2018), but only

a handful of works e.g. Hu et al. (2022) incorporated remote-sensing data for Dst

prediction. Second, it is important to address delayed forecasts, which commonly

occur in Dst index prediction, as it is a time-series forecasting task. While the Dst

index generally remains stable, on rare occasions caused by geomagnetic storms,
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the Dst index can change by a large margin in a very short time. Those rare rapid

fluctuations are indeed difficult to predict accurately and what seems to be repor-

ted as acceptable conventional metric value (R2 or RMSE) may not fully reflect

true prediction quality or usefulness, since prediction is not on time. This latency

often appears as a shift between predicted and actual values when plotted together,

indicating a delay in the prediction’s responsiveness to sudden changes.
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3 Dst Prediction

Work of this project was done using Cross-Industry Standard Process for Data Mi-

ning (CRISP-DM) methodology (Paralič, 2003). It provides an organized approach

to uncover insights and discoveries from raw data. CRISP-DM follows six main pha-

ses: Business understanding, data understanding, data preparation, modeling, eva-

luation, and deployment. Since this study was conducted with scientific exploration

objectives, we refer to the initial CRISP-DM phase as Scientific Understanding.

3.1 Scientific Understanding

The accurate and timely prediction of the Dst index is critical, as it serves as a

measure of Earth’s geomagnetic state. During geomagnetic storms, disruptions to

the Dst index have been linked to reduced GPS accuracy and the potential for

damage to critical infrastructure as discussed in detail in chapter 2. Dst index is a

continuous numerical variable and deep learning provides a promising approach to

create deep learning model, that can predict numerical value y several timesteps T

ahead. This is referred to as a time-series regression task and it is used in many

domains.

Dst prediction was addressed by numerous studies (see chapter 2.3), highlighting

the significance of this topic within the space weather research community. Many

prior works have visualized Dst prediction over extended time periods spanning

months or years, during which Dst is dominantly stable near zero, with occasional

fluctuations. While such predictions visualizations provide an overview of model

performance, it often overlook the critical need for timely and precise forecasting of

sharp Dst decreases, which are the primary markers of geomagnetic storms. Focus

on these extended sequences can lack of granularity needed to evaluate accuracy

and timeliness of Dst prediction during sudden and sharp changes. As a result,

validating models performance on such sequences may report seemingly acceptable

performance metrics while failing to detect the model’s inability to predict sharp
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Dst decreases in a timely manner, a crucial capability for practical applications.

This has been observed and reported in numerous works (Kugblenu et al., 1999;

Stepanova and Pérez, 2000; Wintoft and Wik, 2018; Zhang et al., 2023), where it

often appears as a shift between predicted and actual values when plotted together.

Significant decreases in the Dst index represents geomagnetic storms and are

relatively rare, typically occuring during extreme SWE events. According to classifi-

cation thresholds established by Loewe and Prölss (1997), we define severe geomag-

netic storms as −200nT > Dst > −350nT or 179 ≤ Ap ≤ 300, while great storms

correspond to −350nT > Dst or 300 < Ap. Over the past 30 years, only 39 such

severe and great storms have been recorded. These identified storms are outlined in

the Table 3 – 1.

Table 3 – 1: Table of identified great and severe geomagnetic storms based on the

Dst and ap indices. The event start time represents the first moment when one of the

parameters is below (above) the threshold for determining an extreme geomagnetic

storm. The event end time represents the time when all of the parameters did not

exceed the threshold in the following at least two hours. For each time interval, the

most extreme parameter values are displayed.

No.Start End Dst ap Class

Dst

Class

ap

1 1998-05-04 03:00 1998-05-04 08:00 -205 300 severe severe

2 1998-08-26 22:00 1998-08-27 08:00 -148 207 severe

3 1998-09-25 00:00 1998-09-25 09:00 -207 236 severe severe

4 1998-08-11 03:00 1998-08-11 05:00 -140 179 severe

5 1999-09-22 21:00 1999-09-22 23:00 -173 207 severe

6 1999-10-22 03:00 1999-10-22 08:00 -237 207 severe severe

7 2000-04-06 18:00 2000-04-07 04:00 -292 300 severe severe

8 2000-05-24 00:00 2000-05-24 05:00 -129 207 severe

9 2000-07-15 12:00 2000-07-16 05:00 -300 400 severe great

Continued on next page
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Table 3 – 1 – continued from previous page

No.Start End Dst ap Class

Dst

ap

10 2000-08-12 03:00 2000-08-12 11:00 -234 179 severe severe

11 2000-09-17 21:00 2000-09-18 02:00 -201 236 severe severe

12 2001-03-31 03:00 2001-04-01 02:00 -387 300 great severe

13 2001-04-11 15:00 2001-04-12 02:00 -271 236 severe severe

14 2001-11-05 23:00 2001-11-06 16:00 -292 300 severe severe

15 2001-11-24 06:00 2001-11-24 08:00 -92 236 severe

16 2001-11-24 12:00 2001-11-24 18:00 -221 179 severe severe

17 2002-05-23 11:00 2002-05-23 17:00 -109 236 severe

18 2003-05-29 15:00 2003-05-29 23:00 -144 236 severe

19 2003-10-29 06:00 2003-10-30 07:00 -353 400 great great

20 2003-10-30 17:00 2003-10-31 05:00 -383 400 great great

21 2003-11-20 12:00 2003-11-20 02:00 -422 300 great severe

22 2004-07-27 00:00 2004-07-27 17:00 -170 300 severe

23 2004-11-07 21:00 2004-11-08 11:00 -374 300 great severe

24 2004-11-09 18:00 2004-11-10 13:00 -263 300 severe severe

25 2005-01-07 21:00 2005-01-07 23:00 -71 179 severe

26 2005-01-18 01:00 2005-01-18 08:00 -103 179 severe

27 2005-01-21 17:00 2005-01-21 20:00 -25 207 severe

28 2005-05-15 06:00 2005-05-15 11:00 -247 236 severe severe

29 2005-08-24 07:00 2005-08-24 11:00 -184 300 severe

30 2005-09-11 06:00 2005-09-11 08:00 -119 179 severe

31 2006-12-14 21:00 2006-12-14 05:00 -159 236 severe

32 2011-08-05 21:00 2011-08-05 23:00 -96 179 severe

33 2012-03-09 03:00 2012-03-09 12:00 -145 207 severe

34 2013-10-02 02:00 2013-10-02 05:00 -39 179 severe

35 2015-03-17 21:00 2015-03-17 23:00 -234 179 severe severe

36 2015-06-22 18:00 2015-06-22 20:00 -114 236 severe

Continued on next page
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Table 3 – 1 – continued from previous page

No.Start End Dst ap Class

Dst

ap

37 2017-09-07 21:00 2017-09-08 02:00 -122 207 severe

38 2023-04-24 04:00 2023-04-24 06:00 -213 20 severe

39 2024-05-10 21:00 2024-05-11 19:00 -412 40 great

The average duration of a geomagnetic storm and the associated sharp decrease

of Dst values typically spans one to two days. This limited duration and frequency

result in a relatively small dataset of high-impact events, that might be a challenge

for deep learning model. However, studies Hu et al. (2022, 2023) have trained models

exclusively on data from extreme events and reported interesting results despite the

constrained dataset size.

3.1.1 Constraints

To develop a effective Dst prediction model, it is essential to obtain and process

data from the most extreme space weather events possible. Each mission observing

solar activity discussed in chapter 2 is a potential data source. However, the data

sources must satisfy three critical constraints:

• Similarity constraint: Vigil is designed to warn Earth of hazardous solar

activity, particularly during extreme events. Developing Dst prediction model

with data that resemble expected Vigil observations is significant step toward

facilitating the rapid deployment of machine learning models once Vigil be-

comes operational. It is impossible to guarantee that future data from Vigil

will perfectly match, heritage instruments from prior solar missions can serve

as valuable a-like data. We outlined heritage instruments in table 2 – 2. Once

Vigil will be operational, transfer learning can be applied to make use of its

data.
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• Time constraint: most of the extreme SWE events occurred around the

years 1998–2006, see Table 3 – 1. This introduces a time constraint that must

be considered when selecting data sources. We should avoid using data from

instruments that were not operational during this period, as such data would

miss relevant information to the prediction of Dst index during geomagnetic

storms.

• Data Content constraint: current state-of-the-art models for predicting Dst

primarily rely on in-situ data, such as measurements of Z-component of mag-

netic field (Bz), solar wind speed (Vp) and density (Np). It is essential to

incorporate instruments that provide these data. However, Hu et al. (2022)

demonstrated that using only remote sensing data, specifically images from

the SOHO mission, yielded promising results. This raises an question: Can

remote sensing data, such as Extreme Ultraviolet (EUV) and Coronagraph

images, provide sufficient information to predict the Dst index? Furthermore,

could integrating these image-based data with in-situ measurements improve

model’s performance? Investigation of combination these two data types may

offer a novel approach to improving prediction accuracy.

To address all identified constraints, we should prioritize data from the WIND

and SOHO missions, as both were operational at the time when most extreme SWE

events occurred. These missions provide needed in-situ and remote sensing observa-

tions that align with the similarity, time, and data content requirements. We will use

data from WIND’s instrument Magnetic Field Investigation (MFI), that measures

Magnetic field Z-component (Bz) at L1 point. SOHO will provide measurements of

instrument Charge, Element, and Isotope Analysis System (CELIAS), which provide

solar wind speed (Vp) and solar wind density (Np).

Furthermore, SOHO will provide images from Extreme ultraviolet Imaging Te-

lescope (EIT) instrument, that captures images of the solar corona in four different

wavelengths: 171 Å, 195 Å, 284 Å, 304 Å. Wavelength 195 Åis useful to observe coro-
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nal holes. According to Rotter et al. (2012) coronal holes have impact on solar wind

parameters.

We will also incorporate data from SOHO’s Large Angle and Spectrometric Co-

ronagraph (LASCO) instrument, which provides comprehensive visual coverage of

surrounding solar atmosphere. This instrument can capture coronal mass ejections

(CMEs), and we belive this can enhance the predictive accuracy of the model pre-

dicting Dst index.

Following the launch of the Solar Dynamics Observatory (SDO) mission in 2010,

Atmospheric Imaging Assembly (AIA), was recognized as an enhanced successor to

the EIT onboard the Solar and Heliospheric Observatory (SOHO). Therefore, the

operational cadence of SOHO’s EIT instrument was reduced. When obtaining data

post-2010, we should primarily focus on utilizing the SDO AIA instrument for EUV

images.

3.1.2 Concerns

The primary concern is whether enough data of geomagnetic storms exist for training

deep learning models. For instance, if each extreme SWE event that triggered a

severe or great geomagnetic storm included only one rapid Dst descent, there would

be merely 39 short time windows containing these sharp Dst oscillations, which

is only handful. However, mentioned studies Hu et al. (2022, 2023) successfully

trained models with datasets containing 51 and 66 solar storms, respectively, and

achieved notable results. Therefore, this limitation may not be as critical as initially

anticipated.

Geomagnetic storms can be caused by CMEs or CIRs (see chapter 2), which

are characterized by distinct solar wind parameters. CMEs may not be observed in

coronagraph images. Thus, a second concern arises: the limited number of geomag-

netic storms data available for analysis may exhibit significant variability by nature,

making it challenging for models to learn consistent patterns on training data. In-

vestigation of the data should include an analysis of the distributions associated
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with each geomagnetic storm to determine whether they are similar for meaningful

model interpretation.

To better capture the evolution of geomagnetic storms, data could include several

days prior to the storm’s peak as well as the several days after, capturing recovery

period. While the mentioned concern about limited important data remains, consider

that remote-sensing instruments with a cadence of approximately 20 minutes over

a span of a few days can generate thousands of images for all of the 39 events.

However, only a handful fraction of these images may capture CMEs related with

geomagnetic storms. This sparsity of relevant images creates a challenge for analysis

and handling thousands images. Therefore, methodology should be proposed for an

easy incorporation of multi-modal data to the model.

3.1.3 Plan

The work will follow a structured approach to investigate whether multimodal data

enhances deep learning models for Dst index prediction, prioritizing novel predictive

strategies over incremental improvements to the state of the art. We identify the most

comparable existing instruments to those planned for the future Vigil mission and

collect data from these sources and integrate them into joint dataset. To ensure a

robust evaluation, we develop a framework for correctly partitioning extreme space

weather events. We implement various deep learning models that integrate time

series and image data to capture complex dependencies. Finally, we evaluate the

models using predefined metrics to assess their predictive performance and report

outcomes.

3.1.4 Goals

The project is considered successful upon achieving the following objectives:

• Develop and integrate a comprehensive dataset combining time series and

image-based representations of solar activity, thereby capturing the multiface-
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ted nature of space weather phenomena.

• Rigorously compare the performance of our novel deep learning architectures

against established models in the space weather community, demonstrating

superior predictive accuracy both quantitatively (via standard metrics) and

qualitatively (through visual assessment of forecast outputs).

• Contribute our insights and novelty to the field of space weather in form of

scientific publication in peer-reviewed journal.

3.2 Data Understanding

We have developed a lightweight pipeline in Python to download images and in-

situ measurements from these instruments. Specifically, the pipeline supports the

acquisition of EUV images (195 Å) from SOHO/EIT, coronagraph images from

SOHO/LASCO C2 and C3, proton speed and proton number density from SOHO/CELIAS,

and interplanetary magnetic field measurements from WIND/MFI.

This developed pipeline is available online on our GitHub repository SPACE::LAB

et al. (2024). The Python scripts are organized into classes and methods, each dedi-

cated to managing data downloads for a specific instrument. Therefore, users only

interested in pipeline functionality for data from a single instrument can focus on

the relevant part of the code without having to read the entire codebase. The sc-

ript uses a COSPAR-recommended standard for time series SWE data delivery - the

Heliophysics Application Programmer’s Interface (HAPI) Weigel, Vandegriff, Faden,

King, Roberts, Harris, Candey, Lal, Boardsen, Lindholm et al. (2021). It also utilizes

the hapiclient Python package Weigel, Batta, Faden and jvandegriff (2021). Addi-

tionally, the script employs the hvpy Python package, which provides a high-level

interface to the Helioviewer API 2. However, we observed that EIT (195 Å) images

obtained via hvpy are occasionally blurred, indicating a reduction in image quality.
2https://hvpy.readthedocs.io/en/latest/
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To ensure higher fidelity, we retrieved EIT images from the Virtual Solar Obser-

vatory (VSO) platform3, which provides same images without defects. The images

were acquired in the Flexible Image Transport System (FITS) file format, a widely

adopted standard in the astronomical community for data storage and analysis 4.

Additionaly, we have prepared Python script to obtain SDO/AIA (193 Å) images

also from hvpy Python package.

To make yet unprocessed dataset complete, we collected hourly values of Dst

from the World Data Center for Geomagnetism, Kyoto website 5.

Mentioned pipeline with supporting scripts was used to download data for the

most extreme SWE events classified as severe and great storms outlined as in 3 – 1.

Each event’s data range spans 10 days before and after the Dst index minimum.

Measurements were acquired at the highest available temporal resolution for each

instrument: LASCO provided data at 20-30 minute intervals, while the EIT opera-

ted at a 12-minute cadence and AIA provided images every 4 minutes. Solar wind

parameters were recorded by the WIND spacecraft’s magnetometer at 1-minute re-

solution, and plasma measurements from the SOHO’s CELIAS were obtained at

30-second intervals. Target variable, Dst index is measured hourly.

From this point onward, we will refer to data from each extreme SWE event

according to its numbering in 3 – 1. The dataset excludes events 2 and 3 due to the

absence of crucial coronagraph images, which are essential for our study. Each event’s

data range generally spans 10 days before and after the Dst index minimum. On

occasion, when data were missing for entire days, they had been removed, resulting

in some events having a shorter time span. Events 16, 18, 20, 24, 26, and 27 were

merged with preceding events, as they occurred within a 10-day range of each other.

Amount of data for each event from different instruments is shown in figure 3 – 1.

Coronagraph and EUV images take up to 82,3 GB of disk space. Samples of data
3https://sdac.virtualsolar.org/cgi/search
4https://docs.astropy.org/en/latest/io/fits/index.html
5https://wdc.kugi.kyoto-u.ac.jp/dstdir/
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from each instrument are shown in figure 3 – 2.

Figure 3 – 1: Data count for each extreme SWE event by different instruments

measuring space weather activity. Events 2, 3, and 39 (highlighted in red) lacks

crucial data. Events 16, 18, 20, 24, 26 and 27 (highlighted in green) are merged with

preceding events, as they occurred within very close interval.

As the initial analysis of this data, we have investigated locations of solar fla-

res that were, in many cases, the origin of CMEs and then extreme geomagnetic

storms. Figure 3 – 3 (left) displays an overlay of EUV images from SOHO/EIT and

SDO/AIA, taken during the occurrence of 19 flares out of the 39 events listed in

3 – 1. In each instance, the flares were observed near the center of the solar disk.

However, the distribution of these events is broad, showing no particular location

or longitude that can be pinpointed as a primary area for the initiation of extreme

SWE events. The absence of nearly half of the extreme SWE events in Figure 3 – 3

(left) can be attributed to missing EUV images for certain dates and times when

these flares occurred. Even more, there might be a lack of association between these

events and a visible solar flare on the overlay EUV image. For example, solar fila-

ment eruption is capable to generate a massive CME but it is not well visible in

EUV 195 Å filter.

We analyzed the time scales between the time when the SWE event was initiated
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(a) EUV image from EIT 195 Å ins-

trument on board SOHO. Taken on

02.08.2000 at 01:13.

(b) EUV image from AIA 193 Å ins-

trument on board SDO. Taken on

03.07.2015 at 00:59.

(c) coronagraph image from LASCO

C2 instrument on board SOHO. Taken

on 02.08.2000 at 01:31.

(d) Insitu data of solar wind speed Vp

and density Np from SOHO/CELIAS.

Z-component of magentic field Bz is

provided by WIND/MFI. Sample co-

vers event 15. It is visible that insitu

parameters operate in different scales.

Figure 3 – 2: Showcase of data from different instruments used in dataset.

(i.e. visible on SOHO/EIT 195 Å, SDO/AIA 193 Å EUV, and/or SOHO/LASCO

C2 images) and the time when the Dst index reached its extreme value. The event

initiation observations align with those in work by Zhang et al. (2007). The distri-

bution of time scales for all events from 3 – 1 is presented in Figure 3 – 3 (right). The

mean value for the considered time scales is ≈ 57 hours. The minimal time scale
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Figure 3 – 3: Left: Overlap of 35 images of moments when the most extreme SWE

events were produced, as captured by SOHO/EIT 195 Å and SDO/AIA 193 Å. Vi-

sible flares are numbered, corresponding to events listed in Table 3 – 1. It is noted

that science-ready FITS files were used to generate source images. However, the

cross-calibration was not considered between the instruments as we are here inte-

rested only in the locations of flares and not in their absolute intensity. Right: The

distribution of time scales for events listed in Table 3 – 1. Here, the duration is cal-

culated from the time when the event was visible on SOHO/EIT 195 Å, SDO/AIA

193 Å, and/or SOHO/LASCO C2 images until the time when the Dst index reached

its extreme value. The four missing time scales (bars) are caused by unavailable

images that are needed for the estimation of the event initialization time.

is ≈ 25 hours. This is an interesting result as the time scale is the most important

parameter for mitigating the negative consequences of geomagnetic storms. Thus,

once the extreme SWE event is initiated, there are only 1 or 2 days to perform pre-

venting actions. On the other hand, the minimal value of ≈ 25 hours is still enough

to make proper decisions and appropriate actions.
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3.3 Data Preparation

Instruments identified as data sources in this study operate at different temporal

cadences. Given our hypothesis that coronagraph images might be valuable supple-

mentary data, we synchronized all data to the temporal sampling rate of the LASCO

coronagraph images. Specifically, we used LASCO image timestamps as the primary

temporal reference points and resampled data from other instruments to the nearest

corresponding timestamps. This ensures that all other measured data are paired

with the timestamps of the coronagraph images. The average time interval between

consecutive time steps is approximately 23 minutes.

We propose this dataset as Most Extreme Space Weather Events (MESWE)

dataset, which covers data from 38 extreme SWE events and includes processed

EUV images, processed coronagraph images, and in-situ measurements, totaling 13

attributes, described in Table 3 – 2. It consist of 30 files in .csv format for each

applicable extreme SWE event. Steps for dataset creation are outlined in Figure

3 – 4.

3.3.1 Processing Multi-modality

Here we present framework to process EIT and Coronagraph images so they can be

incorporated in MESWE dataset together with other in-situ measurements.

EUV Images Data

To capture the state of coronal holes during extreme SWE events, we used SOHO/EIT

195 Åimages for events before August 2010. After this date, we have used SDO/AIA

193 Åimages.

Idea of incorporating information about coronal holes is tied with study by Rotter

et al. (2012), where authors shows that coronal holes area are highly correlated with

solar wind speed (Vp). Thus, we can investigate if adding information about coronal

holes can be helpful to predict Dst index through solar wind speed.
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Table 3 – 2: Attributes in MESWE Dataset

Attribute Description

Q1 Pixels changed (%) in Quadrant 1 of Coronograph image [%]

Q2 Pixels changed in Quadrant 2 of Coronograph image [%]

Q3 Pixels changed in Quadrant 3 of Coronograph image [%]

Q4 Pixels changed in Quadrant 4 of Coronograph image [%]

N_CH Coronal holes coverage in the North region of solar disc [%]

R_CH Coronal holes coverage in the Right region of solar disc [%]

S_CH Coronal holes coverage in the South region of solar disc [%]

L_CH Coronal holes coverage in the Left region of solar disc [%]

C_CH Coronal holes coverage in the Center region of solar disc [%]

V_p Solar wind speed [km−1]

N_p Solar wind density [cm−3]

B_z Southward component of interplanetary magnetic field [nT]

Dst Dst index values [nT]

To segment coronal holes in EUV images, we applied the SCSS-Net convolutional

neural network Mackovjak et al. (2021). We used two separate model weights trained

individually on EIT and AIA images as input data and SPoCA CH masks Verbeeck

et al. (2014) as ground-truth labels. SCSS-Net takes as a input grayscale solar corona

of size 256x256 pixels. Outputs are binary masks, where pixels with a value of 255

represent a coronal hole (CH), and pixels with a value of 0 indicate no coronal hole.

We then divided the solar disc into five regions: North, Right, South, Left, and

Center. For each region, we calculated the percentage of coronal hole coverage from

the binary mask returned by SCSS-Net with respect to non coronal hole pixels in

that region. The resulting percentages of CH pixels in each region are five attributes

of MESWE Dataset. They indicate if there are sources of high-speed streams, that

could impact the L1 and Earth’s geomagnetic conditions through CIRs. This is

commonly observed phenomenon when large CH area is located in the center of

solar disc.

For interested readers, in following paragraphs we provide detailed engineering
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Figure 3 – 4: MESWE Dataset created by aligning remote-sensing image data with

in-situ measurements for extreme SWE events. The dataset consists of 13 attribu-

tes, capturing information on coronal hole coverage across regions of the solar disc,

running differences calculated in the four quadrants of coronagraph images, in-situ

measurements consisting of solar wind speed, solar wind density, South-North com-

ponent of magnetic field and Dst index values.

approach to this estimation of CH area coverage in each solar disc region. Binary

masks (BMs) returned by SCSS-net lack explicit solar disc boundaries, preventing

direct computation of CH coverage within specific disc regions. We also could not

use hardcoded coordinates of solar disc areas, as the solar disc is not consistently

centered in the original EUV images. We used pairs of BMs and original EUV images,

but with cropped backgrounds, ensuring that only the solar disc remained visible

against a uniform gray background without outer atmosphere.

First, we have defined edges of solar disc. The boundaries of the solar disc were
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identified by detecting the transition from the gray background to non-gray pixels.

By checking when pixel color was not gray, we determined the first and last rows

and columns of disc’s edges and stored them. The five regions were then delineated

as follows (image coordinates (0,0) starting at upper-left corner):

• North Region: Pixels that were not gray and at row position within interval

of [first row, first row + (last row − first row) ∗ 0.2]

• South Region: Pixels that were not gray and at row position within interval

of [last row, last row − (last row − first row) ∗ 0.2]

• Left Region: Pixels that were not gray and not in North nor South Region at

column position within interval of [first column, first column + (last column −

first column) ∗ 0.25]

• Right Region: Pixels that were not gray and not in North nor South Region

at column position within interval of [last column, last column−(last column−

first column) ∗ 0.25)]

• Center Region: Pixels that were not gray and not in any regions above.

After defining these regions, the binary mask was compared to the solar disc

images with regions boundaries. The CH coverage ratio for each region was calcu-

lated as the proportion of white pixels on BMs (representing coronal holes) to the

total number of non-gray pixels within the corresponding region of solar disc image

with cropped background. We are aware that this is not physically correct area of

CH due to the Sun’s curvature, but it provides a sufficient approximation for our

purposes.

We could not use original black background because coronal holes on solar disc

are black and we also could not use white background because active regions on solar

disc are of white color. Therefore ratios would be smaller proportional to coronal

holes or active regions.

These processing steps are shown as green group of actions in figure 3 – 4.
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Coronagraph Images Data

Coronagraph images can capture Coronal Mass Ejections as they erupt from the

Sun. These images might contain valuable information for ML models: time of CME

occured and its directional propagation. By processing these images, our objective

was to keep both the timing and directional information of CMEs, ensuring that the

extracted features remain valuable for subsequent analysis and ML models.

To determine when CME happened, we subtracted consecutive coronagraph ima-

ges in sequence, creating running difference. Pixels with values close to zero in

running difference images indicate no change between consecutive images, while

non-zero pixel values suggest a sudden ejection of mass into interplanetary space,

signaling a CME.

To determine the direction of a CME, we divided the running difference image

into four equal-sized quadrants and calculated the percentage of non-zero pixels to

measure the amount of changed pixels in each quadrant.

The idea behind this processing step is that if all four quadrants show a signifi-

cant change in pixels, the CME should be directed towards Earth. This data might

provide ML model information, that can be used for timely prediction of the Dst

index. The percentage of changed pixels in four equal-sized quadrants of running

difference coronograph images are four attributes of the MESWE Dataset. This pre-

procesing procedure might be considered as transformation from 2D Image signal

into 1D signal. These steps are shown as purple group of actions in figure 3 – 4.

For each extreme SWE event, we have stored coronagraph 32×32-pixel grayscale

images for efficient processing in modeling phase. These images are saved in both

PNG format and NumPy .npy files, containing tensor representing multiple image

sequences prepared for direct input into the model alongside in-situ data.
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3.3.2 Data Integration for Modeling

Since the dataset consists of time series data, our objective is to predict the target

variable, the Dst index, T time steps ahead. This prediction follows a sliding win-

dow approach. The input data are structured as tensors with dimensions (B, TS, F ),

where B represents the batch size, TS the time steps provided as temporal history,

and F the number of features. However, temporal histories in inputs are not shared

across different extreme events to prevent cases where a sequence contains partial

histories from multiple events. For example, a situation where half of the history ori-

ginates from Event 5 and the other half from Event 6 would introduce inconsistencies

and degrade model performance. In-situ and coronagraph data can be provided as

separate tensors to the model.

The coronagraph imagery is represented as five-dimensional tensors with shape

(B, S, C, W, H), where B denotes batch size, S represents the images sequence

length, C indicates the number of channels (C = 1 because grayscale images), and

W and H correspond to the width and height of images, respectively. These image

tensors can be incorporated alongside the corresponding in-situ data tensor to the

model, matched by same timestamp.

We apply Savitzky–Golay filter (Schafer, 2011) to the Q-Data as a preprocessing

step before modeling. This step eliminates noise that downgrades performance of

the model by few metric points. Next preprocessing step was discretizing continuous

numerical values of Q-Data attributes into ordinal categories through a binning

process. Finally, we standardize the data using x′ = x−µ
σ

, where µ and σ represent

the mean and standard deviation, respectively. These transformations are not stored

in the final MESWE dataset but are rather performed dynamically during data

preparation.
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3.4 Modeling

3.4.1 Data Split

There is no intuitive approach on how to split data from extreme SWE events in

order to be validation set and test set similar to each other. If validation set is easier

for the model to converge to some result, it might lead to poor performance on test

set and vice-versa. We wanted to deliver strong experimental results, therefore we

adopted cross-validation method Bates et al. (2024).

While all extreme SWE events are distinct, some can be vastly different com-

pared to others. To quantify these differences, we opted for Wasserstein distance.

Wasserstein distance calculates the minimum amount of ’work’ required to trans-

form one probability distribution into the other (Panaretos and Zemel, 2019). These

distances from one event to each other is shown in Figure 3 – 5. We can see that

events 19, 21, 30, 31 and partially 25 are very different to other events, particularly

to event 14 and 34. We suspect that solar wind speed attribute is responsible for this

vast difference as median for each of the events on opposite sides differs by lot (see

Figure 3 – 6). To minimize selection bias and ensure that validation and test sets are

as similar as possible, we created five different k-fold sets of train, validation, and

test data (i.e. 5-fold cross-validation).

We assume that events caused by CMEs differ from those caused by CIRs. Events

caused by CME can be identified by high numerical values in the first four attributes

of MESWE dataset, specifically the Q1-Q4 attributes listed in Table 3 – 2. Based on

this argument, we classify all extreme SWE events into three groups:

1. Quadrants spiking event (S): All four attributes Q1-Q4 from Table 3 – 2

have higher values before the Dst decrease. Events: {9, 14, 15, 17, 19, 21, 30,

31, 32, 33}

2. Quadrants non-spiking event (NS): Not all four attributes Q1-Q4 from

Table 3 – 2 show higher values before Dst. Events: {4, 5, 6, 7, 8, 10, 22, 25, 34,
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Figure 3 – 5: Wasserstein distances between one event to each other. We can observe

large distance of events 19,21,30, and 31 with respect to other extreme SWE events.

Figure 3 – 6: Median values of solar wind speed during each extreme SWE event.

35, 36, 37, 38}

3. Unclassified (U): Unclear or uncertain cases. Events: {1, 11, 12, 13, 23, 28,

29}
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(a) Spiking

(b) Non-spiking

(c) Unclassified

Figure 3 – 7: Different examples of categorized events. Left y-axis display Coronagraph Visual

Features values. Right y-axis display Dst value in nanotesla. We can observe that right before

Dst decrease, each example has different type of activity in Coronagraph Visual Features values.

(a) Event 31 (2006-12-14) is categorized as Spiking. There is visible coronagraph activity before

Dst decrease for all 4 Q-attributes with higher percentage value. (b) Event 38 (2023-04-24) is

categorized as Non-spiking. Although there is visible coronagraph activity before Dst decrease,

only Q4 is active and at very low value, only around 1%. (c) Event 11 (2000-09-17) is categorized

as Unclassified. Although there is visible coronagraph activity before Dst decrease, not all attributes

from coronagraphs are active.
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Each validation and test set in every k-fold contains one event from each of

these three categories, totaling three events in each set, while the remaining events

are used for training. To maximize similarity between validation and test sets, we

calculated an Event Sum Distance (ESD) for each event, defined as the sum of its

Wasserstein distances to other events. The Set Distance (SD) is the sum of ESDs for

the three events chosen for each validation or test set. We then searched all possible

validation and test set combinations and selected the top five instances where the

SD difference between validation and test sets was smallest. Selected k-folds are

presented in Table 3 – 3.

Table 3 – 3: Selected events for each k-fold validation and test sets, ensuring sets

similarity. Remaining events were used as training data in each k-fold, so each k-fold

is trained, validated and tested on different combination of extreme SWE events.

Each validation or test set in each k-fold contains one representative event from each

of the S, NS, and U event categories.

k-fold Validation Set Events Test Set Events

1 4, 21, 11 8, 14, 28

2 22, 19, 28 25, 21, 1

3 4, 31, 1 34, 15, 28

4 7, 15, 13 35, 21, 1

5 7, 21, 29 35, 19, 23

3.4.2 Model Implementation

We have implemented three different deep learning models: GRU-IE, GRU-CONV-

IEC, GRU-Attn-IEC. The primary differences between these models lie in their input

data and their processing, which evolve iteratively across versions. These iterative

modifications allow for a comparison of model performance on the Dst index pre-

diction task, enabling an evaluation of whether each change improves or degrades
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predictive accuracy. The details of these variations will be discussed in the following

sections.

Model GRU-IE

This model takes as input in-situ data, combined with EUV processed images. This

model is a recurrent neural network (RNN) with a final linear transformation. The

overall architecture is depicted in Figure 3 – 8.

We conducted systematic search over hyperparemeters to identify optimal mo-

del configuration. Best performing model has Gated Recurrent Unit (GRU) as the

reccurrent layer with 64 hidden neurons and 2 stacked layers. A final linear transfor-

mation projects the GRU’s hidden representation to a scalar output representing the

Dst index prediction. However, as predictions are processed in batches, the output

takes the matrix shape [B,P].

Weight optimization was performed using AdamW optimizer with learning rate

1 ∗ 10−5. To reduce overfitting, weight decay with value 0.1 along with dropout

in the GRU layer set to 0.2. Empirical results reveal that applying a moving ave-

rage smoothing with window of size 5 to 10% of the input batch improves model

performance.

Model GRU-CONV-IEC

This model takes two distinct inputs. The first input consists of in-situ and EUV

data, identical to the input used in model GRU-IE. The second input consist of

sequences of original coronagraph images, which are downscaled to 32×32 pixels in

grayscale to reduce computational and memory needs. Further details regarding the

tensor shapes of these inputs are outlined in Section 3.3.2 on Data Integration.

Each input is processed through a dedicated branch within the deep learning

model architecture. The in-situ data branch follows the same processing steps as

GRU-IE. The coronagraph image branch utilizes a Time-Distributed Layer to cap-

ture both spatial and temporal dependencies within the image sequences. This layer
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applies convolutional operations to each image independently while preserving tem-

poral structure, generating feature maps for each timestep. The outputs of the con-

volutional layers, feature maps, are batch-normalized and passed through a ReLU

activation function. Subsequently, the spatial dimensions (width and height) of the

feature maps are flattened, ensuring a compatible tensor shape for input into a

recurrent GRU layer.

The outputs from both processing branches are fused at a later stage by conca-

tenating tensors along the feature dimension. The resulting representation is then

passed through a linear transformation to produce a scalar output for each batch.

The complete model architecture is illustrated in Figure 3 – 8.

The best-performing model configuration was obtained with the following hyper-

parameters: convolutional layers with 2 and 8 filters, GRU layers with 152 hidden

neurons and 2 stacked layers in both branches. The model was optimized using the

AdamW optimizer with a learning rate of 1 ∗ 10−4.

Model GRU-Attn-IEC

This model follows a similar structure to GRU-IE and GRU-CONV-IEC, taking

two distinct inputs. The first input remains unchanged from GRU-IE and GRU-

CONV-IEC, consisting of in-situ and EUV data. The second input also consists of

coronagraph data; however, instead of raw image sequences, it is represented as four

processed 1D signals, as discussed in Section 3.3.1.

We hypothesize that these processed signals retain the essential information pre-

sent in the original coronagraph image sequences while being more computationally

efficient and easier to manipulate. The first processing branch, remains identical

to its counterpart in previous models. However, the second branch, responsible for

processing the coronagraph-derived signals, requires a specialized attention. By that

we mean the Self-Attention mechanism, as introduced by Vaswani (2017), which has

become a SOTA technique in deep learning community. This mechanism allows the

model to effectively capture long-range dependencies within the input sequences,
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enhancing the representation of temporal patterns in the coronagraph data.

The processed signals are first passed through a linear transformation followed

by a non-linear activation function, GELU (Hendrycks and Gimpel, 2016). The

transformed representations are then fed into a GRU layer, where the final hidden

state is used as the query input for a multi-headed self-attention mechanism. The

key and value inputs to the self-attention layer consist of all hidden states produced

by the GRU.

We agree that this design differs from the conventional Transformer architecture,

as it retains RNN components while incorporating self-attention. However, empiri-

cal results indicate that this hybrid approach yields the best performance. While a

variant eliminating the GRU altogether may be a alternative, we have not yet iden-

tified a configuration that outperforms our current model. Recent developments in

state-space models, such as RWKV (Peng et al., 2023) and MAMBA (Gu and Dao,

2023), offer promising approaches for reducing complexity while maintaining expres-

sive temporal dependencies. While these methods have been predominantly applied

to language modeling, their adaptation to time series tasks appears straightforward.

To our knowledge, their application in space weather studies remains unexplored.

Finally, the outputs from both processing branches are concatenated and pas-

sed through a linear transformation to obtain a scalar prediction for each batch,

representing the Dst index.

The best-performing model was configured with GRU layers containing 256 hid-

den neurons and 2 stacked layers in both branches. The model was optimized using

the AdamW optimizer with a learning rate of 3 ∗ 10−5, with minimal to no regula-

rization applied.

3.4.3 Model Evaluation Methods

We evaluated the performance of models using 5-fold cross-validation, as described in

Section 3.4.1. For each fold, the models were trained and tested across five distinct

random seeds. Seeds were chosen once at random and were consistently applied
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(a) Model GRU-IE. (b) Model GRU-CONV-IEC

(c) Model GRU-Attn-IEC

Figure 3 – 8: Different models used to forecast Dst index.

across all models to ensure fair comparison. The performance metrics are reported

as mean and standard deviation across these seeds. Root Mean Square Error (RMSE)

was employed as the primary evaluation metric, since it is commonly used in time

series analysis and its adoption within studies on Dst index prediction. RMSE is

given by:
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RMSE =
√√√√ 1

n

n∑
i=1

(ŷi − yi)2. (3.1)

Recently, Laperre et al. (2020) criticized the use of classical metrics such as

RMSE in the evaluation of Dst index predictions, arguing that these metrics fail

to capture behavior, when magnitudes of a decrease in Dst are predicted correctly

but with a temporal shift, predicting the decrease after it has already occurred in

the observed data. This phenomenon, referred to as persistence behavior, can be

visually identified when one looks closely on predicted and actual time series data.

To address this issue, authors proposed the use of Dynamic Time Wraping (DTW)

measure.

DTW similarity measure between for time series data (Berndt and Clifford, 1994;

Senin, 2008). It seeks optimal alignment between two sequences with variations in

the time axis. Given two time series Ŷ = (ŷ1, ŷ2, ..., ŷi) and Y = (y1, y2, ..., yj) of

length of i and j, cost matrix M of size i × j is constructed and filled as follows:

M(i, j) = d(ŷi, yi) + min{M(i − 1, j − 1), M(i − 1, j), M(i, j − 1)}, (3.2)

where d() is distance measure, in our case Euclidean distance.

Optimal alignment is then determined using dynamic programming to find the

minimum-cost warping path in cost matrix M by backtracking. This process starts at

bottom-right corner of M , M(i, j) and follows the smallest neighboring value at each

step until reaches the top-left corner, M(1, 1). Steps taken in backtracking forms the

optimal warping path which aligns Ŷ and Y with the minimal accumulated cost.

DTW can also align very distant parts of sequences. Thus warping window w is

constraint applied in DTW, ensuring that the warping path satisfies |i − j| ≤ w,

restricting to seeking alignment only within w steps.

While our focus is on Dst index prediction, DTW has also been used to analyze

solar wind time series data in (Samara et al., 2022), highlighting its applicability in
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space weather research community. In this study, we use same implementation of

DTW as provided in (Laperre et al., 2020).

From DTW cost matrix M , one can derive valuable insights, such as: I) steps

of warping path off diagonal line and II) sum of values on diagonal line. In figure

3 – 9 are shown 3 different pairs of sequences Y and Ŷ and corresponding DTW

cost matrices. Figure 3 – 9(a) shows ideal alignment, figure 3 – 9(b) shows temporal

alignment, but with few magnitude differences, figure 3 – 9(c) shows temporal mi-

salignment with magnitude changes kept same as in 3 – 9(b) . The situation shown

in figure 3 – 9(c) is the most common when predicting the Dst index T steps ahead.

This is referred to as persistence behavior of predictions Ŷ .

Notice how warping path changes and how values on diagonal line changes in

figures 3 – 9(d), 3 – 9(e) and 3 – 9(f). In an ideal alignment, the path follows the

diagonal, and all diagonal values are zero. When time series exhibit differences in

magnitude, the warping path deviates from the diagonal for a few steps, and the

values along the diagonal are no longer zero. For sequences with temporal misalign-

ment, only the first and last steps of the path remain on the diagonal line, and the

values along the diagonal increase significantly.

In addition to RMSE, we compare models using the percentage of steps on the

diagonal in the cost matrix Don (higher is better) and the sum of values along the

diagonal line Dsum (lower is better).

Community Benchmark

We also compared our approach with common methodologies used in the Dst forecast

community. These approaches construct long time series datasets containing solar

wind and interplanetary magnetic field measurements spanning across many years.

This long sequence is then partitioned into training, validation and test set. The

methodology is reported in e.g. (Efitorov et al., 2018; Lethy et al., 2018; Purnomo

et al., 2021; Zhang et al., 2023). We evaluated performance of this methodology on

the solar wind and IMF data from MESWE test set, which comprises data from
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(a) (b) (c)

(d) (e) (f)

Figure 3 – 9: Changes in the warping path and diagonal values for different time

series alignments. (a–c) show different simulated time series, while (d–f) depict their

corresponding DTW cost matrices with warping paths. In an ideal alignment, the

warping path follows the diagonal, and diagonal values remain zero. For time series

with differences in magnitude, the warping path deviates slightly from the diagonal,

and diagonal values are no longer zero. When sequences are misaligned in the time

axis, only the first and last steps of the warping path remain on the diagonal, with

a significant increase in diagonal values.

extreme solar activity periods. For this comparison, we obtained measurements of

Vp, Np, Bz and Dst from 1998 to 2016 in 1h cadence. Since MESWE dataset follows

the cadence of the SOHO/LASCO coronagraph (20-30 min.), we interpolated the

data to 30 min. cadence as well. The final 20% of time steps, period from April 2013

to December 2015, were classified as test set. This test time span includes same

extreme event from MESWE dataset used in test set, specifically under number 35

59



FEI KKUI

from the 3rd fold in Table 3 – 3. We have trained GRU recurrent neural network and

evaluated its performance on Event 35. The results were compared against those

obtained using community benchmark dataset as described above, as well as the

GRU − IE and GRU − Attn − IEC approaches on the MESWE dataset for the

same event. This way, we can compare visually same event using not only different

deep learning approaches, but also different methodologies.

3.4.4 Model Performance

GRU−CONV −IEC reported low RMSE values for both prediction tasks. However,

the Don and Dsum measures were significantly lower than those of other approaches.

This might indicate that the shift between predicted and target Dst values is more

significant across all test sets in different k-folds.

Table 3 – 4: RMSE and Don with Dsum of cost DTW matrix for GRU − CONV −

IEC approaches and for prediction 10 steps and 20 steps ahead of Dst prediction

on test set.

GRU-CONV-IEC

k-fold RMSE [nT] Don [%] Dsum

ŷt+10

1 14.0 3.8 4.29 × 107

2 12.9 3.3 6.33 × 107

3 21.6 5.7 6.06 × 107

4 12.4 5.5 4.63 × 107

5 18.3 4.7 3.15 × 107

Mean 15.8 4.7 4.89 × 107

ŷt+20

1 22.0 2.3 3.69 × 107

2 16.6 3.0 4.43 × 107

3 28.2 2.1 6.10 × 107

4 15.1 2.9 3.65 × 107

5 24.5 2.7 2.61 × 107

Mean 21.3 2.6 4.10 × 107

Performance of models GRU −IE and GRU −Attn−IEC on different k-folds as
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shown in Table 3 – 3 from MESWE dataset are shown in Table 3 – 5 for predictions 10

and 20 time steps ahead. The mean RMSE varies across k-folds for both forecasting

horizons. For the 10-step prediction, GRU − IE achieves a lower test RMSE of

17.0 compared to 17.4 for GRU − Attn − IEC. However, for the 20-step prediction,

GRU −Attn−IEC slightly outperforms GRU −IE, with RMSE values of 24.1 and

24.3, respectively.

Table 3 – 5: RMSE and Don with Dsum of cost DTW matrix for GRU − IE and

GRU − Attn − IEC approaches and for prediction 10 steps and 20 steps ahead of

Dst prediction on test set.

GRU-IE GRU-Attn-IEC

k-fold RMSE [nT] Don [%] Dsum RMSE [nT] Don [%] Dsum

ŷt+10

1 20.4 ± 0.3 6.8 ± 0.1 2.15 × 107 21.0 ± 0.4 6.79 ± 0.6 2.22 × 107

2 17.5 ± 0.2 5.2 ± 0.4 2.39 × 107 18.4 ± 0.7 4.44 ± 0.5 2.89 × 107

3 12.5 ± 0.1 6.2 ± 0.5 2.52 × 107 13.0 ± 0.2 6.51 ± 0.8 2.75 × 107

4 14.2 ± 0.3 4.9 ± 0.5 2.87 × 107 14.6 ± 0.2 4.98 ± 0.4 3.56 × 107

5 20.5 ± 0.2 3.9 ± 0.3 4.58 × 107 19.9 ± 0.5 3.73 ± 0.3 4.65 × 107

Mean 17.0 5.3 2.9 × 107 17.4 5.3 3.21 × 107

ŷt+20

1 28.1 ± 0.4 4.93 ± 1.0 3.46 × 107 29.1 ± 0.6 5.17 ± 0.1 3.15 × 107

2 24.6 ± 0.6 2.38 ± 0.6 3.35 × 107 24.9 ± 0.5 2.43 ± 0.5 3.91 × 107

3 17.3 ± 0.2 3.75 ± 0.7 3.54 × 107 17.3 ± 0.5 4.41 ± 0.3 3.43 × 107

4 21.6 ± 0.3 2.48 ± 0.1 4.11 × 107 21.5 ± 0.4 2.47 ± 0.1 4.75 × 107

5 29.7 ± 0.1 2.11 ± 0.2 6.66 × 107 27.7 ± 0.9 2.14 ± 0.3 6.45 × 107

Mean 24.3 3.1 4.22 × 107 24.1 3.33 4.34 × 107

In contrast, the mean Dsum across k-folds is lower for GRU − IE approach for

both predictions horizons, meaning that it aligns predictions slightly better with

observed Dst values. However, the performance of the models according to Don

varies with the prediction horizon length. For 10-step-ahead predictions, both models

achieves same mean of Don across k-folds. However, when extending the prediction

horizon to 20 steps, GRU − Attn − IEC model achieves a superior mean Don across

k-folds, exceeding GRU − IE by 0.13%.
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(a) Community benchmark (b) GRU-CONV-IEC

(c) GRU-IE (d) GRU-Attn-IEC

Figure 3 – 10: Detailed test set predictions 10 steps ahead of event that occurred

on March 2015 using different approaches.

From this comparative analysis, it can be concluded that GRU − IE achieves

better mean values for two out of three comparative scores for 10 time steps ahead

forecast, but as we extend prediction to 20 steps, it turns around into GRU −Attn−

IEC favor. The difference in performance between the two models remains relatively

small, raising the question of whether the added complexity of GRU − Attn − IEC

justifies the marginal improvement in predictive accuracy.

Across different k-folds, both models demonstrate the poorest performance on

the fifth fold across all comparable measures. This suggests that this fold presents

greater challenges for the models in learning underlying patterns and generalizing it

on the test set. This might lead to important methodological question: “How do we

know if a upcoming geomagnetic storm is not from fifth fold?”.

Figure 3 – 10 presents predictions 10 steps ahead for Event 35 (March 2015)

created by different approaches. 3 – 10(a) shows predictions based on the community

benchmark dataset as described in Section 3.4.3, while 3 – 10(b) and 3 – 10(c) shows

predictions on MESWE dataset with GRU −IE and GRU −Attn−IEC approaches,

respectively, as detailed in Section 3.4.3. Predictions in 3 – 10(b) and 3 – 10(c) align
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more closely with the target Dst values and outline a reduced persistence effect. In

particular, in 3 – 10(c) during Dst decline between 9:00 and 10:00, predictions are

closer to target values compared to 3 – 10(b) at the same time, where Dst prediction

is slightly overestimated. However, neither approach 3 – 10(b) nor 3 – 10(c) accurately

predicted magnitude of the decrease, underestimating it by ≈ 60 nT.

3.5 Project Evaluation

The project has successfully achieved all three originally defined objectives as stated

in 3.1.4.

First, we constructed the MESWE dataset by integrating in situ measurements

of solar wind parameters, preprocessed EUV and coronagraph imagery from remote

sensing instruments, and the geomagnetic activity index (Dst). By transforming

these raw data into a unified structure, the dataset provides usable inputs for he-

terogeneous machine learning models, particularly for applications involving time

series regression. MESWE dataset and codes are available online at github 6. They

are also available in other locations such as: 78 and also in workspace at KKUI

datalab 9.

Second, our comparative analysis demonstrated that the deep learning architec-

ture with preprocessed remote sens outperformed established models in the space

weather forecasting domain. Quantitative evaluation using standard metrics confir-

med superior predictive accuracy, particularly during extreme events. Qualitative

assessment of forecast outputs further validated the model’s enhanced capability to

capture the timing and magnitude of geomagnetic disturbances.

Third, we successfully reported our findings through a peer-reviewed publication

Majirský et al. (2025). These contributions advance the state of machine learning
6https://github.com/kkuichi/am367df
7https://github.com/space-lab-sk/dst-images-insitu
8https://github.com/space-lab-sk/vigil-like-data
9https://datalab.kkui.fei.tuke.sk/gpu/
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applications in space weather forecasting and fulfill our scientific contribution ob-

jective as it was primary criterion for the project’s success.

Based on the successful achievement of project objectives, we can see few ave-

nues for future work. The SOHO/LASCO coronagraph images were employed as

the primary temporal reference, with a typical cadence of approximately 20 to 30

minutes. In contrast, the in situ solar wind data were available at a significantly

higher temporal resolution of 30-60 second intervals. In the current approach, we

utilized only the mean values of solar wind parameters within each 20-30 minute in-

terval corresponding to SOHO/LASCO images. However, this may not fully capture

the temporal variability and dynamic features of the solar wind. As a follow-up im-

provement, we propose incorporating additional statistical aggregations, including

maximum, minimum, standard deviation and rate of change values of in situ mea-

surements within each 20-30 minute interval. We are uncertain if this will provide

model more noise or valuable signal.

Another potential follow-up for further research work involves incorporating mag-

netograms into the input data for the deep learning models. Rather than using

whole magnetogram images, an alternative approach could involve leveraging ex-

tracted physical attributes related to solar flares, as suggested by Nishizuka et al.

(2018). An open question remains: would these extracted features enhance model

performance, or would they primarily introduce noise to the deep learning model?
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4 Conclusion

In this study, we explore how the upcoming space mission Vigil can leverage Ma-

chine Learning to enhance its potential for providing early warnings of potentially

hazardous solar activity. A key advantage of Vigil is its planned position at the

L5 Lagrange point, which allows continuous monitoring of the region between the

Sun and Earth. This unique position will provide unprecedented observational data,

presenting both an opportunity and a challenge for Machine Learning approaches,

which traditionally rely on extensive historical datasets.

We have identified data sources that closely resemble the instruments onboard

Vigil and have selected periods of extreme space weather events for analysis. Based

on these periods, we have constructed the MESWE dataset, which integrates in

situ measurements of solar wind parameters, Extreme Ultraviolet and Coronagraph

images, and geomagnetic activity represented by the Dst index. This preliminary

step is essential for assessing the feasibility of Machine Learning applications for

Vigil. To the best of our knowledge, this is the first study to undertake such an

approach.

To enhance Vigil’s capability in recognizing threats, it would be beneficial for

the mission to predict Earth’s geomagnetic state, represented by the Dst index.

We have developed deep learning models designed for this time series forecasting

task. We explored multiple models that vary in input data and processing methods.

Our findings indicate that the model incorporating both in situ measurements and

processed remote sensing data achieved the highest performance.

Our findings have been published in a peer-reviewed journal (Majirský et al.,

2025), where we discuss the potential data from Vigil and present methods for

obtaining it. Additionally, we have prepared a manuscript that provides a more in-

depth analysis of the Machine Learning approaches explored in our study, which we

plan to submit to the Astrophysical Journal.

This work was conducted in collaboration with RNDr. Šimon Mackovjak, PhD.,
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affiliated with the Institute of Experimental Physics, Slovak Academy of Sciences.

Outcomes were part of deliverables for the RPA SKR1-23 project "Study toward

enhancing reliability and timeliness of Vigil mission predictions through Machine

Learning", funded by the European Space Agency.
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