
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INFORMATION SYSTEMS
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

COMPUTATIONALMUSICOLOGY:MODELS,METH-
ODS, AND APPLICATIONS
VÝPOČETNÍ MUZIKOLOGIE: MODELY, METODY A APLIKACE

MASTER’S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Bc. JOZEF MAKIŠ
AUTOR PRÁCE

SUPERVISOR prof. RNDr. ALEXANDR MEDUNA, CSc.
VEDOUCÍ PRÁCE

BRNO 2025

Institut: Department of Information Systems (DIFS)

Student: Makiš Jozef, Bc.

Programme: Information Technology and Artificial Intelligence

Specialization: Computer Vision

Category: Theoretical Computer Science

Academic year: 2024/25

Assignment:

1. Based upon the supervisor’s instructions, investigate computational musicology and computational
models used in this scientific area, including grammars and automata.

2. Formalize selected music notions by the models from part 1 based upon the supervisor’s
instructions.

3. Based upon the supervisor’s instructions, study properties of these models, such as their power and
descriptional complexity.

4. Design new methods of making computer music based upon the models from part 1. Consult this
design with your supervisor carefully.

5. Apply the achieved methods in music to classify or create selected music passages.
6. Implement the applications from part 5. Evaluate them. Compare them against already existing

implementation versions of this kind.
7. Summarize the achieved results of this work. Suggest how to continue with the work.

Literature:
• Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, Volume 1-3, Springer, 1997,

ISBN 3-540-60649-1.
• Schulze, W. A Formal Language Theory Approach To Music Generation. Matieland 7602, South

Africa, 2009. University of Stellenbosch. Vedúci práce Merwe, A. van der.
• Krakowski, S. Rhythmically-Controlled Automata Applied to Musical Improvisation. Rio de Janeiro,

2009. Phd thesis. IMPA. Music.
• Zeyu, Y. Formal semantics for music notation control flow. Carnegie Mellon University, Pittsburg,

2013.
• Jurish, B. Music as a formal language. Universität Potsdam, 2004, Phd thesis.
• Roads, C., Wieneke, P. Grammars as Representations for Music. Computer Music Journal 3, no. 1

(1979): 48–55. DOI: 10.2307/3679756.
• Zuidema, W. et al. Formal models of Structure Building in Music, Language and Animal Songs. DOI:

10.48550/arXiv.1901.05180.

Requirements for the semestral defence:
Items 1 to 3, partially item 4.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/

Supervisor: Meduna Alexandr, prof. RNDr., CSc.

Head of Department: Kolář Dušan, doc. Dr. Ing.

Beginning of work: 1.11.2024

Submission deadline: 21.5.2025

Approval date: 3.2.2025

Master's Thesis Assignment
162782

Computational Musicology: Models, Methods, and ApplicationsTitle:

Faculty of Information Technology, Brno University of Technology / Božetěchova 1/2 / 612 66 / Brno

Abstract
This thesis investigates the use of formal models in computational musicology. It builds
on the lack of application for grammars and aims to improve existing approaches to music
generation. We come up with a new approach to the orchestration of music using a multi-
generative grammar system that contains scattered context grammar components for each
instrument in music. Each grammar component contains a set of rules that produce music
structure and final tones. Tones are in the form of tokens, and they contain the required
attributes for music that is rich in dynamics, variation, and rhythm. We also develop novel
ideas and put interesting Neo-Riemanian transformations into rules that create smooth
transitions between chords. This system was then implemented to generate music, and the
outputs were evaluated and compared to existing solutions.

Abstrakt
Predmetom tejto práce je skúmanie využitia formálnych modelov vo výpočtovej muzikológii.
Staviame na dnešnom miernom nedostatku aplikácií pre gramatiky a chceme zároveň vylepšiť
existujúce prístupy ku generovaniu hudby pomocou nich. Rozhodli sme sa teda vytvoriť
novú metódu pre orchestráciu hudby za použitia multigeneratívneho gramatického sys-
tému, ktorý ako komponenty používa gramatiky s rozptýleným kontextom pre každý je-
den hudobný nástroj. Každá komponenta v gramatike obsahuje množinu pravidiel, ktoré
produkujú štruktúru hudby a jej tóny. Tóny sú vo forme tokenov a zahŕňajú dôležité as-
pekty hudby ako je dynamika, variácie a rytmus. Skúmali sme posunutie prístupu dopredu
a použili sme aj jednu z mnohých hudobných transformácií, ktoré sú známe tvorbou a analý-
zou hladkých prechodov medzi akordmi. Následne sme tento systém implementovali aby
generoval hudbu. Výstupy sme tak mohli vyhodnotiť a porovnať s existujúcimi riešeniami.

Keywords
music orchestration, music generation, music application, grammar systems, scattered con-
text grammar, musicology

Klíčová slova
orchestrácia hudby, generovanie hudby, hudobná aplikácia, gramatický systém, gramatika
s rozptýleným kontextom, muzikológia

Reference
MAKIŠ, Jozef. Computational Musicology: Models, Methods, and Applications. Brno,
2025. Master’s thesis. Brno University of Technology, Faculty of Information Technology.
Supervisor prof. RNDr. Alexandr Meduna, CSc.

Rozšířený abstrakt
Táto práca sa zaoberá nezvyčajnou vedeckou disciplínou, a tou je výpočtová muzikológia.
Zamerali sme sa na formálne modely a ich aplikáciu a využitie v tejto oblasti. Adresujeme
mierny nedostatok praktických aplikácií formálnych modelov, ktorý vzniká tým, že výskum
v tejto oblasti napreduje omnoho rýchlejšie než hľadanie ich reálneho využitia. Hudba je
pritom všade okolo nás. Obzvlášť v elektronických zariadeniach, kde sa používajú rôzne
algoritmy na jej spracovanie, tvorbu či úpravu.

Táto disciplína je zaujímavá aj tým, že síce existuje viacero článkov na túto tému,
no len máloktoré z nich priniesli skutočný pokrok. Rozhodli sme sa preto touto prácou
priniesť niečo nové, čo sa v existujúcich prácach takmer nevyskytuje – a tým je orchestrácia
multiinštrumentálnej hudby.

K tomuto sme však samozrejme museli dospieť a pochopiť túto problematiku. Viedlo nás
k tomu štúdium existujúcej literatúry týkajúcej sa formálnych modelov, ako sú napríklad
gramatiky a automaty. Táto práca sa zaoberá však špeciálne modelmi, ktoré majú využitie
v tejto oblasti. Sú to zväčša stochastické modely, ako sú Markovské modely, rôzne verzie
bezkontextových gramatík, L-systémy. V tomto smere dominujú gramatiky, ale existujú
aj riešenia pomocou automatov. Hudba ako taká však vykazuje rôzne prvky kontextového
charakteru. Príkladom môže byť téma a jej variácie. Krížiacim sa vlastnostiam sa teda
v hudbe nevyhneme a príkladom foriem, ktoré si na štruktúre nechajú záležať, je jazz
alebo klasická hudba. Z toho vyplýva, že použitie formalizmu s menšou vyjadrovacou silou,
ako má kontextová gramatika, nemusí byť úplne šťastnou voľbou. Samozrejme, správna
gramatika s vhodnou vyjadrovacou silou nebude stačiť a negarantuje správne generovanie
a analýzu hudby. Preto táto práca zahŕňa aj skúmanie veľkého množstva hudobných teo-
retických znalostí. Hudba obsahuje veľa výrazových prvkov, ktoré v úspešne vygenerovanej
hudbe nemôžu chýbať. Sú nimi napríklad dynamika, rytmus, melódia, harmónia a rôzne
variácie. Čo sa však často v hudbe generovanej formalizmami nevyskytuje, sú transformácie.
Rozhodli sme sa použiť jedny z tých najpopulárnejších – a tými sú Neo-Riemannové trans-
formácie. Obsahujú rôzne operácie, ktoré sa dajú kombinovať pre dobre znejúcu hudbu.
Je to vďaka hladkým prechodom medzi akordmi, ktoré sú garantované sieťovou štruktúrou
a operácie ovládajú pohyb ňou.

Pre tvorbu hudobných pasáží a orchestráciu hudby sme sa rozhodli použiť dvojicu mod-
elov. Hlavným z nich je multigeneratívny systém, pomocou ktorého sa generujú multi-
reťazce a umožňuje synchronizovanú aplikáciu pravidiel. Multigeneratívny systém obsahuje
komponenty, ktorými sú pôvodne bezkontextové gramatiky. My sme však túto štruktúru
upravili a nahradili sme ich gramatikami s rozptýleným kontextom. Za komponenty prak-
ticky považujeme hudobné nástroje. Vďaka nim vieme pretaviť štruktúru hudby priamo
do pravidiel. Dokážu zachytiť krížiace sa vlastnosti v hudbe, ktoré sú neodmysliteľnou
súčasťou štrukturálnej hudby. Zároveň vieme do pravidiel vložiť všetky potrebné hudobné
prostriedky.

Z pozorovania polyfónnej hudby sme si všimli, že určité závislosti existujú aj medzi
jednotlivými nástrojmi, ktoré tvoria hudbu. Na zachytenie týchto závislostí sme využili
množinu 𝑄, ktorá uchováva 𝑛−ticu pravidiel určených na aplikáciu pre každý z reťazcov
v systéme. Takto vieme garantovať potrebnú orchestráciu nástrojov.

Ďalej sme analyzovali a ukázali postup, ako sa dajú zostaviť pravidlá pre takýto systém,
a zároveň sme dokázali, že štruktúra hudby je voľne definovateľná. Systém je teda použiteľný
aj v rôznych žánroch. Vytvorili sme ukážku hudobného algoritmu s menšími úpravami,
ktorý demonštruje, ako sa dá generovať hudba týmto systémom. Pripravili sme tiež ukážky

a aplikácie rôznych gramatík, pomocou ktorých je možné vytvoriť jazzovú alebo klasickú
hudbu v sonátovej forme.

Implementovaná bola aplikácia v jazyku Python a je spustiteľná na príkazovéj riadke.
Vstupom tejto aplikácie je definícia systému, ktorý má zadefinované všetko potrebné pre
tvorbu hudby a jej orchestráciu. Výstupom z tohto systému je vygenerovaná multiinštru-
mentálna forma, ktorá úzko súvisí s definíciou systému. Prvky náhodnosti sú v tomto
systéme minimálne a vyskytujú sa len pri rozhodovaní medzi viacerými pravidlami, ktoré
možno v danom kroku aplikovať. Druh nástroja a štruktúra hudby sú definované vo
vstupnom súbore. Na pôvodný model sme aplikovali rôzne implementačné obmedzenia,
ktoré zaručujú úspešné dokončenie procesu generovania hudby. Vytvorená hudba obsahuje
všetky základné prvky hudobnej kompozície. Vykonali sme rôzne experimenty so vstupnými
súbormi. Použili sme tak vstupy v ktorých sa vyskytuju opakovania ale i vstupy kde nie.
Použili sme rôzne operácie z Neo-Riemanových transformácii, typy dynamik a rytmu. Výs-
tupy sme následne porovnali s existujúcimi riešeniami. Použili sme riešenia z akademickej
sféry, ako aj voľne dostupné implementácie. Naša metóda priniesla viaceré vylepšenia,
ktoré sú však viazané na určité limitácie, rozobrané v príslušných kapitolách. Všetky ti-
eto poznatky boli v závere zosumarizované spolu s náčrtom možného pokračovania v tejto
práci.

Computational Musicology: Models, Methods, and
Applications

Declaration
I hereby declare that this Master’s thesis was prepared as an original work by the author
under the supervision of prof. RNDr. Alexandr Meduna, CSc. I have listed all the literary
sources, publications and other sources, which were used during the preparation of this
thesis.

. .
Jozef Makiš

May 18, 2025

Acknowledgements
Chcel by som sa poďakovať prof. RNDr. Alexandrovi Medunovi, CSc., za jeho cenné
rady a pomoc pri vypracovaní tejto práce. Ďakujem obom mojim rodičom za to, že sa
radujú z mojich úspechov, za výchovu, trpezlivosť a podporu počas celého môjho štúdia.
V neposlednom rade ďakujem mojej priateľke za jej povzbudzovanie a podporu.

Contents

1 Introduction 4

2 Formal languages and grammars 6
2.1 Strings, Languages and Language families 6
2.2 Grammars . 8
2.3 Lindenmayer systems . 11
2.4 Scattered Context Grammars . 11
2.5 Parallel Communicating Grammar Systems 12
2.6 The Chomsky Hierarchy . 14

3 Music Theory, Musicology, and Their Properties 16
3.1 Music art . 16
3.2 Fundamentals of Sound and Tone . 17
3.3 Understanding Melody and Harmony . 20
3.4 Neo-Riemannian Transformations and Tonnetz 22
3.5 Computational musicology . 26
3.6 Generative Capacity . 27

4 Related Work 29
4.1 Lindenmayer Systems . 29
4.2 Other Grammars . 32
4.3 Grammar in music notation . 33
4.4 Music Automaton . 33

5 Design and Application of Computational Models 35
5.1 Model Definition . 35
5.2 Encoding Musical Concepts into the Grammar 36
5.3 Derivation Process in Multi-Generative Grammar 40
5.4 Algorithmic Implementation of the Model 42
5.5 Examples of Generated Music . 44

6 Implementation 50
6.1 Used Technologies . 50
6.2 Inputs and Outputs . 50
6.3 Program Structure and Execution . 52
6.4 Evaluation and Comparison . 53

7 Conclusion and Future Work 56

1

Bibliography 58

A Second Example of Grammar Orchestration 62

B Contents of the Storage Medium 64

2

List of Figures

2.1 Chomsky hierarchy. 15

3.1 The difference between tone a1 and a2. 18
3.2 Basic Notes and Rests Chart. 19
3.3 Semitone examples for tone g and a. 19
3.4 Semitone examples for tone g and a. 20
3.5 Example of darker major chords. 22
3.6 PLR transformations of C Minor. 23
3.7 Tonnetz diagram with pitch names. 24
3.8 LP cycle in the Tonnetz diagram. 25
3.9 RP compound transformation. 26
3.10 PRL compound transformation. 26
3.11 Context-free and non-context free dependencies. 27

4.1 A small example of the conversion of the Hilbert curve into music scores. . 29
4.2 Melody generated by stochastic L-system. 30
4.3 Hierarchy or L-system network. 31
4.4 Tonnetz for trichords. 31
4.5 RTG and its rhythmic derivation. 32
4.6 Control flow notation. 33
4.7 Rhytmically-Controlled automata. 34

5.1 Jazz form (the left side) and sonata form (the right side). 37
5.2 A small example of dependencies between music staffs. 39
5.3 The third and fourth derivation step shown in music staff that corresponds

to (5, 5) ∈ 𝑄, and (7, 7) ∈ 𝑄. 42
5.4 Interpretation of derivation steps in music staff. 46
5.5 Illustrative example of multi-instrument jazz composition. 48

A.1 Interpretation of a sentence generated by 𝐺𝑠. 63

3

Chapter 1

Introduction

Formal models such as grammars and automata have a long history in theoretical computer
science, where they play a foundational role in areas such as computability, decidability,
and computational complexity. In practice, they are irreplaceable in compiler design, where
they are used for lexical analysis, syntax parsing, and semantic interpretation. However,
their applicability extends far beyond the domain of computer science. These models have
also been found to be relevant in fields such as biology, linguistics, visual arts, and music.

As the title of this thesis already suggests, the work will focus on music and music
composition. Music composition was, for a long time, viewed as a domain for humans
and their creativity. With the rise of formal modeling techniques, this trend changed
significantly. Music could be compared to language. It exhibits structural dependencies,
repetitions, variations, and other compositional aspects that make music open to formal
models such as grammars, automata, and others. They can be used to describe musical
syntax, generate melodies, and even model complex harmonic progressions. Researchers
also developed many musically meaningful transformation techniques that modify notes
and chords in musically meaningful ways.

Formal models combined with music are a strange combination. Some can question
how it is possible to find real-life applications. They can not replicate human emotion,
which is often a thing that makes music expressive and engaging. Furthermore, one might
ask whether this approach can compete with modern solutions, such as neural networks,
which start to dominate generative music. The structured and interpretable nature of
formal models makes them a great complementary tool in music generation. There are also
areas where performance constraints still play a role, which makes formal approaches more
suitable than neural networks. In this work, we demonstrate their potential by presenting
several areas where they can be effectively applied to produce explainable and reusable
music.

In the modern era, computer scientists working in the field of formal models face the issue
that the mathematical development of those models surpassed their application. Rather
than extending this gap, this work tries to close it with novel approach to instrument
synchronization in polyphonic music generation based on formal grammar systems. This
direction was taken in response to limitations observed in existing grammar-based music
generation approaches. These limitations arise from challenges on both the technical and
artistic sides. Although existing formal models are often used correctly from a computa-
tional standpoint, they tend to lack the flexibility required for broader musical applications.
As a result, they are typically restricted to generating simple melodies, short passages, or

4

isolated musical ideas, rather than producing coherent, expressive, and extended polyphonic
compositions.

Before addressing these questions and presenting a solution, the reader must first be
familiar with the fundamentals of formal languages and models, which are introduced in
Chapter 2. This chapter gives a small overview of what models are used in musicology and
how they are categorized with respect to their generative power.

Chapter 3 is a key to understanding how the model works and how grammatical rules
are designed. After this chapter, a reader should be able to create his own rules for the
components of the grammar system and generate meaningful melodies or harmonies. It
explains that music is still an art and there is no such thing as correct music. The output
of the system may appeal to somebody and not to others. Later in this chapter, we provide
an explanation for the selection of the model and how it relates to music and its structural
properties.

Chapter 4 reviews related work in grammar-based music generation and outlines how
this thesis contributes to and differentiates itself from existing approaches.

The core contribution of this thesis is presented in Chapter 5 and Chapter 6. In Chap-
ter 5, we introduce the design of a rule-synchronized grammar system that incorporates
components in the form of scattered context grammars. The chapter provides a detailed
explanation of how melody and harmony can be encoded into grammatical rules and how
compositional structure is represented through them, and it includes illustrative examples
based on both jazz and classical music. Furthermore, a generation algorithm is proposed
and described, serving as the basis for music production within this framework.

Chapter 6 focuses on the implementation of this system. It describes the software
architecture, input format, and system behavior. The implementation is evaluated and
compared with several existing and popular approaches, both from academic literature and
open-source repositories such as GitHub.

5

Chapter 2

Formal languages and grammars

From the literature, we already know that formal models are applied in many scientific
fields. The applications we can find are mostly in biology, linguistics, or informatics. Other
scientific fields, such as musicology, are rarely mentioned. To get into details about musi-
cology and how this scientific field is connected to formal models, we need to define them.
When we talk about formal models, we mostly talk about two categories. We can put gen-
erative language models into one category, and the second is recognition language models.
In this chapter, we will focus on generative language models referred to as grammars as we
go through the process of music generation in the next chapters. This chapter encompasses
all the concepts required to understand the rest of this thesis.

All the content in this chapter is derived from [1], unless explicitly stated otherwise.

2.1 Strings, Languages and Language families
Before we get into strings and languages, we need to define the small parts that are the
building blocks of them. They have all kinds of interesting properties that will be helpful
when we discuss grammars.

Definition 2.1.1 The finite, nonempty set of elements referred to as symbols we call an
alphabet Σ.

With the help of alphabet we can now define string and its special cases.

Definition 2.1.2 String, or more commonly in literature, word over an alphabet Σ, is
a finite set of symbols taken from Σ.

• A string that has no symbols is an empty string and is symbolized by the letter 𝜖.

• The set of all strings over Σ containing also 𝜖 is symbolized by the letter Σ*. Now Σ+

is Σ* ∖ {𝜖}.

Now we can express the length of strings.

Definition 2.1.3 Let us take the string x, x ∈ Σ*. Then the length of x is symbolized by
|𝑥|.

• Lets write x = 𝑎1𝑎2...𝑎𝑛, where 𝑎𝑖 ∈ Σ, for every 𝑖 = 1...𝑛, for 𝑛 ≥ 0 then |𝑥| = n.

• When n = 0, then we know that x = 𝜖, which means |𝑥| = 0.

6

The following definitions are basic terms used in the context of formal models. Some-
times we need reversal of a language or a string.

Definition 2.1.4 Let’s consider our previously defined x, then reversal of x is represented
by 𝑟𝑒𝑣(𝑥). Definition of 𝑟𝑒𝑣(𝑥) = 𝑎𝑛𝑎𝑛−1...𝑎1.

Definition 2.1.5 The notation lms(x) represents the leftmost symbol of x. This is defined
as 𝑙𝑚𝑠(𝑥) = 𝑎1 when 𝑛 ≥ 1, in all other cases 𝑙𝑚𝑠(𝑥) = 𝜖.

Definition 2.1.6 The notation rms(x) represents the rightmost symbol of x. This is defined
as 𝑟𝑚𝑠(𝑥) = 𝑎𝑛 when 𝑛 ≥ 1, in all other cases 𝑟𝑚𝑠(𝑥) = 𝜖.

The next definition requires two strings x and y, x,y ∈ Σ*.

Definition 2.1.7 The concatenation of x and y is xy. For the special case, when we try to
concatenate x with 𝜖, we define 𝑥𝜖 = 𝜖𝑥 = 𝑥.

It is common to express specific parts of the string. For that we use three special terms
suffix, prefix and substring.

Definition 2.1.8 Let’s write x as x = uv, where u,v ∈ Σ*. Now, we define the prefix of
x as u and the suffix of x as v.

• When 0 < |𝑢| < |𝑥|, then we say that u is proper prefix of x.

• When 0 < |𝑣| < |𝑥|, then we say that v is proper suffix of x.

To define a substring, we need one extra symbol.

Definition 2.1.9 Let’s write x as x = uvw, where u,v,w ∈ Σ*. With that, we define the
substring of x as v.

By this time, we should be able to understand basic terminology connected to strings.
It is the basic building block that allows us to talk about language.

Definition 2.1.10 Over the alphabet Σ, a language L is any set of strings formed from the
symbols in Σ, commonly denoted by 𝐿 ⊆ Σ*.

• The universal language is set Σ*, covering all possible strings over an alphabet Σ.

• When L is a finite set, it is called a finite language. If this is not the case, then it is
infinite language.

• The empty language L is denoted by ∅.

With that, we can move on to operations that can be done with languages. Let us have
two languages 𝐿1 and 𝐿2. Both of them are over the alphabet Σ. We will demonstrate
basic operations, so consider 𝐿1 and 𝐿2 to be equal for our purposes. Since all languages
are considered to be sets, we can apply all common set operations to them. Thus,

𝐿1 ∪ 𝐿2 = {𝑥|𝑥 ∈ 𝐿1 𝑜𝑟 𝑥 ∈ 𝐿2}

𝐿1 ∩ 𝐿2 = {𝑥|𝑥 ∈ 𝐿1 𝑎𝑛𝑑𝑥 ∈ 𝐿2}

7

𝐿1 ∖ 𝐿2 = {𝑥|𝑥 ∈ 𝐿1 𝑎𝑛𝑑𝑥 /∈ 𝐿2}

We have shown union, intersection, and difference for languages 𝐿1 and 𝐿2. The last
operations found in this thesis are complement and concatenation. The complement of
the language L is represented by the 𝐿 symbol. The concatenation of two languages is
represented by 𝐿1𝐿2. Let us define those operations.

𝐿 = {𝑥|𝑥 ∈ Σ*, 𝑥 /∈ 𝐿}

𝐿1𝐿2 = {𝑥1𝑥2|𝑥1 ∈ 𝐿1 𝑎𝑛𝑑𝑥2 ∈ 𝐿2}

We can move to language families with this knowledge of strings and languages. This
term is needed because the next sections will introduce various language-defining models.
In our case, those will be different types of grammar.

Definition 2.1.11 A language family ℒ is a set containing only languages.

• When language L ∈ ℒ and 𝜖 /∈ L, then we say language family ℒ is 𝜖− 𝑓𝑟𝑒𝑒

• When a family of languages contains only finite languages, it is represented by FIN.

With a connection to language families, we will create two essential definitions. First,
we must define what it means when two language families ℒ1 and ℒ2 are equal.

Definition 2.1.12 We say that language families are equal if and only if⋃︁
𝐿∈ℒ1

𝐿 ∪ {𝜖} =
⋃︁

𝑀∈ℒ2

𝑀 ∪ {𝜖}.

The second definition is a subset for two language families. We will work with ℒ1 and
ℒ2. Consider ℒ1 to be a subset of ℒ2, we symbolize it by ℒ1 ⊆ ℒ2, if and only if⋃︁

𝐿∈ℒ1

𝐿 ∪ {𝜖} ⊆
⋃︁

𝑀∈ℒ2

𝑀 ∪ {𝜖}.

2.2 Grammars
After our section on languages and everything related to them, we will finally talk about
grammars that can generate them. In simple terms, grammar is a finite description of finite
or infinite languages. These tools play an important role in formal language theory and our
thesis, as we will use them to generate music. But before that, let us get a small overview
of them and talk about language families they could generate.

This section introduces several language families that are outcomes of different kinds of
grammar. When multiple grammars define the same language family ℒ, we consider them
equally powerful.

We start with the grammar with the least restrictions on its rules.

Definition 2.2.1 A phrase-structure grammar is defined as a quadruple

𝐺 = (𝑁,𝑇, 𝑃, 𝑆),

in which

8

• N stands for an alphabet of nonterminals,

• T stands for an alphabet of terminals, where 𝑁 ∩ 𝑇 = ∅,

• P is a finite relation from (𝑁 ∪ 𝑇)*𝑁(𝑁 ∪ 𝑇)* 𝑡𝑜 (𝑁 ∪ 𝑇)*,

• 𝑆 ∈ 𝑁 and it acts as a start symbol.

There is more about the finite relation P. It has pairs (𝑢, 𝑣) ∈ 𝑃 , also known as rewriting
rules, which are denoted as 𝑢→ 𝑣. There is a special case when 𝑣 = 𝜖, then it is an erasing
rule. If such a rule cannot be found in grammar, then it is propagating grammar or, in
other words, a 𝜖-free grammar. In context with grammar, we use the alphabet. It is a set
𝑉 = 𝑁 ∪ 𝑇.

The process in which we apply rules to generate strings is a G-based direct derivation
relation over 𝑉 *. It is represented by ⇒𝐺, and we define it as

𝑥⇒𝐺 𝑦

this holds true if and only if 𝑥 can be expressed as 𝑥1𝑢𝑥2, 𝑦 as 𝑦1𝑣𝑦2 and the rule 𝑢→ 𝑣 ∈ 𝑃 ,
with 𝑥1, 𝑥2, 𝑦1, 𝑦2 ∈ 𝑉 *.

Given that ⇒𝐺 is a relation, ⇒*
𝐺 denotes the 𝑘th power of ⇒𝐺 for 𝑘 ≥ 0. In addition,

⇒+
𝐺 represents the transitive closure of ⇒𝐺, while ⇒*

𝐺 is the reflexive-transitive closure
of ⇒𝐺. Let us have derivation D: 𝑆 ⇒*

𝐺 𝑥, where 𝑥 ∈ 𝑉 *, then we consider x to be in
sentential form. String 𝑥 is a sentence when 𝑥 ∈ 𝑇 *. In such a case, D is a successful
derivation.

Finally, we can define the language generated by the grammar G. We symbolize this
language by L(G). It is formally defined as

𝐿(𝐺) = {𝑤 ∈ 𝑇 *|𝑆 ⇒*
𝐺 𝑤}.

Definition 2.2.2 Let us have a rule r: 𝑢 → 𝑣 ∈ 𝑃 . We use the notation lhs(r) = u to
represent the left-hand side of r and rhs(r) = v for the right-hand side.

Definition 2.2.3 Language that is generated by phrase-structure grammar is a recursively
enumerable language. This language family is denoted by RE.

Definition 2.2.4 A context-sensitive grammar is a phrase structure grammar

𝐺 = (𝑁,𝑇, 𝑃, 𝑆),

where each rule 𝑢→ 𝑣 ∈ 𝑃 complies with the form

𝑢 = 𝑥1𝐴𝑥2, 𝑣 = 𝑥1𝑦𝑥2

in which 𝑥1, 𝑥2 ∈ 𝑉 *, 𝐴 ∈ 𝑁, and 𝑦 ∈ 𝑉 +. The language generated by context-sensitive
grammar is a context-sensitive language. This language family is denoted by CS.

Definition 2.2.5 A context-free grammar is a phrase structure grammar

𝐺 = (𝑁,𝑇, 𝑃, 𝑆),

where each rule in P complies with the form

𝐴→ 𝑥

in which 𝑥 ∈ 𝑉 * 𝑎𝑛𝑑𝐴 ∈ 𝑁 . The language generated by context-free grammar is a context-
free language. This language family is denoted by CF.

9

It is common to use context-free grammar with derivation trees. They represent the
derivation structure and cover the order in which rules are applied. In definition for deriva-
tion trees we use the previously defined context-free grammar G.

Definition 2.2.6 Let 𝑆 ⇒*
𝐺 be a derivation structured as

𝑆 = 𝑤1 ⇒𝐺 𝑤2 ⇒𝐺 ...⇒𝐺 𝑤𝑛 = 𝑤

in which 𝑤𝑖 ∈ 𝑉 *, for all i = 1,2, ..., n, for specific n ≥ 1. Associated derivation tree to this
derivation is symbolized by △(𝑆 ⇒*

𝐺 𝑤) and is defined as a tree that possesses the following
attributes:

1. derivation tree has nodes that are labeled with elements from set 𝑉 ∪ {𝜖},

2. the root of the derivation tree is marked with S,

3. for a direct derivation 𝑤𝑖−1 ⇒𝐺 𝑤𝑖, for all 𝑖 = 1, 2, ..., 𝑛, in which

• 𝑤𝑖−1 = xAz where x, z ∈ 𝑉 * and A ∈ N.
• 𝑤𝑖 = 𝑥𝑦𝑧,
• 𝐴 → 𝑦 ∈ 𝑃 , in which y = 𝑌1𝑌2...𝑌𝑘, 𝑌𝑗 ∈ 𝑉 , for all j = 1,2,...,k, for some k ≥

0. Note that when 𝑦 = 𝜖, then k = 0.

We know that there is k edges, when 𝑦 ̸= 𝜖, then (𝐴, 𝑌𝑗), 1 ≤ 𝑗 ≤ 𝑘, leaving A. The
order of those edges from the left side to the right is (𝐴, 𝑌1)(𝐴, 𝑌2), ..., (𝐴, 𝑌𝑘). In the
case of 𝑦 = 𝜖, there is only one edge of A, (𝐴, 𝜖).

Definition 2.2.7 A linear grammar is a grammar of phrases structure

𝐺 = (𝑁,𝑇, 𝑃, 𝑆),

where each rule in P complies with the form

𝐴→ 𝑎𝐵𝑦 𝑜𝑟 𝐴→ 𝑎

in which 𝐴,𝐵 ∈ 𝑁, and 𝑥, 𝑦 ∈ 𝑇 *. The language generated by linear grammar is a linear
language. This language family is denoted by LIN.

Definition 2.2.8 A regular grammar is a grammar of phrases structure

𝐺 = (𝑁,𝑇, 𝑃, 𝑆),

where each rule in P complies with the form

𝐴→ 𝑎𝐵 𝑜𝑟 𝐴→ 𝑎

in which 𝐴,𝐵 ∈ 𝑁, and 𝑎 ∈ 𝑇 . The language generated by regular grammar is a regular
language. This language family is denoted by REG.

10

2.3 Lindenmayer systems
Although L-systems are not used directly in our new method and applications, they are
commonly used formal model in music generation. An important part of our work is to
compare it to existing ones and show the results. L-systems are a great candidate for that.
Information about them in this section comes from [5]. They were designed to simulate
biological growth. The grammar rules are applied in parallel to each element in numerous
iterations. They are considered to be dynamic systems with an extra feature that allows
geometrical interpretation of the system’s evolution. The definition of the systems is:

Definition 2.3.1
𝐺 = (𝑉, 𝛼, 𝑝),

where V is an alphabet of the system and 𝑉 * is set of all words over the alphabet V. The
symbol 𝛼 represents the non-empty word and is called an axiom. The last symbol represents
a set of rules that typically look like: 𝑝 : 𝑎→ 𝑤, 𝑎 ∈ 𝑉 , 𝑤 ∈ 𝑉 *.

Applications of more advanced L-systems that generate music could be found in [6].

2.4 Scattered Context Grammars
An important grammar that will help us generate music in our thesis is Scattered Context
Grammar (from now on, only SCG). We already know that modern computer science
technologies work with big data. In the field of formal models, there is a need for highly
efficient models that work in parallel. During computation, we normally need just a small
amount of scattered information to derive new pieces of information from these elements.
This is exactly the property that we need in music to gather scattered information in the
different forms of repetitions, variations, and other structural parts of a composition.

The theory of formal languages gives us tools to represent different scattered context
dependencies in a natural and straightforward way. For that, we use different kinds of
scattered context symbols when we want to formalize mentioned dependencies in a musical
piece. Consider 𝑤 as 𝑤 = 𝑥0𝐴1𝑥1𝐴2𝑥2, ..., 𝐴𝑛𝑥𝑛, where 𝑥𝑖 are not important parts of
a musical piece. To derive new information, we use computational rules or, in the words of
the formal language theory derivation step. They are in from of

(𝐴1, 𝐴2, ..., 𝐴𝑛)→ (𝑦1, 𝑦2, ..., 𝑦𝑛),

in which 𝑦1 up to 𝑦𝑛 represent new information. As all information about SCG in this
section comes from [7], there is also proof that these grammars are equivalent to Turing
machines. They both define the family of recursively enumerable languages. This makes
them not only a great formalization of scattered information but also a strong generator of
languages.

We have shown multiple reasons why we should represent music with SCG. How this
grammar compares to other grammars has not yet been discussed, especially in comparison
with interactive L-systems systems. They both belong to the group of parallel grammars
and involve scattered information processing. However, let us take a look at L-systems
from the theoretical point of view. Their reflection on scattered context dependencies is
not realistic, even though they are capable of that. This is because, in a single derivation
step, only a finite number of symbols can be processed during the computational step.

11

SCG does rewrite finitely many selected symbols in a derivation step while the other sym-
bols are untouched. Because of that, their formalization of scattered information is more
appropriate.

Definition 2.4.1 Formal definition of Scattered context grammar is a quadruple

𝐺 = (𝑁,𝑇, 𝑃, 𝑆),

where

• N stands for a set of nonterminals,

• T stands for a set of terminals,

• Finite set of rules P has form

(𝐴1, 𝐴2, ..., 𝐴𝑛)→ (𝑥1, 𝑥2, ..., 𝑥𝑛),

in which 𝑛 ≥ 1, 𝐴𝑖 ∈ 𝑁, and 𝑥𝑖 ∈ (𝑁 ∪ 𝑇)*, for all 1 ≥ 𝑖 ≥ 𝑛,

• 𝑆 ∈ 𝑁 and it is a start symbol

Let us take
𝑎 = 𝑎1𝐴1...𝑎𝑛𝐴𝑛𝑎𝑛+1,

𝑏 = 𝑎1𝑥1...𝑎𝑛𝑥𝑛𝑎𝑛+1,

and r = (𝐴1, ..., 𝐴𝑛) → (𝑥1, ..., 𝑥𝑛) ∈ 𝑃, in which 𝑎𝑖 ∈ (𝑁 ∪ 𝑇)*, for every 1 ≤ 𝑖 ≤ 𝑛 + 1,
then G applies the rule 𝑟 to make a derivation step to transform 𝑎 to 𝑏, formally expressed
as

𝑎⇒𝐺 𝑏 [𝑟].

Simply written as 𝑎⇒𝐺 𝑏.
Scattered context language 𝐿 could be generated when there is existing a scattered context

grammar G for which 𝐿 = 𝐿(𝐺). This language family is denoted by 𝒮𝒞.

In later sections, we will show multiple examples of music parts that could be generated
using SCG.

2.5 Parallel Communicating Grammar Systems
We have already talked about two parallel grammars, and another model that belongs
to this group is Parallel Communicating Grammar Systems (from now on, only PCGS).
This model is broadly discussed in [8], from where we took the information and definitions
for this model. PCGS comes from a similar background as SCG and has almost similar
predecessors, such as cellular automata, Lindenmayer systems, and others. It is trying
to solve the problem with parallelism that is happening in specific spots or neighboring
contexts. On the other side, it takes care of the global context across the entire system.
L-systems have some minor cooperation, but it is not significant enough.

Advancements in parallel processing systems raised the importance of data exchange be-
tween processors in the new generation of computer design. We know that communication
is the key element in parallel processing architectures where wrongly interconnected topolo-
gies can increase the time of message transition and lower the reliability and performance

12

of the system. One of those problems is trying to solve distributed grammar systems. They
have the communication but the lack of parallelism because its individual grammars work
sequentially. On the other side PCGS combine together parallelism and communication
into one model. This is in practise used as a model for analyzing the characteristics of
parallel processing systems in a theoretical context.

To develop PCGS there were several important factors like:

• Knowledge-based systems needed a structured way to combine logic and functional
programming.

• Different tasks in knowledge-based systems require different computing capabilities.
That was the reason for creating heterogeneous parallel systems, which are more
appropriate.

• Need for supervisor. Even thought processes can communicate directly with each
other, it could be inefficient and without coordination.

Before defining PCGS, we will first describe it. Each system has a degree, denoted
by 𝑛. This number represents the number of separate Chomsky grammars inside PCGS.
This system has one special grammar that generates its language in cooperation with other
grammars. Every grammar in this system has its own symbols, rules, and starting symbols.
One thing that can not happen is that one terminal symbol of one grammar can not be the
non-terminal symbol of another grammar. Grammars in PCGS work in parallel like normal
grammar; they start from the starting symbol, and in the right moments, they communicate
with other grammars. Communication between grammars is initiated by query symbols,
which are also generated by the grammar. Query symbols are non-terminals indexed from
1 to 𝑛, and they label a specific grammar. This non-terminal can be used in the vocabulary
of any grammar that is not indexed by this non-terminal´s index. If it were, the rule of
non-reflexive communication would be violated.

We have already mentioned that communication starts with query symbols that are non-
terminals. Other than that, they can not be rewritten. Communication means replacing
all query symbols with the current strings of the grammar that are referred to. But there is
also a rule. No replacing could be done on strings with query symbols that refer to strings
with one or more query symbols. This prevents circular communication. PCGS has various
extensions. One could be non-returning and can continue generating, or it can clear itself
and start working again from the starting symbol. PCGS generates a language with all
terminal strings generated by distinguishing grammars and it does not matter.

The following definition has three main properties. Grammars inside PCGS are Chom-
sky grammars, grammars work together simultaneously, and sending grammars restart their
work from the starting symbol after each communication.

Definition 2.5.1 A Parallel Communicating Grammar System (PCGS) of degree 𝑛, where
𝑛 ≥ 1, is defined as an n-tuple

𝐺𝑠 = (𝐺1, 𝐺2, ..., 𝐺𝑛)

in which every 𝐺𝑖 is a Chomsky grammar in the form of 𝐺𝑖 = (𝑉𝑁 , 𝑉𝑇 , 𝑆𝑖, 𝑃𝑖), 1 ≤ 𝑖 ≤ 𝑛,
also mentioned condition is applied here 𝑉𝑁,𝑖 ∩ 𝑉𝑇,𝑗 = ∅ for all 𝑖, 𝑗 ∈ 1, 2, ..., 𝑛, where is
a finite set of query symbols 𝐾 ⊆ {𝑄1, 𝑄2,, 𝑄𝑛} and 𝐾 ⊆ ∪𝑛𝑖=1𝑉𝑁,𝑖.

13

Definition 2.5.2 Let us not forget the configuration of such a system. It is an n-tuple
(𝑥1, 𝑥2, ..., 𝑥𝑛), where 𝑥𝑖 ∈ 𝑉 *

𝐺,𝑖, in which 𝑉𝐺,𝑖 = 𝑉𝑇,𝑖 ∪ 𝑉𝑁,𝑖 for all 1 ≤ 𝑖 ≤ 𝑛.

In the current configuration, 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑖 represents the grammar 𝐺𝑖 or the string
𝑥𝑖 ∈ 𝑉 *

𝐺,𝑖.

Definition 2.5.3 Our defined PCGS 2.4.1 generates language

𝐿(𝐺𝑠) = 𝛼 ∈ 𝑉 *
𝑇,1|(𝑆1, 𝑆2, ..., 𝑆𝑛)⇒* (𝛼, 𝛽2, 𝛽3, ..., 𝛽𝑛), 𝛽𝑖 ∈ 𝑉 *

𝐺,𝑖, 2 ≤ 𝑖 ≤ 𝑛.

This definition of PCGS is centralized and returning, which means at the end of commu-
nication, each component that sends a string to another component resets to the starting
symbol. To place PCGS into the Chomsky hierarchy, we must know which grammar types
are used as components. For example, if we would use CSG, then our system of grammars
would be recursively enumerable.

We spent a long time exploring the idea of using this system for orchestration and even
prepared applications for that purpose. This is the reason why we decided to keep this
chapter. However, further investigation showed that such complex communication is not
necessary, as instruments in polyphonic music naturally have synchronized behavior.

2.6 The Chomsky Hierarchy
We can start exploring the Chomsky hierarchy with our understanding of strings, languages,
language families, and grammar. This hierarchy was introduced in formal language theory
by Noam Chomsky in the 1950s. He proposed a chain of substantial simplifications and
abstractions to the domain of natural language. Specifically, the approach he suggested left
out meaning out of consideration. It also does not pay attention to the usage of expressions,
namely their frequency, context dependence and processing complexity. Ultimately, it is
presumed that patterns that are effective for short strings can be applied to strings of any
length without restrictions. The remarkable success of this framework has reached multiple
scientific fields, most notably linguistics, but it has also reached theoretical computer science
and molecular biology. The reach it has suggests that this framework was created correctly
and it works, while it also preserves the key elements of the structure of natural languages.
Usually, literature such as [12] does not mention applications of this framework in the fields
of music theory, music composition, or others. We will get into the depth of this in the next
chapter, but first, let’s see how this applies and is structured in the field of formal language
theory.

This section contains material, that is taken from [12].
The Chomsky hierarchy is shown graphically in the picture 2.1. It consists of four levels

and each level has increasing complexity. Starting with the most complex level:

• type 0 – coputably enumerable languages,

• type 1 – context-sensitive language,

• type 2 – context-free language,

• type 3 – regular language.

14

Later research and work in formal linguistics showed that this four-category system
was ineffective in covering the complexity of natural languages. Because of that, new
adjustments were proposed. Advancements in this field expand the class of context-free
languages with mildly context-sensitive languages and refine the boundaries of regular lan-
guages, which is called the sub-regular hierarchy.

regular {an| N >= 0}

context-free {anbn | N >= 0}

context-sensitive {anbn cn| N >= 0}

type-0 {<M, w> | M is a Turing machine that halts on input w}

Figure 2.1: Chomsky hierarchy.

Theorem 2.6.1
FIN ⊂ REG ⊂ LIN ⊂ CF ⊂ CS ⊂ RE

15

Chapter 3

Music Theory, Musicology, and
Their Properties

The main topic of this chapter is to give a reader a basic understanding of what music
is and what it takes to create musical peace. We will show what notation musicians and
composers use in order to capture music. But not just that, we will dive really deep into
music theory and reveal complex transformations that create music that is pleasing to listen
to. We will discuss the music language and where it is located in the Chomsky hierarchy.
We will explain the decision that led us to generate music using formal models. With that,
we will reason with the formal model we used to create the music piece.

The basics of music theory in this chapter are form [17]. I have used [34] to create music
notation images in this chapter.

3.1 Music art
Let’s talk about dominant and essential expressions in the sound structure of musical com-
positions, which are melody and rhythm. They create a foundation for perceiving and
understanding the music we listen to, while they play a significant role in influencing its
mood. Dominant musical expressions such as melody help to understand the main idea in
various musical forms arranged in a specific order (motif, theme, sentence, etc.). In tem-
poral space, we can find a rhythm that is tight and close to tempo, which highly influences
the duration of the composition.

The next important expression in music is harmony. It is the basic building block of
many compositions because it allows the composer to reach expressive contrasts of conso-
nance and dissonance. As with melody, the effect of harmony is more enhanced when there
is a specific rhythmic structure and growing dynamics.

The last one is the instrumentation, which gives a characteristic expression of the com-
position and tonal color. We want rich, diverse, and engaging musical compositions that
are done with the orchestra, which has a large variety of musical instruments.

Understanding musical composition is not just about having knowledge of musical ex-
pressions. However, we have to have ability to emotionally engage with the music.

16

3.2 Fundamentals of Sound and Tone
In our daily lives, we encounter a variety of sounds. We hear birds singing, the noise of
machines, the screech of a train, or the melody of musical instruments. Some of these
sounds are pleasant, while others can be annoying. Examining these differences is very
important from the perspective of music generation. We could dedicate entire chapters to
this topic. However, we will cover at least the basics.

Sound

Sound is a physical phenomenon that comes from the source of sound. It is created by the
vibration of an elastic body. When this body starts to vibrate, the air around it starts to
produce a wavy motion. Similar phenomena we see in nature, for example, when we throw
a rock into the lake and see the waves spreading outward in all directions. There are four
conditions that when they are satisfied, we hear sound:

• sound source – elastic body – string or membrane,

• trembling of the sound source – hitting, rubbing and strumming,

• conductive environment – atmosphere,

• auditory organ.

Tone

Tones are our noble sounds that are produced by the sound source and are created by the
regular trembling of the sound source (e.g., singing, sounds from musical instruments). The
irregular trembling of the sound source is called noise (e.g., rustling, thudding, rumbling).
In music, we use both, but primarily, we want to produce tones. We define tone as a sound
that has a certain height, which is created by regular vibrations from the sound source.
Those vibrations are transferred to our auditory organs with the changes in compression
and rarefaction of the air.

In our work, we will take into consideration three basic properties of a tone:

• pitch

• intensity

• timbre

We can read the properties of a tone from a unique curve called the oscillation curve.
A special property of a tone that is not physical property is tone length. This property
depends solely on the musician or subject responsible for the tone’s duration. If we have
to pick the most essential properties, it would be pitch and duration.

The pitch of the tone is calculated by the number of vibrations per second. Higher
tones correspond to a higher number of vibrations per second. This is expressed by the
frequency, which is measured in Hertz. If we want to determine the frequency of a tone,
we can do that in two ways. One is absolute, we specify the exact number for tone 𝑎1, it is
440 Hz. It can also be done relatively. It is when we compare the pitches through intervals
between two tones.

17

We see on the image 3.1 the relationship between two tones that are distanced by one
octave. The height of the tone 𝑎2 is 880 Hz.

Time (s)

Am
pl

itu
de

Tone a1

Time (s)

Am
pl

itu
de

Tone a2

Figure 3.1: The difference between tone a1 and a2.

The next important property is intensity. Intensity is closely related to the magnitude
of the oscillation, or in other words, the amplitude, which represents the width of the
vibration. As the width of the vibration in the oscillating device increases, the tone becomes
more powerful. For a tone to be audible, it must fall within a certain frequency range,
approximately from 20 Hz to 20,000 Hz—the range detectable by the human ear. The
intensity of sound is measured in decibels (dB), which is the unit used to quantify sound
intensity.

The number and intensity of the accompanying partial tones influence the timbre of
a tone. A string never vibrates only as a whole; its motion is divided into halves, thirds,
quarters, and so on. This results in a compound tone; partial vibrations create that. This
differs for every musical instrument.

The final property we will discuss is the duration of a tone. The length of the oscillation
of the sound source determines it. The performer is the only one who can change the
duration of a tone.

Representation of Music Through Notation

Musical notation is a collection of graphic symbols, abbreviations, markings, and text
expressions that are needed for documenting and interpreting musical ideas, melodies, or
musical compositions. The tone properties that are noted in the music notation are the
height and the length. They are written directly, we call them notes. Other properties that
are noted need special characters.

Notes are written to the musical staff. It has five lines and four spaces. The Ledger
lines are extra lines that could be added before or after the classic music staff. Music staff
can be found in the picture 3.2.

18

In the image, we see a note 𝑐1, depicted in various durations, which are used throughout
this thesis and implementation. Starting from the left, there is a quarter note, followed by
a quarter rest. Next is a half note, accompanied by a half rest. The following note has the
duration of an eighth note, along with its corresponding rest. Finally, there is a whole note
with a whole rest.

Figure 3.2: Basic Notes and Rests Chart.

A rest plays a unique role in music and is almost as important as a note. With their
help, we create contrast and interesting tension in music. This puts emphasis on preceding
and following notes. Pauses can create a sense of anticipation and drama that adds more
interest to the music.

Tonal organization in music

Tonal organization in music is a set of all tones that are used in music. We recognize seven
foundational tones that are arranged by the pitch and its names: c, d, e, f, g, a, h. There is
no special name for the eighth tone because it is a repetition of the first tone but in higher
pitch. Following tones are also in higher pitch and they are order in the same way. Those
tones form an octave in the tonal system.

By an octave we can also mean the eighth tone of the original series of tones. This tone
is specific because it has double the frequency of the first tone and produces a sound that
aligns harmonically with it.

We have not talked about semitones. The semitone is the smallest distance between
two tones in the tonal system. It cannot be divided. If we add two semitones, then we
would get one whole tone. In case we want to increase the tone by semitone, we use sharp.
If we want to lower the tone by semitone, we use flat. We see that in the music staff in
the image 3.3. Tone g in the first measure is increased by a semitone, and then tone g is
lowered. The same was applied to tone a.

Figure 3.3: Semitone examples for tone g and a.

We already mentioned measure. One measure is the basic unit of the alternation between
strong and weak beats. By the strong beat, we mean the first beat in a measure. We

19

separate measures with bar lines. The double bar at the end indicates the end of the music
solo.

What determines how notes are organized into a measure is the time signature. It takes
the form of a fraction, but without a fraction bar. In our example (3.3), the time signature
is 12 over 4. The number 12, also called the numerator, represents the number of beats in
a measure, while the denominator indicates the note value assigned to one beat. In this
case, our measure can contain three whole notes, each lasting four beats. Alternatively, if
we use quarter notes, which last one beat, we could fit twelve of them into the measure.

3.3 Understanding Melody and Harmony
As we move deeper into this chapter we should explore the concepts of melody and harmony.
Melody is something that everyone can create or produce with his own voice while we
whistling or singing. It is a sequence of single notes that are being sung one at a time. Our
favorite songs contain pleasurable melodies that are sung or played.

Harmony, on the other hand, arises when multiple voices or sounds are played simul-
taneously. In our previous example, when two people whistle or sing together, they create
harmony. Even if they sing out of tune or the sound grates on the ears, it still makes
harmony.

In music, we commonly use multiple notes played together to create harmony. In this
work, we will primarily focus on three tones sounding simultaneously, which are referred to
as chords. In modern music, as we want to reproduce it as closely as possible, chords are
commonly used, and they create a structural basis for an entire piece of music.

Usually, it is not in music in one way or another. Melody in music is enriched with
specific chords that are played underneath it. An experienced composer or musician can see
notes in a melody that suggest specific chords. A single chord can suggest notes for melody.
What is really interesting and what we aim to do in this work is to combine sequences of
chords. It should create melodies within the harmony. This approach produces a sound
that most people find enjoyable to listen to.

The difference in notes could be found in the image 3.4.

Figure 3.4: Semitone examples for tone g and a.

Triads and Chords

Triads are a specific type of chord, formed by a combination of three notes played together
in structured intervals. In contrast, a general chord can consist of any combination of three
notes, without adhering to a specific pattern or structure. We recognize multiple types of
triads.

• Major triads are characterized by their bright and stable sound. They evoke happy,
optimistic emotions in people. They feel warm and confident. To create a major

20

triad, we have to start with any root note, and then we stack another note that is
distanced from the first one by four semitones. The third stacked note is distanced
by seven semitones from the root note. Major triads are considered to be the default.
In our work, when we say C chord, then we mean C major triad.

• Minor triads are considered to be the opposite of major triads. They are often char-
acterized as dark, somber, melancholic, or even ominous. It has a reversed structure
of a major triad. It starts with a tone that is distanced by three semitones from the
root. The last one is distanced by 7 semitones from the root. It is denoted by ”m“.
So when we create C minor, we write Cm instead.

• Augmented triad is the least used triad from all four. It has some unique properties. It
is often used as an elevator of chord progression. It is never used as a key component.

• Diminished triads are well known for their volatile and unstable nature. It is done by
a tritone it contains. We can describe this triad as chaotic, harsh, and tense.

In our work, we will use these types of chords. Later, we will talk about chord progres-
sions.

The harsh reality is that major chords can be easily mixed up together, and the music
usually sounds good. Building a chord progression that we like requires us to experiment.
It takes time to find an enjoyable sequence. For example, we have sequences that are used
in popular music.

Certain chord progressions play a crucial role in popular music and are often tied to
iconic compositions. For instance, the progression A – G – C – D is prominently featured
in Michael Jackson’s ”Stranger in Moscow“. Similarly, the descending sequence A – G –
F – E – D – C – B forms the outro of The Beatles’ ”I Am the Walrus“. Another example
is the progression E – D – A – G, which serves as the foundation for the chorus in Buffalo
Springfield’s ”For What It’s Worth“.

To this day, there is no definitive explanation for why these chord progressions are
effective. However, this has almost no consequence, as talented songwriters often create
remarkable music without relying heavily on music theory. In practice, the knowledge of
music theory often plays a secondary role to creativity and intuition.

Minor chords are less prevalent in music compared to major chords, as their sad, melan-
cholic, and somber tones make them less suited for popular music. Instead, they are often
combined with major chords to create more dynamic and interesting sounds. Despite their
limited use in popular music, minor chords play an important role in specific contexts.
They are frequently heard in horror, sci-fi, and Halloween-themed scenes, where their emo-
tive quality enhances the atmosphere.

Chords and their contextual behavior

We already know that major chords are bright, warm, and happy sounds, but this is not
always the case. Major chords can be surrounded with notes that evoke different emotions
like melancholy, fear, or uncertainty. This shows that major chords and chords, in general,
are dependent on context. In a later section, we will have to take this into account and
find a formal model that will handle this. An example of darker-sounding chords is in the
figure 3.5.

21

Figure 3.5: Example of darker major chords.

In our example, we use two major chords. The first is an E-major chord followed by the
same chord shifted up by a semitone, resulting in an F-major chord. When we play this
chord sequence it evokes dramatic emotions, which are not usually associated with major
chords. That is the reason, we say that our interpretation and emotional experience is
highly dependent on what precedes and follows them.

Chord progressions

To get into the topic of chord progression, we have to talk about the leading tone. The
leading tone is the 7th tone in any major scale. For example, the tone F# in the G major
scale has a special tendency to ring in our ears, it creates tension that makes us want more of
the melodic story. After we play the tone above it, the tone G, the tension disappears. This
commonly occurs in many compositions and is used by musicians within chord progressions,
which makes the music more engaging.

3.4 Neo-Riemannian Transformations and Tonnetz
We have previously explored major and minor triads, we now aim to build upon this founda-
tion by introducing a more advanced framework for understanding harmonic relationships:
Neo-Riemannian transformations. These transformations provide a powerful tool for an-
alyzing and generating chord progressions, particularly when exploring chromaticism and
voice-leading beyond conventional contexts. Thanks to them, we can create smooth rela-
tions between chords.

All the information presented in this section is derived from the work in [18, 22, 19].

PLR family

Work of David Lewin came with an idea that create operations between triads and create
model that explains them. This was based on the idea from musical theorist Hugo Riemann.
Following work that was builing on top of that was focused on three basic operations that
maximize pitch-class overlap between pairs of distinct triads. Those operations were:

• Parallel (P) for triads that share the same fifth.

• Leading tone exchange (L) for triads that share the same minor third.

• Relative (R) for triads that share the same major third.

An example of these operations represented on a music staff can be seen in Figure
3.6. The figure illustrates all three transformations applied to a C minor triad. In the
first measure, the L transformation shifts C minor to As major. The second measure

22

demonstrates the P transformation, converting C minor to C major. Finally, the third
measure shows the R transformation, which changes C minor to Es major.

Figure 3.6: PLR transformations of C Minor.

We can observe that each transformation inverts the chord’s tonality, shifting from minor
to major in our example. However, the process can also work in reverse, transforming
a major chord into its minor counterpart. If we apply these transformations twice, the
chord’s original tonality is restored, returning it to the same major or minor quality as it
had before the transformations were applied.

The main feature of PLR family is that the operations create smooth and efficient
voice-leading. Or, in other words, they are parsimonious. It is embedded so much that two
consequent chords share two notes, and just the third note is changed. The third note is
changed by a semitone in the case of P and L transformations. In the R transformation,
the third note moves by a whole tone. This feature is deeply rooted in the evolution of
musical styles that rely on stepwise voice-leading and semitonal motion in particular, have
remained lasting standards across the musical history and styles. The parsimony of PLR-
family voice-leading is so deeply rooted in the practical knowledge of musicians trained
in the European tradition that it often goes unnoticed.

Tonnetz

Tonnetz, or a table of tonal or harmonic relationships, is a two-dimensional matrix and
a tool that can visualize chord progressions. This tool has a long history and is being
used by music theorists to this day. At the beginning, the Tonnetz was designed to picture
acoustic connections between chords and how they relate to each other. Late research
showed that chords could be understood using mathematical structures, namely the group
theory. With the help of group theory, we can systematically and mathematically describe
movement between chords. Tonnetz also incorporates these group-theoretic relationships
and shows that chords are not connected just by acoustic properties but also through
mathematical transformations. A tool like this provides the possibility to connect to the
mathematical description of this structure and, in turn, use formal models to control and
generate harmonic progressions.

Throughout history, Tonnetz was modernized by multiple methods. At first, it was
created to show the relationship between two specific intervals that form the foundation
of minor and major chords. This was done by Euler. He designed a small finite grid, and
later, Oettingen expanded this idea into the infinite grid. Finally, Riemann adopted this
version and made it popular among German music theorists, and this is popular to this
day. Historically, the Tonnetz was used to reinforce traditional tonal harmony, focusing on
the Tonic, Subdominant, and Dominant (TSD) framework developed by Riemann. This
approach overshadowed PLR-family operations, even though they provide a natural way
to describe smooth transitions between chords. Modern theorists like Lewin and Hyer

23

challenged this view, arguing that PLR transformations better capture the harmonic fluidity
of Romantic-era music.

We have discussed the history to understand what is capable of capturing the Tonnetz
and how it remains relevant today. We will leverage these properties in our music generation.
The Tonnetz is not limited to Romantic-era music; its properties can be found across the
entire spectrum of classical music. To see what the Tonnetz actually looks like, refer to
Figure 3.7. The PLR relationship between notes from our example 3.6 is also graphically
shown in the graph.

GC D AF E HBEs

GCFBEsAsDesGes

GisCisFisHEADG

GisCisFisH HisEisAisDis

Gis HisEisAisDis GisisCisisFisis

BEsAsGesCes DesHeses Fes

P

L R

Figure 3.7: Tonnetz diagram with pitch names.

Transformations between chords in the Tonnetz can not be applied twice, they are
involutions. This means that we can find in it only major and minor triads and augmented
and diminished triads are excluded. This helps maintain harmonic structure while allowing
smooth and predictable transitions between chords.

The nodes in the diagram 3.7 are pitches that form triads. In our case example we had
c minor (C, Es, G) with P transformation to C Major (C, E, G). L and R transformations
are shown in the diagram in similar way.

Meaningful Cycles Inside the Tonnetz Diagram

When we examine the literature, we find that the Tonnetz is often used to explore and
create cycles through the repeated application of PLR transformations. Let us start with
the most popular cycle and then we move to others.

The most well-known type of cycle is the LP/PL cycle. We haven’t yet mentioned
that the Tonnetz is three-dimensional structure when it is fully taken into account. If we
keep moving through the Tonnetz in a continuous loop with our transformations, we will
eventually return to the starting point of the chord progression.

𝐿𝑃 : C Major (C, E, G)→ 𝐿 = E Minor (E, G, B)→ 𝑃 = E Major (E, G♯, B)
→ 𝐿 = A♭ Minor (A♭, C♭, E♭)→ 𝑃 = A♭ Major (A♭, C, E♭)
→ 𝐿 = C Minor (C, E♭, G)→ 𝑃 = C Major (C, E, G)

24

𝑃𝐿 : C Major (C, E, G)→ 𝑃 = C Minor (C, Es, G)→ 𝐿 = As Major (As, C, Es)
→ 𝑃 = As Minor (As, Ces, Es)→ 𝐿 = E Major (E, Gis, B)
→ 𝑃 = E Minor (E, G, B)→ 𝐿 = C Major (C, E, G)

How such a cycle appears in a diagram is shown in Figure 3.8.

GC D AF E HBEs

GCFBEsAsDesGes

GisCisFisHEADG

GisCisFisH HisEisAisDis

BEsAsGesCes DesHeses Fes

P
L

L

P
L

P

Figure 3.8: LP cycle in the Tonnetz diagram.

This cycle was an important element in the compositions of composers such as Wagner,
Franck, Liszt, Mahler, and Richard Strauss.

Another commonly used cycle is the PR/RP cycle. It creates music with more dramatic
elements and greater contrast compared to the PL/LP cycles. Additionally, it involves
a larger harmonic collection, containing 8 pitch classes as opposed to the 6 pitch classes
in the PL/LP cycle. The example of such a cycle is shown below.

𝑃𝑅 : C Major (C, E, G)→ 𝑃 = C Minor (C, Es, G)→ 𝑅 = Es Major (Es, G, B)
→ 𝑃 = Es Minor (Es, Ges, B)→ 𝑅 = Ges Major (Ges, B, Des)
→ 𝑃 = Ges Minor (Ges, Heses, Des)→ 𝑅 = A Major (A, Ces, E)
→ 𝑃 = A Minor (A, C, E)→ 𝑅 = C Major (C, E, G)

The last cycle is the LR/RL cycle, which is unique in that it includes all possible
consonant triads. However, a complete LR cycle is too long to be considered a practical
choice for use in a composition. But this does not stop composers from using it. Parts of
this cycle are frequently used. Notable examples include Beethoven’s Ninth Symphony and
Wagner’s Parsifal.

Compound PLR Transformations

We have already introduced our PLR transformations, which allow for smooth transitions
between triads. However, we have not yet discussed how PLR transformations can be com-
bined to create unique progressions while preserving this smoothness. Compound trans-
formations were widely used by many composers of the Romantic era. Cycles that were
discussed previously have their place in theory and in small parts of compositions. Transfor-
mations have a broader reach in different genres. An excellent example of this can be found

25

in Pop-Rock music, as discussed in the previously mentioned thesis [19]. An application of
compound transformation RP can be found in Figure 3.9.

GC D AF

CisFisHEA

GisCisFis AisDis

P

R

Figure 3.9: RP compound transformation.

𝑅𝑃 : Gis Minor (Gis, H, Dis)→ 𝑅 = Dis Major (Dis, Fis, H)
→ 𝑃 = H Minor (H, Fis, D)

The properties of compound transformations differ from those of individual transforma-
tions. Unlike individual transformations, they are not involutions. To return to the original
triad, the opposite compound transformation must be applied. Other combinations of the
two can be obtained and applied.

We can also create and use a compound of three single transformations. For example,
let us take E Major (E, H, Gis) to get H Minor (H, D, Fis). How we would do that is shown
in Figure 3.10.

GC D AF

CisFisHEA

GisCisFis AisDis

P
R

L

P
R

L

Figure 3.10: PRL compound transformation.

The transformation of PRL compounds is special because it has involution. This prop-
erty is demonstrated in our figure.

3.5 Computational musicology
Part of this work is also research on how to formalize our picked-up knowledge of music.
We have covered and studied various types of languages and grammars. We have also
covered the basics of music theory and some advanced topics that could build and analyze
a structure in music. With this knowledge, there is the last important thing before we
choose the right language model to generate or analyze music. We have to look at the
structure of the music from a computational point of view. This topic is covered in [26],
from which we used information that is in this chapter.

Many people, including [26] argue that music language falls into the same class as nat-
ural languages do. This class is called mildly context-sensitive languages. As we discussed

26

various properties that could be found in music, the classification in terms of the computa-
tional capacity of those parts also differs.

3.6 Generative Capacity
To start formalizing music, we have to talk about what weak and strong generative capac-
ities are. When we just talk about string outputs that are generated by grammar, it is
called weak generative capacity. If we take a closer look at complete derivations and the
way the strings were generated, we talk about strong generative capacity. For us, it is much
more interesting to focus on strong generative capacity as it gives us a more inside view
of how formal models generate music. The hierarchy of formal grammars and languages
was introduced in 2.6. Within this framework, the language of music can be analyzed to
determine its placement.

Regular Languages (Type-3)

Regular languages are largely equivalent to regular expressions, which are commonly utilized
in numerous UNIX tools and utilities. They have low computational complexity, they can
be analyzed in linear time, and we can apply on them almost all algebraic operations. When
it comes to music, they have limited generative capacity. Not that many parts or structures
in music could characterized by regular grammar as we will later see.

Some attempts have been made to connect regular languages with Shannon n-grams
[40] under the condition that we forget the probabilities. Shannon’s n-grams are commonly
used in linguistics, and they model sequential structure in language. We define by them the
probability of generating the next symbol in sequence in terms of the previously generated
(𝑛− 1) symbols. An equal approach is used in music.

We will not dive deep into tree languages, but an example can be found in [2]. This
work uses regular tree grammars and tree transducers to form a musical piece. The system
begins by creating an initial tree and applies various tree operations to transform it.

Also, a small mention of music generated by regular grammar is in [20], but no modern
works are built around regular grammars.

Context-Free Languages (Type-2)

Context-free languages are characterized mainly by tree structures. An example could
be a balanced pair of parenthesis or mirror structures. They find usage in programming
languages as most belong to deterministicly parseable subsets of type-2 languages. Type-2
languages could be parsed in 𝒪(𝑛3) time. However, some challenges come with them, such
as ambiguity, and they are not closed under complement or intersection.

Figure 3.11: Context-free and non-context free dependencies.

27

Specific music parts belong to this category, as shown in the first two measures in figure
3.11. It is a simple melody when the first three tones rise in melody and the other three
decline.

Many works in computational musicology are based on context-free grammars. From
a formal perspective, one notable approach involves the use of probabilistic context-free
grammars. One of them is [3]. We will talk about how this grammar is applied in music
later.

Another example of type-2 grammar could be attribute grammar in [4]. But those
grammars are used for something different than music creation and avoid structures we
want to represent.

Context-Sensitive Languages (Type-1)

This group of languages is usually described as a copy language. When we directly take
a look at an example in music in figure 3.11. Those last two measures are copies of each
other. Such a language is decidable but computationally complex. From our small example,
there is doubt that if we want to generate music, context-free options are enough.

An example of a work that uses context-sensitivity and its properties is presented in
[21]. This work focuses on tabla music, though the knowledge can be applied to other types
of music as well. Regular grammar is straightforward and easy to use; however, it becomes
uncontrollably complex when accounting for irregularities in actual performances. Not only
that, but we want to work with jazz music that is mostly improvisational, and this would
only compound the problem.

Our target in music analysis and generation will be classical and jazz music. It is
the most effective way to demonstrate the power of music generation by formal models
because this music contains structure. We have shown an example of structure in 3.11.
But there are more examples to come. One could be a variation of a motif in music that
can be expressed by copy language. Another could be multiple musical instruments playing
together in harmony. This interplay of numerous musical instruments is dependent on each
other. We could also consider this as an example of context dependencies.

Recursively Enumerable Languages (Type-0)

The last category that will not be needed, but we still mention it to ensure complete-
ness, which are type-0 languages. These are accepted by Turing machines, equivalent to
unrestricted grammars, and are generally considered synonymous with the set of com-
putable functions. While Type-0 formalisms are extremely powerful, they are notoriously
intractable. This is a property that we don’t want in music.

28

Chapter 4

Related Work

In the field of computer music, numerous methods exist for generating music. To better
explain and show why our model is unique compared to existing approaches, we have decided
to put together this chapter. There are many models in the field of computer science, and
it is not hard to pick one and create a simple melody. But as we dive deeper into the music
and what is behind it, this task is getting more difficult, as well as a way to interpret music
generated by specific models.

4.1 Lindenmayer Systems
One of the most popular formal models used to generate music is the L-system. The paper
that initiated further advancements in the usage of this model is [9]. The use of L-systems
was intended to explain the development of living organisms formally. This was studied
by theorists from many scientific fields. Later, this was also applied to generate plants
and trees. The author of the already mentioned paper found another application that was
in fractal curves. But this is not that interesting to us as the newfound application in music
that is generated by algorithms focused on musical scores. In this work, music scores are not
generated directly. It believes that the graphical interpretation of the L-system is closely
related to the interpretation of music. The generated string is parsed for a turtle that is
driven by encoded commands in this string. A drawn Hilbert curve is navigated through,
and horizontal line segments are converted to notes. Vertical line segments of this curve
are used as pitch, and segment length determines the note duration.

Figure 4.1: A small example of the conversion of the Hilbert curve into music scores.

29

An example of the algorithmic approach mentioned is in Figure 4.1. Conversions start
at tone C, and the curve transformation starts at the bottom left corner. A small example
of the conversion of the Hilbert curve into music scores.

An interesting example of growing music can be found in [6]. This work focuses on cre-
ating synchronized and aesthetically pleasing graphical and musical renderings. It explores
various types of L-systems, with particular attention to the stochastic version, which is used
to generate plant structures from the same family but with varying details. A similar con-
cept can be applied to music, particularly when examining structured genres such as jazz
or classical music. Defining a formal model that captures the characteristics of a stochastic
genre variation could help generate diverse musical compositions. The second model used
in this work is the context-sensitive L-system. The advantages of this model are that it
allows to change the structure with respect to surroundings. This is useful in music for
creating compositions where intensity, volume, or complexity increases. Of course, it could
be used in other way around to simplify, soften, or reduce complexity.

Figure 4.2: Melody generated by stochastic L-system.

An example of music generated by [6] is shown in Figure 4.2. This demonstrates a sim-
ple melody that reminds the jazz solo inspired by a plant in the left part of this figure.
This example and others used in the mentioned paper are in the depth of 3 or 4 iterations.
This was proven to be the depth that creates interesting short melodies. With increasing
iterations, melodies do not bring anything new and get dull. This should be solved by
a stochastic model. Using more interesting grammars like parametric L-systems can gener-
ate complex and realistic music. Additionally, the L-system that incorporates inputs from
the environment could serve as inspiration. There are many ways to adopt this idea. One
could be two L-systems reacting to each other while they generate their music.

The previously mentioned methods generate music but do not do so directly. They use
some sort of postprocessing on the string that is being generated by a L-system. An example
that directly generates music could be [10]. An improvement brings the work of [11] where
the author, compared to the previous paper, uses stochastic and context-free L-systems to
experiment with direct music composition.

A complex dynamic system built on the hierarchy of L-systems that are connected
to each other in a net structure is found in the work [13]. In addition to building such
a system, this work explores the possibility of interaction with an instrument or musician
using L-systems. If we talk about the interactive system, then this work uses L-systems to
segment and process incoming sound commands. However, the focus of this work is on the
creation of a musical spatial domain. This domain is created by multiple L-systems, where
each system generates a specific music element. Then, the next step is to map the resulting
spatial space into music. That is done by a turtle that takes instructions that were created
from the vector. The mentioned turtle moves in 3-dimensional space and can be considered
to be a timed automaton. An example of this system is shown in Figure 4.3.

30

Figure 4.3: Hierarchy or L-system network.

A different viewpoint on music in multidimensional space comes from [14]. This ap-
proach uses simple operations to navigate through voice-leading and chord spaces. It is
a demonstration of a score generator based on L-systems that works in mathematical spaces
that contain fundamental musical structures. Voice-leading is expressed as an orbifold with
chords represented by points. The roughness of chords is modeled by the short distances
of orbifolds. The closer they are, the smoother the voice. We have already discussed what
Tonnetz is, as it is the primary driver of our score generation. This was inspired by this
work as it uses Tonnetz to explain voice-leading connections between minor and major tri-
ads to find natural pathways between harmonies. Again, this work uses the L-system to
produce commands for the turtle program, which is then converted to music.

Figure 4.4: Tonnetz for trichords.

31

Figure 4.4 illustrates how such a space can look. This illustration is taken from a modern
book [15] that takes a look at music from a geometry point of view.

4.2 Other Grammars
We have covered one large group of models used in music generated by formal models. The
next large group and maybe the last is probabilistic context-free grammar (PCG). Prime
examples of this are works [20], [3], and [2].

It was shown by [20] that PCG could be used in tools that assist in creating jazz solos
in the context of specific chord progressions. There are many ways to do this. One is
manually creating a large database with different chord progressions. To avoid this, we
need software that can dynamically generate melodic phrases that sound coherent and
stylistically appropriate. To make such a software work, we need a PCG that makes notes
fit into a melody, which is pleasing to listen to. Compared to different works, this one gives
agility for a user to control specific constraints in grammar like minium and maximum
pitch values, intervals, or probability to cross specified intervals. Another specificity is the
categorization of terminal notes into chord tones, color tones, approach tones, and others.

On how to apply CFG to Bach Chorale melodies, we have to take a look at [3]. What
they do is melody reduction to find the underlying structure of a melody or employ this
model to generate melodies. They look at music as a high-level structure and consider
it to be something much more than just a sequence of events. This work aims to provide
a definition of a statistical model of music that is compact and computable and brings more
computational power than finite-state approaches. Because of that, no preference rules are
used in grammar that could be preferred by listeners.

An interesting example of how to use tree grammars in music composition is [2]. They
play with the idea of music generation with tree languages. Formal models used for this
are regular tree grammars (RTG) and tree transducers. Regular tree grammars are used
to generate the initial tree and then are applied transducers to form the final musical
composition. The problem with this is that they can create only music with one voice.
Like many other works, they are focused on specific styles of music, and they try to train
models with this assumption. They use a combination of rules and statistical methods.
This combination is divided into several different operations and reduces state space and
processing power needed for each generation step. With that, the number of unique melodies
that can be generated increases. The final formal models used in this work are also hidden
Markov models, and they also experiment with variants like mixed-order Markov models.

Figure 4.5: RTG and its rhythmic derivation.

Figure 4.5 taken from [2] is a small example of how a small rhythmic phrase could be
generated by RTG.

32

4.3 Grammar in music notation
Another area of music where formal models could be applied is music notation. We have
talked mostly about music generation, but formal models could verify music notation as
it is in [4]. This work is focused on control flow in score notation. Figure 4.6 shows
a small example of control flow. In short, the notations Fine denotes the end of the music
composition and D.C al Fine states that the composition should be played again from the
start till the Fine label.

Figure 4.6: Control flow notation.

The mentioned formal framework is based on context-free and attribute grammars.
This combination guarantees that the interpretation of music notation is well-defined and
unambiguous. The goal of context-free grammar is to create a parse tree that represents the
from of final scores. Context-free grammar does not represent the meaning of music score by
itself. For that, there is attribute grammar, which defines timing, duration, and repetition
rules. This grammar enforces unambiguous representation and presents a flattened playable
sequence of scores.

Frameworks like this find usage in computer-aided music processing. They enable tools
like notation software, AI music systems, and digital performance tools to correctly interpret
and execute musical scores with complex control flow elements.

4.4 Music Automaton
So far, we have been talking about grammars and their applications in music. An example
of automata used in modern music is [16]. In this chapter, we have talked about many
models that work in non-interactive environments. They create music in multiple steps.
An idea that has not been mentioned yet is that we can use formal models to interact
with its inputs. The example mentioned proposes a special framework that is able to create
variable-form improvised pieces in real music performances. This is based on the framework
of Rhythmically-Controlled Multi-Mode Audio-Based Interactive System proposed by [16].
The problem that is trying to solve this thesis is in recent developments in the field of
interactive music systems that are fighting with rhythm issues. Formalization is done with
the help of the theory of synchronized automata, which is enhanced with three structures.
This defined concepts of mode and meta-mode.

Mode and meta-mode are terms that cover a structured way of controlling musical
improvisation in interactive music systems using automata theory. Mode is a specific state
of the system during musical interaction. Meta-mode takes care of the interaction between
modes and manages when and how to switch modes. Those are the key aspects of developing
reasonable and rhythmically driven systems used in live performance.

33

SET1 SET2 SET3

REP REP

M1 M2

REP
p3

M11 M12

p1

p1

S1

p2
R1

R2

R3

R4

R5

R8

R7

R6

Q1 Q2

Q3 Q4

REP

REP

REP

REP

ATT

ATT

ATT

ATT
ATT

ATT

ATT

ATT

Figure 4.7: Rhytmically-Controlled automata.

Automata in figure 4.7 is in initial state (𝑄1, 𝑅1, 𝑆1, 𝑆𝐸𝑇1,𝑀11). This system has a tree
structure. The dotted line divides this system into meta-modes and modes of interaction.
Meta-modes are above the line, and modes are below. Each automaton is driven by different
actions. REP is to detect repetitions of rhythmic phrases. ATT is an action made after
an attack. Detection of the phrase is denoted by 𝑝. Detailed description on how this work
could be found in cited work. Another interesting thing is that this work uses input sound
waves to make actions. It applies knowledge from signal processing theory.

34

Chapter 5

Design and Application of
Computational Models

Finally, we will present further advances in the field of Musicology. This chapter will
show how a music with great formal structure can be generated with a proper selection
of formal models. We have chosen to use scattered-context grammar to capture various
cross-dependencies in music. The related work we studied did not mention how formal
models can generate multi-instrumental music. To address this gap, we propose the use of
a multi-generative grammatical system as the most suitable approach. In this chapter, we
give the reasoning behind all of those decisions and show the applications for those models.

Some parts of this chapter are related to my bachelor’s thesis [31]. Popular chord
progressions were taken from [37] and used in provided examples to demonstrate music
generation. I have used [34] to create music notation images in this chapter.

5.1 Model Definition
The presented section introduces a definition of a formal model that can generate classical
music for multiple instruments. This model builds up on multigenerative grammar systems
defined in [1] and [30]. The uniqueness of this system is that it allows grammatical com-
ponents to apply its rules in a single generation step. When this generation process stops,
the generated strings in the model are put together using one of the string operations.
But this is not something we want as we want to keep those generated strings for specific
instruments to be played. For a positive integer 𝑛 our 𝑛-generative grammar system works
with 𝑛 scattered grammars, which represent cross-serial dependencies in music. In our case,
the number 𝑛 is the number of staves in a musical composition. As an example we can use
piano-violin sonata written on a three-stave system, with two staves for the piano (right
and left hand) and one for the violin. Grammar as components of the system do derivation
steps concurrently to ensure mutual interconnection, where both instruments play music
and complement each other. This is managed by the finite set of 𝑛-tuples of rules. When
the derivation process is done, then there are 𝑛 strings of notes for selected instruments to
be interpreted.

Below, we present the formal definition of this system, detailing its grammar rules,
derivation process, and interaction mechanisms.

35

Definition 5.1.1 An n-generative rule-synchronized music grammar system is defined as
an (𝑛+ 1)-tuple

Gs = (𝐺1, 𝐺2, 𝐺3, ..., 𝐺𝑛, 𝑄),

in which

• 𝐺𝑖 = (𝑁𝑖, 𝑇𝑖, 𝑃𝑖, 𝑆𝑖) is a scattered-context grammar introduced in Definition 2.4.1, for
all i = 1,, n;

• 𝑄 is a finite set that consists of n-tuples structured as (𝑝1, 𝑝2, ..., 𝑝𝑛), where 𝑝𝑖 ∈ 𝑃𝑖,
for all i = 1, ..., n.

In addition to the original definition, we will use tokens instead of plain terminals.
Tokens have indexed attributes they represent that are going to be taken into account
in the final music interpretation by the instrument. Tokens are in the form 𝑡[𝑤1,𝑤2,...,𝑤𝑛] ∈ 𝑇𝑖,
where 𝑤1, 𝑤2, ..., 𝑤𝑛 are music attributes like tone length, special operation (tone inversion,
shift, etc.), chord or others.

To improve readability while generating harmonic passages in music, we chose to rep-
resent chords using symbols from the Greek alphabet for simplicity, as they are difficult to
denote with single-character symbols. In our examples, we will have tables that map Greek
symbols to chords.

The final strings derived from the start symbol of a grammar or in our model are in 𝑛-
form as 𝑛-tuples structured as 𝑆𝑓 = (𝑥1, 𝑥2, ..., 𝑥𝑛), where 𝑥𝑖 ∈ (𝑁 ∪ 𝑇)*, for all 𝑖 = 1, ...,
𝑛. Let us take

𝑐 = 𝑎1𝐴1...𝑎𝑛𝐴𝑛𝑎𝑛+1,

𝑑 = 𝑎1𝑥1...𝑎𝑛𝑥𝑛𝑎𝑛+1.

Then 𝑆𝑓 = (𝑐1, 𝑐2, ..., 𝑐𝑛) and 𝑆𝑓 = (𝑑1, 𝑑2, ..., 𝑑𝑛) we consider to be sentential 𝑛-forms,
in which 𝑐𝑖, 𝑑𝑖 ∈ (𝑁 ∪ 𝑇)*, for every 𝑖 = 1, ..., 𝑛. Consider 𝑟𝑖: (𝐴1, ..., 𝐴𝑛) → (𝑥1, ..., 𝑥𝑛)
∈ 𝑃𝑖 for all 𝑖 = 1, ..., 𝑛 and (𝑟1, 𝑟2, ..., 𝑟𝑛) ∈ 𝑄, such that 𝑐𝑖 → 𝑑𝑖 ∈ 𝑟𝑖. Consequently,
𝑆𝑓 directly derives 𝑆𝑓 in 𝐺𝑠, denoted by

𝑆𝑓 ⇒𝐺𝑠 𝑆𝑓 .

Let us generalize ⇒𝐺𝑠 with ⇒𝑘
𝐺𝑠

, for all 𝑘 ≥ 0, ⇒+
𝐺𝑠

and ⇒*
𝐺𝑠

. Generated 𝑛-string of
𝐺𝑠, denoted by n-𝑆(𝐺𝑠), we define by

𝑛-S(𝐺𝑠) = {(𝑤1, 𝑤2, ..., 𝑤𝑛)|(𝑆1, 𝑆2, ..., 𝑆𝑛)⇒*
𝐺𝑠

(𝑤1, 𝑤2, ..., 𝑤𝑛),

𝑤𝑖 ∈ 𝑇 *, for all 𝑖 = 1, ..., 𝑛}.

5.2 Encoding Musical Concepts into the Grammar
Music has structure, and there are many attempts to formalize it. Our focus is mainly on
well-known music genres that are recognized for their structure. But not just those genres
have structure, but many others, like popular songs. To showcase our model, we have
picked the sonata form from classical music, and jazz music is represented by its standard
form. The mentioned forms presented here are taken from [36] and [27].

We have two simple examples in figure 5.1 that will be used to demonstrate how musical
pieces could be encoded into grammar. On the left side, we have the popular jazz song

36

Take The A Train taken from [36]. The right side of the figure [35] shows a minimalistic
example of sonata form called Allegro in F composed by Mozart.

When choosing a top-down approach to analyze a musical piece, we start by examining
its overall structure. A great example is the jazz song shown in Figure 5.1, which uses
the most common structure in jazz standards, the AABA form. This song consists of two
distinct sections (A and B), with each section typically spanning eight measures. These
sections form the standard 32-measure framework of the basic melody found in AABA jazz
compositions.

Figure 5.1: Jazz form (the left side) and sonata form (the right side).

When applying a similar analytical approach to the sonata form, we observe a three-
part structure: exposition (𝐴), development (𝐵), and recapitulation (𝐴′). The exposition
introduces the primary thematic material, typically divided into two contrasting themes.
The development explores these themes through variations, modulations, and transforma-
tions. Finally, the recapitulation returns to the original thematic material, usually restating
the exposition themes in their original keys or slightly modified. This structured approach
allows composers to achieve a coherent and varied musical narrative, which is fundamental
to classical sonata compositions.

To achieve mentioned music forms it is a great idea to generate them using start symbols
as an example could be

𝑆 → 𝐴𝐴𝐵𝐴

or 𝑆 → 𝐴𝐵𝐴′.

.
But in the end, it is up to the composer to choose the form he wants his music to be in.

37

Encoding Melody and Harmony

Once we have generated the initial nonterminals that outline the structure of the musical
piece, the next step is to create the actual musical content. Music is truly creative, and
there are endless possibilities. In our sonata example, we could encode exposition into three
non-terminals 𝑇1, 𝑅, 𝑇2 and similarly recapitulation 𝑇 ′

1, 𝑅
′, 𝑇 ′

2. The symbol 𝑅 represents the
transitions between the tonic and dominant phrases 𝑇1 and 𝑇2. 𝑇1 and 𝑇2 are also themes of
our song that create interesting tension. Development in an example could be characterized
by two variations of original theme and we will denote it by 𝑉1 and 𝑉2. To put this into
rules

𝑆 → 𝐴𝐵𝐴′

(𝐴,𝐴′)→ (𝑇1𝑅𝑇2, 𝑇
′
1𝑅

′𝑇 ′
2),

𝐵 → (𝑉1, 𝑉2).

For our jazz example, we first introduce the main theme and then repeat it, perhaps
with slight variations. Following these two sections 𝐴 is a section known as the bridge,
characterized by contrasting melody or harmony. Finally, the original main theme returns.
Each of these sections typically consists of eight measures. In the jazz piece we have selected
we have a theme from two similar melodies. Rules that would generate structure of the
example would look like:

𝑆 → 𝐴𝐴𝐵𝐴

(𝐴,𝐴,𝐴)→ (𝑇1𝑇2, 𝑇1𝑇2, 𝑇1𝑇2),

𝐵 → (𝑉1, 𝑉2).

The last missing piece of a grammar that could generate our example is to define notes
to be played in mentioned melodic sections. Sonata rules for the first two measures and
their variation would look like

(𝑇1, 𝑇
′
1)→ (𝑑[𝑒,2]ℎ[𝑒,1]𝑎[𝑒,2]𝑐[𝑒,2], 𝑑[𝑒,2]ℎ[𝑒,1]𝑎[𝑒,1]𝑐[𝑒,2]),

(𝑇1, 𝑇
′
1)→ (ℎ[𝑒,1]𝑎[𝑒,−1]𝑝[𝑒,−1]𝑐[𝑒,1], ℎ[𝑒,1]𝑎[𝑒,−2]𝑝[𝑒,−1]𝑐[𝑒,2]).

On the right-hand side of the grammar rules, tone names are indexed using brackets,
where the first symbol (e) indicates note duration (length—in this case, an eighth note),
and the second number specifies the pitch interval or position within the current musical
context.

For simplicity within this musical framework, the decision was made not to analyze
the musical structure beyond the level of a single measure. This approach helps to ensure
rhythmic consistency in the generated music and provides a clearer, more polished gram-
matical representation. Additionally, it eliminates the need to calculate the exact number
of beats per measure or manage the filling of any remaining rhythmic gaps.

The presented approach could be applied to any musical piece. We define our form, and
after that, from form, we can generate various numbers of melodic and harmonic passages.
Formally, this can be represented by grammar rules of the following general structure:

𝑆 → 𝐴𝐵𝐴′

(𝐴,𝐴′)→ (𝑇1𝐻1𝑇2𝐻2, 𝑇
′
1𝐻

′
1𝑇

′
2𝐻

′
2),

𝐵 → (𝑉1𝐻1, 𝑉2𝐻2).

38

Here we have characterization of music piece where there is a switch between tonic and
harmonic parts. Followed by different variations that could be picked up from classical
composers like Bach, Bethoween and others. This is a creative process, and it is up to the
creator of the grammar to determine how their music is perceived.

Encoding Multi-Instrumental Compositions into Grammar Rules

We have covered how to create a musical piece when there is only one instrument and needs
only one staff. For example, a piano has two staffs lines for each hand. Of course, one staff
still can be interpreted by instrument, but it would lack melody or harmony.

From Figure 5.2, we can see how important it is to have a model that is able to syn-
chronize the generation of music between treble and bass clefs for piano. There is a clear
connection between them. The bass clef mirrors the melody created by treble clef. Because
of this, we use a rule-synchronized model that guarantees these properties are preserved.
A similar approach can be applied to music for multiple instruments, where instruments
often copy the melody, create contrast, create tension, or use other musical expressions to
make music interesting.

Figure 5.2: A small example of dependencies between music staffs.

Figure 5.2 comes from the development of 5.1. The second rectangle (green) is a varia-
tion of the notes selected in the first rectangle (blue). This can be easily encoded into the
2-component system

𝐺𝑠 = (𝐺1, 𝐺2, 𝑄),

where

• 𝐺1 = ({𝑆1, 𝑇, 𝑇↓}, {𝑓[−,𝑒,2], 𝑑[−,𝑒,2], ℎ[−,𝑒,1], 𝑔[−,𝑒,1], 𝑐[−,𝑒,2], 𝑒[−,𝑒,2],
𝑟[−,𝑞,−], 𝑟[−,𝑒,−], 𝑓[↓,𝑒,2], 𝑑[↓,𝑒,2], ℎ[↓,𝑒,1], 𝑔[↓,𝑒,1], 𝑐[↓,𝑒,2], 𝑒[↓,𝑒,2]},
{1 : 𝑆1 → (𝑇, 𝑇↓),
2 : (𝑇, 𝑇↓)→ (𝑟[−,𝑞,−]𝑟[−,𝑒,−]𝑓[−,𝑒,2]𝑇, 𝑒[−,𝑞,−]𝑟[−,𝑒,−]𝑒[↓,𝑒,2]𝑇↓),
3 : (𝑇, 𝑇↓)→ (𝑓[−,𝑒,2], 𝑑[−,𝑒,2], 𝑑[−,𝑒,2], ℎ[−,𝑒,1]𝑇, 𝑓[↓,𝑒,2], 𝑑[↓,𝑒,2], 𝑑[↓,𝑒,2], ℎ[↓,𝑒,1]𝑇↓),

39

4 : (𝑇, 𝑇↓)→ (ℎ[−,𝑞,1]𝑟[−,𝑒,−]𝑔[−,𝑒,1]𝑇, ℎ[↓,𝑞,1], 𝑟[↓,𝑒,−], 𝑔[↓,𝑒,1]𝑇↓),
5 : (𝑇, 𝑇↓)→ (𝑐[−,𝑒,2]𝑔[−,𝑒,1]𝑑[−,𝑒,2]𝑔[−,𝑒,1]𝑇, 𝑐[↓,𝑒,2]𝑔[↓,𝑒,1], 𝑑[↓,𝑒,2]𝑔[↓,𝑒,1]𝑇↓)
6 : 𝑇↓ → (𝑑[−,𝑒,2]𝑟[−,𝑒,−]𝑟[−,𝑞,−])}),

• 𝐺2 = ({𝑆2, 𝐵,𝐵↓}, {𝑟[−,ℎ,−], 𝑟[−,𝑞,−], 𝑐[−,𝑞,2], 𝑔[−,𝑞,2], 𝑓[−,𝑞,2], 𝑔[↓,𝑞,2],
𝑓[↓,𝑞,2], 𝑒[−,𝑞,2], ℎ[−,𝑞,1], 𝑒[↓,𝑞,2]},
{1 : 𝑆2 → (𝐵,𝐵↓),
2 : (𝐵,𝐵↓)→ (𝑟[−,ℎ,−]𝐵, 𝑐[−,𝑞,2]𝑟[−,𝑞,−]𝐵↓)
3 : (𝐵,𝐵↓)→ (𝑟[−,ℎ,−]𝐵, 𝑟[−,ℎ,−]𝐵↓),
4 : (𝐵,𝐵↓)→ (𝑔[−,𝑞,2]𝑓[−,𝑞,2]𝐵, 𝑔[↓,𝑞,2]𝑓[↓,𝑞,2]𝐵↓),
5 : (𝐵,𝐵↓)→ (𝑒[−,𝑞,2]ℎ[−,𝑞,1], 𝑒[↓,𝑞,2]ℎ[↓,𝑞,2]𝐵↓),
6 : 𝐵↓ → (ℎ[−,𝑞,1]𝑟[−,𝑞,−])},

• 𝑄 = {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)}.

This shows how easy it is to encode one of the most popular classical songs into the
grammar. Grammar 𝐺1 has rules that can be applied to gererate the treble clef for piano
and 𝐺2 produces the bass clef. Each measure for both treble and bass clefs is synchronized
in set 𝑄.

5.3 Derivation Process in Multi-Generative Grammar
Derivation in formal language theory is a process in which the initial starting symbol is
transformed or rewritten by rules until we reach the final string, which consists only of
terminal symbols. A similar approach is used to generate music, with the key difference
being that terminal symbols are interpreted as musical notes.

With the intention to create a music piece, rules have to be applied in a certain order.
First, we rewrite starting symbol with nonterminals to define structure of the composition.
With that, we can start to rewrite structure symbols so that final melodies and harmonies
can take the form.

To show this, let us start with an example that generates jazz music for two instruments:

𝐺𝑠 = (𝐺1, 𝐺2, 𝑄),

in which

• 𝐺1 = ({𝑆1, 𝐴,𝐵}, {𝑐𝑦, 𝑎𝑥, 𝑔𝑥, 𝑒𝑦, 𝑓𝑥, 𝛼𝑧, 𝛽𝑧, 𝛾𝑧, 𝛿𝑧, 𝜖𝑤, 𝜁𝑤},
{1 : 𝑆1 → (𝐴𝐴𝐵𝐴𝑆1),
2 : 𝑆1 → (𝐴𝐴𝐵𝐴),
3 : (𝐴,𝐴,𝐴)→ (𝑀𝐻,𝑀𝐻,𝑀𝐻),
4 : (𝑀,𝑀,𝑀)→ (𝑐𝑦𝑐𝑦𝑎𝑥𝑔𝑥, 𝑐𝑦𝑐𝑦𝑎𝑥𝑔𝑥, 𝑐𝑦𝑐𝑦𝑎𝑥𝑔𝑥),
5 : (𝐻,𝐻,𝐻)→ (𝛼𝑧𝛽𝑧𝛾𝑧𝛿𝑧, 𝛼𝑧𝛽𝑧𝛾𝑧𝛿𝑧, 𝛼𝑧𝛽𝑧𝛾𝑧𝛿𝑧),
6 : (𝐵)→ (𝐻1𝑀1),
7 : (𝐻1,𝑀1)→ (𝜖𝑤𝜁𝑤, 𝑒𝑦𝑎𝑥𝑓𝑥𝑎𝑥)}),

• 𝐺2 = ({𝑆2, 𝐴,𝐵, 𝑃, 𝐿}, {𝑐𝑣, 𝑔𝑣, 𝑟𝑣, 𝑎𝑢, 𝑒𝑣, 𝑟𝑡},
{1 : 𝑆2 → (𝐴𝐴𝐵𝐴𝑆2),
2 : 𝑆2 → (𝐴𝐴𝐵𝐴),
3 : (𝐴,𝐴,𝐴)→ (𝑃𝐿,𝑃𝐿, 𝑃𝐿),
4 : (𝑃, 𝑃, 𝑃)→ (𝑐𝑣𝑔𝑣𝑐𝑣𝑔𝑣𝑟𝑣𝑔𝑣𝑐𝑣𝑔𝑣, 𝑐𝑣𝑔𝑣𝑐𝑣𝑔𝑣𝑟𝑣𝑔𝑣𝑐𝑣𝑔𝑣, 𝑐𝑣𝑔𝑣𝑐𝑣𝑔𝑣𝑟𝑣𝑔𝑣𝑐𝑣𝑔𝑣),

40

5 : (𝐿,𝐿,𝐿)→ (𝑐𝑣𝑎𝑢𝑒𝑠𝑟𝑣𝑟𝑡𝑒𝑠𝑎𝑢, 𝑐𝑣𝑎𝑢𝑒𝑠𝑟𝑣𝑟𝑡𝑒𝑠𝑎𝑢, 𝑐𝑣𝑎𝑢𝑒𝑠𝑟𝑣𝑟𝑡𝑒𝑠𝑎𝑢),
6 : (𝐵)→ (𝑃𝐿),
7 : (𝑃,𝐿)→ (𝑐𝑣𝑔𝑣𝑐𝑣𝑔𝑣𝑟𝑣𝑔𝑣𝑐𝑣𝑔𝑣, 𝑐𝑣𝑎𝑢𝑒𝑠𝑟𝑣𝑟𝑡𝑒𝑠𝑎𝑢)}),

• 𝑄 = {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (7, 7)}.

Grammars in system 𝐺𝑠 use substitution of token symbols for better readability in de-
fined grammar and in following derivations. Explanation of the tokens in grammar 𝐺1 is
in the table 5.1 and for 𝐺2 in 5.2. The defined system has extra substitution for the token
attributes in comparison to the following examples in other sections. This was done to
make derivation steps more readable.

Symbol Note and Chord
𝑐𝑦 𝑐[−,𝑞,2]

𝑎𝑥 𝑎[−,𝑞,1]

𝑔𝑥 𝑔[−,𝑞,1]

𝑒𝑦 𝑒[−,𝑞,2]

𝑓𝑥 𝑓[−,𝑞,1]

𝛼𝑧 𝐶ℎ𝑜𝑟𝑑(𝐶,𝐶,𝐸)[−,𝑞,1]

𝛽𝑧 𝐶ℎ𝑜𝑟𝑑(𝐷,𝐹,𝐴)[−,𝑞,1]

𝛾𝑧 𝐶ℎ𝑜𝑟𝑑(𝐴,𝐶, 𝐹)[−,𝑞,1]

𝛿𝑧 𝐶ℎ𝑜𝑟𝑑(𝐴,𝐶,𝐸)[−,𝑞,1]

𝜖𝑤 𝐶ℎ𝑜𝑟𝑑(𝐴,𝐶, 𝐹)[−,ℎ,1]

𝜁𝑤 𝐶ℎ𝑜𝑟𝑑(𝐹,𝐴,𝐶)[−,ℎ,1]

Table 5.1: Mapping of terminal symbols to
their note interpretation for 𝐺1.

Symbol Note and Chord
𝑐𝑣 𝑐[−,𝑒,1]

𝑔𝑣 𝑔[−,𝑒,1]

𝑟𝑡 𝑟[−,𝑒,1]

𝑎𝑢 𝑎[♭,𝑒,1]
𝑒𝑣 𝑒[♭,𝑒,1]
𝑟𝑡 𝑟[−,𝑒,1]

Table 5.2: Mapping of terminal symbols to
their note interpretation for 𝐺2.

For this 𝐺𝑠, we can create the following derivation steps:

• (𝑆1, 𝑆2)⇒1 (𝐴𝐴𝐵𝐴,𝐴𝐴𝐵𝐴)⇒2 (𝐻𝑀𝐻𝐵𝑀𝐻,𝑃𝐿𝑃𝐿𝐵𝑃𝐿)
⇒3 (𝑐𝑦𝑐𝑦𝑎𝑥𝑔𝑥𝐻𝑐𝑦𝑐𝑦𝑎𝑥𝑔𝑥𝐻𝑀1𝐻1𝑐𝑦𝑐𝑦𝑎𝑥𝑔𝑥𝐻,
𝑐𝑣𝑔𝑣𝑐𝑣𝑔𝑣𝑟𝑣𝑔𝑣𝑐𝑣𝑔𝑣𝐿𝑐𝑣𝑔𝑣𝑐𝑣𝑔𝑣𝑟𝑣𝑔𝑣𝑐𝑣𝑔𝑣𝐿𝑃𝐿𝑐𝑣𝑔𝑣𝑐𝑣𝑔𝑣𝑟𝑣𝑔𝑣𝑐𝑣𝑔𝑣𝐿)
⇒ . . .

Instead of writing out terminal symbols, it is much more interesting to demonstrate
terminal symbols already in the music staff. Nonterminal symbols are blank bars that
represent the structure. Fig. 5.3 describes the correspondence between the third and fourth
derivation steps in 𝐺𝑠 and their musical interpretation. More specifically, during ⇒3, 𝐺𝑠

rewrites nonterminals 𝐻 and 𝐿 from 𝐺1 and 𝐺2, respectively; as a result, all A parts are
completed. During ⇒4, 𝐺𝑠 completes the generation of the sentence and, therefore, its
corresponding musical piece by filling in the missing part of the generated score.

41

⇒3

⇒4

Figure 5.3: The third and fourth derivation step shown in music staff that corresponds to
(5, 5) ∈ 𝑄, and (7, 7) ∈ 𝑄.

To give a better explanation of what our grammar generates. It is a jazz piano solo
in the mentioned form. The bass clef is there to provide background for the main theme,
which is generated in the treble clef. What we used for it is a simple PL cycle. The
treble clef contains A part that consists of one melody and one harmonic part. Similarly,
in contrast, section B starts with the harmonic part from chords and ends with a melody
that is connected to the last repetition of the main theme.

5.4 Algorithmic Implementation of the Model
As it is in all aspects of informatics to make our model work in a program, there is a need
for an algorithm that makes it run. Because of that, we have formed a simple algorithm
that generates multi-string and is presented in Algorithm 1.

42

As an input, the algorithm takes grammar system 𝐺𝑠. This system has to contain
scattered context grammars that have rules for structure and tokens. The application of
rules defined in each grammar is non-deterministic. Because of this, the implementation
must determine which rule to apply by making a random choice. Defined grammars could
have endless possibilities for rules that could be applied. To avoid that, we also put the
number of repetitions as an input argument. This number determines how many times
a specific rule with a nonterminal on the right-hand side can be applied in a row. For
example a rule (𝐴,𝐴) ⇒ (𝑇𝐻, 𝑇𝐻) can be applied maximum of repetition times. This
ensures that at some point, all nonterminals will be rewritten using tone rules and limits
tedious repetitions that happen with too many similar structural parts. This parameter
was inspired by the iterative parameter used in L-systems.

The algorithm begins by initializing the multi-string with starting symbol for each
grammar. Next, the list of applied rules is initialized. We want to keep the list of rules
that are applied during the derivation process for composer.

For didactic reasons, we have decided to split the algorithm into two parts. The first
part identifies and applies structure rules, while the second loop applies rules that generate
final tokens, which are then interpreted as musical output. The union of structure rules and
token rules constitutes the complete rule set for each component of the grammar system.

After that, we enter the nested while loop that controls the number of repetitions. Inside
this loop, we select a component from the grammar system. Before performing a derivation
step, we retrieve the current string for this component along with the list of rules that have
already been applied. We search for nonterminals that can be rewritten using structure
rules in this string. If a rule is applicable, it is selected and applied. Then, we retrieve
a tuple of corresponding rules for the other components to maintain synchronization. This
can be handled in multiple ways; in our case, we keep these tuples indexed by the rule
applied in the selected component.

Synchronization is performed in the nested forall loop, where the corresponding rules
are applied to all components, and their derivation steps are stored. This process is repeated
for every nonterminal generated from the start symbol at least once and continues until
the repetition limit is reached. Once the limit is met, rewriting stops. In the case of
structure rules, the algorithm moves on to tone rules; in the case of tone rules, the algorithm
terminates and returns the resulting multi-string along with the list of derivation steps.

The repetition counter 𝑖 is incremented only after all nonterminals have been rewritten
at least once.

43

Algorithm 1: Generate Multi-string Music from Grammar System
Input: Grammar system 𝐺𝑠, repetitions
Output: Multi-string 𝑀

1 Initialize 𝑀 using start symbols of each instrument
2 Set steps for each instrument ← []
3 foreach rule type ∈ {structure, tone} do
4 Set 𝑖← 0
5 while 𝑖 ≤ repetitions do
6 foreach 𝐺𝑐 ∈ 𝐺𝑠 do
7 𝑐𝑢𝑟𝑟𝑒𝑛𝑡←𝑀 [𝐺𝑐]
8 𝑠𝑡𝑒𝑝𝑠← 𝑠𝑡𝑒𝑝𝑠[𝐺𝑐]
9 if 𝑟𝑐 : (𝐴1, . . . , 𝐴𝑛)→ (𝑥1, . . . , 𝑥𝑛) of the given type is applicable to

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 then
10 if 𝑖 = 𝑟𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛𝑠 then
11 𝑟𝑐 : (𝐴1, . . . , 𝐴𝑘)→ (𝛼1, . . . , 𝛼𝑘) has only terminals if ∀𝑖, 𝛼𝑖 ∈ 𝑇 *

12 end
13 Retrieve synchronization tuple 𝑞 = 𝑄[𝑟𝑐]
14 forall 𝐺𝑗 ∈ 𝐺𝑠 do
15 𝑟𝑗 ← 𝑞[𝐺𝑗]
16 if 𝑟𝑗 is applicable to 𝑀 [𝐺𝑗] then
17 Apply rule 𝑟𝑗 to 𝑀 [𝐺𝑗]
18 Append 𝑟𝑗 to 𝑠𝑡𝑒𝑝𝑠[𝐺𝑗]

19 end
20 end
21 end
22 end
23 Increment 𝑖

24 end
25 end
26 return 𝑀 , steps

5.5 Examples of Generated Music
We have already shown some fascinating examples from classical and jazz music. To show
how capable our model truly is and that it can generate all kinds of incredible melodies and
harmonies, not just fractal-like ones or things tied to a specific genre, we have dedicated
this section to that purpose. In the following examples, we skip writing out the terminal
symbols and create a convention that each lowercase letter in a rule is a terminal symbol.

Single Instrument

This time, to demonstrate the capabilities of the model and what it can generate, We have
prepared a guitar solo with a custom form. In this case, the model reduces to a scattered
context grammar, but it still preserves all the core musical characteristics. We have decided
to shape the music with a clear form, built around two main ideas that are worth to explore.
Sometimes, musicians use interesting transitions to connect ideas, and we aim to use one
to make the second theme more musically appealing.

44

The first main idea will be built on top of the melodic and harmonic parts and will
end a song with their variations. The second idea should be mirrored and contain a small
transition. For that, we have designed a grammar that would look like this:

𝐺𝑠 = (𝐺1, 𝑄),

in which

• 𝐺1 = ({𝑆,𝐴,𝐵,𝐶,𝑀,𝐻,𝑀1, 𝐻1},
{1 : 𝑆 → (𝐴𝐵𝐶𝐵𝑅𝐴),
2 : (𝐴,𝐴)→ (𝑀𝑀𝐻𝐻,𝑀𝑀𝐻𝐻),
3 : (𝐵,𝐵𝑅)→ (𝑀1𝐻1, 𝐻1𝑀1),
4 : (𝐶)→ (𝛼[−,𝑞,1], 𝛽[−,ℎ,1], 𝛼[−,𝑞,1]),
5 : (𝑀,𝑀)→ (𝑔[−,𝑞,1]𝑎[−,𝑞,1]𝑔[−,𝑞,1]𝑒[−,𝑞,1]𝑀, 𝑔[≫,𝑞,1]𝑎[≫,𝑞,1]𝑔[≫,𝑞,1]𝑒[≫,𝑞,1]𝑀),
6 : (𝑀,𝑀)→ (𝑔[−,𝑞,1]𝑔[−,𝑞,1]𝑎[−,𝑞,1]𝑐[−,𝑞,2]𝑀, 𝑔[≫,𝑞,1]𝑔[≫,𝑞,1]𝑎[≫,𝑞,1]𝑐[≫,𝑞,2]𝑀),
7 : (𝑀1,𝑀1)→ (𝑔[−,𝑞,1]𝑔[−,𝑞,1]𝑒[−,𝑞,1]𝑒[−,𝑞,1], 𝑔[◁▷,𝑞,1]𝑔[◁▷,𝑞,1]𝑒[◁▷,𝑞,1]𝑒[◁▷,𝑞,1]),
8 : (𝐻,𝐻)→ (𝛿[−,𝑞,1]𝜃[−,𝑞,1]𝛽[−,𝑞,1]𝜂[−,𝑞,1]𝐻, 𝛿[−,𝑞,1]𝜃[−,𝑞,1]𝜁[−,𝑞,1]𝜂[−,𝑞,1]𝐻),
9 : (𝐻,𝐻)→ (𝛿[𝐿,𝑞,1]𝜃[𝐿,𝑞,1]𝛽[𝐿,𝑞,1]𝜂[𝐿,𝑞,1]𝐻, 𝛿[𝐿,𝑞,1]𝜃[𝐿,𝑞,1]𝜁[𝐿,𝑞,1]𝜂[𝐿,𝑞,1]𝐻),
10 : (𝐻1, 𝐻1)→ (𝛽[−,𝑞,1]𝜂[−,𝑞,1]𝛿[−,𝑞,1]𝜃[−,𝑞,1], 𝛽[↑,𝑞,1]𝜂[↑,𝑞,1]𝛿[↑,𝑞,1]𝜃[↑,𝑞,1]),
11 : (𝑀,𝑀)→ (𝜖, 𝜖),
12 : (𝐻,𝐻)→ (𝜖, 𝜖)}),

• 𝑄 = {}.

Symbol Chord
𝛼 𝐶ℎ𝑜𝑟𝑑(𝐸,𝐺,𝐻)
𝛽 𝐶ℎ𝑜𝑟𝑑(𝐴,𝐶,𝐸)
𝛿 𝐶ℎ𝑜𝑟𝑑(𝐶,𝐸,𝐺)
𝜃 𝐶ℎ𝑜𝑟𝑑(𝐺,𝐻,𝐷)
𝜂 𝐶ℎ𝑜𝑟𝑑(𝐹,𝐴,𝐶)

Table 5.3: Mapping of terminal symbols to musical chords for 𝐺1.

The grammar contains two new operations that are being applied to tones from the
measure on the left side. The first operation is ≫ which denotes chromatic shift by major
third inspired by [28]. The second operation is counterpoint, denoted by ◁▷, which we adopt
from [38], as this technique was popularized by J. S. Bach. It takes the first note and shifts
it up by an interval of 3, the second note by 4, the third by 6, and then this pattern is
repeated for the following notes. The well-known ↑ just moves all notes in the measure up
by one whole tone.

Let us start generating guitar solos. For this 𝐺𝑠, we can create the following derivation
steps:

• 𝑆1 ⇒1 𝐴𝐵𝐶𝐵𝑅𝐴⇒2 𝑀𝑀𝐻𝐻𝐵𝐶𝐵𝑅𝑀𝑀𝐻𝐻 ⇒3 𝑀𝑀𝐻𝐻𝑀1𝐻1𝐶𝐻1𝑀1𝑀𝑀𝐻𝐻
⇒ . . .

In the following derivation steps, all 𝑀 and 𝐻 nonterminals will be replaced with ter-
minal symbols (notes) using rules 5, 6, 7, and 8. Following interpretation in music staff is
shown in Figure 5.4. The upper part of the image displays rewritten all 𝑀 and 𝐻 nonter-
minals. The middle part represents two derivation steps ⇒8 and ⇒9 where nonterminals

45

𝑀1 and 𝐻1 are rewritten. And the last derivation step⇒10 replaces nonterminal 𝐶 to form
the final music piece.

⇒8 ...⇒9

⇒10

Figure 5.4: Interpretation of derivation steps in music staff.

Multiple Instruments

Until now, we have been generating music for only one instrument. Finally, we will show how
our model could generate jazz music. This music is going to be interpreted by a piano and
a saxophone. The music will take jazz from AABA and will be generated in three strings,
two for piano and one for saxophone. So far, we have used variation, tone duration, and
tone octave for our generated tokens. Now, we will also incorporate dynamics. An example
of grammar system generating such computation follows

𝐺𝑠 = (𝐺1, 𝐺2, 𝐺3, 𝑄),

in which

• 𝐺1 = ({𝑆1,𝑀1,𝑀2, 𝐴,𝐵,𝑁},
{1 : 𝑆 → (𝐴𝐴𝐴𝐵𝐴),
2 : (𝐴,𝐴,𝐴)→ (𝑀1𝑀2𝑀2𝑀1,𝑀1𝑀2𝑀2𝑀1,𝑀1𝑀2𝑀2𝑀1),
3 : (𝑀1,𝑀1,𝑀1)→ (𝑓[−,𝑞,1,−]𝑐[−,𝑞,1,−]𝑐[−,ℎ,1,−],
𝑓[↓,𝑞,1,𝑝]𝑐[↓,𝑞,1,𝑝]𝑐[↓,ℎ,1,𝑝], 𝑓[−,𝑞,1,−]𝑐[−,𝑞,1,−]𝑐[−,ℎ,2,−]),

46

4 : (𝑀1,𝑀1,𝑀1)→ (𝑔[−,𝑞,2,−]𝑑[−,𝑞,2,−]𝑑[−,ℎ,2,−],
𝑔[↓,𝑞,2,𝑝]𝑑[↓,𝑞,2,𝑝]𝑑[↓,ℎ,2,𝑝], 𝑔[−,𝑞,2,−]𝑑[−,𝑞,2,−]𝑑[−,ℎ,2,−]),
5 : (𝑀2,𝑀2,𝑀2)→ (𝑒[−,ℎ,2,−]𝑔[−,ℎ,2,−], 𝑒[↓,ℎ,2,𝑝]𝑔[↓,ℎ,2,𝑝], 𝑒[−,ℎ,2,−]𝑔[−,ℎ,2,−]),
6 : (𝑀2,𝑀2,𝑀2)→ (𝑓[−,ℎ,2,−]𝑎[−,ℎ,2,−], 𝑓[↓,ℎ,2,𝑝]𝑎[↓,ℎ,2,𝑝], 𝑓[−,ℎ,2,−]𝑎[−,ℎ,2,−]),
7 : 𝐵 → (𝑁𝑁𝑁𝑁)
8 : 𝑁 → (𝑟[−,𝑓,−,−])}),

• 𝐺2 = ({𝑆2, 𝐴,𝐵, 𝑃,𝑅,𝑁},
{1 : 𝑆 → (𝐴𝐴𝐴𝐵𝐴),
2 : (𝐴,𝐴,𝐴)→ (𝑃𝑅𝑃𝑅,𝑃𝑅𝑃𝑅,𝑃𝑅𝑃𝑅),
3 : (𝑃, 𝑃, 𝑃)→ (𝛾[−,ℎ,1,−]𝛾[𝑃,ℎ,1,−]𝑅, 𝛾[−,ℎ,1,𝑝]𝛾[𝑃,ℎ,1,𝑝]𝑅, 𝛾[−,ℎ,1,−]𝛾[𝑃,ℎ,1,−]𝑅),
4 : (𝑅,𝑅,𝑅)→ (𝛾[−,ℎ,1,−]𝛾[𝑅,ℎ,1,−]𝑃, 𝛾[−,ℎ,1,𝑝]𝛾[𝑅,ℎ,1,𝑝]𝑃, 𝛾[−,ℎ,1,−]𝛾[𝑅,ℎ,1,−]𝑃),
5 : (𝑃, 𝑃, 𝑃)→ (𝛾[−,ℎ,1,−]𝛾[𝑃,ℎ,1,−], 𝛾[−,ℎ,1,𝑝]𝛾[𝑃,ℎ,1,𝑝], 𝛾[−,ℎ,1,−]𝛾[𝑃,ℎ,1,−]),
6 : (𝑅,𝑅,𝑅)→ (𝛾[−,ℎ,1,−]𝛾[𝑅,ℎ,1,−], 𝛾[−,ℎ,1,𝑝]𝛾[𝑅,ℎ,1,𝑝], 𝛾[−,ℎ,1,−]𝛾[𝑅,ℎ,1,−]),
7 : 𝐵 → (𝑁𝑁𝑁𝑁)
8 : 𝑁 → (𝑟[−,𝑓,−,−])}),

• 𝐺3 = ({𝑆3, 𝐴,𝐵,𝐻,𝑀31,𝑀32},
{1 : 𝑆 → (𝐴𝐴𝐴𝐵𝐴),
2 : (𝐴,𝐴,𝐴)→ (𝑀𝑀𝑀𝑀,𝑀𝑀𝑀𝑀,𝑀𝑀𝑀𝑀),
3 : (𝑀,𝑀,𝑀)→ (𝑒[−,ℎ,1,−]𝑔[−,ℎ,1,−], 𝑒[↑,ℎ,1,−]𝑔[↑,ℎ,1,−], 𝑒[−,ℎ,1,−]𝑔[−,ℎ,1,−]),
4 : (𝑀,𝑀,𝑀)→ (𝑎[−,ℎ,1,−]𝑓[−,ℎ,1,−], 𝑎[↑,ℎ,1,−]𝑓[↑,ℎ,1,−], 𝑎[−,ℎ,1,−]𝑓[−,ℎ,1,−]),
5 : (𝑀,𝑀,𝑀)→ (𝑔[−,ℎ,1,−]𝑒[−,ℎ,1,−], 𝑔[↑,ℎ,1,−]𝑒[↑,ℎ,1,−], 𝑔[−,ℎ,1,−]𝑒[−,ℎ,1,−]),
6 : (𝑀,𝑀,𝑀)→ (𝑓[−,ℎ,1,−]𝑓[−,ℎ,1,−], 𝑓[↑,ℎ,1,−]𝑓[↑,ℎ,1,−], 𝑓[−,ℎ,1,−]𝑓[−,ℎ,1,−]),
7 : 𝐵 → (𝐻𝑀31𝑀32𝐻)
8 : (𝐻,𝐻)→ (𝛼[−,ℎ,1,−]𝛽[−,ℎ,1,−], 𝛼[𝑟,ℎ,1,−]𝛽[𝑟,ℎ,1,−])
9 : 𝑀31 → (𝑒[−,ℎ,1,−]𝑔[−,ℎ,1,−]𝑎[−,ℎ,1,−]ℎ[−,ℎ,1,−])
10 : 𝑀32 → (ℎ[−,𝑞,1,−]𝑐[−,𝑞,1,−]𝑎[−,𝑞,1,−]𝑓[−,𝑞,1,−])}),

• 𝑄 = {(1, 1, 1), (2, 2, 2), (3, 3, 3), (3, 5, 3), (4, 4, 4), (4, 6, 4), (5, 4, 5), (5, 6, 5),
(6, 3, 6), (6, 5, 6), (7, 7, 7), (8, 8, 8), (8, 8, 9), (8, 8, 10)}.

The Greek alphabet terminals are chords and they would be interpreted according to
these tables:

Symbol Note
𝛾 𝐶ℎ𝑜𝑟𝑑(𝐶,𝐸,𝐺)
𝛾 𝐶ℎ𝑜𝑟𝑑(𝐶,𝐸𝑠,𝐺)
𝛾 𝐶ℎ𝑜𝑟𝑑(𝐸𝑠,𝐺,𝐶𝑒𝑠)
𝛾 𝐶ℎ𝑜𝑟𝑑(𝐸𝑠,𝐺𝑒𝑠, 𝐶𝑒𝑠)
𝛾 𝐶ℎ𝑜𝑟𝑑(𝐺𝑒𝑠,𝐻𝑒𝑠,𝐷𝑒𝑠)

Table 5.4: Mapping of terminal symbols
to chords from the Tonnetz walk using PR
transformations of 𝐺2.

Symbol Chord
𝛼 𝐶ℎ𝑜𝑟𝑑(𝐴,𝐶,𝐸)
𝛽 𝐶ℎ𝑜𝑟𝑑(𝐸,𝐺,𝐻)

Table 5.5: Mapping of terminal symbols to
music chords for 𝐺3.

A composition that could be generated by the presented grammar system is shown
in the Figure 5.5. It shows that grammar can generate meaningful music with various
music techniques. To describe what is in the figure, we would start with the piano part.
In the piano part, the 𝐴 (nonterminal in rule) interpreted as section of the composition

47

presents the main theme and completes the harmony in the treble clef, while additional
harmonic support is found in the bass clef. Alongside the piano, the saxophone is there
to provide a second harmonic party to enrich the melody. The role of the saxophone is to
create an interesting contrast to the main melody. While the primary theme ascends, the
saxophone line moves downwards, creating playful tension and enriching the overall texture.
A bridge (𝐵) is created by saxophone solo, which is an alternation between harmonic and
melodic material to create contrast with the 𝐴 sections and a bridge between the piano part
of the main theme and the last repetition of the main theme that ends the composition.

Figure 5.5: Illustrative example of multi-instrument jazz composition.

Another example with 4 components could be found in the Appendix A.

Constraints and Limitations

The presented model applies transformation rules in a non-deterministic manner. Although
rule selection is random, it will require external guidance from the software or human who

48

designs the rules. Another factor is determining the correct synchronization states and
coordinated rule application across all instruments. Because of that, the model can not live
by itself, and it needs a composer or framework that will generate rules for it. A limitation
could be that everything about the music must be defined. Each instrument needs to have
defined rules, and all instruments must participate in the synchronization steps.

As with most symbolic models, this system treats music as a sequence of abstract
symbols, which means it inherently lacks a deep musical understanding. The quality of the
output is tied to the design of the rule system. The model itself does not possess musical
intuition. We attempted to build in structures for melody, harmonic progression, dynamics,
and style, but while some musical dimensions can be encoded, others remain difficult or
impractical to model quality.

This model can face issues with scalability. The amount of music this model creates
is restricted to the amount of rules provided by specific system components. With a large
number of rules, the complexity of the model increases. This can cause a decline in music
quality and make the model difficult to manage, debug, or optimize.

The system is not designed to generate long-form music, such as multi-hour composi-
tions or large soundtracks. Instead, its use case is to produce short, musically interesting
sequences like melodies, harmonies, and textures lasting a few minutes. This limited scope
is not a weakness, but rather the sweet spot of the model for which it was intended.

49

Chapter 6

Implementation

The theory in previous sections would not mean much without a proper demonstration
in practice. We have decided to develop a console application in a similar way as in [25].
Console application presented in this chapter implements algorithm Alg. 1. It takes a JSON
file containing the grammar system definition as input and produces a MIDI file as output.
The output file can then be played or used as an input file for other programs or components.

6.1 Used Technologies
The implementation was done in the Python programming language and uses standard and
external libraries. Those libraries are listed in the readme file, and the most important one
is discussed in this section.

Many cited works use for music generation MIDI standard. As discussed in [33], it is
considered to be stable in the music industry, and with its help, the musician can manipulate
and work with multiple instruments in real time. This standard is popular and used in
applications up to this date. MIDI file contains MIDI messages. The most important MIDI
messages are note off and note on commands. With them we can define start and end of
a note. These commands can include attributes that define pitch, velocity, channel, and
time. Pitch is self-explanatory; velocity determines the dynamics, the channel specifies the
instrument for the note, and time indicates the number of ticks to wait before the next
message. To work with MIDI in Python we have used mido library [24].

6.2 Inputs and Outputs
The application reads the input file in JSON format, which contains the full definition of the
grammar system. This format is commonly used in Python applications, and it corresponds
to a Python dictionary that helps with efficient manipulation.

A full example is not listed here because of its length, but one can be found in an Ap-
pendix B, and other interesting examples are stored in a source folder with the application.
Instead of including the entire input file in this text, we have decided to give a step-by-step
explanation of the components and attributes that are stored in the file.

Top level key instruments is a dictionary that stores components of multigenerative
grammar systems. Each component corresponds to an instrument and is identified directly
by its name.

"instruments": {

50

"Piano_treble": { ... },
"Piano_bass": { ... }

}

Each instrument stores information as a grammar nonterminal, terminal, and starting
symbol. To simplify implementation, we have decided to store structure rules and tone
rules in different lists. This is because nonterminals do not store as many attributes as tone
rules.

• nonterminals: A list of nonterminal symbols used in derivation.

• terminals: Musical symbols such as note names and chords.

• start: The initial nonterminal symbol.

• structure_rules: Grammar rules defining structural aspect of music.

• tone_rules: Transformation rules with musical attributes, define how nonterminal
symbols are mapped to musical outputs such as tones or chords, including properties
like pitch, duration, octave, dynamics, and optional operations.

Example snippet:

"nonterminals": ["S", "A", "B", "M", "N", "M1", "N1"],
"terminals": ["C", "D", "E", "F", ["D", "F", "A"], ["C", "E", "G"]],
"start": "S"

Structure Rules define high-level symbolic expansion:

"structure_rules": [
{ "left": ["S"], "right": ["ABAB"] },
{ "left": ["A", "A"], "right": ["MN", "MN"] },
{ "left": ["B", "B"], "right": ["M1N1", "M1N1"] }

]

Tone Rules define how symbols like M, N, etc. are converted into sequences of notes or
chords with attributes (tone, duration, octave, dynamics, operation).

Example:

"tone_rules": [
{ "left": ["M", "M"], "right": [
[

{ "tone": "C", "length": "quarter", "octave": 4, "dynamics": "ff",
"operation": "none" },

{ "tone": "D", "length": "quarter", "octave": 4, "dynamics": "ff",
"operation": "none" }

]
...

]},
...

]

51

The last missing piece is a list Q that stores information about instrument synchronization.
Each entry in this list stores indexes of rules, which should be applied in a single derivation
step across all instruments.

"Q": [
{ "Piano_bass": 0, "Piano_treble": 0 },
{ "Piano_bass": 1, "Piano_treble": 1 },
...

]

The application produces two types of output. The first is a MIDI file, as discussed
in the previous section. The second is a textual representation of the derivation process of
the grammar system. For each instrument, the application prints the final derived multi-
string, which remains in the form of internal Python objects, consistent with the overall
design of the system. These objects are later converted into MIDI output. Beneath each
final string, the application also prints the list of applied rules, in the exact order in which
they were used during the derivation.

[[{"tone": "C", ...}, {"tone": "D", ...}, {"tone": "E", ...},
{"tone": "F", ...}], ...]

Steps:
Applied structure rule: S -> AABA
Applied structure rule: AAA -> MHMHMH
Applied structure rule: B -> H1M1M2H2
Applied tone rule MMM -> [{’tone’: ’C’, ’length’: ... },

{’tone’: ’D’, ’length’: ...},
..., ...]

6.3 Program Structure and Execution
The program is divided into three main components. The first of these is the Parser class,
which is responsible for reading and interpreting the input grammar definition. The input
of the JSON file is stored in the classes ToneRule, Instrument, and then GrammarSystem,
which represents the complete grammar structure.

Having loaded the input file into the data structures, we can pass it to the second
main component the Generator. The Generator is constructed from the grammar system
and the number of repetitions that can be tolerated in a music. This number is used to
restrict the number of times a rule can be applied consecutively. This parameter is inspired
by L-systems, which work in iterations. But the concepts of iterations is not compatible
with our model. Therefore, we introduce a mechanism to limit repeated applications of
the same rule, as this repetition does not produce musically meaningful results. This
component implements the algorithm designed in Sec. 5.4. While generating multistrings
it applies defined operations in rules that are specified in the input file. Largely discussed
Neo-Riemann transformations are not applied in this component as they take into account
previous notes and decide which chord or tone should be generated.

The generated multistrings are then passed to the MidiWriter component, which iter-
ates over each string and produces tonal output for every instrument. Since the structure
of the multistring is known in advance, it is also possible to apply Neo-Riemannian trans-
formations to chords. This functionality is handled by the NeoRiemannian class.

52

Program execution

A step-by-step guide for installing and running the application is provided in the accom-
panying readme.txt file. The application requires Python 3 to be installed on the system.
Below is a list of commands that can be used to run the application:

• generate <infile> <number> <outfile>
This command generates a MIDI file based on the grammar system. Parameter
<infile> is argument for input file with grammar system. The <number> parameter
specifies the maximum number of times a rule can be applied consecutively, and
<outfile> defines the name of the output MIDI file.

• list
Prints a list of all available commands supported by the application.

• instruments
Lists all available instruments supported by the application with their corresponding
program number in MIDI.

A command that would run generation using an example basic/GS1.json is
python3 ./main.py generate examples/basic/GS1.json 1 exmp.mid.
It contains system specification that does not allow iterative generation of music. An ex-

ample that does would be iterative/GS1.json with a number of repetitions set to 2.
python3 ./main.py generate examples/iterative/GS1.json 2 exmp.mid

6.4 Evaluation and Comparison
This section evaluates the implementation and discusses which methods, indicators, and
measurable metrics are available for a program that generates music using formal mod-
els. We show music with various forms, expressions, and transformations that are stored
with implementation in examples/basic and examples/iterative folders. Then, these
implementation results are compared to the implementations in [25, 32, 20, 11]. These se-
lected works focus on music generation but offer different perspectives: they use L-systems,
stochastic models, or context-free grammars. I also explored resources beyond academia
and examined popular grammar-based tools for music generation available on GitHub, in-
cluding [23, 39, 29].

Evaluation of the Implementation

The system was tested using various grammar configurations, including iterative and non-
iterative systems with multiple instrument setups. Regarding rules that create structure,
I have used the jazz, sonata, and nonspecific or experimental forms. This shows that the
system can produce music in standard forms and is flexible to other music genres. Multi-
instrument setups were applied for jazz and sonata forms, using combinations of tune
rules with or without Neo-Riemannian transformations and variation operators such as
transposition or counterpoint. During the evaluation, all functional features were checked
and tested, including the structural and tone derivation, MIDI export, and instrument
synchronization with respect to set Q.

We have looked at indicators like intentionality and structure. Each program run,
using input files from the basic and iterative examples, produced music with the intended

53

structural characteristics. When listening to the output, it is evident that the structure is
respected and the music aligns with its emotional character. For example, when the rules
were designed to generate melancholic or playful music, these qualities were clearly heard
in the resulting pieces. Even the structure across all instruments was respected, which was
guaranteed by rule-synchronization.

Examples of Neo-Riemannian transformations brought richness to the music and made
it more interesting. The music quality was highly dependent on the characteristic path
done across the Tonnetz. Sometimes, it brought a melancholic element into already playful
music created by other instruments. Then, adjustments were required in the transformation
type or chord from which the Tonnetz path originated. Results were then meaningful in
the context that was required and pleasing for listening.

In a similar fashion, we added other operations inspired by classical musicians. They
helped to make music more engaging, and their effect was heared in generated music.

Produced music had dynamic variety, which is guaranteed by tone rules. In the ex-
amples, dynamics were intentionally applied to emphasize specific instruments or musical
sections. Some interesting passages were highlighted by forte, and on the other hand, the
less interesting passages were in piano. Examples of those effects were meaningful and put
more novelty into music.

Also, the subject of observation was instrumental alignment, whether instruments in
the system complement each other. It was heard that they do if the rules were designed
to do it. Mainly in example src/examples/iterative/GS5.json, it was clear that the
melodic part in piano was complemented with harmonic part support it in the bass treble.
The guitar was there to add more harmony to already melancholic music. As a typical jazz
instrument, the Saxophone was there to augment the jazz effect.

Both examples examples/iterative/GS4.json and examples/iterative/GS5.json
show that jazz and classical forms can be generated. These two, along with other iterative
examples, were executed with two or more iterations and with multiple options for nonde-
terministically selecting rules for nonterminal rewriting. This shows that there is a certain
limit in the number of iterations that correspond to the number of options that can be used
for certain nonterminal rewrites. After this limit, the music starts to repeat itself. Simi-
larly, Neo-Riemannian transformations have a certain length of path through the Tonnetz,
after which additional help is needed to make music more varied. However, this can be
solved by placing them in certain parts of the composition and not using them in the whole
composition.

When it comes to the system itself, it can be easily traced from the text output that it
is synchronized, and applied rules can be mapped to the music output that is shown in the
MIDI file.

In the context of generative music systems, there is no metric that can fully determine
whether the output is musically correct. This can only be done with tasks that have the
ground truth, which is not our case. Our music contains rules that are nondeterministic
and open to variation.

Work of [25] discusses that machine learning options for evaluation do not work. Instead,
the generated music was evaluated not on the correctness in the traditional sense, we have
shown with provided examples that:

• the formal grammar aligns with rules defined by the user,

• generated music captures the intended structure (e.g., form such as jazz or sonata),

54

• incorporates tone transformations as specified (e.g., dynamics, chord operations),

• and produces outputs that are consistent, traceable, and interpretable by a human
listener or analyst.

The evaluation of musical output is often left to the user, who must determine whether
the result aligns with their creative intention. This process can be compared to that of
a composer who has a musical idea in mind and verifies it at the piano—often through trial
and error—making adjustments along the way to refine the composition. Similarly, in gener-
ative systems, the user evaluates whether the generated output matches their expectations
and modifies the input grammar or parameters accordingly.

Comparison with Existing Implementations

Let us start the comparison with [11]. L-systems are well-known for their recursive nature
and ability to generate intriguing patterns. This approach certainly works for fractal music,
but in general, it lacks flexibility and is not as adaptable to different musical styles and
forms. Instead of generating only note sequences, my approach incorporates a richer set
of musical features, including transformations, variations, and dynamic expression. This
results in more controlled, expressive, and varied musical outputs. In contrast, his L-system-
based approach offers less flexibility and direct control but tends to generate music more
autonomously through recursive pattern growth.

A different approach with the help of probabilistic context-free grammar is found in
[20]. This system is real-time and is focused on real-time single-line melodies. Rather than
producing full compositions, these systems generate short, spontaneous melodies intended
to complement live performances. Also it does not use other musical expressions to enhance
the music. On the other side, my system is designed for offline, structured composition with
deterministic control and coordinated rule application.

In the previous implementation and in [32] there is no intention of generating struc-
tured music. The approach in [32] is there just to produce musical ideas. It is supporting
composers in the creative process. It uses a graph grammar approach to model the music
composition process with a limited use of transformations for music postprocessing. Each
system offers distinct advantages depending on the compositional need, such as exploration
vs. structured creation.

An approach that counts with polyphonic music could be found in the [25]. It gener-
ates procedural music with the help of context-free grammar and context-sensitive aspects.
Similarly, the quality of music produced by this system is highly dependent on the qual-
ity of the rules. However, this implementation lacks tools like transformations, variations,
and operators that help create more interesting music for people who have limited musical
knowledge. Those are listed in future work.

To identify other currently popular implementations, I reviewed open-source projects
on GitHub. The most starred repository at the time of writing is [23], which has received
37 stars. This tool generates music based on the style defined by context-free grammar.
It is used for interactive music generation for simple single-instrument melodies with no
additional music expressions. It has only limit put on recursion with defined filters. Im-
plementations [39, 29] does not offer anything new. They use different formal models, but
when it comes to producing music, they fall short when it comes to creating polyphonic
music or adding extra interesting elements or dynamics to music.

55

Chapter 7

Conclusion and Future Work

Throughout this work, we have investigated topics of computational musicology and models
that are used in this scientific area. Many musical properties were formalized to form
a formal system as we know it. We have characterized music and its elements to place them
into the Chomsky hierarchy and, on that basis, pick the model with the correct generative
power.

This thesis introduced a novel system for grammar-based orchestration of music using
a multigenerative grammar system with scattered context grammars. It was presented
how this model perfectly fits polyphonic music with its rule synchronized rule application
across multiple instruments. This system supports generation of structured compositions, as
demonstrated through examples based on jazz and classical music, specifically the Sonata
form. It was shown how music essentials like harmony, melody can be put into rules in
a meaningful way. In addition, we have incorporated musical transformations directly into
the rules, which can reduce the effort required by the rule designer and help generate more
meaningful harmonic progressions. Similarly, other musical expressions were also embedded
into the rules to make the output more expressive and as close as possible to music created
by a human composer. The rule structure was designed to be as flexible as possible, allowing
for the creation of rich music while reducing the need for the composer to be deeply familiar
with music theory.

This model was implemented and evaluated using musical indicators that were inten-
tionally embedded through the rule design. The system was demonstrated to be capable
of generating musical outputs with a wide variety of structures, variations, melodies, har-
monies, and dynamics. Created examples included different musical forms such as jazz
structures, the sonata form, and free compositions. These outputs were compared to those
of similar grammar-based systems, showing that our approach offers greater control over
polyphonic texture, synchronization of instruments, and integration of musical transforma-
tions directly into the generative process.

Grammar-based approaches still have their place and find usage in music and computer
science. When it comes to music, they can be used to create semi-interactive tools to help
musicians create or add extra stylistic elements to music. Our system can be used simi-
larly but would require some additional implementation work. The model achieves a high
quality of generated music while maintaining low computational demands compared to neu-
ral networks and deep learning methods. This makes it suitable for use in environments
sensitive to resource constraints. The system can be used for procedural music generation
in computer games, in educational tools that allow users to create music through rules, in
the analysis of polyphonic music, or even in music compression applications.

56

On the other side, music generated through this system is sensitive to rule design and
requires manual work, which is time-consuming, especially in the process of making music
sound great. The output strictly follows a predefined structure, which can make music
repetitive if the generation goes on for too long. Also, it may lack scalability as the number
of rules and instruments grows; managing synchronization and rule application can become
a problem.

Future work and contributions can address the mentioned limitations of the system.
It can combine more options for tone rules with other existing music transformations.
This would offer a different system with less control, and the weight would be put on
the system. There are possible extensions to this system. It would be interesting to see
this system interact with the environment and create music with consideration for inputs
from the environment. This application-oriented idea would require more theoretical work.
This would lead to the investigation of typical topics of formal language theory, such as
decidability, closure properties, and others. Another subject of investigation is the role of
scattered context grammars in the system and whether they could be replaced by simpler
formal models such as context-free grammars. It would be interesting to see how this
would impact the outputs of the system. Open to investigations are stochastic models and
their modifications, whether they can produce better outputs and music with less control.
Optimization of the presented model is also a topic. Music has repetitive passages. Can
those passages for all instruments be generated by a single component and then distributed
for other models? Can we go that far and create a single grammar system that can generate
multi-instrumental music?

57

Bibliography

[1] Meduna, A. and Zemek, P. Regulated Grammars and Automata. New York, NY:
Springer, 2014. ISBN 978-1-4939-0368-9. Available at:
https://link.springer.com/book/10.1007/978-1-4939-0369-6.

[2] Schulze, W. A Formal Language Theory Approach To Music Generation. Matieland
7602, South Africa, 2009. Master’s Thesis. Stellenbosch University. Available at:
https://core.ac.uk/download/pdf/37323789.pdf.

[3] Gilbert Édouard and Conklin, D. A Probabilistic Context-Free Grammar for
Melodic Reduction. In: Proceedings of the International Workshop on Artificial
Intelligence and Music, 20th International Joint Conference on Artificial Intelligence
(IJCAI). Hyderabad, India: [b.n.], January 2007, p. 83–94. Available at:
https://www.ehu.eus/cs-ikerbasque/conklin/papers/GilbertConklin.pdf.

[4] Jin, Z. and Dannenberg, R. B. Formal Semantics for Music Notation Control Flow.
In: Proceedings of the 39th International Computer Music Conference (ICMC).
Perth, Australia: [b.n.], August 2013, p. 85–92. Available at:
https://www.cs.cmu.edu/~rbd/papers/Formal-Semantics-ICMC-2013.pdf.

[5] Mishra, J. and Mishra, S. L-System Fractals. Amsterdam, The Netherlands:
Elsevier Science, 2007. Mathematics in Science and Engineering. ISBN
978-0-08-046938-6. Available at: https://books.google.cz/books?id=VebMRrhoJfUC.

[6] Worth, P. and Stepney, S. Growing Music: Musical Interpretations of L-Systems.
In: Rothlauf, F.; Branke, J.; Cagnoni, S.; Corne, D. W.; Drechsler, R. et al.,
ed. Applications of Evolutionary Computing. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2005, p. 545–550. ISBN 978-3-540-32003-6.

[7] Meduna, A. and Techet, J. Scattered Context Grammars and Their Applications.
Southampton, UK: WIT Press, 2010. 199 p. ISBN 978-1-84564-426-0.

[8] Santean, L. Parallel Communicating Grammar Systems. In: Current Trends in
Theoretical Computer Science. World Scientific Publishing, 1993, p. 603–615.
Available at: https://www.worldscientific.com/doi/abs/10.1142/9789812794499_0047.

[9] Lourenço, B. F.; Ralha, J. C. L. and Brandão, M. C. P. L-Systems, Scores, and
Evolutionary Techniques. In: Proceedings of the 6th Sound and Music Computing
Conference (SMC 2009). Porto, Portugal: [b.n.], July 2009, p. 113–118. Available at:
https://www.researchgate.net/publication/228936738_L-
Systems_Scores_and_Evolutionary_Techniques.

58

https://link.springer.com/book/10.1007/978-1-4939-0369-6
https://core.ac.uk/download/pdf/37323789.pdf
https://www.ehu.eus/cs-ikerbasque/conklin/papers/GilbertConklin.pdf
https://www.cs.cmu.edu/~rbd/papers/Formal-Semantics-ICMC-2013.pdf
https://books.google.cz/books?id=VebMRrhoJfUC
https://www.worldscientific.com/doi/abs/10.1142/9789812794499_0047
https://www.researchgate.net/publication/228936738_L-Systems_Scores_and_Evolutionary_Techniques
https://www.researchgate.net/publication/228936738_L-Systems_Scores_and_Evolutionary_Techniques

[10] McCormack, J. Grammar-based Music Composition. Complex Systems, 1996,
vol. 9, p. 321–336. ISSN 0891-2513. Available at:
https://research.monash.edu/en/publications/grammar-based-music-composition.

[11] Fischer, D. Tool for Fractal Music Creation with the Help of L-Systems. 2019. 61 p.
Bachelor’s thesis. Kempten University of Applied Sciences. Available at:
https://www.researchgate.net/publication/
348915692_Tool_for_fractal_music_creation_with_the_help_of_L-Systems.

[12] Jäger, G. and Rogers, J. Formal language theory: refining the Chomsky hierarchy.
Philosophical Transactions of the Royal Society B. 1st ed. Tuebingen, Germany and
Richmond, IN, USA: Royal Society, 2012, vol. 367, no. 1598, p. 1956–1970. ISSN
0962-8436.

[13] Manousakis, S. Musical L-Systems. 2006. Master’s Thesis. The Royal
Conservatory, The Hague.

[14] Gogins, M. Score Generation in Voice-Leading and Chord Spaces. In: Proceedings of
the International Computer Music Conference (ICMC). International Computer
Music Association, November 2006, p. 13–16. Available at:
https://dblp.org/rec/conf/icmc/Gogins06.

[15] Tymoczko, D. A Geometry of Music: Harmony and Counterpoint in the Extended
Common Practice. Oxford University Press, 2010. Oxford Studies in Music Theory.
ISBN 9780199714353. Available at: https://books.google.cz/books?id=1Jpq5BRLCNoC.

[16] Rego, S. K. C. Rhythmically-Controlled Automata Applied to Musical Improvisation.
2009. PhD Dissertation. Instituto Nacional de Matemática Pura e Aplicada Rio de
Janeiro.

[17] Droppová, A. Elementárna hudobná teória. 1st ed. Prešov: Pedagogická fakulta
Prešovskej univerzity v Prešove, 1998. ISBN 80-88697-39-5.

[18] Cohn, R. Neo-Riemannian Operations, Parsimonious Trichords, and Their

”Tonnetz“ Representations. Journal of Music Theory. 1st ed. [Duke University
Press, Yale University Department of Music], 1997, vol. 41, no. 1, p. 1–66. ISSN
00222909. Available at: http://www.jstor.org/stable/843761.

[19] Mason, L. F. Essential Neo-Riemannian Theory for Today’s Musician. 2013.
Master’s Thesis. University of Tennessee. Available at:
https://trace.tennessee.edu/utk_gradthes/1646.

[20] Keller, R. M. and Morrison, D. R. A Grammatical Approach to Automatic
Improvisation. In: Proceedings of the 4th Sound and Music Computing Conference
(SMC 2007). Lefkada, Greece: [b.n.], July 2007, p. 330–337. Available at:
https://www.smcnetwork.org/resources/smc07-248.

[21] Kippen, J. and Bel, B. Modelling Music with Grammars: Formal Language
Representation in the Bol Processor. In: Marsden, A. and Pople, A., ed. Computer
Representations and Models in Music. London: Academic Press, 1992, p. 207–238.

59

https://research.monash.edu/en/publications/grammar-based-music-composition
https://www.researchgate.net/publication/348915692_Tool_for_fractal_music_creation_with_the_help_of_L-Systems
https://www.researchgate.net/publication/348915692_Tool_for_fractal_music_creation_with_the_help_of_L-Systems
https://dblp.org/rec/conf/icmc/Gogins06
https://books.google.cz/books?id=1Jpq5BRLCNoC
http://www.jstor.org/stable/843761
https://trace.tennessee.edu/utk_gradthes/1646
https://www.smcnetwork.org/resources/smc07-248

[22] Absil, F. Schillinger Rhythmic Continuity with Fibonacci Numbers
https://www.youtube.com/watch?v=zyOoZInEeIo. 2025. YouTube video, uploaded
by Frans Absil Music.

[23] ave-llan. Music Machine: Create music using a generative music grammar
https://github.com/ave-llan/music-machine. 2020. Accessed: 2025-05-11.

[24] Bjørndalen, O. M. Mido: MIDI Objects for Python
https://github.com/mido/mido/tree/main. N.d. Accessed: 2025-05-05.

[25] Eibensteiner, L. Procedural Music Generation with Grammars. In: Proceedings of
CESCG 2018: The 22nd Central European Seminar on Computer Graphics. 2018.

[26] Jurish, B. Music as a Formal Language. In: Zimmer, F., ed. Bang | pure data.
Hofheim: Wolke Verlag, September 2004, p. 45–58. Available at:
https://www.researchgate.net/publication/228806126_Music_as_a_formal_language.

[27] Kadlec, T.; Gabrišová, I.; Jámborová, J.; Vojáček, M.; Beynon, E. et al.
Methodology: Increasing the Efficiency and Quality of Instrumentalists’ Preparation
for Orchestral Auditions. 2022. Available at:
https://ec.europa.eu/programmes/erasmus-plus/project-result-content/584044d3-
2acc-4473-a68f-130cf26315e6/Metodika_cs.pdf. Accessed: 2025-03-14.

[28] Kim, J. A Study of Franz Liszt’s Concepts of Changing Tonality. Denton, Texas,
2007. Dissertation. University of North Texas. Available at:
https://digital.library.unt.edu/ark:/67531/metadc2246. Accessed March 26, 2025.

[29] Kwon, Y. Music Notation Grammar https://github.com/kwon-young/music.
2021. Accessed: 2025-05-11.

[30] Lukáš, R. Multigenerative Grammar Systems. 2006. Dissertation. Brno University
of Technology, Faculty of Information Technology. Available at:
https://www.fit.vut.cz/study/phd-thesis/139/.cs.

[31] Makiš, J. Formální modely a jejich aplikace v hudbě. Brno, CZ, 2022. Bakalářská
práce. Vysoké učení technické v Brně, Fakulta informačních technologií. Available at:
https://www.fit.vut.cz/study/thesis/24483/.

[32] Melkonian, O. Music as Language: Putting Probabilistic Temporal Graph
Grammars to Good Use Manuscript. The Netherlands: [b.n.], n.d.
melkon.or@gmail.com.

[33] Müller, M. Symbolic Format: MIDI
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C1/C1S2_MIDI.html.
Accessed: 2025-05-05.

[34] Noteflight, LLC. Noteflight - Online Music Notation Software
https://www.noteflight.com. 2025. Accessed: 2025-05-17.

[35] Pankhurst, T. Sonata Form https://alevelmusic.com/alevelcompositionhelp/
composing-help/sonata-form-2/sonata-form/. Accessed: 2025-03-15.

60

https://www.youtube.com/watch?v=zyOoZInEeIo
https://github.com/ave-llan/music-machine
https://github.com/mido/mido/tree/main
https://www.researchgate.net/publication/228806126_Music_as_a_formal_language
https://ec.europa.eu/programmes/erasmus-plus/project-result-content/584044d3-2acc-4473-a68f-130cf26315e6/Metodika_cs.pdf
https://ec.europa.eu/programmes/erasmus-plus/project-result-content/584044d3-2acc-4473-a68f-130cf26315e6/Metodika_cs.pdf
https://digital.library.unt.edu/ark:/67531/metadc2246
https://github.com/kwon-young/music
https://www.fit.vut.cz/study/phd-thesis/139/.cs
https://www.fit.vut.cz/study/thesis/24483/
https://www.audiolabs-erlangen.de/resources/MIR/FMP/C1/C1S2_MIDI.html
https://www.noteflight.com
https://alevelmusic.com/alevelcompositionhelp/composing-help/sonata-form-2/sonata-form/
https://alevelmusic.com/alevelcompositionhelp/composing-help/sonata-form-2/sonata-form/

[36] Ravelli, L. Understanding music to improvise better: Form in jazz standards
https://www.italianpiano.com/music-lessons/understanding-music-to-
improvise-better-form-in-jazz-standards/. 2025. Accessed: 2025-03-14.

[37] Sandercoe, J. 5 Common Chord Progressions. 2025. Available at: https:
//www.justinguitar.com/guitar-lessons/5-common-chord-progressions-bg-1011.
Accessed: 2025-03-29.

[38] Yearsley, D. Bach and the Meanings of Counterpoint. Cambridge University Press,
2002.

[39] Young, H. Generative Grammar Music
https://github.com/HalleyYoung/generative-grammar-music. 2019. Accessed:
2025-05-11.

[40] Zuidema, W.; Hupkes, D.; Wiggins, G.; Scharff, C. and Rohrmeier, M. Formal
Models of Structure Building in Music, Language, and Animal Song. In: Honing,
H., ed. The Origins of Musicality. Cambridge, MA: The MIT Press, 2018,
p. 253–286. Available at: https://arxiv.org/abs/1901.05180.

61

https://www.italianpiano.com/music-lessons/understanding-music-to-improvise-better-form-in-jazz-standards/
https://www.italianpiano.com/music-lessons/understanding-music-to-improvise-better-form-in-jazz-standards/
https://www.justinguitar.com/guitar-lessons/5-common-chord-progressions-bg-1011
https://www.justinguitar.com/guitar-lessons/5-common-chord-progressions-bg-1011
https://github.com/HalleyYoung/generative-grammar-music
https://arxiv.org/abs/1901.05180

Appendix A

Second Example of Grammar
Orchestration

To provide a better example of four components in the system, we have created a second
example.

𝐺𝑠 = (𝐺1, 𝐺2, 𝐺3, 𝐺4, 𝑄),

in which

• 𝐺1 = ({𝑆1, 𝐴,𝐵}, {𝑑[−,ℎ,1,−], 𝑎[−,ℎ,1,−], 𝑎[−,𝑞,1,−], ℎ[−,𝑞,1,−],
𝑐[−,𝑞,1,−], 𝑎[−,𝑞,1,−], 𝑓[−,𝑞,1], 𝑓[−,ℎ,1], 𝑒[−,𝑞,1]},
{1 : 𝑆1 → (𝐴𝐵𝐴𝐵),
2 : (𝐴,𝐴)→ (𝑑[−,ℎ,2]𝑎[−,ℎ,1]𝐴, 𝑎[−,𝑞,1]ℎ[−,𝑞,1]𝑐[−,𝑞,1]𝑎[−,𝑞,1]𝐴),
3 : (𝐴,𝐴)→ (𝑑[−,ℎ,2]𝑎[−,ℎ,1], 𝑎[−,𝑞,1]ℎ[−,𝑞,1]𝑐[−,𝑞,1]𝑎[−,𝑞,1]),
4 : (𝐴,𝐴)→ (𝑓[−,𝑞,1]𝑒[−,𝑞,1]𝑓[−,ℎ,1]𝐴, 𝑓[−,𝑞,1]𝑒[−,𝑞,1]𝑓[−,ℎ,1]𝐴),
5 : (𝐴,𝐴)→ (𝑓[−,𝑞,1]𝑒[−,𝑞,1]𝑓[−,ℎ,1], 𝑓[−,𝑞,1]𝑒[−,𝑞,1]𝑓[−,ℎ,1]),
6 : (𝐵,𝐵)→ (𝑎[−,𝑞,1]ℎ[−,𝑞,1]𝑐[−,𝑞,1]𝑎[−,𝑞,1]𝐵, 𝑑[−,ℎ,2]𝑎[−,ℎ,1]𝐵),
7 : (𝐵,𝐵)→ (𝑎[−,𝑞,1]ℎ[−,𝑞,1]𝑐[−,𝑞,1]𝑎[−,𝑞,1], 𝑑[−,ℎ,2]𝑎[−,ℎ,1]), }),

• 𝐺2 = ({𝑆2, 𝐴,𝐵}, {𝛼, 𝛽, 𝑑[−,𝑞,1], 𝑒[−,𝑞,1]},
{1 : 𝑆2 → (𝐴𝐵𝐴𝐵),
2 : (𝐴,𝐴)→ (𝑑[−,𝑞,1]𝛼𝑑[−,𝑞,1]𝛼𝐴, 𝑑[−,𝑞,1]𝛼𝑑[−,𝑞,1]𝛼𝐴),
3 : (𝐴,𝐴)→ (𝑑[−,𝑞,1]𝛼𝑑[−,𝑞,1]𝛼, 𝑑[−,𝑞,1]𝛼𝑑[−,𝑞,1]𝛼),
4 : (𝐵,𝐵)→ (𝑒[−,𝑞,1]𝛽𝑒[−,𝑞,1]𝛽𝐵, 𝑒[−,𝑞,1]𝛽𝑒[𝑑𝑖𝑚,𝑞,1]𝛽𝐵),
5 : (𝐵,𝐵)→ (𝑒[−,𝑞,1]𝛽𝑒[−,𝑞,1]𝛽, 𝑒[−,𝑞,1]𝛽𝑒[𝑑𝑖𝑚,𝑞,1]𝛽)}),

• 𝐺3 = ({𝑆3, 𝐴,𝐵}, {𝛾, 𝛿, 𝜁},
{1 : 𝑆3 → (𝐴𝐵𝐴𝐵),
2 : (𝐴,𝐴)→ (𝛾𝐴, 𝛾𝐴),
3 : (𝐴,𝐴)→ (𝛾, 𝛾),
4 : (𝐵,𝐵)→ (𝛿𝐵, 𝛿𝐵),
5 : (𝐵,𝐵)→ (𝛿, 𝛿),
6 : (𝐵,𝐵)→ (𝜁𝐵, 𝜁𝐵),
7 : (𝐵,𝐵)→ (𝜁, 𝜁)}),

• 𝐺4 = ({𝑆4, 𝐴,𝐵}, {ℎ[−,𝑞,−1], 𝑐[−,𝑞,1], 𝑑[−,𝑞,1], 𝑒[−,𝑞,1], 𝑓[−,𝑞,1], 𝑔[−,𝑞,1], 𝑎[−,𝑞,1], 𝑐[−,ℎ,1]},
{1 : 𝑆4 → (𝐴𝐵𝐴𝐵),
2 : (𝐴,𝐴)→ (𝑐[−,𝑞,1]𝑒[−,𝑞,1]𝑔[−,𝑞,1]𝑒[−,𝑞,1]𝐴, 𝑒[−,𝑞,1]𝑓[−,𝑞,1]𝑔[−,𝑞,1]𝑔[−,𝑞,1]𝐴),

62

3 : (𝐴,𝐴)→ (𝑐[−,𝑞,1]𝑒[−,𝑞,1]𝑔[−,𝑞,1]𝑒[−,𝑞,1], 𝑒[−,𝑞,1]𝑓[−,𝑞,1]𝑔[−,𝑞,1]𝑔[−,𝑞,1]),
4 : (𝐵,𝐵)→ (𝑑[−,𝑞,1]ℎ[−,𝑞,−1]𝑔[−,𝑞,1]𝑎[−,𝑞,1]𝐵, ℎ[−,𝑞,−1]𝑑[−,𝑞,1]𝑐[−,ℎ,1]𝐵),
5 : (𝐵,𝐵)→ (𝑑[−,𝑞,1]ℎ[−,𝑞,−1]𝑔[−,𝑞,1]𝑎[−,𝑞,1], ℎ[−,𝑞,−1]𝑑[−,𝑞,1]𝑐[−,ℎ,1])}),

• 𝑄 = {(1, 1, 1, 1), (2, 2, 2, 2), (3, 3, 3, 3), (4, 2, 2, 2), (5, 3, 3, 3), (6, 4, 4, 4),
(6, 4, 6, 4), (7, 5, 7, 5)}.

Figure A.1: Interpretation of a sentence generated by 𝐺𝑠.

63

Appendix B

Contents of the Storage Medium

Storage medium that stores all the source files for both thesis and implementation has
following structure:

• src/ - folder contains required source files to run command line application

• thesis/ - folder contains source files that were compiled into thesis-makis.pdf

• thesis-makis.pdf

• README.md - files contains installation and setup informations, also there are com-
mands that run the application

• requirements.txt - required python libraries to run command line application

64

	Introduction
	Formal languages and grammars
	Strings, Languages and Language families
	Grammars
	Lindenmayer systems
	Scattered Context Grammars
	Parallel Communicating Grammar Systems
	The Chomsky Hierarchy

	Music Theory, Musicology, and Their Properties
	Music art
	Fundamentals of Sound and Tone
	Understanding Melody and Harmony
	Neo-Riemannian Transformations and Tonnetz
	Computational musicology
	Generative Capacity

	Related Work
	Lindenmayer Systems
	Other Grammars
	Grammar in music notation
	Music Automaton

	Design and Application of Computational Models
	Model Definition
	Encoding Musical Concepts into the Grammar
	Derivation Process in Multi-Generative Grammar
	Algorithmic Implementation of the Model
	Examples of Generated Music

	Implementation
	Used Technologies
	Inputs and Outputs
	Program Structure and Execution
	Evaluation and Comparison

	Conclusion and Future Work
	Bibliography
	Second Example of Grammar Orchestration
	Contents of the Storage Medium

