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Abstract

This thesis presents the development of a modular neurorehabilitation system that

integrates Brain-Computer Interface (BCI) technology with real-time EEG signal

processing, a Unity-based virtual front-end, and robotic arm control. The primary

objective is to enable real-time detection of movement intention in motor-impaired

individuals and to support rehabilitation through interactive and engaging feedback.

The system was built around the OpenBCI platform for EEG acquisition and

the FourMotors software for robotic assistance. A custom dataset was created us-

ing a structured rehabilitation scenario, and rigorous signal preprocessing meth-

ods—including filtering, artifact removal, and normalization—were applied to en-

sure data quality. Multiple classification pipelines were evaluated, including a con-

volutional neural network (CNN) trained on raw EEG signals, a multilayer per-

ceptron (MLP) trained on extracted features such as CSP and bandpower, and a

meta-classifier ensemble combining both approaches.

Offline evaluation demonstrated solid performance for subject-specific classifi-

cation, while real-time implementation showed low-latency responsiveness suitable

for interactive applications. However, generalization to unseen subjects remains a

key challenge. Despite integration limitations, the final system demonstrates the

feasibility of closed-loop neurorehabilitation using BCI and highlights critical areas

for further research, such as improving subject-independent accuracy and refining

robot feedback mechanisms.

This work contributes a practical and extensible foundation for future neurore-

habilitation applications, combining clinical relevance with technical innovation.

Abstrakt

Tato diplomová práce představuje vývojmodulárního systémupro neurorehabilitaci,

který kombinuje technologii rozhraní mozek-počítač (BCI) s reálným zpracováním

EEG signálů, virtuálním rozhraním vytvořeným v Unity a řízením robotické paže.

Hlavním cílem je umožnit detekci záměru pohybu u osob s poruchou hybnosti

v reálném čase a podpořit rehabilitaci prostřednictvím interaktivní a motivující

zpětné vazby.

Systém je postaven na platformě OpenBCI pro snímání EEG a softwaru FourMo-

tors pro robotickou asistenci. V rámci strukturovaného rehabilitačního scénáře byl

vytvořena vlastní datová sada a na získaná data byly aplikovány pokročilé metody

předzpracování – filtrování, odstranění artefaktů a normalizace – za účelem zvýšení
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kvality signálu. Bylo otestovánoněkolik klasifikačníchmetod: konvoluční neuronová

síť (CNN) pracující s nezpracovanými EEG daty, vícevrstvý perceptron (MLP) využí-

vající extrahované příznaky jako csp a pásmový výkon, a dále metaklasifikátor kom-

binující oba přístupy.

Offline testování prokázalo dobré výsledky při klasifikaci specifické pro jed-

notlivé uživatele, zatímco v reálném čase systém vykazoval nízkou latenci vhodnou

pro interaktivní využití. Hlavní výzvou však zůstává zobecnění modelu na nové

uživatele. Systém i přes určitá omezení v oblasti integrace, demonstruje proveditel-

nost uzavřené smyčky neurorehabilitace pomocí BCI a poukazuje na klíčové oblasti

dalšího výzkumu, zejména zlepšení přesnosti u nových uživatelů a optimalizaci

zpětné vazby ze strany robotického zařízení.

Tato práce přináší praktický a rozšiřitelný základ pro budoucí aplikace v oblasti

neurorehabilitace, který spojuje klinickou relevanci s technickou inovací.

Keywords

Neurorehabilitation • Brain–Computer Interface (BCI) • EEG Signal Processing •

Unity • Real-Time Classification • Motor Intention Detection
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Introduction 1
What if a person could regain control over a paralyzed limb—not through surgery

or medication, but simply by thinking? This once-science-fiction concept is rapidly

becoming reality, thanks to the advancement of brain–computer interfaces (BCIs).

These technologies have the potential to transform neurorehabilitation by creating

new channels through which patients can interact with assistive systems using only

their brain signals.

Neurological disorders and injuries—such as stroke, Traumatic Brain Injury

(TBI), or Spinal Cord Injury (SCI), often result in severemotor impairments, limiting

independence and overall quality of life. Traditional rehabilitation methods, while

beneficial, often lack precision, adaptability, and motivation-driven feedback. To

address these limitations, researchers have increasingly turned to BCIs, particularly

those based on Electroencephalography (EEG), which offer a non-invasive, low-cost,

and temporally precise window into brain activity.

This thesis explores the design and implementation of a modular BCI-driven

neurorehabilitation system that closes the loop between brain activity, real-time in-

terpretation, and interactive feedback. The proposed system integrates (1) real-time

EEG acquisition and signal processing using OpenBCI hardware, (2) robust classifi-

cation models capable of distinguishing between resting and movement intention

states, (3) a Unity-based virtual reality environment to promote user engagement,

and (4) robotic assistance via the FourMotors system to provide physical feedback and

support.

A structured rehabilitation scenario was created to collect a novel dataset, upon

which multiple classification pipelines—including Convolutional Neural Network

(CNN), Multilayer Perceptron (MLP), and meta-classifiers—were trained and evalu-

ated both offline and in real-time conditions. The results demonstrate the feasibility

and challenges of building a practical, low-latency, and extensible BCI system for

motor recovery. By combining neurophysiological insights, modern machine learn-

ing techniques, and immersive feedback, this work contributes toward the vision of

intuitive, brain-controlled rehabilitation systems capable of adapting to individual

users and driving long-term recovery.
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Physiological
background 2
The human nervous system is a highly complex network responsible for coordi-

nating voluntary and involuntary functions through intricate electrochemical pro-

cesses. At its core, the system relies on neurons—specialized cells that transmit

information via electrical impulses and neurotransmitter release. Understanding

the physiological principles underlying neural function is essential for comprehend-

ing motor control, neuroplasticity, and rehabilitation, all of which play a crucial role

in restoring movement and function after neurological injury.

This chapter provides a foundational overview of the physiological mechanisms

governing neural activity, motor execution, and adaptation following injury. It be-

gins with an exploration of neuron structure and function, detailing the processes

of synaptic transmission and neural signalling. This is followed by an examination

of motor control pathways, highlighting the role of the motor cortex, basal ganglia,

cerebellum, and spinal cord in generating and refining movement. The concept of

neuroplasticity is then discussed, emphasizing its significance in rehabilitation and

recovery. Finally, the chapter concludes with an overview of common neurological

disorders that necessitate rehabilitation interventions.

2.1 Fundamentals of Neurons and Neural
Signaling

Neurons are the fundamental building blocks of the nervous system, responsible for

transmitting and processing information through electrical and chemical signals. A

typical neuron consists of three primary components: the dendrites, which receive

input signals; the soma (cell body), which integrates incoming signals; and the axon,

which transmits signals to other neurons via synapses [BCP20].

Neuronal communication occurs through action potentials, which are rapid

electrical impulses generated when the neuron’s membrane potential reaches a cer-

tain threshold. This process is driven by voltage-gated ion channels that regulate

the flow of sodium (Na+) and potassium (K+) ions across the membrane [Hil01]. The

7



2 Physiological background

resting membrane potential of a neuron, typically around -70 mV, is maintained by

the sodium-potassium pump (Na+/K+ ATPase), which actively transports Na+ out

of the cell and K+ into the cell. When a neuron is sufficiently stimulated, a rapid

influx of Na+ ions leads to depolarization, followed by repolarization as K+ ions

exit the cell. This cyclical process enables the propagation of electrical signals along

the axon.

At the synapse, the electrical signal is converted into a chemical signal via neuro-

transmitters, which cross the synaptic cleft and bind to receptors on the postsynaptic

neuron, facilitating signal transmission [Pur+18]. Different types of neurotransmit-

ters play crucial roles in regulating neural activity. For instance, glutamate acts as

the primary excitatory neurotransmitter in the central nervous system, whereas

GABA (gamma-aminobutyric acid) serves as the main inhibitory neurotransmitter,

balancing excitatory signals to prevent excessive neuronal firing.

Other neurotransmitters, such as dopamine, serotonin, and acetylcholine, con-

tribute to various functions, includingmovement regulation, moodmodulation, and

cognitive processes. Dysregulation in neurotransmitter function is linked to numer-

ous neurological disorders. For example, a deficiency in dopamine is a hallmark of

Parkinson’s disease, leading to motor impairments, while imbalances in serotonin

levels are associated with mood disorders such as depression and anxiety.

Beyond synaptic transmission, neurons exhibit plasticity, the ability to strengthen

or weaken connections based on experience and activity. This is a fundamental as-

pect of learning and memory and plays a crucial role in neurorehabilitation. Mecha-

nisms of plasticity include Long-Term Potentiation (LTP), which strengthens synap-

tic connections through repeated stimulation, and Long-Term Depression (LTD),

which weakens them when activity decreases [BC93]. Understanding these prin-

ciples is essential for designing effective rehabilitation strategies for individuals

recovering from neurological injuries.

Furthermore, neurons can be classified based on their function: sensory neurons

detect external stimuli and relay information to the brain, motor neurons trans-

mit signals from the brain and spinal cord to muscles, and interneurons facilitate

communication between sensory and motor neurons. These diverse neuron types

work together to process and execute complex behaviours, underscoring their im-

portance in neurorehabilitation and Brain-Computer Interface (BCI) applications

(more about that topic in Section 4).

8



2.2 Brain Regions Involved in Movement and Recovery

2.2 Brain Regions Involved in Movement
and Recovery

The brain is a highly complex organ composed of various interconnected regions,

each playing a crucial role in cognitive and motor functions. Understanding the

structure and function of these brain regions is essential for comprehending move-

ment generation, coordination, and recovery following neurological injury. Differ-

ent parts of the brain work in unison to facilitate voluntary movement, balance,

sensory perception, and motor learning. This section provides an overview of the

primary brain regions involved in movement control and recovery mechanisms. A

visual representation of these brain regions can be found in Figure 2.1, which illus-

trates their relative positions and functional significance. Some of the neurological

disorders and injuries mentioned in this section will be discussed in more detail

further in Section 2.5.

Figure 2.1: Brain regions related to movement [YD16]

2.2.1 Primary Motor Cortex

Located in the precentral gyrus of the frontal lobe, the primary motor cortex is re-

sponsible for generating neural impulses that control voluntary muscle movements.

It serves as the final output region for motor commands before they are transmitted

to the spinal cord and muscles. The motor cortex is somatotopically organized in

what is known as the motor homunculus, meaning specific areas of M1 correspond

9



2 Physiological background

to particular body parts, with larger representations for regions requiring finemotor

control, such as the hands and face.

In cases of injury, such as stroke, the plasticity of M1 allows other brain regions

to compensate for lost function. Rehabilitation techniques like Constraint-Induced

Movement Therapy (CIMT)) and brain-computer interfaces (BCIs) can facilitate the

reorganization of M1 to enhance recovery.

2.2.2 Supplementary Motor Area
The Supplementary Motor Area (SMA) is located anterior to the primary motor

cortex and plays a key role in planning complex movements and coordinating se-

quences of motor actions. The SMA is particularly important for internally guided

movements, such as those performed without external cues.

In neurorehabilitation, training methods that involve repetitive motor planning

tasks and imagery-based exercises can help patients regainmovement abilities when

the SMA is affected by neurological disorders.

2.2.3 Premotor Cortex
The Premotor Cortex, located just anterior to M1, is involved in the selection and

execution of movements based on external sensory cues. It works closely with the

primary motor cortex and sensory regions to adjust motor plans according to en-

vironmental feedback. The premotor cortex is also divided into dorsal and ventral

sections, with distinct roles in motor preparation and sensory integration.

Damage to the premotor cortex can result in apraxia, a condition where indi-

viduals struggle to perform learned movements despite having the necessary motor

strength. Rehabilitation strategies often involve sensory-guided movement training

to enhance functional recovery.

2.2.4 Basal Ganglia
The Basal Ganglia is a group of subcortical nuclei involved in movement initiation,

inhibition, and fine-tuning, ensuring accuracy and coordination through a process

called error correction [Doy00]. It plays a crucial role in motor learning, habit for-

mation, and the execution of automatic movements. The basal ganglia receive input

from various cortical areas and send processed motor signals to the thalamus before

reaching M1.

Disorders of the basal ganglia, such as Parkinson’s disease and Huntington’s

disease, are characterized by impaired movement regulation. Treatments like Deep

Brain Stimulation (DBS) and pharmacological interventions targeting dopamine

pathways help mitigate symptoms and restore function.

10



2.2.5 Cerebellum

2.2.5 Cerebellum
Located at the back of the brain, the Cerebellum is essential for motor coordina-

tion, balance, and error correction during movement. It receives sensory feedback

from the body and adjusts motor commands to ensure smooth and precise actions.

The cerebellum is also crucial for motor learning, helping individuals adapt to new

movement patterns through repetition and feedback.

Damage to the cerebellum can result in ataxia, a condition marked by uncoor-

dinated movements, poor balance, and difficulty in performing fine motor tasks.

Rehabilitation strategies, such as vestibular training and coordination exercises, can

improve function in individuals with cerebellar dysfunction.

2.2.6 Somatosensory Cortex
The Somatosensory Cortex, located in the postcentral gyrus of the parietal lobe,

processes sensory information related to touch, proprioception, and body position.

This region plays a critical role in providing the feedback necessary for precise

motor control and movement adjustments.

Patients with somatosensory deficits often experience difficulties with motor

control due to impaired feedback processing. Sensory retraining exercises and tactile

stimulation therapy are commonly used in rehabilitation to improve sensory-motor

integration.

2.3 Neurophysiology of Motor Control
It was mentioned in Section 2.2 that the control of voluntary movement is primarily

governed by the motor cortex and that it is also responsible for generating neural

impulses that direct muscle contractions, while the premotor cortex and supplemen-

tary motor area (SMA) contribute to motor planning and coordination [Kan+13].

In the article The Neural Basis of Motor-Skill Learning, Willingham suggested

that four processes support motor-skill learning and that we can observe twomodes

of motor control. The four processes of motor control are as follows [Wil99] (with

visual example in Figure 2.2):

(a) Strategic process - The actor selects the environmental goal of the movement.

This process can support motor-skill learning through the selection of succes-

sively more effective goals.

(b) Perceptual-motor integration - The actor selects spatial targets for move-

ments that will achieve the environmental goal. The environmental goal is se-

lected in allocentric space (i.e., a coordinate system in which objects are located
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2 Physiological background

relative to one another), but the target for movement is selected in egocentric

space (i.e., a coordinate system anchored on a part of the body). Allocentric space

depends on vision, and egocentric space depends on proprioception (informa-

tion about the position of the body that comes from receptors in the muscles,

tendons, joints, and skin), so learning becomes necessary when the relationship

between them is changed.

(c) Sequencing process - The third motor-control process sequences spatial tar-

gets for movement. Learning supported by this sequencing process occurs when

the actor must make the same sequence of movements repeatedly.

(d) Dynamic process - Translates the sequence of egocentric spatial targets into
a pattern of muscle activation. This process could support skill learning when

the relationship between egocentric space and muscle movements is poorly

represented (e.g., fine movements made with the non-preferred hand).

Figure 2.2: Four processes of motor control. In the strategic process (a), the actor

decides to move a drinking glass (filled square) to a new location (empty square).

The spatial locations are described in allocentric space (i.e., relative to the table). In

perceptual-motor integration (b), the spatial locations are translated into egocentric

space, in this case, relative to the location of the shoulder. In the sequencing process

(c), the two spatial locations are sequenced, to ensure that the current location of the

glass is reached first, and then the goal location of the glass. Finally, in the dynamic

process (d), the spatial targets are translated into a pattern of muscle activation to

move the hand to the targets. [Wil99]

Regarding the two mentioned modes, Willingham proposed that the four pro-

cesses can operate either in unconscious mode or in conscious mode. In the unconscious
mode, the actor is conscious only of setting the environmental goal. The other pro-

cesses operate outside of consciousness. In the conscious mode, the strategic process
not only selects the environmental goal, but also selects and sequences the spatial tar-

gets for movement. Under typical circumstances, the actor employs the unconscious
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mode and is conscious only of wanting the glass moved from one location to the

other. However, the actor can also use the conscious mode and consciously consider

the exact location in which the glass is to be grasped and the sequence of move-

ments necessary to move the glass. When the conscious mode is used, the output of

the strategic process replaces the output of the sequencing and perceptual-motor

integration processes [Wil99].

This will be important later in the Motor Imagery (MI) rehabilitation in connec-

tion with BCI and EEG signal retrieval.

2.4 Neuroplasticity and Rehabilitation
Neuroplasticity refers to the brain’s ability to reorganize and form new neural con-

nections in response to learning, experience, or injury. This phenomenon underlies

both normal cognitive development and the brain’s ability to recover from damage.

Neuroplasticity is fundamental to neurorehabilitation, as it enables the restoration

of function following neurological damage [KG11]. It occurs at various levels, in-

cluding synaptic, structural, and functional changes within the brain. These changes

allow the nervous system to adapt to new challenges, learn new skills, and compen-

sate for lost function.

Neuroplasticity can take place under two main conditions and is divided into -

Experience-Dependent Plasticity and Injury-Induced Plasticity. The first type
of plasticity is driven by learning and practice. Activities like playing an instrument,

acquiring a new language, or engaging in motor training exercises can induce neu-

roplastic changes in relevant brain regions. This claim is also supported byHebbian
learning - often summarized as "neurons that fire together, wire together" [Heb49].

The second condition is triggered after brain damage, where the brain undergoes a

natural reorganization process to compensate for lost function. This form of plas-

ticity is the basis of most rehabilitation interventions, helping individuals recover

abilities through structured therapy.

Through several mechanisms, neuroplasticity can manifest, including [Nud13]:

• Synaptic Plasticity - Modifications in the strength of synapses through pro-

cesses such as LTP, which strengthens synaptic connections through repeated

stimulation, and LTD, which weakens them when activity decreases [BC93].

These processes are crucial for memory formation and motor learning.

• Dendritic Branching and Axonal Sprouting - Following injury, neurons
can grow new dendrites and axons to establish new synaptic connections.

This process enhances communication between surviving neurons and com-

pensates for lost pathways.
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• Cortical Remapping - When brain regions are damaged, adjacent or func-

tionally related areas may take over lost functions. This reorganization is

particularly evident in stroke recovery, where the undamaged hemisphere

may assume motor control for affected limbs.

• Neurogenesis - In certain brain regions, such as the hippocampus, new neu-

rons can be generated even in adulthood. While neurogenesis is limited in

most parts of the brain, its role in recovery is still being explored in neurore-

habilitation research.

Regarding rehabilitation, neuroplasticity is leveraged to restore lost functions

and improve motor control. Several evidence-based interventions promote plas-

ticity, such as CIMT (which forces the use of an impaired limb by restricting the

movement of the unaffected limb, thereby encouraging cortical reorganization and

improving motor function), BCI (described in more detail in Section 4), Virtual Re-

ality andMirror Therapy or Repetitive Task Training. Studies using functional MRI

(fMRI) and EEG have demonstrated shifts in motor activity representation during

rehabilitation [Joh+02]. Bilateral motor training, intensive physiotherapy, and elec-

trical stimulation have also been shown to promote beneficial neuroplastic changes,

ultimately improving movement outcomes.

2.5 Common Neurological Disorders
Requiring Rehabilitation

Neurorehabilitation is particularly crucial for conditions that impair motor func-

tion, as it aims to restore movement, cognition, and independence. Since the causes

of these disorders differ in most cases, this section will be further divided into sub-

sections, providing descriptions and treatments for these disorders in terms of re-

habilitation.

2.5.1 Stroke
Stroke is one of the leading causes of disability worldwide, resulting from either

ischemic (blockage of blood flow) or hemorrhagic (rupture of a blood vessel) events

in the brain [LBK11]. The resulting damage often leads to hemiparesis (weakness on

one side of the body), loss of coordination, and difficulties with speech and cognition.

Rehabilitation strategies for stroke focus on task-orientedmotor training, CIMT,

and mirror therapy, all of which leverage neuroplasticity to reorganize surviving

neural circuits [Dob05]. Studies using functional MRI have demonstrated cortical

reorganization following intensive rehabilitation, particularly in the motor cortex
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[JR02]. Moreover, the use of brain-computer interfaces (BCIs) and robotic-assisted

rehabilitation has shown promising results in improving motor recovery [Soe15].

2.5.2 Traumatic Brain Injury (TBI)
Traumatic Brain Injury (TBI) results from a sudden impact to the head, causing

widespread neuronal damage and deficits in motor, cognitive, and emotional func-

tions. The severity of TBI varies, ranging from mild concussions to severe brain

trauma leading to long-term disability [Maa+17]. Recovery depends on the extent

of damage and the brain’s ability to reorganize and compensate for lost functions.

Rehabilitation approaches forTBI include cognitive-motor therapy, task-specific

training, and multisensory integration exercises to improve motor and cognitive

abilities. Neurostimulation techniques such as Transcranial Magnetic Stimulation

(TMS) and transcranial Direct Current Stimulation (tDCS) are being investigated as

potential adjunct therapies to enhance neural recovery [Dun16].

2.5.3 Neurodegenerative Diseases
Neurodegenerative diseases are progressive disorders that gradually impair motor

control, cognition, and autonomic functions. Unlike stroke and TBI, which involve

acute damage, neurodegenerative diseases lead to continuous neuronal loss over

time. The most well-known are:

• Parkinson’s Disease (PD) - Characterized by dopamine deficiency in the

basal ganglia, leading to bradykinesia, rigidity, and tremors. Deep Brain Stim-

ulation (DBS) and intensive gait training have been shown to improve motor

function in PD patients [KL15].

• Multiple Sclerosis (MS) - An autoimmune disease that damages myelin

sheaths, affecting nerve signal transmission. Rehabilitation strategies focus

on Functional Electrical Stimulation (FES), aerobic exercise, and cognitive

therapy to maintain function and delay progression.

• Amyotrophic Lateral Sclerosis (ALS) - A neurodegenerative condition af-

fecting motor neurons, leading to muscle atrophy and respiratory failure.

Rehabilitation efforts aim to preserve mobility and quality of life through as-

sistive technologies, speech therapy, and adaptive exercise programs [Har17].

2.5.4 Spinal Cord Injury (SCI)
Spinal Cord Injury (SCI) results in varying degrees of paralysis depending on the

location and severity of the injury. Complete SCI leads to loss of function below
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the injury site, while incomplete SCI may allow some degree of movement and

sensation.

Rehabilitation strategies for SCI emphasize locomotor training, robot-assisted

therapy, and neuromodulation techniques such as Epidural Electrical Stimulation

(EES), which has shown potential for restoring motor function in individuals with

severe SCI [Ang18]. Additionally, brain-computer interfaces (BCIs) are being ex-

plored to enable motor control through neural signal decoding.
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EEG 3
Electroencephalography (EEG) is a non-invasive

1
neurophysiological technique

used to measure electrical activity in the brain. It provides valuable insights into

brain function, cognitive processes, and neural disorders by capturing the oscilla-

tory patterns generated by neuronal activity [NS05]. EEG has been widely used in

research and clinical applications, including neurorehabilitation, brain-computer

interfaces (BCIs), and the diagnosis of neurological conditions such as epilepsy and

sleep disorders [MM12].

This chapter explores the fundamental principles of EEG, including its historical

development, underlying physiological mechanisms, and technical aspects of signal

acquisition. It also examines the different types of EEG signals, their relevance to

brain function, and the methods used for data processing and analysis.

3.1 Principles of EEG Measurement
EEG records electrical activity generated by the synchronous firing of neurons in

the cerebral cortex. These signals are captured by electrodes placed on the scalp,

which detect voltage fluctuations due to ion flow in neural tissue. The recorded

signals reflect the collective activity of thousands to millions of neurons, primarily

from the pyramidal cells located in the cerebral cortex [Luc14].

The basic principle behind EEG is that neurons communicate through electro-

chemical processes, generating electrical potentials that can be measured externally.

The primary contributors to EEG signals are postsynaptic potentials rather than

action potentials, as the summation of these potentials produces detectable voltage

changes at the scalp [Buz12].

Based on these principles, EEG offers several advantages over other neuroimag-

ing techniques, mainly:

• High Temporal Resolution - EEG can detect neural activity on a millisec-

ond timescale, making it one of the fastest methods available for studying

1
Note the existence of invasive EEGmethod, but for the sake of this thesis, it will not be covered.
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brain function [And04].

• Non-Invasiveness - Unlike intracranial recording techniques, EEG does not

require surgical implantation of electrodes, making it widely accessible for

clinical and research applications.

• Cost-Effectiveness - EEG is relatively inexpensive compared to methods

like functional MRI (fMRI) or Magnetoencephalography (MEG), making it a

practical tool for large-scale studies [Lop10].

However, EEG also suffers from certain limitations, chiefly:

• Limited Spatial Resolution - Because EEGmeasures electrical activity from

the scalp, it lacks the ability to localize deep-brain activity precisely [MM12].

• Susceptibility toArtifacts - EEG signals are easily contaminated by artifacts

from eye movements, muscle activity, and electrical noise, requiring rigorous

preprocessing techniques [DSM07].

• VolumeConductionEffects - Electrical activity fromdifferent brain regions

can mix as it propagates through the skull and scalp, reducing the ability to

isolate specific neural sources [Sri+96].

3.2 Electrode Placement and Signal
Acquisition

It was outlined in Section 3.1 that the signal is acquired through electrodes. In

conventional scalp EEG, the recording is obtained by placing electrodes on the

scalp with a conductive gel or paste. Many systems typically use electrodes, each of

which is attached to an individual wire. Some systems use caps or nets into which

electrodes are embedded; this is particularly common when high-density arrays of

electrodes are needed. The locations and names of specific electrodes are defined by

the International 10-20 system, which will now be described in greater detail because

of its use in the practical part of this thesis.

3.2.1 10-20 System
The International 10–20 system is a globally accepted approach for positioning scalp

electrodes during EEG examinations, sleep studies, and research experiments. It was

developed to ensure standardized testing procedures, making it easier to compare,

reproduce, and analyze results in both clinical and research settings. The system

establishes a correlation between electrode placement and the underlying brain
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regions, particularly the cerebral cortex. The name "10–20" comes from the spacing

between electrodes, which is determined as either 10% or 20% of the total distance

across the skull, measured front-to-back or side-to-side [Kle+99]. A key reference

measurement runs from the nasion (the point between the forehead and nose) to the

inion (the prominent bone at the back of the skull). Other common landmarking

methods involve measuring from one ear to the other, often passing over the top

of the head, using anatomical reference points like the tragus, auricle, and mastoid.

The visual description of the system is portrayed in Figure 3.1.

Cz T4C4C3T3

Pz

Fz

T6

O2

T5

F7 F8

O1

Fp1 Fp2

F4F3

P3 P4

A1 A2

INION

NASION

Figure 3.1: Electrode names and locations of International 10-20 system [Roj+18]

Each electrode placement is labelled with a letter corresponding to the brain

region it monitors: pre-frontal (Fp), frontal (F), temporal (T), parietal (P), occipital
(O), and central (C) [Kle+99; NL04]. Although there is no distinct "central lobe," the

electrodes marked with "C" can pick up EEG signals associated with frontal, tempo-

ral, or parietal-occipital activity, depending on individual variations. These central

electrodes are always used in polysomnography to assess sleep stages. Additionally,

there are "Z" (zero) sites, which indicate electrodes positioned along the midline

sagittal plane of the skull, such as FpZ, Fz, Cz, and Oz. These midline electrodes

primarily serve as reference points rather than recording lateralized brain activity,

as they sit above the corpus callosum and do not distinctly represent either hemi-

sphere. In polysomnography, diagnostic EEG studies, and epilepsy evaluations, "Z"

electrodes often function as ground or reference points, particularly in cases of sus-
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pected seizure activity or clinical brain death. The number of electrodes required, as

well as their precise placement, depends on the specific clinical or research purpose.

Electrodes are numbered to indicate their placement on the head: even num-

bers (2,4,6,8) designate sites on the right hemisphere, while odd numbers (1,3,5,7)
refer to placements on the left [Kle+99; NL04]. This numbering convention is con-

sistent across EEG (brain activity), EOG (eye movement), and ECG (heart activity)

electrode placements. Meanwhile, EMG (electromyogram) electrodes, which are

typically placed on the chin, are often labelled as "right," "left," and "reference" or

"common" since only three are usually used, and they can be referenced differen-

tially with EEG and EOG signals. The "A" designation (sometimes referred to as

"M" for the mastoid process) corresponds to the bony area located just behind the

outer ear, which is more pronounced in some individuals than others. In a standard

polysomnography setup, commonly used electrodes include F3, F4, Fz, Cz, C3, C4,
O1,O2, A1, and A2 (or M1 and M2 for the mastoid references) [Kle+99]. Cz and Fz
serve as common reference points for EEG and EOG electrodes, while A1 and A2

provide contralateral referencing for EEG signals.

3.2.2 Acquisition of the Signal
Each electrode is linked to one input of a differential amplifier, with each amplifier

corresponding to a pair of electrodes. A common reference electrode is connected

to the other input of each amplifier. These amplifiers enhance the voltage difference

between the active electrode and the reference, typically by a factor of 1,000 to

100,000 (equivalent to a power gain of 60–100 dB). Most modern EEG systems are

digital, meaning the amplified signal is first processed through an anti-aliasing filter

before being converted into a digital format using an analog-to-digital converter.

In clinical scalp EEG, digitization generally occurs at sampling rates between 256

and 512 Hz, while certain research applications may utilize rates as high as 20 kHz

[NL04].

During EEG recording, various activation techniques can be applied to elicit

normal or abnormal brain activity that might not appear under resting conditions.

These techniques include hyperventilation, photic stimulation (using a strobe light),

eye closure, mental exertion, sleep, and sleep deprivation.

The digital EEG data is stored electronically and can be filtered for visualization.

Typically, a high-pass filter is set between 0.5 and 1 Hz to remove slow-moving

artefacts such as electrogalvanic signals and movement-related noise. A low-pass

filter, ranging between 35 and 70 Hz, is used to eliminate high-frequency artefacts

like muscle activity. Additionally, a notch filter is commonly applied to remove

interference from electrical power sources, which operate at 60 Hz in the United

States and 50 Hz in many other countries [NL04].
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A typical adult human EEG signal, measuring between 10 𝜇𝑉 and 100 𝜇𝑉 in

amplitude at the scalp, represents the voltage difference between two electrodes

[Aur+04]. Its display for interpretation, known as a montage, can be arranged in

various formats:

• Sequential montage - In this setup, each channel (or waveform) represents

the voltage difference between two neighbouring electrodes, creating a se-

quence of connected comparisons across the electrode array.

• Referential montage - In a referential montage, each channel represents

the voltage difference between a specific electrode and a designated reference

electrode. Unlike the recording electrodes, the reference does not have a fixed

standard position but is placed separately. Midline locations, such as Cz, Oz,

or Pz, are commonly used to prevent signal bias between hemispheres when

serving as an online reference. Additionally, offline references are also widely

utilized.

• Average referencemontage - The outputs of all of the amplifiers are summed

and averaged, and this averaged signal is used as the common reference for

each channel.

• Laplacian montage - Each channel represents the difference between an

electrode and a weighted average of the surrounding electrodes [NP91].

3.3 Frequency Bands and Their Functional
Significance

EEG activity is generally categorized into two components: rhythmic activity
and transients. Rhythmic activity is further classified into frequency bands, with

specific ranges assigned standardized names (e.g., activity between 4–7 Hz is termed

"Theta"). While these classifications are somewhat arbitrary, they originated from

observed patterns where specific frequency ranges were associated with distinct

scalp distributions or biological significance. Most of the cerebral signal observed

in the scalp EEG falls in the range of 1–20 Hz (activity below or above this range is

likely to be artefactual, under standard clinical recording techniques). Waveforms

are subdivided into bandwidths known as Alpha, Beta, Theta, and Delta
2
to signify

the majority of the EEG used in clinical practice [Tat14].

Deltawaves refer to frequencies up to 4 Hz, characterized by their slow oscilla-

tions and high amplitude. In adults, they typically appear during slow-wave sleep,

2
It is worth noting the presence of Gamma and Mu frequency bands; however, since they are

not commonly used in standard clinical EEG recordings, they will not be discussed in detail.

21



3 EEG

while in infants, they are a normal feature of brain activity. Pathologically, delta

waves can be observed focally in cases of subcortical lesions or more diffusely in

conditions such as metabolic encephalopathy, hydrocephalus, or deep midline le-

sions. In adults, they are most prominent in the frontal region (e.g., FIRDA—Frontal

Intermittent Rhythmic Delta), whereas in children, they are more commonly seen

in the occipital region (e.g., OIRDA—Occipital Intermittent Rhythmic Delta).

Theta waves range from 4 Hz to 7 Hz and are typically present in young chil-
dren. In older children and adults, they may appear during drowsiness, arousal, or

even during meditation. While theta activity is normal in certain contexts, excessive

theta for a person’s age is considered abnormal. It may indicate focal disturbances in

cases of subcortical lesions or appear more diffusely in conditions such as metabolic

encephalopathy, deep midline disorders, or hydrocephalus. Conversely, theta waves

have also been linked to states of relaxation, meditation, and creativity [CP06].

Alpha waves fall within the 8–12 Hz frequency range and typically emerge

when the eyes are closed and the individual is in a relaxed state, diminishing with

eye opening or mental activity. In young children, the posterior basic rhythm is

slower than 8 Hz, technically placing it in the theta range. Beyond the posterior

rhythm, other forms of alpha activity exist, such as the mu rhythm, which appears

in the contralateral sensory and motor cortical areas when the hands and arms are

at rest, and the "third rhythm," which manifests in the temporal or frontal lobes

[FRV01]. While alpha activity is generally normal, it can be pathological in certain

cases, such as alpha coma, where diffuse alpha waves persist in an unresponsive

comatose state

Beta waves range from 13 Hz to approximately 30 Hz and typically appear
symmetrically on both hemispheres, with the highest prominence in the frontal

region. This frequency band is strongly associated with motor activity and tends to

decrease during active movement [PL99]. Low-amplitude beta waves with multiple

fluctuating frequencies are often linked to states of active thought, concentration,

or anxiety. In contrast, rhythmic beta waves with a dominant frequency pattern

can indicate certain neurological conditions, such as Dup15q syndrome, or be influ-

enced by medications, particularly benzodiazepines. Beta activity may be absent or

diminished in regions affected by cortical damage. It is the predominant rhythm in

individuals who are awake, alert, anxious, or have their eyes open.

A visual summary of the waveforms is portrayed in Figure 3.2
3

3
The practice of using only whole numbers in the definitions comes from practical considera-

tions in the days when only whole cycles could be counted on paper records. This leads to gaps in the

range definitions, as seen in the figure. The theoretical definitions have always been more carefully

defined to include all frequencies. Unfortunately, there is no agreement in standard reference works

on what these ranges should be.
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Figure 3.2: Visual summary of mentioned EEG waves [Siv17]

3.4 Data Processing and Artifact Removal
EEG is a highly valuable tool for analyzing brain activity; however, the recorded

signal is often affected by artefacts, which can complicate data interpretation. Arte-

facts refer to any signals that do not originate from brain activity, and their removal

remains a challenge despite the existence of various filtering algorithms. These un-

wanted signals can stem from technical issues, such as faulty electrodes, electri-

cal interference, or high electrode impedance, as well as physiological factors like

eye blinks, muscle activity, or cardiac rhythms, which are particularly difficult to

eliminate. Artefacts can distort EEG readings, potentially mimicking cognitive ac-

tivity and leading to misinterpretations in clinical diagnoses, including conditions

like Alzheimer’s disease or sleep disorders. Therefore, ensuring effective artefact re-

moval is crucial for maintaining the accuracy and reliability of EEG data in practical

applications [JBT19]. The processing pipeline can be abridged as follows:

1. Preprocessing - Several preprocessing techniques are applied to improve

signal quality. Filtering is the most well-known, representing the use of high-

pass filters (> 0.5 Hz→ removing slow drifts and baseline wander), low-pass

filters (< 50 Hz → eliminating high-frequency noise, including muscle arti-

facts), or the notch filter (50/60 Hz → removing power line interference).

Another technique is baseline correction, which compensates for slow drifts

by subtracting the mean or performing detrending techniques. Epoching and
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signal segmentation are also worth noting, as they are able to divide the EEG

signal based on event-related time windows for further analysis.

2. Feature Extraction - Relevant features, such as Power Spectral Density

(PSD), wavelet coefficients, entropy measures, and event-related potentials

ERP, are extracted from the cleaned signal. These features provide critical

information about brain activity, including frequency distributions, temporal

variations, and connectivity patterns.

3. Analysis and Classification - Processed signals are analyzed using statisti-

cal, machine learning, or deep learning techniques. Statistical methods, such

as Fourier and time-frequency analysis, help characterize EEG patterns. Ma-

chine learning approaches, including Support Vector Machines (SVMs), ran-

dom forests, and deep learning models like convolutional neural networks

(CNNs) and recurrent neural networks (RNNs), are used for classification

tasks, such as detecting cognitive states, sleep stages, or neurological disor-

ders.

Regarding artefact removal techniques, variousmethods exist for removing arte-

facts while preserving brain activity. Back in the day, there was manual inspection

and rejection. While effective, it was time-consuming and rather subjective. In ’90s

regression methods such as linear regression or adaptive filtering were used for the

raw signal. These have been then replaced with Blind Source Separation (BSS)
algorithms, including Principal Component Analysis (PCA)

4
and Independent Com-

ponent Analysis (ICA)
5
[Jun+00]. Another group of suppressionmethods arewavelet-

based methods which decompose the EEG signal into different frequency bands,

allowing selective removal of artefacts. Lastly, recent advancements integrate ma-

chine learning and deep learning for automated artefact detection and removal. This

involves classification-based artefact detection for supervised learning and cluster-

ing techniques to separate clean EEG for unsupervised learning [MPT21].

4
PCA reduces dimensionality by retaining the principal components of the signal, which can

help eliminate noise components.

5
ICA decomposes signals into independent components, allowing researchers to identify and

remove artefact sources.
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Brain-Computer Interfaces (BCIs) represent a groundbreaking field in neuroscience

and neuroengineering, enabling direct communication between the brain and exter-

nal devices. BCIs hold immense promise for individuals with motor impairments by

providing new avenues for communication, mobility, and control over assistive de-

vices [Wol+02]. They have applications in neurorehabilitation, assistive technology,

and cognitive enhancement, aiming to restore lost functions and improve quality

of life.

This chapter explores the fundamental principles of BCIs, their categorization,

classification, signal acquisition methods, and processing techniques. Furthermore,

it examines their applications in neurorehabilitation and related fields.

4.1 Fundamentals of BCI
A Brain-Computer Interface is a system that interprets brain activity and translates

it into commands for external devices. These systems rely on neural signals that

reflect cognitive or motor intentions, which are then processed to drive an out-

put device such as a computer cursor, robotic arm, or speech synthesizer [BC07].

BCIs are primarily developed to study, enhance, support, or restore human cogni-

tive and sensory-motor functions [Kru+16]. They are typically designed as direct

human-machine interfaces that bypass physical movement, such as hand gestures.

Additionally, BCIs raise intriguing possibilities regarding the integration of brain

and machine, potentially blurring the boundaries between the two. Due to the cor-

tical plasticity of the brain (Section 2.4), signals from implanted prostheses can,

after adaptation, be handled by the brain like natural sensors or effector channels

[Lev+00]. Following years of animal experimentation, the first neuroprosthetic de-

vices were implanted in humans in the mid-1990s. The term Neuroprosthetics1 is

1
An area of neuroscience concerned with neural prostheses, that is, using artificial devices to

replace the function of impaired nervous systems and brain-related problems, or of sensory or other

organs (bladder, diaphragm, etc.)
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sometimes used interchangeably with BCI, as both fields share the common goal

of restoring functions such as vision, hearing, movement, communication, and cog-

nition [Kru+16]. They also employ similar experimental approaches and surgical

techniques in pursuit of these objectives.

The general architecture of a BCI is depicted in Figure 4.1 and consists of five

key components:

• Signal Acquisition - This involves capturing neural activity using methods

like EEG, Electrocorticography (ECoG), Magnetoencephalography (MEG),

or Functional Near-Infrared Spectroscopy (fNIRS). Each technique, with its

trade-offs, will be described more in Section 4.3.

• Signal Processing - The raw neural data undergo preprocessing, artefact

removal, and feature extraction to identify patterns linked to user intentions.
2

• Translation Algorithms - These computational models classify and inter-

pret brain signals into meaningful commands using techniques like machine

learning.

• Output Devices - Processed signals control external applications, such as

prosthetic limbs, virtual reality interfaces, or communication aids.

• User Feedback and Adaptation - Many BCIs utilize adaptive algorithms

that refine performance based on user interaction, ensuring improved accu-

racy and usability over time.

4.2 BCI Categorization
BCIs can be classified into three fields, based on their invasiveness. This classification

is based on the target sense/area and location, and access to the brain.

Invasive BCIs involve surgically implanting electrodes beneath the scalp to

directly access brain signals, offering the advantage of enhanced accuracy. However,

this approach comes with risks, including potential surgical complications, the for-

mation of scar tissue that may interfere with signal transmission, and the possibility

of the body rejecting the implanted electrodes [AAM15]. Because they lie in the grey

matter, invasive devices produce the highest quality signals of BCI devices. Invasive

BCI research targets several areas. One of them targets repairing damaged sight and

providing new functionality for people with paralysis. In vision science, direct brain

implants have been used to treat non-congenital (acquired) blindness. Another area

2
The signal processing is dependent on the chosen acquisition method. For this thesis, EEG will

be used, which was already described in Section 3.4.
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Figure 4.1: Components of BCI system and its communication (source: [KBA21])

is focusing on motor neuroprosthetics, aiming to restore movement in individuals

with paralysis or provide devices to assist them, such as interfaces with computers

or robot arms. Lastly, a recent breakthrough focuses on communication. In May

2021, a team from Stanford University demonstrated a proof-of-concept system

that allowed a quadriplegic participant to generate English sentences at a rate of

approximately 86 characters per minute or 18 words per minute. By imagining hand

movements to write letters, the participant’s brain activity was recorded from the

motor cortex, and the system decoded the signals using HiddenMarkov models and

Recurrent Neural Network (RNN) for handwriting recognition [Wil+21].

Partially invasive BCI devices are implanted within the skull but positioned

outside the brain, rather than directly in the grey matter. These devices offer higher-

resolution signals compared to non-invasive BCIs, as they avoid signal distortion

caused by the skull, while also posing a lower risk of scar tissue formation in the

brain compared to fully invasive BCIs. Additionally, preclinical studies have demon-

strated the potential of intracortical BCIs in utilizing signals from the perilesional

cortex in stroke patients [Gul+15]. It is utilized in endovascular treatments through

the use of a stentrode
3
. The stentrode transmits neural activity to a battery-free

telemetry unit implanted in the chest, which wirelessly communicates with an ex-

3
Stentrode is a monolithic stent electrode array designed to be delivered via an intravenous

catheter under image-guidance to the superior sagittal sinus, in the region which lies adjacent to the

motor cortex [Opi21].
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ternal telemetry system for power and data transfer. While endovascular BCIs elim-

inate the need for a craniotomy, they carry risks such as clot formation and venous

thrombosis.

Non-invasive BCI represents most of the human experiments. The majority

of published BCI research involves non-invasive EEG-based BCIs. As mentioned in

Section 3.1, although EEG-based BCIs are non-invasive, easy to wear, and do not

require surgery, they have limitations such as low spatial resolution and reduced

ability to detect higher-frequency signals due to signal distortion caused by the skull.

Additionally, EEG-based systems often require setup time and calibration before

each session, whereas some other BCI types function without prior training. One

of the well-known BCI strategies that typically requires training to acquire accept-

able control is Motor Imagery. Motor imagery refers to the mental simulation of

body movements, which activates the sensorimotor cortex and alters sensorimotor

oscillations in the EEG. BCIs can detect these changes to interpret user intent. How-

ever, training for motor imagery-based BCIs typically requires multiple hours over

several days, and despite extended practice, users often struggle to fully master the

control scheme.

4.3 Acquisition Techniques, Signal
Processing and Translation

Accurate signal acquisition is crucial for BCI performance. Different neuroimaging

modalities capture distinct neural activity features. Acquisition of the EEG signal

is already described in great detail in Section 3.2.2 and therefore will be skipped in

this section.

Electrocorticography (ECoG)measures brain electrical activity from beneath

the skull in a way similar to non-invasive electroencephalography, using electrodes

embedded in a thin plastic pad placed above the cortex, beneath the dura mater

[SD04] and therefore belongs to partially invasive BCIs. ECoG provides several ad-

vantages over scalp-recorded EEG, including higher spatial resolution, an improved

signal-to-noise ratio, a broader frequency range, and reduced training requirements.

At the same time, it poses fewer technical challenges, carries lower clinical risks,

and may offer greater long-term stability compared to intracortical single-neuron

recordings [NG12]. These characteristics, along with evidence of high-level control

with minimal training, suggest strong potential for real-world applications, particu-

larly for individuals with motor disabilities.

Magnetoencephalography (MEG) is a functional neuroimaging technique that

maps brain activity by detecting the magnetic fields generated by natural electrical

currents in the brain, using highly sensitive magnetometers. Although EEG and

MEG both capture brain activity from the same underlying neurophysiological pro-
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cesses, they have key differences [CC83]. Magnetic fields experience less distortion

from the skull and scalp than electric fields, giving MEG superior spatial resolu-

tion. While EEG detects both tangential and radial components of current sources

in a spherical volume conductor, MEG is sensitive only to tangential components.

Additionally, EEG primarily records extracellular volume currents generated by

postsynaptic potentials, whereas MEG primarily detects intracellular currents as-

sociated with these synaptic potentials, as volume currents tend to cancel out in a

spherical conductor [BSB86]. Unfortunately, MEG requires specialized, expensive

equipment, making it a less viable option in comparison to EEG.

Functional magnetic resonance imaging fMRI measures brain activity by

detecting changes in blood flow, based on the principle that neuronal activation

and cerebral blood flow are closely linked. When a specific brain region is active,

blood flow to that area increases accordingly [Log+01]. The most common form

of fMRI utilizes Blood-Oxygen-Level Dependent (BOLD) contrast. This hemody-

namic response reflects the energy consumption of brain cells, providing insights

into functional brain activity in humans and other animals. fMRI and MEG have

both been used as non-invasive BCIs.

Extracting meaningful patterns from data involves identifying biomarkers.

An Event-Related Potential (ERP) is a brain response directly linked to a

specific sensory, cognitive, or motor event. More precisely, it is a consistent elec-

trophysiological reaction to a given stimulus, measurable through EEG or MEG
4
.

Compared to behavioural methods, ERPs offer a continuous measure of brain ac-

tivity between a stimulus and a response, allowing researchers to pinpoint which

processing stages are influenced by experimental manipulations. A key advantage

of ERPs is their ability to track stimulus processing even in the absence of observ-

able behavioural changes. However, due to their small signal amplitude, accurately

measuring ERPs typically requires a large number of trials [Luc05].

Motor imagery was already mentioned in Section 4.2. By definition, motor

imagery can be defined as a dynamic state during which an individual mentally

simulates a physical action. This type of phenomenal experience implies that the

subject feels themselves performing the action [Dec96]. Motor imagery activates

motor pathways. Muscular activity often increases with rest, during motor imagery.

Measurements of cardiac and respiratory activity during motor imagery and dur-

ing actual motor performance revealed a covariation of heart rate and pulmonary

ventilation with the degree of imagined effort [Dec+93; WM92]. Algorithms such

as Common Spatial Pattern (CSP) or Filter Bank Common Spatial Pattern (FBCSP)

have been deployed for feature extraction of motor imagery [LC23].

4
Then we are talking about an Event-Related Field (ERF) which is equivalent to ERP.
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Visual Evoked Potential (VEP)5 is an electrical potential recorded after a sub-

ject is presented with visual stimuli. The most well-known types of VEPs include

SSVEPs and P300 potentials. Steady-State Visually Evoked Potential (SSVEP)
are typically elicited using alternating checkerboard patterns or flashing images,

with the stimulus’s phase reversal frequency distinguishable through EEG. The

SSVEP signal is strong due to the topographic organization of the primary visual

cortex, where a large cortical area processes input from the central or foveal visual

field. However, SSVEP-based BCIs present challenges. Since they rely on flashing

stimuli to detect user intent, users must maintain their gaze on specific flashing

or oscillating symbols to interact with the system. Over extended periods, this can

lead to discomfort and irritation, potentially reducing usability. P300 potential
is a positive peak in the EEG that appears approximately 300 milliseconds after

the presentation of a target stimulus—a stimulus the user is anticipating or search-

ing for—within an oddball paradigm. The amplitude of the P300 decreases as the

distinction between target and non-target stimuli becomes less pronounced. This

potential is believed to be associated with higher-level attentional processes or an

orienting response.

Translation algorithms are based on the acquisition technique. For EEG, these com-

putational models used for classification and brain interpretation were briefly men-

tioned in Section 3.4. One worth noting for its simplicity and efficiency is Linear
Discriminant Analysis (LDA). LDA seeks to find a linear combination of features

that best separates two or more classes by maximizing the between-class variance

while minimizing the within-class variance [DHS01]. Multiclass LDA can be im-

plemented; however, in the field of neurorehabilitation, its binary version is more

commonly utilized.
6
.

4.4 Applications of BCIs in
Neurorehabilitation

BCIs have revolutionized neurorehabilitation by offering individuals with motor

impairments alternative pathways for recovery and interaction with their environ-

ment. By harnessing brain activity to control external devices, BCIs can significantly

enhance mobility, communication, and independence in patients with neurological

conditions.

Motor recovery BCIs are designed to support motor neuroprosthetics, either

by restoring movement in individuals with paralysis or by providing assistive de-

5
Note that evoked potential is different from Event-Related Potential (ERP), although the terms

are sometimes used synonymously.

6
Mainly in motor imagery left-right movement [LC23].
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vices. Research in recent years has demonstrated the utility of EEG-based BCI sys-

tems in aiding motor recovery and neurorehabilitation in patients who have had a

stroke [Sil+11; Lea+14; Tun+13]. In this approach, a BCI monitors motor activity

as the patient either imagines or attempts movements under the guidance of a ther-

apist. This method offers two key benefits: (1) if the BCI detects that the patient is

not correctly imagining the movement (non-compliance), it can provide feedback

to both the patient and therapist, and (2) rewarding feedback, such as functional

stimulation or the movement of a virtual avatar, is contingent on the patient ac-

curately performing motor imagery. Imaging studies combined with EEG-based

BCI systems hold promise for investigating neuroplasticity during motor recovery

post-stroke [Mra+17].

Another area concerns communication abilities. For patients suffering from
Locked-in Syndrome (LIS), where voluntary muscle movement is nearly impossible,

BCIs provide a vital means of communication. Birbaumer et al. ([Bir+99]) pioneered

early research demonstrating that ALS patients could use Slow Cortical Potentials

(SCPs) to communicate via a BCI system.More recent advancements have improved

the accuracy and usability of such interfaces, enabling LIS patients to type words

and sentences using event-related potentials (ERPs) or steady-state visually evoked

potentials SSVEPs [Mak+11]. The P300 speller, for example, allows patients to se-

lect letters on a screen based on their brain responses to flashing stimuli, greatly

enhancing their ability to communicate [SD06].

Assistive Technologies BCIs are increasingly being integrated into assistive

devices such as wheelchairs, prosthetics, and smart home systems. Hochberg et al.

[Hoc+12] conducted a landmark studywith the BrainGate system, inwhich tetraplegic

individuals controlled robotic arms using intracortical BCI implants. This study

demonstrated the feasibility of direct brain control over complex assistive technolo-

gies, paving the way for further innovation. In addition, non-invasive BCIs are being

used to operate wheelchairs, allowing individuals with severe mobility impairments

to navigate their environments by controlling directional commands with brain

activity [IMM10]. Similarly, smart home applications have been developed where

users can adjust lighting, temperature, and electronic devices through BCI interfaces,

further enhancing independence for individuals with disabilities.
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Current State Of Art 5
Before presenting a solution to the problem addressed in this thesis and implement-

ing it, it is essential to first examine the current state of the art in the field. Over the

past decade, researchers have explored various techniques and rehabilitation scenar-

ios aimed at improving motor outcomes in patients with stroke, spinal cord injuries,

and other motor impairments. This chapter is focused on the neurorehabilitation

research area (mostly motor recovery) and its current state.

For starters, Cantillo-Negrete et al. ([Can+23]) provide a practical guide for im-

plementing Brain-Computer Interface (BCI)-based interventions for stroke neu-

rorehabilitation, specifically targeting upper extremity motor recovery. The guide

addresses challenges in BCI clinical applications, ensuring usability regardless of

infrastructure or study design limitations. The review synthesises insights from ad-

ministering hundreds of BCI rehabilitation sessions, offering a structured approach

to executing BCI-based stroke interventions effectively. The article acts as a struc-

tured guide to help researchers and clinicians effectively implement BCI therapies,

covering technical requirements, session design, and intervention parameters. By of-

fering practical insights from real-world BCI applications, the guide bridges the gap

between theoretical research and clinical implementation, making BCI-based reha-

bilitation more accessible and effective. The article concludes with standardization

as a key challenge in (BCI)-based interventions for neurorehabilitation.

Cioffi et al. ([Cio+24]) provide a scoping review examining EEG-based sensori-

motor neurofeedback as a neurorehabilitation tool for individuals with neurological

motor impairments, including children and adults. A total of 4,380 studies were ini-

tially identified, with 133 meeting the criteria for final analysis. Notably, only three

studies focused on children, underscoring a significant research gap. Additionally,

77% of the studies concentrated on adult stroke patients, while fewer explored other

movement disorders. The outcomes of the studies varied significantly and encom-

passed BCI classification accuracy, Mu rhythm modulation (enhancements in neu-

rophysiological parameters), and clinical/motor outcome improvements. However,

few studies explicitly established a direct connection between functional motor im-

provements and EEG-based neurofeedback, leaving it unclear whether the observed
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changes were directly attributable to the neurofeedback intervention. In the end,

the study highlighted the need for improved study design, methodological consis-

tency, and direct clinical validation of neurofeedback effects to ensure its future

application in evidence-based neurorehabilitation.

Yu Tung Lo et al. ([Lo+24]) conducted an Individual Patient Data (IPD) meta-

analysis to evaluate the effectiveness of neural interface-based neurorehabilitation

for poststroke upper limb recovery. The analysis focused on Brain-Computer Inter-

face (BCI) and Brain-Machine Interface (BMI), which control Functional Electrical

Stimulation (FES) and powered exoskeletons to facilitate motor rehabilitation. The

study also examined clinical parameters influencing recovery outcomes. A conclu-

sion was drawn that neural interface-based motor rehabilitation significantly re-

duces poststroke impairment, though the improvements aremodest.Motor attempt-

based training and longer rehabilitation durations (>4 weeks) yield better results.

While younger patients and those with less severe impairment tend to improve

more, age and severity do not completely preclude meaningful recovery.

Many neurorehabilitation sessions use different types of games to provide more

enjoyable and engaging therapies for the patients. In recent years, a sudden rise of

Virtual Reality (VR) in neurorehabilitation came in the form of research articles

and experiments. Specht et al. ([Spe+23]) investigated the effectiveness of cognitive

training using Head-Mounted Display (HMD) VR in neurorehabilitation. It was a

pilot Randomized Controlled Trial (RTC) aimed at evaluating the impact of VR-

based cognitive training on cognitive function and user engagement compared to

conventional training methods. The research focused on patients with neurological

conditions that affect cognitive functions, assessing whether VR-based training pro-

vides better cognitive improvements and adherence rates. The study suggested that

VR-based cognitive training is an effective and engaging alternative to traditional

cognitive rehabilitation methods. It has the potential to improve cognitive func-

tions in patients with neurological impairments while also increasing adherence to

therapy. However, further large-scale studies were recommended.

A very similar study was performed by Prats-Bisbe et al. ([Pra+24]) regarding

VR as a support tool for people with cognitive impairments. The primary goal was

to assess whether VR can serve as a practical and effective rehabilitation tool for

patients experiencing cognitive deficits due to conditions such as stroke or Trau-

matic Brain Injury (TBI). The results were similar to the ones presented by Specht

et al., and that is that VR-based neurorehabilitation is a promising and engaging

approach for individuals with acquired brain injuries. While usability and feasibil-

ity were largely positive, challenges such as user adaptation and mild discomfort

need to be addressed. The findings support continued exploration and refinement

of VR interventions to improve cognitive rehabilitation outcomes. This claim also

supports Blázquez-González et al. ([Blá+24]) with the study on Efficacy of Virtual Re-
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ality on Health Literacy in Patients with Stroke. Dividing the patients into two groups
(the first had conventional rehabilitation only, and the second added a 20-minute

VR session), VR-based neurorehabilitation showed the potential to improve health

literacy, however, the study did not find statistically significant evidence to confirm

its effectiveness.

O’Neil et al. ([ONe+18]) approached the issue from a more practical point of

view. The study explored the real-world application of virtual reality in neurore-

habilitation by analyzing three different European clinics that implemented VR for

various patient groups and settings. It highlighted the motivations, implementation

challenges, and observed outcomes of using VR in Parkinson’s disease rehabilitation,

pediatric neurorehabilitation, and home-based telerehabilitation. Practical insights

were deducted from the study, mainly while VR improves patient engagement and

accessibility, its clinical effectiveness is still under evaluation, and costs, technical

challenges, and implementation variability remain barriers to widespread adoption.

Particular potential was found in telerehabilitation and gamified therapy models.

A brand new study from Sánchez-Gil et al. ([Sán+25]) introduced and validated

PACTUS, a gamified electronic device for stroke rehabilitation. The device is de-

signed to improve cognitive and motor function in the upper limbs of post-stroke

patients, addressing barriers to rehabilitation such as economic, emotional, and so-

cial constraints. The goal of PACTUS is to increase patient motivation and provide

precise rehabilitation progress tracking for both therapists and patients. The study

highlighted its broad potential application across different neurological conditions,

but further research and refinements are needed before full clinical deployment.
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Proposed BCI system 6
The task of this thesis is to create a closed BCI loop for motor imagery rehabilitation

of the upper extremity with the help of a rehabilitation robot situated in the neuro-

laboratory at the University of West Bohemia. The system will form a closed-loop

pipeline that integrates real-time BCI processing, robotic-assisted rehabilitation,

and interactive feedback through a Unity-based front-end. The abstract system

architecture is portrayed in Figure 6.1.
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EEG Data
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VR 
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Rehabilitation 
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OpenBCI System

Real-time 

Movement 
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Rehabilitation 

App

UDP UDP
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UDP

TCP/UDP

Figure 6.1: Diagram of proposed BCI system architecture

At the core of the loop will be the OpenBCI EEG system, which will continu-

ously acquire neural signals from motor-related cortical areas. These signals will be

streamed in real time via the Lab Streaming Layer (LSL) to a custom-built Python
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classification pipeline that distinguishes between resting states and movement at-

tempts. The classifier’s predictions will be transmitted via User Datagram Protocol

(UDP) to the rehabilitation control application, which interfaces with the robotic

rehabilitation device using a serial port connection. These predictions will signal the

concentration of the patient. Based on it, the robotic arm will help the patient reha-

bilitate by providing more mechanical support, making it easier to move. In parallel,

the rehabilitation application will communicate bidirectionally with a Unity-based

graphical front-end that will visualise the patient’s performance, providing imme-

diate neurofeedback. A VR-based variant of the front-end will also be developed as

a part of KIV/OP1
to extend this concept into an immersive environment.

6.1 Expectations
A few expectations preceding this proposed system need to be mentioned. The first

anticipation is regarding the rehabilitation software that guides the robotic arm.

In order to successfully create a closed loop, the application needs to be able to

communicate with the Unity front-end the position of the arm and potentially other

settings such as the current state of the machine, rehabilitation curve properties, etc..

In another vein, the rehabilitation software needs to be able to receive movement

predictions and, based on the value, adjust the movement of the servomotors. The

values can be presented either as binary values or represented as a scale.

The second expectation is about the binary classifier. Since creating the classi-

fier is not directly part of the thesis assignment, it is proposed to use other available

classifiers. Several works at the Faculty of Applied Sciences at UWB cover this mat-

ter. Kodera created and tested multiple neural network structures with different

augmentation techniques to analyze the performance and accuracy of various classi-

fiers in his master’s thesis [Kod23]. In his work, Kodera used an open-source dataset

consisting of 11 trials from 29 healthy subjects aged 19 to 24 [Kod+23]
2
. The data

correspond to 9 electrodes in the officially recognized Brain Vision data format. To

evaluate the classification performance of each model, Kodera employed 10-fold
cross-validation and tested the classifiers across three different data representa-

tion domains: time series, frequency, and time-frequency. Analysis of the results

evaluated the Convolutional Neural Network (CNN) without any augmentations

as the best model with an accuracy of 76.00 ± 0.80% [Kod23]. It is worth noting

that Kodera did not test the trained models in a real-time scenario, and that

the results he presents are supported only by a cross-validation performed on the

mentioned dataset.

1
This is more intensively described in Section 7.3.

2
It needs to be noted that the measuring setup and scenario differ from this thesis.
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Duc Thien Pham followed up by creating a hybrid version of his deep learning

model called CNN-Transformer-LSTM [PM24]. Pham used the same MI dataset as

Kodera, but created a more sophisticated and complex structure. The model yielded

similar results to Kodera’s, increasing its accuracy to 78.51 ± 1.21%. Both studies

concluded that augmenting EEG data provided no significant benefits. In summary,

it is proposed to use one of these models and apply it to the proposed pipeline.
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System
Implementation 7

7.1 Hardware and Software Setup
Before diving into the actual implementation of the system parts, examinations of

the third-party software setups are needed in order to better understand the entire

flow of the system. The section will begin with a description and the hardware/soft-

ware setup of the data acquisition application, followed by a description and setup

of the rehabilitation software used in this thesis.

7.1.1 OpenBCI
OpenBCI is an open-source platform designed for biosensing applications, particu-

larly EEG. The platform includes hardware components like the Cyton board, which

features eight channels for EEG signal acquisition and utilises the Texas Instruments

ADS1299 analog-to-digital converter, known for its high-resolution biopotential

measurements [Ope25]. The Cyton board supports data transmission via Bluetooth

or Wi-Fi, throughWi-Fi shield (TCP/UDP), facilitating real-time data streaming. Its

Graphical User Interface (GUI) provides widgets such as a time series channel-wise

filtered data, FFT plots, a bandpass widget, spectogram and a lot more.

7.1.1.1 Hardware setup

OpenBCI provides hardware kits that contain the necessary equipment for measuring

EEG activity through their software application. The Gelfree BCI Electrode Cap Kit

was used in this thesis and includes the following:

• Stretchy cap with adjustable chinstrap

• Labelled Ag-AgCl electrodes/cables

• Measuring utensils for saline conductive solution
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• Saline retaining Hydro-link conductive inserts

• Cotton swabs for scalp preparation

• Towel for mess-free clean-up

• Cyton Biosensing Board (8-channels) with Wi-fi shield

The Cyton board is powered by a four-A4 battery power source. The 8-channel

system was utilised, with 5 channels designated for data collection (precisely Fp1,
Fp2, Cz, C3, C4) and two electrodes serving as ground electrode (GND) and refer-

ence electrode (REF). The electrode setup is displayed in Figure 7.1.

Figure 7.1: OpenBCI Gelfree electrode cap setup

Before attaching the electrodes to the designated cap slots, the cotton swab and

Hydro-link inserts need to be immersed in a saline conductive substance for 5-10

minutes in order to gain the conductive properties necessary for the measurement.

After that, each slot highlighted in Diagram 7.1 needs to be moistened with the

cotton swab. It is important to note that each electrode cable needs to be attached

to its assigned slot. The chosen mapping is shown in Table 7.1.

Table 7.1: Mapping of EEG electrodes to cable numbers

Electrode Fp1 Fp2 Cz C3 C4 REF GND

Cable No. 1 2 3 4 5 7 8
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The number of the electrode cable is noted around the plastic grip of the Hydro-

link insert area. The connection of the conductive Hydro-link and skin needs to be

secured
1
.

7.1.1.2 Software setup

The connection to the hardware in this thesis was executed through the mentioned

Cyton board in Wi-Fi mode. To successfully connect to the board and receive the

data, the PC needs to be connected to a Wi-fi created by the Wi-fi shield on the

board
2
. As mentioned in Section 7.1.1.1, an 8-channel system with a sample rate of

1000Hz was chosen through a static IP of the board.

For the time series widget, the last three channels can be filtered out for im-

proved readability. OpenBCI applies basic filtering (Notch filter with bandpass 5-

50Hz) before rendering the signals from the channels, but for better motor signal

recognition, using filter settings described in section 7.6.2 is advised.

The networking widget serves for streaming the data out of the OpenBCI applica-

tion, in this thesis, to the real-time binary classifier (movement/resting). The widget

provides up to three different streams at any moment, but for the purposes of this

thesis, one is satisfactory. The type of data sent needs to be filtered so that the

prediction script receives correct data. OpenBCI provides four communication pro-

tocols, from which LSL was selected. The reason behind this choice is that LSL was

designed for the unified collection of measurement time series in research exper-

iments that handles both the networking, time-synchronization, (near-) real-time

access [KM19].

OpenBCI also provides recordings of the conducted experiment sessions. The

data from these sessions is locally saved as Comma-Separated Values (CSV) or text

files. The character and the format of these files are further described in section 7.4.

7.1.2 FourMotors software
The FourMotors rehabilitation software is an external application designed to control

andmonitor robot-assisted therapy sessions. Although not officially documented, its

functionality can be inferred through source code analysis. It serves as a middleware

layer between the robotic hardware and external control or visualization systems,

such as the Unity front-end and EEG classification modules shown in Diagram 6.1.

At its core, FourMotors is a Node.js application that uses Electron to render a

full-screen graphical interface, which launches a local server and opens a browser

window to serve the rehabilitation interface. This window visualizes the current

1
This is achieved by turning the plastic grip clockwise in the electrode slot until it produces a

clicking sound.

2
The Wi-fi does not have internet access and its sole purpose is data transfer.
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robot status, curve parameters, and supports operator input. Communicationwithin

the system is distributed across two primary channels:

• Serial Communication with the Robot - Through serial commands, it

controls different robot drivers (e.g., DRIVER_XYZ, DRIVER_A) and reads

back detailed telemetry such as position, velocity, force, and execution state.

Commands like program start, pause, stop, reset, and home positioning are

sent directly to the robot.

• UDP Communication with External Clients - The software runs a UDP
server listening on port 4000. It handles JSON-based requests for dynamic

robot parameters (e.g., curve parameters, current position data), enabling bidi-

rectional communication with clients such as the Unity front-end or external

control systems (detailed description is given in section 7.2).

The rehabilitation flow consists of movements in which the robotic arm as-

sists in tracing seven predefined curves—ellipse, lemniscate, rectangle, nephroid,

cardioid, spiral, and rose—each configurable with settings such as number of repe-

titions, width, height, and angle. The curve information and modifications cannot

be configured externally (via UDP or other protocol), but can be requested by the

front-end part of the system. A visual showcase of the rehabilitation application is

displayed in Figure 7.2

Figure 7.2: FourMotors UI representation
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7.2 Unity Front-end
The Unity Front-end serves as the main visual point of the rehabilitation. It must be,

therefore, crafted and adjusted for the patients who are recovering from conditions

mentioned in Section 2.5. This section describes the visual and practical design of

the rehabilitation, followed by code implementation of the visual functionality and

communication with the robotic arm device.

7.2.1 Environment
The environment plays a crucial role in rehabilitation scenarios. Patients spend

countless hours rehabilitating, and the need for a pleasant, calm, and soothing envi-

ronment is evident. With support from colleagues at the Sutnar Faculty of Design

and Art, who contributed the models, a dojo inspired by traditional Japanese archi-

tecture was created. The main design was to create a closed space for two reasons:

to save computational resources that would be otherwise needed for rendering and

to create a cosy feeling for the patient. The room provides multiple dim lights with

different warm colors to support the feeling of safety. For optimisation purposes

(which are crucial for the development of a VR application with limited resources -

Section 7.3), all the lights are static and baked
3
. The colour palette contains mostly

earthly, faint colours, further enforcing the tranquillity of the environment. The

complete room is displayed in Figure 7.3. The environment consists of approxi-

mately 260,000 vertices.

Figure 7.3: Rehabilitation environment in Unity

3
Baked lighting refers to a technique where lighting information, such as shadows and light

bounce, is precomputed and stored in textures or lightmaps. This reduces the real-time rendering

workload and improves performance.
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7.2.2 Scenario

Various scenarios were taken into account concerning the chosen environment and

the rehabilitation flow provided by the FourMotors application. Since the rehabilita-

tion curves are predefined, the primary object needs to stay the same, but the visual

representationmay differ. One ideawas, for example, to rehabilitate with the robotic

arm visualized as a katana and create either just movements as a form of martial art

meditation or to prepare some sort of breakable objectives on the curve’s path so

that the patient needs to cut through them. This idea was later discarded because of

the visual complexity.

As the final scenario, painting on a canvas was chosen. Painting is for many

people a sort of relaxation, and it supports the basics of rehabilitation regulations.

It also does not require knowing the curve details in advance, and it is therefore

modular, allowing future features to be added without the need to change currently

working code
4
. It also introduces features that can enhance the user experience or

make the otherwise repeating exercises fresher and new (colour picking, brush type,

brush thickness, etc.). Both Unity and VR front-ends support the same functionality

regarding rehabilitation as FourMotors software. A more detailed description in this

regard can be found either in Section 7.4 or in Appendix A. A snippet of a part of

the scenario run is showcased in Figure 7.4.

Figure 7.4: A showcase of the Unity front-end

4
This applies to both the Unity front-end and to the rehabilitation software.
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7.2.3 Implementation
The implementation of the Unity front-end is structured in a modular and scalable

manner
5
. The application is developed using the Unity engine (C#), which allows for

more refined game and even VR development. The entire implementation diagram

is portrayed in Figure 7.5. Both PC and VR versions were developed in Unity editor

version 2022.3.21f.

7.2.3.1 Architecture Overview

The front-end architecture is component-based and revolves around the central

class RehabilitationManager, which coordinates the flow of rehabilitation ses-

sions. It handles the scenario logic,manages user settings (RehabilitationSettings),

collects movement data (RehabData), and interfaces with the external robot control

system via UDP (UdpConnection).

The visual rehabilitationmetaphor, as alreadymentioned, is painting on a virtual

canvas. A paintable surface (PaintableCanvas) responds to input from a "virtual

brush", which can be dynamically customized via different BrushTip settings (e.g.,

size, color, texture). These brushes are implemented using a base class BaseBrush,

allowing the system to support extensibility for new brush types. The canvas is

represented by a texture. Whenever the tip of the Brush touches the canvas texture

(this is detected by a Raycast), it calculates the UV coordinates of the texture and

applies them as follows:

1. The method converts UV coordinates into pixel coordinates to identify the

center point for the brush stroke on the canvas.

2. It determines the scaled dimensions of the brush based on a configurable scale

factor.

3. It iterates over the scaled brush area, checking boundaries to avoid drawing

outside the canvas.

4. For each valid pixel, it samples the brush texture using UV coordinates and

retrieves the corresponding canvas pixel.

5. A blending operation is applied between the brush and canvas pixels, modu-

lated by brush color and pressure.

6. The modified pixel is written back, and all updates are applied to the texture

at once.

5
These properties can be seen in Section 7.3 where most of the implementation is the same and

the only adjustments are device specific.
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7.2.3.2 Scenario Control and Data Flow

The scenario is initiated through the RehabilitationManager. The script serves

as a state machine and controls the scenario run (more information in Section 7.4).

During the session, the Unity application receives positional data from the FourMo-

tors software via UDP. The communication occurs on port 4000. To retrieve data
from the server, {"get": "data"} is sent; to obtain curve parameters, {"get":

"curve"} is sent. The data is received as a JSON with the following structure:

• report: program state

• curveCycle: number of completedmovement cycles (floating-point, includes

fractions)

• pos: position of the hand

• vector: movement direction vector

• rotation: hand rotation

• thrustForce: applied hand force

• cosAngleVector: directional angle (cosine)

• cnt: counter of sent messages

And for the curve data:

• repeat: number of repetitions

• width, height: width and height of the curve

• angle: tilt angle of the curve (in radians)

• paramN, paramD: parameters for the rose curve (type 7)

• type: curve type (1 – ellipse, 2 – lemniscate, 3 – rectangle, 4 – nephroid, 5 –

cardioid, 6 – spiral, 7 – rose)

This data is processed and visualized in real-time, with a DirectionArrow3D

object indicating target directions or assistance cues for the user.
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7.2.3.3 Customization and Interaction

User feedback and engagement are enhanced through a custom-built UI system. A

UI_ColourPicker, built from UI_ColourWheel and UI_ColourPickerComponent,

allows patients to select brush colors in an intuitive way. This interaction adds

gamified elements that help sustain motivation and engagement during repetitive

tasks.
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7.3 VR Front-end

7.3 VR Front-end
Since the VR version of the Unity front-end is a parallel representation of the same

application, the logic and implementation are almost identical to the one that was

described in great detail in Section 7.2. Therefore, this section will serve as a com-

plement to that section and will only elaborate on features that were either added or

modified for a working immersive VR experience. It was designed for Oculus Quest
headsets using Unity’s meta packages. The main difference stems from a different

input system. The whole UI and its interaction system needed to be remade and

adjusted since the interaction now became diegetic
6
. The patient interacts with

the diegetic interfaces through his/her index finger. This interaction is made possi-

ble through the kinematic RigidBody and Sphere collider component on the tip

of the fingers. Whenever they collide with another object that has Collider com-

ponent set as a trigger, they will either fire an event OnTrigger or more complex

behaviour through the TriggerAction script. This way, the same functionality, such

as changing the slider or clicking the button, is preserved while the input trigger

action changes.

The essential part of the rehabilitation scenario mentioned in Section 7.4 is

movement signalisation. The patient needs to be aware of these visual cues and act

accordingly. This is not a problem with a non-diegetic 2D UI similar to the one in

Section 7.2. In VR, the patient has the ability to move and look around with nothing

constraining his/her movement. As a consequence of that, the VisionFollower

script resides on these important objects and ensures that they stay in the Field Of

View (FOV) of the patient. An example is showcased in Figure 7.6.

Virtual Reality is a fully immersive experience, and because of that, the patient

is not thoroughly aware of reality. The VR Head-Mounted Display (HMD) allows

for switching between the Virtual Reality (VR) and Augmented Reality (AR) based

on user preference, or even creates a blend of the two mentioned spaces. The HMD

is equipped with cameras that track both hand movements and the surrounding

environment in real space, allowing the captured view to be projected onto the

display. This transition (passthrough) was implemented for comfortable and secure

access. It works by enabling a special component called OVRPassthroughLayer,

which renders the camera feed either behind all virtual content (underlay mode) or

within a specific 3D shape like a sphere or box (selective overlay mode
7
). The feed

itself is grayscale and 2D (no depth), but a custom shader was made to control how

and where it’s displayed - this creates an animated fade effect transition between VR

and passthrough. The VR complementary code workflow is presented in Figure 7.7.

6
A diegetic interface is when a game’s interface elements exist In-Universe; the Player Character

sees them, rather than just the player.

7
Selective overlay is used in this thesis.
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Figure 7.6: A screenshot of the VR scenario trial

PassThroughManager
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Figure 7.7: UML diagram of the VR complement
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7.4 Rehabilitation Scenario and Dataset
Creation

It must be noted at this point that the expectations regarding the classifier explained

in Section 6.1were notmet. Even though bothKodera’s and Pham’s implementations

included a scaler, the OpenBCI application’s data differed significantly from the MI

dataset used in both researchers’ works. During real-time prediction, both models

consistently classified all inputs as the movement class with near-certain probabili-

ties (e.g., 0.98 formovement, 0.02 for rest), irrespective of the actual signal.Moreover,

the retraining of the models on this thesis dataset yielded only around 40% accuracy.

Due to the unsatisfactory performance, it was decided to construct a brand new

dataset, analyse its EEG properties, and develop a classification model specifically

tailored to the setup’s characteristics of this thesis, mentioned in Section 7.1. This

section will cover the rehabilitation scenario used in the dataset creation and real-

time classification testing. Moreover, the data acquisition and dataset creation will

be presented since they play an important role in the following sections.

7.4.1 FourMotors Scenario
The FourMotors software provides the following operational modes:

1. Normal mode without stopping

2. Stoppage for EEG learning

3. Stoppage for EEG measurements

4. Stoppage and relaxation for EEG learning

5. Stoppage and relaxation for EEG measurements

The fifth mode was chosen for dataset creation and will now be described in

more detail. At any given time, the scenario is set to one of the states displayed in

Table 7.2
8
.

The flow of the scenario is represented by the states, which are described in

more detail below. and the configurable parameters that are associated with the

scenario:

• The number of rounds of the active phase - An Integer, determines how

many curve rounds are performed before the Relaxation phase.
8
S1 signals only the state of the scenario and does not represent a marker value like the other

signals.
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Table 7.2: Rehabilitation States, Identifiers, and Durations

Rehab State Identifier Duration (sec)
Exercise running S1 -

Active pause S3 5

Ready to start S4 3

Active phase S5 -

Relaxation phase S6 param

• The frequency of stops - An Integer, describes how many Active pauses are
in one round (cycle) of the curve.

• Relaxation phase time - An Integer, specifies the duration of the Relaxation
phase in seconds.

7.4.1.1 Active Phase

The patient always starts in Active phase. In this phase, the user tracks the curve

and performs the motion. The rehabilitation arm is unlocked and free to move. The

subject should concentrate on the movement in this phase. The two possible follow-

ing phases are either Active pause or Relaxation phase based on the two mentioned

parameters.

7.4.1.2 Active Pause

This phase presents a 5-secondwindow, where the patient should relax and rest. The

rehabilitation arm is locked, and a huge red diode is shown to a subject, representing

the non-movement state. In this phase, the user should be actively relaxing, waiting

for the next signalisation of movement. At the end of the duration, the diode begins

to blink, signalling the end of the phase to the user. The Ready to start phase always
proceeds after this phase.

7.4.1.3 Ready To Start

This phase should be the most prominent one regarding the ERD/ERS of the EEG

signal from the motor-related cortical areas. A green blinking diode is shown to the

patient, signaling the concentration on the movement. The subject wants to move

the robotic arm, but the servomotors are locked. For the whole duration, the user

should either provide a physical pressure on the arm or use their MI for movement

concentration. The Active phase always follows after this phase.
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7.4.1.4 Relaxation Phase

After the given number of rounds of the active phase set by the parameter, the Relax-
ation phase begins. For the selected number of seconds, a soothing video of a river

stream in the woods with audio feedback overlays the rehabilitation application.

The arm movement is disabled, and the patient should enter a relaxation state. The

Active pause always proceeds after this phase.

7.4.2 Data Acquisition
The experiments were carried out in the neurolab at the Faculty of Applied Sciences

at UWB over the time span of several days. In total, 8 healthy subjects volunteered,

consisting of 2 women and 6men aged 21-28 (with a mean of 24). The hardware and

software setup was executed the same as it is described in Section 7.1. Each subject

has been familiarised with the rehabilitation scenario detailed in Subsection 7.4.1.

The OpenBCI application and FourMotors software ran in parallel - OpenBCI ran in the

background, gathering the EEG data while the rehabilitation application conducted

rehabilitation, timestamping the current state of the scenario.

The EEG recordings were saved locally and automatically after each rehabil-

itation trial in a CSV and plain text format. Each recording follows the standard

OpenBCI raw EXG data format, with a sampling rate of 1000 Hz and includes 8
EEG channels (EXG Channel 0–7). Each row corresponds to a single sample and

contains the following columns:

• Sample Index: A repeating integer value (0-256)

• EXG Channels 0–7: Raw EEG signals from the 8 electrodes

• Accel Channels 0–2: 3-axis accelerometer data

• Digital Channels (D11–D18): States of GPIO digital input pins

• Analog Channels 0–2: Optional analog input readings

• Timestamps: Both raw and formatted time indicators

• Marker Channel: Custom markers used to label task events or user actions

The EXG Channel numbering is important because it directly reflects the map-

ping of the electrodes in Table 7.1. The mapping in the recording is shifted,

starting from zero.

The markers signalling the different states of the rehabilitation were also auto-

matically saved by the FourMotors application at the end of each trial. It contains a

timestamped sequence of event markers, each indicating the start (Sx) or end
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(Rx) of a specific experimental phase. The format is a plain text log, where each line

consists of:

• Timestamp in the format DD.MM.YY-HH:MM:SS.sss

• Event label, such as:

– Start: Marks the beginning of the recording session

– S1–S6: Start of different experimental phases (e.g., baseline, motor im-

agery, rest)

– R3–R6: Corresponding end of the phases

7.4.3 Final Dataset
The final dataset consists of 24 trials and is published on Zenodo. All trials were per-
formed by the right hand and lasted approximately six minutes with the following

settings:

• Number of curve rounds - 10

• The frequency of stops - 1

• The number of rounds of the active phase - 2

• Relaxation phase time - 15s

• Curve type - ellipse, lemniscate, rectangle, nephroid 9

The dataset is divided into subfolders, each subfolder representing a trial. The

naming format of the folders adheres specific structure:

01m09042025e - <ID><Sex><Date><CurveType>

The folder contains two text files. The file data represents the OpenBCI record-

ing, while the file labels presents the marker file from FourMotors software. The

association of the data and labels was done manually by inspecting the beginning

and ending timestamps.

9
The rectangle and nephroid appear only once in the dataset because their realisation was sub-

optimal for the scenario purposes in comparison to the ellipse and lemniscate.
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7.5 Data Analysis and Quality Assessment
In order to get a general idea of the data properties (both qualitative and quantitative)

before the preprocessing stage, the data analysis was made through the debug_data

script. The quality of each trial was assessed by seven metrics - channel correlation

and amplitude range [Big+15; Ric+20], kurtosis and skewness [Xia+20], Power Spec-

tral Density (PSD) harmonics [Red+24], band RMS ratio, and flatline detection. The

analysed channels were Cz, C3, and C4 since they are responsible for the signal

from motor-related areas.

7.5.1 Channel Correlation

The channel correlation evaluates the similarity between signals recorded from the

three mentioned channels. It uses the Pearson correlation coefficient. The imple-

mentation (Code 7.1) is done through the Numpy library.

Source code 7.1: Channel correlation analysis implementation

1 corr = np.corrcoef(eeg.T)

2 max_corr = np.max([corr[0, 1], corr[0, 2], corr[1, 2]])

3 if max_corr > CORRELATION_THRESHOLD:

4 issues.append (....)

If themaximum correlation exceeds a threshold of 0.9, it suggests that the signals
may be too similar, indicating redundancy or volume conduction effects. This could

mean that the electrodes are not capturing independent brain activity, possibly due

to poor placement or contact, and therefore, the signal may not be reliable.

7.5.2 Amplitude Range

The amplitude range refers to the peak-to-peak voltage observed in each EEG chan-

nel. A healthy EEG signal typically does not exceed 100 microvolts (this is referred
to as AMPLITUDE_THRESHOLD in Code 7.2). If any channel has a signal amplitude be-

yond this threshold, it likely contains motion artefacts, eye blinks, or poor electrode

connections.

Source code 7.2: Amplitude range analysis implementation

1 ptp = np.ptp(signal) # p e ak − t o − p e a k r a n g e
2 if ptp > AMPLITUDE_THRESHOLD:

3 issues.append (...)
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7.5.3 Kurtosis

To detect statistical abnormalities in the shape of the signal distribution, the script

calculates kurtosis, which measures the "tailedness" or extremity of a signal’s fluc-

tuations. High kurtosis values (above 6 in Code 7.3) indicate the presence of sharp

spikes or outliers, often caused by electrical interference or transient artefacts like

electrode pops.

Source code 7.3: Kurtosis analysis implementation

1 k = stats.kurtosis(signal)

2 if k > KURTOSIS_THRESHOLD:

3 issues.append (...)

A normal EEG should have a more Gaussian (bell-shaped) distribution, and

excessive kurtosis undermines the signal’s quality.

7.5.4 Skewness

In parallel with kurtosis, the script checks for skewness, a measure of the asymmetry

of the EEG signal distribution. A symmetric EEG signal will have a skewness close

to zero, indicating balanced fluctuations above and below the baseline. If skewness

exceeds ± 1.5 (see Code 7.4), the signal is considered distorted, which can arise

from long-lasting artefacts or baseline drift. Skewed distributions suggest that the

data is biased and may not accurately represent ongoing brain activity.

Source code 7.4: Skewness analysis implementation

1 s = stats.skew(signal)

2 if abs(s) > SKEW_THRESHOLD:

3 issues.append (...)

Both functions for kurtosis and skewnesswere implemented through scipy.stats

library.

7.5.5 Power Spectral Density Harmonics

Another important metric is the detection of harmonics in the Power Spectral Den-

sity (PSD). The script uses Welch’s method to compute the PSD of each channel and

identifies the frequency at which each channel has the highest power. If the differ-

ences between these peak frequencies are consistently spaced (e.g., around 10 Hz
apart), the Code 7.5 flags this as periodic noise. Such harmonics often arise from

electrical interference, like 50 or 60 Hz power lines, or from repetitive, non-neural
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artefacts such as muscle tremors or mechanical vibrations. The analysis uses the

MNE library function
10
.

Source code 7.5: PSD analysis implementation

1 psd , f = psd_array_welch(eeg.T, sfreq=sfreq , fmin=1, fmax=60,

n_fft =2048)

2 peak_freqs = f[np.argmax(psd , axis =1)]

3 harmonics = np.diff(peak_freqs)

7.5.6 Band RMS ratio

Another spectral quality check compares high-frequency power (30–50 Hz) with

alpha band power (8–12 Hz) using the Root Mean Square (RMS) of the PSD in each

band. Normally, the alpha band dominates resting-state EEG, especially in relaxed

conditions. When high-frequency RMS exceeds twice the alpha RMS, the script

(Code 7.6) flags this as suspicious. This typically indicates muscle artefacts (e.g., jaw

clenching, neck tension) or environmental electrical noise, which disproportionately

affect higher frequencies and corrupt the interpretability of the signal.

Source code 7.6: RMS ratio analysis implementation

1 rms_alpha = band_rms(signal , 8, 12)

2 rms_high = band_rms(signal , 30, 50)

3 if rms_high > 2 ∗ rms_alpha:

4 issues.append (...)

7.5.7 Flatline Detection

Additionally, the script includes a basic flatline or dead electrode check by comput-

ing the standard deviation of each EEG channel. If the variance is extremely low

(below a set threshold - check Code 7.7), the script warns that the signal may be

"flat," meaning the electrode is likely not recording any meaningful data. This could

be due to physical disconnection, dried electrode gel, or hardware failure.

Source code 7.7: Flatline analysis implementation

1 std = np.std(eeg[:, i])

2 if std < 1e−3:

3 print("Dead␣or␣flat␣signal")

10
MNE is an open-source package for exploring, visualizing, and analyzing human neurophysio-

logical data
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7.5.8 Dataset Quality
All the mentioned metrics were applied to the entire dataset. Each trial was given an

artefact score, based on the number of metrics it failed. Trial was marked as Good
if there was no issue, Suspicious if the data had less than 4 issues, and Bad if more

than 4 issues were found. With these settings, 7 trials were marked as Bad, 16 as

Suspicious and only 1 as Good. The debug_data script logs each issue to a terminal

and a file for further analysis. It also saves plots of amplitude histograms, PSDs, and

time domain 2-second windows of random data samples with filter modifications

to provide a better understanding of the character of the data. For illustration, the

data from the only trial marked as Good were compared with data from a trial that

was marked as Bad (the worst - 10 issues). For starters, the amplitude distribution

comparison is displayed in Figure 7.8.

The first histogram (Good) displays a natural, bell-shaped amplitude spread for

all three EEG channels, with most values concentrated around 0 𝜇V and a moderate

dispersion between approximately −40 𝜇V and +40 𝜇V. In contrast, the second his-

togram (Bad) reveals a severe quality issue. Although the amplitude axis stretches

dramatically from−5000 𝜇V to +5000 𝜇V, nearly all data points fall within an unnat-
urally narrow band centered at 0 𝜇V. The towering count values exceeding 250,000

per bin strongly indicate that the signals are nearly flat, lacking dynamic variation.

Channel-wise amplitude distribution was also plotted with three different filter set-

tings:

1. Raw data

2. Filtering with Notch filter (50Hz) and High-pass Filter (with cutoff 8Hz)

3. Notch with HPF and Band-pass Filter (8- 22Hz)

Since all the trials were performed, as mentioned in Section 7.4.3, using the right

hand, the main area of interest lies in C3 electrode comparison, shown in Figure 7.9.

The raw signal in the Good trial exhibits a broad amplitude spread, primarily

ranging from approximately −15 𝜇V to +20 𝜇V, which is consistent with physiologi-
cally active EEGdata. After applying the filtering, the distribution becomes narrower

but retains a meaningful shape. On the other hand, all versions of the Bad C3 signal
are narrowly concentrated around 0 𝜇V, with an extreme spike in count at that cen-

tral value. This further proves that the signal is nearly flat. This statement is backed

up by the PSD comparison of the C3 channel in Figure 7.10.

In the Good trial, the PSD curve shows a typical spectral profile with a clear

decrease in power as frequency increases, and a visible peak around 10Hz, which

likely corresponds to neural activity in the alpha band, while the Bad trial shows an
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(a) Good amplitude distribution

(b) Bad amplitude distribution

Figure 7.8: Amplitude distribution comparison

abnormally high power level across the spectrum, with no discernible physiological

peaks.

The time-domain comparison plots in Figure 7.11 highlight a distinct difference

in signal characteristics. In the Good trial, the application of notch and high-pass

filters successfully suppresses low-frequency drift and power line interference. In

the Bad trial, there is an absence of any discernible neural activity or noise structure,
and filtering has minimal impact on the waveform, showing low-variance signals

across all three channels in both raw and filtered traces. The repeating signal drops

suggest signal corruption or hardware malfunction.
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(a) Good C3 amplitude distribution

(b) Bad C3 amplitude distribution

Figure 7.9: C3 filtered amplitude distribution comparison

7.6 Classifier Design and EEG
Preprocessing

This section outlines the structure, preprocessing, and implementation of the clas-

sification project that was implemented in Python. The project uses the following

libraries:

• NumPy (Numerical Python) provides efficient tools for working with multi-

dimensional arrays and performing scientific computations. It is one of the

most essential and widely used libraries in the Python ecosystem for scien-

tific computing. Many other libraries rely on NumPy arrays as their core data

structure. In the context of this project, NumPy is primarily used for storing

and manipulating preprocessed data.

• MNE - library specialized in the analysis of neurophysiological data. It offers

a wide range of tools and objects for loading, processing, visualizing, and

analyzing such data, including EEG signals. In this project, it is used primarily

in one of the implementations for loading and preprocessing the recorded

EEG data.
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(a) Good C3 PSD

(b) Bad C3 PSD

Figure 7.10: C3 filtered PSD comparison

• SciPy - a scientific computing library that builds on top of NumPy and provides

additional functionality for advanced mathematical operations. It includes

modules for signal processing, optimization, integration, statistics, and more.

In this project, SciPy is used mainly for filtering EEG signals and performing

statistical analyses during preprocessing.

• scikit-learn - a machine learning library in Python that offers a wide vari-

ety of tools for data modeling, classification, regression, clustering, andmodel

evaluation. In this project, scikit-learn is used for training and evaluating

machine learning models on extracted EEG features.

• Matplotlib is a plotting library that provides functionality for creating visual-

izations and rendering various types of data plots. In this project, Matplotlib

is used to visualize EEG signals, power spectral densities, classification results,

and data distributions.
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(a) Good time-domain sample

(b) Bad time-domain sample

Figure 7.11: Filtered time-domain comparison

• Keras/TensorFlow – Keras is a high-level library for deep learning and neu-

ral network development. It offers an intuitive API that makes it easy to build

and train various neural network architectures. TensorFlow, on the other

hand, is a lower-level library that provides detailed control over model oper-

ations, along with support for hardware acceleration (e.g., GPU) to optimize

computational performance. In practice, Keras uses TensorFlow as its back-

end, meaning that Keras internally relies on TensorFlow’s capabilities. The

combination of these two libraries enables rapid prototyping through Keras’s

user-friendly interface, while still allowing access to TensorFlow’s advanced

features for customization and performance optimization.
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7.6.1 Architecture
The project implementation is divided into 5 modules/packages - Classification,

Preprocessing, Utils, Testing, Main. The communication and the structure of

the modules are visualised in Figure 7.12. Each module is presented in a dedicated

subsection, with the preprocessing and classification parts further elaborated in the

subsequent sections.

7.6.1.1 Clasification

The classification module consists of three classes:

• CNN - The class represents a convolutional neural network implemented through

TenserFlow/Keras. A detailed description can be found in Section 7.6.3.

• MLP - This class represents a Multilayer perceptron, which works especially

well with extracted features from the data. It is discussed in greater detail in

Section 7.6.4.

• CNN_Features - The initial script, which was later replaced by the previously

mentioned. The main idea was to combine the power of CNN for extracted

features.

7.6.1.2 Preprocessing

The preprocessing was divided by the classification method it is used by. Since the

development was sequential, and new methods of preprocessing were discovered

at different times, the package has the following structure:

• debug_data - This script was alreadymentioned in the Section 7.5. It consists

of functions that provide an analytical view of the dataset.

• prep_core - It embodies the core preprocessing functionality used by both

following scripts.

• prep_mne - An extension of prep_core with added functionality needed for

correct MNE feature extraction.

• prep_raw - Also and extension of prep_core. This time is used for raw time

series data format with minimal preprocessing.

• prep_old - An old initial script, no longer used but kept for documentation

purposes.
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Figure 7.12: UML diagram of classifier architecture. It should be noted that, for

clarity, only the most essential methods, variables, and relationships are shown.
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7.6.1.3 Utils

The Utilsmodule is constructed from scripts that provide general utility or vari-

ables, which are used across the whole project. It consists of the following scripts:

• config - The configuration script contains all the static configurable variables

used in preprocessing, classification, file management, and mapping.

• utils - All logic, including file management, import/export of input data,

models, scalers, plots, classification reports, preprocessed saved data, or other

utility functions, resides in this script.

• utils_plot - Provides functions for plotting confusion matrices and classi-

fication trends, input data, and channel-wise comparisons.

7.6.1.4 Testing

This package was created for real-time classification predictions of the two imple-

mented approaches. It is made of three scripts:

• real_time_mne - The script loads the created MLP model with scaler and

CSP filters (more information in Section 7.6.2). After that, it predicts incoming

EEG data through the LSL protocol and progressively saves the predictions

for further offline analysis (properly described in Section 8.2).

• real_time_raw - Loads the CNN model a predicts movement through the

LSL protocol, similarly to the preceding script (also described in greater detail

in Section 8.2).

• real_time_comparator - Synchronizes the predictions from real_time_mne

or real_time_raw with the ground truth signaling from rehabilitation soft-

ware, providing analysis of the real-time trial predictions.

7.6.1.5 Main

In the implemented system, several experimental training pipelines were explored

and iteratively refined to achieve robust classification of EEG signals related to mo-

tor intention. The primary distinction between these pipelines lies in the type of

input used (raw signals vs. extracted features) and the classification strategy (sin-

gle model vs. stacked ensemble). The outlined key architecture variants developed

throughout the project are as follows:

• train_mne - The script focuses exclusively on high-level features extracted

using the MNE library. This variant trains a standalone MLP classifier with
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early stopping on standardized CSP+feature vectors. It supports both group-
aware and stratified cross-validation, providing plots of accuracy and loss
trends across folds. This version benefits most from the heavy preprocessing

featured in Section 7.6.2.

• train_raw - Represents a baseline approach, where a standalone Convolu-

tional Neural Network (CNN) is trained directly on raw EEG windows. The

script loads the complete dataset, applies cross-validation using eitherGroup-
KFold or StratifiedKFold, and evaluates themodel performance on held-out

folds (closely inspected in Section 8.1). The best-performing model is then

retrained on the full dataset to maximize generalization and stored for later

use.

• train_stack - Introduces a hybrid ensemble training architecture. This pipeline

processes EEG data in parallel along two paths: (1) a raw data branch forMLP

processing, and (2) a feature-based branch for MLP processing. Raw win-

dows are minimally preprocessed and fed to a MLP, while a separate feature

extraction procedure (described in Section 7.6.2) transforms the same time

segments into feature vectors used by aMultilayer Perceptron (MLP). The pre-

diction probabilities from bothmodels are then used as inputs for a final meta-

classifier, which is a Random Forest (RF). This stacked ensemble approach

benefits from both low-level temporal signal features and high-level engi-

neered features. Inner cross-validation is used during the meta-classifier

training to avoid overfitting and information leakage.

• train_old - An archaic version of a training architecture, consisting of heavy

feature preprocessing, which was then used in the training of MLP. It served

as a prototyping sandbox and verification point for later, more structured

pipelines.

7.6.2 Preprocessing
The EEG data are prepared through a pipeline of filtering, normalization, artifact

removal, and segmentation before being fed into machine learningmodels. This pre-

processing ensures that both the raw data branch (for MLP input) and the feature-

based branch (for MLP input) work with cleaner and more informative data. Com-

mon operations applied to the EEG include frequency filtering to isolate important

bands, re-referencing and scaling to standardize the signals, and the use of event

markers to label data segments for supervised learning. In particular, markers from

the experiment protocol (phases S1–S6) are used to assign class labels to time in-

tervals (See Table 7.2). Because neural state transitions (e.g. movement onset/offset)

are gradual, the labeling strategy incorporates the possibility pf soft labels (decayed

68



7.6.2 Preprocessing

labels) for certain phases (notably S5 and S6) – this means that instead of a hard

0/1 class label, transitional periods are labeled with intermediate values (e.g. 0.5) to

reflect the partial engagement of the target activity during those windows (this fact

is further debated in Section 9.1). For increased clarity, the mapping of the labels is

shown in Table 7.3.

Table 7.3: Label mapping with and without soft labels

Phase Marker Label (Soft) Label (Hard)
S3 (Pause) 0.0 0

S4 (Movement Attempt) 1.0 1

S5 (Active Movement) 1.0 (first 4s), then 0.5 1

S6 (Relaxation) 0.5 (first 4s), then 0.0 0

Another important information is regarding the EEG data format saved in the

plain-text files of the OpenBCI recordings. OpenBCI GUI filters and streams all the

channel data in microvolts, but that is not the case for the recordings:

OpenBCI does not store EEG data directly in microvolts. Instead, it stores
raw integer values from the ADC (Analog-to-Digital Converter). For the

Cyton board, which is based on the ADS1299 chip, the ADC has a resolution of

24 bits. With a Programmable Gain Amplifier (PGA) gain of ×24, the voltage
resolution is approximately 0.02235 𝜇V per bit.

This important yet hidden detail was revealed by a deep analysis of the input data

through the debug_data script (Section 7.5). On account of this newly discovered

reality, a conversion function (Code 7.8) was created to transform the input data

into the correct units.

Source code 7.8: Microvolts conversion

1 def convert_to_microvolts(eeg_raw , gain=24, adc_resolution

=2∗∗23 − 1, v_ref =4.5):

2 " " "
3 C o n v e r t raw EEG s i g n a l t o m i c r o v o l t s b a s e d on OpenBCI

p a r a m e t e r s .
4 P a r a m e t e r s :
5 − e e g _ r a w : np . n d a r r a y , raw EEG s i g n a l
6 − g a i n : i n t , a m p l i f i e r g a i n ( d e f a u l t 2 4 )
7 − a d c _ r e s o l u t i o n : i n t , max ADC v a l u e ( d e f a u l t 2 ^ 2 3 − 1 )
8 − v _ r e f : f l o a t , r e f e r e n c e v o l t a g e i n v o l t s ( d e f a u l t 4 . 5 V )
9 R e t u r n s :
10 − e e g i n m i c r o v o l t s a s np . n d a r r a y
11 " " "
12 scale_uV = (v_ref / adc_resolution) ∗ 1e6 / gain

13 return eeg_raw ∗ scale_uV
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The following subsections detail the preprocessingworkflows for the raw-signal

branch and the feature-extraction branch, respectively, highlighting what was done

and the motivation behind each step.

7.6.2.1 Raw Preprocessing

For the raw EEG branch, the goal was to apply minimal necessary preprocessing

so that the convolutional neural network can learn directly from largely unaltered

signals. The raw EEG (recorded from three channels: Cz, C3, C4) is processed with

a lightweight pipeline that cleans the data while preserving its temporal structure.

The steps involved in raw preprocessing are described in the subsequent paragraph.

High-Pass Filtering ≥ 0.5 Hz. A gentle high-pass filter with a cutoff around 0.5

Hz is applied to remove very slow drifts and DC offsets in the signal. Such drifts

can be caused by perspiration, slow electrode baseline shifts, or movement of the

electrode leads. Removing frequencies below 0.5 Hz stabilizes the baseline of the

EEG signal, preventing large swings that could interfere with the MLP’s training

(since the network might otherwise learn the DC level or slow trends rather than

task-related patterns).

Band-Pass Filtering (8–30 Hz). Band-Pass Filtering (8–30Hz): After high-pass fil-
tering, a band-pass filter is applied to retain the EEG frequency componentsmost rel-

evant to motor activity, while attenuating irrelevant noise. The passband of 8–30Hz

covers themu (𝛼) and beta rhythms, which are known to be associated with motor

processes. By restricting the input to this range, low-frequency noise is removed (e.g.

slow cortical potentials, electrode drift) and high-frequency noise (muscle activity,

external electrical interference) that fall outside themotor-related band. This focuses

the MLP on the key frequency content (mu/beta power changes) that differentiates

movement vs. rest mental states.

Re-referencing (Common Average Reference). The filtered EEG signals are re-

referenced using the Common Average Reference (CAR) technique. In CAR, the

average of all electrode channels’ signals is computed at each time point and sub-

tracted from each channel. This step mitigates noise that is common across the

electrodes and reduces the influence of the original reference electrode. By referenc-

ing the global average, each channel’s signal is centred relative to the overall brain

activity, which often improves signal quality and comparability across channels.

Artifact Rejection (Peak-to-Peak Threshold). Even after filtering, some EEG seg-

ments may contain transient artefacts (for example, due to jaw clenching or motion)
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that produce abnormally large amplitude fluctuations. To guard against feeding

corrupted data to the MLP, the pipeline checks each sliding window of EEG for

excessive amplitude. If the peak-to-peak voltage of any channel in a window exceeds

a set threshold (e.g. 100𝜇V, a value above typical EEG amplitudes for healthy adults),

that window is likely contaminated and is discarded.

Segmenting into Windows. The continuous EEG stream is chopped into consecu-

tive sliding windows to create fixed-length samples for classification. In the imple-

mentation of this thesis, a window length of 2 seconds is used with a 0.2s step (i.e.

200ms shift between windows). This yields overlapping windows that capture tem-

poral context and increase the number of training samples. Each window inherits a

label based on the task markers: windows overlapping with a movement period are

labelled as class 1 (movement), and those in rest periods as class 0 (no movement).

Class Balancing. After windowing and labelling, the set of raw EEG windows is

examined for class imbalance. In many sessions, there can be an unequal number

of movement vs. rest windows (e.g., rest periods often last longer, yielding more

windows of class 0). To prevent theMLP from biasing towards themajority class, the

training set is balanced. This was done by oversampling the minority class windows

(replicating or jittering them as needed) until both classes are represented roughly

equally.

In summary, the raw preprocessing pipeline yields a set of 2-second EEG windows

(in microvolt units) that are band-limited to 8–30 Hz, re-referenced, and free of

gross artifacts, with each window assigned a possibly soft label indicating the pres-

ence or absence of movement. These minimally processed windows are then used

as input to the MLP for end-to-end learning. Each preprocessed trial is saved as a

.npy file for later usage in repeating training runs.

7.6.2.2 Feature Extraction Preprocessing

The feature-based branch of the pipeline requires a more extensive preprocessing

procedure, since it relies on engineered features extracted from the EEG. In this

branch, each EEG window is transformed into a vector of quantitative features

that characterize the signal’s content in time, frequency, and spatial domains. To

ensure that these features are meaningful, the raw data undergo rigorous cleaning

and standardization prior to feature computation. The preprocessing for feature

extraction includes the following steps: some of them are slightly modified versions

of the previously mentioned preprocessing pipeline.
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Filtering andArtifact Removal. Similar to the raw pipeline, the EEG is first filtered

to remove unwanted frequencies and noise. A notch filter at 50 Hz is applied to elim-

inate mains power interference. Then, a band-pass filter (approximately 8–22 Hz) is

used to isolate the mu and low-beta frequency components of interest. The slightly

narrower band (compared to the raw branch) focuses on the core motor-related fre-

quencies. This was done through the MNE library functions for experiment purposes.

After filtering, the EEG is re-referenced using the common average reference, just as

in the raw pipeline, to improve signal clarity. An optional step of clipping extreme

values is incorporated.

Sliding Window Segmentation. The cleaned continuous EEG is segmented into

overlapping windows as the raw branch. Before accepting a window for feature

extraction, however, a stricter artefact rejection check is performed. For each can-

didate window, multiple criteria are evaluated:

• Amplitude criterion:No channel’s peak-to-peak amplitude should exceed a

predefined threshold (e.g., 150 µV for featurewindows). If any channel exceeds

this threshold, the window is considered artifact-contaminated and discarded.

• Flatline criterion: The standard deviation of each channel within the win-

dow must exceed a minimum value (e.g., > 0.03 µV). A very low standard

deviation indicates either a flatline (i.e., no measurable brain activity) or a

disconnected or faulty electrode, and such windows are rejected.

• Variance outlier criterion:The variance of each channel is compared against

the median variance across channels using a z-score. If the absolute z-score of

any channel exceeds a set threshold (e.g., > 10), the window is considered to

contain abnormal signal fluctuations or noise, and it is excluded from further

processing.

Only windows that pass all these checks are retained for feature extraction.

Signal Normalization. For the purpose of stable feature computation, the EEG data

is standardized. In practice, this means that for each channel, a z-score normaliza-

tion is applied. Normalizing signals to have zero mean and unit variance should

remove inter-subject or inter-session differences in overall EEG amplitude. This

step should ensure that features like variance or power are comparable across differ-

ent recordings and are not biased by one subject having generally higher amplitude

signals than another.

Class Balancing. The class balancing copies the oversampling mechanism from

the raw pipeline. Data augmentation was thought of, but later discarded.
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Feature Computation. After the above preprocessing, each clean EEG window is

transformed into a feature vector. A diverse set of features is extracted, aiming to

capture information in multiple domains:

Common Spatial Patterns (CSP) CSP is a well-known technique in BCI that

finds spatial filters maximizing the variance difference between two classes. CSP fil-

ters are computed using the training data’s covariance matrices of the movement vs.

rest epochs. Each window is projected onto a few of the most discriminative spatial

filters, and the log-variance of the projected signals is taken as a feature. These CSP

log-variance features reflect how the variance distribution across channels changes

with the class, effectively capturing the spatial patterns of activation associated with

movement.

BandPower Features The frequency-domain energy of the EEG is quantified

by computing the Power Spectral Density (PSD) of each window. Band-specific

power is extracted from the PSD, notably the average power in themu band and beta

band. These features (often log-transformed) indicate how much power the EEG

carries in the mu and beta ranges. This is relevant because, for instance, actual or

attempted movement typically causes mu power suppression and beta modulation

in motor cortex signals [Ina+23].

Hjorth Parameters For each window and each channel, the three Hjorth pa-

rameters are computed – Activity, Mobility, and Complexity. Activity is essentially

the signal variance (a measure of signal power in the time domain). Mobility is

defined as the ratio of the standard deviation of the first derivative of the signal

to the standard deviation of the signal itself (related to the dominant frequency or

bandwidth of the signal). Complexity is the ratio of the mobility of the first deriva-

tive to the mobility of the signal (reflecting how the frequency content changes, i.e.,

the signal’s resemblance to a pure sine wave). These parameters provide a compact

description of the signal’s shape and frequency characteristics. For example, a move-

ment interval might show higher Activity (more variance) and different Complexity

compared to rest.

Entropy To capture the signal’s unpredictability or complexity from another

perspective, the entropy of the signal amplitude distribution is calculated for each

window. Shannon entropy is used on the histogram of EEG amplitudes in the

window. A higher entropy indicates a more irregular or information-rich signal,

whereas a lower entropy might indicate a more regular or periodic signal.
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Time-Frequency (STFT) Power In addition to static band power, a Short-

Time Fourier Transform (STFT) is applied to eachwindow to examine how power in

certain bands is distributed over time within the window. We divide the 2s window

into shorter segments (using STFT with, e.g., 250ms segments) and calculate the

average power in the mu and beta bands across time. Essentially, this yields features

similar to bandpower but derived from a time-frequency representation, which can

be more sensitive to transient bursts or temporal fluctuations in those bands. For

instance, if a burst of beta oscillation occurs only in the second half of the window,

the Welch PSD (which averages the whole window) and the STFT average might

capture it differently.

Riemannian Covariance Features Finally, features based on the EEG sig-

nal’s spatial covariance matrix, inspired by Riemannian geometry approaches in

BCI, are incorporated. For each window, the 3 × 3 covariance matrix of the three

EEG channels is computed. We then find its eigenvalues and take the logarithm of

these eigenvalues as features. These log-eigenvalue features encapsulate how the

power is distributed across the three channels in a single window (since eigenvalues

of the covariance matrix correspond to the variance along principal component

directions of the signals). The rationale is that different mental states may induce

different spatial covariance patterns in the EEG.

Feature Standardization. Once all features are extracted for everywindow, the fea-
ture vectors are standardized using a StandardScaler so that each feature dimen-

sion has zero mean and unit variance across the training set. This standardization

is applied after feature extraction, and the same scaling is used on validation/test

data to avoid data leakage.

After these preprocessing steps, each EEG window is represented as a rich feature

vector of 29 features, combining spatial, spectral, and statistical attributes. The thor-

ough preprocessing and artifact rejection in the feature branch aim to ensure that

the input to the MLP is as informative and noise-free as possible.

7.6.3 CNN
The convolutional neural network used in this work is designed specifically for end-

to-end learning from raw EEG signal windows. It is loosely inspired by the EEGNet

architecture [Law+18] but extends it with additional temporal modelling via an

LSTM layer. The model accepts inputs in the shape of (time_steps, channels),

corresponding to sliding windows of raw EEG data from three electrodes (Cz, C3,

and C4). Its architecture consists of four main stages:

74



7.6.4 MLP

1. Temporal and Spatial Filtering:

• A Conv1D layer with 8 filters and a kernel size of 64 is used for initial

temporal filtering.

• This is followed by DepthwiseConv1Dwith a kernel size of 64 and depth

multiplier of 2 to separate channel-wise (spatial) filtering.

• Both layers are followed by batch normalization, ReLU activation, aver-

age pooling, and dropout (0.5) to reduce overfitting.

2. Feature Extraction:

• A SeparableConv1D layer with 16 filters and a kernel size of 16 further

extracts localized temporal features.

• This is again followed by batch normalization, activation, pooling, and

dropout (0.5).

3. Temporal Modeling with LSTM:

• An LSTM layer with 64 units is added to capture sequential dependencies

over time.

4. Classification Head:

• A Dense layer with softmax activation outputs probabilities for the two

target classes.

• The model is trained using the Adam optimizer and categorical cross-

entropy loss, allowing for soft label supervision.

This model is trained with early stopping and learning rate reduction on the

plateau.

7.6.4 MLP
The second model is a feed-forward multilayer perceptron that operates on feature

vectors extracted from preprocessed EEG data. This model does not use raw EEG

but instead relies on engineered features such as CSP log-variance, bandpower, en-

tropy, Hjorth parameters, and others (see Section 7.6.2 for details on preprocessing

and feature extraction). The architecture of the MLP is as follows:

• Input Layer: The input vector includes all concatenated features extracted
from each window of the EEG signal. These features are standardized using

StandardScaler.
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• Hidden Layers:

– First hidden layer: 128 neurons with ReLU activation, batch normaliza-

tion, and dropout (0.5).

– Second hidden layer: 64 neurons with batch normalization and dropout

(0.4).

• Output Layer: A dense layer with 2 output units and softmax activation

provides class probabilities.

Like MLP, this model is trained with soft labels and uses categorical cross-

entropy as the loss function. Training is conducted using the Adam optimizer, with

early stopping and learning rate scheduling to improve generalization.

7.6.5 Meta-Classifier
A stacked ensemble model was implemented to combine the strengths of both the

raw-signal CNN and the feature-based MLP. This approach aimed to improve over-

all classification performance by leveraging diverse representations of the EEG data.

The ensemble follows a two-stage training process:

1. Base Learners:

• The CNN and MLP models described in Sections 7.6.3 and 7.6.4 are

trained independently on the same training folds during cross-validation.

• Predictions (softmax probabilities) from both models are recorded on a

validation split (meta-training set) within each fold.

2. Meta-Classifier:

• The concatenated probability vectors from the CNN andMLP form the

input features for a RandomForestClassifier.

• This classifier is trained using only the outputs from base learners on

the inner validation splits to prevent information leakage.

• Once trained, it is used to make final predictions on the outer test fold.

Only samples with hard labels (0 or 1) are used in the final evaluation to en-

sure reliability. This stacked ensemble is implemented in train_stack.py, using

GroupKFold for subject-wise validation and stratified inner splits for meta-training.

The entire architecture of both MLP (Section 7.6.3) and MLP (Section 7.6.4) with

the pipeline of the stacked ensemble model is visualized in Figure 7.13.
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CNN architecture MLP architecture

Meta-classifier
Random Forest

CNN prediction probabilities MLP prediction probabilities

Output

Final prediction  probabilities

Lightly preprocessed time series Heavily preprocessed extracted features

Figure 7.13: Architecture and pipeline of the stacked model
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Results 8
The evaluation of the trained classifiers is performed by predicting the classmember-

ship of the test data. Based on the predicted and actual classes of individual feature

vectors, various classification metrics are computed, primarily those derived from

the confusion matrix

Accuraccy. Expresses the ratio of correctly made predictions to the total number

of predictions made:

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(8.1)

If we designate one class as positive and the other as negative, we can define the

key elements of the confusion matrix as follows. True Positives (TP) represent the

number of feature vectors correctly classified as positive, meaning the actual class

is positive and the classifier also predicted the positive class. True Negatives (TN)

are the number of feature vectors correctly classified as negative. False Positives

(FP) occur when the actual class is negative, but the classifier incorrectly predicts

the positive class. Conversely, False Negatives (FN) represent cases where the actual

class is positive, but the classifier incorrectly predicts the negative class. These four

values form the basis for computing various classification performance metrics.

Precision. The precisionmetric is defined as the ratio of correctly classified positive

feature vectors to the total number of feature vectors predicted as positive.

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(8.2)

Precision focuses on how accurate the classifier’s positive predictions are. A

higher precision value indicates thatmost of the feature vectors predicted as positive
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were indeed correct, whereas a lower value suggests that many of the predicted

positives were incorrect.

Recall. Recall focuses on how well the classifier is able to identify all positive in-

stances. A higher recall value indicates thatmost of the actual positive feature vectors

were successfully detected by the classifier, while a lower value means that many of

the true positives were missed (i.e., classified as negative).

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(8.3)

F1 Score. The F1 score is defined as the harmonic mean of precision and recall. It

combines both metrics into a single value to provide a balanced measure of classifi-

cation performance, especially in cases where the class distribution is imbalanced.

F1 Score =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
(8.4)

The F1 score emphasizes the trade-off between precision and recall. A high

F1 score indicates that the classifier achieves both high precision and high recall,

meaning it correctly identifies a large portion of positive instances while keeping

false positives low.

8.1 Offline Evaluation
To rigorously assess classifier performance prior to real-time deployment, a compre-

hensive offline evaluation using two cross-validation strategies: Stratified K-Fold

(SKF) and Group K-Fold (GKF) was conducted with 5 folds. These evaluations

provide insights into both within-subject generalization (SKF) and across-subject

generalization (GKF), as well as the models’ tendencies toward overfitting, class im-

balance, or decision boundary collapse. The three mentioned classifiers (MLP, MLP,

and Meta-classifier) were evaluated under this framework. The metric overview is

displayed in Figure 8.1, while each classifier’s results are described in greater detail

in the following subsections.

8.1.1 CNNModel
Under stratified 5-fold validation (where each fold preserved class balance butmixed

data from all subjects), the MLP achieved consistently high accuracy across folds.

The fold-by-fold accuracy plot shows onlyminor variation between folds, indicating
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Figure 8.1: Precision, Recall, and F1-Score Across Model Setups

stable learning – most folds reached a similarly high level of accuracy, with one

fold slightly lower than the others. This stability suggests that the MLP was able

to learn robust patterns from the raw signals that generalized well to new data

drawn from the same pool of subjects. The training and validation loss curves per

fold in Figure 8.2b likewise remained close to each other, with no fold showing a

dramatic divergence. In most folds, the validation loss was only marginally higher

than the training loss, implying that overfitting was kept in check. In one fold, the

model even achieved a validation loss comparable to (or lower than) the training

loss, hinting that the network did not over-specialize on the training data. This can

be attributed to regularization techniques (like dropout and early stopping) that

helped the MLP maintain generality. Overall, during stratified cross-validation, the

MLP model displayed a strong capacity to fit the data without severe overfitting,

achieving low error on both training and validation splits.

The final aggregated confusion matrix for the stratified MLP model (Figure 8.3)

reflects a high true positive rate for both classes, with the vast majority of instances

on the diagonal. In other words, the MLP correctly classified most examples of

both classes (rest vs. movement) when the evaluation data came from subjects it

had partially seen during training. The error rates for each class were nearly equal,

indicating balanced performance: the model did not favour one class over the other

in the stratified scenario. This balanced confusion matrix suggests that the MLP

learned to detect the distinguishing features of each class in the raw EEG signals

effectively.

However, the same MLP was tested in a stricter setting using group k-fold val-
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(a) SKF accuracy per fold

(b) SKF loss per fold

Figure 8.2: MLP-SKF validation accuracy and loss

idation. The accuracy (Figure 8.4) on these unseen subjects was much lower and

less consistent, revealing a clear generalization gap. Some folds (i.e., some subjects)

were classified more accurately than others, but all unseen-subject folds showed

inferior performance compared to the stratified case. The MLP struggled especially

with identifying the positive class (movement) for new individuals. The confusion

matrix in Figure 8.5 from group-wise validation indicates that the model frequently

misclassified movement trials as non-movement when the subject was not in the

training set. In effect, the MLP had a tendency to default to predicting the “rest”

class for unseen subjects, missing a large portion of actual movements – a sign of

low sensitivity in the across-subject scenario.

8.1.2 MLP Model
MLP exhibited a somewhat different performance profile, though it was evaluated

with the same cross-validation strategies. Under stratified k-fold validation, theMLP

achieved very high accuracy consistently, with remarkably little variation between
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Figure 8.3: MLP-SKF aggregated confusion matrix

folds. The validation accuracy for each fold hovered at a uniformly high level, and

the mean accuracy line was essentially flat across folds, indicating that no single

fold fell substantially below the overall average. This consistency points to a stable

learning process: the feature-basedMLP found it easy to separate the two classes for

every subset of data. The training vs. validation loss per fold in Figure 8.6b provides

further insight into the model’s dynamics. In all folds, the MLP reached a very

low training loss, indicating it fit the training data almost perfectly. The validation

loss was slightly higher than the training loss, but remained low in absolute terms,

corresponding to the high validation accuracy. This small gap between training

and validation loss suggests the MLP experienced only mild overfitting despite its

capacity to memorize training features. In fact, the features themselves (such as

band-power or other domain-specific attributes) likely distilled the signal in a way

that reduced noise and subject-specific complexity, making the classification task

more straightforward for the network. As a result, the MLP demonstrated efficient

learning: it converged quickly andmaintained strong performance on hold-out data

in each fold.

The confusion matrix for theMLP (Figure 8.7) in the stratified scenario is nearly

perfectly diagonal. It shows that the classifier correctly identified almost all instances

of both classes, with only a very small fraction of misclassifications. Both the “no

movement” class and the “movement” class were recognized with high fidelity. Un-

like the MLP, which already had a good performance, the MLP achieved an even

higher true positive rate on each class, indicating that the extracted features pro-

vided highly discriminative information for distinguishing the mental states.

When moving to group k-fold validation (unseen subjects), the MLP’s perfor-
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(a) GKF accuracy per fold

(b) GKF loss per fold

Figure 8.4: MLP-GKF validation accuracy and loss

mance declined, as expected, but the nature of its generalization shortfall differed

somewhat from the MLP’s. Overall accuracy on unseen individuals was lower than

in the stratified case, underscoring that subject variability impacted the feature-

based model as well. The fold-wise accuracy (Figure 8.8) in the group scenario var-

ied more substantially, suggesting that some unseen subjects’ feature distributions

aligned better with the training data than others.

The aggregated confusion matrix for the group k-fold MLP in Figure 8.9 reveals

an imbalanced performance across classes: the model retained a fair ability to detect

the positive class (capturing a substantial portion of movement trials from new

subjects), but it struggled with the negative class. About half of the instances of the

rest class were incorrectly classified as movement for unseen users. This means

the MLP was somewhat over-sensitive when encountering new subjects – it often

predicted the occurrence of movement (the positive class) even when the person

was actually at rest. Consequently, the false positive rate for movement increased

on unseen subjects, reflecting a drop in specificity. On the other hand, the MLP did
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Figure 8.5: MLP-GKF aggregated confusion matrix

manage to identify a majority of the actual movement attempts in the new subjects,

indicating its feature representation preserved some generalizable signatures of the

task-related brain activity. Compared to the CNN, the MLP generalized slightly

better in the sense that it did not completely miss the occurrences of the target class

for new individuals.

8.1.3 Meta-Classifier
To capitalize on the complementary strengths of the two classifiers, a stacked en-

semble was evaluated, which combined the CNN and MLP predictions for a final

decision. The expectationwas that the ensemble could correct the individualmodels’

mistakes by leveraging their agreement and disagreements. The offline evaluation

of this stacked model was carried out across all folds (using the same group-wise

cross-validation splits, so that each test fold corresponds to an unseen subject’s

data, and the ensemble is trained on that fold’s training portion). The resulting ag-

gregated confusion matrix for the ensemble (combining predictions from all test

folds) in Figure 8.10 provides insight into how the combined model performs on

the two classes. The outcome, however, indicates that the ensemble did not achieve

a balanced improvement across classes.

The ensemble’s predictions were heavily skewed toward one class. The confu-

sion matrix is dominated by a large number of correct predictions for one class and

comparatively few for the other. Specifically, the ensemble correctly classified most

of the Class 0 instances (non-movement), but it failed to detect the majority of Class

1 instances (movement). This means that when the CNN and MLP were combined,

the resulting system leaned towards predicting the absence of movement in most
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(a) SKF accuracy per fold

(b) SKF loss per fold

Figure 8.6: MLP-SKF validation accuracy and loss

cases, largely missing when a movement was actually present. This class-wise per-

formance suggests that the ensemble model inherited the conservative tendencies

of the CNN to some extent. It appears to prioritize avoiding false positives (erro-

neously predicting movement), but in doing so, it ends up with a very high false

negative rate for the movement class. In other words, the ensemble is very confi-

dent in identifying rest intervals correctly, but it lacks sensitivity to the movement

class; many attempted movement events went undetected. The net effect is that the

ensemble’s overall accuracy hovered around chance levels, with a strong bias in

favor of the negative class. Notably, the ensemble did not significantly improve the

balanced accuracy or remedy the generalization issues observed in the individual

models. The hope that combining the feature-based and raw-signal models would

cover each other’s errors was not realized in practice. Instead, the meta-classifier

likely learned that both models often signaled “rest” for unseen subjects (perhaps the

CNN almost always predicted rest, and the MLP frequently did as well for certain

difficult subjects), and thus the safest combined prediction was also “rest.” The end
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Figure 8.7: MLP-SKF aggregated confusion matrix

result is an imbalanced classifier that, while reliable in predicting one class, performs

poorly on the other.

8.2 Real-Time Evaluation
A real-time evaluation was carried out to asses the CNN and MLP classifiers in a

production-like environment. To make it as identical as possible to the training, the

incoming data was filtered and windowed in the same way as in Section 7.6.2.1 and

7.6.2.2. To provide smoother prediction response, a sliding window with a step of

300 ms was implemented. The final prediction was obtained by averaging the class

probability outputs of the last three consecutive windows and selecting the class

with the highest averaged probability. This temporal smoothing reduces prediction

jitter and improves stability in real-time feedback by mitigating the effect of noisy

or borderline windows.

8.2.1 Classifier Performance: CNN vs MLP
In total, four subjects were tested for the real-time classifications. The first two pa-

tients were already a part of the created dataset (Section 7.4.2), while the other two

represented a completely new subject. Table 8.1 (raw input) and Table 8.2 (feature

input) summarize the performance metrics for each trial
1
. The Matched and Un-

matched values signal how many windows were predicted during the rehabilitation

1
The distinction between subject already featured in the dataset vs unseen subject is in the trial

name (Y/N).
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(a) GKF accuracy per fold

(b) GKF loss per fold

Figure 8.8: MLP-GKF validation accuracy and loss

scenario and how many before or after it. Overall, the two models achieved compa-

rable above-chance accuracy on the subjects seen during training (hovering in the

50–57% range), but each exhibited different strengths.

Table 8.1: Evaluation metrics for each trial using raw EEG input.

Trial Accuracy Precision Recall F1 TP TN FP FN Matched Unmatched

01Y 56.94 0.68 0.46 0.55 128 151 59 152 490 32

02Y 52.66 0.65 0.56 0.60 175 82 95 136 488 48

03N 40.94 0.72 0.32 0.44 180 132 71 379 762 105

04N 47.47 0.55 0.32 0.41 72 116 58 150 396 72

For example, in trial 01Y (a seen subject), the CNN achieved 56.9% accuracy

versus 49.6% for the MLP, with both yielding an F1-score around 0.55. The CNN

was more precision-oriented—it had higher precision (0.68 vs. 0.53) by producing

fewer false alarms (59 false positives vs. 113 for MLP). In contrast, the MLP showed
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Figure 8.9: MLP-GKF aggregated confusion matrix

Figure 8.10: Meta-classifier confusion matrix

higher sensitivity on 01Y,with better recall (0.56 vs. CNN’s 0.46) due to fewermissed

detections (99 false negatives vs. 152 for CNN).

Table 8.2: Evaluation metrics for each trial using extracted features.

Trial Accuracy Precision Recall F1 TP TN FP FN Matched Unmatched

01Y 49.64 0.53 0.56 0.55 127 82 113 99 421 25

02Y 57.27 0.60 0.91 0.72 259 5 172 25 461 55

03N – – – – – – – – – –

04N 42.36 0.50 0.25 0.33 57 112 57 173 399 49

A different pattern emerged in trial 02Y (the other seen subject): here, the feature-

based MLP outperformed the CNN, attaining 57.3% accuracy and an F1-score of
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0.72, compared to the MLP’s 52.7% accuracy and F1-score of 0.60. The MLP in 02Y

achieved an exceptionally high recall of 0.91 (capturing 259 true positives with only

25 false negatives), albeit at the cost of many false positives (172, versus 95 for the

MLP). The CNN’s recall on 02Y was more modest (0.56 with 175 true positives), but

its precision was slightly higher (0.65 vs. MLP’s 0.60) thanks to fewer false positives.

These trial results indicate that neither classifier consistently dominates the

other—instead, each has advantages depending on the subject and input type. The

CNN tended to be more conservative (fewer false positives, higher precision), while

the MLP often picked up more events (higher recall), reflecting a trade-off between

specificity and sensitivity in the real-time setting.

8.2.2 Seen vs. Unseen Subjects
A clear trend in the real-time evaluation is the drop in performance when the system

was tested on unseen subjects (trials 03N and 04N) versus seen subjects used in
training (01Y and 02Y). Both classifiers performed significantly worse on the new

individuals.

For the CNN (raw input), accuracy fell from approximately 53–57% on seen

users to only 41–47% on unseen users. Its F1-score likewise dropped from around

0.55–0.60 for seen trials to approximately 0.41–0.44 for unseen trials. The feature-

based MLP showed a similar decline: on trial 04N (unseen), it reached only 42.4%

accuracy with an F1-score of 0.33, compared to 49.6–57.3% accuracy (F1 0.55–0.72)

on the seen subjects.

Notably, the recall plummeted for unseen cases, indicating many missed detec-

tions. For instance, the MLP’s recall on 04N was just 0.25, meaning it caught rela-

tively few of the attempted events (57 true positives) while missing 173 (false neg-

atives). In contrast, on a seen subject like 02Y, the MLP’s recall was 0.91 with only

25 misses. The CNN faced the same issue: on 03N and 04N, it only detected about

one-third of the events (recall ∼0.32). This stark performance gap between seen and

unseen subjects highlights a clear generalization challenge.
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Discussion 9
A diverse set of approaches was employed to reflect the interdisciplinary nature of

this thesis. Due to this reality and the gradual insights gained during the develop-

ment of this thesis, several questions and doubts have emerged. It is necessary to

address these questions and discuss the possible interpretations, limitations, and

implications of the chosen methods and their outcomes.

9.1 Credibility of scenario design
The credibility of the rehabilitation scenario (described in Section 7.4.1) needs to be

addressed. The design of the scenario directly affects the labelling methodology. In

the current scenario design, movement and resting states alternate in fast-repeating

iterations (within tens of seconds or lower units of minutes). These quick state

changes do not necessarily correspond to physiological brain states. The study of

the academic articles and research papers in Sections 4.4 and 5 suggests that this

design is not recognized as a standard within this area of research. A more common

approach is to split the states into continuous and defined sections in a matter

of minutes, well separated from one another. This approach corresponds to the

physiological state of the brain much more accurately, allowing the signal to return

to the baseline. Another concern stems from the definition of resting in this scenario.

A well-established resting state is described by fully closed eyes, cutting off all visual

information, diminishing focus, and reducing attention. In most cases, the cue for

state transition is then audiovisual or depends on non-visual sensory input. This is

not the case in this scenario design since the relaxation phase is in seconds, and the

state transition cue is represented as a blinking diode.

The last problem is related to the mobility of the rehabilitation arm. The arm is

controlled by servomotors with adjustable resistance. During dataset creation, the

subject needed to exert great force to overcome the resistance. Possibly due to this,

the final signal was corrupted by muscle contraction. This is outlined in Figure 9.1.

Based on data quality (Subsection 7.5.2), the C3 electrode signal exceeds a healthy

EEG signal threshold. The electrode is positioned over the left motor cortex, the re-
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Figure 9.1: An example of a raw amplitude distribution histogram

gion responsible for initiating motor commands for right-hand movement. The 200

µV range corresponds to a possible muscle activity, further proving the hypothesis.

If this were the case, then the classification (especially the minimal processing raw

data CNN approach) would no longer represent pure MI classification, but rather

the ability to move.

9.2 Validity of classifiers and robustness of
KFold evaluation

The varying results of the classifiers based on the selected cross-validation method

need to be discussed. The concern regarding the data quality was already expressed

in Section 7.5 and 9.1, but the validation evaluation needs to be discussed further.

The observed differences in classification performance between GroupKFold and

StratifiedKFold stem from the fundamental way each method handles data splitting.

StratifiedKFoldmaintains class balance across folds but allows data from the

same subject to appear in both training and validation sets. This can lead to overly

optimistic results due to subject-specific signal leakage, especially in EEG datasets

where inter-subject variability is high (see Section 7.5.8).

In contrast, GroupKFold enforces subject-level independence by assigning all

data from a single subject to one fold only, thereby simulating a more realistic de-

ployment scenario where the model must generalize to entirely unseen individuals.

Consequently, performance metrics obtained using GroupKFold better reflect the

true generalization ability of the classifier, though they may appear lower.

This highlights the importance of selecting a cross-validation strategy that aligns

with the intended use case, particularly in biomedical applications, where robustness
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and generalizability across subjects are critical.

9.3 Limitations
A few limitations arose during the implementation process. All of them stem from

the fact that the FourMotors rehabilitation application is developed by an external

specialist. The communication sections between the parts of the proposed system

and the rehabilitation software are directly dependent on the specialist’s availabil-

ity and the implemented features of the software. Because of this, some proposed

functionality was not met and was either prepared for future work or simulated to

a certain degree.

The feedback propagation from the classifier to the servomotors was not im-

plemented. The classifier is capable of predicting the movement state in real-time;

however, the interface component responsible for communicating these predictions

to the rehabilitation software and adjusting the servomotors has not yet been im-

plemented. Therefore, the proposed BCI loop is not fully closed.

Another missing functionality is regarding the real-time signal (S3, S4, S5, S6)

propagation (see Section 7.4.1) to the Unity front-end and its VR version. To counter

this gap in the development, a simulation of the signals in both versions was im-

plemented. The synchronization is corrected by the user and is described in Ap-

pendix A.2.

The last limitation regarding the FourMotors software is that during the dataset

creation and real-time testing, the states and their indicators were desynchronized

after some time. This desynchronization was enhanced when the application was

running in the background (it was designed this way in the proposed system solution

of this thesis). It appears that the rehabilitation software operates on an internal

time clock and experiences delays when the process does not receive sufficient CPU

resources.

In the end, one physical limitation must be mentioned for potential future VR

development in neurorehabilitation. With the current setup, the Head-Mounted

Display (HMD) is equipped with a top strap that holds and stabilises the headset.

This strap physically prevents the attachment of EEG electrodes, which must be

firmly attached at specific locations in order to obtain quality data. This limitation

leads to the conclusion that a new and effective way of holding the headset is needed

to combine the EEG measuring with VR experience.
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Conclusion 10
This thesis presented the design, implementation, and evaluation of a neuroreha-

bilitation software system that integrates real-time EEG classification with a Unity-

based rehabilitation front-end and robotic arm control. The project aimed to close

the Brain-Computer Interface (BCI) loop for motor rehabilitation by developing a

reliable classifier capable of distinguishing between movement intention and rest-

ing states, while providing real-time feedback through an interactive virtual and

physical environment.

A novel dataset was created using the OpenBCI platform in conjunction with the

FourMotors rehabilitation system. This dataset served as the foundation for evaluating

several classification pipelines, including a CNN trained onminimally preprocessed

raw EEG, anMLP trained on features extracted through theMNE framework, and a

stacked ensemble meta-classifier combining both. Extensive preprocessing, artifact

removal, and signal normalization steps were employed to ensure data quality. The

evaluation results showed promising accuracy for seen subjects, but also revealed

significant generalization challenges when applied to unseen individuals, under-

scoring the difficulty of subject-independent EEG classification in real-world BCI

scenarios.

The real-time implementation demonstrated that smooth, responsive classifi-

cation is achievable with adequate temporal smoothing, although the lack of ro-

bustness in unseen subject performance and incomplete feedback integration with

the robotic arm limited the system’s full potential. Additionally, several technical

and organizational limitations—particularly regarding external software integra-

tion—highlight areas for future development.

Despite these challenges, this thesis successfully delivered a modular and exten-

sible platform for neurorehabilitation research. The insights gained during devel-

opment, especially regarding EEG preprocessing, subject variability, and classifier

design, provide a solid foundation for further work. Future efforts should focus on

improving classifier generalization, fully integrating feedback loops, and testing the

system with patients undergoing rehabilitation.
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User Guide A
This appendix is intended for everybody who wants to either use/test the created

neurorehabilitation system or to continue developing or researching this area of

expertise. The chapter is divided in the same way as the proposed solution. It must

be noted that all applications in the proposed BCI system are intended either for

Windows or Android (VR case) and were not tested in a Linux environment.

A.1 FourMotors setup
A public release version of FourMotors software is not available, but it is installed

on the computer in the neurolab at UWB and therefore available for anybody with

access. The application runs as a normal .EXE file. A notification is needed here for

a reader - the application runs two separate components that need to be executed in

a given order. This condition is sometimes not satisfied, resulting in infinite loading.

It is advised to restart the application if this happens.

First thing the user needs to do after loading is to check the connection to the

server in the upper left corner, and then to the machine via the serial port in the

bottom right corner (see Figure 7.2 for graphical representation). Then the user

needs to refer drivers to the home position through Referovat drivery button. For
setting up the scenario, use the Nastavení button located in the upper right corner.

Set the parameters as the user deems appropriate, or as in this thesis in Section 7.4.1.

The last thing is to choose a rehabilitation curve, number of repetitions and start

the scenario by clicking the button Start CVIČENÍ .Once the visualization of the
arm is on the path of the curve, the setup is completed.

A.2 Unity front-end
The standalone front-end was developed in Unity version 2022.3.21f1, which is a

LTS version widely used. It is installed through Unity Hub, downloadable from the

Unity official website. The whole Unity project is attached to the electronic version
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of this thesis or is located in a private GitHub repository
1
. Add the project to the

Hub and open it. All the packages and meta files should download and install auto-

matically (keep this in mind since the first opening of the project takes significantly

longer). The project, like this, is ready to be developed further or run in an editor

environment. If the user wishes to build the project into a standalone application,

he/she needs to go to File→ Build Settings and Build .

A.2.1 Usage

It is advised to run the FourMotors application first before running the Unity front-

end. The application is run through a built .EXE file. The interaction with the UI is

done, in this case, through mouse clicks. To simulate the scenario synchronization

(since the FourMotors does not have the functionality to forward the scenario signal

mentioned in Table 7.2) user has to manually start the rehabilitation by clicking on

the Start button. In order to successfully synchronize the states, the user needs to
click the button only after the FourMotors setupwas completed (see Appendix A.1).

A.3 VR front-end

The VR uses the same version of Unity as its standalone version (2022.3.21f1); there-
fore, the installation process remains the same. A complement to the installation is

a module for Android Build Support. This module can be selected directly when

installing the new version or later added in the Hub by going into the Installs sec-
tion, selecting the appropriate version and clicking on the associated gear wheel.

All the other VR packages are presented in the project and will be automatically

downloaded with the first time opening of the project. The VR version resides in

the same GitHub repository as its PC counterpart, only on a different branch. Navi-

gating in the project and building the project is exactly the same as in the Appendix

section A.2.

When building the VR version, the developermust switch the target platform
to Android in the Build Settings. The result of this build will be an .APK file.

The built .APK file must be installed into the VR headset through SideQuest soft-

ware. A registration is needed in order to download and use the software. The reader

is advised to check the official SideQuest websites for more detailed information re-

garding the installation.

1
The repository is private because of the copyright law regarding the assets used in the project.

For access, contact tkment@students.zcu.cz.
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A.3.1 Usage
The application is launched in the VR headset as any other VR application. The user

begins in AR with a Start button floating and following his/hers view. The user

sees the real world through the HMD cameras and can position himself/herself in

front of the rehabilitation robot or finish the FourMotors setup.

The interaction with the world in done through index fingertip contact on both

hands. After pressing the Start button, the user is seamlessly transitioned into the

VR environment. The dojo environment can be explored, but caution in real world

is advised. The visualization of the UI changed but the functionality remains the

same as in Appendix section A.2.1. On the left, there is a color picker with adjustable

sliders. On the right, there is scenario parameter setting panel with another Start
button which synchronizes the VR application with FourMotors software (same as in

Appendix section A.2.1).

A.4 Classifier project
Prior to the installation and launch of the project, it is necessary to prepare the

working directory (preparation of source code and data). The source code is available

in the GitHub repository:

https://github.com/Tkmentt/DP-Classification

It contains a detailed README describing installation process and code overview.

Working directory with the project source code can be obtained as follows:

1 C:\Workspace>git clone

https :// github.com/Tkmentt/DP−Classification.git

2

3 C:\Workspace> cd DP−Classification−main

4

5 C:\Workspace\eeg-motion-detection>

It is also possible to download the project source code directly, for example in

.zip format, by clicking the Download button and selecting the appropriate format.

The source folder must then be unzipped to the desired location and then switch

the current working directory to the unzipped folder from within the operating

system. The dataset that was used for the training (Section 7.4.2) can be downloaded

on here:

https://zenodo.org/records/15399490

The packed data folder must be unzipped into the src directory of the project.

The project directory structure should look like this:
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1 C:\Workspace\DP-Classification-main\src>dir /b

2 classification

3 data

4 preprocessing

5 testing

6 utils

7 requirements.txt

8 train_MNE.py

9 train_old.py

10 train_raw.py

11 train_stack.py

The project dependencies can be installed either through Conda package man-

ager or directly using the Python programming language. Both choices are described

in README. Conda is the recommended installation method if the user wants to use

CUDA GPU.
It is possible to use the Anaconda distribution or theMiniconda distribution.
After installation, a new Conda environment needs to be created (to avoid con-

flicts between dependencies), in the following example the environment used is

named eeg, any arbitrary alias can be used.

1 C:\Workspace\DP-Classification-main\src>conda create −n eeg

python =3.10

The created environment must be activated.

1 C:\Workspace\DP-Classification-main\src>conda activate eeg

2

3 (eeg) C:\Workspace\DP-Classification-main\src>

Next, the user needs to install dependencies to enable running Keras/Tensorflow

training models using CUDA GPUs. This step can be skipped if this feature is not

required.

1 (eeg) C:\Workspace\DP-Classification-main\src> conda install −n eeg

−c conda−forge cudatoolkit =11.3 cudnn =8.1.0

2

3 (eeg) C:\Workspace\DP-Classification-main\src> conda install −n eeg

−c nvidia cuda−nvcc =11.3

The last step is to install the Python packages from the requirements.txt file.

1 (eeg) C:\Workspace\DP-Classification-main\src>pip install −r

requirements.txt
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