
MASTER THESIS

Bc. Michal Půlpán

Development and deployment of SaaS
solution for logistics automation in

e-commerce

Department of Software Engineering

Supervisor of the master thesis: Mgr. Petr Škoda, Ph.D.
Study programme: Computer Science

Prague 2024

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

i

I would like to take this opportunity to express my deepest gratitude to all those
who supported me during my years of study. First and foremost, a special thanks
to my supervisor Mgr. Petr Škoda, Ph.D. for all the support, guidance, help and
encouragement throughout my studies and this thesis. I also want to express my
heartfelt thanks to my girlfriend, Marie, my parents, my sister, and the rest of
my family. Your unwavering support, patience, and tolerance for all my time-
consuming hobbies, my studies, and this thesis mean the world to me.

ii

Title: Development and deployment of SaaS solution for logistics automation in
e-commerce

Author: Bc. Michal Půlpán

Department: Department of Software Engineering

Supervisor: Mgr. Petr Škoda, Ph.D., Department of Software Engineering

Abstract: E-Commerce has seen rapid growth that significantly changed the re-
tail landscape. This situation requires brands to do more than just offer products;
they must present a distinct identity, maintain brand values, and establish deeper
relationships with customers. Brands must focus on differentiating and drawing
attention to themselves while keeping up with customer care. Traditionally, lo-
gistics communication during order delivery is usually left to the shipping carrier,
but it is an important element in the order lifecycle. It provides an opportunity
to increase brand awareness and strengthen relationship with the customer. This
thesis proposes a solution to bridge the gap between streamlined shipping logis-
tics and its use as a potential marketing channel. Introduces a SaaS platform
tested in a real-world environment on thousands of parcels. Allowing sellers to
manage parcel data transfers to carriers, print shipping labels, and efficiently
track parcel statuses while providing shipment information to recipients through
custom branded email notifications and tracking pages. This approach not only
improves operational efficiency, but also reinforces brand engagement throughout
the delivery process.

Keywords: e-commerce logistics process automation web application software as
a service

iii

Název práce: Vývoj a nasazeńı SaaS řešeńı pro automatizaci logistiky v
e-commerce

Autor: Bc. Michal Půlpán

Katedra: Katedra softwarového inženýrstv́ı

Vedoućı práce: Mgr. Petr Škoda, Ph.D., Katedra softwarového inženýrstv́ı

Abstrakt: E–commerce trh v oblasti prodeje zbož́ı zaznamenal r̊ust, který výz-
namně ovlivnil celý maloobchod. Prodejci se dostali do situace, kdy nestač́ı
produkt pouze nab́ızet, nýbrž je nutné budovat značku a posilovat vztahy se
zákazńıkem. Značky se tak muśı odlǐsit od konkurence, upoutat na sebe po-
zornost a zároveň klást d̊uraz na udržeńı kvality péče o zákzńıka. Logistická
komunikace během doručováńı objednávky je zpravidla přenechávána přepravci,
ale představuje d̊uležitý prvkem v životńım cyklu objednávky. Nab́ıźı možnost
zvýšit povědomı́ o značce a pośılit vazbu se zákazńıkem. Tato práce navrhuje
řešeńı spoč́ıvaj́ıćı v automatizaci proces̊u datové komunikace s přepravcem a v
jej́ım využit́ı jako potenciálńıho marketingového kanálu. Představuje SaaS plat-
formu testovanou v reálném firemńım prostřed́ı na tiśıćıch zásilkách. Ta umožňuje
prodejc̊um spravovat přenos dat k přepravc̊um, tisknout přepravńı št́ıtky a efek-
tivně sledovat stav zásilek. To vše s upravitelnými notifikačńımi e-maily a sle-
dovaćı stránkou určenou př́ıjemci. Tento př́ıstup nejenže zefektivňuje zaběhnuté
procesy expedice, ale zároveň posiluje značku během ponákupńıho marketingu v
pr̊uběhu přepravy objednávky.

Kĺıčová slova: e-commerce logistika automatizace proces̊u webová aplikace soft-
ware as a service

iv

Contents

Introduction 7

1 Related work 11
1.1 Related projects . 11

1.1.1 Baĺıkobot.cz . 11
1.1.2 LabelPrinter.cz . 12

1.2 Addressing the shortcomings of existing solutions 12
1.2.1 Unified data model . 12
1.2.2 Centralized dashboard . 12
1.2.3 Parcel status unification 13
1.2.4 Branded tracking and notifications 13
1.2.5 Simplified integration . 13
1.2.6 Role-based access control 14
1.2.7 Versatile carrier communication 14

2 Analysis 15
2.1 Order dispatching process . 15
2.2 Real-world applicability . 16
2.3 Requirements . 17

2.3.1 Functional Requirements 18
2.3.2 Nonfunctional Requirements 21

2.3.2.1 Usability . 21
2.3.2.2 Extensibility . 21
2.3.2.3 Scalability . 21
2.3.2.4 Maintainability 21
2.3.2.5 Multi-tenancy . 21
2.3.2.6 Integration . 22
2.3.2.7 Customization 22

3 Architecture 23
3.1 Architectural approaches . 24

3.1.1 Event-Driven architecture 24
3.1.2 Client-Server architecture 25
3.1.3 Multi-Layer (N-Tier) architecture 26
3.1.4 Comparison and selection 27

3.2 System Architecture . 28
3.2.1 Frontend Components . 29
3.2.2 Database . 30
3.2.3 Overall System Interaction 30

3.3 Conclusion . 30

4 Technical design 31
4.1 Programming Language and Frameworks 31

4.1.1 Programming Language 31
4.1.1.1 JavaScript and TypeScript 32

1

4.1.1.2 Alternatives . 33
4.1.1.3 Compilation and execution 33

4.1.2 Frontend . 34
4.1.2.1 React . 34
4.1.2.1.1 Class components 34
4.1.2.1.2 Functional components 34
4.1.2.2 Alternatives . 35

4.1.3 Backend . 35
4.1.3.1 Koa . 36
4.1.3.2 Middleware architecture 36
4.1.3.3 ORM a data models 37
4.1.3.4 Runtime . 37

4.1.4 Database Management System 37
4.2 Multi-tenancy and its possible approaches 37

4.2.1 Approaches . 38
4.2.1.1 Multiple databases 38
4.2.1.2 Single database, multiple schemas 39
4.2.1.3 Single database, single schema 40

4.2.2 Implementation in the platform 40

5 Implementation 42
5.1 Project Structure . 42
5.2 Backend Implementation . 43

5.2.1 API Design and multi-tenancy 43
5.2.2 Carrier modules . 44
5.2.3 Sending e-mails . 44
5.2.4 Generating waybills . 44

5.3 Web Client Implementation . 44
5.3.1 Client-Side Routing and State Management 45

6 Deployment 46
6.1 Current Deployment Strategy . 46

6.1.1 AWS S3 for Static Frontend Hosting 46
6.1.2 AWS Lambda for Backend Services 47
6.1.3 AWS CloudFormation for Infrastructure Management . . . 49

6.2 Alternative Deployment Methods 49
6.2.1 Containerization . 50
6.2.2 Other Cloud Providers and Services 50

6.2.2.1 Google Cloud Platform 50
6.2.2.2 Microsoft Azure 51

6.2.3 Conclusion . 51
6.3 Continuous Integration and Continuous Deployment (CI/CD) . . 51

7 Integrating SAP Business One 54
7.1 Possible solutions . 54

7.1.1 SAP Business One Data Interface API (DI API) 54
7.1.2 VCZ.WebService . 55
7.1.3 SAP Business One Service Layer 55

2

7.2 SAP Business One Service Layer Proxy with direct Database con-
nector . 56
7.2.1 Analysis . 56

7.2.1.1 Functional requirements 56
7.2.1.2 Nonfunctional requirements 57

7.2.2 Architecture . 57
7.2.2.1 Reverse proxy as the entry point 58
7.2.2.2 Proxy app and database 59
7.2.2.3 SAP Business One Service Layer 59
7.2.2.4 SAP Database 59

7.2.3 Implementation . 59
7.2.3.1 Technology Stack 59
7.2.3.2 Proxy API structure 60
7.2.3.3 Microsoft SQL connector 60
7.2.3.4 SAP Service Layer Proxy 61
7.2.3.5 Database model overview 61

7.2.4 Deployment . 62
7.2.4.1 Overview . 62
7.2.4.1.1 Dockerfile strategy 62
7.2.4.2 Continuous Deployment and Continuous Integra-

tion . 63
7.2.4.3 Accessing the application 63

7.2.5 Data Sender . 63
7.2.5.1 Design and Configuration 64
7.2.5.2 Functionality . 64
7.2.5.3 Deployment strategy 65

8 Evaluation 66
8.1 Evaluation environments . 66

8.1.1 Local development environment 66
8.1.2 Staging environment . 67
8.1.3 Production environment 67

8.2 Production evaluation areas . 67
8.2.1 Integration with SAP Business One 67
8.2.2 Connecting with shipping carriers 69
8.2.3 Training and operational challenges 70
8.2.4 Operational performance and business impact 71
8.2.5 Achievement of project goals 73

Conclusion 80

Bibliography 87

List of Figures 88

List of Abbreviations 90

3

A Programming Documentation - Platform 91
A.1 Project structure . 91

A.1.0.1 Clients . 91
A.1.0.2 Services . 92
A.1.0.3 Infrastructure . 92

A.1.1 Package management . 92
A.2 Coding convention . 92

A.2.1 Style guide . 92
A.2.2 File naming . 92

A.3 Technical design . 93
A.4 Backend . 93

A.4.1 Database connection . 94
A.4.2 Database schema . 94

A.4.2.1 Projects . 94
A.4.2.2 Users . 96
A.4.2.3 Shipments . 96

A.4.3 Endpoints . 99
A.4.4 Authentication and authorisation 99

A.4.4.1 Authentication flow 99
A.4.4.2 Session management 99
A.4.4.3 Authorization . 99

A.4.5 Request body validation 100
A.4.6 Public API . 100
A.4.7 OpenAPI schema generation 100
A.4.8 Data filtering . 101
A.4.9 Data pagination . 101
A.4.10 Carrier communication . 102

A.4.10.1 Packeta . 102
A.4.10.2 Česká Pošta . 102
A.4.10.3 PPL . 103

A.4.11 Generating PDF waybills 103
A.5 Frontends . 104

A.5.1 Overview . 104
A.5.2 State management . 104
A.5.3 Routing . 104
A.5.4 Data fetching . 104

A.6 Integrating new features . 105
A.6.1 Adding carriers . 105
A.6.2 Database migrations . 105
A.6.3 Adding new environment variables 106
A.6.4 Passing metadata to frontend 107
A.6.5 React Frontend localisation 107

A.7 Infrastructure . 107
A.7.1 Static Asset upload from client 107
A.7.2 Sending e-mails . 108
A.7.3 Time consuming functions 109

A.7.3.1 Scalability with Step Functions 109
A.8 User documentation . 109

4

B Programming Documentation - SAP Business One ServiceLayer
Proxy with Database Connector 110
B.1 Workflow . 110
B.2 Overview . 110

B.2.0.1 MSSQLConnection 111
B.2.1 Router . 112
B.2.2 Middlewares . 112
B.2.3 Actions . 112
B.2.4 Entities . 112

B.2.4.1 SAPToken . 112
B.2.4.2 User . 113

B.2.5 Services . 113
B.2.5.1 sap-service . 113
B.2.5.2 user-service 113

B.3 Error handling and logging . 113
B.3.1 Error handling . 113

B.3.1.1 HTTP status codes 114
B.3.1.2 Error responses 114

B.3.2 Logging . 114

C Programming Documentation - Data-sender 115
C.1 Data flow . 115
C.2 Overview . 115
C.3 API fetchers . 116
C.4 Scheduler and Command-Line Interface (CLI) 117
C.5 Carrier specific modules . 117

C.5.1 ceskaposta . 117
C.5.2 packeta . 117
C.5.3 ppl . 117

C.5.3.1 Multiple parcels in one shipment 117
C.5.3.2 Retrieval of Invoice number and price of the service118

D Administration Manual - Platform 119
D.1 Local development . 119

D.1.1 Prerequisites . 119
D.1.2 Running backend and frontend services 119
D.1.3 Running database . 120

D.2 Administration Manual - AWS Infrastructure 120
D.2.1 Lambda . 120

D.2.1.1 Accessing logs . 120
D.2.1.2 Scheduled tasks 122
D.2.1.3 Lambda handler functions 123

D.2.2 Database . 124
D.2.2.1 Accessing credentials 124
D.2.2.1.1 Sequential inserts, database pool 125

D.2.3 Simple Storage Service (S3) 125
D.2.3.1 Documentation deployment (locale redirection) . 125
D.2.3.2 Setting up permissions for assets storage (enable

ACLs) . 126

5

D.2.4 Email sender . 128
D.2.5 Deployment to the new AWS account 128

E Administration Manual - SAP Business One ServiceLayer Proxy
with Database Connector 130
E.1 Prerequisites . 130
E.2 Deployment . 130

E.2.1 PostgreSQL database . 130
E.2.2 Proxy Service . 130

E.2.2.1 Environment variables 131
E.3 Docker Compose . 131

E.3.1 Watchtower . 132
E.3.2 Working with the containers 133

E.3.2.1 Start the containers 133
E.3.2.2 Stop the containers 133
E.3.2.3 Update the service 133

E.4 Reverse-proxy . 133
E.4.1 SSL certificate . 133

F Administration Manual - Data-sender 134
F.1 Prerequisites . 134
F.2 Deployment . 134

F.2.1 Data-sender service . 134
F.2.1.1 Environment variables 134

F.3 Docker Compose . 135
F.3.1 Watchtower . 135
F.3.2 Working with the containers 136

F.3.2.1 Start the containers 136
F.3.2.2 Stop the containers 136
F.3.2.3 Update the service 136

G User documentation - Platform (Dashboard) 137

6

Introduction
In recent years, e-Commerce has experienced rapid growth, changing the re-

tail environment across the globe. This trend, strongly reflected in the Czech
Republic, has placed online shopping not only as an alternative to physical re-
tail, but also often as the preferred shopping channel for a wide demographic.
The rapid rise of e-Commerce in the Czech Republic, along with the broader
Central and Eastern European region, introduces competitive challenges and op-
portunities. According to the [1] E-commerce Study 2023 by Czech Association
for Electronic Commerce (Czech Association for Electronic Commerce (APEK)),
the Czech market was worth about $8 billion in 2023 with 61% of the Czech Inter-
net population (15 +) shopping at least once a month online. As more consumers
turn to online shopping, the market has become saturated with the large number
of vendors that demand attention with significant marketing budgets. This sit-
uation requires retailers to do more than just offer products; they must present
distinct identities, maintain brand values, and establish deeper connections with
their customers. Sellers must aim to differentiate themselves, turning the focus
towards building a recognisable presence while keeping up with customer care.

The competitive core of e-Commerce enforces brands to refine their strate-
gies. In this context, the battle is not just about sales, but also about becoming
the go-to-shop within the product domain. Ogunmola and Kumar [2] emphasise
that the growing competitive environment in online retail forces brands to con-
tinuously innovate, especially to improve the shopping experience to differentiate
themselves and achieve a dominant position in the market. Brand must wisely
think about every touch point, from website quality to user interface, user experi-
ence, customer service, and logistics, as an opportunity to boost brand awareness
and values.

The logistical aspect of e-Commerce, often seen as a backend operation, has
come to the forefront as an important part of customer satisfaction and brand
differentiation. Efficiency in order processing, reliability in shipping, and trans-
parency in delivery updates are now increasingly important in the customer expe-
rience. In today’s fast digital world, consumer’s patience for slow order process-
ing has significantly decreased. According to the mentioned study by APEK in
September 2023, a growing number of customers report that transparency in de-
livery times and fast order processing are among their main considerations when
choosing between two vendors. This highlights a clear trend: Customers are will-
ing to pay a premium for the assurance of a faster and more transparent delivery.
This shift brings a new challenge to e-Commerce businesses; slow order process-
ing is no longer just a logistical issue but is directly related to customer retention
and brand loyalty. With that said, it is clear that the customer paying more at-
tention to the delivery time of their order, will be likely to appreciate continuous
updates of their order status in a user interface similar to the e-Commerce store
they purchased from. This presents a problem that many e-Commerce platforms
and retailers are dealing with: how to streamline their logistic operations to meet
the demands of modern consumers.

The solution proposed in this thesis aims to address these needs by creating
a simple-to-use platform designed for dispatching orders to the shipping carriers,

7

seamlessly sending data to the carriers, printing shipping labels, and updating
order statuses. In addition, this platform will serve as a new marketing commu-
nication channel, offering a branded parcel tracking experience.

To ensure the applicability of the platform in real-world scenarios, this thesis
will also include the implementation of a connector for SAP Business One. This
integration will enable the seamless exchange of data between third-party software
and SAP Business One. The platform will be tested in a company that operates in
both the Business to Business (B2B) and Business to Customer (B2C) segments of
the fashion e-Commerce industry, handling more than 100 packages per day. This
environment presents an ideal setting for evaluating the platform’s capabilities.

Motivation
Process of dispatching orders, communicating with shipping carriers, and pro-

viding customers with timely update is full of inefficiency and challenges. Tradi-
tionally, these operations involve various manual interventions, leading to delays
and errors that directly impact customer satisfaction and brand loyalty. In an
era where consumers value speed, it is not viable to manually upload data set
to the carriers web interface and then request shipping labels if everything goes
well. For a company that cooperates with multiple shipping carriers, this process
becomes quickly unsustainable. It has to be automatic with direct feedback of
data errors and import problems. For example, if the shipping address is not
valid or if the carrier raises any other error with the provided data set or its
own service. Having said that, each carrier is an isolated company without any
unification when it comes to the data they accept and provide. Bridging the gap
between the communication interface of each carrier and generalising parcel ship-
ping statuses quickly becomes a very appreciated task. As a result, businesses
can seamlessly integrate new shipping carriers without being bogged down by the
specific implementation details and the varying data formats each carrier uses.

When a company collects data from its shipping carriers, it is important to
utilise this information. Leveraging such data not only streamlines operations but
also provides a competitive advantage by improving decision making and improv-
ing customer satisfaction and brand recognition. We will use this opportunity to
present the tracking data with a company branding to increase brand awareness
and create a new and unexplored marketing channel that customers are not used
to and therefore resistant to.

The goal is to transform logistics from a potential pain point into a competi-
tive advantage for e-Commerce businesses, thus not only meeting but exceeding
customer expectations by providing them with a branded tracking page and au-
tomatic e-mail notifications with branding.

Project goals
The project is driven by a set of clear goals designed to address the challenges

identified in the e-Commerce logistics domain and the software development itself:

G1: Streamline logistics operations: Develop a platform that simplifies the
process of dispatching orders to shipping carriers, automating data ex-
change, and minimizing need for manual intervention.

8

G2: Modern cloud based multi-tenant solution: Create application with
multi-tenant architecture allowing it to be used by multiple companies de-
ployed to the cloud with automated integration and deployment.

G3: Create branded shipping customer experience: Introduce a new mar-
keting communication platform using the data collected from the shipping
carrier that allowed each company to specify custom branding for the parcel
tracking page and parcel status notification emails.

G4: Integration with existing systems: Develop a solution that can be easily
integrated with existing businesses’ system.

G5: Validate in a real-world setting with SAP Business One integra-
tion: Test the platform in a live e-Commerce environment, handling a
significant volume of orders in daily operations.

Solution overview
The proposed solution will be a Software as a Service (Software as a Service

(SaaS)) platform designed to modernize and simplify e-Commerce order data
dispatch logistics. As its core, the platform will facilitate order dispatching to
the shipping carrier, label printing, and periodic updates of order statuses.

The entire code base will use continuous integration (Continuous Integration
(CI)) practices and automatic deployment (Continuous Deployment (CD)) to the
Amazon Web Services (Amazon Web Services (AWS)) ensuring high availability,
security, and fast response times with resource scaling based on traffic.

The platform’s user interface will be intuitive, well-documented, and easy to
use, requiring minimal training for staff, and will provide customisable options
for businesses to maintain their brand identity throughout the customer’s post-
purchase journey. The branded tracking pages and notification emails are not
just an enhancement of the logistics process; it is a redefinition of how businesses
communicate with their customers, transforming every shipment into opportunity
for engagement and brand reinforcement.

The testing and validation of the platform will take place in a company oper-
ating in both B2B and B2C segments of the fashion e-Commerce industry, dealing
with more than 100 orders daily and running an instance of SAP Business One
with which the platform will have to exchange data. This real-life usage will
provide thorough testing of the platform and provides valuable insight.

This thesis is organised to comprehensively address the dual aspects of ex-
ploitation and exploration within software development, together with the chal-
lenges of solution analysis, implementation, and integration encountered in work-
ing with SAP Business One.

• Related Work 1: Reviews industry options in the sector and discusses
project objectives.

• Analysis 2: It represents the actual work process within a given problem
domain with the result of functional and non-functional requirements for a
proposed platform.

9

• Architecture 3: Outlines the architectural design of the proposed solution,
describing its components and their interactions.

• Technical design 4: Describes technical specifications and design consid-
erations to create the platform.

• Implementation 5: Details the development process of the platform.

• Deployment 6: Explains the platform deployment strategy, including
cloud hosting and service provisioning on AWS.

• SAP Integration 7: Discusses and presents the integration with SAP
Business One, focusing oon thedevelopment of an application for direct
data exchange with the system.

• Evaluation 8: Covers the evaluation used to validate the functionality of
the platform in a real-world day-to-day business setting.

10

1. Related work
This chapter dives into the overview of existing solutions within the scope of

parcel logistics in the dispatch process, generating labels, and shipment track-
ing, with a focus on the Czech market. Understanding these projects and their
limitations helps us define the market gap we are trying to fill. Particularly in
offering a cloud-based multi-tenant solution integrating customised tracking page
and email notifications for recipients. The overview underscores the importance
of innovating beyond current offerings, which primarily lack features such as a
simple dashboard for data viewing, custom tracking pages for improved customer
communication, and automated email notifications.

1.1 Related projects
Projects handling data communication with carriers are, of course, heavily

biased with the demographics they are targeting. Although the process is usually
very similar, shipping companies and customers with their e-Commerce platforms
or Enterprise Resource Planning (ERP) solutions are different. Hence, we will
limit ourselves to the Czech logistics environment, where several systems facilitate
the integration with local carriers. However, these solutions often fall short in
several areas:

• None operates as a cloud-based multi-tenant solution that offers the busi-
ness a hassle-free platform for their logistic needs without the necessity for
in-house infrastructure or maintenance.

• Usually, they require a distinct approach and data model for different car-
riers. This makes it more difficult to integrate.

• They typically do not provide a custom tracking page for end-to-end cus-
tomer communication, missing an opportunity to enhance the customer
experience with a branded informative user interface.

• Current solutions typically do not allow a single company to use multiple
shipping carrier contracts through set of different API credentials. This
limitation can be problematic for businesses with multiple warehouses, each
requiring different shipping carriers due to their unique logistics needs.

Let us take a look at some options available in the Czech market.

1.1.1 Baĺıkobot.cz
Offers integration directly into ERP/e-Commerce systems, however lacking

the flexibility to modify parcels outside of these systems. Requiring that the user
using this software can modify the source data in ERP and not being able to use
any Baĺıkobot user-interface might be a strong limitation. The next limitation
might be the custom label format provided by Baĺıkobot.cz. Although the carrier
validates it, sometimes a different layout might lead to inefficiency or even errors
at the sorting centres or when loaded to the delivery vehicle. On the other hand,

11

the amount of integrated carriers and ERP integrations makes Balikobot very
easy to start using. One thing to consider is that Baĺıkobot does not handle
customer communication at any level. It is only strictly used for data transfer
and printing the shipping labels.

Overall, Baĺıkobot is definitely a considerable solution, but being integrated
directly into the ERP makes it a bit slow to use and is usually inaccessible from
outside the company network when needed. And, most importantly, it deals only
with company processes, not with customer communication and presentation.

1.1.2 LabelPrinter.cz
LabelPrinter, as the name suggests, is designed for label printing and data

transfer. Like Baĺıkobot, LabelPrinter functions solely as warehouse software to
transfer data from companies to carriers. In addition„ it operates only as an
on-premise Windows service runtime at the client’s computer. This approach
requires local infrastructure and maintenance, potentially increasing operational
overhead in small to medium-sized enterprises, limiting scalability and accessibil-
ity.

It might also be beneficial to mention that companies usually also use ”in-
house” solutions, which are generally a bespoke set of scripts designed for data
transfer without additional features like customer communication. These are of-
ten difficult to maintain and lack functionalities such as shipping status mapping,
essential for recognising final delivery statuses.

1.2 Addressing the shortcomings of existing so-
lutions

Problems of data communication with carriers present numerous challenges
with existing solutions, particularly in their ability to scale and offer a seamless
user experience across different carriers. This platform confronts these issues,
presenting a new approach to the landscape of automation logistic expedition
and post-purchase experience.

1.2.1 Unified data model
Existing solutions often lack a unified approach to data handling, which com-

plicates integration with different carriers. Our platform introduces a unified
data model normalising data formats across all carriers, simplifying the integra-
tion, leaving the complexity of understanding different models to the platform
itself. This fits very well with the goals presented in the Project goals section.
Specifically, G1 and G4 are closely related to the complex integration of external
systems.

1.2.2 Centralized dashboard
Having of a user-friendly dashboard makes it convenient to monitor and man-

age shipments. However, in the presented solutions, most of it is left to the

12

existing ERP which is usually not made to handle logistics data. This short-
coming again reflects very well few of our goals, G1 and G2. A cloud based
multi-tenant solution trying to streamline logistics operations for the operators
in the warehouse lacking a user-friendly dashboard would be very difficult to op-
erate and would probably require each integrator to create their own interface for
data presentation, which we do not want. Providing a modern web application
with a dashboard accessible from anywhere gives a great competitive advantage
and improves the platform operator’s experience. With an overview of all data
sent and retrieved from carriers and direct functionalities for label and consign-
ment list printing, the user does not have to use any other interface when working
with parcels.

1.2.3 Parcel status unification
The set of parcel statuses provided by the carriers is, of course, very distinct.

Every carrier API is different; hence, it provides different data and communicates
in a different way. Consolidation of various statuses into a standardised set,
allowing users to easily understand and manage shipments without getting lost
in carrier-specific environments. Supporting our goal of G4 simple integration
with an existing system, where a company typically tries to convert shipment
statuses from a carrier into a more uniform format. It will, of course, also help
with the practical demonstration of the integration resulting from G5.

1.2.4 Branded tracking and notifications
Enhancing post-purchase communication is often overlooked, yet it directly

supports the objective outlined in G3. Businesses usually leave this channel to
the third party, such as carriers, and focus on prepurchase marketing, which is
usually, in digital marketing, standard Pay-per-click (PPC) adverts. However,
PPC campaigns often rely on cookies to target and retarget ads based on user
behaviour. As this segment becomes more regulated and with the reopening of
the discussion on updating ePrivacy legislation 1 in the European Union, obliga-
tions start to come from ad service providers themselves, such as the Google V2
consent mode 2. Leaving aside the fact that most smaller online retailers gen-
erally do not even reflect the changes and ignore them, thus putting themselves
at a disadvantage in online advertising, a large proportion of customers are be-
coming more and more difficult to reach. Communicating with a customer, when
the most important part of the purchase is happening, could be a key to greater
brand recall in today’s advertising overload.

1.2.5 Simplified integration
The technical challenges and costs of implementing and installing a software

solution on premise might act as a barrier to many businesses. The cloud-based
1The EU’s ePrivacy Regulation, initially established in 2002, along with the General Data

Protection Regulation, both influence the tracking of visitors from the EU.
2The Google V2 consent mode allows website owners to adjust how their Google tracking

tags behave based on the consent status of their users. The consent status might be set through
the cookie bar.

13

solution eliminates these obstructions while supporting both the objectives out-
lined in G2 and G4.

1.2.6 Role-based access control
Security across the platform demands a control over user permissions. By

implementing role-based access, we can improve security and ensure that users
have the appropriate permissions for their role.

1.2.7 Versatile carrier communication
Businesses often work with multiple shipping carriers with different contracts

and settings. For example, each warehouse might require a different contract
with the carrier when it is in a different region. This can be difficult to manage.
Hence, it is necessary to implement a solution that can manage multiple loca-
tions (projects) in one profile with different carrier API credentials and carrier
settings while distinguishing between shipments and users from different loca-
tions. This can simplify integration complexity in a multi-location environment
while supporting the G4 goal.

14

2. Analysis
After framing context of the platform by presenting both motivation and goals

with previewing related solutions, we take a closer look at the overall analysis for
our software. The purpose is to present the requirements placed on the system,
primarily determined by the standard ordering process in the eCommerce sector.
In addition, the requirements resulting from the planned test deployment will be
presented as well as the definition of the specific requirements that will guide the
development of the platform. This analysis is the foundation for a solution that
not only meets technical specifications but also addresses practical business needs
within a logistics sector and day-to-day usage.

This chapter will begin with a necessary introduction to the order dispatch
process 2.1. Understanding this process is necessary to frame the context in which
the entire system operates and in which users operate. Then, after understanding
the context, in the 2.2 section, an approach to testing the system will be presented,
both from both the integration and user perspective. Finally, after defining the
environment in which the system is set and a way to verify the functionality,
we can go to the 2.3 section. This section will present the functional and non-
functional requirements on the system.

2.1 Order dispatching process
This section dives into the general life-cycle of an order from the moment it

is placed to the final delivery. We will take into account the most simple and
straightforward approach, which is usually the starting point for many compa-
nies and warehouses. Defining this process helps to understand weaknesses and
identify opportunities for automation and efficiency improvements. Suppose a
customer of a company is shopping in an e-Commerce store:

Figure 2.1: Sequence diagram of order dispatching process

1. Order placement: Customer completes the checkout process with the
shipping details and preferred shipping method. Order information is saved
in the e-Commerce platform’s database.

15

2. Order transfer to ERP: The order details are automatically transferred
to the ERP system. This transfer can occur at scheduled intervals or au-
tomatically, depending on the integration setup between the e-Commerce
platform and the ERP.

3. Order confirmation and inventory check: The operator of the ERP
system in the billing department processes the order with the validation of
the shipping address and confirms the order.

4. Packing list and invoice generation: Once the shipment is confirmed,
the ERP system generates a packing list that details the items to be shipped.
At the same time, an order invoice is created.

5. Uploading shipments data: With the items collected and packed, the
next step involves generating a shipping label. Order data, including re-
cipient information and insurance, are exported from ERP to the format
accepted by the carrier and uploaded to the carrier interface to retrieve the
tracking number for each order.

6. Synchronizing tracking number with ERP: The list of selected orders
in ERP is altered with the tracking number retrieved from the carrier.

7. Shipping label and consignment list printing: After orders receive
tracking numbers, the shipping labels and the consignment list are down-
loaded from the carrier interface. The labels are then affixed to the con-
signments.

8. Shipment dispatch: Shipments are handed over to the shipping company
courier after signing the consignment list as a confirmation of receipt.

9. Updating status and controlling delivery: The list of parcel statuses
is manually downloaded from the shipping company interface and uploaded
to the ERP system

After a brief introduction to the process, we can see that points 5-9 are quite
challenging. Since the company may be working with multiple carriers at the same
time, we get into a situation where the operator has to repeat these points for
each carrier, making the process unsustainable and very time-consuming. Not to
mention that the company has to adapt to each carrier and create data exports
and imports for each carrier separately. In addition, the process of updating
shipments is very complex and prone to errors. For a visualisation using the
sequence diagram, refer to 2.1.

2.2 Real-world applicability
Platofrm’s real-world applicability will be verified through integration and

testing within an operating company. Practical implementation will focus on
incorporating three major shipping carriers in the Czech republic - Česká Pošta,
PPL, and Packeta - to allow the company to make a seamless transition to use the
platform. This means that the platform will gain three carrier implementations

16

with testing to offer to the rest of the user base. Together with testing integration
capabilities with external systems, namely SAP Business One, it will be necessary
to create a connector module presented in chapter 7.

2.3 Requirements
This section introduces the concept of software requirements. In general,

requirements are descriptions of the system’s functionalities and what it should
do while reflecting the needs of actors. Requirements can be classified into two
groups [3]:

1. Functional requirements: describes how the system should react to partic-
ular inputs and how the system should behave in particular situations.

2. Non-functional requirements: constraints on the services of functions by the
system. Including development process constraints and constraints defined
by some standards. Non-functional requirements often apply to the system
as a whole, rather than individual features.

The whole system has three expected user roles:

1. Operator: Role attributed to individuals employed by the company, inter-
acting with the platform through its user interface.

2. Developer: Individual in this role utilises the platform’s API for develop-
ing third-party integration.

3. Customer: This role represents the end recipients who are waiting for the
packages dispatched by the company using the platform.

17

Figure 2.2: C4 diagram with system context

To provide context, the platform operates as a SaaS model and involves three
key actors. We will demonstrate integration capabilities using SAP Business One,
along with production integration with three carriers: Packeta, PPL, and Česká
Pošta. For a visual representation of the system context, refer to Figure 2.2.

2.3.1 Functional Requirements
After reviewing the related work presented in Chapter 1 and analysing the

process detailed in Section 2.1, an initial set of requirements was created. These
were primarily derived from readily available information, such as documentation
and technical descriptions of existing solutions.

The whole list was then discussed with the company management (including
IT and marketing) where the platform will be deployed for testing; see Section
2.2. At the same time, the requirements were continuously communicated to the
company’s warehouse staff, who are considered as operators described in 2.3 and
will use the platform to get an overview of the processes and various situations
that occur regularly and irregularly.

This newly acquired information provided the opportunity to design the re-
quirements so that it would fit perfectly into the company’s daily operations. The
requirements were then slightly modified according to our own requirements for

18

the platform, such as the limitation to the possibility of using one instance by
multiple users, i.e. the platform should be designed as Software as a Service.

FR1: Operators can sign up and verify their accounts using a verification code
sent to their provided email address.

FR2: Operators can change password to their accounts using a verification code
sent to their provided email address.

FR3: Operators can log into their accounts using valid credentials.

FR4: Operators can switch the interface language between Czech and English.

FR5: Operators can create multiple projects within their account to manage
data separately (e.g., for different warehouses or companies).

FR6: Operators can select and work within a specific project.

FR7: Operators can rename any of their projects.

FR8: Operators can delete any of their projects.

FR9: Operators can configure a default shipper for all shipments within a
project.

FR10: Operators can configure settings for shipping carrier APIs, including au-
thentication (e.g., tokens, IDs, secrets) and other required fields.

FR11: Within each project, operators can create multiple sellers to customise the
location and branding of the tracking page and the email notifications.

FR12: For each seller, operators can set the name, localization, and branding
elements such as logo, primary colour, contact information (URL, email,
phone, store name), and social media links (Facebook, Instagram,
YouTube, TikTok). Operators can also enable customer email notifications
for specific parcel statuses.

FR13: Operators can remove any seller from a project.

FR14: Operators can enter edit mode of the seller.

FR15: In seller edit mode, operators can switch views between web and email to
preview customer-facing pages and emails.

FR16: Operators can generate API access tokens for developers to use.

FR17: Operators can switch between projects to which they have access.

FR18: The operator can invite other operators to the projects.

FR19: Operators can invite new operators to collaborate on projects.

FR20: Project collaborators can be assigned different roles (Owner, Admin, Mem-
ber) with varying levels of permissions.

19

FR21: Operators can view a paginated list of all shipments.

FR22: Operators can adjust the number of shipment items displayed per page.

FR23: Operators can navigate through the shipment list pages (next or previous).

FR24: Operators can easily identify shipments by carrier (using colour coding
and names) and those created on the current day directly from the list.

FR25: Operators can apply filters to search through shipments based on textual
data (reference, email) using four criteria (equal to, contains, starts with,
ends with), date-time data (creation date) using a range picker, and list
types (carrier, status) selecting multiple values.

FR26: Operators can select multiple shipments across carriers and perform bulk
actions on the selected items.

FR27: Operators can send shipment data to carriers for all selected bulk ship-
ments.

FR28: Operators can generate shipping labels for selected shipments.

FR29: Operators can generate a consignment list for selected shipments.

FR30: Operators can initiate the creation of a new shipment with a single click
on the shipment list page.

FR31: When creating a new shipment, operators can specify details such as recip-
ient, insurance, payment method and amount, carrier, and carrier services.

FR32: Operators can add multiple parcels to a single shipment.

FR33: Operators can preview or delete shipments after they have been sent to
the carrier.

FR34: Operators can edit or delete shipments before they are sent to the carrier.

FR35: The system will automatically update the status of the shipments.

FR36: If allowed by the seller, a notification email is sent to the customer when
the status of the package is updated.

FR37: Developers can retrieve all project shipments through the API.

FR38: Developers can create or update individual or multiple shipments through
the API.

FR39: Developers can list all parcels from the project via the API.

FR40: Developers can retrieve labels for selected shipments through the API.

FR41: Developers can initiate the sending of shipment data to carriers for selected
shipments via the API.

FR42: Customers can receive branded email notifications about updates in the
status of the parcel when permitted by the seller.

20

FR43: Customers can view the tracking page, customised with the seller’s brand-
ing, displaying the parcel statuses.

2.3.2 Nonfunctional Requirements
The non-functional requirements were shaped by understanding the broader

operational context. These requirements focus on the quality attributes of the
platform.

2.3.2.1 Usability

The user interface should be intuitive, requiring minimal training for ware-
house and billing staff. The dashboard of the platform is designed primarily to
be used with a mouse and keyboard on standard desktop screens, but should also
support touch interactions for versatility. In addition, the tracking page is opti-
mised primarily for touch interactions on mobile phones to enhance accessibility
and ease of use for customers on the go. Provide user documentation, including
guides for key processes.

2.3.2.2 Extensibility

The system should be able to easily integrate new APIs of the shipping carriers
according to user demands. Any new carrier integration should be seamlessly
incorporated into the existing system, ensuring that from a user’s perspective,
the interaction remains uniform across all carriers. This means that the user can
initiate shipping processes with a single action, regardless of the carrier, allowing
the system to handle the specifics in the background.

2.3.2.3 Scalability

Design the system to scale effortlessly to accommodate increases in both user
base and request volume. The deployment strategy should enable automatic
scaling based on current load, ensuring consistent performance even during peak
operational periods. This approach ensures that the system remains responsive
and efficient as demand grows.

2.3.2.4 Maintainability

To ensure that the source code is clean and easy to maintain, we will adhere
to recognised coding standards and best practices. Specifically, we will use the
Airbnb coding standard, which is widely respected for maintaining high-quality
code in JavaScript environments. Furthermore, ESLint will be employed as a lint-
ing tool to automatically check for errors and enforce these standards consistently
throughout the development team. Use a CI/CD pipeline for simple deployment
and minimal downtime.

2.3.2.5 Multi-tenancy

The system must support a multi-tenant architecture, allowing multiple com-
panies to use the service simultaneously while keeping their data isolated.

21

2.3.2.6 Integration

Offer an API that supports integration with external systems with clear doc-
umentation. Authentication should be handled by generating a long-lived token.

2.3.2.7 Customization

Allow for easy user customisation, including branded tracking pages and email
notifications, to maintain consistency with the brand identity.

22

3. Architecture
The architecture of a software system can be much more than a simple assem-

bly of technological components; it might serve as a blueprint for the project that
determines its layout and sets its future direction. In essence, software architec-
ture is a structured approach to development that supports system functionality
and ensures that it meets current and future needs, as stated in [3]. This chap-
ter delves into the essential role of software architecture in project development,
offering a foundational understanding for readers unfamiliar with the concept.
Moreover, it addresses how the architecture underpins the system’s ability to
meet a range of non-functional requirement introduced in the previous chapter,
what approaches to architecture can be chosen in our case, and presents archi-
tecture of our platform.

The significance of software architecture can be related to architecture in
the building industry. Just as architects design buildings while aiming to meet
specific purposes, needs, and environments, software architects design systems to
meet specific operational standards and goals. Providing a clear visualisation and
description that can help stakeholders easily understand system’s structure. Sets
a direction for all the following design and development activities by describing
the structure of the system, its components, and their interactions. Establishing
a software architecture early in the project enables a common understanding
between all parties involved, developers, designers, and business stakeholders.
This shared understanding is an important factor in aligning project goals with
technological implementations and helps manage expectations throughout the
project lifecycle.

In the previous chapter 2, we have introduced the concept of software re-
quirements presented in Section 2.3. In this context, non-functional requirements
presented in Section 2.3.2 play a pivotal role. Non-functional requirements de-
scribe not what the system does but how it does it. These are the parameters that
enhance the functionality and make the software robust, usable, and maintain-
able. Let us reiterate the architectural requirements set in the previous chapter
and how they impact the architecture itself.

• Usability: In the terms of architecture, focusing on usability influences
both ends of the system - what users see and what they don’t see. The
system must support a responsive interface that adapts to different devices,
desktops for administrative tasks, and mobile devices for tracking. This
leads to the modular design, where the separation of components helps
handle user interactions and data processing.

• Extensibility: To accommodate future expansion, such as the addition of
new shipping carriers, the architecture is designed around the plug-and-play
model. This involves defining clear interfaces for carrier modules, allowing
new carrier integrations to be added without disrupting existing function-
ality. The system interacts with the carrier module through a standardised
API encapsulating the complexity and ensuring that new features can be
integrated.

23

• Scalability: The architecture supports scalability through both vertical
and horizontal scaling strategies. The use of stateless principles in the
development, system can scale out across additional servers without issue
of data consistency or user session management.

• Maintainability: The system’s architecture is segmented into manageable
components that follow the single-responsibility principle, making them eas-
ier to maintain and update.

• Multi-tenancy: The multi-tenant architecture is critical for efficiently
serving multiple businesses simultaneously on the same platform while en-
suring data isolation. This requirement goes hand in hand with others, such
as scalability and maintainability. It also requires data isolation and the
associated storage and access requirements.

• Integration: The architecture includes a comprehensive API layer that
not only supports internal operations but also offers external integration
capabilities. The API layer should be designed using REST principles.

• Customization: To support a higher levels of customization, the architec-
ture allows clients to define branding of their tracking pages and notification
emails according to their identity, without altering the core functionality.
The backend supports this by managing customise elements as configurable
parameters stored per tenant, which the system applies dynamically at run-
time.

Having discussed the non-functional requirements that shape our system archi-
tecture, it is essential to explore different architectural approaches that could
potentially meet these criteria. This step involves considering different architec-
tural approaches, as the final choice of architecture will significantly affect the
way the system is structured and how it functions.

3.1 Architectural approaches
The process of selecting an architectural approach involves evaluating several

well-established patterns, each offering different benefits and trade-offs. Among
these, the event-driven architecture, client-server architecture, and multi-tier
architecture are well-known and considerable approaches. Each approach has
unique characteristics that could enhance or detract from the non-functional goals
of our system. Firstly, we will present them separately, then compare them and
finally choose the pattern that suits the best.

3.1.1 Event-Driven architecture
As stated in [4] Event-Driven Architecture sits around the production, detec-

tion, consumption, and reaction to events. An event is a significant change in
state, or an update that has something of interest as occurred within the sys-
tem. As see in Figure 3.1 architecture comprises three main components: event

24

producers, event routers, and event consumers. This architecture enhances re-
sponsiveness and can be highly scalable due to its asynchronous nature, which
is ideal for systems that require real-time updates and asynchronous processing.
However, Event-Driven architecture can be complex to implement and maintain
due to its distributed nature and the difficulty in tracing event chains and debug-
ging.

Figure 3.1: Event-Driven architecture diagram

3.1.2 Client-Server architecture
Client-server architecture divides system into two entities: clients who request

services and servers that provide the services. As stated in [5] the functional
characteristics of a client and a server are examples of programs that interact
with each other within an application. The functionality of this architecture is
highly flexible, as a single server can serve multiple clients as seen in Figure 3.2
or a single client can use multiple servers.

25

Figure 3.2: Client-Server architecture diagram

3.1.3 Multi-Layer (N-Tier) architecture
Multi-layer architecture, often referred to as n-tier, organises a system into

logically separated layers that each handle specific types of processing as can
be seen in Figure 3.3. Typically, these include a presentation layer (user inter-
face), an application layer (business logic), data layer, and database layer (data
management). This separation helps better organization and allows for indepen-
dent scaling, maintenance, or updating of each layer. Supports scalability and
simplifies the development process by allowing teams to work on different layers
independently.

26

Figure 3.3: Multi-Layer architecture diagram

3.1.4 Comparison and selection
Comparing these architectures, the event-driven architecture offers high re-

sponsiveness and is good for systems that require real-time capabilities due to its
asynchronous capabilities. The client-server model provides a robust architecture
for handling interactions between centralised servers and multiple clients, which
makes it suitable for traditional web applications. The multi-layer architecture
offers flexibility in development and maintenance by separating concerns across
multiple layers.

For our platform, the three-tier architecture, a specific form of multi-layer ar-
chitecture, appears most suitable. This architecture divides the application into
the presentation tier, logic tier, and data tier, which aligns well with our require-
ments for a scalable, maintainable system that can efficiently handle multiple user
interactions and complex business processes. Additionally, this pattern comple-
ments our need for a multi-tenant environment. Since the communication within
layers is not cross-tier, we can support isolation between different tenant data.
The three-tier architecture as shown in Figure 3.4 provides a balanced approach,
offering a clear separation of concerns while maintaining simplicity in connectiv-
ity between the client and the server. It allows for efficient data processing and
easier scalability management, as each layer can be scaled independently based
on demand.

27

Figure 3.4: High-level layered architecture diagram

3.2 System Architecture
With the selection of a three-layer architecture as the most suitable model

for our platform, we now present the architectural components proposed. This
section outlines the high-level structure of the system, focusing on the main com-
ponents and their roles without delving into detailed implementation specifics.
Let us take a look at the high-level diagram shown in Figure 3.5 and describe the
components shown in the figure.

28

Figure 3.5: C4 container diagram of the software system

3.2.1 Frontend Components
The frontend of the platform consists of three main components, each serving

a different purpose:

• Dashboard: The central user interface for operators. It enables opera-
tional management, including shipment tracking, carrier management, and
analytics. The dashboard is designed to be used primarily in desktop envi-
ronments, but is responsive to be used on smaller screens.

• Tracking Page: An interface that allows end customers to track their
shipments. This page supports custom branding, allowing businesses to
provide a cohesive brand experience. Optimised for touch interaction, it
improves accessibility and ease of use on mobile devices.

• Docs: A documentation website that provides users with guidelines, API
documentation, and setup tutorials. This component is crucial for onboard-
ing new Operators and supporting existing ones by offering easy access to
necessary technical and usage information.

The backend serves as the core of the platform, integrating with external
systems and APIs from shipping carriers, handling all data synchronisation tasks,
shipment dispatch, and updates between the platform and shipping carriers. The
business logic processes data from the frontend to ensure that all operations
adhere to all business processes within our domain, which consists of shipment

29

processing, user management, and the generation of customer notifications. In
addition, an email system is integrated to manage communications with users by
email based on specific triggers and events within the platform. This system is
designed to support customizable email and tracking page templates, which allows
for alignment with the branding requirements of different tenants, enhancing the
customisation capability of the platform.

3.2.2 Database
The database serves as the central repository for storing all operational data

along with user information. The database schema is designed to support multi-
tenancy, implementing data isolation strategies that keep tenant data separate
and secure. This setup is crucial in adhering to the multi-tenancy requirements
of the architecture, ensuring that each tenant’s data is accessed and managed
securely without interference from or to other tenants.

3.2.3 Overall System Interaction
The frontend communicate with the backend via secure, REST API, which

abstract the complexity of business processes and shipping carrier integrations.
The backend processes requests, interacts with the database for data retrieval and
storage, and communicates with shipping carries or requests email notification
sending. It also opens another REST API for secure communication between the
system and external services.

3.3 Conclusion
This architecture provides a blueprint for the development and operation of

the platform. It supports the non-functional requirements outlined in the pre-
vious chapter 2.3.2, such as scalability, maintainability, and extensibility, while
also providing a flexible and user-friendly environment for both operators and
customers. All while being able to serve multiple tenants at the same time.

30

4. Technical design
In today’s fast paced technological landscape, the large number of options

from spectre of programming languages and associated frameworks presents both
an opportunity and a challenge at the same time. As we move into the technical
details of the architecture presented in the previous chapter 3, it is important to
recall an idea mentioned in [3]. Establishing a robust architecture in the early
stages of development is key because it will become significantly more expensive
in future phases than at the beginning. These phases and decisions are very
closely linked. Because, as important as how we lay out the application, it is
equally important how and with what we write it.

In this chapter, we examine the technical decisions that shape the development
and operation of the platform. We will explore the selection of programming
languages and frameworks, detailing how these choices work together to create a
robust, scalable foundation for the system. Additionally, this chapter will address
an approach to a multi-tenancy design paradigm - a key architectural feature
that enables us to efficiently manage resources and serve multiple clients within
a single application instance. Now, with an added layer of detail regarding the
programming languages, frameworks, and technologies, this architecture can be
brought to life.

4.1 Programming Language and Frameworks
Choosing the right programming language and frameworks is a crucial de-

cision that influences not only the development process but also the longevity
of the software itself. Impacts every phase of the development life-cycle, from
initial implementation to maintenance and the capacity to scale in response to
future demands. In the following section, the platform technology stack will be
presented with the reasoning behind these decisions and the alternatives taken
into consideration. We will go thought programming language selection and its
runtime, as well as supportive frameworks.

The core technologies that form the backbone of the platform include Type-
Script for programming, React for the frontend development, Koa as the backend
framework and PostgreSQL for data management. Let us dive into more detail
and reasoning behind these decisions.

4.1.1 Programming Language
In the world of full-stack web development, TypeScript has evolved as a

popular choice for both frontend and backend development, largely due to its
widespread and support from community. The decision to use TypeScript across
the entire stack is aligned with the project’s goals of scalability, maintainability,
and productivity.

Static type checking with TypeScript offers significant advantages in terms of
code quality and reliability. It makes TypeScript a more verbose and complex
language to write, but in the long run and in such a large project it helps to
create a more self-explanatory code-base. One of the primary reasons for selecting

31

TypeScript is its ability to provide a similar developer experience across both the
frontend and backend. This enables to easily transition between working on a
client and server-side code with minimal context switching.

We can see a strong upward trend in the popularity of TypeScript. Mean-
while, JavaScript continues to have its first place as the most used programming
language according to both the Stack Overflow Developer Survey from 2022 [6]
and 2023 [7], number of developers actively using TypeScript grows. Placing it
at the fifth place of the survey in both years in the professional developers’ com-
munity. This ensures a wealth of resources, tools, and libraries. Since TypeScript
is a superset of JavaScript, we can also consider it the winner of the survey.

4.1.1.1 JavaScript and TypeScript

JavaScript is a dynamically typed language. This means that variable types
are determined at runtime. This flexibility allows fast development but can in-
troduce errors that are hard to catch until the actual code is executed.

1 let myVar = ’Hello , world!’;
2 myVar = 100; // This is valid in JavaScript

Listing 4.1: JavaScript dynamic typing example

However, TypeScript introduces static typing, allowing developers to specify
variable types. This catches type errors at compile time, leading to more reliable
code.

1 let myVar: string = ’Hello , world!’;
2 myVar = 100; // Error: Type number is not assignable to string .

Listing 4.2: TypeScript static typing example

JavaScript lacks a built-in mechanism for enforcing the structure of objects.
This can lead to different inconsistencies in object shapes during the execution.

1 const a = [
2 {
3 name: ’Bob ’,
4 age: 30
5 },
6 {
7 name: ’Alice ’
8 }
9]

Listing 4.3: JavaScript different object shapes

On the other hand, TypeScript provides interfaces and type aliases to define
the structure of objects. Making the code more predictable and easier to debug.

1 interface IPerson {
2 name: string ;
3 age: number ;
4 }
5
6 const a: IPerson [] = [

32

7 {
8 name: ’Bob ’,
9 age: 30

10 },
11 {
12 name: ’Alice ’
13 } // Property age is missing in type { name: string } but

required in type IPerson .
14]

Listing 4.4: TypeScript enforcing object shape

In conclusion, while JavaScript’s flexibility makes it suitable for small projects
or prototypes requiring quick iterations. TypeScript type system and object man-
agement features provide a more structured and error-resistant approach. These
attributes are crucial for developing complex applications, making TypeScript the
preferred choice for enhancing code quality and long-term project sustainability.

4.1.1.2 Alternatives

When deciding on the programming language for full-stack web development,
Python was a strong consideration. With its large community, popularity, and
robust web-frameworks Flask and Django, Python offers an interesting ecosys-
tem for web development. The simplicity and readability of Python make it an
attractive option, especially for fast prototyping and projects with a strong focus
on developer productivity.

Dynamic Python typing creates challenges for larger and more complex appli-
cations. Although dynamic typing offers flexibility and development speed in the
early stages of development, it can lead to type-related errors that are only caught
at run-time. Recent versions of Python introduced optional type hints that al-
lowed developers to specify types for variables similar to TypeScript. However,
these hints are not enforced by the Python runtime itself. This adds a layer of
type safety, although it remains optional and not as integrated as a TypeScript
type system.

Performance benchmarks, as presented in [8], demonstrate Node.js, and there-
fore JavaScript, performance compared to Python in real world scenarios. Java-
Script should generally outperform Python in the measured scenarios. However,
the choice of technology lies in the effectiveness of the developer with a specific
language and framework. While Python developer experience and large number
of libraries make it a strong candidate, the advantages offered by TypeScript type
safety and JavaScript performance make TypeScript a more strategic choice for
our needs.

4.1.1.3 Compilation and execution

After choosing TypeScript as the go-to language, in the context of platform
technical design, it is important to understand how this language integrates into
execution environments. The client side of the platform will run in browsers,
which cannot execute TypeScript directly. The same applies to the backend -
given the deployment requirements, we are limited to Node.js. This implies that
our TypeScript code must be compiled into JavaScript.

33

4.1.2 Frontend
Given the popularity of JavaScript/TypeScript web development, the number

of options when choosing the go-to library is substantial. This choice influences
the development experience and affects the application’s long-term maintainabil-
ity. Among the many options, ranging from Vue.js, to AngularJS - React emerges
as the library of choice for the platform. Coupled with Create React App (CRA)
1, this combination offers a solid foundation for development needs. This decision
leverages the existing knowledge base and optimises the workflow.

4.1.2.1 React

Developed by Meta Platforms, React has become one of the most popular
libraries for building User Interface (UI). According to the survey [7], React
is one of the most common web technologies used by the respondents. The
declarative approach of React allows us to create complex UIs from isolated pieces
of code called ”components” [9] within a virtual Document Object Model (DOM),
a lightweight JavaScript representation of the real DOM. Those components
can be of two species; more on that later. They usually rely on the extended
JavaScript so-called JSX syntax. As stated in the React documentation [10],
JSX allows one to write HTML-like markup inside a JavaScript file, keeping the
rendering logic and content in the same place.

As already mentioned, React was the go-to frontend library chosen for the
platform. Given its large community that contributes to its large number of
tools, supportive libraries, and resources, it is a strategic choice. There are two
main approaches to working with React. Let us take a look at both of them.

4.1.2.1.1 Class components

Initially, React development was heavily based on class components. Each
component encapsulates the behaviour and state within a class inherited from
React.Component. It must have explicitly stated render() method returning
JSX. Class components allow one to define life-cycle methods, for example, inside
the componentDidMount method.

1 import React , { Component } from ’react ’;
2
3 class Welcome extends Component {
4 render () {
5 return <h1 >Hello , {this.props.name }</h1 >;
6 }
7 }

Listing 4.5: React class based component exmaple

4.1.2.1.2 Functional components

In recent years, React community experienced a large shift from Class-based
components towards functional components. This change was brought about by

1As of writing this thesis, CRA is obsolete and no longer directly supported by React

34

the concept of hooks. Hooks let developers use React features like state access or
life-cycle methods to the functional components. With hooks, the developer can
set a state, propagate context to nested components, or even cache a component
or some sort of calculation.

We can simply migrate the class-based component 4.1.2.1.1 into a functional
component:

1 import React , { useState } from ’react ’;
2
3 const Welcome = (props) => {
4 const [name , setName] = useState (props.name);
5 return <h1 >Hello , {name }</h1 >;
6 }

Listing 4.6: React class based component exmaple

Given these options, the obvious variant of functional components was cho-
sen. This approach aligns with modern React best practices and external library
integration.

4.1.2.2 Alternatives

As mentioned previously, there are several alternatives to React for web de-
velopment in the TypeScript environment.

• Vue.js: JavaScript framework usually highlighted by its simplicity. Vue is
written in JavaScript/TypeScript with HTML-based template syntax. Vue
uses the so-called single-file components. Special file formats that allow one
to encapsulate the template, logic, and styling of a Vue component are a
single file [11]. Similarly to React, Vue.js uses virtual DOM.

• Vue.js: Developed and maintained by Google, is a full-fledged Model View
Controller pattern (MVC) framework providing much more functionality
than React and Vue.js out of the box for the price of higher complexity and
unnecessary features given the project architecture.

• Svelte: Represents an interesting alternative to React given its perfor-
mance orientated approach, eliminating the runtime overhead of virtual
DOM by shifting the work to compile time. This produces highly opti-
mised vanilla JavaScript.

While all options offer interesting features and different approach to problems
of web development, React was chosen for compelling flexibility, strong commu-
nity support, and large ecosystem.

4.1.3 Backend
Choosing the right backend framework in Node.js was a key decision. This

part of the application should carry all the business logic and complexity associ-
ated with a multi-tenant architecture. Therefore, it was important to carefully
select a robust solution that would be sustainable and scalable in the long term.
The decision was to adopt Koa over popular frameworks, for example, Express.

35

4.1.3.1 Koa

Koa [12] is a web-framework for Node.js designed by the Express team. How-
ever, the aim is to have a smaller and more robust foundation for a web API.
Koa stands out with its ”middleware-first” architecture, a principle that places
a chain of middleware functions executed upon request. This offers significant
advantages for use-cases of the platform requiring different levels of authorisation,
and data isolation mechanism between tenants.

4.1.3.2 Middleware architecture

At the core of the Koa philosophy are the middlewares used to streamline
the handling of HTTP requests. The Koa middleware is designed to be reusable,
allowing for a highly flexible and modular system that can be adapted to most use
cases. The middleware in Koa is a JavaScript function attached to the endpoint as
an array. Each middleware can perform operations, make changes to the requests,
and the response objects even with top to bottom propagation of data. As a good
example, a slightly modified logging middleware used in our Koa backend can be
presented.

1 import Koa from ’koa ’;
2 import { Logger } from ’../ utils/ logger ’;
3 import { container } from ’tsyringe ’;
4 import { RouterContext } from ’@koa/ router ’;
5
6 export const requestLoggingMiddleware = async (ctx: RouterContext

, next: Koa.Next) => {
7 const logger = container . resolve (Logger);
8
9 // Don ’t forget to clean body to not disclose sensitive values

10 logger .info(’Started handling request ’, {
11 path: ctx.path ,
12 method : ctx.method ,
13 body: ctx. request .body ,
14 });
15
16 await next ();
17
18 logger .info(’Completed handling request ’, {
19 path: ctx.path ,
20 method : ctx.method ,
21 body: ctx. response .body ,
22 status : ctx.status ,
23 });
24 };

Listing 4.7: Koa logging middleware

We can clearly see that we can perform both request and response operations.
The middlewares are chained directly in the router of the app like:

1 router .get(
2 ’/ projects /: projectId ’,
3 requestLoggingMiddleware ,
4 authenticationMiddleware ,

36

5 authorizationMiddleware ([Role.ADMIN , Role.OWNER , Role. MEMBER
]),

6 getProjectAction
7);

Listing 4.8: Koa router example

In this example, we can see a sample GET route with three chained middle-
wares before the actual action execution.

4.1.3.3 ORM a data models

For managing the database and building data models within Koa backend,
Knex.js and Objection.js was used. Knex.js serves as a query builder, allowing
for direct interactions with the database. Used together with Objection.js, an
Object–relational mapping (ORM) built on top of Knex.js, it is an efficient way
to manage and interact with database entities in an object-like structure. Im-
plementation details will be explored in the following chapter 5 as well as in the
programming documentation found in A, focusing on the implementation of the
application itself.

4.1.3.4 Runtime

Building an application to run as a Lambda function in the Node.js run-
time ensures that scalability is built into the core architecture. The Serverless
framework simplifies the deployment process, allowing for seamless updates, man-
agement, and scheduled runs of Lambda functions. By leveraging serverless tech-
nologies, we make sure that the backend can accommodate varying request loads
with minimal overhead.

4.1.4 Database Management System
Selecting a Database Management System (DBMS) that aligns with appli-

cation’s data complexity and requirements is always a crucial. The backend
needs to perform complex data retrievals and also needs to store the possible
configurations and customisation of tenant’s data, namely the branding layouts
and shipping carrier configurations. The data stored in the database are mostly
structured with few mentioned exceptions. Given that PostgreSQL was a good
choice given its performance and ability to store complex data types.

4.2 Multi-tenancy and its possible approaches
Multi-tenancy refers to a software architecture approach, designed for cost

efficiency and ease of maintenance. It’s key principle is to simulate, otherwise
needed on-premise deployment or a dedicated instance of the software, on a single
instance. This model works with the premise that the data are kept isolated from
each other using several possible approaches. Let us define key terms and take a
look at possible approaches to this interesting architectural model.

37

• Tenant: As stated in [13], the tenant is a group of users who share the
same view on the application they use. The view usually includes the data
they access, the configurations shared between the groups, and much more.
Usually, tenants are from different legal entities; hence, a tenant can be a
company, for example.

• Single-tenancy: For completeness and a better understanding of the forth-
coming information, it is good to define the term ”single-tenancy”. It is an
architecture in which a single instance of a software application and sup-
porting infrastructure serves one tenant. This approach is usable for a SaaS
software, however, comes with a cost where for each tenant it is necessary
to pay for additional infrastructure resources. In practice, this approach is
commonly used when moving old on-premise software to the cloud with a
dedicated deployment pipeline that sets up each instance based on tenant
demand.

4.2.1 Approaches
After defining the foundational concept, it is important to consider how to

approach design of the multi-tenancy - balancing between security, cost efficiency,
and ease of maintenance. Let us take a look at the possible approaches to it
proposed in both [13] and [14] and suggest the best way that best suits our
needs.

4.2.1.1 Multiple databases

Multiple databases approach illustrated in Figure 4.1, know as ”database level
tenancy” is very similar to the proposed single-tenancy. In this setup, each tenant
uses a separate database, hence maximising the data isolation. This can lead
to the best possible data isolation in SaaS multi-tenant software, but to worse
maintainability.

38

Figure 4.1: Multi-tenancy with multiple databases

4.2.1.2 Single database, multiple schemas

This model involves a single database with multiple schemas, also known as
”schema-level tenancy”. Each schema serves a different tenant. Infrastructure
cost is significantly reduced compared to the previous approach, bringing some
implementation complexities.

Figure 4.2: Multi-tenancy with multiple schemas

39

4.2.1.3 Single database, single schema

Known as ”record level tenancy” is designed that all tenants share the same
database and the same schema. Tenant’s data are stored in the same tables differ-
entiated by column or columns containing a tenant identification. This approach
necessitates strict data isolation within application queries, as the application
layer is the only enforcer of data separation.

Figure 4.3: Multi-tenancy with single database and schema

4.2.2 Implementation in the platform
The backend of the platform achieves multi-tenancy through the concepts of

”Projects”. Projects are entities that bundle multiple users into a single tenant,
adopting the ”record-level tenancy” seen in Section 4.2.1.3.

This setup allows users to share project-biased data among themselves with
role-based access, ensuring that the data of each tenant are isolated and secure.
Without giving much detail that would compensate for the clarity of the design
in figure 4.4 we can see a simple UML diagram of the relation ship. Both User
and project have many more relations; however, these have been removed for
now. Data isolation is ensured through ORM queries that are project-biased,
thus preventing accidental data leaks between tenants.

40

Figure 4.4: Simplified UML diagram of the User and Project relation

41

5. Implementation
In the preceding chapters, we have dived into the architectural 3 and technical

design 4 of the platform, highlighting the theoretical and strategic decisions that
form our system. This chapter transitions from conceptual outlines into concrete
details of the implementation phase serving as a bridge connecting the high-
level design decisions discussed earlier with the technical details covered in the
programming A and administrative D manual.

This chapter will explore the structure and organisation of the project. We will
delve into the backend implementation, focusing on how it manages multi-tenancy
- a feature allowing the system to serve multiple tenants without sacrificing secu-
rity. Special attention will be paid to the integration of carrier modules, which are
essential for the platform. Moreover, the chapter will cover the implementation
strategies for web clients, developed with ReactJS.

5.1 Project Structure
Choosing an appropriate project structure is a fundamental decision in soft-

ware development that significantly impacts the efficiency of the development and
maintainability of the project. For our platform, the choice between a Monolithic
repository (monorepo) and multiple repositories (multi-repo) was critical. This
decision influences the cooperation in future development, how the project is in-
tegrated and deployed, and how changes are managed across different parts of
the project.

A monorepo refers to a development strategy where the code for multiple
projects is stored in the same repository. This approach is contrasted with
multi-repo, where each project or service has its own repository. For this plat-
form, the use of a monorepo has offered several benefits. With all code in a
single repository, managing dependencies becomes easier. There is no need to
publish internal packages that are used across services, and updates to shared
libraries are reflected across whole codebase. This reduces the risk of the so-
called dependency-hell1 and simplifies upgrades. CI/CD pipelines can be more
efficiently managed when all projects share the same repository. Changes in one
part of the platform can trigger build in another, ensuring integration and con-
sistency across the platform. This setup simplifies the process of rolling back
the changes in all affected parts when necessary. Monolithic repository also en-
sures that all components of the project are always synchronised with each other.
The unified versioning approach arises from the compatibility of the individual
services, especially when making API changes or updating shared libraries. On
the other hand, monorepo also brings some challenges that need to be consid-
ered, particularly around the permission management of the repository. In the
multi-repo setup, access can be controlled at the repository level, allowing for
straightforward management of who can access what. In addition, multi-repo
might be more appropriate in large-scale projects. As the repository grows, so

1A term describing frustration when multiple packages have dependency on incompatible
version of the same package.

42

does the time to clone and the consumption of resources for the automatic CI/CD
pipelines. However, this can be solved by adopting shallow cloning2 and defin-
ing pipeline strategies to determine which parts of the project need to be rebuilt
based on the changes made.

After weighing the benefits and challenges, a monorepo approach was chosen
for the platform. This decision was driven by the streamlined dependency man-
agement and easier integration between services. In addition, the simplicity of
the deployment process and overall project management significantly influenced
this choice. The monorepo structure not only simplifies the operational work-
flow, but also enhances the ability to manage the project efficiently as it scales.
This approach ensures that all components of the system are in-sync and can be
updated or rolled back simply.

5.2 Backend Implementation
The backend of our platform plays an important role in orchestrating the

workflows and managing multi-tenancy. Built using the KoaJS framework as a
REST API, it provides a robust foundation for the entire platform. In this section,
we will provide some implementation specifics of the backend with a description
of the logic in it. The whole backend is build around few key components:

• entites

• services

• actions

The entites define Objection.js Model representing a database table where
each instance of that class represents a table row. The services define an in-
jectable dependencies which are used for database queries using an ORM Objec-
tion.js. And finally actions representing the API action called from the API
endpoint.

5.2.1 API Design and multi-tenancy
The design of the API tries to adhere to RESTful principles, aiming to provide

a clear and logical representation of information with stateless operations. Each
endpoint is crafted to meet specific business requirement and corresponds closely
to the entities with retrieval, creation, update, and delete operations.

The key part of the backend is handling authentication and authorisation. In
order to respect the Don’t repeat yourself (DRY) principles, both of these oper-
ations are implemented as KoaJS middlewares. Given our deployment strategy
described in Chapter 6, we could have gone in the direction of using an Amazon
Cognito as authentication. However, this would bring vendor lock-in in a fairly
critical part of the application logic. It would be a reversible solution, but it could
present a serious problem and interfere with the whole system. That is something

2Option in a git allowing to start working in the repository without downloading every
version of every file in the entire history.

43

we have decided to put off; hence, custom middleware was implemented to ver-
ify access tokens sent with each protected request, and methods handling token
generation and regeneration.

After authorisation and authentication, in tenant bias endpoints with a pa-
rameter containing project ID in the route, the parameter is stored and used
strictly for data retrieval.

5.2.2 Carrier modules
To implement the different shipping modules, the backend uses the abstract

class AbstractCarrierModule, which defines the interface for all shipping mod-
ules. Each specific implementation of a carrier module, in the current state of the
platform, for example, for Packet, PPL or Česká Pošta, extends this abstract class
and implements its methods to convert generic operations into carrier-specific API
calls. This design pattern encapsulates the variability between different carriers,
providing a unified interface to the rest of the application. It simplifies the addi-
tion of new shipping carriers, as only a new module inheriting from the abstract
class needs to be created without altering the existing system.

5.2.3 Sending e-mails
Email communication is an integral part of the platform, used for notifications

and confirmations. The email sending functionality is externalised through Ama-
zon AWS Simple Email Service, leveraging the SendEmailCommand and SESv2-
Client from the @aws-sdk/client-sesv2 package. This approach decouples
the email sending capability from the application logic, allowing scalable and
reliable email delivery managed by the AWS infrastructure.

5.2.4 Generating waybills
Generating waybills is a functionality provided by the backend, especially for

the shipping operations when the warehouse is handing the parcels physically
over. The backend utilises the pdfjs library to create PDF documents. This
library was selected after evaluating alternatives such as jsPDF and Puppeteer.
However, these alternatives are based on a browser rendering. This significantly
simplifies the whole development process since we can render and export HTML
templates. However, being browser-based also meant a heavy reliance on a de-
pendency such as Chromium for example. This posed a challenge in the Lambda
environment due to execution time and resource constraints, including dependen-
cies. The pdfjs library, on the contrary, offers a more lightweight solution that
fits well within the serverless architecture, providing quick and efficient PDF gen-
eration without the overhead associated with browser-based rendering engines.

5.3 Web Client Implementation
Web clients, primarily developed using ReactJS, is a crucial component of

the platform. Provides the user interface through which operators and customers
interact with the system. This section will discuss the client-side part of our

44

platform, focusing on routing, state management, and the integration of support
for the multi-tenancy and dynamic functionality of the platform.

5.3.1 Client-Side Routing and State Management
Client-side routing is implemented using the react-router-dom library, which

manages page navigation between different components without refreshing the
page. The state within the application is managed using combination of React
Context API and a local state management through hooks such as useState.
For global state management, particularly for user authentication and project
selection which is critical for maintaining multi-tenancy, the Context API provides
a way to pass data through the component tree without having to pass props down
manually at every level.

The operators dashboard supports multi-tenancy by storing the currently se-
lected project ID by the tenant within the URL. This ensures that all tenant-
specific data fetched from the backend are scoped within the selected project. For
both authentication and project management, dedicated page wrappers were cre-
ated to handle the front-end logic. AuthenticatedRoute manages the routes that
require user authentication but aren’t meant to render tenant-specific data, only
user-specific. ProjectRoute, indirectly extending the AuthenticatedRoute, on
the other hand serves as a project fetcher based on the project ID in the URL.
The indirect extension is meant as follows: if no project is returned for a given
URL, the user is redirected to the page used to select the project. If this request
fails to recover the expired access token, the user is logged out. It ensures that the
user is not only authenticated, but also has the necessary permissions to access
data related to a specific project.

API calls are abstracted into reusable hooks defined in an actions directory.
These hooks provide methods to interact with the backend, handling CRUD
operations for defined entities. Each action hook fetching data from backend
utilizes the executeApiAction which standardises API call processes including
error handling, success message rendering, as well as token refreshing if needed.

To ensure components have access to the necessary data without pop-drilling
3, React Contexts are used. Context providers are set up at higher levels in the
application to store user details, current project setting, and much more. This
method helps to make data updates and access more efficient throughout the
application.

3Prop drilling is the process of passing down data or state through multiple layers of a
component hierarchy.

45

6. Deployment
When building a SaaS platform meant for various users in various environ-

ments, it is important to ensure that the platform is not only adaptable and
scalable, but also robust and secure. This necessity is the foundation on which
this chapter is built. Combining modern cloud technologies with good practices,
this section explores how these elements are used in order to ensure smooth and
efficient deployment process. With a focus on Infrastructure as Code (IaC), this
chapter highlights how this method is used within the AWS ecosystem providing
in-depth look at the deployment procedure for both frontend and backend com-
ponents discovering how they directly impact scalability, reliability, and security
of the platform.

6.1 Current Deployment Strategy
The deployment strategy for this platform leverages AWS services with focus

on IaC to automate and manage cloud infrastructure. Thanks to this approach,
creating a consistent deployment process is achieved while reducing possibilities
of human error and ensuring replication across different stages or environments.

Specifically, the strategy uses AWS S3 for hosting the static frontend(s),
AWS Lambda for backend functionalities including scheduled background tasks
and organising these diverse components into multiple stacks using AWS Cloud-
Formation. Furthermore, this platform utilizes the PostgreSQL database using
Relational Database Service (RDS), AWS Route 53 for domain routing, AWS
Certificate Manager for SSL/TLS certificate management and AWS Simple Email
Service for securing a high email delivery rate. This structure allows for a well-
controlled infrastructure, allowing quick adjustments if needed.

6.1.1 AWS S3 for Static Frontend Hosting
Deploying static frontend applications of the platform employs the AWS S3

to host the React applications. AWS S3 provides a reliable, scalable and secure
solution for serving static content, making it ideal choice for hosting a Single Page
Application (SPA) applications like ours. All three frontend applications (docu-
mentation, tracking page and dashboard) use very similar deployment strategies.
The S3 buckets are configured to serve a website with index.html with allow-
ing public access and establish removal policies to ensure that the buckets are
destroyed when needed. However, we cannot provide access to the S3 bucket
just like that. The definition of AWS Cloud Front distribution (Amazon Content
Delivery Network (CDN)) is vital to catch errors and unauthorised accesses by
enforcing a Secure Sockets Layer (SSL) certificate managed by AWS Certificate
Manager. Finally, Domain Name Server (DNS) routing for applications is con-
figured with AWS Route 53, creating an A record that points to the AWS Cloud
Front distribution. For a detailed visualisation of the deployment architecture
for static frontend applications and how these components connect, refer to the
diagram illustrated in 6.1

46

Figure 6.1: C4 Deployment diagram of static web application in AWS

6.1.2 AWS Lambda for Backend Services
For the backend services, the platform leverages AWS Lambda, a serverless

computing service that runs code in response to events with automatic man-
agement of underlying computing resources. This choice supports a serverless
architecture for the backend, benefiting from scalability of Lambda functions,
which scale automatically based on the number of requests and are quite cost-
efficient by charging only for the compute time consumed. Such a pricing strategy
is important for our platform, primarily operational during the Central European
working hours, ensuring that resource allocation during off-peak hours - such as
nights, early morning and weekends - is minimized, thus aligning resource usage
with the actual demand.

The entire Koa backend is encapsulated within AWS Lambda functions us-
ing the Serverless framework. This setup not only streamlines the deployment
and operation of the serverless backend, but also enhances its extensibility and
maintainability. The Serverless framework handles the integration of backend
application into the AWS ecosystem, enabling leveraging the full spectrum of
benefits of serverless computing.

Additionally, the backend is expanded with serveral scheduled tasks, con-
figured to emulate traditional cron jobs within the AWS Lambda environment.
These tasks are important for routine operations, such as fetching parcel statuses
from carrier APIs and sending tracking emails to recipients. Specific Lambda
handles are designed for database seeding and migrations tasks which are nec-
essary for the deployment process. These handlers are invoked as part of the
CI/CD.

The IaC approach for the deployment of the backend service is orchestrated
thought AWS Cloud Development Kit (CDK), enabling automated provisioning
of cloud resources. Key elements of the deployment include the following:

47

• AWS Lambda: The main building block of the backend service, AWS
Lambda functions are integrated to run code in response events.

• Data storage and management: A PostgreSQL hosted on AWS Re-
lational Database Service (RDS) provides a managed, scalable and secure
relation database solution that accompanies automated tasks such as back-
ups and patching.

• Network configuration: A dedicated AWS Virtual Private Cloud (VPC)
is provisioned to encapsulate Lambda functions, ensuring that they operate
within a secure and isolated network environment. Security groups within
AWS Virtual Private Cloud (VPC) define access rules, providing a security
layer for backend interactions.

• API Gateway integration: An API Gateway acts as the entry door
backend services, managing incoming API requests and routing them to
the appropriate AWS Lambda function.

• Domain management and SSL/Transport Layer Security (TLS)
encryption: The deployment also uses AWS Route 53 for domain routing
and AWS Certificate Manager to manage SSL/TLS certificates.

• Static content hosting: AWS S3 buckets are integrated to host static
assets used for user-uploaded public content.

For a more in-depth look, refer to the diagram illustrated in 6.2

Figure 6.2: C4 Deployment diagram of backend service in AWS

48

6.1.3 AWS CloudFormation for Infrastructure Manage-
ment

AWS CloudFormation plays a crucial role in managing the platform infras-
tructure. It perfectly aligns with the purpose of IaC - creating and managing
resources with templates. CloudFormation enables the user to define the entire
cloud environment as code that can be versioned, reused, and shared. Automating
the deployment of resources in a consistent and repeatable manner. By organising
resources into multiple stacks, the deployment can be segmented logically (e.g.,
networking, application layers, security), facilitating easier management and up-
dates of specific components. Using the AWS CloudFormation, one can define the
AWS Identity and Access Management (IAM) roles and policies that define the
permissions and actions that can be performed on AWS resources. This policy
is a key factor in reducing the scope of operations for the deployment process,
ensuring that each action, from the deployment of Lambda functions to the man-
agement of log groups and the interaction with other services like S3 and RDS,
is guided by a set of permissions.

In our case, several AWS CloudFormation stacks are created using AWS Cloud
Development Kit (CDK) to programmatically define and manage CloudFroma-
tion stacks. As a result, the deployment process systematically manages the
creation of several key AWS CloudFormation stacks, each designed to support
different facets of the application’s infrastructure: Having said that the deploy-
ment creates the following AWS CloudFormation stacks:

• API Service Stack: Central backend infrastructure, the API Service
Stack comprises all the necessary resources deployed by the
Serverless framework such as all Lambda handlers and events triggering
the scheduled tasks. With necessary AWS Identity and Access Manage-
ment (IAM) roles for the runtime environment as well as GitHub actions
deployment.

• Docs page stack: Dedicated to the application documentation portal, the
Docs page stack provides the infrastructure required to host and serve the
documentation.

• Tracking page stack: Tailored for the tracking functionality, this stack
establishes the infrastructure needed for the tracking page.

• Dashboard page stack: Focused on the administrative aspect of the
application, the Dashboard Page Stack creates the infrastructure for the
dashboard page.

6.2 Alternative Deployment Methods
Although the deployment path chosen for this platform is AWS with server-

less architecture for deployment, it is important to explore alternative deployment
methods that could offer different benefits or align with other needs. The two
main alternatives that are presented are containerisation and utilisation of ser-
vices from other cloud providers. After this brief overview of both options, we
will present the potential risks of both of them.

49

6.2.1 Containerization
Containerization is a method that allows to encapsulate an application along

with its environment and dependencies into a container that should run consis-
tently on any infrastructure. Being either a local development environment or
production on a remote server, containers are popular option and are very often
the way to go for both development and deployment. This approach is com-
plemented by technologies such as Docker. Docker can run completely free in
both the development and production environments, significantly reducing cost.
This gives freedom to the deployment environment. Containers can run on a
bare Virtual Private Server (VPS) or in a container-specific environment devel-
oped to host containers without taking the costs of maintaining a server such as
AWS Elastic Container Service (ECS). Containerisation offers numerous benefits,
including:

• Portability: Containers can be moved across different environments or
cloud providers without vendor-lock-in.

• Efficiency: Containers share the kernel of the host system, making them
more lightweight and efficient than running separate VPS for each applica-
tion.

6.2.2 Other Cloud Providers and Services
In today’s world, choosing between cloud providers is not a simple task. One

can choose between more abstract solutions (cloud platform as a service) that
require less setup, hiding more complexity behind. This usually comes with
some costs that are either financial or functional. The reason being is that these
platforms usually run on outsourced hardware and that they should be widely
accessible by application developers without expertise in deployment and server
problematic. This is so because making processes simpler usually requires sig-
nificant reductions in the configuration options and settings. A good example
might be a Vercel, a cloud platform as a service company providing a simple-
to-use solution to host web applications. However, AWS still provides a wider
range of integrated services - from email sending services, to object storage, and
much more. Even though Vercel is an excellent solution for hosting static-sites
and frontend applications, AWS generally provides a much more configurable
environment giving a wider control control over the whole platform. Cost-wise,
considering the fact that Vercel is running on top of the AWS, it is expected that
services will be more expensive.

6.2.2.1 Google Cloud Platform

Google Kubernetes Engine offers powerful and scalable container deployment
solution. Google Cloud Run is a fully managed platform that automatically
scales containers, similar to AWS Lambda, but with the benefits of containeri-
sation. However, while Google Kubernetes Engine provides interesting container
management and scalability, the overhead of managing Kubernetes can be signif-
icant. Requiring a deep understanding of Kubernetes architecture, management,
and best practices, which might introduce additional complexity to the platform.

50

6.2.2.2 Microsoft Azure

Microsoft’s Azure Kubernetes Service might provide a similar solution to
Google Kubernetes Engine. This brings about the same issues related to Ku-
bernetes complexity. However, using Azure Functions, which supports serverless
computing, might be a better match to AWS Lambda, which supports an event-
driven environment. The most significant difference between the two is the cold
start time. An Azure function might require a cold start after 20 minutes of
inactivity, taking even tens of seconds to start. The AWS Lambda usually takes
no more than 1-2 seconds on cold start.

6.2.3 Conclusion
Although the current deployment strategy mainly uses AWS services and

leverages a serverless architecture, it also exposes the platform to potential risks
associated with vendor lock-in.

Vendor lock-in occurs when a project becomes so dependent on a particular
cloud provider that migrating is technically challenging or expensive. However,
the benefits of avoiding vendor lock-in must be balanced against the complexity
of deployment and infrastructure management. If one wants to handle secure and
scalable deployment following recommended practices on a bare metal without
vendor lock-in, it becomes a very challenging task.

6.3 Continuous Integration and Continuous De-
ployment (CI/CD)

In every project, both CI and CD processes are important components to
ensure code quality and minimize possible human error on repetitive manual
task such as deployment. Using GitHub Actions as the running environment
of the CI/CD pipeline allows the automation of various workflows ranging from
code quality checks to deployment into two separate environments (staging and
production), ensuring that every line of code in the main branch of the code
repository undergoes through lint and build checks with follow-up deployment.

Since GitHub was chosen as the primarily code repository for the platform,
it was a straightforward choice to use cloud runners in GitHub Actions as the
go-to solution for the integration and deployment pipeline. When code changes
in the repository, GitHub Actions are triggered to execute predefined jobs, such
as typing checks with TypeScript, linting with ESLint, and the identification
of spelling errors. These initial steps ensure that the code base adheres to the
platform’s standards and conventions.

Following quality checks, deployment workflows are activated based on push-
ing to the main branch publishing the code to both production and staging envi-
ronments with all necessary migrations and updates. These workflows use AWS
Cloud Development Kit (CDK) commands and AWS Command Line Interface
(CLI) to deploy infrastructure changes and application updates to AWS services,
effectively and relatively quickly, bringing the application from the repository to
the world.

51

The integration and deployment pipeline is designed to ensure consistent code
style with minimizing propagation of errors into the public production environ-
ment. The phases of the pipeline are the following.

• Code quality checks: On every pull request, automated workflow for
linting, type checking and spelling is triggered. These steps are important
for maintaing high code quality and catching potential issues early.

• Build process: For frontend applications, the build process compiles the
source code into static assets. Backend services are prepared for deploy-
ment, ensuring that all necessary dependencies are correctly packaged.

• Deployment to AWS services: Deployment is carried out in stages,
starting from staging to production environments. If something fails, the
staging process is over, production is terminated, and the job fails. This
phased approach allows for validation of changes in a controlled context
before affecting live users. AWS Cloud Development Kit (CDK) is used to
provision or update AWS resources, including Lambda functions for back-
end services and S3 buckets to host frontend assets. Infrastructure changes
are managed through AWS CloudFormation stacks, allowing reliable and
repeatable deployments. The deployment of a static web application is
carried out in two phases after the infrastructure is set up. It begins by
building it and then copying it to the AWS S3 bucket. The deployment of
backend services, on the other hand, is carried out by the Serverless frame-
work framework itself with AWS Identity and Access Management (IAM)
policy defined within the setup phase.

• Post-Deployment tasks: After the build and deployment, database mi-
grations and invalidating CDN caches ensure that the latest and valid con-
tent is served to user and that the database schema is up to date with what
the application is expecting.

By integrating these steps into GitHub Actions, the platform benefits from an
automated pipeline that minimises manual intervention in error-prone processes.
For example, on 6.3 there are three stages of the code quality pipeline.

Figure 6.3: GitHub Actions - Pull request integration

On the other hand, on 6.4 we can see two phase deployment process firstly
into staging environment with follow-up production for all components of the

52

platform. For a detailed view, we can see 6.5 where all the steps of the API
production deployment can be seen.

Figure 6.4: GitHub Actions - merge deployment

Figure 6.5: GitHub Actions - merge deployment API

This significantly speeds up the deployment cycle and ensures better stability
of the application.

53

7. Integrating SAP Business One
In the modern landscape of daily business operations, seamless integration

between external software solutions and the core ERP systems is not just a con-
venience; it is a necessity. As the number of external services needed for busi-
nesses to operate grows rapidly, comes the need to integrate those with minimising
tight coupling and complex unmaintainable dependencies. SAP Business One, a
leading ERP solution for small to medium companies, offers robust and unimag-
inable capabilities, but presents unique challenges when it comes to integration
with third-party software.

This chapter dives into the complexity of establishing a direct connection with
SAP Business One and its underlying database. Direct write interactions with
database tables are highly discouraged due to potential repercussions on system
warranty and technical support. However, it is important to understand that the
caution advised against direct database modifications does not arise merely from
overarching restrictions but stems from a recognition of the complex structure
of SAP’s database. Unauthorised alterations carry the risk of compromising the
integrity of the system. It is worth mentioning that SAP Business One’s pricing
model is not only instance-based but also user-based. This introduces additional
limitations and costs that businesses must consider and potentially accept. Or
do they?

7.1 Possible solutions
Bridging the gap between SAP’s robust functionalities and the needs of busi-

ness utilising third-party software is not as straightforward as it might initially
appear. In today’s software environment, a common requirement is the need
for a web service to programmatically transfer data between third-party applica-
tions and SAP. Despite SAP’s widespread popularity, an official solution for this
specific challenge was absent for a long time.

7.1.1 SAP Business One Data Interface API (DI API)
One of the foundational solutions provided by SAP is SAP Business One

Data Interface API (DI API). This low-level programming interface offers direct
access to SAP Business One objects, enabling developers to perform Create, Rear,
Update, Delete (Create, Read, Update, Delete (CRUD)) operations on SAP data.
The SAP Business One Data Interface API (DI API) was the go-to choice for
many years because it was already installed with every SAP instance and the
programmer could access SAP directly via C# interface already known from a SAP
user interface. However, this convenience also introduces significant limitations.
The SAP Business One Data Interface API (DI API) operates through a local
Component Object Model (COM) that is installed alongside SAP Business One.
This architecture requires that any code that uses the SAP Business One Data
Interface API (DI API) must be executed in the environment where the COM
is located. Consequently, this code must typically run on a Windows machine
and be written in C#, which may not always align with preferred development

54

practices or the existing infrastructure of a company. Despite these challenges,
a workaround exists in the form of a wrapper library. Although this does not
address the deployment environment limitations, it enables the translation of the
library’s existing interface into one that is compatible with other programming
languages. For example, it is then possible to port C# library into Python using
tools such as the makepy library.

7.1.2 VCZ.WebService
A noteworthy solution to address several issues associated with using the

SAP Business One Data Interface API (DI API) alone is the VCZ.WebService
developed by Versino, a SAP Business One supplier. It was one of the first
web services available for SAP users operating on the SOAP (Simple Object
Access Protocol) standard. This makes VCZ.WebService a good choice for data
transmission between SAP and a variety of third-party software. In particular,
the connection to VCZ.WebService uses the standard SAP user licence.

This introduces key advantages, flexibility. Unlike using a pure SAP Business
One Data Interface API (DI API), VCZ.WebService introduces a layer over the
SAP Business One Data Interface API (DI API) that allows third-party software
to run in various operating systems and environments. However, VCZ.WebService
is not without its disadvantages. In today’s world, using Simple Object Access
Protocol (SOAP) is not considered a modern approach. Most programmers seek
Representational state transfer (REST) services which more align with the mod-
ern architectural styles and preferences. Since the log-in is done using a standard
SAP user, a programmer using VCZ.WebService has to use a licence provided
by the company to use only for the WebService, raising security concerns. Fur-
thermore, at the time of writing this thesis, VCZ.WebService is gradually being
phased out in favour of newer technologies introduced in 7.1.3.

7.1.3 SAP Business One Service Layer
The introduction of SAP Business One Service Layer marked an evolution

in SAP integration capabilities. Launched with version 9 of SAP Business One,
the Service Layer is a modern REST-based interface that handles communication
with SAP systems. The SAP Business One Service Layer is controllable only using
HTTP operations, making it accessible from any programming environment able
to perform HTTP requests, thus vastly broadening its applicability. It offers a
well-documented, standardised way to interact with SAP objects and perform
operations similar to the ones in ERP’s user interface. Featuring user-defined
queries and the ability to patch and post securely to the SAP database. User-
defined queries are an interesting feature. They are normal SQL SELECT queries
with the requirement to first be stored as a string in the SAP database and
then called by the SAP Business One Service Layer for data retrieval. It is
safe in this way, but limiting and time consuming for the user. Authentication
still relies on the SAP user licence, generating a short-lived token through SAP
Business One Service Layer introducing an overhead when using this service.
Both limitations will be discussed later in this chapter 2 including a solution
proposal. The transition from SAP Business One Data Interface API (DI API)

55

to adopting SAP Business One Service Layer reflects a broader trend toward
web-based APIs for enterprise integration. However, being a first-party solution
and providing key features with seamless SAP data manipulation, it still lacks
the features needed for fast data queries and it’s own authentication. Business
does not want to provide it’s own licence for which they have to pay extra and
raise a security concerns with exposing the licence.

This project proposes a new approach to overcome these challenges. By in-
troducing a publicly accessible solution through a reverse proxy equipped with
its own authentication policies.

7.2 SAP Business One Service Layer Proxy with
direct Database connector

Integrating SAP Business One with external applications such as e-Commerce
platforms, different warehouse solutions, and our platform - presents complex
challenges that existing approaches fail to address. These challenges call for a new
solution (or at least an enhancement of the existing one) that allows secure access
to the Service Layer over the Internet without compromising SAP credentials and
thus creating SAP user accounts for each user of the API. This solution should not
only allow new integration capabilities but also ensure that business can maintain
the security and integrity of the SAP Business One and it’s database.

7.2.1 Analysis
As we came to the conclusion, existing solutions for integrating SAP Business

One with external applications fall short of meeting requirements of business and
are not very straight forward to use in few aspects. This analysis explores the
needs for creating a proxy for the SAP Business One service layer with a direct
database connector.

7.2.1.1 Functional requirements

FR-SAP1: Implement own authentication system without compromising SAP
credentials.

FR-SAP2: Maintain a unified SAP login session across all user interactions.

FR-SAP3: Forward requests/responses to/from the SAP Business One Service
Layer.

FR-SAP4: Implement a direct route to execute SELECT database queries by-
passing the SAP Service Layer.

FR-SAP5: Provide the ability to switch between production and development
environments for both the SAP Service Layer and the direct databa-
se connector.

FR-SAP6: Implement a simple user management system for CRUD operations
on users of the Proxy.

56

FR-SAP7: Provide authorization tools for role-based access to create adminis-
trators and users.

7.2.1.2 Nonfunctional requirements

• Local deployment close to SAP Business One Instance.

• Continuous Integration and Continuous Deployment (CI/CD).

• Ensure that the API is accessible via the HTTPS protocol from the public
network.

• Expose the API Proxy endpoint under a public domain name.

7.2.2 Architecture
The architecture is designed to ensure seamless integration between external

applications and SAP Business One via SAP Business One Service Layer and
direct connector to the Microsoft SQL database underlying the SAP instance.
The main part of the architecture is an application that serves as a proxy and
manager of singleton connectors to the SAP Service Layer and Microsoft SQL
database in both development and production environments. This application is
strategically positioned behind the NGINX reverse proxy which serves as the entry
point for all inbound requests.

The architecture consists of following key parts:

• Reverse proxy

• Proxy app

• Proxy database

• SAP Business One Service Layer

• SAP database

As illustrated in Figure 7.1, the architecture within the company network can
be categorised into two principal systems. One being Proxy Server and the second
SAP Business One.

Figure 7.1: C4 Landscape diagram of communication with SAP

57

Figure 7.2: C4 System diagram of Proxy App

Figure 7.3: C4 System diagram of SAP Business One

A more detailed examination provided in Figure 7.2 presents the components
that make up the Proxy Server, including:

7.2.2.1 Reverse proxy as the entry point

As the entry-point, the front-facing reverse proxy was chosen. Managing and
directing incoming traffic to the Proxy app service

58

7.2.2.2 Proxy app and database

The proxy application with its own database is the heart of the system. They
are responsible for user management as well as maintaining SAP Service Layer
access tokens for both environments and connection pools to both Microsoft SQL
database environments.

In contrast to the Proxy system, within our scope, the SAP Business One
system is visualised in Figure 7.3 consisting of the following key components
(simplified for clarity):

7.2.2.3 SAP Business One Service Layer

Running instance of SAP Business One Service Layer installed locally on the
server with SAP Business One and the database. The Service Layer is accessible
via HTTP on a given port.

7.2.2.4 SAP Database

Underlying database used by the SAP Business One instance. In our case, we
are talking about a Microsoft SQL database.

7.2.3 Implementation
In the landscape of application development, especially when creating an ap-

plication that serves as an API proxy, developers are presented with large array
of options and tools. To ensure good maintainability, we have opted to remain
within the JavaScript ecosystem by leveraging similar technologies used in the 3.
This strategic choice not only leads to a more efficient development process, but
also enhances existing expertise and resources by building on familiar technolo-
gies.

7.2.3.1 Technology Stack

• Nginx front-facing reverse proxy managing incomming traffic to the Proxy
API.

• Koa makes up the backbone of the Proxy API as the backend framework.
Its lightweight and middleware-orientated design allows for flexible and
modular codebase.

• PostgreSQL is used to store SAP service layer access tokens as well as
user credentials.

• Objection, Knex are tools configured to provide seamless integration be-
tween Koa backend and our database. Objection.js provides a simple to
use ORM where glsknex serves as a query builder and database migration
management tool.

• Yarn is chosen as a package manager and script executor.

59

7.2.3.2 Proxy API structure

The Koa backend is structured into several entities, middlewares, services,
and actions that ensure modular and maintainable code. Objection Models used
for Object Mapping entities to the Database.

• User basic model used for authentication and authorization. Storing user-
name, password, and role (user/admin).

• SAPToken persistent singleton instance of a environment bias token having
just token, environment, and expiration time.

Each middleware is designed to perform specific functions and, if needed, store
additional data in the context passed to the next chained middleware or a final
action.

• Authentication middleware

• Authorization middleware

• SAP Environment middleware

• SAP Service Layer Login middleware

Services usually perform CRUD operations on a database using a package Ob-
jection.js as ORM. They are most often called from actions; however, in some
instances, they are called directly from one of our middlewares.

• SAP service provides a log-in to generate, store, and retrieve SAP Service
Layer authentication tokens for both environments.

• User service provides simple CRUD and authentication methods for user
objects.

At the end of the middleware chain there are actions. They serve as the main
endpoint function. In our instance, we only need CRUD operations for manipu-
lating and listing user objects, proxy for SAP Service Layer, and Microsoft (MS)
SQL query method making use of pre-initialised singleton database connection
pool for both environments.

7.2.3.3 Microsoft SQL connector

In order to allow for efficient SQL queries directly to the database, the Proxy
API implements an endpoint that expects a query in the body. The query is
then forwarded to pre-initialised MS SQL connection for either development or
production database, based on the user’s choice. The database connection pool is
initialised on application start-up in order to minimise cold-starts. As a connector
to the database, the mssql package for Node.js was used. However, as was later
found, this package is not able to keep two distinct connection pools when calling
the basic login method. It stored in cache only, although a different one was
required. This was an issue since the requirement was to allow for connection to
two different databases. However, this behaviour can be overcome by creating a
ConnectionPool instance directly instead of relying on built-in login functions
and caching it outside of the library.

60

7.2.3.4 SAP Service Layer Proxy

Then main part of the application is, as the name suggests, the Service Layer
proxy itself. Using a static AxiosInstance request is passed with all necessary
headers to the SAP Service Layer endpoint expecting a stream in the response.
This approach, of course, creates some overhead by calling the API directly.

A series of performance tests were conducted to quantify the difference in
response times. The goal was to evaluate efficiency of the Proxy API while
handling authentication, authorization and data forwarding while operating re-
motely. As can be seen in figure 7.4, on average, direct calls to request the full
BusinessPartner object from SAP Business One Service Layer were completed
in approximately 85 milliseconds. In contrast, calls made through the Proxy API
were executed in an average response time of approximately 268 milliseconds.

Although the Proxy API introduces an additional overhead, resulting in longer
response times compared to direct Service Layer interactions, the increase is fairly
consistent and within acceptable margins, given the added functionalities and
remote location with public domain access which introduces considerable network
latency.

Figure 7.4: Response time of direct SAP Service Layer call in contrast of Proxy
API

7.2.3.5 Database model overview

Database model of the Proxy API is very minimalist and can be best seen in
7.5 Its main focus is to store user data in a safe way. In addition, it serves as a
cache for SAP Service Layer tokens. This approach might initially appear to be
an overextension, such as ”using a sledgehammer to crack a nut”. However, our
user base might grow, and even for minimal usage of the production instance, it
is necessary to provide reliable persistent storage.

61

Figure 7.5: DB diagram of database models

7.2.4 Deployment
Proxy API deployment was carried out on a VPS with Ubuntu 22.04.3, using

Docker for containerisation. This approach streamlines the setup by separating
the build process into distinct phases to minimise the container’s footprint. The
section further discusses continuous deployment via Docker Hub and the use of
reverse proxy for secure internet access.

7.2.4.1 Overview

Probably the most significant part of the deployment itself is utilizing Docker,
a powerful containerization platform that simplifies the process of building, ship-
ping and running applications in different environments and contexts. The con-
tainer was constructed using a multi-phase Dockerfile, which allows for a seamless
streamlined setup by caching dependencies and separating the build process into
several phases. This approach not only speeds up the build process, but it even
significantly minimises the footprint of the container itself.

7.2.4.1.1 Dockerfile strategy

The Dockerfile was divided into multiple phases to optimize the build process

• Dependency Caching: The initial phase used Node.js 18.16.1 in the
bullseye-slim release as the base image to cache package.json file.

• Build Process: A temporary image created in the first phase is reused
to install dependencies and build the Proxy API using esbuild, JavaScript
bundler, and minifier.

• Production Image: The final image was prepared using the same Node.js
base image as in the first phase. From this image, all development de-
pendencies and source code were removed to ensure that only necessary
components for running the application were included.

62

7.2.4.2 Continuous Deployment and Continuous Integration

The build and deployment process was completely automated. Automated
build is done in an official Docker container registry, a Docker Hub, using GitHub
integrations where all source code is stored. Every push to the master branch
triggers a new build on the Docker Hub, ensuring that the latest version of the
application was always available. Deployment on the Linux VPS is managed by
Watchtower, an automated update tool that checks for new Docker images every
60 seconds and updates the running container accordingly. This setup allows for
continuous deployment with minimal manual intervention. Furthermore, Slack
notifications were integrated to provide immediate alerts on deployment status
and system overall health, allowing quick responses to potential problems.

7.2.4.3 Accessing the application

To securely present the Proxy API to the Internet, Nginx was used as a reverse
proxy configured with Certbot for automatic SSL certificate management. This
setup ensures that all traffic to and from the Proxy API is encrypted. Using
this configuration, secure and reliable gateway for accessing the Proxy API was
achieved.

7.2.5 Data Sender
This module serves as an intermediary that covers the data flow between

platform and SAP Business One through the Proxy API, as can be seen in 7.6
The application written in TypeScript running in a Node.js environment.

63

Figure 7.6: C4 Container diagram of communication with SAP

7.2.5.1 Design and Configuration

The Data Sender module integrates a scheduler that orchestrates task ex-
ecution based on predefined schedules or commands. Time-schedule tasks are
necessary to ensure that importing new shipments into platform or updating
shipment statuses in SAP are performed efficiently and in expected times. Using
the Node.js package node-cron for scheduling and the yargs library for simple
CLI configuration.

7.2.5.2 Functionality

The main entry script acts as the core of the Data Sender. Initialising the
application and setting up scheduled tasks. Each task is designed to address
specific data synchronisation needs between platform and SAP Business One.

• Order imports: Divided by carriers - Packeta, PPL, Ceska Posta, this task
targets the retrieval of ”unsent” orders reflecting data storage conventions
in SAP Business One with option to ship shipment with multiple parcels
(tracking numbers).

• Shipping number imports: Importing shipping numbers for recently
dispatched orders back into SAP, ensuring that the data in SAP Business
One stay up to date.

64

• Parcel updates: Focused on updating the information of the parcel in a
specific time frame. This task updates shipment status, invoice numbers,
and shipping cost in SAP, using the status mapping of the platform for
efficiency.

7.2.5.3 Deployment strategy

Similar to the Proxy API 7.2.4, the Data Sender application is containerised,
ensuring consistency and reliability across multiple environments. The CI/CD
setup mirrors what was already described in 7.2.4.2, using automated builds and
deployments to maintain up-to-date and secure operations. The container is
designed to be always on utilising the scheduler to continuously check and run
tasks.

65

8. Evaluation
Throughout this thesis, we have designed, implemented, and deployed a SaaS

platform with a multi-tenant architecture aiming to fundamentally transform how
eCommerce businesses interact with shipping carriers. This platform covers the
need for business to manage the specifics associated with each shipping carrier by
automating the communication process and hiding all unnecessary details. The
platform’s capabilities extend beyond mere data communication within expedi-
tion logistics; seeking into marketing corners with a tendency to present another
possible marketing channel within post-purchase communication to enhance cus-
tomer engagement. Key features include an automated mechanism for customer
email notifications triggered by changes in parcel statuses based on shipping car-
riers and tracking page. Both are designed to serve as a post-purchase marketing
channel with a seller’s branding. Allowing businesses to maintain continuous
engagement with their customers while reinforcing brand identity.

This chapter delves into the evaluation of the platform, assessing its oper-
ational efficacy and integration within a real-world business environment. The
platform was integrated into a company that handles more than 100 parcels per
day, providing a robust testing ground for all the implemented features. Integra-
tion was carried out on 14 March 2024. This evaluation focuses on several critical
areas:

• The integration process with SAP Business One.

• Connecting with shipping carriers.

• Difficulty of training staff and problems that occurred during operation.

• The operational performance of the platform.

achieving the final goal of the project G5. By analysing these elements, we aim to
validate the platform’s design objectives and its potential to streamline logistics
operations.

8.1 Evaluation environments
To ensure a comprehensive evaluation of the platform, the development and

testing processes were conducted across three distinct environments: Local, Stag-
ing, and Production. Each environment played a specific role in the development
life cycle, enabling incremental validation of features, performance testing, and
secure deployment.

8.1.1 Local development environment
The local environment primarily serves as the initial testing ground for de-

velopment. In this environment, we can quickly implement and test new fea-
tures without the risk of affecting the live system. Leveraged Docker to run
isolated instances of databases identical in structure to the production environ-
ment. This setup helped ensure that all database interactions were fully tested

66

under controlled conditions, minimising irregularities between local and produc-
tion behaviour. In order to invoke functions and mimic server responses without
connecting to the actual cloud service, the serverless-offline plugin is used
to simulate AWS Lambda and API Gateway locally.

8.1.2 Staging environment
The staging environment mimics the production environment as closely as

possible and served as the final step before full-scale deployment. It is hosted on
AWS to simulate real world conditions using the same IaC tools as in production,
ensuring that all configurations were replicated. This includes using AWS Cloud-
Formation for resource orchestration and AWS Lambda to run backend services.
The staging environment is publicly accessible on a staging subdomain serving
all services such as the dashboard, tracking page, and backend.

8.1.3 Production environment
The production environment is where the platform fully operates and is acces-

sible to the end users. The platform is automatically deployed into the production
environment always after successful deployment to the staging utilising close con-
figurations.

By maintaining these distinct environments, we are able to systematically
deploy updates, ensuring that each feature got tested before being released to the
public. This structured approach not only minimises disruptions to live services,
but also ensures that end users received a reliable and secure product.

8.2 Production evaluation areas
This section outlines the evaluation of the platform after its integration into

a live business environment. The assessment focuses on four critical areas: inte-
gration with SAP Business One, connectivity with shipping carriers, training and
operational challenges faced by staff, and the overall operational performance and
business impact of the platform. The first step was to create a user account and
set up a project. In this project, all operators were invited, the public API key
was generated, as well as the setup of the so-called shipper address which serves
as a return address for project shipments.

8.2.1 Integration with SAP Business One
Exchanging data with SAP Business One was a key element in the integration

of the platform. It required periodic exports of data from SAP to the platform
and updates back into SAP with tracking numbers, the latest status, and delivery
confirmation flags. To accomplish this, we used the SAP Service Layer Proxy
and Data Sender, as detailed in Chapter 7. Storing data in the status of the
parcel metadata retrieved from the PPL shipping carrier, such as invoice numbers,
shipment costs, tolls and fuel taxes, proved beneficial. These data facilitated and
accelerated monthly, mostly manual, shipping invoice processing tasks where the
data provided on the invoice need to be checked and validated. The integration

67

process comprised three main phases: Integration works with three phases of data
exchange:

1. Exporting New Shipments: In this initial phase, all packaged shipments
are exported to the platform. This process runs every five minutes during
operator working hours and picks shipments marked by the operator in the
SAP Business One.

2. Updating New Shipments in SAP: This phase updates all packed or-
ders that have been exported to the platform and successfully dispatched
to the carrier with a new status DATA SENT and the tracking number.

3. Periodic Status Update: Each night, the Data Sender queries all previ-
ously shipped parcels, with a time limit specific to each carrier, and updates
their status in SAP - ideally to ”delivered.”

This structured approach ensures frequent synchronisation between the data held
in the platform and SAP Business One. Figure 8.1 below illustrates the daily
number of shipments processed since integration, highlighting an average of ap-
proximately 100 shipments per day. The flat spots on the plot presents weekends
and bank holidays.

Figure 8.1: Number of shipments per day

Integration has been largely seamless. However, during the testing phase, we
refined the database queries used to retrieve new shipments several times to meet
previously unidentified requirements. Many of these adjustments stemmed from
the need to handle shipments that did not have an associated invoice and only
had reference to a packing list.

Furthermore, to provide insight into the workflow of operators and identify
peak operational times, we analysed the distribution of shipments sent to the

68

platform within 30-minute intervals during a typical working day. As illustrated
in Figure 8.2 below, the creation of shipments peaks around lunchtime, aligning
closely with the pickup schedule of the shipping carrier between 13:30 and 14:30.
With this data we can additionally optimise the scheduled tasks used for data
exchange between SAP and our platform.

Figure 8.2: Distribution of shipments creation in 30-minutes intervals during the
work day

8.2.2 Connecting with shipping carriers
Establishing a connection to all three implemented shipping carriers - Pack-

eta, PPL, and Česká Pošta was a smooth process without any issues. Connecting
packeta was straightforward; it involved simply copying the API-Key from Pack-
eta’s online administration interface. This password is all that was required to
authenticate and interact with Packeta’s API, making the integration process very
simple and fast. For PPL, the credentials needed were a ClientID and a Client
Secret, which had to be obtained directly from PPL’s support team. Although
this required waiting for the support team to provide the necessary credentials,
the overall process went smoothly once the credentials were received. Integration
with Česká Pošta was slightly more involved. Initially, it required contacting
the sales representative of Česká Pošta to ensure that the proper permissions to
generate access keys were established in the Česká Pošta client administration
portal. After these permissions were in place, generating the API Token and
obtaining Secret was straightforward. However, additional details such as the
postal code of the post office, the customer’s ID, and the contract number needed
to be specified; these were promptly provided by the sales representative.

69

With all necessary credentials and configurations set, each carrier’s integration
was completed and saved under the respective project in platform. Integration of
these carriers represents a critical step in the platform, allowing data transmission
between the platform and the shipping carrier.

8.2.3 Training and operational challenges
Training the staff, so-called operators, to use the platform was relatively

straightforward, thanks to the simplicity principle of the platform design. The
primary interface feature is a main table where operators select rows and execute
predefined actions with a single button click. This simplicity in design minimized
the learning curve and helped quick adoption. Given the fact, that operators
use desktop computers with a mouse and keyboard, there were no issues with
layout responsibility or accessibility of the dashboard. Platform’s data filtering
and manipulation functionalities were also intuitive for the staff. Most operators
already had basic knowledge of software like Excel and were familiar with the
SAP Business One user interface, making adoption easier. Despite the ease of
training, there were operational challenges during the initial phases of the deploy-
ment. Adjustments had to made within the shipments table, such as highlighting
”today’s” orders, setting a row colour for different shipment statuses. Given that
the Packeta API is not among the fastest, which was mostly shown when gener-
ating package labels, the implementation of a simple loading bar was necessary.
This loading bar was displayed to the user immediately after clicking the button,
completely disabling it. Several changes were also made to the shipment detail
user interface, where some fields were rearranged and added, as well as fixing a
bug that made it impossible to edit the pickup point.

From the user perspective, the branded tracking page presents the status of
the parcels and basic shipment data. However, users also have the option to go
to the official shipping carrier tracking page. But the question is do they use it?
We have implemented anonymous event-based user tracking.

Figure 8.3: Tracking page actions

70

And, as we can see from the data on Figure 8.3, the significant portion of
users is satisfied with what they see on our tracking page and do not need to
continue to the carrier’s official tracking page at all. Another interesting thing
that arises from tracking page events data is the distribution of device, or to be
more precise, screen type. We have decided to track three device types:

• desktop: Everything over approximately 992 px.

• table: Everything over approximately 768 px.

• mobile: The rest.

Although we expected that most of the users will open the tracking page from
their phone, the data in Figure 8.4 show something different. Phone users are
certainly not insignificant, but the desktop leads the way.

Figure 8.4: Device usage for view events (%)

8.2.4 Operational performance and business impact
The operational performance of the platform has been robust, supported by

the detailed AWS CloudWatch monitoring. Analysis of the Lambda invocation
duration in Figure 8.5 reveals that the average response time during peak periods
can reach up to 4 seconds on average, which is still within the Lambda tolerance.
So, just raising the timeout should be enough for these special cases described
below. However, normally, this number is well below 250 miliseconds.

71

Figure 8.5: Duration of backend Lambda handler

The high average is typically associated with requests for shipping labels or
operations involving the Packeta API, which tends to have slower response times
due to the need to await responses with the Lambda function. Furthermore,
the error and success rates monitored through AWS CloudWatch in Figure 8.6
indicate a very high availability of the system. The metrics show a minimal error
rate, which underscores the robustness and reliability of the backend Lambda
handler. This high success rate ensures that the system remains dependable
under various operational conditions, providing a stable and efficient service to
users.

Figure 8.6: Error count and success rate (%) of backend Lambda handler

The business impact of the platform has been largely positive. Transitioning
from an older, difficult to maintain system to this modern platform, has moved the
company’s logistic operations into a good direction. The previous system, while
functional, suffered from poor architecture and limited accessibility, restricting
usage to only a network within the company. Not only that, but operators could
not anyhow edit the data in the old system. Meaning that they had to do all minor
changes in the SAP Business One, making the whole job much more difficult. In
contrast, the new platform offers flexibility and remote accessibility, allowing staff
to interact with the system from any location using mobile devices.

This improvement in accessibility and user experience is complemented by
the extensibility of the platform. The architecture of the new system is designed
to facilitate integration with different carriers and allow for very straightforward

72

integrations with new carriers and updates within existing APIs. This capability
is particularly valuable in today’s dynamic business environment, where shipping
conditions and costs can change frequently, making it unsuitable for the business.
The platform design allows the business to quickly adapt to these changes by en-
abling a seamless transition to different carriers as needed, as long as the carrier
implementation is present. Or, the business can request the implementation of a
new carrier, which generally should be a complex problem given the platform car-
rier integration design. This adaptability not only provides operational flexibility,
but also gives the company a competitive advantage in logistics management and
enhances its ability to respond effectively to market changes and customer needs.

8.2.5 Achievement of project goals
At the beginning of the development of this platform, we set five main goals, as

outlined in Project goals. These objectives were aiming to improve the expedition
process of the eCommerce companies by automating interactions with shipping
carriers, enhancing customer engagement through branded tracking page, and en-
suring simple integration with existing systems. Here, we evaluate and reflect on
how these goals were fulfilled through the deployment and real-world application
of the platform.

G1: Streamline logistics operations: The platform has effectively simplified
the process of dispatching orders to shipping carriers by automating data
exchanges and minimizing manual intervention. This was achieved through
a user-friendly dashboard that facilitates all data sending processes and
label generation, thus streamlining logistics operations. Refer to Figure
8.7 for a view of the dashboard shipment list with filtering, Figure 8.8 for
the shipment edit interface and Figure 8.9 for the detailed shipment view.
Please note that the data shown in the examples are mocked, and not actual
customer data.

73

Figure 8.7: Dashboard shipment list with filtering

Figure 8.8: Dashboard shipment edit mode

74

Figure 8.9: Dashboard shipment view mode (after being sent)

G2: Modern cloud based multi-tenant solution: Developed with a multi-
tenant architecture, the platform supports multiple companies simultane-
ously. The platform uses Amazon Web Services as a deployment infrastruc-
ture. This structure with the use of a serverless deployment ensures that
the platform can easily adapt to growing business needs while maintaining
performance and data security.

G3: Create branded shipping customer experience: The platform en-
hances the post-purchase experience by allowing businesses to customise
the branding of parcel tracking pages and email notifications. Customisa-
tion is done through an intuitive configuration interface within the dash-
board. This covers standard operational processes into valuable marketing
opportunities, creating a new marketing channel while increasing customer
engagement and strengthening brand identity. Figure 8.10 shows the config-
uration page where businesses can set the branding for their tracking pages
and email notifications. Figure 8.11 shows an example of an email notifica-
tion for a package sent to an Austrian customer, illustrating how multiple
branding layouts can be managed in a single account.

75

Figure 8.10: Dashboard tracking page/email notification branding configuration
page

Figure 8.11: Email notification of shipped parcel for Austrian customer

76

G4: Integration with existing systems: Seamless integration with existing
business systems, particularly SAP Business One, was an important aspect
of the platform. The platform facilitates this through public API that offers
the same services provided by the dashboard, including creating and modi-
fying shipments, generating labels, retrieving filtered shipments, and much
more. This allows for integration flexibility and the ability to automate
processes externally from the platform interface. Figure 8.12 shows the on-
line user documentation interface that helps users navigate and utilise the
platform features effectively. Figure 8.13 displays the Swagger public API
documentation, which is instrumental for developers looking to seamlessly
integrate their systems with the platform.

Figure 8.12: Online user documentation interface

77

Figure 8.13: Swagger public API documentation

G5: Validate in a real-world setting with SAP Business One integra-
tion: The effectiveness of the platform has been thoroughly tested in a real
eCommerce environment, which manages more than 100 shipments per day.
This real-world testing, integrated with SAP Business One, demonstrated
the robustness and operational reliability of the platform. Figure 8.14 show-
ing the spatial distribution of the recipients of the shipment during the first
month of use of the production.

Figure 8.14: Distribution of recipients within Europe

This chapter has evaluated the operational efficacy and integration of the
SaaS platform within a real-world business environment. During this evaluation,
the platform has been shown to meet operational requirements by simplifying
logistics processes, enhancing customer interaction through branded experiences,
and integrating with existing business systems. By achieving these objectives, the

78

platform not only fulfils the set project goals but also establishes a foundation
for future expansions and optimisations in eCommerce logistics. The platform
provides a clear direction for continued innovation and improvement, ensuring
that the platform can continue to deliver business value as market conditions
evolve.

79

Conclusion
In this thesis, we explored the complexities of communication between ship-

ping carriers and e-Commerce companies. Our initial research into existing solu-
tions revealed a gap: Most platforms focus primarily on the operational aspects
of expedition logistics without integrating any interface for the customer to whom
the collected data about their parcel could be presented. This provided an oppor-
tunity to enhance the post-purchase experience through a customizable tracking
page and email notification, serving as a possible new marketing channel.

The primary goal of this thesis was to develop a multi-tenant SaaS application
that not only handles communication with shipping carriers, but also enhances the
customer’s engagement with the seller after the purchase. At the same time, we
integrated the platform with SAP Business One through a communication proxy
we created, which allowed us to exchange data. This integration was pivotal, as
it allowed us to test the platform in a real warehouse environment, validating its
functionality in a real-world setting.

The deployment of the platform on AWS uses modern standards of IaC and
maintaining a CI/CD processes, highlights its readiness for industry use. By using
AWS services, the platform benefits from availability, security, and performance,
which are critical for handling sensitive business operations.

Evaluation
The platform has successfully achieved all the goals set out at the beginning

of this thesis. The creation of a SaaS platform designed to streamline the com-
munication between e-Commerce businesses and shipping carriers has proven to
be a valuable asset in daily operations for both operators and customers.

The platform has met all functional and non-functional requirements iden-
tified during the analysis phase. We have implemented integrations with three
major shipping carriers in the Czech republic - Česká Pošta, Packeta, and PPL.
Furthermore, the platform is designed for easy integration with additional carri-
ers, ensuring that the integration process is as seamless as possible and abstracts
the complexities from the operators. To facilitate the integration of the platform
within a company environment, two additional software solutions were developed.
The main is to secure a proxy for SAP Business One Service Layer, which en-
sures the safe and reliable handling of requests to the ERP system. The second
software handles the scheduling of synchronization tasks that enables continuous
data exchange between the platform and SAP Business One. Despite the fact
that it is out of the scope of this thesis, we will mention that the SAP Proxy API
was used to connect one of the e-Commerce stores of the company in which the
integration took place.

As of the date of this submission, the platform has successfully processed
logistics data for more than 3,500 shipments and served more than 3,000 cus-
tomers since its integration in mid-March 2024. This not only shows the success
of the platform but also demonstrates the seamless integration and ability used
by the operators. The successful deployment, integration, and functionality of
the platform reflects its robustness and readiness to meet the evolving needs of

80

the e-Commerce sector, opening the doors for future enhancements and wider
adoption.

Future work
Although the platform has successfully met its original objectives, it has po-

tential for expansion and further development. Future enhancements can expand
its usability and increase its value to a wider range of companies and their use
cases.

Carriers

Expanding the range of integrated shipping carriers is a key focus for the
future development of the platform. By integrating additional carries such as
DPD, GLS, and others that operate within the Czech market, the platform will
be able to meet more logistical needs and requirements. It is also important to
keep in mind that the Czech market is not the only target market. Unfortunately,
in this domain, often the carriers in question have a bias towards a given country,
and therefore, for example, the API communication with Czech PPL owned by a
German DHL is different.

Ready-made integrations with external systems

Ready-made integrations will simplify the adoption process for companies,
making it simpler and more efficient. These integrations should involve automatic
data transfers between ERP systems or e-Commerce platforms, thus reducing the
barriers for potential users.

Domestic carriers for international shipments

The platform should improve its support for international shipments managed
by domestic carriers that partner with foreign carriers. Often, a shipment sent
through a domestic shipping carrier like Česká Pošta or PPL is actually deliv-
ered by a partner like DHL in a foreign country. The sellers usually also try
to display the branding of delivery carriers in the checkout process on their e-
Commerce store to make the entire shopping process more trustworthy and local.
The platform needs to recognise and adapt to these co-operations by displaying
the actual carrier’s logo and brand information to the recipient. This will ensure
transparency and maintain consistency in customer communication for the seller.

Pick-up point details

Providing detailed information about the pick-up points could improve the
customer experience. If a shipment is sent to the pick-up, the platform could
provide detailed information, location, and operating hours. Such features would
make the tracking page more informative and valuable for recipients.

81

Customer’s parcels overview

The platform has the potential to become a central hub for customers to
view all their incoming and historical parcels. This feature would allow users to
manage and track all their shipments in one place, regardless of the carrier or the
sender. As the platform gains wider adoption, this functionality could become
a valuable tool for recipients, enhancing their overall experience and interaction
with the platform.

82

Glossary
AWS Lambda Step Functions serverless orchestration service -

Step functions documentations. 109

Joi JavaScript schema description language and validation library - Official page.
100

Joi Create and modify PDF documents in any JavaScript environment - Official
page. 103

Puppeteer Node.js library which provides a high-level API to control
Chrome/Chromium - GitHub repository. 44

jsPDF Client-side JavaScript PDF generation library - GitHub project reposi-
tory. 44

mssql Microsoft SQL Server client for Node.js- Project GitHub. 60

pdfjs A PDF generation library targeting both the server- and client-side -
GitHub project repository. 44, 103

react-router-dom Library for client-routing in React - Official page. 45

serverless-offline Serverless plugin emulating AWS Lambda and API Gate-
way locally - Serverless Offline documentations. 67

Amazon Cognito Service helps implement customer identity and access man-
agement (CIAM) into web and mobile applications - Official page. 43

AWS Certificate Manager Service to provision, manage, and deploy public
and private SSL/TLS certificates within AWS - Official page. 46, 48

AWS Cloud Development Kit (CDK) software development framework
used to model and provision cloud application resources - Official page. 47,
49, 51, 52

AWS Cloud Front Is a content delivery network (CDN) service built for high
performance, security, and developer convenience - Official page. 46

AWS CloudFormation IaC service - Official page. 2, 46, 49, 52, 67

AWS CloudWatch Monitoring tool of AWS services - Official page. 71, 72

AWS Command Line Interface (CLI) Unified tool to manage AWS services
directly from the command line - Official page. 51

AWS Elastic Container Service (ECS) Managed container orchestration
service - Official page. 50

AWS Identity and Access Management (IAM) Permission and role man-
agement for AWS resources - Official page. 49, 52, 123

83

https://docs.aws.amazon.com/step-functions/latest/dg/welcome.html
https://joi.dev/
https://pdf-lib.js.org/
https://pdf-lib.js.org/
https://github.com/puppeteer/puppeteer
https://github.com/parallax/jsPDF
https://github.com/parallax/jsPDF
https://github.com/tediousjs/node-mssql
https://github.com/rkusa/pdfjs?tab=readme-ov-file
https://reactrouter.com/en/main
https://www.serverless.com/plugins/serverless-offline
https://aws.amazon.com/cognito/
https://aws.amazon.com/certificate-manager/
https://aws.amazon.com/cdk/
https://aws.amazon.com/cloudfront/
https://aws.amazon.com/cloudformation/
https://www.google.com/search?client=safari&rls=en&q=aws+cloudwatch&ie=UTF-8&oe=UTF-8
https://aws.amazon.com/cli/
https://aws.amazon.com/ecs/
https://aws.amazon.com/iam/

AWS Lambda Amazon serverless solution - Official page. 2, 46–48, 50, 51, 67

AWS Relational Database Service (RDS) A relational database service -
Official page. 48

AWS Route 53 Scalable and highly available Domain Name System (DNS)
service - Official page. 46, 48

AWS S3 Amazon S3 - Official page. 2, 46, 48, 52

AWS SDK Simplifies use of AWS services with higher level of abstraction in
JavaScript - Official page. 108

AWS Simple Email Service Amazon SES is a cloud-based email service that
can integrate into any application for high volume email automation - Of-
ficial page. 44, 46, 108

AWS Virtual Private Cloud (VPC) A service to logically isolate AWS re-
sources - Official page. 48

Axios Promise based HTTP client for the browser and node.js - Axios docu-
mentation. 116

Axios Library for building interactive command line tools in JavaScript - Official
page. 117

AxiosInstance Reusable instance of axios configuration - Axios documentation
of AxiosInstance. 61, 116

Azure Functions Microsoft serverless solution - Official page. 51

Azure Kubernetes Service Official page - Azure Kubernetes Service. 51

Certbot Tool for Let’s Encrypt certificate management - Official page. 63

Chromium Chromium is an open-source browser project - Official page. 44

Django High-level Python web framework - Django official page. 33

Docker Platform to build, share and run container applications - Official page.
50, 62

Docker Hub A container registry for Docker images - Official page. 63

Dockerfile A text-based file with no file extension that contains a script of
instructions for the container - Docker documentation (Build the app’s im-
age). 62

Doctosaurus An optimized site generator in React - Official page. 109

esbuild JavaScript bundler for the web - Official page. 62

ESLint Linting utility for JavasScript and TypeScript. More details can be
found in ESLint official page. 21, 51

84

https://aws.amazon.com/lambda/
https://aws.amazon.com/rds/
https://aws.amazon.com/route53/
https://aws.amazon.com/s3/
https://aws.amazon.com/sdk-for-javascript/
https://aws.amazon.com/ses/
https://aws.amazon.com/ses/
https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html
https://axios-http.com/
https://axios-http.com/
https://yargs.js.org/
https://yargs.js.org/
https://axios-http.com/docs/instance
https://axios-http.com/docs/instance
https://learn.microsoft.com/en-us/azure/azure-functions/functions-overview?pivots=programming-language-csharp
https://azure.microsoft.com/products/kubernetes-service
https://certbot.eff.org
https://www.chromium.org/chromium-projects/
https://www.djangoproject.com
https://www.docker.com
https://hub.docker.com
https://docs.docker.com/get-started/02_our_app/##build-the-apps-image
https://docs.docker.com/get-started/02_our_app/##build-the-apps-image
https://docusaurus.io/
https://esbuild.github.io
https://eslint.org

Express Web framework for Node.js. Express official page. 35

Flask Micro web framework for Python - Flask official page. 33

GitHub Actions Tool for task automation by GitHub - Official page. 51, 52

Google Cloud Platform Official page - Google Cloud. 2, 50

Google Kubernetes Engine Kubernetes service - Google Kubernetes Engine
(GKE) official page. 50, 51

Knex.js SQL query builder for PostgreSQL, CockroachDB, MSSQL, MySQL,
MariaDB, SQLite3, Better-SQLite3, Oracle, and Amazon Redshift designed
to be flexible, portable, and fun to use. Knex.js official page. 37, 105, 112

Koa Web framework for Node.js. Koa official page. 2, 31, 35–37, 47, 59, 60

Microsoft Azure Official page - Microsoft Azure. 2, 51

Nginx HTTP and reverse proxy server - Official page. 59, 63

Node.js JavaScript runtime environment Node.js official page. 35, 37

Objection.js An SQL-friendly ORM for Node.js - Objection.js. 37, 43, 59, 60,
112

PostgreSQL Open source object-relational database system PostgreSQL official
page. 31, 37, 59

project An entity within the platform meant to group data together.. 19, 20,
40

React JavaScript frontend library React official page. 2, 31, 34, 35, 46

SAP Business One ERP software - Official page. 2, 17, 18, 54–59, 63, 64, 88

SAP Business One Data Interface API (DI API) SAP Business One API
for consuming SAP Business One data- Working with SAP Business DI API.
2, 54, 55

SAP Business One Service Layer SAP Business One API - Working with
SAP Business One Service Layer. 2, 3, 55–57, 59, 61, 80

seller An entity within the platform associated to the project defining the com-
munication layout - branding, types of notifications and general informa-
tion.. 19, 20

Serverless framework Framework developed for building applications on AWS
Lambda - Serverless framework official page. 37, 47, 49, 52

Svelte JavaScript web framework - Svelte. 35

85

https://expressjs.com
https://flask.palletsprojects.com/en/3.0.x/
https://github.com/features/actions
https://cloud.google.com
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://knexjs.org
https://koajs.com
https://azure.microsoft.com
https://www.nginx.com
https://nodejs.org/en
https://vincit.github.io/objection.js/
https://www.postgresql.org
https://www.postgresql.org
https://react.dev
https://www.sap.com/products/erp/business-one.html
https://help.sap.com/doc/saphelpiis_hc_b1_image_repository_development_training_basic_b1_90_tb1300_02_sol_pdf/9.0/en-US/B1_90_TB1300_02_Sol.pdf
https://help.sap.com/doc/0d2533ad95ba4ad7a702e83570a21c32/9.3/en-US/Working_with_SAP_Business_One_Service_Layer.pdf
https://help.sap.com/doc/0d2533ad95ba4ad7a702e83570a21c32/9.3/en-US/Working_with_SAP_Business_One_Service_Layer.pdf
https://www.serverless.com
https://svelte.dev

Vercel Platform as a service company - Vercel official page. 50

Versino SAP Business One supplier and integrator - Official page. 55

Vue.js JavaScript web framework for developing SPA - Angular.js. 35

Vue.js JavaScript framework for building user interfaces - Vue.js. 35

Watchtower Tool for automating Docker container base image updates - Official
page. 63

Yarn Node.js package manager - Official page. 59

86

https://vercel.com
https://www.versino.cz/cs-cz/
https://angularjs.org
https://vuejs.org
https://containrrr.dev/watchtower/
https://containrrr.dev/watchtower/
https://www.yarnpkg.com

Bibliography
1. CZECH ASSOCIATION FOR ELECTRONIC COMMERCE (ed.). E-commerce

Study 2023 - Hlavńı textová část [online]. [visited on 2024-03-24]. Available
from: https://www.apek.cz/archiv-dokumentu?filters_document%
5Bcategories%5D%5B0%5D=1.

2. OGUNMOLA, Gabriel; KUMAR, Vikas. E-Commerce Research Models: A
systematic review and Identification of the Determinants to Success. Inter-
national Journal of Business Information Systems. 2023, vol. 43, p. 2023.
Available from doi: 10.1504/IJBIS.2020.10044532.

3. SOMMERVILLE, Ian. Software Engineering. 9th ed. Addison-Wesley, 2010.
4. YONKEU, Steve. Understanding event driven architecture [https://dev.

to/yokwejuste/understanding- event- driven- architecture- 110o].
2024. [visited on 2024-04-20].

5. YONKEU, Steve. Top Best Software Architecture Pattern TO Choose [www.
medium.com/@darshanaslp/top-best-software-architecture-pattern-
to-choose-d44c20b37652]. 2021. [visited on 2024-04-20].

6. STACK OVERFLOW. Stack Overflow Developer Survey 2022 [online]. 2022.
[visited on 2024-04-03]. Available from: https://survey.stackoverflow.
co/2022/#most-popular-technologies-language-prof.

7. STACK OVERFLOW. Stack Overflow Developer Survey 2023 [online]. 2023.
[visited on 2024-04-03]. Available from: https://survey.stackoverflow.
co/2023/#most-popular-technologies-language-prof.

8. WORTHAM, Steve (ed.). Performance Benchmarking: Bun vs. C# vs. Go
vs. Node.js vs. Python [online]. [N.d.]. [visited on 2024-04-03]. Available from:
https://www.wwt.com/blog/performance-benchmarking-bun-vs-c-
vs-go-vs-nodejs-vs-python.

9. REACT. React Documentation [online]. [N.d.]. [visited on 2024-04-04]. Avail-
able from: https://react.dev/learn/.

10. REACT. Writing Markup with JSX [online]. [N.d.]. [visited on 2024-04-04].
Available from: https://react.dev/learn/writing-markup-with-jsx.

11. VUE.JS. Vue.js Documentation [online]. [N.d.]. [visited on 2024-04-04]. Avail-
able from: https://vuejs.org/guide.

12. KOA. Koa Documentation [online]. [N.d.]. [visited on 2024-04-04]. Available
from: https://koajs.com.

13. KREBS, Rouven; MOMM, Christof; KOUNEV, Samuel. Architectural Con-
cerns in Multi-Tenant SaaS Applications. In: 2012.

14. CODECRAFT. Multi-Tenancy In Software Architecture [Updated-2023] [https:
//medium.com/codex/multi-tenancy-1c31c181cc41]. 2023. [visited on
2024-04-05].

87

https://www.apek.cz/archiv-dokumentu?filters_document%5Bcategories%5D%5B0%5D=1
https://www.apek.cz/archiv-dokumentu?filters_document%5Bcategories%5D%5B0%5D=1
https://doi.org/10.1504/IJBIS.2020.10044532
https://dev.to/yokwejuste/understanding-event-driven-architecture-110o
https://dev.to/yokwejuste/understanding-event-driven-architecture-110o
www.medium.com/@darshanaslp/top-best-software-architecture-pattern-to-choose-d44c20b37652
www.medium.com/@darshanaslp/top-best-software-architecture-pattern-to-choose-d44c20b37652
www.medium.com/@darshanaslp/top-best-software-architecture-pattern-to-choose-d44c20b37652
https://survey.stackoverflow.co/2022/#most-popular-technologies-language-prof
https://survey.stackoverflow.co/2022/#most-popular-technologies-language-prof
https://survey.stackoverflow.co/2023/#most-popular-technologies-language-prof
https://survey.stackoverflow.co/2023/#most-popular-technologies-language-prof
https://www.wwt.com/blog/performance-benchmarking-bun-vs-c-vs-go-vs-nodejs-vs-python
https://www.wwt.com/blog/performance-benchmarking-bun-vs-c-vs-go-vs-nodejs-vs-python
https://react.dev/learn/
https://react.dev/learn/writing-markup-with-jsx
https://vuejs.org/guide
https://koajs.com
https://medium.com/codex/multi-tenancy-1c31c181cc41
https://medium.com/codex/multi-tenancy-1c31c181cc41

List of Figures

2.1 Sequence diagram of order dispatching process 15
2.2 C4 diagram with system context 18

3.1 Event-Driven architecture diagram 25
3.2 Client-Server architecture diagram 26
3.3 Multi-Layer architecture diagram 27
3.4 High-level layered architecture diagram 28
3.5 C4 container diagram of the software system 29

4.1 Multi-tenancy with multiple databases 39
4.2 Multi-tenancy with multiple schemas 39
4.3 Multi-tenancy with single database and schema 40
4.4 Simplified UML diagram of the User and Project relation 41

6.1 C4 Deployment diagram of static web application in AWS 47
6.2 C4 Deployment diagram of backend service in AWS 48
6.3 GitHub Actions - Pull request integration 52
6.4 GitHub Actions - merge deployment 53
6.5 GitHub Actions - merge deployment API 53

7.1 C4 Landscape diagram of communication with SAP 57
7.2 C4 System diagram of Proxy App 58
7.3 C4 System diagram of SAP Business One 58
7.4 Response time of direct SAP Service Layer call in contrast of Proxy

API . 61
7.5 DB diagram of database models 62
7.6 C4 Container diagram of communication with SAP 64

8.1 Number of shipments per day . 68
8.2 Distribution of shipments creation in 30-minutes intervals during

the work day . 69
8.3 Tracking page actions . 70
8.4 Device usage for view events (%) 71
8.5 Duration of backend Lambda handler 72
8.6 Error count and success rate (%) of backend Lambda handler . . 72
8.7 Dashboard shipment list with filtering 74
8.8 Dashboard shipment edit mode 74
8.9 Dashboard shipment view mode (after being sent) 75
8.10 Dashboard tracking page/email notification branding configura-

tion page . 76
8.11 Email notification of shipped parcel for Austrian customer 76
8.12 Online user documentation interface 77
8.13 Swagger public API documentation 78
8.14 Distribution of recipients within Europe 78

A.1 C4 overview of the architecture 93
A.2 Database schema diagram of Projects related tables 95

88

A.3 Database schema diagram of Users related tables 96
A.4 Database schema diagram of Shipments related tables 98

C.1 C4 Container diagram of Data-sender context 115

D.1 AWS CloudWatch . 121
D.2 AWS CloudWatch Log Group detail 121
D.3 AWS CloudWatch Log Group event detail 122
D.4 AWS Lambda EventBridge definition 123
D.5 AWS RDS instance detail . 124
D.6 AWS S3 bucket Block public access settings 127
D.7 AWS S3 bucket object ownership settings 128

89

List of Abbreviations
APEK Czech Association for Electronic Commerce
ERP Enterprise Resource Planning
PPC Pay-per-click
CRUD Create, Read, Update, Delete
ORM Object–relational mapping
SaaS Software as a Service
AWS Amazon Web Services
CLI Command-Line Interface
CRA Create React App
DOM Document Object Model
MVC Model View Controller pattern
DBMS Database Management System
UI User Interface
CI Continuous Integration
CD Continuous Deployment
MS Microsoft
B2B Business to Business
B2C Business to Customer
SOAP Simple Object Access Protocol
REST Representational state transfer
IaC Infrastructure as Code
RDS Relational Database Service
SES Simple Email Service
SPA Single Page Application
JWT JSON Web Token
SSL Secure Sockets Layer
TLS Transport Layer Security
DNS Domain Name Server
S3 Simple Storage Service
CDN Content Delivery Network
VPS Virtual Private Server
GKE Google Kubernetes Engine
monorepo Monolithic repository
multi-repo multiple repositories
DRY Don’t repeat yourself

90

A. Programming Documentation
- Platform

This document serves as a programming documentation for the platform.
Covers the mono-repo setup that houses both the client-side React applications
and the server-side API services. This document is intended to guide developers
through system setup, project structure, feature integration, and daily tasks.

The first Section A.1 will present the complete structure of the platform, in-
cluding the description of the components. Then, in the Section A.2 we will go
through and describe the coding conventions that are recommended to follow
when working on the platform. The third A.3 Section will provide brief overview
of the technical design of the platform. Next, the fourth Section A.4 will intro-
duce the backend of the platform, including segmentation of project parts and
technical details such as authorization, authentication, data filtering and general
communication with shipping carriers. In the fifth Section A.5 we will present
frontends with several decision and key elements influencing the project. Next,
in the Section A.6, we will delve into a way how to integrate new features, such
as shipping carriers, but also essential things such as adding new environment
variable. In the Section A.7 several important infrastructure points from pro-
grammers perspective will be presented. And lastly, in the Section A.8, some
information regarding user documentation will be provided.

A.1 Project structure
The platform uses a monorepo architecture to house both frontend and back-

end components under a single repository. This approach simplifies dependency
management, and enhances re-usability across the codebase. The monorepo in-
cludes:

• Clients: Containing all React frontend applications and dashboard user
documentation.

• Services: Housing the API backend service.

• Infrastructure: Definitions and configurations of the deployment and op-
erational infrastructure.

A.1.0.1 Clients

The clients section currently contains all three frontend projects:
clients

docs/
tracking/
web/

Here, the docs project is a Doctosaurus user documentation. The tracking
and web are React applications, first for parcel recipients and second is dashboard
for the actual users of the platform.

91

A.1.0.2 Services

The Services folder contains only one service, api - Koa backend.
services

api/

A.1.0.3 Infrastructure

The Infrastructure folder contains all the necessary setups for the deployment
in AWS.

infrastructure
apps/
constructs/
stacks/

The apps folder contains the deployment entry point file. It is where all
stacks are initialised for the requested environment. In the constructs we can
find several AWS Constructs. These are classes inherited from Construct from
package constructs defining so-called ”piece of system state”. In our case, the
constructs are used to define the database, the gateways, the policies, and the
S3 bucket for the user uploaded assets. And lastly, stacks is where the actual
services are defined. Using data from aws-cdk-lib.Stack, they define actual
CloudFormation stacks. Having said that, there is a stack for api, dashboard
(webapp), tracking page, documentation, and a specific stack for certificates.

A.1.1 Package management
The platform uses Yarn as its package manager. Yarn Workspaces are utilised

to link together frontend and backend packages, allowing share dependencies
installed at the root level optimising disk usage and installation process. The
dependencies for individual projects within the monorepo are declared in their
package.json files. The root package.json includes scripts and dependencies
applied throughout the repository.

A.2 Coding convention

A.2.1 Style guide
It is recommended to adhere to the Airbnb JavaScript and React style guide

for both backend and frontend code. Including consistent use of modern Java-
Script syntax and readable formatting. Please use linter regularly, each workspace
within the repository contains eslint which can be run by yarn check:lint.

A.2.2 File naming
It is recommended to use kebaba-case for file names. However, in the React

frontend codebase, PascalCase is usually used except for the layout components.

92

A.3 Technical design
The platform overview can be seen on Figure A.1.

Figure A.1: C4 overview of the architecture

A.4 Backend
The backend service serves as the central centre for processing all logistic

operations, interfacing with external carriers, and managing user interactions
through the API. Developed using Node.js and the Koa framework, it provides
scalable server-side logic. The project is in the services/api/ directory. The
platform is built around several key components in the following order:

1. Router: Is main entry of the API where all endpoints are defined.

2. Middlewares: Are chain-able methods initiated at the beginning of end-
point request or at the end to modify response. They handle authorization,
authentication, schema validation, parsing pagination, or filter requests.

3. Actions: Actions present the ”called” method of the endpoint after request
middleware.

4. Entities: Objects stored in the connected database.

5. Services: Manage the database interactions.

6. Modules: Defined carrier integrations with unified interface.

The backend elevates the dependency injection container using Microsoft li-
brary tsyringe.

93

A.4.1 Database connection
The database connection reference is stored as a singleton variable at the

Lambda handler entry-point (src/lambda-handlers/api.ts). This should en-
sure that no more connections than one are initiated, hence minimising the
database load and user connections.

A.4.2 Database schema
Due to the complexity of the database schema, it will be described in following

sections:

• Projects

• Users

• Shipments

A.4.2.1 Projects

Projects are the main building block of the platform. They are used as the
point of differentiation of data between tenants. However, each tenant can have
access to or own multiple projects (based on their plan). For the database dia-
gram, refer to Figure A.2. The project includes a reference to its owner, as well
as a name and renewable API key. Multiple users can have access to the project
and users can be invited into the project. Each project can contain individual
settings of the shipping carrier API (project shippingcarrier) and multiple
sellers (project sellers). Furthermore, the project contains its global shipper
(shipper) reference meant for each shipment in the table.

94

Figure A.2: Database schema diagram of Projects related tables

95

A.4.2.2 Users

The user is an object authenticated and authorised with each request. For
the database diagram, please refer to Figure A.3. If a user owns a project, they
have to have a plan defined.

Figure A.3: Database schema diagram of Users related tables

A.4.2.3 Shipments

The shipment is the object with which the user comes into contact the most
and also the most important part from a business perspective. For the database
diagram, please refer to Figure A.4. Shipment is a complex object constructed
from:

• Parcels: Representing the actual shipped box with a label and tracking
number. Shipment can have multiple parcels.

– Parcel status: Status of each parcel with metadata provided by car-
rier.

∗ Parcel status type: A unified type of parcel status with user
visible translated textual data. It can take the following values:
· EXCEPTION

96

· DATA SENT
· ACCEPTED BY CARRIER
· HANDED OVER
· IN TRANSIT
· OUT FOR DELIVERY
· STORED FOR PICKUP
· PICKED UP
· DELIVERED
· DELIVERY FAILED
· RETURNED
· CANCELED

• Shipper: Universal shipper of the project.

• Recipient: The recipient sent to the carrier with the address or pickup
point and contact information.

• Customs, commodities: For a customs clearance, the user needs to pro-
vide information about the parcel.

• Insurance, payment: To define a insurance value with currency, as well
as payment type and amount.

97

Figure A.4: Database schema diagram of Shipments related tables

98

A.4.3 Endpoints
The backend is structured as an API utilising REST principles. Each end-

point corresponds to a specific function within the platform, allowing CRUD
operations on resources such as shipments, users, projects, and operations calling
carrier APIs. All endpoints with related middlewares and actions are defined in
router.ts.

A.4.4 Authentication and authorisation
User authentication and authorization is implemented with respect to the best

practices of Koa as a middleware. With this convenient approach, we can ”dec-
orate” each route of the API with authenticationMiddleware and, if needed,
authorizationMiddleware handling the crucial logic of retrieving user creden-
tials, verifying them and passing them into the tsyringe container for other
middlewares, actions or services to utilise the user object.

A.4.4.1 Authentication flow

The authentication is based on token authentication.

1. Login request: Users submit their credentials via /authentication/
signin

2. Credential verification: Credentials are verified against the database
entries using hashed passwords.

3. Token generation: Upon successful authentication, an access and refresh
JSON Web Token (JWT) is generated and returned to the user.

A.4.4.2 Session management

• Token storage: JWTs are stored client-side and included in the HTTP
authorization header (with Bearer prefix) for requests.

• Token expiry and refresh mechanism: Tokens have finite lifetime, after
which user must either refresh the token or re-authenticate.

A.4.4.3 Authorization

Authorisation is solely based on an authenticated user. Each user can have a
single role, being either:

• Owner

• Admin

• Member

99

A.4.5 Request body validation
Validating request body on backend is a necessity. Improve the integrity of

the data and the security of the entire system. For this task, a Joi library was
chosen. It allows us to simply describe the schema of request body and validate
against it.

For an endpoint requiring request body validation it is necessary to define
the schema. For a larger schema, we recommend that you define it in sepa-
rate file from the file containing the action. Then the schema is utilized in the
schemaValidationMiddleware.

For example, a schema describing request body where either a list of shipment
references or objects containing tracking numbers with carrier name is provided,
will look like this:

1 import Joi , { Schema } from ’joi ’;
2
3 const schema : Schema = Joi. object ({
4 shipments : Joi.array ().items ({
5 reference : Joi. string (). required (),
6 }),
7 trackingIds : Joi. object (). pattern (
8 Joi. string (), // Key as string (carrier name)
9 Joi.array ().items(Joi. string ()) // Value as array of strings

10),
11 }).xor(’shipments ’, ’trackingIds ’); // Ensure either shipments or

trackingIds is provided , but not both

Listing A.1: Joi schema example

In order to comply with the DRY principle, Joi schemas are also used to gen-
erate OpenAPI specification for the public API. Each public API should export
specification object which, if exists, should contain the Joi schema converted
to swagger format using joiToSwagger method.

A.4.6 Public API
So-called ”public” methods rely strictly on publicApiMiddleware. This mid-

dleware controls provided key in request headers and attempts to resolve a project
related to that value. Public API methods are prefixed with v1 in the path, and
it is necessary to always document them. Thanks to that we can differentiate
whether the request is coming from the user interface or external integration.
This is especially useful when working with shipments. The shipment alteration
uses the UI-first approach, meaning that all shipments created or modified within
the user interface cannot be modified through the API. This is because the in-
tegration will usually be done as a periodic data sender which will repeatedly
send shipment data until they are marked as ”SENT”. Hence, overwriting user’s
change which we do not want.

A.4.7 OpenAPI schema generation
After touching on both the topics of request schema description and pub-

lic API methods, it is a good time to describe the generation of the OpenAPI
specification and a Swagger UI. The initialisation of an instance of the OpenAPI

100

class is carried out while setting up the server in the Lambda handler. Each
public API endpoint must be registered in the OpenAPI class constructor using
the registerSpec function with parameters of the endpoint path and its spec-
ification. Since the OpenAPI class gets the reference to the Koa router instance
as a parameter, we also define the routes /openapi.json and /docs routes. The
Swagger UI is exported from openapiUI method containing the actual Swagger
UI HTML with our OpenAPI specification retrieved from /openapi.json.

A.4.8 Data filtering
Backend handles and provides a lot of data, for this reason it is necessary to

provide convenience of data filtering while using the REST API methods provided
by backend. For this purpose filterParsingMiddleware was defined. This
middleware handles the task of parsing query parameters which serve for data
filtering. This filtering syntax is built around this parameter format: ?filter=
[{FIELD}|{OPERATOR}]={VALUE}
Where:

• FIELD can be arbitrary field from the response

• OPERATOR can be of two types - unary operator or multi-value operator :

– Unary:
∗ EQUALS
∗ CONTAINS
∗ STARTS WITH
∗ ENDS WITH

– Multi-value:
∗ IN
∗ BETWEEN

• VALUE can be either a single value when paired with unary operator, or
multiple values separated by comma, if multi-value operator is used.

These filters are parsed and stored as an array of objects in format {[FIELD]:
{VALUE, OPERATOR}} in the Koa context as the filters. From this object a
database query is then constructed in a service method to which is the object
passed as a parameter.

A.4.9 Data pagination
Handling pagination on backend is essential task with a growing dataset. For

this purpose, paginationMiddleware with supportive types and methods such
as responsePagination. This ensures a unified format of query parameters for
both page and pageSize parameters, as well as a response format utilising few of
the RESTful principles that return the paginated data set with links to retrieve
other data. The response format is:

101

1 type ResponsePagination = {
2 page: number ;
3 pageSize : number ;
4 offset : number ;
5 dataLength : number ;
6 total: number ;
7 links: {
8 first: string ;
9 previous : string | null;

10 next: string | null;
11 last: string ;
12 };
13 };

Listing A.2: Response pagination type

A.4.10 Carrier communication
Integration of shipping carrier APIs is build around abstraction, trying to

unify carriers as much as possible to provide seamless user experience without
caring about specific details related to each carrier. All carrier implementations
are stored in src/modules/carrier where each carrier implementation inherits
from AbstractCarrierModule. This abstract class requires from each imple-
mentation to contain several public methods which are then used for sending the
data, generating files such as labels and waybills, as well as updating or retrieving
parcel statuses.

Each carrier is then registered in a dedicated service carrier-service sup-
porting the logic of hiding the details from user experience and, hence, ideally,
treating every carrier, from user perspective, as if it was just one.

However, given the fact that each carrier treats their API development dif-
ferently, there are always some specifics that we cannot fully hide. They will be
described in the following section.

A.4.10.1 Packeta

Let us start relatively lightly. The Packeta API generally does not contain any
special features, and the function structure more or less copies the functions in
the abstract class. However, what needed to be modified is the inability to send
multiple parcels in a single shipment. This was done by breaking the shipment
into several requests. This brings us to the next and final point; unfortunately,
Packeta does not allow batch shipping of shipments and everything is sent one
at a time. This means a rather lengthy sending of a large amount of data, but
due to the relatively fast response time, this does not limit us to the maximum
timeout of Lambda functions.

A.4.10.2 Česká Pošta

For the integration with Česká Pošta, our approach leverages asynchronous
data transfer techniques to manage parcel shipping. Unlike synchronous opera-
tions, parcels are not immediately confirmed upon dispatch. Instead, the pickup

102

details are stored within the shipment metadata and must be retrieved through
a separate mechanism. This integration utilises something like a ”step function”
approach in the Lambda architecture, which allows for asynchronous processing
of shipments. This method is particularly advantageous for handling operations
that do not provide immediate results, such as waiting for pickup confirmations
or processing delayed status updates. The response retrieved from the request
method is stored in the database queue, which is then picked up by separate
”pick-up” function retrieving the final response.

One notable limitation with the Česká Pošta API is that the status updates
provided only include the date, not the time. This lack of granularity can compli-
cate logistics tracking when precise timing is essential. Additionally, we have en-
countered several status codes that are not documented in the official Česká Pošta
API documentation. Such discrepancies suggest that the API might undergo up-
dates or changes that are not immediately reflected in the documentation, posing
a challenge to maintaining accurate integration.

A.4.10.3 PPL

The integration with PPL similarly employs an asynchronous approach to data
handling, much like the implementation for Česká Pošta. An essential feature of
the PPL integration is the handling of shipping labels. Labels are generated at
the PPL API side during the data transfer process and are crucial for the physical
shipping of parcels. To accommodate the needs of users who may not immediately
retrieve these labels, they are stored as an URL reference the shipment metadata
and can be accessed at any point within 20 days after the data transfer. This
solution ensures that labels are available whenever needed during the period.
The only downside is that the labels are returned one by one from the PPL. So
when requesting labels from multiple parcels, it is necessary to obtain each label
separately as a JPEG and then construct a single PDF with 4 labels per page
using Joi. The method responsible for this operation is mergeLabels defined in
pplModule.

A.4.11 Generating PDF waybills
Generating PDF waybills meant as a list of shipped parcels with courier’s

signature is a necessary feature for any shipping operation, providing a document
that can serve as a reliable backup in case of discrepancies or issues during the
shipping process. Waybills are generated as A4-sized PDFs using the pdfjs
library. The process of generating these documents is designed to be flexible and
to accommodate various needs and specifications required by different carriers and
regulations. Specifically for Packeta, the waybills include a uniquely generated
barcode from the Packeta API. This barcode facilitates a faster and more efficient
parcel pickup process, as the carrier scans it to verify and process the shipment.
The inclusion of a barcode streamlines the logistics chain, minimising errors and
speeding up the time spent in the warehouse.

103

A.5 Frontends
There are currently three different frontends of two types in the platform.

The first is the user documentation generated by Doctosaurus. It is located in
the clients/docs folder and contains two language versions, Czech and English.
We will not go into the documentation any further since it follows the official
documentation of Doctosaurus.

Let us take a look at the second type of frontend - React. The platform
contains two React frontends - clients/web serving dashboard and clients/
tracking for displaying tracking information to the recipient. In this section, we
will describe only the React frontends.

A.5.1 Overview
Both React frontends are of similar structure and conventions respecting the

typical React project structure with src directory. Both projects use functional
components with hooks for data fetching and processing.

A.5.2 State management
Elevating Context API principles: passing data through components is done

mostly using providers defined within the src/providers folder. This enables to
toggle the loading mode, as well as to manage currently selected project in order
to differentiate tenants.

A.5.3 Routing
Routing is achieved using react-router-dom package where every protected

project route is defined by the project ID in the path. Each of these protected
paths is wrapped in the AuthenticatedRoute component that controls the va-
lidity of the user on every request.

A.5.4 Data fetching
The platform employs a structured approach to data retrieval across its fron-

tend applications, centralizing the logic within custom React hooks to enhance
modularity and reusability. Each hook is designed to interact with specific back-
end endpoints, handling various operations such as listing, creating, updating,
and deleting projects.

Data fetching operations utilize the useApiActions custom hook to perform
API calls. This setup abstracts the complexities of HTTP requests and state
management, providing a clear and straightforward API for frontend components
to interact with the backend. The executeApiAction function, central to the
mentioned hook, manages the life cycle of API requests. It prepares and sends
HTTP requests using the ky library configured with essential hooks for error
handling and token refresh logic if needed for protected routes. Upon completion
of an API call, feedback is provided through toast notifications.

104

A.6 Integrating new features
This section provides guidelines for the integration of new features into the

platform. Covers the addition of new logistics carriers, the management of envi-
ronment variables, the handling of frontend metadata, and the implementation
of localisation strategies.

A.6.1 Adding carriers
Integrating a new carrier into the platform involves several key steps to en-

sure a seamless interaction between the platform and the carrier’s services. This
integration typically includes API communication, data parsing, and updating
the UI to reflect the new carrier’s options.

Steps to integrate a new carrier:

1. Create carrier type: Create new value in ShippingCarrierId enumera-
tion in config/types.ts.

2. Define carrier type: In the central platform configuration app.config.
ts create a entry in the shippingCarriers array containing the newly
defined carrier with all the necessary authentication and generic fields.

3. Defining carrier module: To create the implementation of the carrier
API, it is necessary to create a new file in src/modules/carrier in the
backend that contains a class that implements AbstractCarrierModule.

4. Register the carrier: In src/services/carrier-service.ts on back-
end in the method createCarrierModule register the newly created mod-
ule under the ShippingCarrierId value.

With these steps involved, a new carrier should be integrated into the platform.

A.6.2 Database migrations
A database migration refers to version control of a database schema. Database

migrations produce incremental changes to the schema. Sometimes, these changes
can be reversible. Migrations can create a table, add a column, remove it, rename
it, or change the type.

All migrations are stored in the lib/db/migrations.ts file within the api
directory. Each migration is inside an array that fully respects the format ex-
pected by Knex.js library specified in the Knex.js documentation. The migration
might look like this:

1 ...
2 {
3 name: ’16 _create_shipment_analytics_events_table ’,
4 up: async (knex: Knex) => {
5 await knex. schema . createTable (’shipment_analytics_events ’,

(table) => {
6 table.uuid(’id’). defaultTo (knex.raw(’uuid_generate_v4 ()’)

). primary ();
7 table

105

https://knexjs.org/guide/migrations.html#custom-migration-sources

8 .uuid(’shipmentId ’)
9 . notNullable ()

10 .index ()
11 . references (’id’)
12 . inTable (’shipments ’)
13 . onUpdate (’CASCADE ’)
14 . onDelete (’CASCADE ’);
15 table.enum(’eventType ’, [’view ’, ’click ’]). notNullable ().

index (). defaultTo (’view ’);
16 table.jsonb(’eventData ’). notNullable ();
17 table. timestamps (true , true);
18 });
19 return knex;
20 },
21 down: async (knex: Knex) => {
22 await knex. schema . dropTable (’shipment_analytics_events ’);
23 return knex;
24 },
25 },
26 ...

Listing A.3: Example of a migration from migrations.ts

Running migrations in both local and AWS environment is very straightfor-
ward. We can utilise the following commands which are environment-biased and
will run migrations only within the specified environment as long as the database
is accessible. Go to the services/api directory and run:

• yarn migrate:up:<environment>: Runs the first unapplied migration in
the list.

• yarn migrate:down:<environment>: Reverts the last migration applied.

• yarn migrate:latest:<environment>: Runs all unapplied migrations.

Where the environment can be one of: local | staging | production.
However, in AWS environments, we recommend leaving migrations for the

GitHub action triggered on every push to the main branch.

A.6.3 Adding new environment variables
Adding new environment variable to the whole platform is a very straightfor-

ward process.

1. Extend the enumeration EnvironmentVariable located in config/types.
ts by the newly added value. If the value should be optional, modify the
OptionalVariables type.

2. In app.config.ts locate environments.environmentVariables and add
a new entry loaded using the getEnvVar method.

3. For local development, add value to the .env file, for production and staging
purposes, add the StringParameter to the api-stack.

106

A.6.4 Passing metadata to frontend
Metadata provided by the backend are fetched on every load from the frontend.

With this mechanism, we can provide the necessary data to the frontend before
every page load. Bare in mind, that response of this request must be quick -
hence, ideally providing just static data. The process is straightforward - only
modify the
src/actions/metadata/app-config.ts action on backend.

A.6.5 React Frontend localisation
Localisation of both React client applications is done using i18next library.

All translation files are stored within the project in public/locales folders. If
a new translation key is added, simply run yarn generate:locale within the
workspace, and the keys will be generated or modified.

A.7 Infrastructure
This section of the documentation delves into the infrastructure setup that

supports the platform’s operational and programming decisions. A primary fo-
cus is placed on explaining how certain infrastructure choices are closely tied to
development practices and user features, such as the direct upload of static assets
from the client to the cloud.

A.7.1 Static Asset upload from client
The platform provides the ability to upload static assets directly from the

client to an AWS S3 bucket using presigned URLs, which allows secure, direct
browser uploads without exposing server credentials. This method optimises
the upload process by reducing the server load and network traffic that would
otherwise be required if the server had to act as an intermediary.

The backend setup involves a specific route and action handler that generates
these presigned URLs. The action, defined in the generateSignedUrlAction,
prepares a URL that allows a client to put a file directly into an S3 bucket
under a specified path that includes the project ID and the file name. The
generateSignedUrlAction performs the following steps:

1. Validation: Ensures required parameters are provided and valid using a
Joi schema.

2. Presigned URL Generation: Uses the AWS SDK’s S3RequestPresigner
to generate a presigned URL that allows the client to upload a file with
public read access. The URL is valid for a short period (e.g., 60 seconds)
to enhance security.

3. Response: Sends the generated URL back to the client, which can be used
to upload the file directly to S3

On the frontend, the process to upload a file involves:

107

1. Requesting the Presigned URL: The frontend makes a POST request
to the backend to fetch the pre-signed URL, providing the file name as part
of the request.

2. File Upload: Using the received URL, the frontend performs a PUT re-
quest using fetch API to upload the file directly to the S3 bucket. The
frontend handles upload progress and completion status.

This setup is beneficial for use cases where clients need to upload images or
documents related to project sellers, such as banners, logos, or other relevant
files. The use of AWS S3 ensures scalable and secure storage, while presigned
URLs keep AWS credentials safe and provide a method to control access rights
on a per-use basis.

A.7.2 Sending e-mails
The functionality for sending emails is defined in communication-service.ts

within sendEmail method. Using AWS Simple Email Service to handle outgoing
emails. This method is responsible for constructing and sending an email through
AWS Simple Email Service. It is designed to be flexible, supporting both plain
text and HTML email bodies, as well as additional email parameters such as CC,
BCC, and reply-to addresses. The method accepts the following parameters to
construct the email:

• email (string): The recipient’s email address.

• subject (string): The subject line of the email.

• textBody (string): The plain text body of the email. This is the fallback
option for clients that do not support HTML.

• fromOrganization (string): The email address of the sender. By default,
this is set to the environment variable ORGANIZATION, which should be
configured in the system environment settings.

• htmlBody (string): An optional parameter for the HTML body of the
email. If provided, it allows the email to include HTML formatting.

• replyTo (string): An optional parameter specifies the reply-to email ad-
dress.

• bccAddresses (array of strings): An optional array of BCC (blind car-
bon copy) addresses for sending the email to additional recipients without
disclosing their identities to other recipients.

The method initialises a connection to AWS Simple Email Service using AWS
SDK. The AWS Simple Email Service client is configured with the necessary
credentials and region information, which are obtained from the environment
settings of the platform. Once the client is initialised, the sendEmail method
constructs the email parameters into the format required by AWS Simple Email
Service and sends the email using the SendEmailCommand from the AWS SDK.

108

A.7.3 Time consuming functions
In the platform architecture, certain operations, such as updating shipment

statuses with carriers like Česká Pošta, are time-consuming and require handling
that goes beyond the typical execution time limits of AWS Lambda functions.
To address this, the system uses a two-part method involving request and pickup
processes that efficiently manage these operations within Lambda’s constraints.
The process is divided into two distinct Lambda functions:

1. Request Function: This function is responsible for initiating requests
to the carrier’s API (e.g., Česká Pošta) for shipment status updates. It
handles communication with the external API and then saves the immediate
response, which often includes a queue or task ID, in a PostgreSQL database
queue. This method allows the function to complete within a short run-
time, adhering to Lambda’s execution limits.

2. Pickup function: After the request function stores the task ID in the
database, the pickup function takes over. Scheduled or triggered after a
predefined interval, this function retrieves the task ID from the queue and
makes a subsequent API call to fetch the actual status update. Once the
data are received, it processes and integrates the information into the plat-
form’s operational flow, updating shipment statuses accordingly.

A.7.3.1 Scalability with Step Functions

With the platform’s user base expanding and the volume of shipments grow-
ing, the existing method of handling status updates through separate Lambda
functions might not scale efficiently. Transitioning the current setup to AWS
Lambda Step Functions could offer a more robust solution by orchestrating
these operations more dynamically and resiliently.

A.8 User documentation
User documentation for the platform’s dashboard user interface is created us-

ing Doctosaurus, a dedicated documentation generator that handles the creation
of structured and navigable content. The documentation files are located within
the clients/docs directory of the monorepo, ensuring easy access and version
control along with the codebase. The documentation is available in two lan-
guages: Czech and English. Any changes to the user interface, modifications to
existing functionalities, or the introduction of new features that directly impact
how users interact with the platform must be promptly and accurately docu-
mented. This practice ensures that the documentation remains a reliable and
up-to-date resource for end-users, helping them to effectively utilise the dash-
board and understand its full range of capabilities.

109

B. Programming Documentation
- SAP Business One ServiceLayer
Proxy with Database Connector

The SAP Proxy serves as an intermediary between client applications and
SAP Business One ServiceLayer ensuring secure and efficient data exchanges. Its
primary function is to authenticate, authorise, and process requests. It is designed
to operate in both development and production environments, utilising a connec-
tor to both development and production SAP underlying MS SQL databases and
SAP ServiceLayer tokens.

B.1 Workflow
Requests are received at various endpoints, processed by middlewares for se-

curity checks, and then routed to the appropriate actions, utilising services man-
aging database operations or interactions with SAP ServiceLayer or MS SQL
database connection. Responses are generated based on the outcome of these
interactions and sent back to the client.

B.2 Overview
The SAP Proxy holds active connections to both environments of the SAP

ServiceLayer as well as the Microsoft SQL database, which underlies the SAP.
With this proxy, it is possible to call requests on both environments just by
specifying route segment .../<env>/.... The initialisation is performed by con-
vention in src/index.ts which creates an instance of the Koa.js application by
calling the createServer method from /src/server.ts. Here, the initialisation
occurs. Create a new Koa instance with the necessary settings, router, and ini-
tialising the Microsoft SQL connection. The SAP Proxy is built around several
key components in the following order:

1. Router: Is pretty much the entry-file where all endpoints are defined.

2. Middlewares: Are chain-able methods initiated at the beginning of end-
point request or at the end to modify response. They handle authorization,
authentization, and even environment retrieval.

3. Actions: Actions present the ”called” method of the endpoint after request
middleware.

4. Entities: Objects stored in the connected database.

5. Services: Manage database interactions, user data processing, and con-
nectivity with SAP ServiceLayer and Microsoft SQL database.

110

The folder structure of the program is meant to group components of similar
purpose together:

config
types.ts
utils.ts

scripts
build.js

src
actions/
constants

error-names.ts
entities

sap-tokens.ts
user.ts

errors
service-error.ts

lib
db

knex.ts
knexfile.ts
migration-source.ts
migrations.ts
seed-source.ts
seeds.ts

mssql
connection.ts

middlewares/
services/
types/
utils/
router.ts
server.ts

We will go through the most important directories and files.

B.2.0.1 MSSQLConnection

Since one of the requirements is to initialise both development and production
environments at the same time, it was necessary to eliminate the cold starts
caused by logging into the database and request time. For this purpose, the
class MSSQLConnection (located in the file src/lib/mssql/connection.ts) was
created with a static mapping of connections <environment, MSSQLConnection>
containing a pool of connections for each environment.

Connection is done through the mssql package creating
mssql.sql.ConnectionPool(config) with config passed into it. As it turned
out during development, it is not possible to simply initialise multiple connections
calling mssql.sql.connect(config). In this way, the package silently denies
creating other connections than the first one initialised. For different connection
configurations, it always returns the reference to the first connection pool ini-
tialised. Hence why it is necessary to initialise ConnectionPool directly, instead

111

of calling the connection wrapper.
If one connection fails for some reason during the request, a new one is ini-

tiated. This may slow down the data retrieval but will ensure that, as long as
the database is reachable, the proxy will try to connect. The pool retrieval
from anywhere within the program is done by calling getInstance(env) on
MSSQLConnection where env parameter is dev or prod.

B.2.1 Router
The file representing router src/router.ts defines endpoints and HTTP

methods with middleware chains together with the result action.

B.2.2 Middlewares
Middlewares are chained methods within the router for each endpoint. The

SAP Proxy defines middlewares for:

• Schema validation

• Authentication

• Authorization

• Environment resolver

• SAP ServiceLayer login

B.2.3 Actions
Actions present the actual method called by the endpoint. The usual workflow

of these methods defined in src/actions is to retrieve a request validated or
authorised by the middleware chain with data passed within the context (such as
body, environment or instance of the ServiceLayer), and call some service B.2.5.
The service usually returns some data which are then passed into the response.

B.2.4 Entities
Entities defined in SAP Proxy are TypeScript classes that extend Model from

Objection.js and are directly mapped to the database using modules Knex.js and
Objection.js.

B.2.4.1 SAPToken

Entity used for caching the login token for SAP ServiceLayer. It’s model
directly mapped to the database which hold data such as:

• token

• environment

• expiry

112

This ensures that whenever user calls the SAP ServiceLayer Proxy, we retrieve
the token from the database or refresh the token in SAP ServiceLayer based on
the environment and expiration.

B.2.4.2 User

User entity presents the database model mapping stored for authentication
and authorization of the SAP ServiceLayer Proxy. Containing fields such as:

• username

• password

• role

• email

B.2.5 Services
Services represent the place where data communication between the applica-

tion and the database or the SAP ServiceLayer is performed.

B.2.5.1 sap-service

This service represents connector to both the SAP ServiceLayer and SAPToken
entity in the database. It is located at src/services/sap-service.ts. The
service methods for the SAP ServiceLayer login for token retrieval, token caching
in the database for each environment, and proxy call from method proxy in
SAPService while returning Stream object.

B.2.5.2 user-service

User service performs database operations on User Entity. Containing meth-
ods such as signup, changePassword, authenticate and much more.

B.3 Error handling and logging
This section describes the practices used in the SAP Proxy to manage errors

and log activities.

B.3.1 Error handling
The application uses a central error handling mechanism to capture and pro-

cess errors and exceptions in a uniform way. Koa Middleware is used to wrap
all endpoint handlers. This middleware catches any uncaught exceptions thrown
during the request life cycle. Once caught, these exceptions are passed to a
centralised error handling function which determines the type of error and the
appropriate response to send back to the client.

113

B.3.1.1 HTTP status codes

Depending on the type of error, the handler sets the HTTP status code ap-
propriately. For example, validation errors might return a 400 Bad Request, au-
thentication errors a 401 unauthorised, and internal server errors a 500 Internal
Server Error.

B.3.1.2 Error responses

All error responses are formatted in a consistent structure, which includes an
error code, a human-readable message, and optional additional details that could
help debugging.

B.3.2 Logging
The logs include the timestamp, error type, endpoint involved, and a stack

trace for severe errors. The application uses logging framework Winston with
appropriate configuration to differentiate log levels (info, warn, error) and to
output formats.

114

C. Programming Documentation
- Data-sender

The Data-sender program is designed to facilitate data communication be-
tween the ‘SAP Proxy‘ and the main platform’s public API as shown on Figure
C.1 where Data-sender is highlighted in red. It handles the exchange of order
and tracking information, ensuring that data flow is synchronised to-date across
systems. This program acts as a middleware that not only transmits data to and
from SAP, but also formats the data according to the requirements of the main
platform.

Figure C.1: C4 Container diagram of Data-sender context

C.1 Data flow
The data flow through Data-sender can be generalized into two main points:

• From SAP to platform: New and existing order details are loaded from
SAP and sent to the platform. This includes orders that need platform pro-
cessing and updates for existing (non-shipped) orders with modifications.

• From platform to SAP: Completed orders, including those shipped and
delivered, are updated back in SAP with details such as tracking number,
actual status, delivery date, and carrier specific data such as invoice number,
weight, and name of the actual signed recipient.

C.2 Overview
The Data-sender is designed with two entry-points:

115

1. Scheduler: Manages the timing of data exchange tasks, ensuring that they
are executed at appropriate intervals.

2. CLI: Allows manual triggering and execution of specific scripts.

So, the program can run in scheduled mode as well as in nonscheduled mode just
by triggering the command. The folder structure of the program is very straight
forward and defined the module separation:

src
tasks

ceskaposta
new-orders.ts
update-new-orders.ts
update-old-orders.ts

packeta
new-orders.ts
update-new-orders.ts
update-old-orders.ts

ppl
new-orders.ts
update-new-orders.ts
update-old-orders.ts

types
task.ts

utils
parcelsyncApi.ts
sapApi.ts

logger.ts
setup.ts

As we can see from the structure, in src/tasks there is a lot of redundancy
in tasks. The reason for this is that the company implementation of SAP handles
each carrier slightly differently. Due to that, the tracking numbers for the carriers
are inserted into different columns and the data is fetched differently. Hence why,
the cleanest and well maintainable approach was to implement this completely
separately as isolated scripts.

C.3 API fetchers
In order to call SAP Proxy and the public API of the platform, two instances

of Axios were created in src/utils/. Each of them calls different endpoints and
handles authentication a little differently.

• parcelsyncApi.ts: Defines AxiosInstance to call the API of the platform
with support scripts to generate seller identification and defines several
groups of parcel statuses to help with recognition whether the parcel was
delivered, etc.

• sapApi.ts: Defines AxiosInstance to call SAP Proxy.

116

C.4 Scheduler and CLI
All tasks available to schedule and call via CLI are imported in src/setup.ts

which is called from the entry src/index.ts. The setup.ts defined a mapping
for each task between the method and the standard Cron schedule definition.

Each task is then bound to the Axios module object as a command to run
either from CLI or as a single command triggering the scheduled mode.

C.5 Carrier specific modules
For each carrier implemented and used, there is a separate module that han-

dles data retrieval and alteration.
Each carrier implements three main methods:

• new-orders: Queries data in SAP via SAP Proxy, transforms the data into
expected format and sends to the platform. This task implements the data
query with specifics for each carrier.

• update-new-orders: Retrieves packages from the platform up to 1 day
old and alters the tracking number, tracking link, status name and status
date in SAP via SAP Proxy.

• update-old-orders: Retrieves parcels from the platform that are up to
20 days (ceskaposta, packeta) day old (for ppl, it is 35 days, more on
that in Section C.5.3) and alters the tracking number, tracking link, status
name and status date in SAP through SAP Proxy.

C.5.1 ceskaposta
Implements the three standard methods as mentioned in C.5.

C.5.2 packeta
Implements the three standard methods as mentioned in C.5.

C.5.3 ppl
Implements the three standard methods as mentioned in C.5, however, with

some specifics to the PPL carrier.

C.5.3.1 Multiple parcels in one shipment

One specific feature of the PPL is that its API allows multi-parcel shipments.
This means that we can group the data retrieved from SAP using a grouping pa-
rameter (Invoice number) and send those shipments to the platform with multiple
parcels.

117

C.5.3.2 Retrieval of Invoice number and price of the service

Since PPL provides much more data than the two carriers mentioned above,
it is possible to retrieve the PPL invoice number and the granulated cost of
the shipping service. The platform returns these additional data obtained from
tracking in metadata field of the status. This can be parsed and inserted into
the appropriate SAP columns in the shipment object. Because these data are all
returned on the first day of the next calendar month, it is necessary to fetch more
much older shipments from the platform (hence the 35-day parameter).

118

D. Administration Manual -
Platform

D.1 Local development
Local development is essential to test new features and debugging. This sec-

tion outlines the requirements and steps to set up your local development environ-
ment for the platform, ensuring that all components function together seamlessly.

D.1.1 Prerequisites
Before setting up the local development environment, ensure that you have

the following prerequisites installed:

• Node.js ≥ 16

• Docker

• Yarn

D.1.2 Running backend and frontend services
1. Once you have yarn and Node.js installed - preferably by using some pack-

age manager like asdf.

2. Run yarn install to install all the dependencies needed.

3. Set up a public S3 bucket to upload files from seller configurations.

4. Create a .env file and place it in the root folder. The file should contain
the following:

1 JWT_SECRET_KEY =<key >
2 JWT_ACCESS_LIFESPAN_SECONDS =3600
3 JWT_REFRESH_LIFESPAN_SECONDS =604800
4 AWS_ACCESS_KEY_ID =< aws_access_key_id >
5 AWS_SECRET_ACCESS_KEY =< aws_secret_access_key >
6 AWS_SECRET_KEY_ID =< secret_key_id >
7 PARCELSYNC_AWS_ACCESS_KEY_ID =< aws_access_key_id >
8 PARCELSYNC_AWS_SECRET_KEY_ID =< aws_secret_access_key >
9 FROM_EMAIL =<from_email >

10 AWS_ACCOUNT =< aws_account >
11 AWS_S3_ASSETS_BUCKET =< s3_bucket_url >

Listing D.1: Platform local environment configuration

5. Run yarn start:dev and all three services (both frontends and API)
should start up with database.

The aws access key id variable appears twice in the environment settings due
to differing requirements for its usage. Firstly, it is required in its conventional

119

format as recognised by AWS services. Secondly, a distinct instance of this vari-
able is necessary because in the generate-signed-url.ts the call of AWS S3
cannot adhere to the AWS naming conventions and hence requires a separate
declaration of the aws access key id variable in the environment configuration.

D.1.3 Running database
Navigate to the services/api directory containing the docker-compose.yml

file which includes the service definition for the database. Run the following
command to start the service: yarn dependencies:start. This command will
pull the necessary images and create container for your database and start the
service on the background.

D.2 Administration Manual - AWS Infrastruc-
ture

This section provides a comprehensive guide to managing the platform’s AWS
infrastructure. Although the implementation and integration processes mainly
leverage IaC for efficiency and consistency, there are instances where manual
intervention is required. Accessing logs, managing database credentials, and per-
forming specific tweaks often require direct interaction with the AWS Manage-
ment Console. This section outlines essential administrative tasks and highlights
adjustments and configurations that were manually implemented during the de-
ployment phase, providing information about how to effectively navigate and
manage the AWS environment.

Please note that as long as there is an option, all infrastructure should be
deployed within eu-central region.

D.2.1 Lambda
The backend service fully utilises AWS Lambda for the deployment and related

services. This section will describe managing of the Lambda handlers of both
backend service and scheduled tasks.

D.2.1.1 Accessing logs

Logs of the Lambda handlers are accessible within the AWS console in Cloud-
Watch section. Here it is possible to list all the log groups within whole account
where are all the deployed services as well as Lambda handlers used as scheduled
tasks and those ran while deployment (migrations).

To access the logs at a specific time, click the desired log group (usually
labelled production environment see Figure D.1) and scroll through the log stream
(see Figure D.2) to find the time and event you want (see Figure D.3).

120

Figure D.1: AWS CloudWatch

Figure D.2: AWS CloudWatch Log Group detail

121

Figure D.3: AWS CloudWatch Log Group event detail

D.2.1.2 Scheduled tasks

Scheduled tasks can be found in the list of all Lambda functions. They are
conveniently named and are used to retrieve shipment status from supported car-
riers and send tracking emails to customers. Each of these tasks has EventBridge
attached with configuration of the event trigger (cron-like definition), see Figure
D.4 We currently use these Lambda functions as scheduled tasks:

• packetaStatusUpdate: For Packeta parcel status retrieval.

• pplStatusUpdate: For Packeta parcel status retrieval.

• ceskaPostaStatusRequest: To request parcel statuses within given time-
frame.

• ceskaPostaStatusPickup: To pickup requested parcel statuses and update
them in the database.

• sendStatusEmail: To send-out status e-mails based on seller settings (al-
lowed statuses).

122

Figure D.4: AWS Lambda EventBridge definition

D.2.1.3 Lambda handler functions

Lambda handler functions are the entry point methods which are executed
when the lambda function is started. We define the Lambda handler function
for all scheduled tasks listed in D.2.1.2 as well as for the backend service. Each
lambda function can be triggered manually; however, it is recommended to do
so only with the scheduled tasks and tasks that run migrations or seeding the
database. You can create the URL of the function in the details of every Lambda
function. This will trigger the function to run, but it is recommended to setup
the URL trigger only with AWS Identity and Access Management (IAM) authen-
tication.

Each Lambda function is limited by the predefined timeout of each function.
If the function is time-consuming, we might consider raising the timeout limit
from anywhere between 1 second and 15 minutes. However, bear in mind that
the pricing model of the Lambda function relies on billing the execution time.
All our methods are configured with defualt one minute timeouts, except for
packetaStatusUpdate. Due to the large number of Packet packages and the
latency of their API responses, we had to extend the timeout to 2 minutes and 30
seconds. This should be enough because, during the mornings, when the Packeta
API tends to be a bit slower, we can update about 600 parcels in approximately
110 seconds. As soon as the maximum possible time is no longer sufficient, it
will be necessary to reconsider the design of the method and decompose it, for
example, into Lambda step functions or to use the predefined queue logic used,
for example, by the Česká Pošta shipment update.

123

D.2.2 Database
Database on the AWS is deployed in two instances - staging and production.

Both databases are instances of Amazon RDS service setup with the PostgreSQL
engine. The chosen instance type is db.t4g.small https://aws.amazon.com/
rds/instance-types/ which was chosen since after testing the db.t4g.micro
could not handle a load of 100 sequential Shipment inserts with related objects
(to form a complete object) at the same time.

Figure D.5: AWS RDS instance detail

D.2.2.1 Accessing credentials

In order to log into the database from a desktop viewer, it is necessary to
obtain the credentials from the console. The database credentials of Amazon
RDS within the AWS console can be obtained in the following way:

1. First, log into the AWS console.

2. From the Services menu select RDS.

3. From the database list, select either the staging or production database.

4. In the Connectivity & security tab can be obtained Endpoint and Port
(see Figure D.5.

5. In the Configuration tab, we can see Master username.

6. To obtain the password, from the Services menu select System Manager.

7. In the Parameter Store section search for DB PASSWORD and choose the ex-
pected environment.

8. In detail, we can show the decrypted value of the password.

124

https://aws.amazon.com/rds/instance-types/
https://aws.amazon.com/rds/instance-types/

D.2.2.1.1 Sequential inserts, database pool

If there are many sequential inserts at the same time from the public API,
there is a small chance that all connection slots will be used.

This happened during the testing, and the following was performed:

1. Updated knex library used for database connection.

2. Modified database connection reference to singleton in the lambda API
handler.

3. Upgraded the database instance type to db.t4g.small.

4. Changed max connections parameter in the PostgreSQL database to 1500.

D.2.3 S3
S3 buckets are used to host static exports of frontend applications which are:

• User documentation

• Tracking page

• Dashboard

Each of these buckets is served through the AWS CloudFront distributions
that handle routing. This CloudFront distribution used for the user documenta-
tion had to be manually adjusted, more about that in Section D.2.3.1.

However, dedicated S3 buckets are used to store static assets, for example
user-uploaded images for the custom layout of the tracking page and notification
emails. More on that later in Section D.2.3.2.

D.2.3.1 Documentation deployment (locale redirection)

As mentioned previously, each bucket with direct routing from Route 53 uses
the AWS CloudFront distribution. Due to the nature of the user documentation
or, more accurately, the routing of non-primary languages in a given applica-
tion, it was necessary to adjust the CloudFront distribution to ensure that other
locales can be served without throwing error 404. Because, the Czech documen-
tation is served on a non-prefixed path in URI such as /docs/welcome, English
documentation is served on prefixed path like /en/docs/welcome.

This meant creating a simple function within the AWS CloudFront that (in
the background) attaches the index.html file to the end of each URI.

1. In the AWS CloudFront console select the Functions section.

2. Now, if not created, create a new function as shown in Listings 2 named
indexhtml-appender with JavaScript runtime.

1 function handler (event) {
2 var request = event. request ;
3 var uri = request .uri;
4
5 if (uri. endsWith (’/’)) {

125

6 request .uri += ’index.html ’;
7 } else if (! uri. includes (’.’)) {
8 request .uri += ’/index.html ’;
9 }

10
11 return request ;
12 }

Listing D.2: AWS CloudFront function to append index.html to each URI

3. Publish the function and associate it with distribution of documentation.

This function will ensure that the requests of other languages other than the
primary one are resolved correctly from the S3 bucket directories.

D.2.3.2 Setting up permissions for assets storage (enable ACLs)

S3 used for storing static assets (uploaded from frontend via backend) require
manual adjustments in the permission settings and object ownership after being
freshly deployed.

1. Navigate to the newly deployed AWS S3 bucket used to store public assets.

2. Go to the Permissions tab and click on Edit button in section Block public
access (bucket settings)

3. Here uncheck all the check-boxes listed (Block all public access and save
changes as in the Figure D.6.

4. Now within the Permissions tab, scroll down to Object Ownership and click
the Edit button.

5. Here select ACLs enabled and in the Bucket Ownership section select
Bucket owner preferred. Your setting should look like in Figure D.7
and click Save changes.

126

Figure D.6: AWS S3 bucket Block public access settings

127

Figure D.7: AWS S3 bucket object ownership settings

D.2.4 Email sender
As a email sender service AWS Simple Email Service (SES) is used. The

account, where the platform is hosted, was moved from the AWS SES sandbox.
This process took approximately 2 days, and email examples and communication
style had to be presented to the AWS support. Now the account has a sending
quota of 50 000 messages per day with a maximum send rate of 14 messages per
second.

D.2.5 Deployment to the new AWS account
Thanks to the complex IaC setup within the platform, deployment to the

Amazon Web Services is straight forward. As a prerequisite, you need to have
platform repository localy, running Node.js ≥ 16 and have packages installed
using yarn install command. Create a new clean AWS account using instruc-
tions how to create AWS account with MFA authentication. Then follow the
instructions how to create IAM user and use this configuration:

• Set password for the IAM user.

• Generate Access Key and Secret to allow programatic access.

• In the ”Set permissions” section, click on ”Attach existing policies directly”
and select AdministratorAccess.

128

https://repost.aws/knowledge-center/create-and-activate-aws-account
https://repost.aws/knowledge-center/create-and-activate-aws-account
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html

• Skip the ”Add tags”

Next time you log in to the AWS console, it is recommended to use created IAM.
Now create entry in the /.aws/config file and append following configura-

tion to the file:
1 [account -name]
2 region =eu -central -1
3 output =json

Listing D.3: /.aws/config

Now open /.aws/credentials and using values generated while creating
IAM user append the following:

1 [account -name]
2 aws_access_key_id =<ACCES_KEY >
3 aws_secret_access_key =<SECRET_KEY >

Listing D.4: /.aws/credentials

In order to test the credentials in the CLI, run following command:
1 AWS_PROFILE =account -name aws sts get -caller - identity

Listing D.5: Command to test AWS identity

This should output JSON with information about the IAM user.
Now, with everything setup locally, it is time to set up the AWS infrastructure.

We will need to setup IAM roles to allow GitHub actions to deploy resources and
setup a hosted zone in the Route53 and verify Amazon SES e-mail. Run the
following command:

1 AWS_PROFILE =account -name yarn setup :aws

Listing D.6: Command to setup AWS infrastructure

Once the task if finished, it will output four name servers. Add this list of name
servers to the domain NS records and wait until the name servers are propagated.

1 AWS_PROFILE =account -name yarn deploy :aws

Listing D.7: Command to deploy to the AWS

With the services deployed, we need to deploy our applications in the S3
subsets. For this, it is best to trigger the GitHub deployment action. Whether
in the GitHub repository or by pushing some code to the main branch.

Now continue with Locale redirection on the documentation described in Sec-
tion D.2.3.1, enabling ACLs for assets storage as in Section D.2.3.2, and request-
ing for the SES production access described in Section D.2.4.

129

E. Administration Manual - SAP
Business One ServiceLayer Proxy
with Database Connector

This manual outlines the deployment and administration procedures for the
SAP Business One ServiceLayer Proxy integrated with a database connector.
Details how to establish and manage the service within a Docker environment,
using Nginx as a reverse proxy and Certbot for SSL certificate management. The
following sections will guide you through the necessary steps to configure and
maintain the system effectively, ensuring secure and optimal operation.

E.1 Prerequisites
Before proceeding with the installation of SAP Business One ServiceLayer

Proxy, it is important to ensure that the deployment node meets the necessary re-
quirements. Both the SAP ServiceLayer service and the Microsoft SQL database
should be reachable from the server network if not exposed publicly. However, it
is worth noting that, in order to minimise communication latency, it is good to
keep the servers geographically and network-wise as close as possible.

Please, note that the deployment node of the Proxy should be reachable from
public network. Ideally, there should be a domain name routed to the server.

The minimal system requirements of the service come primarily from the
requirements of the Docker environment. For more information on Docker in-
stallation and requirements, please refer to the official Docker documentation
https://docs.docker.com/. For the containers Ngninx and Certbot, we will
ideally need at least 5GB of free space.

E.2 Deployment
The deployment node is a VPS hosted locally within the company. The server

is running Ubuntu Server 22.04.3 with Docker version 24.0.7.

E.2.1 PostgreSQL database
Utilised PostgreSQL database container is the official image of PostgreSQL

version 16.0 (postgres:16.0).

E.2.2 Proxy Service
The service container is automatically built as a private image on Docker Hub

michalpulpan/milpex-sap-api:latest.

130

https://docs.docker.com/

E.2.2.1 Environment variables

To ensure both SAP ServiceLayer and MS SQL connections, it is necessary to
run the service with a set of environment variables located in /srv/sap-api/_env

1 DB_HOST = postgres_host
2 DB_PORT = postgres_port
3 DB_USERNAME = postgres_username
4 DB_PASSWORD = postgres_password
5
6 APP_DOMAIN = production_platform_url
7
8 SAP_SERVICE_LAYER_URL =https :// SAP_URL :PORT/b1s/v1
9 SAP_SERVICE_LAYER_PROD_USERNAME = sap_prod_username

10 SAP_SERVICE_LAYER_PROD_PASSWORD = sap_prod_password
11 SAP_SERVICE_LAYER_PROD_DB = sap_prod_db
12 SAP_SERVICE_LAYER_DEV_USERNAME = sap_dev_username
13 SAP_SERVICE_LAYER_DEV_PASSWORD = sap_dev_password
14 SAP_SERVICE_LAYER_DEV_DB =SBO - sap_dev_db
15
16 MSSQL_DEV_DB = mssql_dev_db
17 MSSQL_DEV_DB_USERNAME = mssql_dev_username
18 MSSQL_DEV_DB_PASSWORD = mssql_dev_password
19 MSSQL_DEV_DB_HOST = mssql_dev_host
20 MSSQL_DEV_DB_PORT = mssql_dev_post
21
22 MSSQL_PROD_DB = mssql_prod_db
23 MSSQL_PROD_DB_USERNAME = mssql_prod_username
24 MSSQL_PROD_DB_PASSWORD = mssql_prod_password
25 MSSQL_PROD_DB_HOST = mssql_prod_host
26 MSSQL_PROD_DB_PORT = mssql_prod_port

Listing E.1: SAP Business One ServiceLayer Proxy with database connector
environment variables setup

E.3 Docker Compose
In order to orchestrate and simplify the deployment process of both services,

it is recommended to use the Docker Compose tool. The docker-compose.yml
configuration on the deployment node F.2 is specified in /srv/sap-api. The
example docker-compose.yml is:

1 version : ’3.9 ’
2
3 services :
4 api:
5 container_name : sapb1 -middleware -api
6 image: michalpulpan /milpex -sap -api: latest
7 ports:
8 - ’3333:3000 ’
9 depends_on :

10 - database
11 env_file :
12 - .env
13 profiles :
14 - prod

131

15 restart : always
16 logging :
17 driver : json -file
18 options :
19 max -size: "5m"
20 max -file: "10"
21 database :
22 container_name : sapb1 -middleware -postgres - database
23 command : postgres -c ’max_connections =300 ’
24 environment :
25 POSTGRES_USER : postgres
26 POSTGRES_PASSWORD : postgres
27 POSTGRES_DB : postgres
28 restart : always
29 image: postgres :16.0
30 volumes :
31 - database_volume :/ var/lib/ postgresql /data:Z
32 ports:
33 - ’5432:5432 ’
34 profiles :
35 - prod
36 volumes :
37 database_volume :
38 name: database_volume
39 external : true

Listing E.2: SAP Business One ServiceLayer Proxy with database connector
docker-compose.yml

E.3.1 Watchtower
Watchtower is used to pull and rerun newly build images on the Docker Hub.

The Watchtower is ran as a docker container from a Compose file specified in
/srv/monitoring/docker-compose.yml.

1 version : ’3.9 ’
2 services :
3 watchtower :
4 image: containrrr / watchtower
5 restart : always
6 env_file :
7 - watchtower /. env
8 volumes :
9 - /home/user /. docker / config .json :/ config .json

10 - /var/run/ docker .sock :/ var/run/ docker .sock

Listing E.3: Watchtower docker-compose.yml

Watchtower is defined to automatically send Slack notifications using notifica-
tion library named shoutrrr https://containrrr.dev/projects/shoutrrr/
module when new version is pulled. The Slack notification is defined in the .env
file located in /srv/monitoring/watchtower/:

1 WATCHTOWER_LABEL_ENABLE =1
2 WATCHTOWER_NOTIFICATIONS =" shoutrrr "
3 WATCHTOWER_NOTIFICATION_URL ="slack :// token: token@channel /"

Listing E.4: Watchtower environment variables

132

https://containrrr.dev/projects/shoutrrr/

In order to define other communication channel, please refer to the shoutrrr
documentation https://containrrr.dev/projects/shoutrrr/

E.3.2 Working with the containers
To start/stop or update containers, it is recommended to use Docker Compose.

E.3.2.1 Start the containers

In order to start the containers in background, go to the folder /srv/sap-api
and run docker compose --profile prod up -d

E.3.2.2 Stop the containers

In order to stop the containers in background, go to the folder /srv/sap-api
and run docker compose stop

E.3.2.3 Update the service

In order to update the API service, go to the folder /srv/sap-api and run
docker compose pull api && docker compose up --profile prod -d. The
specified command will pull the latest container from the Docker Hub and start
the services again.

However, note that containers should update automatically if there is a new
image.

E.4 Reverse-proxy
A reverse-proxy used for deployment is Nginx version 1.18.0. Since there is

a domain routed directly onto the server, we can use Nginx for internal routing
as a reverse-proxy. The standard Nginx definition is found by convention in
sites-available within the Nginx specific folder /etc/nginx. The route is
then symlinked to the /etc/nginx/sites-enabled folder using the following
command:

1 sudo ln -s /etc/nginx/sites - available / domain /etc/nginx/sites -
enabled /

Listing E.5: Command to create symbolic link by Nginx convention

E.4.1 SSL certificate
For automatically SSL certificate renewal from Let’s Encrypt, Certbot was

installed and configured. To obtain a certificate for the newly created route, run:
1 sudo certbot --nginx -d example .com -d www. example .com

Listing E.6: Certbot command to obtain SSL certificate

133

https://containrrr.dev/projects/shoutrrr/

F. Administration Manual -
Data-sender

In this manual will be described the deployment process of the Data-sender
between the platform and SAP ServiceLayer Proxy. The deployment process
contains running the service in a Docker environment in scheduled mode.

F.1 Prerequisites
Before proceeding with the installation of Data-sender, it is important to

ensure that the deployment node meets the necessary requirements. Both the
public API of the platform and the SAP ServiceLayer Proxy should be accessible
from the server network if not exposed publicly. However, it is worth noting
that, in order to minimise communication latency, it is good to keep the servers
geographically and network-wise as close as possible.

The minimal system requirements of the service come primarily from the
requirements of the Docker environment. For more information on Docker in-
stallation and requirements, please refer to the official Docker documentation
https://docs.docker.com/.

F.2 Deployment
The deployment node is a VPS hosted locally within the company. The server

is running Ubuntu Server 22.04.3 with Docker version 24.0.7.

F.2.1 Data-sender service
The service container is automatically built as a private image in the Docker

Hub michalpulpan/milpex-sap-data-sender:latest.

F.2.1.1 Environment variables

To ensure the connection to the SAP ServiceLayer Proxy and the platform,
it is necessary to run the service with a set of environment variables located in
srvsap-api/.data sender.env in Listings F.2.1.1.

1 ENVIRONMENT = production
2
3 SAP_PROXY_BASE_URL =https :// api. company .com
4 SAP_PROXY_USERNAME = username
5 SAP_PROXY_PASSWORD = password
6
7
8 PARCELSYNC_BASE_URL =https :// api. parcelsync .io
9 PARCELSYNC_API_KEY =key

Listing F.1: Data sender environment configuration

134

https://docs.docker.com/

F.3 Docker Compose
In order to orchestrate and simplify the deployment process of both services,

it is recommended to use the Docker Compose tool. The docker-compose.yml
configuration on the deployment node F.2 is specified in /srv/sap-api/ directory.

The example docker-compose.yml is in Listings F.3.
1 version : ’3.9 ’
2
3 services :
4 data - sender :
5 container_name : sapb1 -data - sender
6 image: michalpulpan /milpex -sap -data - sender : latest
7 env_file :
8 - . data_sender .env
9 depends_on :

10 - api
11 restart : always
12 profiles :
13 - prod
14 logging :
15 driver : json -file
16 options :
17 max -size: "5m"
18 max -file: "10"

Listing F.2: Data-sender docker-compose.yml

F.3.1 Watchtower
Watchtower is used to pull and rerun newly build images on the Docker Hub.

The Watchtower is ran as a docker container from a Compose file specified in
/srv/monitoring/docker-compose.yml in Listings F.3.1.

1 version : ’3.9 ’
2 services :
3 watchtower :
4 image: containrrr / watchtower
5 restart : always
6 env_file :
7 - watchtower /. env
8 volumes :
9 - /home/user /. docker / config .json :/ config .json

10 - /var/run/ docker .sock :/ var/run/ docker .sock

Listing F.3: Watchtower docker-compose.yml

Watchtower is defined to automatically send Slack notifications using notifica-
tion library named shoutrrr https://containrrr.dev/projects/shoutrrr/
module when new version is pulled. The Slack notification is defined in the .env
file located in /srv/monitoring/watchtower/:

1 WATCHTOWER_LABEL_ENABLE =1
2 WATCHTOWER_NOTIFICATIONS =" shoutrrr "
3 WATCHTOWER_NOTIFICATION_URL ="slack :// token: token@channel /"

Listing F.4: Watchtower environment variables

135

https://containrrr.dev/projects/shoutrrr/

In order to define other communication channel, please refer to the shoutrrr
documentation https://containrrr.dev/projects/shoutrrr/

F.3.2 Working with the containers
To start/stop or update containers, it is recommended to use Docker Compose.

F.3.2.1 Start the containers

In order to start the containers in background, go to the folder /srv/sap-api
and run docker compose --profile prod up -d

F.3.2.2 Stop the containers

In order to stop the containers in background, go to the folder /srv/sap-api
and run docker compose stop

F.3.2.3 Update the service

In order to update the API service, go to the folder /srv/sap-api and run
docker compose pull api && docker compose up --profile prod -d. The
specified command will pull the latest container from the Docker Hub and start
the services again. Note that containers should update automatically within few
minutes if there is a new image.

136

https://containrrr.dev/projects/shoutrrr/

G. User documentation -
Platform (Dashboard)

This guide designed to help users navigate and use the dashboard and API
effectively is located at https://help.parcelsync.io. Covering the functions
and features integrated into the dashboard, providing step-by-step instructions
and helpful tips to ensure that users can fully leverage the tools available to
them.

137

https://help.parcelsync.io

	Introduction
	Related work
	Related projects
	Balíkobot.cz
	LabelPrinter.cz

	Addressing the shortcomings of existing solutions
	Unified data model
	Centralized dashboard
	Parcel status unification
	Branded tracking and notifications
	Simplified integration
	Role-based access control
	Versatile carrier communication

	Analysis
	Order dispatching process
	Real-world applicability
	Requirements
	Functional Requirements
	Nonfunctional Requirements
	Usability
	Extensibility
	Scalability
	Maintainability
	Multi-tenancy
	Integration
	Customization

	Architecture
	Architectural approaches
	Event-Driven architecture
	Client-Server architecture
	Multi-Layer (N-Tier) architecture
	Comparison and selection

	System Architecture
	Frontend Components
	Database
	Overall System Interaction

	Conclusion

	Technical design
	Programming Language and Frameworks
	Programming Language
	JavaScript and TypeScript
	Alternatives
	Compilation and execution

	Frontend
	react

	Class components
	Functional components
	Alternatives
	Backend
	koa
	Middleware architecture
	ORM a data models
	Runtime

	Database Management System

	Multi-tenancy and its possible approaches
	Approaches
	Multiple databases
	Single database, multiple schemas
	Single database, single schema

	Implementation in the platform

	Implementation
	Project Structure
	Backend Implementation
	API Design and multi-tenancy
	Carrier modules
	Sending e-mails
	Generating waybills

	Web Client Implementation
	Client-Side Routing and State Management

	Deployment
	Current Deployment Strategy
	aws-s3 for Static Frontend Hosting
	aws-lambda for Backend Services
	aws-cloudformation for Infrastructure Management

	Alternative Deployment Methods
	Containerization
	Other Cloud Providers and Services
	gcp
	microsoft-azure

	Conclusion

	Continuous Integration and Continuous Deployment (CI/CD)

	Integrating sapb1
	Possible solutions
	di-api
	VCZ.WebService
	sapb1-servicelayer

	sapb1-servicelayer Proxy with direct Database connector
	Analysis
	Functional requirements
	Nonfunctional requirements

	Architecture
	Reverse proxy as the entry point
	Proxy app and database
	sapb1-servicelayer
	SAP Database

	Implementation
	Technology Stack
	Proxy API structure
	Microsoft SQL connector
	SAP Service Layer Proxy
	Database model overview

	Deployment
	Overview

	Dockerfile strategy
	Continuous Deployment and Continuous Integration
	Accessing the application
	Data Sender
	Design and Configuration
	Functionality
	Deployment strategy

	Evaluation
	Evaluation environments
	Local development environment
	Staging environment
	Production environment

	Production evaluation areas
	Integration with SAP Business One
	Connecting with shipping carriers
	Training and operational challenges
	Operational performance and business impact
	Achievement of project goals

	Conclusion
	Bibliography
	List of Figures
	List of Abbreviations
	Programming Documentation - Platform
	Project structure
	Clients
	Services
	Infrastructure

	Package management

	Coding convention
	Style guide
	File naming

	Technical design
	Backend
	Database connection
	Database schema
	Projects
	Users
	Shipments

	Endpoints
	Authentication and authorisation
	Authentication flow
	Session management
	Authorization

	Request body validation
	Public API
	OpenAPI schema generation
	Data filtering
	Data pagination
	Carrier communication
	Packeta
	Česká Pošta
	PPL

	Generating PDF waybills

	Frontends
	Overview
	State management
	Routing
	Data fetching

	Integrating new features
	Adding carriers
	Database migrations
	Adding new environment variables
	Passing metadata to frontend
	React Frontend localisation

	Infrastructure
	Static Asset upload from client
	Sending e-mails
	Time consuming functions
	Scalability with Step Functions

	User documentation

	Programming Documentation - SAP Business One ServiceLayer Proxy with Database Connector
	Workflow
	Overview
	MSSQLConnection
	Router
	Middlewares
	Actions
	Entities
	SAPToken
	User

	Services
	sap-service
	user-service

	Error handling and logging
	Error handling
	HTTP status codes
	Error responses

	Logging

	Programming Documentation - Data-sender
	Data flow
	Overview
	API fetchers
	Scheduler and CLI
	Carrier specific modules
	ceskaposta
	packeta
	ppl
	Multiple parcels in one shipment
	Retrieval of Invoice number and price of the service

	Administration Manual - Platform
	Local development
	Prerequisites
	Running backend and frontend services
	Running database

	Administration Manual - AWS Infrastructure
	Lambda
	Accessing logs
	Scheduled tasks
	Lambda handler functions

	Database
	Accessing credentials

	Sequential inserts, database pool
	S3
	Documentation deployment (locale redirection)
	Setting up permissions for assets storage (enable ACLs)

	Email sender
	Deployment to the new AWS account

	Administration Manual - SAP Business One ServiceLayer Proxy with Database Connector
	Prerequisites
	Deployment
	PostgreSQL database
	Proxy Service
	Environment variables

	Docker Compose
	Watchtower
	Working with the containers
	Start the containers
	Stop the containers
	Update the service

	Reverse-proxy
	SSL certificate

	Administration Manual - Data-sender
	Prerequisites
	Deployment
	Data-sender service
	Environment variables

	Docker Compose
	Watchtower
	Working with the containers
	Start the containers
	Stop the containers
	Update the service

	User documentation - Platform (Dashboard)

