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Abstract

This Master’s thesis investigates the financial implications of vulnerability detectors
within Ethereum, a prominent blockchain platform. A quantitative approach is utilized
to analyze a comprehensive set of Ethereum smart contracts, particularly emphasiz-
ing those that are recent, have substantial liquidity, and have notable popularity. The
findings reveal a significant correlation between the detection of vulnerabilities and fi-
nancial losses, with undetected vulnerabilities accounting for a substantial proportion of
these losses. The study concludes that enhancements in the accuracy and efficiency of
Ethereum vulnerability detectors could lead to significant annual financial savings. This
research highlights the critical role of vulnerability detectors in protecting digital assets
and maintaining financial stability within blockchain ecosystems.

Keywords Ethereum, Vulnerability Detectors, Smart Contracts, Financial Implica-
tions, Blockchain Security, Digital Assets, Financial Stability, Artificial Intelligence

Abstrakt

Tato diplomova prace zkouma financ¢ni disledky detektoru zranitelnosti v ramci Ethereum,
vyznamné blockchainové platformy. K analyze uceleného souboru smart kontraktu
Ethereum je vyuzit kvantitativni pfistup, pricemz je kladen diraz zejména na ty, které
vznikly nedavno, maji znac¢nou likviditu a vyznacuji se pozoruhodnou popularitou.
Zjisténi odhaluji vyznamnou korelaci mezi detekci zranitelnosti a finanénimi ztratami,
pricemz neodhalené zranitelnosti tvori podstatnou ¢ast téchto ztrat. Studie dochazi
k zavéru, ze zvyseni presnosti a uc¢innosti detektort zranitelnosti Ethereum by mohlo
vést k vyznamnym ro¢nim finanénim tspordam. Tento vyzkum zdiraznuje zasadni roli
detektort zranitelnosti pii ochrané digitalnich aktiv a udrzovani financni stability v
blockchainovych ekosystémech.

Klicova slova Ethereum, detektory zranitelnosti, smart kontrakty, finan¢ni dopady,
bezpecnost blockchainu, digitalni aktiva, finanéni stabilita, umeéla inteligence
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Introduction

The security of smart contracts is essential in decentralized finance and other applica-
tions utilizing the Ethereum blockchain, where safe value storage is critical. Security
vulnerabilities in these contracts can lead to significant financial losses. A practical ap-
proach to mitigating these vulnerabilities is to employ static code analyzers during the
development lifecycle.

This thesis examines the financial impact of Ethereum vulnerability detectors, partic-
ularly their effectiveness in preventing attacks on decentralized applications. We inves-
tigate the utility of tools like Wake [1], an open-source platform designed to streamline
the development and evaluation of Solidity smart contracts. A key feature of Wake is
its module dedicated to detecting vulnerabilities and bugs through static code analysis,
which offers opportunities for expanding the tool’s capabilities with custom detectors.

In addition to analyzing existing detectors within the Wake framework, a new detec-
tor will be implemented and tested. This addition aims to enhance the security measures
available for smart contract developers, ensuring that potential exploits are effectively
identified and mitigated.

This thesis seeks to provide insights into the effectiveness of vulnerability detectors
by analyzing and testing existing and a newly developed detector. Ultimately, the goal
is to contribute to a more secure decentralized ecosystem, reducing the likelihood of
financial losses due to smart contract vulnerabilities and fostering trust in blockchain
technology.
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Objectives

The primary objective of this thesis is to analyze and implement solutions that prevent
breaches and hacks on the blockchain using static code analysis provided by the Wake
framework. The Wake framework, an open-source tool, facilitates the development and
auditing of Solidity applications [2]. The specific goals of this thesis are:

= Analyze Existing Wake Detectors: Evaluate the detectors, including the Inter-
mediate Representation (IR) data model used for vulnerability detection.

m Define and Analyze a Testing Set: Compile a dataset of mainnet smart contracts
holding token values and calculate their total value.

= Evaluate Performance of Existing Detectors: Assess the effectiveness of exist-
ing detectors on the compiled set of smart contracts and evaluate the potential cost
of exploits they could prevent.

m Design and Implement New Detector: Develop and integrate a new vulnera-
bility detector.

m Test New Detector: Test the new detector on the dataset and evaluate the cost
of potential exploits.

0.1 Blockchain Introduction

This chapter provides an overview of blockchain technology, focusing on the core prin-
ciples of distributed ledger technology, including consensus mechanisms, cryptographic
foundations, and the nature of blockchain networks. The discussion emphasizes how
decentralization ensures security and transparency without centralized oversight.

0.2 Ethereum

Building on the fundamentals of blockchain, this chapter explores Ethereum’s pro-
grammable architecture. This includes Ethereum’s unique features, such as the Ethereum
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Virtual Machine (EVM), decentralized applications (dApps), and its native cryptocur-
rency, Ether. Ethereum allows for programmable functionalities, transforming blockchain
technology into a platform suitable for various applications.

Smart contracts are self-executing programs on the Ethereum blockchain that au-
tomate and enforce digital agreements. We examine their role and essential security
considerations.

Solidity is the primary language used to develop Ethereum smart contracts. We
cover its features, syntax, emphasizing crucial aspects such as gas optimization, memory
management, and security.

0.3 Wake Analysis

The Wake framework offers advanced tools for Ethereum smart contract development
and analysis. This chapter details its static analysis capabilities, particularly the static
code analysis, which identifies vulnerabilities and code quality issues.

We examine Wake’s current detectors and the Intermediate Representation (IR) data
model, focusing on how the IR represents smart contract elements, the types of vul-
nerabilities it captures, and the effectiveness of current detectors in identifying these
vulnerabilities.

0.4 Testing Dataset Compilation

To assess the effectiveness of Ethereum vulnerability detectors within the Wake platform,
a toolkit was developed to compile a relevant set of smart contracts, each associated with
specific token values. This toolkit helps to automate the collection and enrichment of
smart contract data from the Ethereum mainnet for a targeted financial risk analysis.

0.5 Evaluation

This chapter examines the potential cost of exploits based on the value of assets held by
the affected contracts. The evaluation focuses on assessing the effectiveness of existing
detectors in preventing exploits and quantifying the economic impact of their preventive
measures. This estimation considers the value of assets held by the affected contracts.

0.6 New Detector Implementation

This chapter details the development of a new detector for the Wake framework, designed
to identify inconsistencies between smart contract documentation and implementation.
The detector utilizes artificial intelligence to evaluate code quality and mitigate potential
mismatches. Results from testing the detector against real-world contracts are presented.

Assessing the effectiveness of the developed detector on the designated contract port-
folio involves conducting an economic evaluation to determine the financial value pro-
tected by vulnerability detection.



Summary

0.7 Summary

This thesis aims to enhance the security of Ethereum smart contracts through an anal-
ysis, development, and evaluation of vulnerability detectors. It improves security mea-
sures by implementing and testing a new detector within the Wake framework, reducing
financial losses and fostering trust in blockchain technology.
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Chapter 1
Blockchain

Blockchain technology represents one of the most significant innovations in distributed
computing systems since the advent of the Internet. Before delving into its specific
components and mechanisms, it is crucial to understand its fundamental principles and
the problems it aims to solve.

1.1 Theoretical Foundations of Distributed Ledger Tech-
nology

The concept of distributed ledger technology emerged as a solution to the ongoing chal-
lenge of achieving consensus in distributed systems without relying on central authorities
for trust. This section explores the theoretical foundations that enable such systems and
their practical applications in blockchain technology.

Blockchain technology represents a significant shift in distributed computing systems,
changing the architecture of digital transaction systems and data management. This
distributed ledger technology utilizes a unique approach to data storage and verification,
where information is maintained across a network of participating nodes instead of a
centralized repository. The importance of this architecture lies in its ability to uphold
data integrity and validate transactions without depending on a central authority.

By examining the historical context and architectural principles that govern blockchain
technology, we can gain a clearer understanding of its elements. These insights are es-
sential for grasping the technology’s current and future implementation potential. [3]

1.1.1 Historical Context and Evolution

The development of blockchain technology is the result of the convergence of multiple
disciplines and decades of research. Understanding its historical progression helps clarify
the solutions it offers to fundamental challenges in distributed computing.

The conceptual foundations of blockchain come from years of research in distributed
systems, cryptography, and consensus mechanisms. Although the technology gained
recognition mainly through its use in cryptocurrencies, its core principles tackle essential
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issues in distributed computing, such as the Byzantine Generals Problem and the Double-
Spending Problem in digital transactions. [4]

1.1.2 Architectural Principles

Having established the historical context, we can now examine the core architectural
principles that define blockchain systems. These principles work in concert to create a
robust and reliable distributed system.

The blockchain architecture adheres to several fundamental principles:

m Decentralization: Distribution of control and validation across network partici-
pants.

m Immutability: Once recorded, data cannot be altered without network consensus.
= Transparency: All transactions are visible to network participants.

m Cryptographic Security: Implementation of advanced cryptographic protocols.
m Consensus-driven: Network agreement on the state of the ledger.

The implementation of these principles relies on cryptographic foundations, which
we will examine in detail in the next section.

1.2 Cryptographic Foundations

The security and reliability of blockchain systems depend on cryptographic principles
and their implementation. This section explores the cryptographic components that
enable blockchain functionality, beginning with the public key infrastructure that forms
the backbone of blockchain security.

1.2.1 Public Key Infrastructure

Public Key Infrastructure in blockchain systems demonstrates a sophisticated implemen-
tation of asymmetric cryptographic principles, balancing security with accessibility. The
public key components serve three critical functions in the blockchain ecosystem. First,
they enable address generation and transaction validation, forming the foundation of
secure transfers. Second, they facilitate digital signature verification, allowing network
participants to confirm the authenticity of transactions. Third, they establish public
identities on the network, creating a transparent yet pseudonymous interaction system.

Private key functionality is the secure counterpart to public key operations. Private
keys enable transaction signing, providing cryptographic proof of the owner’s intent
to transfer assets. They also serve as the definitive proof of ownership for blockchain
assets, functioning as a digital form of possession. Additionally, private keys manage
access control, determining who can execute specific operations within the blockchain
environment.

This dual-key architecture creates a security framework that underpins the entire
blockchain ecosystem. It enables trustless transactions and decentralized operations
while maintaining high levels of security and verifiability.
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1.2.2 Hash Functions in Blockchain

Cryptographic hash functions serve multiple critical purposes in blockchain systems.
Their implementation can be represented as:

block__hash = H (previous__hash || timestamp || nonce || transaction__data) (1.1)

where H represents the hash function, and || denotes concatenation.

The key applications of hash functions in blockchain systems cover several crucial
aspects. Data integrity stands as a fundamental application, ensuring that both trans-
action and block data remain unaltered throughout their lifecycle in the blockchain.

Block linking represents another essential function, creating cryptographic connec-
tions between sequential blocks and maintaining the chain’s continuity. In systems uti-
lizing Proof of Work, hash functions play a vital role in facilitating mining processes
within these consensus mechanisms, providing the computational challenge necessary
for secure block validation and chain progression.

1.3 Block Structure and Chain Formation

1.3.1 Block Anatomy

Each block in the blockchain contains several components that can be formally defined
as:

Block = {Header, Body} (1.2)

where the Header consists of the following fields:

PrevHash, (Hash of previous block)
Timestamp, (Time block was created)
Nonce, (Proof of work nonce)

Header = { . (1.3)
MerkleRoot, (Merkle root of transactions)
Difficulty, (Mining difficulty target)

Version (Block version)

The Body includes all the individual transactions in the block.

This structure ensures that each block is linked to the previous one, creating a chain
of blocks (or blockchain), as shown in Figure
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B Figure 1.1 Blockchain and Block Structure @
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The blockchain’s linear structure is maintained through sequential linking and state
transitions. Each block references the previous block’s hash, providing a continuous
chain of records. State transitions validate state changes, maintain the global state, and
verify transaction execution. This mechanism is fundamental in ensuring the integrity
and immutability of the blockchain.

1.4 Consensus Mechanisms and Network Security

1.4.1 Proof of Work

Proof of Work (PoW) is one of the earliest and most commonly used consensus algorithms
in blockchain technology. It was popularized by Bitcoin and is characterized by its
reliance on computational power to validate and secure transactions.

The Proof of Work consensus mechanism implements a computational challenge-
response protocol:

while True:
nonce = generate_random_nonce()
block_hash = hash(block_data + nonce)
if block_hash < difficulty_target:
return nonce

In PoW, miners (nodes that validate transactions) compete to solve cryptographic
puzzles. The puzzle involves finding a nonce such that the resulting hash of the block
data, when combined with the nonce, produces a hash value that is below a certain
threshold (difficulty target). This process is known as mining.
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Key properties and advantages of PoW:

m Security: The computational difficulty of mining serves as a barrier against attacks.
An attacker would need to control more than 50% of the network’s total computa-
tional power to successfully execute a double-spending attack.

m Decentralization: PoW promotes decentralization by allowing any node with suf-
ficient computational resources to participate in the network.

= Incentives: Miners are incentivized through block rewards and transaction fees,
ensuring continued participation and security of the network.

Challenges and drawbacks of PoW:

m Energy Consumption: PoW requires significant computational resources and en-
ergy, leading to high operational costs and environmental concerns.

m Centralization Risk: The high cost of mining equipment can lead to centralization,
where a few large mining pools control a majority of the network’s hash rate.

m Scalability: The computational complexity increases over time, making it challeng-
ing to scale the network efficiently.

1.4.2 Proof of Stake

Proof of Stake (PoS) is an alternative consensus mechanism designed to address the
inefficiencies and environmental impact of PoW. PoS was first proposed in 2011 and has
since been implemented in various blockchain platforms, including Ethereum 2.0.

In PoS, validators are chosen to create new blocks based on the number of tokens they
hold and are willing to "stake" as collateral. Unlike PoW, which relies on computational
power, PoS relies on the economic stake in the network. [7]

Key properties and advantages of PoS:

m Energy Efficiency: PoS eliminates the need for intensive computational work,
reducing energy consumption.

m Security through Economic Stake: Validators are required to lock up a portion
of their tokens as collateral. If they act maliciously, they risk losing their staked
tokens. This economic disincentive promotes honest behavior.

m Scalability: PoS can achieve faster block times and higher transaction throughput
compared to PoW.

m Decentralization: PoS allows more participants to become validators, promoting
decentralization and network security.

Challenges and considerations of PoS:

m=m Wealth Concentration: Validators with more tokens have a higher probability of
creating new blocks, potentially leading to wealth concentration and centralization.
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m Initial Distribution: The initial distribution of tokens can impact the fairness and
security of the PoS system.

m Complex Implementation: PoS mechanisms can be more complex to implement
and require careful consideration of security and incentive structures.

B Figure 1.3 Proof of Stake Flow ﬂgﬂ
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1.5 Network Topology and Node Types

Blockchain networks operate across three primary classifications, each serving distinct
purposes in the ecosystem. Public networks implement open participation models with
economic incentives and require global consensus among participants. In contrast, pri-
vate networks utilize permissioned access controls with defined validator sets and cus-
tomized consensus mechanisms. Consortium networks bridge these approaches through
hybrid permission models, enabling multi-stakeholder governance while maintaining cus-
tom consensus implementations.

The functionality of blockchain networks relies on different types of nodes working co-
operatively. Full nodes form the network’s backbone by performing complete blockchain
validation, propagating transactions, and maintaining network state. Mining or val-
idator nodes focus on block creation and validation while participating in consensus
mechanisms to maintain network security. Light nodes enable resource-efficient partici-
pation through partial chain validation and transaction verification, making the network
more accessible to resource-constrained participants.

1.6 Advanced Security Considerations

The security architecture of blockchain systems includes various layers of protection
mechanisms and cryptographic safeguards. Understanding and implementing these secu-
rity measures is essential for maintaining network integrity, defending against malicious
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actors, and ensuring the reliable operation of blockchain-based systems. These consid-
erations must evolve to address emerging threats while maintaining the fundamental
properties of decentralization and trustlessness.

Security in blockchain systems requires protection against various attack vectors.

B Table 1.1 Attack Types and Mitigation Strategies

Attack Type Mitigation Strategy

Network-Level Implementation of 51% attack prevention,
eclipse attack protection, and network partition-
ing resistance mechanisms

Protocol-Level Deployment of transaction malleability preven-
tion, replay attack protection, and double-
spending prevention measures

The blockchain’s security foundation rests on advanced cryptographic implementa-
tions. Signature schemes incorporate ECDSA, multi-signature protocols, and thresh-
old signatures to ensure transaction authenticity. Zero-knowledge proofs enable privacy
preservation through selective disclosure mechanisms while maintaining transaction con-
fidentiality.

1.7 Future Development Trajectories

As blockchain technology evolves, scalability and interoperability become increasingly
important for adoption and integration into various sectors. Understanding the future
development trajectories of blockchain is essential for stakeholders looking to navigate
this dynamic landscape effectively.

Blockchain technology’s scalability advances along two main dimensions. Layer-
1 scaling focuses on fundamental improvements to the protocol, such as optimizing
consensus mechanisms, adjusting block parameters, and enhancing network efficiency. In
contrast, Layer-2 solutions increase capacity through off-chain methods, including state
channels, sidechains, and rollups. These solutions boost transaction throughput while
maintaining security.

The future success of blockchain technology will depend on effective interoperability
solutions. By developing cross-chain communication protocols, we can transfer assets
and information through atomic swaps, bridge protocols, and cross-chain messaging
systems. This progress is supported by ongoing standards development, which includes
protocol standardization, interface specifications, and interoperability protocols.

Establishing these frameworks is crucial for creating a more integrated blockchain
ecosystem. Such integration will allow different networks to interact with each other
while preserving their unique features and ensuring robust security.

1.8 Conclusion

Blockchain technology’s architectural principles and technical implementations represent
a significant advancement in distributed systems design. Through cryptographic security,
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consensus mechanisms, and distributed networking, blockchain provides a foundation for
trustless, decentralized applications. This chapter has established the theoretical and
practical foundations for understanding more specialized implementations, particularly
the Ethereum platform and smart contract systems, which will be examined in the next
chapter. [9, 10, 6]
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Chapter 2

Ethereum

Ethereum is a blockchain-based platform that extends Bitcoin’s functionality by support-
ing decentralized applications and smart contracts. Since its launch in 2015 by Vitalik
Buterin and a group of co-founders, Ethereum has become a fundamental building block
in the blockchain ecosystem.

2.1 Ethereum Architecture

Ethereum’s architecture consists of several key components that work together to ensure
the platform’s functionality and security.

Ethereum’s primary innovation is the Ethereum Virtual Machine, which enables the
execution of smart contracts on the blockchain. This functionality allows developers to
create decentralized applications that can function without intermediaries.

The Ethereum Virtual Machine is a Turing-complete virtual machine that executes
smart contracts on the Ethereum network, functioning as a global decentralized com-
puter. It can execute code in a trustless environment, providing significant computa-
tional power and flexibility.

Key characteristics of the EVM:

m Turing Completeness: Can execute any computational task given enough re-
sources.

m Isolation: Each contract runs in isolation, protecting the blockchain from malicious
code.

m Determinism: Ensures that the same input will produce the same output in any
node.

2.1.1 Ethereum Network and Nodes

Ethereum’s network includes various nodes with specific roles and responsibilities. Full
nodes store the entire blockchain, validate transactions, and maintain network integrity.
Light nodes, on the other hand, keep only block headers and rely on full nodes for
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transaction validation. Miner or validator nodes are crucial in the consensus process,
either by mining new blocks or validating transactions in PoS systems.

B Table 2.1 Node Types and Roles

Node Type Role and Responsibility

Full Nodes Store the entire blockchain, validate transac-
tions, and maintain network state.

Light Nodes Store block headers and rely on full nodes for

transaction validation.
Miner/Validator | Participate in consensus by mining new blocks
Nodes or validating transactions in PoS systems.

2.2 Solidity

Solidity is the primary programming language for writing smart contracts on Ethereum,
featuring a statically-typed syntax influenced by JavaScript, Python, and C++. [11]

A typical Solidity contract in Code Listing consists of state variables, functions,
and events. The example demonstrates a simple storage contract.

B Code listing 2.1 Solidity Smart Contract

contract SimpleStorage {
uint public storedData;
event DataStored(uint data);

function set(uint x) public {
storedData = x;
emit DataStored(x);

}

function get() public view returns (uint) {
return storedData;

}

2.3 Smart Contracts

Smart contracts in Ethereum are self-executing contracts with the terms of the agreement
directly written into code. They execute actions automatically when predetermined
conditions are met.
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2.3.1 Gas

Gas serves as the fundamental unit of computational measurement in the Ethereum
network, acting as a mechanism for resource allocation and network security. Every
operation executed on the EVM consumes a predetermined amount of gas.

The gas system fulfills several critical economic functions within the Ethereum ecosys-
tem. It prevents spam attacks that could overwhelm the network, making computation
costly. Network validators receive fair compensation for their work through gas fees,
ensuring the network’s continued operation and security. The gas mechanism creates a
market-driven priority system where users can pay more for faster transaction process-
ing. Additionally, it helps manage network congestion through dynamic pricing, where
gas costs adjust based on network demand.

Developers have multiple strategies available to optimize gas consumption in their
applications. Efficient smart contract design minimizes computational resources required
for operations. Batch processing of transactions combines multiple operations, reducing
overall gas costs. Strategic timing of transactions during periods of lower network activ-
ity can result in lower gas fees. Furthermore, implementing gas-efficient design patterns
helps reduce the overall cost of deploying and interacting with smart contracts.

The gas mechanism is essential for maintaining the security, efficiency, and economic
sustainability of the Ethereum network. It supports a balanced ecosystem where com-
putational resources are allocated based on market principles. [12]

2.3.2 Memory and Storage in EVM

Understanding how the EVM handles memory and storage is crucial for efficient smart
contract development. The EVM uses distinct areas for different types of data storage.

m Storage: Storage is where persistent state variables are kept. These variables are
stored on the blockchain and are accessible across all nodes. Access to storage is
expensive in terms of gas, which makes it crucial to minimize unnecessary storage
operations.

m Memory: Memory refers to a temporary data storage area used during contract
execution. Although it is cheaper than storage, data in memory does not persist
between transactions. This area is used for intermediate computations and data
that only need to last for the duration of a function call.

m Stack: The stack holds small local variables and function arguments for short-term
use during execution. It is used for operations that require quick access in a limited
scope, such as handling variables inside loops or temporary values during calculations.
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Example of storage and memory usage:

B Code listing 2.2 Storage Usage

contract DataHandling {
uint[] public storageArray;

function addToArray(uint[] memory memoryArray) public {
for (uint i = 0; i < memoryArray.length; i++) {
storageArray.push(memoryArray[i]);

}

2.3.3 Smart Contract Functions and Modifiers

Smart contracts in Solidity include various functions, each tailored to execute specific
operations. Constructors are special functions that initialize the contract and execute
once it is deployed. They set up initial state values and perform initializations necessary
for the contract. Fallback functions are unnamed and executed when the contract re-
ceives Ether without data or when a function call does not match any existing function
signature. The receive function is used for the same purpose but is explicitly defined to
handle plain Ether transfers.

Below is an example of different function types in a contract, shown in Code List-

ing 2.3.

B Code listing 2.3 Solidity Functions

contract Example {
address public owner;

constructor() {
owner = msg.sender;

}

fallback() external payable {
// Fallback function logic

}

receive() external payable {
// Receive function logic

}
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Similar to other programming languages, functions in Solidity have distinct visibility
modifiers that govern their accessibility and behavior.

Public functions can be accessed by any external user or contract, enabling interac-
tion with the contract from outside sources. In contrast, private functions are restricted
to the contract in which they are defined, ensuring internal usage only. In addition, there
are internal functions, which are similar to private functions but can also be called by
other contracts that inherit from the defining contract. External functions can only be
called from other contracts and transactions, but not internally.

Solidity also categorizes functions based on their interaction with the state. View
functions are read-only; they can access the state but cannot modify it. These func-
tions are marked with the view keyword. Pure functions are entirely independent
of the contract’s state. They neither read from nor write to the state, making them
deterministic and side-effect free. These functions are marked with the pure keyword.
13)

Modifiers in Solidity are used to change the behavior of functions, often used to
manage access control. They are prefixed by the modifier keyword. For example, the
onlyOwner modifier in the code snippet below ensures that only the contract owner
can call a specific function:

B Code listing 2.4 Solidity Modifier

modifier onlyOwner () {
require(msg.sender == owner, "Not authorized");

-

}

function set(uint x) public onlyOwner {
storedData = x;

}

Documenting functions in Solidity is essential for clarity and collaboration. Solidity
uses the NatSpec (Ethereum Natural Specification) format for function documentation.
NatSpec provides a standardized way to document a function’s purpose, parameters,
return values, and possible errors. A full list of NatSpec tags is shown in Table 2.2,
followed by an example of NatSpec documentation in Code Listing 2.5.

By documenting functions and following best practices in Solidity, developers can
ensure that their smart contracts are maintainable, secure, and efficient. [14]

2.4 Decentralized Applications

Decentralized applications, commonly known as dApps, are a key innovation within the
blockchain ecosystem, particularly on the Ethereum network. These applications lever-
age the unique capabilities of smart contracts to facilitate a wide range of decentralized
activities.
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B Code listing 2.5 NatSpec Documentation Example

Jx*

*

@title A Basic Tree Simulator

* @author John Doe

* @notice This contract is for fundamental tree simulations.

* @dev Implementations of functions do not produce side effects.

* @custom:experimental This contract is considered experimental.

*/
contract BasicTree {

Jx*
* @notice Calculate the approximate age of a tree in years.

@dev Utilizes a basic increment algorithm.
@param rings Rings determined from tree core sample.
@return Age of tree in years, rounded up.
@return Name of the tree type.

¥ % % %

*/
function calculateAge(uint256 rings) external virtual pure
returns (uint256, string memory) {
return (rings + 1, '"generic tree');

}
Jx*

* @notice Provides an estimated count of leaves on this tree.
* @dev Currently returns a static value.
*/
function leafCount() external virtual pure returns(uint256) {
return 50;
}
}

contract CitrusTree 1is BasicTree {
function calculateAge(uint256 rings) external override pure
returns (uint256, string memory) {
return (rings + 2, "Citrus Tree");

}
Jx*

* Returns the leaf count for this specific type of tree.
*x @inheritdoc BasicTree
*/
function leafCount() external override pure returns(uint256) {
return 75;

}
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B Table 2.2 NatSpec Tags [14]

Tag Description Applicable Contexts
@title A title that should describe | contract, library, interface,
the contract /interface struct, enum, enum values
@author The name of the author contract, library, interface,
struct, enum, enum values
@notice Explain to an end user what | contract, library, interface,
this does function, public state vari-
able, event, struct, enum,
enum values, error
@dev Explain to a developer any ex- | contract, library, interface,
tra details function, state variable,
event, struct, enum, enum
values, error
@param Documents a parameter just | function, event, enum val-
like in Doxygen (must be fol- | ues, error
lowed by parameter name)
@return Documents the return wvari- | function, enum, enum val-
ables of a contract’s function | ues, public state variable
@inheritdoc | Copies all missing tags from | function, enum, enum val-
the base function (must be fol- | ues, public state variable
lowed by the contract name)
@custom:... | Custom tag, semantics is | everywhere
application-defined

A key characteristic of dApps is that they are open-source. Being open-source im-
plies that the codebase of these applications is accessible to the public, allowing anyone
to inspect, modify, and improve it. This transparency encourages a collaborative en-
vironment where developers from diverse backgrounds can contribute to the project,
enhancing its robustness and security. Open-source projects are often subject to strict
code review, which can help identify potential vulnerabilities.

Another characteristic of dApps is their operation on decentralized networks, unlike
traditional applications that depend on centralized servers. Decentralization is achieved
through the distribution of data and computational tasks across a network of nodes,
which ensures that no single entity can take excessive control over the application. This
approach not only enhances security against single points of failure but also aligns with
the core principles of blockchain technology — transparency, immutability, and resistance
to censorship.

Moreover, dApps utilize tokens that are integral to their operation and governance.
These tokens serve multiple purposes within the ecosystem. Primarily, they act as a
mechanism for incentivizing participation and contributions from users and developers
alike. For instance, participants may earn tokens as rewards for providing computational
power, contributing to the development, or facilitating transactions. Tokens also play a
crucial role in maintaining and securing the network, as they can be used in consensus
mechanisms like PoS, where holders validate transactions. Furthermore, they can be em-
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ployed in decentralized governance models, enabling token holders to vote on proposals
and decisions affecting the future directions of the dApps.

DApps on the Ethereum blockchain are distinguished by their open-source develop-
ment, decentralized operational network, and use of tokens as incentives and governance
tools. These characteristics reinforce security, transparency, and inclusivity, demon-
strating the potential of blockchain technology in creating decentralized, resilient, and
collaborative digital ecosystems. [15, 16]

2.5 Challenges and Future Directions

Despite its widespread adoption and success, Ethereum faces challenges and areas for
improvement. Ongoing research and development efforts aim to address these challenges
and enhance the platform’s capabilities.

2.5.1 Upgradability

One of the main challenges in smart contract development is enabling upgradability.
Unlike traditional software, smart contracts are immutable once deployed. However,
several techniques can be employed to achieve upgradability.

The Proxy Pattern is a design approach that uses a proxy contract to delegate calls
to a separate logic contract. This architecture allows the proxy to be updated to point
to a new logic contract, facilitating upgrades without disrupting functionality.

The Eternal Storage Pattern separates storage and logic into distinct contracts. This
design enables updates to the logic contract without changing the storage contract,
providing greater flexibility.

Contract Libraries serve as repositories for reusable code, allowing for independent
updates that enhance efficiency and maintainability in smart contract development.

2.5.2 Scalability

Ethereum’s transaction throughput is limited, which can lead to congestion and high fees,
especially during peak usage periods. Enhancing scalability is crucial for supporting the
platform’s growth and encouraging adoption.

One promising technique to tackle this issue is sharding. Sharding divides the
blockchain network into smaller, more manageable segments called shards. Each shard
can process its transactions and smart contracts, allowing for parallel processing. This
parallelism can boost the network’s throughput.

Layer 2 solutions have been developed alongside sharding to improve performance
of Ethereum. These solutions work on the main blockchain and help reduce congestion
by handling processing tasks off-chain. One well-known Layer 2 solution is state chan-
nels. State channels let participants conduct transactions off-chain, only recording the
outcome on the blockchain.

Another approach is rollups, which group multiple transactions into a single package
that can be processed on the main chain, increasing efficiency. Among rollup methods,
Optimistic Rollups and ZK-Rollups stand out. Optimistic Rollups operate on the as-
sumption that off-chain transactions are valid unless proven otherwise, verifying them
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only if there is a challenge. On the other hand, ZK-Rollups employ zero-knowledge
proofs to ensure the correctness of off-chain transactions, which can enhance security
and efficiency.

In summary, tackling Ethereum’s scalability challenges involves sharding, which
boosts throughput by parallelizing transaction processing, and various Layer 2 solu-
tions like state channels and rollups, which reduce congestion by offloading transactions
from the main chain. Each of these strategies plays a vital role in making Ethereum
more efficient and capable of handling greater demand.

2.5.3 Security

Ensuring the security of Ethereum’s network and smart contracts maintains user trust
and ecosystem stability. As dApps grow in complexity and value, security measures are
essential.

One primary tactic is smart contract auditing by security companies, which involves
code reviews to identify vulnerabilities. These audits combine manual reviews with
automated tools to catch potential weaknesses before deployment.

Formal verification techniques also enhance security by using mathematical methods
to prove that a smart contract behaves as intended, ensuring the accuracy of critical
contracts handling transactions or sensitive data.

Bug bounty programs strengthen security by motivating developers and researchers
to find vulnerabilities and rewarding them for their findings. This community effort
often uncovers subtle issues that might be overlooked.

Practices such as providing secure coding guidelines, regular updates, and decentral-
ized governance enhance the security of the Ethereum environment.

A multifaceted approach involving smart contract auditing, formal verification, and
community involvement is essential for the security of the Ethereum network and for
fostering a trustworthy blockchain ecosystem.

2.5.4 Governance and Decentralization

Effective governance models ensure the sustainable development and evolution of Ethereum.
On-chain governance allows stakeholders to vote on protocol upgrades directly on the
blockchain. In contrast, off-chain governance relies on community consensus and off-
chain discussions, followed by implementation through Ethereum Improvement Propos-
als.

Additionally, Decentralized Autonomous Organizations manage decision-making through
smart contracts that enable stakeholders to vote on proposals and changes.

2.5.5 Interoperability

Establishing seamless connectivity among diverse blockchain networks encourages the
substantial growth of the decentralized ecosystem. Ethereum must evolve to facilitate
interactions with many other blockchain systems to unlock its potential and fully enhance
adoption.
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Cross-chain communication protocols lay the groundwork for exchanges and asset
transfers among digital environments. These protocols, often known as bridge protocols,
serve as conduits that enable the transfer of cryptocurrencies and digital assets between
Ethereum and alternative blockchain platforms such as Binance Smart Chain or Solana.

By following widely accepted standards and protocols such as Ethereum Improvement
Proposals and Inter-Blockchain Communication, these networks can ensure compatibility
and foster an ecosystem that encourages seamless interactions. This approach enhances
liquidity across digital assets and creates a rich landscape of blockchain environments.
As a result, users and developers can take advantage of the unique features offered by
each network.

2.5.6 Sustainability

As the blockchain industry evolves and matures, the need for sustainable practices be-
comes important. Ethereum, a foundational component of this initiative, must prioritize
its environmental impact and commit to a pathway of sustainable growth. The signifi-
cant transition from PoW to PoS has greatly reduced energy consumption, paving the
way for a greener future, see Figure 2.1, Furthermore, by collaborating with environ-
mental organizations to offset its carbon footprint, Ethereum incorporates sustainability
into its core operations. Embracing best practices in the design and deployment of
smart contracts not only contributes to a healthier planet but also encourages respon-
sible development that aligns with the values of a conscientious community. In this
way, Ethereum can lead the blockchain revolution while advocating for environmental
stewardship. [18, 19]

2.6 Conclusion

Ethereum has transformed the blockchain landscape with its support for smart contracts
and decentralized applications. Its architecture, smart contracts, and ecosystem estab-
lish it as a foundational element of the blockchain environment. As Ethereum progresses,
it will be essential to tackle challenges related to upgradability, scalability, security, gov-
ernance, interoperability, and sustainability to ensure its future success and adoption.
20, 21]
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Chapter 3
Wake Framework

The Wake framework is a tool designed to aid in developing, testing, and static analysis
of Solidity smart contracts. Developed by Ackee Blockchain, it offers integrated features
that streamline the entire lifecycle of smart contract development, from initial coding
and debugging to security auditing. Wake is particularly renowned for its capabilities
in static code analysis, which helps identify potential vulnerabilities and bugs without
executing the smart contract code. [1]

In this chapter, we will focus mainly on Wake’s static code analysis capabilities,
including its Intermediate Representation (IR) model and Abstract Syntax Tree (AST).

3.1 Overview of Wake

Wake provides a variety of functionalities designed to streamline the development of
smart contracts. These functionalities include static code analysis, inspecting the code
for vulnerabilities and bugs without actual execution; a testing framework for executing
automated tests to ensure code correctness; development tools that enhance the coding
experience with features such as syntax highlighting, code completion, and integrated de-
bugging; and cross-chain testing, which enables the testing and deployment of contracts
across different blockchain networks.

3.2 Static Analysis of Smart Contracts

Static code analysis in Wake involves examining the Solidity source code for potential
issues without executing the code. This process includes several key steps. First, lexical
analysis tokenizes the source code into a stream of tokens. Syntax analysis follows, con-
structing an Abstract Syntax Tree (AST) from these tokens. The semantic analysis then
ensures that the code adheres to semantic rules and constructs the IR nodes. Finally, IR
generation converts the AST into a more abstract representation suitable for analysis.
However, static analysis faces several challenges. One major challenge is balancing
thoroughness with accuracy to avoid false positives (flagging non-issues) and false nega-
tives (missing real vulnerabilities). The complexity and scalability of handling complex
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smart contracts also present obstacles. Another ongoing challenge is keeping analysis
results up to date with evolving code, as smart contracts are frequently updated.

By addressing these challenges, Wake aims to provide an environment for the secure
and efficient development of smart contracts.

3.3 Wake Framework Architecture

Wake utilizes a structured architecture that streamlines static code analysis through its
dedicated components. At the core of this architecture are the Internal Representation
(IR) model and the Abstract Syntax Tree (AST), which together allow for analysis and
manipulation of Solidity smart contracts.

The TR model simplifies the structure of Solidity smart contracts, making them
easier to analyze and manipulate. Preparing the IR involves several steps. First, the
Solidity source code is compiled into bytecode using the Solidity compiler (solc), which
generates an AST. This AST is then parsed and transformed into IR nodes, with each
node representing different constructs within the smart contract. These IR nodes are
serialized into a binary format for efficient storage and retrieval. To ensure security and
prevent tampering, cryptographic keys are used to sign the hash of the serialized data.
The IR nodes fall into various categories based on the constructs they represent, including
function nodes (which encapsulate functions, including parameters, return types, and
internal logic), variable nodes (which denote state variables, local variables, and their
respective types), and control flow nodes (which represent control flow constructs such as
loops and conditional statements). Each IR node also contains metadata that facilitates
detailed inspection and manipulation, supporting analysis tasks.

The AST serves as a hierarchical tree representation of the syntactic structure of
the Solidity code. Every node in the AST corresponds to a construct found in the
source code. The generation of the AST involves parsing the source code into tokens
and constructing a tree structure that encapsulates the code’s syntax. Fach node in the
AST signifies a specific part of the syntax, such as expressions, statements, and decla-
rations. The AST provides the groundwork for generating the IR, enabling organized
code analysis.

By integrating these components, Wake offers a framework for the static analysis of
smart contracts. This framework ensures inspection and manipulation while maintaining
the integrity of the analysis process.

3.4 Working with IR

The Wake IR model builds on top of the AST produced by the Solidity compiler. It
serves as a tree representation of the source code, holding additional information to
simplify analysis.

The IR tree nodes can be divided into categories based on their functionalities:

= Declarations: Nodes that represent declarations of variables, functions, structs,
etc.
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= Statements: Nodes that control the execution flow (e.g., if, for, while) and
nodes representing a single operation ending with a semicolon (e.g., assignments,
function calls).

= Expressions: Nodes that typically have a value (e.g., literals, identifiers, function
calls).

= Type Names: Nodes representing a type name (e.g., uint, address), usually
used in a VariableDeclaration.

m Meta: Nodes typically used as helpers that do not belong to any of the above
categories.

All expressions, type names, and a VariableDeclaration have type information
attached to them. See the wake.ir.types API reference for more details. [22]

3.5 Structure of the IR Tree

The IR tree can have a very complex structure. However, certain rules make it easier to
understand.

The root node of the IR tree is the SourceUnit. FunctionDefinitions and
ModifierDefinitions hold statements, which may contain other statements and
expressions.

Expressions can be used without a parental statement (i.e. outside of a function or
modifier body) in specific cases:

= In an InheritanceSpecifier argument list, e.g. contract A is B (1, 2).

= In a StorageLayoutSpecifier base slot expression, e.g. contract C
layout in (10 + 20).

= In a ModifierInvocation argument list, e.g. function foo() public onlyOwner (1,
2).

= In a VariableDeclaration initial value, e.g. uint a = 1;.

m In an ArrayTypeName fixed length value, e.g. uint[2] a;.
Only a few nodes may reference other nodes, particularly declarations:

m Identifier as a simple name reference, e.g. owner referencing a variable declaration.

= MemberAccess as a member access reference, e.g. owner.balance referencing
the global symbol ADDRESS_BALANCE.

m IdentifierPathPart as a helper structure used in IdentifierPath to describe a
part of a path separated by dots, e.g. Utils.IERC20.

m UserDefinedTypeName as a reference to a user-defined type, e.g.
MyContract in new MyContract().
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= ExternalReference as a helper structure describing a YulIdentiifier referencing
a Solidity VariableDeclaration, e.g. assembly { mstore(0, owner) }.

These rules and the organization of nodes help comprehend the IR tree’s structure,
aiding in the analysis and manipulation of the Solidity smart contracts.

3.5.1 Example IR Tree

The following example illustrates the complete IR tree for a simple Solidity code snippet:
B Code listing 3.1 Solidity Code Snippet

library Math {
function fib(uint n) public pure returns (uint) {
if (n < 2) return n;
return fib(n - 1) + fib(n - 2);

In the IR tree for the above code, nodes of the same category are colored similarly.
Dashed edges reference other nodes, highlighting connections within the IR structure,
see Figure 3.1

3.6 Built-in Tools for Static Analysis

Wake includes built-in tools, such as the Control Flow Graph (CFG) and the Data
Dependency Graph (DDG), to leverage the IR model for static analysis.

The CFG represents all possible execution paths within a smart contract. It helps
detect issues such as unreachable code, infinite loops, and the improper use of control
structures (misuse of loops and conditional statements affecting contract logic).

The DDG maps dependencies between data elements within a smart contract. This
tool helps uncover uninitialized variables, improper data handling, and circular depen-
dencies (cycles in data dependencies causing potential execution issues).

By utilizing these tools, Wake facilitates static analysis, helping developers identify
and resolve issues in smart contracts.
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B Figure 3.1 IR Tree Example. \\
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B Figure 3.2 Control Flow Graph Example [273]
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always always | lockData.nonzeroDeltaCount++

always
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success

3.7 Developing Custom Detectors

Wake’s architecture allows developers to create and integrate custom detectors for spe-
cific analysis needs by subclassing from a base detector class and implementing specific
analysis logic. For instance, a custom detector can be created by subclassing from the
BaseDetector and overriding the visit_ methods to traverse and analyze IR nodes.
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B Code listing 3.2 Custom Detector

class CustomDetector (BaseDetector):

def visit_FunctionDefinition(self, node):
# Custom analysis logic specific to function definitions
pass

def visit_VariableDeclaration(self, node):
# Analysis logic for variable declarations
pass

The Wake framework provides a set of visit_ methods inherited from the Visitor
class, which can be customized to analyze different types of IR nodes. For exam-
ple, the visit_FunctionDefinition method is called when the detector visits a
function definition node, allowing for the examination of function names, parameters,
return types, and the function body. The visit_VariableDeclaration method
analyzes variable declarations, detecting uninitialized variables, improper data types,
and scope issues. Similarly, the visit_IfStatement method facilitates the analysis
of if statement nodes for potential vulnerabilities like unchecked conditions, while the
visit_Assignment method checks assignment statements for issues such as reassign-
ing immutable variables or unintended data overwrites.

To exemplify how IR manipulation is crucial for practical analysis, consider the fol-
lowing detector that traverses variable declarations and reports any instances of unini-
tialized variables:

B Code listing 3.3 IR Traversal Example

class UninitializedVariableDetector (BaseDetector):

def visit_VariableDeclaration(self, node):
if not node.initialized:
self.report_issue(node, "Variable not initialized")

def analyze(self, 1ir):
for function in 1ir.functions:
self.visit_FunctionDefinition(function)

In this example, the UninitializedVariableDetector class defines a method
visit_VariableDeclaration that checks if a variable is initialized. If it is not, an
issue is reported. During the analysis phase, the detector iterates over all functions in
the IR, applying the custom analysis logic defined in visit_FunctionDefinition
and visit_VariableDeclaration.

By leveraging these methods, developers can create detectors to perform detailed
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analyses of different code constructs, enhancing smart contract verification with the
Wake framework.

3.8 Examples of Built-in Static Analyzers

Several pre-implemented detectors are available within Wake, specifically targeting com-
mon vulnerabilities in smart contracts. In the following overview, we will focus on a
detailed examination of a selected subset of these detectors.

3.8.1 Reentrancy Detector

The reentrancy detector identifies potential reentrancy vulnerabilities in smart contracts,
where malicious actors can repeatedly call a function before the previous execution
finishes.

The detector flags public or external functions vulnerable to reentrancy due to lack
of access control checks, untrusted external calls, and state-changing operations after
external calls.

The primary class ReentrancyDetector in Code Listing 3.4 scans for reentrancy
risks.

B Code listing 3.4 ReentrancyDetector Class Core

class ReentrancyDetector (Detector):

def init(self) -> None:
self._detections = []

def detect(self) -> List[DetectorResult]:
return self._detections

def visit_member_access(self, node: 1ir.MemberAccess):
# Implementation of ir.MemberAccess traversal

def _check_reentrancy_in_function(
self,
function_definition: {ir.FunctionDefinition,
statement: ir.StatementAbc,
address_source: 1ir.ExpressionAbc,
child_modifies_state: Set[Tuplelir.IrAbc,
analysis.ModifiesStateFlag]],
checked_statements: Set[ir.StatementAbc],
) —> List[Tuple[Detection, DetectorImpact, DetectorConfidence]]:
# Implementation of the core function
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B Code listing 3.6 _ check reentrancy in_function Snippet

def _check_reentrancy_in_function(params...):
# Imports

source_address_declaration =
find_low_level_call_source_address(address_source)
is_safe = None
if source_address_declaration 1is None:
pass
elif isinstance(source_address_declaration,
ir.enums.GlobalSymbol):
if source_address_declaration ==
ir.enums.GlobalSymbol.THIS:
is_safe = True
elif source_address_declaration in {
ir.enums.GlobalSymbol.MSG_SENDER,
ir.enums.GlobalSymbol.TX_ORIGIN,
}:

False

is_safe
else:
is_safe = None

# Further implementation

The _check_reentrancy_in_function method in Code Listing 3.6 traverses
the contract’s control flow to identify unsafe patterns. For the full version, see Appendix
Code Listing |A.1.

The detector flags the following vulnerable contract shown in Code Listing 3.5.

B Code listing 3.5 Reentrancy Vulnerability Example

contract Reentrancy {

mapping(address => uint256) public balances;

function withdraw(uint256 amount) public {
require(balances[msg.sender] >= amount);
// Vulnerable call
(bool success, ) = msg.sender.call{value: amount}("");
require(success);
balances[msg.sender] -= amount;
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In this contract, the call to msg.sender.call occurs before updating the balance,
making it vulnerable to reentrancy attacks.

The reentrancy detector in the Wake framework identifies and flags potential reen-
trancy vulnerabilities in Solidity smart contracts, aiding developers in securing their
code against such exploits.

3.8.2 tx.origin Detector

The tx.origin detector is used to identify potential vulnerabilities in smart contracts
where the tx.origin field is used. Such usage can lead to phishing attacks and issues
with ERC-4337 account abstraction.

The detector highlights two primary concerns: access controls based on tx.origin
are vulnerable to phishing attacks, and use of tx.origin may prevent users using
ERC-4337 account abstraction from interacting with a contract.

The class TxOriginDetector scans for unsafe usage of tx.origin, see Code
Listing The full version is available in Appendix Code Listing A.2.

In the contract example in Code Listing 3.8, an attacker can trick the owner into
interacting with a malicious contract, which sets tx.origin to the owner’s address
and then triggers a withdrawal from the victim’s contract.

B Code listing 3.8 Phishing Attack Example

contract Victim {
address public owner;

constructor() {
owner = msg.sender;

}

function withdraw() {
require(tx.origin == owner);
tx.origin.call{value: this.balance}("");

In the contract shown in Code Listing[3.9, users utilizing account abstraction cannot
deposit funds because tx.origin will not match the sender’s address.

The tx.origin detector in the Wake framework helps identify and flag vulnera-
bilities in smart contracts related to phishing attacks and account abstraction issues by
scanning for unsafe usage of tx.origin.

3.8.3 Unsafe delegatecall Detector

The unsafe-delegatecall detector identifies potential vulnerabilities in smart con-
tracts where the delegatecall function is used to call untrusted contracts. Unsafe
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B Code listing 3.7 TxOriginDetector Class Snippet

class TxOriginDetector (Detector):

def init(self) -> None:
self._detections = []

def detect(self) -> List[DetectorResult]:
return self._detections

def visit_member_access(self, node: 1ir.MemberAccess):
if node.referenced_declaration !=
ir.enums.GlobalSymbol.TX_ORIGIN:
return
if self._account_abstraction:
self._detections.append/(
DetectorResult(
Detection(
node,
"Use of tx.origin may interfere with"
"ERC-4337 account abstraction",
)
impact=DetectorImpact.WARNING,
confidence=DetectorConfidence.LOW,
uri=generate_detector_uri(

name = "tx-origin",

version =
self.extra["package_versions"]["eth-wake"],

anchor = "account-abstraction",

)
)

# Further implementation

delegatecall can lead to arbitrary code execution and storage modification.

The detector flags dangerous use of delegatecall unless the target address is
trusted (e.g., this) or the call is protected by an access control modifier like onlyOwner.

The primary class UnsafeDelegatecallDetector in Code Listing 3.10] scans
for unsafe usage of delegatecall. The _check_delegatecall_in_function
traverses the function to check for unsafe delegatecall usage, see Code Listing|3.11.
For the full versions, see Appendix Code Listings|A.3/and |A.4!
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M Code listing 3.9 Account Abstraction Example

contract Treasury {
mapping(address => uint256) public deposits;

function deposit() public payable {

require(tx.origin == msg.sender);
deposits[msg.sender] += msg.value;

B Code listing 3.10 UnsafeDelegatecallDetector Class Snippet

class UnsafeDelegatecallDetector (Detector):

def init(self):
self._detections = []

def detect(self) -> List[DetectorResult]:
return self._detections

Wake Framework

def visit_member_access(self, node: 1ir.MemberAccess):

t = node.type
# Initial validation
func = node.statement.declaration

if not isinstance(func, ir.FunctionDefinition):

return
contract = func.parent
if (

not self._proxy

and isinstance(contract, ir.ContractDefinition)

and contract_is_proxy(contract)

return
ret = check_delegatecall_in_function(

func, node.statement, node.expression, set()

)
if len(ret) == 0:
return
self._detections.append(
DetectorResult(
# Detection details
)
)

# Further implementation
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B Code listing 3.11 Delegatecall Check Function Snippet

def check_delegatecall_in_function(
function_definition: 1dir.FunctionDefinition,
statement: dir.StatementAbc,
address_source: 1ir.ExpressionAbc,
checked_statements: Set[ir.StatementAbc],

) —> List[Tuple[Detection, DetectorConfidence]]:
# Initial validation
source_address_declaration =

find_low_level_call_source_address(address_source)
is_safe = None
if source_address_declaration 1is None:

pass
elif isinstance(source_address_declaration, ir.enums.GlobalSymbol):
if source_address_declaration == ir.enums.GlobalSymbol.THIS:

is_safe = True
elif source_address_declaration in {
ir.enums.GlobalSymbol.MSG_SENDER,
ir.enums.GlobalSymbol.TX_ORIGIN,
}:
is_safe = False
else:
is_safe

None

# Further implementation

The detector flags the vulnerable contract, see Code Listing 3.12. In this contract,
computationLogic.delegatecall is called without access control, allowing arbi-
trary code execution. The unsafe-delegatecall detector in the Wake framework
helps identify and flag unsafe delegatecall usages in Solidity smart contracts, assist-
ing developers in securing their code against such vulnerabilities.

3.9 Conclusion

The Wake framework is a powerful solution for the static analysis of Solidity smart
contracts. It offers advanced features, extensibility, and a user-friendly interface for
developing custom detectors. By addressing static analysis challenges and implementing
tools, Wake enhances the security and reliability of Ethereum smart contracts. [24]
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B Code listing 3.12 Delegatecall Vulnerability Example

contract Storage {
using SafeERC20 for IERC20;

mapping(address => uint256) public balances;
address public computationLogic;

function setComputationLogic(address _computationLogic)
external {
computationLogic = _computationLogic;

}

function deposit(IERC20 token, uint256 amount) external {
token.safeTransferFrom(msg.sender, address(this), amount);
balances[msg.sender] += amount;

}

function recomputeRewards() external {
computationLogic.delegatecall(
abi.encodeWithSignature("recomputeRewards()")
); // Vulnerable call



Chapter 4

Defining a Testing Set of Mainnet
Contracts

This chapter explores the importance and methodology of defining a testing set of main-
net contracts for running vulnerability detectors. The ultimate goal is to evaluate the
potential cost of exploits prevented by these detectors, ensuring the security and relia-
bility of dApps deployed on the Ethereum blockchain.

4.1 Importance of Defining a Testing Set

Evaluating the security of smart contracts is crucial in the blockchain ecosystem, where
vulnerabilities can lead to financial losses. Defining a representative testing set of main-
net contracts ensures that detectors are tested against real-world scenarios, providing
realistic insights into their effectiveness. This process assesses the performance of vulner-
ability detectors in identifying exploits, validating their efficacy and reliability. More-
over, it allows for calculating potential financial losses that could have been incurred
if vulnerabilities were not detected and mitigated, demonstrating the value of security
measures.

4.2 Collecting Mainnet Contracts

A toolkit containing multiple scripts was developed to collect and work with a testing
set of contracts. Ome of the scripts parses web pages on the DexScreener platform,
extracting recently listed token trading pairs and allowing us to compile a relevant
selection of mainnet contracts. This curated set of contracts is a foundation for testing
detectors, ensuring they operate effectively in a real-world environment.

4.2.1 Application Workflow

The workflow of the collection process includes the following steps:

m Parsing New Pairs: The program parses the new-pairs page on DexScreener,
gathering contract addresses of recently deployed contracts that meet specific filters.
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m Filtering Contracts: Filters are applied to ensure that only contracts with specific
characteristics are included in the testing set. This helps focus on contracts that are
more likely to be targeted by attackers.

m Calculating Total Locked Value: After gathering the contract addresses, we run
a script that calculates Total Value Locked in USD. This figure indicates the total
worth of locked assets, serving as an indicator of the potential value at stake. It
represents assets that could be at risk.

= Downloading Source Codes: Another script downloads the source codes of these
contracts collected from the Etherscan platform, ensuring that the vulnerability de-
tectors can analyze the contracts.

The script designed to calculate Total Value Locked (TVL) utilizes the DexScreener
API, which supplies information on liquidity [25]. Liquidity represents the value held
within smart contracts that enable trading and provide transaction support. We will
obtain liquidity values specifically for the base tokens to evaluate overall risk exposure.
It is important to note that only the TVL of the base tokens will be included in the
final calculations, as potential vulnerabilities are unlikely to impact the values of other
tokens.

The script for downloading source codes takes contract addresses gathered by the
parsing script and integrates with the Etherscan API to fetch the source code of each
contract. The downloaded source codes are then stored in a local repository for analysis.

4.3 Chosen Testing Set of Contracts

After implementing the script to collect and filter contracts, a result set was defined for
evaluation purposes. The selection process involves filtering deployed smart contracts on
the Ethereum mainnet using the criteria shown in Table 4.1. This ensures the inclusion
of contracts that are recently deployed, have active engagement, and pose significant
financial interest, making them potential targets for security threats.

B Table 4.1 Filtering Criteria for Mainnet Contracts

Chain Ethereum

Rank By trendingScoreH6 (last 6 hours)
Order Ascending

Minimum Liquidity $10,000

Maximum Age 720 hours (30 days)

A subset of 100 contracts was chosen from the filtered list for practical evaluation.
This number balances the need for a representative sample size with manageable com-
plexity for detailed analysis. The addresses of these 100 selected contracts were collected
and used to fetch the corresponding smart contract source codes and calculate their TVL.

The final set of 100 contracts was characterized by the following:

= Liquidity: The selected contracts all had a minimum liquidity of $10,000, ensuring
they are significant enough to be of interest to potential attackers. This focus helps
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in understanding the impact of vulnerabilities in contracts that are actively traded
and hold substantial value.

= Active Engagement: All chosen contracts exhibited significant user engagement,
as indicated by their trending scores and liquidity metrics.

= Recent Deployment: With a maximum age of 30 days, the contracts were all very
recent, ensuring the relevance of security evaluations to current deployment practices.

The sum of TVLs of all contracts: $310,495,116.8

4.4 Summary of the Selection Process

The parsing process narrowed down an array of mainnet contracts to a set for evalua-
tion. This defined set includes real-world contracts that are actively used and exhibit
significant activity and financial stakes, ensuring the evaluation’s relevance.

By examining this selected collection of 100 contracts, we can evaluate the effec-
tiveness of vulnerability detectors. It offers a deeper understanding of their practical
relevance and potential financial benefits in preventing exploits, demonstrating their
advantages in enhancing smart contract security.

4.5 Conclusion

Defining a testing set of mainnet contracts and evaluating them using vulnerability de-
tectors is essential for ensuring the security of decentralized applications. The toolkit
developed to gather and analyze these contracts provide a practical approach to under-
standing and mitigating potential risks. By evaluating the financial cost of potential
exploits, we can illustrate the benefits of integrating advanced security measures into
the smart contract development lifecycle.
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Chapter 5

Evaluation

In this chapter, we will evaluate the effectiveness of the Wake framework by analyzing
the results it produced, focusing on detections with high impact. We will gather the
results into a table and then evaluate the potential cost of exploits based on these high-
severity detections. The financial impact will be estimated by assessing the TVL of the
affected contracts.

5.1 Running Detectors on the Testing Set

Once the source codes of the selected mainnet contracts are downloaded, they are sub-
jected to a series of vulnerability detectors. Each detector analyzes the contracts for
specific vulnerabilities, such as reentrancy, overflow/underflow, uninitialized variables,
and others. A list of detectors is available on the documentation page [26].

The detectors classify security findings using five distinct impact levels: INFO <
WARNING < LOW < MEDIUM < HIGH. These levels follow a strict ordering relationship.

Additionally, detections are assigned one of three confidence levels indicating the re-
liability of the finding: LOW, MEDIUM, and HIGH. The detection results are implemented
through the DetectorResult class, which includes detection location and message,
impact assessment, confidence rating, and an optional URI for detailed documentation.
This classification system facilitates the prioritization of security findings based on sever-
ity and certainty of detection.

The execution process involves the following:

= Wake Installation: Installing the Wake framework and all required dependencies.

= Input Preparation: Arranging the downloaded source codes for compatibility with
the Wake framework.

m Analysis: Running each detector against the source codes to identify potential
vulnerabilities.

m Result Compilation: Compiling the results of the analysis, including detected
vulnerabilities and their severities.
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5.2 Automation of Detector Execution

Manual execution of detectors across multiple Solidity contracts presents several chal-
lenges. The process can be time-consuming, requiring individual detectors for each
contract to be run separately. This makes the task inefficient and complicates the or-
ganization and comparison of results, as managing multiple outputs can be bulky. Ad-
ditionally, there is a significant risk of human error when performing repetitive tasks,
leading to inaccuracies and potentially critical oversights in the analysis. These chal-
lenges highlight the need for more streamlined and automated approaches in evaluating
Solidity contracts.

The automation approach introduces several key benefits that enhance the detection
workflow. First, it enables batch processing, allowing detectors to execute across mul-
tiple contracts or projects sequentially without the need for manual intervention. This
streamlining saves time and reduces the potential for human error. The automation
ensures a consistent environment, as all detectors operate under identical configuration
parameters. This uniformity leads to more reliable and comparable results. The auto-
mated structured output organizes the detection results, facilitating easier analysis and
comparison among the findings. Lastly, the process supports temporal analysis, which
enables tracking vulnerabilities over time by maintaining an output history.

This approach improves the efficiency of the detection workflow. For this purpose,
the implemented toolkit for contract parsing and downloading was extended by another
script, running Wake commands and generating structured text output files that can be
further processed for deeper analysis.

This automated approach enhances the efficiency of the Wake detector framework,
transforming it from a tool-based process to a systematic security analysis methodology.

5.3 Analysis of Found Detections

The analysis begins by compiling all detections identified by the Wake framework. The
primary focus is on detections categorized by their impact and confidence levels. This
ensures a structured and prioritized assessment of potential vulnerabilities.

5.3.1 Results

This security analysis report presents the Wake framework’s vulnerability assessment
findings. The analysis identified 1120 potential security concerns across various severity
levels. The vulnerabilities are categorized by their impact severity (HIGH, MEDIUM,
LOW, WARNING, INFO), confidence level of detection, and specific vulnerability type.
Notable findings include 32 high-impact reentrancy vulnerabilities, 109 unchecked return
values across different severity levels, 35 unsafe ERC20 calls, and numerous code opti-
mization opportunities identified through unused code elements, as shown in Table
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5.4 [Evaluation of Potential Cost of Exploits

To evaluate the potential cost of exploits, we identify the affected contracts, focusing
on those smart contracts that are impacted by high-severity detections. Once we have
determined which contracts are at risk, we will assess the token values associated with
these contracts. It involves retrieving the current token values or assets that may be
compromised due to the identified vulnerabilities. Finally, we estimate the financial
impact by calculating the potential loss for each vulnerability based on the assessed
token values. This approach allows us to understand the financial implications of the
detected issues.

B Table 5.1 Global Vulnerability Statistics

Impact Confidence| Type Count
HIGH MEDIUM reentrancy 21
HIGH MEDIUM unchecked-return-value 15
HIGH MEDIUM unprotected-selfdestruct 1
HIGH LOW reentrancy 11
HIGH LOW calldata-tuple-reencoding-head-overflow-bug | 1
MEDIUM | HIGH unsafe-erc20-call 35
MEDIUM | MEDIUM unchecked-return-value 10
MEDIUM | MEDIUM unsafe-delegatecall 4
MEDIUM | LOW tx-origin 9
LOW HIGH incorrect-interface 2
WARNING | HIGH unchecked-return-value 84
WARNING | HIGH complex-struct-getter 1
WARNING | MEDIUM missing-return 27
WARNING | LOW tx-origin 9
WARNING | LOW reentrancy 1
INFO HIGH unused-function 833
INFO HIGH unused-contract 42
INFO HIGH unused-import 8
INFO HIGH unused-modifier 6
TOTAL 1120

5.4.1 Filtering High Impact and High Confidence

We filter detections classified as high impact to evaluate potential financial consequences.
This approach ensures our attention is concentrated on the most critical vulnerabilities
with the highest potential for financial outcomes.

Considering the absence of vulnerabilities categorized with high impact and high
confidence, our analysis will focus on those with medium confidence. Detections with low
confidence are removed from this evaluation due to a higher likelihood of false positives,
which require manual verification for confirmation.

The Table 5.2 presents only the affected contracts and their corresponding high-
impact, medium-confidence detections.

Focusing on high-severity detections is essential for several reasons. First, high-
impact vulnerabilities pose critical risks, as they can lead to security threats that may
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B Table 5.2 Summary of High Impact Vulnerabilities

Contract Impact | Confidence | Count | Type

Ecotrader HIGH MEDIUM 10 reentrancy

BiorBank HIGH MEDIUM 10 reentrancy

WATA5S HIGH MEDIUM 2 unchecked-return-value
POWER HIGH MEDIUM 2 unchecked-return-value
Decentralized EURO | HIGH MEDIUM 2 unchecked-return-value
XION HIGH MEDIUM 1 unprotected-selfdestruct
Ghibli HIGH MEDIUM 1 unchecked-return-value
MIDAS HIGH MEDIUM 1 unchecked-return-value
DOPE HIGH MEDIUM 1 unchecked-return-value
mipramilekibro HIGH MEDIUM 1 unchecked-return-value
Koko-chan HIGH MEDIUM 1 unchecked-return-value
SpaceChain HIGH MEDIUM 1 unchecked-return-value
LegalXToken HIGH MEDIUM 1 unchecked-return-value
LegalXToken HIGH MEDIUM 1 reentrancy

COCORO HIGH MEDIUM 1 unchecked-return-value
BitBonds HIGH MEDIUM 1 unchecked-return-value

result in financial losses or even a complete compromise of contracts. Since security
teams often operate with limited resources, prioritizing critical vulnerabilities is vital for
managing and mitigating risk. Furthermore, addressing high-impact issues results in a
greater reduction in risk per unit effort compared to lower-impact issues. The potential
for considerable reputational damage from exploiting high-severity vulnerabilities under-
lines the urgency of their timely resolution, as safeguarding an organization’s reputation
is crucial in today’s digital landscape.

5.4.2 Calculating Value at Risk

After identifying contracts affected by high-impact vulnerabilities, it is necessary to
calculate the TVL of the base tokens at risk.

The results are compiled in the Table which details the TVL of each affected
contract. It is important to note that some values do not exceed the applied filter of
$10,000 in minimal liquidity, as only base token values held by affected smart contracts
are considered for evaluation.
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M Table 5.3 Summary of High Impact Vulnerabilities

Contract Type TVL
Ecotrader reentrancy $34,406.17
BiorBank reentrancy $36,474.65
WATAS5 unchecked-return-value $1,981,979.53
Power Play unchecked-return-value $3,458.93
DecentralizedEURO | unchecked-return-value $105,464.80
XION unprotected-selfdestruct $27,305.65
Ghibli unchecked-return-value $8,487.17
MIDAS unchecked-return-value $29,239.24
DOPE unchecked-return-value $41,072.92
mipramilekibro unchecked-veturn-value $33,771.55
Koko-chan unchecked-return-value $10,961.06
SpaceChain unchecked-return-value $85,452.04
LegalXToken unchecked-return-value, reentrancy | $41,481.91
COCORO unchecked-return-value $257,240.92
BitBonds unchecked-return-value $4,690.24

5.5 Detailed Examination

5.5.1 Reentrancy

1. Contract: Ecotrader
Line Numbers: 159, 168, 170, 176, 186, 187, 384, 389, 422, 434
Description: The contract contains multiple high-severity reentrancy vulnerabilities
where external calls are made before state changes are finalized, allowing attackers to
re-enter the contract and manipulate its state. Most critical reentrancy points occur
in the launch(), cancel(), and processFees() functions, where calls to external con-
tracts like Uniswap router and token transfers are performed. These vulnerabilities
could lead to the theft of funds, manipulation of token balances, or circumvention
of liquidity-locking mechanisms. The MEDIUM confidence level indicates strong ev-
idence of exploitability based on code patterns, though specific exploitation paths
might depend on contract interactions. If exploited, these vulnerabilities could allow
attackers to drain contract funds, manipulate token supply, or interfere with essential
protocol operations.
Estimated Financial Impact: $34,406.17

2. Contract: BiorBank
Line Numbers: 157, 166, 168, 174, 184, 185, 385, 390, 423, 435
Description: Similar behavior and functions as in the Ecotrader contract described
above.
Estimated Financial Impact: $36,474.65

3. Contract: LegalXToken
Line Numbers: 2523
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Description: This vulnerability is a classic reentrancy attack in the function _ with-
drawDividendOfUser, where the contract sends ETH to a user address before updat-
ing its state. When the ETH transfer is made using the user.callvalue: _ withdraw-
ableDividend(""), a malicious recipient contract can execute code and call back into
the vulnerable contract’s functions. This callback can happen before the original
function completes, allowing the attacker to repeatedly withdraw funds that should
no longer be available. The vulnerability is accessible through the public withdraw-
Dividend() function, making it directly exploitable by external users who could drain
funds from the contract.

Estimated Financial Impact: $41,481.91

5.5.2 Unchecked Return Value

1. Contract: WATA5
Line Numbers: 35, 51
Description: The wATA5 contract contains high-severity vulnerabilities related to
unchecked return values and unsafe ERC-20 calls in the wrap() and unwrap() func-
tions. The contract calls functions A7A5.transferFrom() and A7Ab5.transfer() with-
out checking their return values, potentially leading to silent failures where tokens
are not transferred, but the contract proceeds as if they were. This issue is dangerous
because the contract mints new tokens before confirming the underlying assets have
been received, creating a potential attack vector that could allow malicious users
to obtain wrapped tokens without providing the required collateral. Some ERC-20
tokens do not follow the standard implementation and may return false instead of re-
verting on failure, allowing attackers to exploit this contract and inflate the wrapped
token supply without proper backing. If exploited, these vulnerabilities could lead
to the wA7A5 token becoming undercollateralized, causing significant financial loss
to users and collapsing the entire wrapped token system.
Estimated Financial Impact: $1,981,979.53

2. Contract: Power Play
Line Numbers: 1971, 1983
Description: The POWER contract contains high-severity issues related to unchecked
return values from ERC-20 token operations in its liquidity provision functionality.
When transferring WETH tokens to the liquidity pair in the addLp() function, the
contract fails to verify if these transfers succeeded, potentially causing silent failures
where liquidity appears to be added but tokens are not transferred. Some ERC-20
tokens (including certain implementations of WETH) return false on failed transfers
rather than reverting, making this vulnerability exploitable if the underlying token
behaves this way. This issue is dangerous during the liquidity provisioning stage,
where tokens and ETH are being contributed, as it could result in mismatched re-
serves in the liquidity pool and allow manipulation of token prices. If exploited, this
vulnerability could lead to incorrect liquidity creation, broken token economics, or
sophisticated price manipulation attacks against the token and its users.
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Estimated Financial Impact: $3,458.93

. Contract: Decentralized EURO

Line Numbers: 328, 399

Description: The Decentralized EURO system contains high-severity vulnerabilities
where ERC-20 token transfer return values are not checked in the Equity contract,
potentially leading to silent failures that could corrupt the financial state of the
system. The _invest() function calls dEURO.transferFrom() without verifying the
transfer was successful, which could allow users to receive equity shares without trans-
ferring any tokens. Similarly, in the redemption process, dEURO.transfer() is called
without checking its success, which could result in burned equity tokens without the
corresponding dEURO tokens being transferred to users. These issues are hazardous
since the protocol deals with financial assets, and silent transfer failures could lead to
fund misallocations, incorrect accounting of reserves, or potential economic attacks
where malicious users exploit discrepancies in the system’s actual vs. recorded token
balances. If exploited, these vulnerabilities could damage the protocol’s reliability,
leading to a complete breakdown of trust in the stablecoin ecosystem.

Estimated Financial Impact: $105,464.80

. Contract: Ghibli

Line Numbers: 1101

Description: This vulnerability occurs when the contract calls TERC20 (_ toke-
nAddr).transfer() but fails to check the return value that indicates whether the
transfer was successful. Many ERC20 tokens return false instead of reverting when
a transfer fails, which means the contract will continue executing as if the transfer
succeeded even when it failed. This can lead to serious accounting errors where the
contract thinks funds were moved when they were not, allowing users to perform
actions they should not be able to do after a failed transfer. The vulnerability is
dangerous because it can silently break the contract’s core financial logic, creating
discrepancies between the contract’s understanding of token balances and the actual
token distribution.

Estimated Financial Impact: $8,487.17

. Contract: MIDAS

Line Numbers: 609

Description: This vulnerability occurs in the token distribution logic, where the
contract updates accounting records without verifying if the token transfer was
successful. The code first increases the totalDistributed counter and then calls
IERC20(PAXG).transfer() without checking its return value, finally updating share-
holderClaims timestamp. If the PAXG token returns false on transfer failure rather
than reverting, the contract will continue execution, creating a dangerous accounting
discrepancy where distribution records indicate tokens were sent when they were not.
This is severe because the contract maintains state before and after the unchecked
transfer, allowing shareholders to manipulate distribution records without actual to-
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ken movement occurring, effectively breaking the entire dividend distribution system.
Estimated Financial Impact: $29,239.24

. Contract: DOPE

Line Numbers: 305

Description: The DOPE contract contains high-severity unchecked return value
vulnerabilities in its openTrading function that initializes the token’s trading func-
tionality. The contract fails to verify the success of critical ERC-20 operations,
particularly when transferring tokens to itself and when approving the Uniswap pair
contract to spend tokens. These silent failures could lead to a corrupted contract
state where trading appears to be enabled, but underlying token transfers or ap-
provals have failed. Since this occurs during the initial trading setup and liquidity
provision process, exploitation could result in improper initialization of the trading
pair, allowing the contract owner to extract funds without establishing proper liquid-
ity. If exploited, these vulnerabilities could result in financial loss to early investors
or manipulation of the initial token pricing mechanism.

Estimated Financial Impact: $41,072.92

. Contract: mipramilekibro

Line Numbers: 307

Description: The mipramilekibro token contains unchecked return value vulnera-
bilities in its openTrading function, particularly with token transfers and approvals
to the Uniswap pair. When initializing trading, the contract does not verify if criti-
cal operations like token transfers and LP token approvals succeeded before enabling
trading. This could lead to an inconsistent contract state where trading appears
enabled, but underlying operations have failed. If exploited during launch, these
vulnerabilities could disrupt proper liquidity pool initialization or allow premature
trading while the contract is unstable.

Estimated Financial Impact: $33,771.55

. Contract: Koko-chan

Line Numbers: 331

Description: This vulnerability appears in the rescueERC20 function, which is de-
signed to recover any ERC20 tokens held by the contract, but fails to verify if the
token transfer operation succeeds. The function calculates a percentage of the con-
tract’s token balance to withdraw and calls IERC20(_address).transfer() without
checking its return value, meaning that if the transfer fails silently (returning false
instead of reverting), the function will complete execution as if the rescue was suc-
cessful. This vulnerability is concerning because it occurs in a privileged emergency
recovery function that handles arbitrary ERC20 tokens, potentially leading the con-
tract administrator to believe tokens were successfully rescued when they remain
trapped in the contract. Since the function provides no feedback about transfer fail-
ures, the tax wallet operator might never realize that the rescue operation failed,
resulting in the permanent loss of supposedly "rescued" tokens.

53



54

10.

11.

Evaluation

Estimated Financial Impact: $10,961.06

Contract: SpaceChain

Line Numbers: 1707

Description: The SpaceChain contract contains a high-severity unchecked return
value vulnerability in the TokenUpgrader’s withdraw function, transferring tokens
without verifying if the operation succeeded. When a user requests to withdraw
their tokens from the upgrader contract, the function calls token.transfer() but fails
to check its return value, potentially allowing silent failures where users believe to-
kens were sent when the transfer failed. This vulnerability is particularly concerning
because it affects the token migration pathway, where users migrate from V1 to V2
tokens through the upgrader contract. If token transfers silently fail during migra-
tion, users could lose funds, believe they have properly migrated their tokens when
they have not, or the contract state could become inconsistent with actual token
balances. Additionally, a lower confidence reentrancy risk in the token migration
function could be exploited if the V1 token has malicious callbacks.

Estimated Financial Impact: $85,452.04

Contract: LegalXToken

Line Numbers: 2523, 2535

Description: The LegalXToken contract contains a high-severity unchecked return
value vulnerability in its dividend distribution mechanism, where token transfers are
executed without verifying their success. In the function _ withdrawDividendOfUser,
the contract calls IERC20(RewardToken).transfer() but does not check if the transfer
succeeded, potentially allowing silent failures where dividends appear to be paid but
tokens are not transferred. This vulnerability is dangerous in a dividend-paying to-
ken since it affects the core economic function of the contract, potentially leading to
accounting inconsistencies between claimed dividends and actual token transfers. If
exploited, users could have their dividend rewards recorded as paid in the contract’s
state while the actual tokens remain in the contract, essentially losing their rightful
rewards. Additionally, the contract has tx.origin usage concerns could interfere with
smart contract wallet functionality and other unchecked return values throughout
the dividend-claiming process.

Estimated Financial Impact: $41,481.91

Contract: COCORO

Line Numbers: 603

Description: The COCORO token contract contains critical unchecked return value
vulnerabilities in its openTrading function that could compromise the initial token
setup process. The function fails to verify the success of key operations, including
transferring 98% of tokens to the contract itself and approving the Uniswap router
to spend LP tokens. If these operations silently fail, the contract will proceed with
liquidity provision and trading enablement even though the underlying transfers or
approvals have not been completed successfully. This vulnerability is dangerous
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12.

during the critical one-time trading initialization process, potentially resulting in a
corrupted trading pair or allowing the owner to extract ETH without properly con-
tributing tokens to the liquidity pool. If exploited, early investors could experience
financial losses due to inadequate liquidity provision or encounter a liquidity pool
with imbalanced reserves that enable price manipulation.

Estimated Financial Impact: $257,240.92

Contract: BitBonds

Line Numbers: 661

Description: This vulnerability combines an unchecked ERC20 token transfer with
a subsequent ETH transfer, creating a dangerous scenario where funds could be par-
tially lost. The function first attempts to transfer all tokens of a specified address
to mkt without checking if the operation succeeded, then immediately proceeds to
transfer all ETH balances regardless of the token transfer’s outcome. Since some
popular ERC20 tokens return false on failure rather than reverting, the token trans-
fer could silently fail while the ETH transfer completes successfully. This partial
execution creates an inconsistent state where the caller believes both transfers suc-
ceeded when only the ETH was moved, potentially causing accounting errors or lost
tokens. The vulnerability is concerning because it appears in a privileged sweeping
function intended to recover assets from the contract, but may result in tokens be-
coming permanently trapped.

Estimated Financial Impact: $4,690.24

5.5.3 Unprotected self-destruct

1.

Contract: XION

Line Numbers: 1461

Description: This vulnerability involves an unprotected selfdestruct function that
allows anyone to destroy the contract and transfer all its ETH to an arbitrary address.
The destroy function is marked as external with only a noReenter modifier, which
prevents reentrancy attacks but lacks access control mechanisms like onlyOwner to
restrict who can call it. Any external actor can call this function at any time, caus-
ing permanent destruction of the contract, loss of all stored data, and transfer of the
contract’s entire ETH balance to an address of the attacker’s choosing. This repre-
sents a critical security vulnerability as it enables complete and irreversible contract
destruction by unauthorized parties, potentially resulting in permanent loss of funds
and functionality.

Estimated Financial Impact: $27,305.65
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5.6 Summary

B Figure 5.3 Total Liquidity Affected by Vulnerability Type
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Total Cost of Potential Exploits: $2,701,486.78

The evaluation process demonstrates the importance of prioritizing high-impact de-
tections when assessing security risks in smart contracts. Focusing on these critical
vulnerabilities allows one to estimate the financial consequences and take necessary ac-
tions to mitigate associated risks.

The tables created during the analysis serve as a resource for prioritizing security
efforts and ensuring that attention is directed toward the most pressing issues. This
chapter outlined the steps in detecting, analyzing, and evaluating security issues within
smart contracts, demonstrating the application of the Wake framework.



Chapter 6

Implementation of the New
Detector

This chapter details the development process of the documentation—-diff detector.
This detector aims to identify inconsistencies between a function’s documentation and
its implementation using LLM for evaluation.

6.1 Motivation

Maintaining accurate and up-to-date documentation is crucial for code reliability and
maintainability in modern software development. Misalignment between documentation,
such as docstrings, and the actual code can lead to misunderstandings, misusages, and
potentially faulty behavior. The detector documentation-diff helps address this
issue by identifying inconsistencies between the documentation and the implementation
of functions within smart contracts.

6.2 Design and Implementation

The documentation-diff detector is designed to traverse the IR of smart contracts
using Wake’s visitor pattern. It collects function definitions and their corresponding
NatSpec documentation, and then uses LLM to evaluate consistency between the two.

6.2.1 Intermediate Representation Model

The detector operates on Wake’s IR, concentrating on two crucial types of nodes. The
first type is the ir.ContractDefinition, which encapsulates the semantics at the con-
tract level. This includes elements such as state variables, modifiers, and function decla-
rations, all providing the structural context necessary for analysis. The second type is the
ir.FunctionDefinition, which represents individual implementations of functions. It
includes associated metadata, documentation strings, and relationships with modifiers,
allowing for a detailed understanding of each function’s role within the contract.
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6.2.2 Detector Class and Initialization

The DocumentationDiffDetector class in Code Listing|6.1 extends the Detector
base class provided by the Wake framework. It initializes the internal detection list, sets
up function caches, and retrieves API keys necessary for calls to Al for evaluation.

B Code listing 6.1 Detection Initialization

class DocumentationDiffDetector (Detector):

NAME = "documentation-diff"
IMPACT = DetectorImpact.WARNING
CONFIDENCE = DetectorConfidence.MEDIUM

def __1init__(self) -> None:

self._detections: List[DetectorResult] = []

self._1lm_cache: Dict[str, str] = {}

self._contract_functions: Dict[ir.ContractDefinition,
List[Tuple[ir.FunctionDefinition, Dict]]] = {}

self._node_to_contract: Dict[ir.FunctionDefinition,
ir.ContractDefinition] = {}

api_key = self.config.api_keys.get("anthropic_api_key")

# Further implementation

6.3 Retrieving Documentation and Implementation

The detector’s core logic involves retrieving the documentation and implementation of
each function within a smart contract. This process primarily relies on Wake’s IR model.
Firstly, the detector traverses the ir.ContractDefinition to extract the contract’s state
variables and modifiers. Secondly, the detector traverses ir.FunctionDefinition to get
the NatSpec documentation and the source code of the implemented functions. All
the information is stored in the context variable to be then sent to LLM for further
processing. Code Listings 6.2 and|6.3 show the context-building process and IR traversal.

6.4 LLM Component

The detector employs a Large Language Model to compare documentation with its
implementation. This Al model produces insights and detects possible discrepancies
between the two.

To improve its semantic analysis functions, the detector uses hierarchical context
extraction. It assesses the contract-level context at the highest tier, concentrating on
state variables and modifier declarations that establish the semantic framework. It
also considers function-specific context, which pertains to the relevant applications of
modifiers for the specific function under review. In addition, the detector explores the
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B Code listing 6.2 Building Context

def

_process_contract_functions(self, contract: 1ir.ContractDefinition,
functions: List[Tuple[ir.FunctionDefinition, Dict]]) -> None:
if not functions:

return
# Build a combined context for all functions in this contract
combined_context = f'"Contract: {contract.name}\n\n"
# Add state variables and modifiers at the beginning
state_vars = self._extract_state_variables(contract)
if state_vars:

combined_context +=

f"Contract State Variables:\n{self._compact_text(state_vars)}\n"

all_modifiers = self._extract_all_contract_modifiers(contract)
if all_modifiers:
combined_context +=
f"Contract Modifiers:\n{self._compact_text(all_modifiers)}\n"

combined_context += "--- FUNCTIONS ---\n"

# Now add each function

for i, (func_node, _) 1in enumerate(functions):
combined_context += f"Function #{i+1}: {func_node.name}\n"

# Add function-specific context

function_context = self._build_function_context(func_node)
combined_context += function_context

combined_context += "\n---\n"

# Further implementation
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B Code listing 6.3 Extraction of NatSpec and Source Code

def _build_function_context(self, node:ir.FunctionDefinition)->str:
doc_source = "No documentation"
if hasattr(node, 'documentation') and node.documentation:
if hasattr(node.documentation, 'source'):
try:
if isinstance(node.documentation.source, bytes):
doc_source =
node.documentation.source.decode('utf-8")
else:
doc_source = str(node.documentation.source)
except Exception as e:
if hasattr(node.documentation, 'text'):
doc_source = node.documentation.text

impl_source = "Function implementation not available"
if hasattr(node, 'source'):
try:

if isinstance(node.source, bytes):
impl_source =
node.source.decode('utf-8', errors='replace')
else:
impl_source = str(node.source)
except Exception as e:
impl_source =
f"Function {node.name} ({node.visibility.name})"
contract = self._find_parent_contract(node)
function_modifiers_text = ""
if contract:
used_modifiers =
self._extract_function_modifiers(node, contract)
if used_modifiers:
function_modifiers_text =
f'"Function Uses Modifiers: {used_modifiers}"
doc_source = self._compact_text(doc_source)
impl_source = self._compact_text(impl_source)
context = ""
if function_modifiers_text:
context += f"{function_modifiers_text}\n\n"
context +=
f"Documentation:\n{doc_source}\nImplementation:\n{impl_source}"

return context
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semantic relationships among contracts and functions, acknowledging the parent-child
dynamics that influence their interactions. This strategy provides an understanding of
the documentation related to the implementation.

The detector optimizes performance by making a single API call per contract rather
than per function to address the challenges associated with large input contexts. Feeding
too much information to the language model at once can lead to loss of context and
inaccurate evaluation results. By aggregating the documentation and implementation
details of all functions within a contract into a single context, the detector reduces
redundancy and ensures clearer contextual understanding during evaluation.

6.5 LLM Integration for Semantic Analysis

Creating the correct prompt minimizes false positives. The prompt provided to the Al
model must encapsulate the essence of the function’s documentation and implementation
accurately.

6.5.1 Prompt Engineering Methodology

Prompt engineering techniques influence the effectiveness of applying LLMs to static
analysis tasks. The detector implements a structured prompting methodology incorpo-
rating domain expertise, contextual enrichment, and false positive mitigation strategies.

In implementing prompt engineering techniques, several design patterns emerge that
enhance the effectiveness of applying LLMs to static analysis tasks.

One key aspect is establishing the LLM’s role, which positions it as a domain expert
through explicit role attribution, such as instructing it to "ACT as an expert Solidity
auditor."

Contextual framing plays a vital role by presenting structured information, facili-
tating a better understanding of hierarchical relationships within the analyzed content.
A clear definition of the task is also important, ensuring the analytical objectives are
defined without ambiguity.

Moreover, incorporating domain-specific heuristics provides guidelines that reflect
patterns and edge cases relevant to Solidity analysis, enriching the context further.

Setting response formatting requirements by defining an explicit output schema al-
lows for the parsing of the LLM’s responses. These elements create a framework for
effectively leveraging LLMs in static analysis tasks. [27]

6.5.2 Query Optimization Techniques

The detector implements query optimization techniques to mitigate computational re-
source constraints and API rate limitations.

Several optimization strategies can enhance performance. One key approach is re-
sponse caching, which involves implementing an in-memory cache to avoid making re-
dundant API calls for identical contexts. It not only saves time but also resources.

Another strategy is contract-level batching, where multiple function analyses are
aggregated into a single query to the language model, reducing the volume of API calls.
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Context deduplication also plays a crucial role. We streamline operations by extract-
ing shared contextual elements, such as state variables and modifiers, once per contract
instead of repeating the process for each function.

Lastly, employing exponential backoff as a form of retry logic handles any transient
API failures or issues with rate limiting, as it progressively increases the delay between
retries. We can achieve more efficient and reliable API interactions by integrating these
strategies.

6.5.3 False Positive Reduction

A challenge in applying LLMs to static analysis is the tendency to produce false positives.
The detector employs several mechanisms to mitigate this risk.

Key strategies for reducing false positives include several approaches. First, exemplar-
based instruction plays a crucial role by providing explicit counter-examples that illus-
trate scenarios that should not be flagged as mismatches. This method helps clarify
what constitutes an actual negative case.

Another important strategy is semantic equivalence recognition, which offers guide-
lines for identifying when syntactically different constructs convey the same semantic
meaning. This recognition enables a better understanding and categorization of data
that may appear dissimilar at first glance.

Response temperature control allows for the utilization of deterministic inference by
adjusting the temperature parameter. This setting can mitigate ambiguities and improve
response accuracy. [28]

Modifier analysis focuses on extracting and providing function modifiers, which enrich
the understanding of the behavioral context involved in decision-making. By considering
these modifiers, one can obtain a more comprehensive view of the data, reducing the
likelihood of false positives.

This architecture demonstrates the application of domain-specific knowledge to con-
strain the LLM within appropriate boundaries for static analysis tasks. It enables high-
confidence detection of semantic mismatches while minimizing findings that would reduce
practitioner trust.

6.5.4 Performance Considerations

Integrating the LLM presents several performance trade-offs that justify careful con-
sideration in academic analysis. First, the LLM API’s token usage is noteworthy; the
detector’s batching strategy enhances economic efficiency by reducing total token con-
sumption and eliminating redundant context transmission.

Moreover, there is a relationship between latency and throughput. While larger
batch sizes may increase the latency of individual queries, they ultimately contribute to
improved throughput by minimizing the total overhead of API calls.

The adoption of the Claude 3.7 Sonnet model reflects a balance between analytical
depth and computational efficiency, establishing it as the leading choice for understand-
ing source code. It has consistently provided reliable and accurate results. It is also
important to highlight the trade-off between determinism and creativity. By setting the
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temperature parameter to zero, the system focuses on producing reproducible results,
which may restrict the exploration of more unusual edge cases.

This methodology represents an advancement over traditional regex or AST-based
documentation validation approaches. It enables semantic understanding that more
closely approximates human code review practices while maintaining computational scal-
ability.

6.6 Collecting Detections from LLM Response

The implementation of a Wake framework detector requires adherence to the detector
APT specification, which mandates that each detector must return a list of DetectorRe-
sult objects. This requirement establishes a standardized interface for all vulnerability
detection implementations, enabling consistent handling and presentation of findings
within the Wake ecosystem.
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6.6.1 Wake Detector API Requirements

The Wake framework employs a structured approach to represent security findings
through two key classes:

B Code listing 6.4 Detectors API Snippet

@dataclass(eq=True, frozen=True)
class Detection:
ir_node: IrAbc
message: str
subdetections: Tuple[Detection, ...] =
field(default_factory=tuple)
lsp_range: Optional[Tuple[int, int]] field(default=None)
subdetections_mandatory: bool = field(default=True)

@dataclass(eq=True, frozen=True)
class DetectorResult:
detection: Detection
impact: DetectorImpact
confidence: DetectorConfidence
uri: Optional[str] = field(default=None)

@total_ordering

class DetectorConfidence(StrEnum):
LOW = "Tlow"
MEDIUM = "medium"
HIGH = "high"

@total_ordering
class DetectorImpact(StrEnum):
INFO = "info"
WARNING = "warning"
LOW = "Tlow"
MEDIUM = "medium"
HIGH = "high"

The Detection class binds a security finding to a specific location in the source code
through an IR node, along with a message explaining the issue. The DetectorRe-
sult class wraps this detection with additional metadata, including impact severity and
confidence levels, which are crucial for prioritizing security findings.

6.6.2 Processing LLM Responses

The ‘__process_llm_ response‘ function shown in Code Listing @ serves as a link be-
tween the unstructured outputs produced by the LLM and the structured format required
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by the Wake framework for detection purposes. It performs several tasks to facilitate
the effective communication of function analysis results.

The function normalizes and parses the LLM response by breaking it down into
individual lines. For each function, it looks for the corresponding line in the LLM output
using a predefined pattern, such as "Function #N:". This approach relies on prompt
engineering, ensuring that the LLM delivers responses in a consistent and interpretable
format.

The implementation uses a binary classification system to categorize each function
analysis as either [MATCH] or [MISMATCH]. This standard labeling simplifies the pars-
ing process and provides indicators regarding which functions have documentation in-
consistencies that require attention.

When a mismatch is identified, the function extracts the explanatory portion from
the response string. This explanation forms the core of the detection message, offering
valuable context to the developer about the reasons behind the inconsistency between
the documentation and the implementation.

6.6.3 Detection Object Generation

For each identified documentation mismatch, the function creates a Wake Detection
object with several key components.

Each finding is closely tied to the function’s IR node in the detection process, creating
a direct link between the identified issue and its corresponding location in the source
code. The explanation provided by the LLM serves as the detection message, offering
insights into the nature of the documentation mismatch encountered.

To aid developers, the function utilizes the ‘name_location‘ attribute of the func-
tion node, indicating where the issue exists in the source code. This feature enables
highlighting within IDEs, making it easier for users to identify the problem.

Furthermore, every detection is encapsulated within a DetectorResult. This struc-
ture includes predefined impact and confidence levels, which have been established based
on the severity of the identified documentation inconsistencies. This approach ensures
that users receive clear information regarding the detected issues.

The resulting list of DetectorResult objects is accumulated in the class’ ‘_ detec-
tions‘ attribute, which is later returned by the ‘detect’ method to integrate with the
Wake framework’s reporting and visualization mechanisms.

6.7 Reputational Risks of Findings

Inconsistencies between documentation and implementation do not necessarily indicate
critical vulnerabilities. However, they pose reputational risks. Developers and users rely
on accurate documentation to understand and interact with smart contracts. Misaligned
documentation can lead to misuse, loss of trust, and potential financial loss. Continuous
attention to documentation consistency can enhance a project’s reliability and credibility.
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B Code listing 6.5 Process LLM Response

def _process_1llm_response(self, response: str,
functions: List[Tuple[ir.FunctionDefinition, Dict]]) -> None:
lines = response.split('\n'")
analysis_results = {}
for i, (func_node, _) 1in enumerate(functions):
function_id = f"Function #{i+1}:"
function_name =
func_node.name if func_node.name else f"unnamed_{i}"
match_found = False
for line 1in lines:
if function_id 1in line:
match_found = True
has_mismatch = "[MISMATCH]" dn line
if has_mismatch:
explanation =
line.split (" [MISMATCH]", 1)[1].strip()
else:
explanation =
line.split (" [MATCH]", 1)[1].strip()

raw_analysis = line.split(":", 1)[1].strip()
analysis_results[function_name] = raw_analysis
if has_mismatch:
message = explanation
detection = Detection(
ir_node=func_node,
message-message,
subdetections=(),
lsp_range=func_node.name_location
if hasattr(func_node, 'name_location')
else None,
subdetections_mandatory=False,
)
result = DetectorResult(
detection=detection,
impact=self.IMPACT,
confidence=self.CONFIDENCE,
)
self._detections.append(result)
break
if not match_found:
analysis_results[function_name] =
"No analysis available from LLM"
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6.8 Testing and Evaluation

The documentation-diff detector was tested to evaluate its effectiveness and cost
implications, following the same methodology used for existing Wake detectors.

This detector’s impact level was classified as WARNING. Although it does not di-
rectly impact potential exploits, it can cause significant issues during development due
to misunderstandings and misuse. This may lead to critical problems and potential
financial losses.

The confidence level was set to MEDIUM due to the possibility of false positives
arising from the use of LLMs, which are still not completely reliable. However, with
comprehensive prompting and context-building, we achieved stable results on the previ-
ously utilized testing set. It is important to mention that some smart contracts may not
have documentation provided for their functions; these are not considered for evaluation
and are skipped.

The table below shows the results of running the implemented detector:

B Table 6.1 Summary of Documentation Mismatches

Contract Impact Confidence | Count | Type

ROAR TOKEN WARNING MEDIUM 4 documentation-diff
RandomDEX WARNING MEDIUM 4 documentation-diff
MyStandard WARNING MEDIUM 3 documentation-diff
E280 WARNING MEDIUM 2 documentation-doff
TWGToken WARNING MEDIUM 2 documentation-diff
TORN WARNING MEDIUM 2 documentation-diff
CATERC20 WARNING MEDIUM 2 documentation-diff
Meme Index WARNING MEDIUM 2 documentation-diff
LegalXToken WARNING MEDIUM 1 documentation-diff
DecentralizedEURO | WARNING MEDIUM 1 documentation-diff

6.8.1 Evaluation of Results

To determine the overall risk exposure, we obtain the liquidity values of the base tokens
in question. The results are compiled in Table|6.2, reflecting the liquidity of each affected
contract, following the same approach as before.

B Table 6.2 Affected Value of Contracts

Contract Type TVL
ROAR TOKEN documentation-diff | $1,215,257.45
RandomDEX documentation-diff | $8,300.00
MyStandard documentation-diff | $45,500.00
E280 documentation-diff | $12,354.78
TWGToken documentation-diff | $25,564.30
TORN documentation-diff | $298,700.15
CATERC20 documentation-diff | $8,034.76
Meme Index documentation-diff | $62,796.43
LegalXToken documentation-diff | $41,481.91
Decentralized EURO documentation-diff | $105,464.80
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6.8.2 Detailed Examination

1.

Contract: ROAR TOKEN
Line Numbers: 877, 1115, 1153, 1321
Description:

= Constructor Documentation Gap: The constructor documentation fails to
mention that it sets the total supply and transfers initial balances to specific
addresses, which are critical token initialization behaviors. This omission could
mislead developers about the token’s initial distribution structure.

= Undocumented increaseAllowance Restriction: The increaseAllowance func
tion includes an onlyOwner modifier that restricts its use to the contract owner,
but this critical access control is undocumented. This deviation from standard
ERC20 behavior, where allowance functions are available to all users, could cause
integration failures.

= Undocumented decreaseAllowance Restriction: Similarly, the decreaseAl-
lowance function is restricted to the contract owner without mentioning this lim-
itation in the documentation. Users expecting standard ERC20 allowance func-
tionality would be surprised to find their transactions reverting when attempting
to decrease allowances.

= Incomplete Transfer Functionality Documentation: The _ transfer docu-
mentation only mentions tokenomics customization but omits the critical trading
restrictions implemented through the tradingOpen check. This hidden function-
ality allows the contract to completely disable token transfers under certain con-
ditions, impacting user interactions with the token.

Estimated Financial Impact: $1,215,257.45

Contract: RandomDEX
Line Numbers: 253, 64, 113, 126
Description:

= TransferFrom Access Control Mismatch: The transferFrom function docu-
mentation states it is restricted to DEFAULT ADMIN_ROLE holders, but the
implementation allows additional users with the role ALLOWED_TRANSFER_FROM-
_ROLE to call it before the listing timestamp. This undocumented permission
creates a security gap where unexpected addresses may have transfer capabilities
during the pre-listing phase.

= Constructor Validation Omissions: The constructor documentation fails to
document critical validation checks for zero addresses, the relationship between
the maximum numerator and denominator, and the constraint that antibot fees
cannot exceed the denominator. These undocumented validations could cause
unexpected transaction reversions when deploying the contract with parameters
that do not meet these undisclosed requirements.
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= Antibiot Timestamp Logic Error: The updateAntibotEndTimestamp func-
tion contains a logic error where it checks if the current timestamp (antibotEnd-
Timestamp) is less than the block.timestamp instead of validating the new value
(antibotEndTimestamp_ ). This implementation bug contradicts the function’s
purpose of setting a new timestamp and may cause unexpected reverts when at-
tempting to update this value.

= Fee Computation Documentation Gaps: The _computeFee function docu-
mentation omits two critical behaviors: that admin role holders are completely
exempt from fees and how antibot fees are calculated based on the current times-
tamp. These undocumented fee exceptions and calculations make it impossible
for users to accurately predict transaction costs from the documentation.

Estimated Financial Impact: $8,300.00

3. Contract: MyStandard
Line Numbers: 103, 115, 1417
Description:

= TransferOwnership Documentation Omission: The transferOwnership func-
tion documentation only describes the parameter but fails to explain that this
function initiates a two-step ownership transfer process rather than directly trans-
ferring control. This omission is significant because users would naturally expect
an immediate ownership change when calling this function, but would be con-
fused when that does not happen without further actions, leaving contracts in an
unexpected governance state.

= Private TransferOwnership Implementation Gap: The private function’s
_ transferOwnership documentation similarly only describes its parameter with-
out explaining its actual behavior of setting up a pending owner rather than
immediately transferring control. The implementation contains conditional logic
that handles different ownership transfer scenarios based on whether the recipient
is the current sender. Still, none of this critical ownership management flow is
documented, making maintenance and security reviews more difficult.

= BurnFrom Documentation Typo: The burnFrom function documentation
contains a minor grammatical inconsistency where it refers to "accounts" (plural)
instead of "account" (singular) in the requirements section. At the same time, the
implementation correctly uses the singular form. While this is a minor issue that
does not affect functionality, it represents an inconsistency in the documentation
quality that could confuse users, especially when compared with other similar
function descriptions.

Estimated Financial Impact: $45,500.00

4. Contract: E280
Line Numbers: 75, 90
Description:
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= MintWithElmnt Function Documentation Gap: The mintWithElmnt func-
tion documentation mentions transforming "user’s ELMNT into E280" but fails to
specify that ELMNT refers to a specific token contract address that will be called
during execution. It also omits the critical precondition that the mintingEnabled
flag must be true for this function to work, potentially leading to unexpected
transaction failures when this global state variable is disabled.

= Distribute Function Vague Documentation: The distribute function has a
highly brief documentation stating it "Distributes ELMNT from mints to its desti-
nations" without explaining the complex allocation logic implemented in the code.
The function performs multiple distribution operations to different addresses with
specific ratios. It includes an incentive fee mechanism, which is not documented,
making it impossible for users or auditors to understand the economic implications
of calling this function.

Estimated Financial Impact: $12,354.78

. Contract: TWGToken

Line Numbers: 73, 238
Description:

= Transfer Function Insufficient Documentation: The transfer function doc-
umentation is minimal, stating that it "checks restrictions and apply tax" while
omitting critical operational details. The implementation contains complex logic
for transaction limits, trading status validations, and tax calculations that af-
fect transaction behavior but are undocumented. This insufficient documentation
makes it difficult for developers to understand when transfers might fail or have
fees applied, leading to integration issues or unexpected token behavior.

= AddLiquidity Missing Parameter Documentation: The addLiquidity func-
tion documentation completely omits the required parameter _uniswapRouter,
despite this parameter being necessary for the implementation. The documenta-
tion only describes the tokenAmount parameter while ignoring this critical address
parameter, which determines which Uniswap router contract will receive the lig-
uidity. This omission could lead to incorrect function calls or confusion when
interacting with the contract, especially since the router choice impacts where the
token’s liquidity will be established.

Estimated Financial Impact: $25,564.30

. Contract: TORN

Line Numbers: 1535, 2761
Description:

= BurnFrom Documentation Typo: The burnFrom function documentation
contains a minor inconsistency in that it refers to "accounts" (plural) in the re-
quirements section while the implementation parameter is correctly named "ac-
count" (singular). This is a relatively minor documentation issue that does not
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affect functionality but could cause confusion when reading the code, particularly
for developers who rely on precise documentation. Despite this grammatical error,
the actual implementation behavior correctly matches the documented function-
ality.

= RescueTokens Insufficient Documentation: The rescueTokens function has
severely inadequate documentation, describing it only as a "Method to claim junk
and accidentally sent tokens" while omitting numerous critical aspects of its be-
havior. The implementation includes governance-only access restrictions, support
for both token and ETH recovery, specific balance parameter handling, zero ad-
dress validation checks, and non-zero balance requirements, none of which are
mentioned in the documentation. These omissions hinder the ability of develop-
ers or auditors to understand the function’s behavior, security model, and usage
constraints without reading the implementation code in detail.

Estimated Financial Impact: $298,700.15

7. Contract: CATERC20
Line Numbers: 15, 23
Description:

= SplitSignature Documentation Inadequacy: The splitSignature function has
critically insufficient documentation, consisting only of the vague phrase "signature
methods" without explaining its purpose, expected input format, or output values.
The function performs the essential cryptographic operation of decomposing an
Ethereum signature into its standard components (v, r, s). It requires a specific 65-
byte input format as enforced by the code’s validation check. This documentation
gap makes it difficult for developers to properly use this security-critical function
without studying the implementation details.

= BridgeOut Documentation Omissions: The bridgeOut function documenta-
tion is severely lacking, stating only "To bridge tokens to other chains" without
explaining any of its parameters, payable nature, or return values. The function
implements cross-chain token bridging functionality with multiple critical param-
eters (amount, recipientChain, recipient, nonce) that affect where and how tokens
are transferred, yet does not guide proper parameter usage, security considera-
tions, or the meaning of the returned sequence value. These omissions make the
contract’s cross-chain functionality difficult to use correctly and safely.

Estimated Financial Impact: $8,034.76

8. Contract: Meme Index
Line Numbers: 473, 797
Description:

= Constructor Documentation Inadequacy: The constructor documentation
states "Contract constructor" without mentioning any of the critical token initial-
ization steps performed in the implementation. The code sets the token name to
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"Meme Index", configures the token symbol, and distributes the initial token sup-
ply by minting to five different addresses, all constituting fundamental aspects of
the token’s economic design that should be appropriately documented for trans-
parency and auditability.

= Transfer Zero Amount Restriction: The transfer function documentation
fails to mention a vital input validation requirement that the amount parameter
must be greater than zero, which is strictly enforced in the implementation. This
undocumented restriction could cause unexpected transaction failures for integra-
tions that attempt to make zero-value transfers (which are valid in some ERC20
implementations), breaking dependent contracts or user interfaces that have not
accounted for this non-standard behavior.

Estimated Financial Impact: $62,796.43

Contract: LegalXToken

Line Numbers: 2497

Description: The withdrawDividend() function documentation contains a technical
inaccuracy regarding event emission behavior. The documentation states "It emits
a DividendWithdrawn event if the amount of withdrawn ether is greater than 0,"
implying that this function directly emits the event. However, the implementation
shows that withdrawDividend() does not emit any events directly - it simply del-
egates to the internal function _withdrawDividendOfUser(), which is presumably
where the event emission occurs. While the result is the same (the event gets emit-
ted during the function call’s execution flow), the documentation is misleading about
which function in the call stack is responsible for the event emission, confusing for
developers auditing or maintaining the code.

Estimated Financial Impact: $41,481.91

Contract: Decentralized EURO

Line Numbers: 147

Description: The _adjustTotalVotes function documentation has a critical param-
eter omission. While the implementation requires three parameters (from, amount,
and roundinglLoss) and uses all three in its vote calculation logic, the documentation
only documents two parameters, entirely omitting the roundinglL.oss parameter. This
parameter is not just supplementary but plays a key role in the voting mechanism, as
it is directly subtracted from the total votes calculation (totalVotes() - roundingLoss
- lostVotes). This documentation gap could lead to incorrect usage of the function
by developers extending this contract, potentially causing unexpected voting power
adjustments since they would not be aware of the need to accurately calculate and
provide the roundingLoss value when calling this internal function.

Estimated Financial Impact: $105,464.80
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6.9 Summary

The cost of potential exploits due to documentation inconsistencies can be significant.
Reputational damage can lead to loss of user trust and financial repercussions. Accurate
documentation minimizes these risks, ensuring that smart contracts operate as intended.

m Inaccurate documentation can mislead users and developers.
m Consistent documentation enhances transparency and trust.

m Regular audits and updates to documentation can mitigate reputational risks.

By applying the implemented methodology and the documentation-diff detector,
the financial impact of possible reputational damage sums up to $1,823,454.58.

The documentation-diff detector represents an approach to automated docu-
mentation validation in smart contracts, combining static analysis techniques with nat-
ural language processing. This integration enables the detection of semantic inconsis-
tencies through syntactic analysis, enhancing both development efficiency and contract
security.

This approach could be extended to other static analysis domains requiring semantic
understanding beyond syntactic correctness.
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Conclusion

This thesis aimed to assess the financial impact of Ethereum vulnerability detectors
by analyzing their effectiveness and potential cost savings. The research encompassed
several phases, from collecting Ethereum smart contract data to developing and testing
a new detector within the Wake framework.

Data Collection and Enrichment

Part of the thesis involved collecting smart contract data from the Ethereum main-
net. The methodology ensured the dataset was relevant and representative of real-world
conditions, highlighting contracts with noteworthy assets and active engagement.

Evaluation of Existing Detectors

The evaluation section focused on existing vulnerability detectors’ ability to prevent
economic exploits. The thesis quantified the detectors’ financial impact by estimating
potential savings from preventative measures. It involved a detailed analysis of the cost
of exploits relative to the assets held by affected contracts, demonstrating the benefits
of timely alerts.

Detector Development

A new detector was developed and integrated into the Wake framework. This detector
aims to identify inconsistencies between smart contract documentation and implemen-
tation. By leveraging Al for evaluation, the detector may enhance code quality and
mitigate mismatches. Testing against real-world contracts validates its functionality
and effectiveness.

Testing and Economic Assessment

The effectiveness of the developed detector was tested using a selection of contracts. An
economic assessment evaluates the financial value protected by identifying vulnerabil-
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ities. This assessment highlighted the financial advantages of incorporating advanced
security measures into the contract development process.

Practical Relevance and Application

The thesis demonstrates the importance of defining a testing set of contracts for running
vulnerability detectors. A toolkit was developed to parse and filter recently deployed
contracts, ensuring a focus on those with significant value and active participation.
This method provided a practical approach to evaluating security measures’ real-world
applicability and impact.

Implications and Future Work

The critical role of vulnerability detectors in securing Ethereum smart contracts was
highlighted. These detectors contribute to a secure decentralized ecosystem by reducing
financial losses and enhancing trust in blockchain technology. The documentation-diff
detector developed in this thesis represents a step forward, but further advancements are
necessary. Future work could explore optimizing the detector’s algorithms, expanding
its applicability to other blockchain platforms, and refining the economic assessment
models for a more precise estimation of cost savings.

Concluding Remarks

In conclusion, this thesis underlines the importance of integrating vulnerability detec-
tors in the Ethereum ecosystem. The findings demonstrate that such detectors safeguard
against potential exploits and provide financial benefits. Therefore, the continuous evolu-
tion and implementation of security measures are imperative for blockchain technologies’
sustainable growth and trustworthiness.



Appendix A
Code Listings

B Code listing A.1 Full _check reentrancy_in_function

def _check_reentrancy_in_function(

self,

function_definition: ir.FunctionDefinition,

statement: 1ir.StatementAbc,

address_source: ir.ExpressionAbc,

child_modifies_state: Set[Tuplel[ir.IrAbc, analysis.

ModifiesStateFlag]],
checked_statements: Set[ir.StatementAbc],
) => List[Tuple[Detection, DetectorImpact,

DetectorConfidence]]:

from functools import reduce

from operator import or_

from wake.analysis.expressions import
find_low_level_call_source_address

from wake.analysis.ownable import (
address_is_safe,
statement_is_publicly_executable,

)

from wake.analysis.utils import (
get_all_base_and_child_declarations,
pair_function_call_arguments,

# TODO check non-reentrant
if not statement_is_publicly_executable(statement,
check_only_eoa=True):
return []

7T
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source_address_declaration =
find_low_level_call_source_address(address_source)
is_safe = None
if source_address_declaration 1is None:
pass
# self.logger.debug(f'"{address_source.source}")
elif 1disinstance(source_address_declaration, ir.enums.
GlobalSymbol):
if source_address_declaration == 1dr.enums.
GlobalSymbol.THIS:
is_safe = True
elif source_address_declaration 1in {
ir.enums.GlobalSymbol.MSG_SENDER,
ir.enums.GlobalSymbol.TX_ORIGIN,

}:

is_safe = False
else:
is_safe None
# self.logger.debug(f"{
source_address_declaration}:")
elif isinstance(source_address_declaration, ir.
ContractDefinition):
if source_address_declaration.kind == dir.enums.
ContractKind.LIBRARY:
is_safe = True
elif disinstance(source_address_declaration, ir.Literal
):
is_safe = True
else:
is_safe address_1is_safe(
source_address_declaration)

if is_safe:
return []

checked_statements.add(statement)
ret = []

this_modifies_state = set(child_modifies_state)
this_modifies_state.update(
_modifies_state_after_statement(
function_definition, statement)

)

if len(this_modifies_state) and function_definition.
visibility 1in {



ir.enums.Visibility.PUBLIC,
ir.enums.Visibility.EXTERNAL,

state_mods = reduce(or_, (mod[1] for mod 1n
this_modifies_state))
if state_mods & (
analysis.ModifiesStateFlag.MODIFIES_STATE_VAR
| analysis.ModifiesStateFlag.SENDS_ETHER
| analysis.ModifiesStateFlag.PERFORMS_CALL
| analysis.ModifiesStateFlag.
CALLS_UNIMPLEMENTED_NONPAYABLE_FUNCTION
| analysis.ModifiesStateFlag.
CALLS_UNIMPLEMENTED_PAYABLE_FUNCTION
):
impact = DetectorImpact.HIGH
elif state_mods & (
analysis.ModifiesStateFlag.EMITS
| analysis.ModifiesStateFlag.DEPLOYS_CONTRACT
| analysis.ModifiesStateFlag.SELFDESTRUCTS
| analysis.ModifiesStateFlag.
PERFORMS_DELEGATECALL
):
impact = DetectorImpact.WARNING
else:
raise NotImplementedError()

ret.append(
(
Detection(
statement,
f'"Exploitable from ~{
function_definition.canonical_name
}*Il,
)
impact,
DetectorConfidence.LOW
if is_safe 1is None
else DetectorConfidence.MEDIUM,

)

for ref in function_definition.get_all_references(
False):
if dsinstance(ref, ir.IdentifierPathPart):
top_statement = ref.underlying_node
elif disinstance(ref, ir.ExternalReference):
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continue # TODO currently not supported
else:
top_statement = ref
func_call = None
while top_statement is not None:
if (
func_call 1is None
and 1isinstance(top_statement, qr.
FunctionCall)
and top_statement. function_called
in get_all_base_and_child_declarations(
function_definition)
):
func_call = top_statement
if disinstance(top_statement, ir.StatementAbc):
break
top_statement = top_statement.parent

if top_statement is None or func_call 1is None:
continue

function_def = top_statement

while function_def dis not None and not isinstance(
function_def, 1ir.FunctionDefinition

):
function_def = function_def.parent

if function_def 1is None:
continue

assert 1isinstance(function_def, -ir.
FunctionDefinition)

if top_statement in checked_statements:
continue

if source_address_declaration 1in
function_definition.parameters.parameters:
for arg_decl, arg_expr 1n
pair_function_call_arguments(
function_definition, func_call

if arg_decl == source_address_declaration:
assert isinstance(
arg_expr.type, (types.Address,
types.Contract)
)
ret.extend(
self._check_reentrancy_in_function

(
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function_def,
top_statement,
arg_expr,
this_modifies_state,
checked_statements,
)
)

break
else:
ret.extend(
self._check_reentrancy_in_function(
function_def,
top_statement,
address_source,
this_modifies_state,
checked_statements,

)

return ret

B Code listing A.2 Full TxOriginDetector Class

class TxOriginDetector (Detector):
_account_abstraction: bool
_detections: List[DetectorResult]

def __init__(self) -> None:
self._detections = []

def detect(self) -> List[DetectorResult]:
return self._detections

def visit_member_access(self, node: ir.MemberAccess):
from wake.analysis.expressions import
expression_is_global_symbol

if node.referenced _declaration != dr.enums.
GlobalSymbol.TX_ORIGIN:
return

if self._account_abstraction:
self._detections.append(
DetectorResult(
Detection(
node,
"Use of tx.origin may 1interfere with
ERC-4337 account abstraction",
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)

impact=DetectorImpact.WARNING,

confidence=DetectorConfidence.LOW,

uri=generate_detector_uri(
name="tx-origin",
version=self.extra["package_versions"

J["eth-wake"],

anchor="account-abstraction",

)s

np = node.parent
npp = node.parent.parent
if np is not None and npp 1is not None:

if (
isinstance(np, ir.BinaryOperation)
and np.operator == ir.enums.BinaryOpOperator.
EQ
)

other_expr = (
np.right_expression
if np.left_expression == node
else np.left_expression

)

if expression_is_global_symbol(
other_expr, ir.enums.GlobalSymbol.

MSG_SENDER

return

elif disinstance(np, 1ir.IndexAccess):
if disinstance(npp, ir.BinaryOperation) and npp
.operator 1in {
ir.enums.BinaryOpOperator.LT,
ir.enums.BinaryOpOperator.GT,

other_expr = (
npp.right_expression
if npp.left_expression == np
else npp.left_expression
)
if expression_is_global_symbol(
other_expr, ir.enums.GlobalSymbol.
BLOCK_TIMESTAMP



return

self._detections.append(
DetectorResult(
Detection(node, "Unsafe usage of tx.origin"),
impact=DetectorImpact.MEDIUM,
confidence=DetectorConfidence.LOW,
uri=generate_detector_uri(
name="tx-origin",
version=self.extra["package_versions"]["
eth-wake"],
anchor="phishing-attacks",

)s
)

@detector.command (name="tx-origin")

@click.option(
"-—-account-abstraction/--no-account-abstraction",
is_flag=True,
default=True,
help="Report account abstraction related issues.",

def cli(self, account_abstraction: bool) -> None:

miin

Possibly incorrect usage of tx.origin

miin

self. _account_abstraction = account_abstraction

B Code listing A.3 Full UnsafeDelegatecallDetector Class

class UnsafeDelegatecallDetector (Detector):
_proxy: bool
_detections: List[DetectorResult]

def __1init__(self):
self._detections = []

def detect(self) -> List[DetectorResult]:
return self._detections

def visit_member_access(self, node: ir.MemberAccess):
from wake.analysis.proxy 1import contract_is_proxy

t = node.type
if (
not isinstance(t, types.Function)
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or t.kind
not in {
ir.enums.FunctionTypeKind.DELEGATE_CALL,
ir.enums.FunctionTypeKind.BARE_DELEGATE_CALL,
+
or t.attached _to 1is not None
or node.statement 1is None

return

func = node.statement.declaration

# TODO: delegatecalls in modifiers

if not isinstance(func, ir.FunctionDefinition):
return

contract = func.parent

if (
not self._proxy
and 1isinstance(contract, 1ir.ContractDefinition)
and contract_is_proxy(contract)

return

ret = check_delegatecall_in_function(

func, node.statement, node.expression, set()
)
if len(ret) == 0:

return

self._detections.append/(
DetectorResult(
Detection(
node,
f"Possibly unsafe delegatecall in ~{func.
canonical_name} ",
tuple(r[0] for r 1in ret),
)
confidence=max(r[1] for r 1in ret),
impact=DetectorImpact.MEDIUM,
uri=generate_detector_uri(
name="unsafe-delegatecall",
version=self.extra["package_versions"]["
eth-wake"],

)s
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@detector.command(name="unsafe-delegatecall")
@click.option(

"--proxy/--no-proxy",

is_flag=True,

default=False,

help="Detect delegatecalls in proxy contracts.",

def cli(self, proxy: bool) -> None:

mirrn

delegatecall to untrusted contract

mirrn

self._proxy = proxy

B Code listing A.4 Full _check delegatecall in_function

def check_delegatecall_in_function(
function_definition: 1dr.FunctionDefinition,
statement: ir.StatementAbc,
address_source: 1ir.ExpressionAbc,
checked_statements: Set[ir.StatementAbc],
) —> List[Tuple[Detection, DetectorConfidence]]:
from wake.analysis.expressions import
find_Tlow_level_call_source_address
from wake.analysis.ownable import address_is_safe,
statement_is_publicly_executable
from wake.analysis.utils import
pair_function_call_arguments

if not statement_is_publicly_executable(statement):
return []

source_address_declaration =
find_low_level_call_source_address(address_source)
is_safe = None
if source_address_declaration is None:
pass
# logger.debug(f"{address_source.source}")
elif disinstance(source_address_declaration, 1ir.enums.
GlobalSymbol):
if source_address_declaration == 1dr.enums.GlobalSymbol
. THIS:
is_safe = True
elif source_address_declaration in {
ir.enums.GlobalSymbol.MSG_SENDER,
ir.enums.GlobalSymbol.TX_ORIGIN,
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is_safe = False
else:
is_safe None
# logger.debug(f"{source_address_declaration}:")
elif 1disinstance(source_address_declaration, 1r.
ContractDefinition):
if source_address_declaration.kind == -dr.enums.
ContractKind.LIBRARY:
is_safe = True
elif isinstance(source_address_declaration, ir.Literal):
is_safe = True
else:
is_safe = address_is_safe(source_address_declaration)

if is_safe:
return []

checked_statements.add(statement)

ret = []

if function_definition.visibility in {
ir.enums.Visibility.PUBLIC,
ir.enums.Visibility.EXTERNAL,

ret.append(
(

Detection(
statement,
f"Exploitable from ~{function_definition.

canonical_name} ",

)

DetectorConfidence.LOW

if is_safe is None

else DetectorConfidence.MEDIUM,

)

for ref in function_definition.get_all_references(False):
if disinstance(ref, dir.IdentifierPathPart):
top_statement = ref.underlying_node
elif disinstance(ref, ir.ExternalReference):
continue # TODO currently not supported
else:
top_statement = ref
func_call = None
while top_statement is not None:
if (



func_call 1is None
and isinstance(top_statement, ir.FunctionCall)
and top_statement. function_called ==
function_definition
):
func_call = top_statement
if isinstance(top_statement, 1ir.StatementAbc):
break
top_statement = top_statement.parent
if top_statement is None or func_call 1is None:
continue
function_def = top_statement
while function_def is not None and not isinstance(
function_def, 1ir.FunctionDefinition
):
function_def = function_def.parent
if function_def s None:
continue
assert 1isinstance(function_def, ir.FunctionDefinition)
if top_statement in checked_statements:
continue
if source_address_declaration in function_definition.
parameters.parameters:
for arg_decl, arg_expr 1in
pair_function_call_arguments(
function_definition, func_call

if arg_decl == source_address_declaration:
assert isinstance(arg_expr.type, (types.
Address, types.Contract))
ret.extend(
check_delegatecall_in_function(
function_def, top_statement,
arg_expr, checked_statements
)
)

break
else:
ret.extend(
check_delegatecall_in_function(
function_def, top_statement,
address_source, checked_statements

)

return ret
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