
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of master’s thesis

Quantum computing methods for malware classification

Bc. Eliška Krátká

Aurél Gábor Gábris, Ph.D.

Informatics

Computer Security

Department of Information Security

until the end of summer semester 2024/2025

Instructions

The presently available near-term intermediate-scale quantum computers (NISQ) have

been proven to be more powerful than any existing ordinary supercomputer. While these

experiments demonstrated what is termed quantum supremacy, the types of algorithms

that were used are not (known to be) related to any practical problem. Fortunately, there

exist several algorithms that are suitable to be run on NISQ hardware, and the general

expectation is that the capacity of available quantum computers may soon reach the

level at which certain problems could be solved faster on them than on classical

supercomputers. The aim of the project is to apply quantum computing methods to

classify malware using publicly available datasets.

Instructions

1) Study and understand the specified classical and quantum algorithms applied to the

malware classification problem

2) Implement a quantum machine learning based malware classification algorithm

based on existing literature

3) Train the algorithm on publicly available datasets and evaluate it's performance on

IBM quantum computers available by CTU subscription

4) Explore avenues optimising the algorithm, e.g. by considering alternative data

preprocessing methods, and design of custom quantum feature maps

Literature:

[1] K. Bharti et al, Noisy intermediate-scale quantum (NISQ) algorithms, Rev. Mod. Phys.

Electronically approved by prof. Ing. Róbert Lórencz, CSc. on 26 January 2024 in Prague.

94, 015004 (2022) [https://doi.org/10.48550/arXiv.2101.08448]

[2] V. Havlíček et al, Supervised learning with quantum-enhanced feature spaces, Nature

567, 209–212 (2019) [https://www.nature.com/articles/s41586-019-0980-2]

[3] Grégoire Barrué, Tony Quertier, Quantum Machine Learning for Malware Classification,

arXiv:2305.09674 [https://doi.org/10.48550/arXiv.2305.09674]

Electronically approved by prof. Ing. Róbert Lórencz, CSc. on 26 January 2024 in Prague.

Master’s thesis

QUANTUM COMPUTING
METHODS FOR
MALWARE
CLASSIFICATION

Bc. Elǐska Krátká

Faculty of Information Technology
Department of Information Security
Supervisor: Aurél Gábor Gábris, Ph.D.
May 9, 2024

Czech Technical University in Prague
Faculty of Information Technology
© 2024 Bc. Elǐska Krátká. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic. It has been
submitted at Czech Technical University in Prague, Faculty of Information Technology. The
thesis is protected by the Copyright Act and its usage without author’s permission is prohibited
(with exceptions defined by the Copyright Act).

Citation of this thesis: Krátká Elǐska. Quantum Computing Methods for Malware Classifica-
tion. Master’s thesis. Czech Technical University in Prague, Faculty of Information Technology,
2024.

Contents

Acknowledgments v

Declaration vi

Abstract vii

List of Abbreviations ix

Introduction 1

1 Malware Classification Based on Machine Learning 4
1.1 Data Extraction and Preprocessing . 4
1.2 Support Vector Machine . 7

2 Quantum Computing and Quantum Machine Learning 11
2.1 Terminology . 12
2.2 Quantum Machine Learning . 14
2.3 IBM Quantum Platform . 16

3 QSVM for Malware Classification 20
3.1 PEML Module . 21
3.2 SVM Module . 22
3.3 Implementation of QSVM . 23

4 Experiments 29
4.1 Experimental Setup . 30
4.2 Evaluation Metrics . 33
4.3 Experiment Parameters . 34
4.4 Findings . 34
4.5 Discussion . 42

5 Conclusion 44

A Benchmark Results on Simulator 46

Bibliography 48

Contents of Attached Media 54

ii

List of Figures

1.1 Visualising Malware as an Image . 6
1.2 Visualisation of SVM Decision Boundary and Support Vectors 8

2.1 Relationship Between Probability Amplitude and Classical Probability . 13

3.1 Simplified Project Layout With Implemented Modules and Classes . . . 21
3.2 Error Message on IBM Quantum Platform Due to Lack of Circuit Tran-

spilation . 25

List of Tables

2.1 Summary of the Standard Notation in Quantum Mechanics 14

4.1 Accuracy Comparison Between QSVMs With Different Feature Maps
With 4 Qubits and Depth 2 . 36

4.2 Experiment Results: Accuracy Comparison Between QSVMs With Dif-
ferent Feature Maps With 4 Qubits and Depth 2 36

4.3 Accuracy Comparison Between SVMs With Different Classical Kernels
and Preprocessing Corresponding to the 4 Qubits Used in QSVM 36

4.4 Experiment Results: Accuracy Comparison Between SVMs With Differ-
ent Classical Kernels and Preprocessing Corresponding to the 4 Qubits
Used in QSVM . 37

4.5 Accuracy Comparison Between QSVMs With Different Feature Maps
With Depth 2. 37

4.6 F1-score Comparison Between QSVMs With Different Feature Maps
With Depth 2. 38

4.7 Accuracy Comparison Between SVMs With Different Classical Kernels
and Preprocessing Corresponding to the Number Qubits Used in QSVM. 39

4.8 F1-score Comparison Between SVMs With Different Classical Kernels
and Preprocessing Corresponding to the Number Qubits Used in QSVM. 40

4.9 Experiment Results: QSVM Classification on IBM Quantum Systems
With Various Datasets and Backends . 42

iii

A.2 Accuracy Comparison Between QSVMs With Different Feature Maps
With Depth 2 [12]. 46

A.4 F1-score Comparison Between QSVMs With Different Feature Maps
With Depth 2 [12]. 47

List of Code Listings

3.1 Error Message Due to Job Size Exceeding Maximum Limit on IBM Quan-
tum Platform. 25

4.1 Versions of Used Python Packages . 32
4.2 Example Usage of the Classification Scripts 33

iv

I want to express my gratitude to my thesis supervisor, Aurél
Gábor Gábris, Ph.D., for his guidance and feedback. I want
to thank my partner, family and friends for their support. I
especially want to thank my dear friends Linda, Tonda and
Patrik because I would probably never have finished this thesis
without them.

v

Declaration

I hereby declare that the presented thesis is my own work and that I have cited all sources
of information in accordance with the Guideline for adhering to ethical principles when
elaborating an academic final thesis. I acknowledge that my thesis is subject to the
rights and obligations stipulated by the Act No. 121/2000 Coll., the Copyright Act, as
amended, in particular that the Czech Technical University in Prague has the right to
conclude a license agreement on the utilization of this thesis as a school work under the
provisions of Article 60 (1) of the Act.

In Prague on May 9, 2024

vi

Abstract

This thesis explores the potential of quantum computing in enhancing malware clas-
sification through the application of Quantum Machine Learning (QML). The main
objective is to investigate the performance of the Quantum Support Vector Machines
(QSVM) algorithm compared to classical approaches for malware classification. A cus-
tom Python module was developed to select, extract, and preprocess malware samples
from the publicly available PE Malware Machine Learning dataset. The QSVM algo-
rithm, incorporating quantum kernels through different feature maps, was implemented
and evaluated on a local simulator within the Qiskit SDK and on real quantum com-
puters from IBM. Experimental results from simulators and quantum hardware provide
insights into the behaviour and performance of quantum computers, especially in han-
dling large-scale computations for malware classification tasks. This thesis lays the
groundwork for future research in quantum-enhanced malware classification, exploring
the feasibility and potential benefits of QML in advancing cybersecurity. The thesis
summarizes the practical experience with using quantum hardware via the Qiskit in-
terfaces. We describe in detail the encountered critical issues, as well as the fixes that
had to be developed and applied to the base code of the the Qiskit Machine Learning
library. These issues include missing transpilation of the circuits submitted to IBM
Quantum systems and exceeding the maximum job size limit due to the submission of
all the circuits in one job.

Keywords Quantum Support Vector Machines, malware classification, Quantum Ma-
chine Learning, IBM Quantum, Qiskit

Abstrakt

Práce zkoumá potenciál kvantových poč́ıtač̊u v oblasti klasifikace malware prostřednictv́ım
aplikace algoritmů kvantového strojového učeńı (QML). Hlavńım ćılem je prozkoumat
výkon algoritmu Quantum Support Vector Machine (QSVM) ve srovnáńı s př́ıstupy,
nevyuž́ıvaj́ı kvantové výpočty. Byl vyvinut Python modul pro výběr, extrakci a prepro-
cessing vzork̊u malware z veřejně dostupného datasetu PE Malware Machine Learning.
Byl implementován algoritmus QSVM, který zahrnuje kvantová jádra s r̊uznými typy
mapováńı př́ıznak̊u. Následně byl otestován na lokálńım simulátoru z Qiskit SDK a
na kvantových poč́ıtač́ıch od IBM. Výsledky experiment̊u poskytuj́ı vhled do chováńı
a skutečného výkonu kvantových poč́ıtač̊u, zejména pokud jde o komplexńı výpočty
typické pro oblast klasifikace malware. Práce pokládá základy pro budoućı výzkum v
oblasti klasifikace malware, demonstruje proveditelnost a př́ınosnost v rozvoji kyber-
netické bezpečnosti. Stěžejńı př́ınos práce zahrnuje nalezeńı a nápravu kritických chyb
v p̊uvodńı implementaci tř́ıd pro výpočet kvantového jádra v knihovně Qiskit Machine

vii

viii

Learning. Chyby zahrnovaly neprováděńı transpilace kvantových obvod̊u odeslaných ke
zpracováńı kvantovému poč́ıtači nebo překročeńı limitu maximálńı velikosti výpočetńı
úlohy v d̊usledku zpracováńı všech obvod̊u v rámci jediné úlohy.

Kĺıčová slova Quantum Support Vector Machines, klasifikace malware, kvantové
strojové učeńı, IBM Quantum, Qiskit

List of Abbreviations

NISQ Noisy Intermediate-Scale Quantum
QML Quantum Machine Learning
SVM Support Vector Machine

QSVM Quantum Support Vector Machine
SDK Software Development Kit
PCA Principal Component Analysis

ix

Introduction

Malware refers to any software intentionally designed to cause harm to a user [1], for
example, by stealing sensitive information or gaining unauthorised access to the system.
Malware often infects computer systems without the user’s knowledge or consent. It
can be distributed through various communication channels, including infected websites,
email attachments and removable media such as USB drives [2].

Malware detection is the process of identifying malicious software on a host sys-
tem or network or distinguishing whether a specific program is malicious or benign. A
benign program in the context of malware refers to a program which is harmless and
”well-intentioned”, the opposite of malicious software [3]. Malware detection is a crucial
component of cybersecurity, helping to identify and mitigate the risks posed by malicious
software to systems, networks, and data [4]. It is generally considered a binary classifi-
cation problem of distinguishing between data of two classes, benign and malicious [5].
In the context of this thesis, we mainly refer to the malware detection as the malware
classification. However, in a broader context, malware classification usually refers to
a process of categorising malware samples into families based on their similarities and
attack techniques [6].

Malware analysis is the process of understanding the behaviour and purpose of the
malware. Static malware analysis refers to examining the malware sample without
executing it. It studies the malware binary file structure and looks for patterns [1]. On
the other hand, dynamic analysis involves executing the code. It observes the behaviour
of the malicious program and how it interacts with the system [1].

Manual malware analysis involves human analysts examining suspicious files or ob-
serving anomalous behaviour within a system to determine if it poses a security risk.
Analysts may also reverse-engineer malware to understand its inner workings, which can
provide valuable insights for developing new detection techniques [7]. Manual analysis
can help to identify previously unknown or sophisticated malware variants that may
evade automated detection systems. However, it is a time-consuming process which
requires highly skilled analysts who can interpret complex data and patterns effectively.
Moreover, the amount of new malware samples generated daily makes relying solely on
manual analysis for comprehensive threat detection impractical. While manual analysis
is a crucial component of cybersecurity operations, especially for investigating advanced
threats, it is often complemented by automated detection methods.

1

Introduction 2

Most antivirus programs use automated detection techniques based on file signatures
[1]. A file signature is a unique identifier generated from the content of a file. It can
be computed using cryptographic algorithms such as MD5, SHA-1, or SHA-256, which
produce a short fixed-size string of bytes (also known as hash). Signature analysis is
a method that compares samples with a database of known malware signatures (for
example, VirusTotal). If a match is found, it labels the file as potentially harmful. It
is a relatively easy and effective method for detecting known malware. However, it has
its limitations. For example, it cannot detect malware which is obfuscated (obscured
or encrypted malware) or zero-day (malware that exploits vulnerabilities in software or
hardware that are not yet known) [1].

The landscape of malware is continuously evolving, and traditional signature-based
methods struggle to keep up with the volume and diversity of new threats. That is why
modern antivirus programs also leverage machine learning to identify new and unknown
threats [8, 9]. Malware detection based on machine learning algorithms offers a solution
to the challenges in malware detection because it can detect previously unseen malware
based on learned experience [1].

In recent years, advancements in quantum computing, particularly with the develop-
ment of Noisy Intermediate-Scale Quantum (NISQ) devices, have opened up new possi-
bilities for addressing complex computational problems that classical computers struggle
to solve [10]. Quantum computers leverage the principles of quantum mechanics, such as
superposition and entanglement, which allow them to perform parallel calculations and
exponentially increase their processing power for specific problems. The combination
of quantum computing and machine learning, Quantum Machine Learning (QML), is a
promising research area on the presently available NISQ devices [10].

This thesis explores the potential of quantum computing, specifically QML, in mal-
ware detection. Over the last decade, there have been significant advances in the QML
field, including classical machine learning algorithms that can be enhanced using quan-
tum techniques and entirely new quantum machine learning algorithms designed to run
on quantum computers [11]. Inspired by the work of [12], we focus on the Quantum
Support Vector Machines (QSVM) algorithm.

QSVM algorithm combines the classical machine learning algorithm used in classi-
fication problems, Support Vector Machine (SVM) and a quantum kernel, which ex-
ploits quantum properties like superposition and entanglement [12]. In SVM, the kernel
is a function that computes the similarity between pairs of data points in a higher-
dimensional space and allows SVM to classify non-linearly separable data effectively
[13]. We study the quantum kernels, which are based on the concept of quantum fea-
ture maps, introduced in [14]. Quantum kernels promise to outperform classical kernels
by addressing challenges posed by high-dimensional feature spaces [14].

We implement the QSVM algorithm and use it to classify malware samples from
a publicly available dataset on the real NISQ computer from IBM [15] and the local
quantum computer simulator implemented in Qiskit SDK [16]. We evaluate the per-
formance of our algorithm using a comparison with classical SVM kernels and with the
results from the study presented in [12]. We structure our research into four parts, each
described in one of the four chapters of this thesis.

In the first chapter, we start by introducing malware classification based on machine

Introduction 3

learning. We explain why the data extraction and preprocessing steps are needed before
putting the data into the machine learning algorithm. We specifically focus on the
methods we use for work with our chosen dataset, the PE Malware Machine Learning
dataset. Our dataset consists of binary samples of malicious and benign PE files. We
describe the PE files and their structure and introduce the preprocessing method we
use to extract features from the files before submitting them to the QSVM algorithm.
Additionally, in the first chapter, we describe the classical SVM algorithm with a focus
on the kernel function.

In the second chapter, we focus on the quantum computing part of our research. We
provide an introduction to quantum computing and the terminology we use and then
focus on the QSVM algorithm. We describe how the quantum kernels differ from the
classical ones and how they are estimated on quantum computers. We then move to the
IBM Quantum Platform [15] and Qiskit SDK [16], tools provided by IBM that we use
during our research for the implementation of the algorithm and for access to quantum
computers from IBM.

In the third chapter, we describe our implementation. We implement two indepen-
dent Python modules, one for the data preprocessing and the second one for the QSVM
classification. We describe how we implement the quantum kernels and the interface for
the classification on IBM Quantum computers. We describe the challenges encountered
during the implementation and how we fix the bugs in the Qiskit Machine Learning
library.

Lastly, in the fourth chapter, we perform the experiments on both the simulator and
a real quantum computer from IBM. We describe the purpose of the experiments and
our findings and discuss the optimisation techniques we plan to explore in future in our
following research.

Chapter 1

Malware Classification Based
on Machine Learning

In computer science, the classical algorithm is a procedure for solving a problem con-
sisting of a finite number of clearly defined steps. Algorithms are explicitly programmed
to solve specific problems based on predetermined rules and logic. They follow a deter-
ministic approach of executing predefined instructions to perform tasks. [17]

Machine learning is a field of computer science that focuses on developing algorithms
that solve problems through learning from data. In contrast to classical algorithms,
machine learning algorithms are not explicitly programmed to execute step-by-step in-
structions based on data input. They are designed to learn how to solve problems
based on input data by identifying patterns, making predictions, and optimizing their
performance.

In this chapter, we explore the application of machine learning in malware classifi-
cation, a critical task in cybersecurity. While various machine learning algorithms have
been applied to this problem domain [18], we emphasise the Support Vector Machine
algorithm due to its widespread use and effectiveness in handling high-dimensional data
and non-linear decision boundaries.

We begin by examining selected data extraction and preprocessing techniques rele-
vant to our research, laying the groundwork for subsequent analysis. We then shift our
focus to the introduction of the Support Vector Machine algorithm, where we explore
its principles and functionalities. A particular emphasis is placed on the role of kernel
functions, which enable the Support Vector Machine algorithm to operate effectively in
high-dimensional feature spaces.

1.1 Data Extraction and Preprocessing
Data extraction and preprocessing are the initial steps in the machine learning work-
flow. In this stage, raw binary files representing executable programs across various
platforms and architectures are transformed into structured data suitable for machine
learning algorithms. Directly feeding raw binary files into machine learning algorithms is

4

Data Extraction and Preprocessing 5

impractical due to their unstructured nature and the volume of data. Unstructured data
lacks the organisation and formatting necessary for practical analysis, and the amount
of information in raw binary files makes it challenging for machine learning algorithms
to extract meaningful patterns.

The feature extraction process is crucial because it pulls only the relevant information
from binary files to construct informative feature vectors. The feature extraction can be
done through static or dynamic analysis techniques, depending on the types of features.
Static analysis involves examining the structure of binary files, such as header fields,
section names, and import libraries, without executing the code [1]. Dynamic analysis
involves executing the code within a controlled environment to observe its behaviour
and interactions with the system [1].

The selection of preprocessing techniques significantly impacts the quality and ef-
fectiveness of machine learning models. Our discussion centres on the conversion of the
binary samples into grayscale images. The method is chosen for its simplicity and effec-
tiveness in capturing essential characteristics of binary files [19]. We discuss subsequent
preprocessing steps, such as Principal Component Analysis, a dimensionality reduction
technique that retains key information while reducing the complexity of the dataset. [1,
20]

PE File Format
A PE file stands for Portable Executable file, a binary architecture-independent file
format used in Microsoft Windows operating systems for executable files, object code,
and DLLs (Dynamic Link Libraries). PE files contain information about how a program
should be loaded and executed, such as code, data, resources, and metadata the operat-
ing system loader requires. The significance of the PE file format in malware detection
lies in its role as the primary format for executable files in the Microsoft Windows op-
erating system. Statistics from AV-TEST, an independent agency that evaluates and
rates antivirus and security software, show that Windows is the most targeted operating
system by malware attacks [21]. Malware often disguises itself as legitimate software,
therefore understanding the structure and contents of PE files is crucial for detecting
and analyzing malicious programs.

PE files have a specific fixed structure, which consists of two main parts: header
and sections [22]. The header contains information about the functions and sizes of
structures in the file. It consists of the DOS header, the PE signature (PE magic num-
ber, the Common Object File Format (COFF) file header, the optional header, and
the section headers. The DOS header contains the MZ signature, a two-byte marker
indicating the DOS executable format. The PE signature, consisting of the characters
‘P’ and ‘E’ followed by two null bytes, marks the beginning of the Portable Executable
format. These signatures are crucial for identifying and validating the PE file format.
The sections encapsulate information needed to manage executable code, such as code,
data, resources, and other elements required for program execution. Each section typi-
cally serves a specific purpose, such as storing executable instructions, initialized data,
uninitialized data, or resources like strings. Sections provide the necessary granularity
for the operating system loader to map the contents of the PE file into memory and

Data Extraction and Preprocessing 6

manage its execution efficiently.

Grayscale Image Conversion
In the context of preprocessing malware samples for machine learning, grayscale image
conversion refers to transforming raw PE binary samples into grayscale representations.
The method is simple, effective and does not require code execution or disassembling
for the classification while also appearing resilient to obfuscation techniques such as
encryption [19]. The motivation behind adopting this method in malware detection and
classification stemmed from recognising that malware binaries from the same family
appear very similar in layout and texture [19].

Figure 1.1 shows the process of visualizing malware as an image. The PE file sam-
ples are essentially binary files composed of zeros and ones. Each byte or group of bytes
within the binary data corresponds to a pixel in the grayscale image, with pixel intensity
determined by the value of the byte(s). For example, a byte with a value of 0 translates
to a black pixel, while a byte with a value of 255 signifies a white pixel. These binary
data, organised as 1D vectors, can be reshaped into 2D matrices and viewed as grayscale
images. The resulting size of these images can be either fixed or dynamically adjusted
based on the length of the binary data. Once transformed, further applied image pro-
cessing techniques can extract features such as texture, shape, or spatial distribution
patterns within the image. These extracted features or raw images can serve as input
for training ML models for malware classification.

Figure 1.1 Visualising Malware as an Image [19].

Principal Component Analysis
Principal Component Analysis (PCA) is a technique used to reduce the dimensionality
of large datasets while retaining most of the original information [23]. PCA effectively
extracts the most informative features from the data by transforming correlated variables
into a smaller set of variables known as principal components. This preprocessing step
is particularly useful for machine learning algorithms, as it helps mitigate the ‘curse of
dimensionality’ by reducing model complexity [23]. The curse of dimensionality refers to
the negative impact on model performance caused by adding each new feature. Through
projection into a smaller feature space, PCA addresses issues such as overfitting, which
can arise in high-dimensional datasets. PCA finds applications in various domains, for
example, in image processing and pattern recognition.

Support Vector Machine 7

1.2 Support Vector Machine
In this section, we delve into the Support Vector Machine (SVM) algorithm, a
widespread tool in the domain of machine learning-based malware classification [18].
Our discussion provides an overview of the principles and functionalities of SVM, with
a particular emphasis on kernel functions. Kernel functions play an essential role in SVM
by enabling the algorithm to operate effectively in high-dimensional feature spaces and
capture complex relationships between the data samples and their features. The insights
presented in this section are based on the works of [13], [24], [25], and [14], which have
significantly contributed to our understanding of SVM and the importance of kernel
functions.

Support Vector Machine (SVM) is a supervised machine learning algorithm for clas-
sification and regression tasks. In SVM classification, the algorithm seeks to find an
optimal decision boundary within the feature space that separates the data points into
different classes. Once the decision boundary is established, new data points can be
classified by determining which side of the boundary they fall on.

The feature space refers to the space defined by the input features of the dataset.
Each data point in the dataset is represented as a feature vector in the feature space,
where the total dimension corresponds to the number of features in the vector. Each
element in the vector represents a feature of the dataset, and the dimension of the feature
space corresponds to a number of features in the vector. The decision boundary is a
conceptual line that separates the different classes in a classification problem. In binary
classification, it is typically a line or curve in two-dimensional space or a hyperplane in
higher-dimensional space that divides the feature space into regions corresponding to
each class in the classification problem.

The core principle of SVM is to find a hyperplane that best separates the data
into different classes while maximising the margin, which refers to the distance between
the hyperplane and the nearest data point from each class. In other words, there is
the widest possible margin on both sides of the hyperplane without any points. The
hyperplane is characterised by the support vectors, which are data points lying closest
to it. The support vectors are crucial because they directly influence the position and
orientation of the hyperplane. Moreover, they define the margin because the optimal
hyperplane is positioned to maximise the distance between them. Support vectors play
a significant role in SVM because they determine the effectiveness of the classifier and its
ability to generalise to unseen data. Figure 1.2 visually represents the decision boundary,
maximised margin, and support vectors.

Support Vector Machine 8

Figure 1.2 Visualisation of SVM Decision Boundary and Support Vectors [26].

SVM can handle both linearly separable and non-linearly separable data. Linearly
separable data refers to a scenario where two classes of data points can be perfectly
separated by at least one straight line (in two dimensions), plane (in three dimensions)
or hyperplane (in higher dimensions). Many real-world datasets are not inherently
linearly separable, which is why techniques such as kernel functions are utilised in SVM.
When we talk about transforming the feature space using a kernel function in SVM, we
are essentially mapping the input features to a new, possibly higher-dimensional space
where the data may become linearly separable or more easily separable by a hyperplane.
This transformation allows SVM to find complex decision boundaries that may not be
feasible to compute directly in the original feature space.

A feature map ϕ(x) is a function which explicitly transforms the input data into
a higher-dimensional space. The function maps each data point x from the original
feature space to a new transformed feature space with a higher dimensionality. Kernel
function, defined as

k(x, y) = (ϕ(x) · ϕ(y)), (1.1)

uses the feature map to compute the dot product between two vectors x and y from the
input data space. It refers to the distance between the data points (vectors x and y) in
the original input space.

However, the transformed feature space is high-dimensional, so the righthand side of
the equation (1.1) may be computationally expensive (especially if the dimensionality
of the feature space is very large or even infinite). There comes a method known as
the kernel trick. Instead of explicitly computing the transformed feature vectors ϕ(x)
and ϕ(y), the kernel trick allows us to compute k(x, y) directly from the original input
space without ever explicitly computing ϕ(x) and ϕ(y). The implicit transformation
into higher-dimensional spaces facilitated by the kernel function is a key aspect of the
kernel trick, enabling SVM to handle non-linear relationships in the data efficiently.

Support Vector Machine 9

For example, consider a linear kernel function

k(x, y) = x · y, (1.2)

where x and y are the input vectors in the original feature space and · denotes the dot
product operation. Consider a dataset with two-dimensional input vectors x = (x1, x2)
and y = (y1, y2) and take two data points x = (1, 2) and y = (3, 4). To compute the
linear kernel function k(x, y), we take the dot product of the two vectors

k(x, y) = (1 ∗ 3) + (2 ∗ 4) = 11. (1.3)

In the original feature space, the data points x and y are represented by their indi-
vidual components. However, if we were to transform these data points into a higher-
dimensional space using a feature map for a linear kernel, the feature map would be the
identity function

ϕ(x) = x (1.4)
ϕ(y) = y. (1.5)

In the context of the linear kernel, the output of the kernel function is equivalent to
computing the dot product of the original input vectors x and y without any explicit
transformation into a higher-dimensional feature space.

Various kernel functions, such as polynomial, RBF, and sigmoid kernel, are suitable
for different data types and classification tasks. Kernel functions play a crucial role in
SVM by enabling it to handle non-linear relationships between the input data. First,
the kernel function k(x, y) is applied to all pairs of training samples xi, xj to compute
the kernel matrix

Kij = k(xi, xj). (1.6)

The kernel matrix represents the pairwise distances between the training samples in the
original feature space. Next, SVM uses the kernel function to solve an optimisation
problem of finding the optimal hyperplane that maximises the margin between the
classes.

Various kernel functions, such as polynomial, RBF, and sigmoid kernels, are em-
ployed in SVM to handle different data types and classification tasks. These kernel
functions play a crucial role in SVM by enabling it to capture non-linear relationships
between input data effectively. During training, SVM computes the kernel function for
all pairs of training samples to construct a kernel matrix, which represents pairwise
distances in the original feature space. Next, SVM uses the kernel function to solve
the optimisation problem of finding the optimal hyperplane that maximises the margin
between the classes. The problem is described by the decision function

f(x) = sgn
(

n∑
i=1

yiαik(x, xi) + b

)
(1.7)

where n is the number of samples in the dataset, αi are the Lagrange multipliers, yi

are the labels of the training samples, and b is a constant, which shifts the decision

Support Vector Machine 10

boundary away from the origin (0, 0) of the coordinate system in the feature space [13].
During the training phase of SVM, b is optimised along with the Lagrange multipliers
αi. Only the samples with non-zero Lagrange multipliers α (support vectors) contribute
to the decision boundary. In order to classify a new data point x, its similarity with the
support vectors is computed using the kernel function k(x, xi), and the decision function
f(x) is evaluated. If f(x) is positive, the data point is classified as one class, and if it is
negative, it is classified as the other class.

Chapter 2

Quantum Computing and
Quantum Machine Learning

Quantum computing is a field that leverages the principles of quantum mechanics to
perform computations. In recent years, quantum computing has emerged as a promising
tool for solving complex computational problems intractable to classical computers with
the development of NISQ (Noisy Intermediate-Scale Quantum) devices. NISQ devices
are the class of quantum computers characterised by their intermediate scale. Unlike
universal fault-tolerant quantum computers, which are still a theoretical goal, NISQ
devices operate with a limited number of qubits and suffer from errors due to noise in
the quantum hardware [10]. They typically have tens to hundreds of qubits, larger than
what can be simulated classically but smaller than required for error correction and
fault tolerance [10]. Nevertheless, they still offer the potential for exponential speedups
over classical algorithms in various domains, including optimisation, cryptography, and
machine learning [10].

The intersection of quantum computing and machine learning, Quantum Machine
Learning (QML), has gained attention for its ability to leverage quantum computational
advantages to enhance traditional machine learning algorithms. This chapter introduces
quantum computing and its application to machine learning, focusing on the Quantum
Support Vector Machine (QSVM) algorithm. We provide an overview of quantum com-
puting fundamentals, explaining the core concepts and principles underpinning quantum
computation, such as quantum bits (qubits), superposition and entanglement. We ex-
amine the theoretical foundations of QSVM, describe how they operate on quantum
computers and the advantages they offer over their classical counterparts.

Furthermore, we introduce the IBM Quantum Platform, which is a leading platform
for quantum computing research and development, along with the Qiskit software de-
velopment kit (SDK) and its machine learning module. Through Qiskit, researchers can
develop quantum algorithms and access IBM Quantum hardware. We discuss the role
of Qiskit in our research in implementing QSVM and performing quantum experiments
on real quantum processors.

11

Terminology 12

2.1 Terminology
We rely on a [27] for definitions and explanations of key terms. The only prerequisite
is a basic understanding of elementary linear algebra and classical computing.

Quantum computing operates within a finite-dimensional Hilbert space H. In this
context, the Hilbert space equals a complex vector space Cn with an inner product. The
inner product is formally a map

⟨·, ·⟩ : V × V → C, (2.1)

where V is a vector space over C, which satisfies the following three properties for all
vectors x, y, z ∈ V and all scalars α ∈ C:

1. ⟨x |αy + z⟩ = α⟨x | y⟩ + ⟨x | z⟩ (linearity in the second argument),
2. ⟨x | y⟩ = ⟨y |x⟩∗ (conjugate symmetry),
3. ⟨x |x⟩ ≥ 0 with equality if and only if |x⟩ = 0 (positive definiteness),

where * is a complex conjugate and 0 is a zero vector [28]. The standard notation
for linear algebra in quantum mechanics and quantum computing is a braket notation,
which consists of two elements, bra and ket. The ket, written as |ψ⟩, denotes a vector
in the vector space. The bra, written as ⟨ψ|, represents a dual vector to the ket. The
inner product of two vectors |ψ⟩ and |φ⟩ is denoted by ⟨φ |ψ⟩.

A quantum bit, shortly qubit, serves as the fundamental unit of information in
quantum computing. While classical computing processes information using bits, which
are binary variables capable of holding values 0 or 1, quantum computing leverages
qubits.

A state of the qubit, the quantum state, is described by a unit vector in a two-
dimensional Hilbert Space. The states |0⟩ and |1⟩ denote the fundamental computational
basis states of the qubit, forming an orthonormal basis. Any quantum state of the qubit
can be expressed as a linear combination of |0⟩ and |1⟩, meaning a qubit can exist in a
superposition of these states. For example, the state

|ψ⟩ = α|0⟩ + β|1⟩, (2.2)

represents the qubit in the superposition of |0⟩ and |1⟩.
The complex numbers α and β referred to as probability amplitudes satisfy

|α|2 + |β|2 = 1. (2.3)

They encode the probability of each outcome and the associated phase information. In
contrast to a classical probability distribution, which only considers the real numbers,
probability amplitudes incorporate both magnitude and phase. Figure 2.1 visually rep-
resents the relationship between probability amplitude and classical probability. The
absolute squares of the probability amplitudes give the probabilities of the possible
outcomes occurring when measured in the computational basis.

Terminology 13

Figure 2.1 Relationship Between Probability Amplitude and Classical Probability [29].

Measurement plays an essential role in quantum computing. While a classical bit’s
state can be observed without altering it, qubits in superposition cannot be directly
measured without affecting their quantum state. Upon measurement, qubits ‘collapse’
into one of the basis states, giving the outcome either |0⟩ with probability |α|2 or |1⟩ with
the probability |β|2. Consequently, quantum states inherently embody non-determinism,
as their measurement is probabilistic and fundamentally different from classical systems.

The building blocks of quantum computing are quantum gates and circuits. Quan-
tum gates are basic operations that manipulate qubits, similar to classical logic gates.
They come in various types, such as single-qubit and two-qubit gates, each designed
to perform specific transformations on quantum states. Quantum gates are reversible
transformations, preserving the quantum information encoded in qubits. In quantum
computing, quantum gates are represented by unitary operators. Unitary operators are
mathematical operators represented by matrices that satisfy the condition

U†U = I, (2.4)

where U† is the adjoint (conjugate transpose) of U , and I is the identity matrix.
Quantum circuits are composed of sequences of quantum gates applied to qubits to

perform specific computational tasks. Just as classical circuits are constructed from in-
terconnected logic gates, quantum circuits are built by connecting quantum gates. They
describe the flow of information and operations in a quantum computation. Quantum
circuits are visually represented with qubits depicted as lines and quantum gates as
boxes or symbols acting on those lines. The connections between gates indicate which
qubits are involved in each operation and in what order they are applied.

Within quantum circuits, interference emerges as a fundamental phenomenon where
the probability amplitudes of different quantum states combine and interact. Transi-
tion amplitudes describe the probability amplitude for a qubit to transition from one
quantum state to another under the influence of a quantum gate or operation. In quan-
tum algorithms, transition amplitudes are manipulated by applying quantum gates in
a quantum circuit. By carefully designing the sequence of gates, the interference effects
can be exploited to enhance the probability of obtaining the desired output state while

Quantum Machine Learning 14

minimizing the probability of undesired outcomes. The interference can be constructive,
where probability amplitudes increase the probability of a particular outcome, or de-
structive, where probability amplitudes cancel each other out, reducing the probability
of certain outcomes. The ability to control transition amplitudes is a key feature that
enables quantum computers to solve specific problems more efficiently than classical
computers.

State overlap and operator fidelity play a crucial role in quantifying the similarity
between quantum states. State overlap quantifies the extent to which two quantum
states share common elements or characteristics, providing insight into their similar-
ity. Operator fidelity quantifies the accuracy of a quantum operation or transformation
by measuring the closeness between the input and output states. Maximizing fidelity
ensures the reliability and effectiveness of quantum algorithms, enhancing their compu-
tational performance and accuracy.

Entanglement stands as another unique feature of quantum computing. Entangled
qubits are interconnected so that the state of one qubit depends on the state of another,
regardless of the distance between them. Alongside superposition and interference,
entanglement empowers quantum computers to perform parallel calculations and exhibit
non-local correlations, exponentially increasing processing power for certain problem
domains.

Furthermore, complementing the introduction on quantum computing, Table 2.1
summarises the notation presented in this section.

Notation Description
z∗ Complex conjugate of the complex number z.
|ψ⟩ Vector. Also known as a ket.
⟨ψ| Vector dual to |ψ⟩. Also known as a bra.

⟨φ |ψ⟩ Inner product between the vectors |φ⟩ and |ψ⟩.
A∗ Complex conjugate of the A matrix.
AT Transpose of the A matrix.
A† Adjoint of the A matrix, A† = (AT)∗.
U Unitary operator.

Table 2.1 Summary of the Standard Notation in Quantum Mechanics [27].

2.2 Quantum Machine Learning
Quantum machine learning (QML) is an interdisciplinary field that combines principles
from quantum computing and machine learning. It explores the potential benefits of
using quantum algorithms and quantum computing hardware to enhance various aspects
of machine learning tasks, including data processing, pattern recognition, optimisation,
and predictive modelling [10].

In the first chapter, we laid the groundwork for understanding the Support Vector
Machine (SVM) algorithm and its role in machine learning, particularly in classification
problems. Building upon that foundation, we now focus on a quantum advancement of

Quantum Machine Learning 15

the classical SVM, the Quantum Support Vector Machine algorithm (QSVM). We ex-
plore the QSVM algorithms, leveraging the principles of quantum mechanics to enhance
the capabilities of SVM for classification problems.

Recent advancements in quantum computing, as discussed in [14], have introduced
the concept of quantum advantage in QSVM over classical SVM approaches. The advan-
tage hinges on exploiting quantum properties such as entanglement and superposition,
which classical computers cannot simulate efficiently. While estimating the complexity
of quantum kernels using classical methods may pose challenges, the unique quantum
properties enable QSVM to outperform classical SVM.

By integrating quantum computing techniques with SVM algorithms, QSVM
promises to achieve better accuracy and efficiency than classical SVM algorithms across
various problem domains, including malware detection [12]. We investigate how quan-
tum algorithms can optimise SVM performance and address the challenges posed by
high-dimensional feature spaces. Ultimately, our goal is to provide a comprehensive un-
derstanding of the QSVM algorithm and its potential impact on malware classification.

QSVM
The QSVM algorithm is presented in two versions in [14]. The first version resembles
the classical SVM but operates on a quantum computer using a variational quantum
circuit, a type of quantum circuit used for optimization tasks to implement the quantum
classifier. We focus on the second version, which combines a classical SVM classifier with
a quantum kernel function. The quantum kernel function is estimated on a quantum
computer to compute the kernel matrix for use in the conventional SVM.

The key difference between classical and quantum kernels lies in how the data are
processed. In a classical kernel, the data are processed directly in the original form
within the classical computational framework. The kernel function computes the dot
product between feature vectors in the original input space. This computation is done
explicitly, without any transformation of the data into a different space.

In contrast, the quantum kernel requires the data to be transformed into a quantum
state space H before being processed. The data transformation leverages principles of
quantum mechanics such as entanglement and interference. In the context of QSVM, we
refer to this transformation as a data encoding. Once the data are encoded, a quantum
kernel function is applied to compute the correlations between the quantum states.
The data encoding process allows the quantum kernel to generate correlations between
variables that are difficult to achieve using classical methods alone. The advantage
of quantum kernels lies in their ability to construct complex circuits that are hard to
compute classically. [14, 11]

The estimation of the kernel matrix using a quantum kernel involves two main com-
ponents: the encoding of classical data and the application of the quantum kernel func-
tion.

The data encoding process is done through a quantum feature map, denoted as ϕ(x),
which represents a parametrised quantum circuit that maps classical feature vectors x
to the corresponding quantum state |ϕ(x)⟩⟨ϕ(x)|. The mapping is done by applying
the unitary operation Uϕ(x) to the initial state |0n⟩, where n is the number of qubits

IBM Quantum Platform 16

used for encoding. The index ϕ(x) in the Uϕ(x) refers to a specific parameterization
of the operation U , which depends on the classical feature vector x. Quantum gates
and operations can be parametrized by certain variables, affecting how they transform
quantum states. Different values of x lead to different parameterizations of the unitary
operation, resulting in different quantum states after the transformation. [30]

The quantum kernel function

k(x, y) = ⟨ϕ(x) |ϕ(y)⟩ = |⟨ϕ(x) |ϕ(y)⟩|2, (2.5)

is defined as a state overlap of the two data-encoded feature vectors from the quantum
state space and represents the similarity between them [14]. A larger value of k(x, y)
indicates that the classical data points x and y are close in feature space [30].

When applied to all datapoints, quantum kernel function generates a quantum kernel
matrix

Ki,j = k(xi, xj) = |⟨ϕ(xi) |ϕ(xj)⟩|2, (2.6)

where the entries represent the fidelities between different feature vectors. The fideli-
ties can be computed efficiently on a quantum computer by calculating the transition
amplitude between the states

Ki,j = k(xi, xj) = |⟨ϕ(xi) |ϕ(xj)⟩|2 = |⟨0n|U†
ϕ(xi)Uϕ(xj)|0n⟩|2, (2.7)

where the feature map ϕ(x) is described as the unitary operation Uϕ(x) applied to the
initial state |0n⟩. [14, 30]

2.3 IBM Quantum Platform
In our quantum computing research, we heavily rely on the comprehensive suite of tools
provided by IBM, such as the Qiskit SDK and the real quantum computers available
through the cloud. IBM plays a significant role in advancing the field of quantum
computing through research, development, and the provision of accessible tools and
resources. They have made significant contributions to the development of quantum
hardware, including the design and fabrication of superconducting qubits, the building
blocks of quantum processors. They developed the first commercially available quantum
computer, IBM Q System One. While the development of the IBM Q System One
marked a significant milestone, their broader efforts in advancing quantum hardware
technology are equally noteworthy.

IBM provides access to real quantum processors, known as IBM Quantum systems,
through the cloud via the IBM Quantum Platform [15], allowing researchers and de-
velopers to experiment with real quantum hardware without needing specialized infras-
tructure. As of April 2024, 15 quantum processors and five simulators are available on
the IBM Quantum Platform. Four quantum processors and all simulators are freely
available to the public, while the remainder is accessible via a premium plan. Addi-
tionally, the platform offers learning resources to help users understand the principles
of quantum computing and how to leverage IBM’s tools effectively.

IBM is developing Qiskit [16], an open-source software development kit (SDK) for

IBM Quantum Platform 17

working with quantum circuits and algorithms. It allows users to create, simulate,
and execute programs for quantum computers using Python, a widely used high-level
programming language. Python is known for its simplicity and readability, which makes
it an excellent choice for a framework like Qiskit, which aims to be accessible to both
beginners and experienced users in the quantum computing field. Qiskit allows users to
implement algorithms for quantum computers at the level of quantum circuits. These
algorithms can be executed locally on simulators or real quantum devices available
through the IBM Quantum Platform.

Qiskit Machine Learning
Qiskit Machine Learning [31] is a module within the Qiskit SDK, which provides a
comprehensive set of tools for quantum-enhanced machine learning tasks, including
classical machine learning algorithms that can be enhanced using quantum techniques
and entirely new quantum machine learning algorithms designed to run on quantum
computers.

It offers building blocks such as Quantum Kernels and Quantum Neural Networks,
allowing users to explore the intersection of quantum computing and machine learning
without requiring deep quantum computing knowledge. This section focuses mainly on
introducing the Quantum Kernels within the Qiskit Machine Learning module, specifi-
cally on the FidelityQuantumKernel [32]. Understanding the functionality and usage
of the FidelityQuantumKernel [32] class is essential for effectively integrating quantum-
based kernels into the Support Vector Machine algorithms.

The quantum kernel interface is abstractly defined by the BaseKernel class [33]
in Qiskit Machine Learning. It specifies the evaluate method, which constructs kernel
matrices from given datasets. These matrices are compatible with the Quantum Support
Vector Classifier within Qiskit Machine Learning or other kernel-based machine learning
algorithms in established classical frameworks. Each entry in the kernel matrix is the
result of the kernel function defined as

K(x, y) = ⟨f(x) | f(y)⟩, (2.8)

where x, y are n-dimensional inputs and f is a map from n-dimension to m-dimension
space. The quantum kernel algorithm computes a kernel matrix given datapoints x and
y and feature map f , all of n dimension. This matrix can then be used in classical
machine learning algorithms such as support vector classification. A feature map, a
parameterized circuit serving as input to the kernel function, is required. The default
feature map is a ZZFeatureMap with two qubits.

The FidelityQuantumKernel implements the BaseKernel interface. Here, the ker-
nel function is defined as the overlap of two quantum states x and y),

K(x, y) = |⟨ϕ(x) |ϕ(x)⟩|2, (2.9)

defined by the feature map ϕ(x).
The FidelityQuantumKernel requires a fidelity primitive. This primitive computes

the fidelity between quantum states based on the BaseStateFidelity algorithm in-

IBM Quantum Platform 18

troduced in Qiskit. BaseStateFidelity class [34] is an interface that calculates state
fidelities (state overlaps) for pairs of (parametrized) quantum circuits. The specific
method of fidelity calculation depends on the implementation of the fidelity method.
However, it can generally be defined as the state overlap

|⟨ψ(x) |ϕ(x)⟩|2, (2.10)

where x and y are optional parameterizations of the states ψ and ϕ. The default fidelity
value is an instance of the ComputeUncompute class built on top of the Sampler primitive
[35].

There are numerous options for selecting a suitable feature map ϕ(x) for the com-
putation of FidelityQuantumKernel, as described in [14]. We introduce those imple-
mented in Qiskit SDK, which we later use in our experiments, such as PauliFeatureMap
[36], ZZFeatureMap [37] and ZFeatureMap [38].

The PauliFeatureMap is based on the Pauli matrices, which are fundamental oper-
ators in quantum mechanics. The Pauli matrices include the X, Y and Z matrices, each
representing a different type of quantum operation. In the PauliFeatureMap, combina-
tions of these matrices, set by the paulis parameter, are applied to the input qubits to
generate entanglement and capture features of the input data. The PauliFeatureMap
typically consists of layers of single-qubit rotations and entangling gates involving Pauli
matrices, with parameters that can be optimized during training to learn an adequate
representation of the data for classification tasks. The data encoding is done by applying
the unitary operation Uϕ(x) to the initial state, which in the case of PauliFeatureMap
is defined as

Uϕ(x) = exp
(
i
∑
S∈I

ϕS(x)
∏
i∈S

Pi

)
, (2.11)

where S is a set of qubit indices that describes the connections in the feature map, I is
a set containing all these index sets, Pi refers to the chosen Pauli matrix and

ϕS(x) =
{
xi if S = {i}∏

j∈S(π − xj) if |S| > 1
(2.12)

refers to the data mapping function. The data mapping function can be changed to a
custom one via the parameter data_map_func. [36]

The ZZFeatureMap is a special case of the PauliFeatureMap, where the ‘ZZ’ refers
to the Pauli-Z matrices. These matrices represent the ZZ interaction between qubits,
contributing to the entanglement in the quantum circuit. In the ZZFeatureMap, the
Pauli matrices Pi are explicitly chosen as Pauli-Z matrices (ZZ), resulting in the product
term representing the ZZ interaction between qubits. [37]

The ZFeatureMap is another particular case of the PauliFeatureMap. In contrast to
the ZZFeatureMap, it consists solely of Pauli Z matrices without entangling operations
between qubits. As a result, the encoding produced by the ZFeatureMap does not exhibit
entanglement. While this lack of entanglement means that the ZFeatureMap may not
offer a quantum advantage for specific tasks, its effectiveness depends on the problem
being addressed. [38]

All the mentioned feature maps can have a custom circuit depth set by the ‘depth’

IBM Quantum Platform 19

parameter, which refers to the number of layers of quantum gates or operations applied
to the input qubits to transform the classical data into a quantum state. Each layer in
the PauliFeatureMap typically consists of single-qubit rotations and entangling gates
involving Pauli matrices. The depth of the PauliFeatureMap is determined by the
number of such layers applied to the input qubits. The depth of a PauliFeatureMap, or
any quantum circuit, represents the complexity or the number of sequential operations
applied to the input qubits to encode the classical data into a quantum state. A deeper
circuit may capture more complex patterns in the data but may also require more
computational resources. [30]

Chapter 3

QSVM for Malware
Classification

In this chapter, we explore the practical application of the Quantum Support Vector
Machine (QSVM) algorithm, including the dataset we use and the preprocessing steps
we take to prepare the data. The source codes with detailed documentation are available
on our project’s GitLab repository1. We drew inspiration from the concepts introduced
in [12] for our implementation. Additionally, the initial ideas for the implementation of
the QSVM module were influenced by the work of [30].

Our implementation of the QSVM algorithm consists of two main Python modules:
the peml module, responsible for preprocessing the dataset, and the svm module, which
implements SVM algorithm with both quantum and classical kernels. These modules
are designed to function independently. While the peml module focuses on preprocessing
of the specified dataset we use, the svm module can classify any preprocessed datasets
in the specific input format we explain later in the chapter.

Additionally, we implemented a separate data_objects module, which provides es-
sential data structures utilised throughout the project. These structures include con-
figurations for project directories, kernel matrix parameters, and SVM classification
specifications.

Figure 3.1 depicts the structure of our implemented source codes, highlighting the
modular organization and the classes contained within each module.

1https://gitlab.fit.cvut.cz/kratkeli/ni-dip

20

https://gitlab.fit.cvut.cz/kratkeli/ni-dip

PEML Module 21

src
peml

PEMLDataset

PEBinary

GrayscaleImage

svm
SVM

QSVM

FidelityQuantumKernelForIBMQuantum

ComputeUncomputeForIBMQuantum

data objects
ProjectDirectories

SVMConfiguration

KernelMatrixConfiguration

Figure 3.1 Simplified Project Layout With Implemented Modules and Classes

3.1 PEML Module
We developed the peml module specifically for the preprocessing of the PE Malware
Machine Learning dataset [39] we intend to use in our experiments with QSVM clas-
sification on the simulator and IBM Quantum Systems. The PE Malware Machine
Learning dataset consists of raw labelled PE file binaries containing benign and mal-
ware samples. It is distributed in an encrypted zip folder, with file extensions removed
from the individual samples to prevent accidental execution.

The peml module enables randomly selecting, extracting, and preprocessing sam-
ples from the zipped dataset folder to obtain training and testing feature vectors for
the QSVM classification. It consists of three classes: PEMLDataset, PEBinary and
GrayscaleImage. The PEMLDataset class represents the dataset and utilises PEBinary
and GrayscaleImage classes.

The PEMLDataset class facilitates the extraction and preprocessing of selected sam-
ples within the zipped dataset folder. It operates with a metadata file (samples.csv) that
organises the dataset’s structure. The class offers methods to randomly select training
and testing samples from the dataset, ensuring an equal distribution of benign and
malicious files. Additionally, it provides functionality to extract feature vectors from
selected binary files by converting them into grayscale images and flattening them into
1D feature vectors. It also enables saving and loading dataset components, such as IDs,
labels, and feature vectors, using HDF5 files [40]. The extract_samples class method
executes 7zip commands [41] to extract selected samples from the dataset folder. This
approach allows for the extraction of only the necessary samples from the dataset, thus
bypassing the need to unzip the entire dataset at once. The dataset has a considerable
size of 43.8GB compressed and uncompressed 117GB, so computational and memory
resources are effectively managed as the samples are selectively extracted as needed.

SVM Module 22

The PEBinary class encapsulates functionality for handling Portable Executable
(PE) binary files. It is designed to convert a binary file into a grayscale image, rep-
resented by the GrayscaleImage class. It utilises helper methods to load binary data,
validate PE file structure, and calculate the appropriate image width. When initialised
with a file path pointing to a PE binary, it loads the binary data and verifies its in-
tegrity as a PE file. It checks the presence of the ‘MZ’ signature at the beginning of the
binary, and the ‘PE’ signature at the specified offset. The get_image method converts
the binary data into a grayscale image, adjusting its width based on the size of the
binary content. This process involves reshaping the binary data into a 2D array, with
dimensions determined by predefined size ranges introduced in [19].

The GrayscaleImage class complements the functionality of the PEBinary class by
providing utilities for working with grayscale representations of PE binaries. It provides
methods for resizing the image while maintaining its aspect ratio, extracting a feature
vector from it, and plotting it for visualisation. The class also offers a property to
retrieve the size of the image, allowing access to its dimensions.

3.2 SVM Module
The svm module is our implementation of the QSVM algorithm. The module
consists of four classes: SVM, QSVM, FidelityQuantumKernelForIBMQuantum and
ComputeUncomputeForIBMQuantum.

The SVM class provides a flexible framework for SVM classification, allowing users to
choose between quantum and classical methods and customise the classification process
with various feature maps and kernels. It introduces the SVMConfiguration data ob-
ject, a container for storing and accessing parameters required for SVM classification,
including dataset sizes, feature dimensions, quantum circuit specifications, and runtime
configuration for executing jobs on IBM Quantum systems.

During initialisation, the SVM class loads already preprocessed feature vectors of sam-
ples from the dataset represented by the PEMLDataset class. It subjects them to further
preprocessing using the private helper method __preprocess_data, which preprocesses
the training and testing samples by reducing their dimensions to match the number of
qubits used in the quantum SVM, using Principal Component Analysis. It then nor-
malises the data by eliminating the mean and scaling it to unit variance, employing
StandardScaler and MinMaxScaler from the scikit-learn library [42], respectively.
These steps ensure that the data is appropriately prepared for classification.

The classify method operates using both quantum and classical methods. It ac-
cepts lists of quantum feature maps and classical kernels as optional parameters. For
each provided quantum feature map, it initialises a QSVM object and performs classifi-
cation. Similarly, for each specified kernel, it performs classical classification using the
__classical_classification method.

The __classical_classification method executes classification utilising a chosen
classical kernel for the SVM. It begins by accepting the type of classical kernel as input
and initialising an SVM classifier (SVC from scikit-learn) with the designated classical
kernel. Following this, it measures the training time by recording the start and end times
of the training process. The classifier is then trained using the provided training samples

Implementation of QSVM 23

and their corresponding labels. Once trained, it predicts labels for the test samples. It
computes the classification metrics, accuracy and F1 score based on the predicted and
actual labels. Finally, it prints the training time to the standard output and returns
the classification metrics as a tuple. We explain these metrics in the following chapter
when discussing experiments.

3.3 Implementation of QSVM
In the QSVM class, which is a part of the svm module, we implement the interface for
the QSVM classification on both the local simulator and IBM Quantum systems. The
QSVM object is created inside the SVM.classify method and requires two parameters
inherited from the SVM object: project_directories and config. The first parameter
is an object specifying the project directories, while the second is a configuration for the
classification.

Quantum-based classification involves specific parameters distinct from classical
SVM, which utilise classical kernels. Firstly, there is the simulator parameter, a
boolean value indicating whether to perform classification using a quantum-computer
simulator or IBM Quantum system. Secondly, the ibm_backend parameter specifies the
backend’s name in the case of classification using real quantum computers. Lastly, the
runtime_jobs_completed parameter indicates whether the jobs on the IBM Quantum
system are finished.

The runtime_jobs_completed parameter is needed for the classification on the real
quantum hardware, which can be divided into two parts. The initial part involves sub-
mitting jobs to the IBM Quantum to calculate the entries of the kernel matrices. Since
these jobs may require several hours to execute on a quantum computer, the classification
script need not run continuously. It can only submit the jobs and save the configuration
of kernel matrices. Therefore, it can save local computing resources. After the quantum
computer finishes executing the jobs (observable on the IBM Quantum Platform), the
second part of the classification process follows. It involves loading the kernel matrix
configuration, processing the finished jobs, and evaluating the kernel matrices. The
subsequent script or program can execute this task with the runtime_jobs_completed
parameter set to true.

The kernel matrix configuration plays a crucial role in the classification process,
providing information for evaluating the kernel matrices, which are fundamental to
support vector classification.

The classify method is the core functionality of the QSVM class. It performs the
support vector classification using a specified quantum kernel. This method accepts
feature_map_type as an argument, denoting the type of quantum feature map to use.
Supported types include ZZFeatureMap [37], PauliFeatureMap [36], ZZphiFeaturemap,
and ZFeatureMap [38].

The ZZphiFeaturemap [12] is a modified version of the ZZFeatureMap with a custom
data mapping function

ϕS(x) =
{
xi if S = {i}
sin(π − xi)sin(π − xj) if S = {i, j} ,

(3.1)

Implementation of QSVM 24

where S is a set of qubit indices that describes the connections in the feature map [12,
14]. The custom data mapping function is implemented in the _custom_data_map_func
method [30].

The number of qubits and depth of the feature map quantum circuits are specified
in the SVMConfiguration data object provided during initialization.

The classify method utilizes the scikit-learn library [42] for the support vector
classification, similar to the SVM class. It initializes the sklearn.SVC object [42, 43],
representing the machine learning model and fits the model with the precomputed train
matrix along with corresponding labels. It measures the training time and prints it to
the standard output. Subsequently, it computes the classification metrics, accuracy and
F1 score using a precomputed test matrix and corresponding labels. The method returns
a tuple containing the classification metrics. However, if the runtime jobs necessary for
classification are incomplete, it returns (None, None) to indicate that the results are
not yet available.

The quantum kernel evaluation, whether using a simulator or IBM Quantum hard-
ware, is internally managed by two private methods: __evaluate_on_simulator and
__evaluate_on_ibm_hardware, executed within the classify method. While the eval-
uation process is generally similar in both cases, there are slight differences.

Both methods return the precomputed train and test kernel matrices. They rely on
sampler, kernel and fidelity objects. The fidelity object leverages the sapler primitive
to compute the state fidelity of two parametrized quantum circuits. The kernel object
constructs the kernel matrix and uses the fidelity object to evaluate the entries in the
kernel matrix. The sampler primitive varies based on the evaluation type: for simulator
evaluation, it is sourced from the qiskit.primitives module [35], while for hardware
evaluation, it is obtained from the qiskit_ibm_runtime module [44] and is instantiated
within the fidelity object exclusively.

The kernel object is an instance of the FidelityQuantumKernelForIBMQuantum
class. This class is a modified version of the FidelityQuantumKernel class [32]
from the Qiskit Machine Learning module [31]. It extends the functionality of the
FidelityQuantumKernel class by providing additional methods and handling fidelity
computation specifically for use with IBM Quantum systems. The fidelity object is an
instance of the ComputeUncomputeForIBMQuantum class, which is, similar to the kernel,
an extended version of the ComputeUncompute class [45] within the Qiskit Machine
Learning module [31]. It supports running computations on IBM Quantum systems,
including handling hardware-specific considerations and job execution.

Modifications for Execution on IBM Quantum
The original implementation of the FidelityQuantumKernel [32] and ComputeUncompute
[45] classes from the Qiskit Machine Learning [31] module shows three significant is-
sues.

Firstly, these classes lack the ability to split the evaluation process into two distinct
parts: submitting jobs to calculate kernel matrix entries on IBM Quantum and pro-
cessing the finished jobs. Consequently, the classification script must run continuously
while awaiting job execution on the IBM Quantum system, which can take several days

Implementation of QSVM 25

depending on the job queue length. This inefficiency not only consumes resources but
also restricts the scalability of the evaluation process, particularly with large datasets.
We aim to address this issue to optimize resource usage and enhance scalability.

The absence of transpilation for fidelity circuits before submission to the IBM Quan-
tum presents a critical flaw in the original implementation. Transpilation refers to the
process of transforming quantum circuits to use only instructions supported by the un-
derlying quantum hardware. This transformation ensures compatibility and efficient
execution on real IBM Quantum hardware. As of 1 March 2024, IBM Quantum intro-
duced a significant change to improve the speed and efficiency of quantum computation
[46, 47]. Circuits and observables are now required to undergo transformation to only
use the instruction set architecture (ISA) supported by the quantum system. It means
that circuits must be transpiled before being submitted to the Qiskit Runtime primitives
for execution. Without the transpilation, the fidelity circuits cannot be executed on the
IBM Quantum hardware, which makes the classes unusable in real-world scenarios. An
illustration of the transpilation error we encountered on the IBM Quantum Platform is
shown in Figure 3.2. It is worth noting that the transpilation issue is known and tracked
by the Qiskit community, affecting several classes beyond those discussed here, yet at
the time of finishing this thesis, it has not been resolved [48, 49].

Figure 3.2 Error Message on IBM Quantum Platform Due to Lack of Circuit Transpilation

Moreover, the original classes submit all fidelity circuits in a single job to the IBM
Quantum interface. While this approach is suitable for local simulation, it proves im-
practical for larger datasets on IBM Quantum systems. The resulting job size often
exceeds the maximum limit [50], preventing the circuit submission for execution and
severely limiting class usability, particularly with larger datasets. An illustration of the
error message we encountered due to this limitation is provided in Listing 3.1.

IBMRuntimeError: 'Failed to run program: \'413 Client Error: Payload Too Large
for url: https://api.quantum.ibm.com/runtime/jobs.
{"statusCode":413,"message":"request entity too large"}\''

↪→

↪→

Code listing 3.1 Error Message Due to Job Size Exceeding Maximum Limit on IBM Quan-
tum Platform.

In the extended versions of the classes (ComputeUncomputeForIBMQuantum and
FidelityQuantumKernelForIBMQuantum), we address these issues by introducing en-
hancements to the initialisation and methods. These improvements enable efficient
resource utilisation, ensure compatibility with IBM Quantum hardware, and enhance
scalability for real-world machine learning applications. In the following sections we

Implementation of QSVM 26

compare the original and our extended classes, highlighting differences and explaining
how we address the identified issues.

ComputeUncomputeForIBMQuantum

In the ComputeUncomputeForIBMQuantum class, we implement the BaseStateFidelity
algorithm [34] designed for compatibility with IBM Quantum Platform. It leverages
the sampler primitive to compute the state fidelity between two parametrised quantum
circuits (feature maps), following the compute-uncompute method [45, 14].

We introduce additional parameters such as simulator, backend, and shots upon
initialisation for compatibility with the IBM Quantum Platform. The simulator is a
boolean value specifying whether to run the computation on a simulator or IBM Quan-
tum system. The backend parameter specifies the quantum hardware’s name, while
shots specify the number of measurement shots performed during circuit execution.
The sampler parameter is optional in contrast to the original ComputeUncompute class
[45]. That is because, in the case of the hardware evaluation, the sampler is instantiated
within the object exclusively. It is retrieved from the qiskit_ibm_runtime module [51,
44] and depends on the backend and session configurations. The session feature [52] of
Qiskit Runtime streamlines the execution of multi-job iterative workflows on quantum
computers. Using sessions helps avoid delays caused by queuing each job separately,
which can be particularly useful for iterative tasks involving frequent communication
between classical and quantum resources [52].

We introduces five additional methods in the ComputeUncomputeForIBMQuantum
class: __run_on_simulator, __run_on_ibm_hardware, run_jobs, get_fidelities,
and _construct_circuits (a modified version of the method from the BaseStateFidelity
class [34]) and alongside it edits to the _run and _call methods. In the ComputeUncomputeForIBMQuantum
class, the _run and _call methods, while present, serve only as placeholders, so the
class adhere to the BaseStateFidelity interface requirements. The run_jobs and
get_fidelities methods replace the logic provided by _run and _call methods.

The rub_jobs method is responsible for running the jobs for computing the state
overlap (fidelity) between two parametrised circuits. It is mostly similar to the original
_run method in ComputeUncompute [45]. However, it includes additional logic to differ-
entiate between running on a simulator or IBM Quantum hardware. To do so, it uses
two helper methods __run_on_simulator and __run_on_ibm_hardware. The method
also incorporates logic for transpilation, ensuring fidelity circuits are optimised for IBM
Quantum hardware execution via the _construct_circuits method.

The _construct_circuits method is a modified version of the _construct_circuits
method from the Basestatefidelity class, which is responsible for constructing the
list of fidelity circuits to be evaluated. Additionally, it considers whether to run the
circuits on a simulator or IBM Quantum system. In the case of the simulator, the
process remains unchanged from the original method. In the case of the evaluation on
hardware, it transpiles the fidelity circuits to be run on the desired backend using the
PassManager [53, 54].

Helper methods __run_on_simulator and __run_on_ibm_hardware facilitate ex-
ecution on the local simulator and IBM Quantum hardware, respectively. The
__run_on_simulator mimics the last step from the original _run method from

Implementation of QSVM 27

ComputeUncompute [45]. It executes all circuits in a single job using the Sampler
from qiskit.primitives [35], returning a list containing the submitted job. The job
is returned in a list due to the simplification of processing the following jobs in the
get_fidelites method. The __run_on_ibm_hardware method submits the jobs to the
IBM Quantum hardware. As we explained earlier, submitting the fidelity circuits in
one job would quickly exceed the maximum limit for job size. Therefore, each fidelity
circuit is submitted in a separate job using the sampler primitive obtained from the
qiskit_ibm_runtime module [44]. The jobs are submitted in session to avoid delays
caused by separately queuing each job.

The get_fidelities method processes job results and computes fidelities, replacing
the _call method from the original ComputeUncompute class [45]. It includes additional
logic to handle results differently based on whether the evaluation was performed on the
simulator (in a single job) or the IBM Quantum system (in multiple jobs). The method
also allows for splitting the evaluation process. It can be run after the jobs submitted
to IBM Quantum are finished.

In summary, ComputeUncomputeForIBMQuantum extends ComputeUncompute [45] by
addressing the three significant issues mentioned previously. It enables the splitting
of the evaluation process, replacing the original _run and _call methods into two
independent methods, run_jobs and get_fidelities. It provides the transpilation
of the fidelity circuits before submitting them to the IBM Quantum system via the
_construct_circuits method. Moreover, it divides the submitted job into smaller
jobs, fixing the issue by exceeding the max job size limit given by the IBM Quantum
Platform. This enhanced functionality enhances the usability and scalability of the
algorithm for real-world applications.

FidelityQuantumKernelForIBMQuantum

In the FidelityQuantumKernelForIBMQuantum class we implement the quantum ker-
nel interface based on the BaseStateFidelity algorithm [34] designed for com-
patibility with IBM Quantum. We use the fidelity computations provided by
ComputeUncomputeForIBMQuantum class to construct kernel matrices for the quantum
kernel in QSVM algorithm.

We introduce the KernelMatrixConfiguration data object in the FidelityQuantumKernelForIBMQuantum
class to encapsulate the configuration for computing the kernel matrix entries. The
KernelMatrixConfiguration object includes information such as whether the matrix
is symmetric, its shape, the number of circuits, indices, and associated jobs for evalu-
ating the kernel entries on the quantum computer. It abstracts away the details about
submitted jobs, providing a clean interface for kernel matrix evaluation in the helper
private methods __get_kernel_matrix or __get_kernel_entries.

We divide the original evaluate method in FidelityQuantumKernel [32] into two
distinct phases: obtaining the kernel matrix configuration and computing the matrix
using this configuration. Initially, the FidelityQuantumKernelForIBMQuantum class
submits jobs to retrieve kernel entries through the get_kernel_matrix_config method.
Once these jobs are completed, the evaluate_matrix method processes the results to
compute the kernel matrix. Users have the flexibility to execute the evaluation process
either as a single operation using the evaluate method or as separate steps using the

Implementation of QSVM 28

get_kernel_matrix_config and evaluate_matrix methods.
The get_kernel_matrix_config is similar to the original evaluate method [32].

It validates the input, determines the kernel shape and computes all the combina-
tions needed to evaluate the kernel entries via the helper parameterization methods
(__get_parameterization, __get_symmetric_parameterization). However, instead
of directly constructing the kernel matrix, it only submits the jobs for evaluating the
kernel entries via the helper __run_jobs method and returns the matrix configuration.

The __run_jobs method is a helper method inspired by the original get_kernel_entries
method. It is responsible for submitting jobs to calculate the kernel matrix entries via
the underlying fidelity instance (ComputeUncomputeForIBMQuantum).

The evaluate_matrix method constructs the kernel matrix using the provided
configuration and the fidelity computation results. It utilizes the helper meth-
ods __get_kernel_matrix and __get_symmetric_kernel_matrix and the modified
__get_kernel_entries method, which executes the get_fidelities method from the
underlying fidelity instance (ComputeUncomputeForIBMQuantum).

Our modifications enable integration of the fidelity-based quantum kernel with the
IBM Quantum Platform and allow for efficient computation of kernel matrices on real
quantum hardware.

Chapter 4

Experiments

In this chapter, we perform experiments to test and evaluate our implementation of
the QSVM algorithm we described in the previous chapter. The groundwork for our
experiments is laid by the work of [12], which provides insights into the performance of
quantum machine learning algorithms, particularly in the context of malware classifica-
tion. Reproducing their results serves as a key benchmark for our experiments.

In the initial phase of our experiments, we perform QSVM classification using a
local simulator on datasets of varying sizes, ranging from 500 train samples and 100
test samples to 8000 train samples and 4000 test samples. Subsequently, we perform
SVM classification using classical kernels for comparison analysis. We aim to directly
compare our results with those presented in the [12] by replicating their experimental
setup as closely as possible. Their findings highlight the efficiency of QSVM algorithms,
particularly in extracting information from smaller datasets, suggesting their potential
in cybersecurity applications. By comparing the results obtained from the simulator
with those of SVM classification using classical kernels and referencing the findings of
[12], we aim to evaluate the relative performance of QSVM algorithms across different
dataset sizes.

The second part of the experiments refers to experiments on IBM Quantum sys-
tems. Inspired by the promise of NISQ quantum computers, our initial objective was to
implement and evaluate quantum machine learning algorithms, particularly the QSVM
algorithm, on IBM Quantum computers. However, during the implementation process
we encountered challenges that significantly impacted the direction of our experiments.
These challenges primarily rise from the limitations inherent in the Qiskit Machine
Learning module, specifically relating to transpilation requirements and the constraints
imposed by job sizes on IBM Quantum systems.

To address these challenges, we devoted considerable effort to fixing the limitations
within the Qiskit Machine Learning module, as we further described in Chapter 3. It was
essential to fix those issues, as without resolving them, we would not have been able
to execute any code on the IBM Quantum computers. However, despite our efforts,
we are still constrained by suboptimal execution times on the IBM Quantum systems.
This limitation underscores the need for further research and optimisation, a pursuit we
intend to undertake in the future. Consequently, we find ourselves severely restricted in

29

Experimental Setup 30

the size of datasets we can operate with on the IBM Quantum systems. As a result, we
must adjust the original purpose of our experiments.

Our focus now shifts towards exploring how the limitations imposed by the Qiskit
Machine Learning module affect our experimental setup. Instead of solely evaluating
the accuracy and F1 score of our classification algorithm, we aim to investigate how the
IBM Quantum systems behave under the workload of numerous jobs.

This chapter describes the detailed setup, execution, and evaluation of our quantum
machine learning experiments. First, we present our experimental setup, which utilises
the hardware, primarily IBM Quantum computers, and the software components, in-
cluding our custom-implemented Python modules. We describe the used dataset and
provide a clear breakdown of the configuration of our experiments, detailing parameters,
dataset sizes, and computational resources at our disposal.

We then discuss the evaluation metrics employed to assess the performance of our
classification algorithm. We describe the reasoning behind our choice of metrics, such as
accuracy, F1 score, and “quantum time”, clarifying how each metric contributes to our
understanding of the algorithm’s effectiveness despite the constraints of small dataset
sizes. Finally, we run the experiments and present our findings, acknowledging the
challenges posed by the limitations of the Qiskit Machine Learning module and the
constraints of working with small datasets on IBM Quantum systems.

4.1 Experimental Setup
In both classical and quantum computing experiments, the experimental setup includes
the configuration of hardware, software, and environmental conditions essential for con-
ducting the experiment and gathering data. The comprehensive description of the ex-
perimental environment ensures the reproducibility of all tests and measurements and
provides a roadmap for others to replicate the experiments effectively.

We rely on the PE Malware Machine Learning Dataset [39] for our experiments.
It consists of raw binaries of PE files, such as .exe or .dll files and contains 201,549
labelled samples, with 86,812 benign and 114,737 malware samples. It is distributed
in an encrypted zip folder, with file extensions removed from the individual samples to
prevent accidental execution. Most malicious samples come primarily from the platforms
VirusShare1, MalShare2 and TheZoo3, which are free malware repositories intended for
security researchers. The legitimate files come from instances of various versions of
Windows 7 and above with a variety of different software downloaded and installed.
However, there is a bias towards files associated with Microsoft products among the
benign samples. The main benefit of the dataset is that it provides the raw binary files
themselves instead of just metadata that has already been extracted from the samples.

As our experiments involve analysing and classifying malware samples from the
dataset, ensuring a secure and controlled environment for handling these potentially
harmful files is important. All the experiments, including data extraction, preprocess-
ing and classification, are undertaken in a sandboxed environment on a virtual machine
provided by FIT CTU through the CloudFIT [55] platform.

1https://virusshare.com/
2https://malshare.com/
3https://github.com/ytisf/theZoo

https://virusshare.com/
https://malshare.com/
https://github.com/ytisf/theZoo

Experimental Setup 31

Hardware
In the realm of hardware, our experiments utilize various resources, including a local
simulator, IBM Quantum processors, and the resources provided through the FIT CTU
computational server. A crucial aspect of the experimental design involves comparing
the benefits and disadvantages of using the simulator and hardware. While the sim-
ulator offers flexibility and ease of use, it may not fully capture the complexities of
quantum behaviour. In contrast, IBM Quantum computers provide a glimpse into real-
world quantum processing, yet their capabilities are bounded by factors such as limited
computational time and queue constraints. The selection of specific IBM Quantum com-
puters for this experiment is driven by their respective capabilities and limitations, with
careful consideration for factors such as queue lengths and computational resources.
Additionally, including the CTU subscription further enhances the experiment’s access
to quantum computing resources.

When comparing the simulator and hardware, weighing the benefits and disadvan-
tages of each is important. The simulator allows for prototyping and debugging. How-
ever, it can only simulate quantum computing to some extent and at a higher compu-
tational cost.

On the other hand, IBM Quantum computers offer the advantage of executing com-
putations on real quantum hardware and enabling algorithm validation in real-world
conditions. However, using IBM Quantum computers introduces challenges such as lim-
ited access to computational time, variability in queue lengths, and the potential for
errors arising from hardware imperfections.

In practice, selecting specific IBM Quantum computers depends on their capabili-
ties and constraints. For example, when choosing backends, we prioritize those with
shorter queue lengths to minimize waiting times. We have access to the IBM Quantum
computers thanks to the CTU license, which has only 400 minutes of ‘quantum time’
per month available for the computations. Quantum time refers to the duration, in
seconds, a quantum system is committed to fulfilling a user request [56]. We explore
this constraint later when discussing the experiments.

Software
On the software side, Python scripts play a crucial role in executing the experiments,
along with utilising a sandboxed environment on the FIT CTU computational server.
The sandboxed environment ensures a controlled and secure setting for experimenta-
tion, while the dataset used for classification undergoes preprocessing through dedicated
scripts. These scripts facilitate the preprocessing of the dataset and execute the clas-
sification process, enabling the systematic evaluation of malware classification using
quantum SVM techniques.

The data extraction and preprocessing are handled by two Python scripts,
get_ids_labely.py and get_fv.py, demonstrating the practical usage of the peml
module, described in Chapter 3. The first script randomly selects training and test-
ing samples from the dataset based on the command line parameters train_size and
test_size. It saves their IDs and labels to an HDF5 file and verifies the correctness
of the saved data. The second script, get_fv.py, extracts feature vectors from the

Experimental Setup 32

selected samples. Besides the size of training and testing samples, it requires two ad-
ditional command line parameters, image_width and image_height, which specify the
sizes of the grayscale images representing the binaries. After loading IDs and labels
from a saved HDF5 file, the script extracts the samples from the zipped dataset folder,
initialises the image size, and retrieves feature vectors. It saves the feature vectors to
another HDF5 file and verifies their correctness.

The SVM classification, coordinated by the svm module described in Chapter 3, is
handled by three Python scripts, which differentiate based on computational environ-
ment (simulator or quantum hardware) and method (classical SVM or QSVM). The
scripts set up the SVMConfiguration based on the input parameters, execute the classi-
fication process, and save the results to output files. All three scripts require parameters
from the command line, such as train_size, test_size, n_features, n_qubits, and
depth. train_size, test_size and n_features specify the feature vectors required for
the classification. n_qubits, and depth specify the number of qubits for the quantum
classification and the depth of the data encoding feature map.

The classify_on_hardware.py script facilitates QSVM classification using IBM
Quantum hardware resources. It accepts additional command-line arguments specify-
ing the number of shots, the type of feature map, IBM Quantum backend, and runtime
job completion. In contrast, the classify_on_simulator.py script performs SVM clas-
sification using the quantum computer simulator. It accepts command-line arguments
for feature maps and shots but does not require IBM backend or job completion specifi-
cations. Unlike the previous scripts, classify_with_classical_kernel.py focuses on
SVM classification using classical kernels, namely linear, polynomial, SBF and sigmoid.

Listing 4.2 shows the usage of the scripts to perform classification on the debugging
dataset with four training samples and two testing samples. Listing 4.1 lists the versions
of Python packages we use in our implementation.

qiskit: 1.0.1
qiskit-algorithms: 0.3.0
qiskit-ibm-runtime: 0.20.0
qiskit-machine-learning: 0.7.2
scikit-learn: 1.4.2
numpy: 1.26.4

Code listing 4.1 Versions of Used Python Packages

Evaluation Metrics 33

Step 1: Randomly select four training samples and two testing samples from the
dataset and save their IDs and labels↪→

python3 working_dir/scripts/server/get_ids_labels.py 4 2

Step 2: Load the IDs and labels of the training and testing samples, then extract
the samples from the zipped dataset folder↪→

Transform the binary samples into 64x64 grayscale images and save their feature
vectors↪→

python3 working_dir/scripts/server/get_fv.py 4 2 64 64

Step 3: Load the feature vectors and submit jobs for evaluating the quantum kernel
matrix in QSVM classification on IBM Quantum processor ibm_cairo↪→

Parameters: train_size test_size n_features n_qubits depth shots feature_map
runtime_jobs_completed ibm_backend↪→

python3 working_dir/scripts/server/classify_on_hardware.py 20 10 4096 4 2 1000 zzPhi
1 ibm_cairo↪→

Step 4: Load the feature vectors, process finished jobs, and complete QSVM
classification↪→

python3 working_dir/scripts/server/classify_on_hardware.py 20 10 4096 4 2 1000 zzPhi
1 ibm_cairo↪→

Step 5: Load the feature vectors and perform QSVM classification on the simulator
Parameters: train_size test_size n_features n_qubits depth shots
python3 working_dir/scripts/server/classify_on_simulator.py 4 2 4096 4 2 1000

Step 6: Load the feature vectors and perform SVM classification using classical
kernels↪→

Parameters: train_size test_size n_features n_qubits
python3 working_dir/scripts/server/classify_with_classical_kernel.py 4 2 4096 4

Code listing 4.2 Example Usage of the Classification Scripts

4.2 Evaluation Metrics
Our primary metrics for evaluating the performance of the QSVM algorithm are accu-
racy and F1 score.

Accuracy represents the proportion of correctly classified samples out of the total
number of samples. It provides a straightforward indication of the model’s correctness
in classification tasks.

In addition to accuracy, we use the F1 score, similar to the authors in [12]. Their
work is a benchmark for our simulator experiments, so we use the same metrics.

The F1 score can be interpreted as a harmonic mean of precision and recall. It
reaches its best value at 1 and worst at 0. It is defined as

F1 = 2 × TP

2 × TP + FP + FN
(4.1)

where TP is the number of true positives, FN is the number of false negatives, and FP
is the number of false positives [57]. If there are no TP , FN or FP samples, the default
value of the F1 score is 0.

Experiment Parameters 34

4.3 Experiment Parameters
The main parameters of our experiments are the types of quantum kernel feature maps
and the classical kernels we use for comparison.

We consider the number of qubits on the quantum computer, a fundamental param-
eter influencing the preprocessing steps and the quantum feature map. Specifically, the
number of qubits dictates the length of input feature vectors and the dimensionality
of the quantum feature space. To maintain consistency between classical and quantum
kernels, we align the PCA in the preprocessing part with the chosen number of qubits,
ensuring compatibility and fair comparison between classical and quantum representa-
tions of the data.

Additionally, we control the depth of the feature map. The depth of the quantum
circuit, in our case, represented by the feature map, is a measure of how many ‘layers’
of quantum gates executed in parallel it takes to complete the computation defined by
the circuit [58]. It corresponds to the time it takes the quantum computer to execute
the circuit, which is an important aspect we must consider in our experiments.

We set the number of shots on the quantum computer, which is the number of
repetitions of each circuit for sampling. Increasing the number of shots influences the
statistical significance of the quantum measurements but at the cost of the computa-
tional time.

We specify the size of the grayscale image when we convert binary samples to the
feature vectors using the grayscale conversion.

Lastly, we specify the IBM backend when classifying the IBM Quantum computer.

4.4 Findings
In this section, we present our findings from the experiments. We first run QSVM
classification on the local simulator, utilising datasets of varying sizes ranging from 500
train samples and 100 test samples to 8000 train samples and 4000 test samples. We
then compare our results with those presented in [12] to assess the performance of our
implementation. Subsequently, we transition to QSVM classification on IBM Quantum
computers, employing tiny datasets comprising up to 20 train and 10 test samples. The
primary objective of these experiments is to investigate how IBM Quantum systems
behave under the flood of numerous jobs required to evaluate the kernel matrix. Through
this exploration, we aim to gain insights into the capabilities and limitations of IBM
Quantum systems in practical applications, including scalability and resource utilisation
considerations.

Simulator
As we mentioned in the previous chapter, [12] provides a comprehensive exploration
of quantum machine learning algorithms, mainly focusing on Quantum Support Vector
Machines (QSVM) and Quantum Neural Networks (QNN). Moreover, the study investi-
gates two preprocessing techniques, namely the ‘Ordered Importance Features method’
and the ‘Grayscale method’. Notably, while [12] explores both QSVM and QNN to-

Findings 35

gether with both preprocessing techniques, our research narrows its focus to the QSVM
algorithm coupled specifically with the ‘Grayscale method’, aligning with the objectives
of the thesis.

The study by [12] makes observations regarding the efficiency of QSVM algorithms,
particularly concerning their performance relative to classical counterparts. Notably,
their findings underscore the potential of QSVM algorithms to outperform classical
approaches, mainly when operating with smaller datasets. With the ZZFeatureMap,
quantum circuits demonstrated a notable accuracy improvement of up to 2.5% in specific
configurations, which suggests the capability of QSVM to extract more information from
limited data, a critical aspect in cybersecurity applications.

However, we encountered several challenges when replicating their results due to the
paper’s lack of detailed experimental descriptions and parameter specifications. They
do not specify library versions, which is crucial given the rapid evolution of the Qiskit
SDK environment. More importantly, they do not specify how many qubits and shots
and which processor they used when conducting experiments on IBM Quantum devices.
Additionally, they are not consistent with their metrics, such as not constantly measur-
ing the F1-score, and if so, it is not clear to which parameters it belongs. More clarity
is needed to ensure accurate replication and comparison of results.

Table 4.1 and Table 4.3 present the results we compiled from the paper [12], focusing
on experiments conducted with four qubits. We omitted the F1 score metric, as the
authors do not always report it for their experiments. However, the complete results
presented in [12], including F1-scores for different qubit configurations, can be found in
Appendix A. Our experimental results, which mimic those presented in Table 4.1 and
Table 4.3, are shown in Table 4.2 and Table 4.4.

Table 4.1 displays the accuracies obtained using QSVM with different types of quan-
tum kernels, distinguished by the utilised feature map. The feature maps, namely
ZZFeatureMap (ZZ), PauliFeatureMap (Pauli), ZZphiFeatureMap (ZZphi), and ZFea-
tureMap (Z), were introduced and discussed in detail in earlier sections of the thesis.
The parameters for the QSVM experiments include four qubits and a depth of two
for each feature map, with varying sizes for the training and testing datasets, as indi-
cated in the table. It is worth noting that further elaboration on these feature maps
and their significance can be found in the preceding chapter, providing readers with a
comprehensive understanding of the experimental setup.

Table 4.2 mirrors the structure of Table 4.1 but showcases the results obtained from
our experiments on a simulator. These experiments aimed to replicate the conditions
outlined in the referenced paper, utilizing the same parameter settings, including four
qubits and a depth of two for the feature maps. We conducted these experiments with
1000 shots, as the paper did not specify the shot count. We used grayscale images of
size 64 × 64, consistent with the specifications provided in the paper. The input data
were obtained by preprocessing binary samples, converting them into grayscale images,
resizing them to 64 × 64 dimensions, and converting them into 1D feature vectors.

Table 4.3 presents the accuracies achieved by SVM with classical kernels. The pa-
rameters for the classical kernel experiments include four qubits, which are utilised for
preprocessing the data through PCA. PCA transforms the binary data into 1D feature
vectors, aligning with the approach employed in the QSVM experiments. Similar to

Findings 36

Table 4.1, the dataset sizes vary, with different combinations of training and testing
samples. A detailed explanation of the preprocessing steps and their implications can
be found in Chapter 3, ensuring clarity regarding the experimental methodology.

Table 4.4 parallels Table 4.3 but presents the results obtained from our experiments
with classical SVM kernels. Like Table 4.3, these experiments aimed to replicate the
conditions outlined in the referenced paper, ensuring a fair comparison between classical
and quantum approaches.

The results in 4.1 and 4.3 showcase our findings from experiments conducted on a
simulator, replicating the conditions outlined in the referenced paper. Despite our efforts
to maintain consistency with the original experiments, we observed slight variations in
accuracy compared to the results reported in the referenced paper.

Data (Train/Test) ZZ Pauli ZZphi Z
500/100 0.78 0.75 0.82 0.81
1000/200 0.815 0.79 0.815 0.805
2000/400 0.8125 0.79 0.8075 0.8
4000/800 0.7925 0.786 0.811 0.8075
8000/1600 0.805 0.7975 0.814 0.808

Table 4.1 Accuracy Comparison Between QSVMs With Different Feature Maps With 4
Qubits and Depth 2 [12].

Data (Train/Test) ZZ Pauli ZZphi Z
500/100 0.73 0.78 0.8 0.79
1000/200 0.73 0.66 0.735 0.735
2000/400 0.748 0.743 0.775 0.767
4000/800 0.806 0.821 0.771 0.775
8000/1600 0.812 0.792 0.804 0.806

Table 4.2 Experiment Results: Accuracy Comparison Between QSVMs With Different
Feature Maps With 4 Qubits and Depth 2.

Data (Train/Test) Linear Poly RBF Sigmoid
500/100 0.77 0.78 0.8 0.61
1000/200 0.8 0.81 0.79 0.55
2000/400 0.77 0.78 0.8 0.54
4000/800 0.78 0.8 0.82 0.55
8000/1600 0.77 0.79 0.82 0.55

Table 4.3 Accuracy Comparison Between SVMs With Different Classical Kernels and
Preprocessing Corresponding to the 4 Qubits Used in QSVM [12].

Findings 37

Data (Train/Test) Linear Poly RBF Sigmoid
500/100 0.74 0.72 0.79 0.54
1000/200 0.705 0.72 0.74 0.58
2000/400 0.718 0.685 0.765 0.585
4000/800 0.771 0.637 0.791 0.637
8000/1600 0.781 0.662 0.822 0.63

Table 4.4 Experiment Results: Accuracy Comparison Between SVMs With Different Clas-
sical Kernels and Preprocessing Corresponding to the 4 Qubits Used in QSVM.

The following tables provide an overview of the results obtained on a simulator with
various qubit configurations, including the F1 scores.

Data (Train/Test) Qubits ZZ Pauli ZZphi Z
500/100 3 0.74 0.79 0.8 0.78

4 0.73 0.78 0.8 0.79
6 0.66 0.72 0.81 0.81
7 0.7 0.8 0.82 0.83

1000/200 3 0.725 0.675 0.735 0.72
4 0.73 0.66 0.735 0.735
6 0.745 0.76 0.78 0.775
7 0.79 0.735 0.78 0.78

2000/400 3 0.71 0.73 0.748 0.757
4 0.748 0.743 0.775 0.767
6 0.777 0.728 0.77 0.78
7 0.782 0.767 0.802 0.78

4000/800 3 0.799 0.784 0.771 0.777
4 0.806 0.821 0.771 0.775
6 0.83 0.812 0.816 0.8
7 0.838 0.805 0.824 0.821

8000/1600 3 0.783 0.779 0.797 0.796
4 0.812 0.792 0.804 0.806
6 0.835 0.806 0.819 0.818
7 0.851 0.812 0.831 0.821

Table 4.5 Accuracy Comparison Between QSVMs With Different Feature Maps With Depth
2.

Findings 38

Data (Train/Test) Qubits ZZ Pauli ZZphi Z
500/100 3 0.736 0.79 0.797 0.777

4 0.729 0.779 0.797 0.788
6 0.649 0.716 0.808 0.81
7 0.69 0.795 0.819 0.829

1000/200 3 0.723 0.675 0.732 0.717
4 0.729 0.658 0.732 0.731
6 0.744 0.756 0.779 0.775
7 0.787 0.731 0.779 0.78

2000/400 3 0.707 0.728 0.747 0.756
4 0.746 0.741 0.774 0.767
6 0.776 0.726 0.769 0.78
7 0.781 0.764 0.802 0.78

4000/800 3 0.797 0.783 0.769 0.775
4 0.805 0.821 0.77 0.773
6 0.83 0.811 0.816 0.799
7 0.837 0.803 0.823 0.821

8000/1600 3 0.783 0.779 0.796 0.794
4 0.812 0.792 0.803 0.805
6 0.835 0.806 0.818 0.818
7 0.851 0.812 0.83 0.821

Table 4.6 F1-score Comparison Between QSVMs With Different Feature Maps With Depth
2.

Findings 39

Data (Train/Test) Qubits linear poly rbf sigmoid
500/100 3 0.75 0.69 0.76 0.51

4 0.74 0.72 0.79 0.54
6 0.74 0.74 0.81 0.56
7 0.74 0.75 0.85 0.62

1000/200 3 0.705 0.73 0.745 0.575
4 0.705 0.72 0.74 0.58
6 0.735 0.745 0.79 0.64
7 0.73 0.775 0.78 0.64

2000/400 3 0.718 0.672 0.77 0.603
4 0.718 0.685 0.765 0.585
6 0.74 0.735 0.782 0.595
7 0.743 0.743 0.795 0.583

4000/800 3 0.766 0.639 0.787 0.671
4 0.771 0.637 0.791 0.637
6 0.772 0.804 0.83 0.608
7 0.771 0.791 0.84 0.616

8000/1600 3 0.779 0.619 0.804 0.633
4 0.781 0.662 0.822 0.63
6 0.779 0.734 0.84 0.616
7 0.776 0.746 0.845 0.608

Table 4.7 Accuracy Comparison Between SVMs With Different Classical Kernels and Pre-
processing Corresponding to the Number Qubits Used in QSVM.

Findings 40

Data (Train/Test) Qubits linear poly rbf sigmoid
500/100 3 0.746 0.662 0.754 0.51

4 0.736 0.7 0.787 0.54
6 0.736 0.729 0.808 0.56
7 0.736 0.738 0.849 0.62

1000/200 3 0.7 0.728 0.742 0.574
4 0.7 0.719 0.737 0.579
6 0.73 0.738 0.789 0.64
7 0.725 0.771 0.779 0.64

2000/400 3 0.716 0.651 0.769 0.601
4 0.716 0.67 0.764 0.584
6 0.739 0.729 0.782 0.595
7 0.742 0.737 0.795 0.582

4000/800 3 0.764 0.612 0.786 0.671
4 0.769 0.621 0.79 0.637
6 0.771 0.803 0.83 0.607
7 0.769 0.79 0.84 0.616

8000/1600 3 0.778 0.589 0.804 0.633
4 0.779 0.646 0.822 0.63
6 0.778 0.731 0.84 0.616
7 0.775 0.743 0.845 0.607

Table 4.8 F1-score Comparison Between SVMs With Different Classical Kernels and Pre-
processing Corresponding to the Number Qubits Used in QSVM.

IBM Quantum Systems
The second phase of our experiments consists of QSVM classification on IBM Quantum
systems. Unlike the simulator experiments, where we benchmarked our results against
those presented in the [12] paper, we opted for a different approach for the hardware
experiments. There are several key reasons behind this decision.

Firstly, the [12] paper lacks crucial details regarding the experimental setup for
their IBM Quantum experiments. Parameters such as the number of qubits, shots, and
specific processor configurations used in their experiments remain unspecified. Without
these essential parameters, it becomes impractical, if not impossible, to replicate their
results accurately.

Secondly, the paper fails to provide information about the software environment and
library versions used in their experiments. Given the rapid evolution of quantum com-
puting frameworks like Qiskit, precise details about library versions are indispensable
for reproducibility and validation purposes.

Moreover, the [12] paper was released in June 2023, predating significant updates
to the IBM Quantum platform introduced in March 2024 [46, 47]. One such update
mandates the transpilation of quantum circuits to conform to the instruction set ar-
chitecture (ISA) supported by the target quantum system. However, since the paper

Findings 41

predates these updates, it is unclear whether the authors encountered similar transpila-
tion requirements or faced the challenges posed by the updated IBM Quantum platform
requirements.

As detailed in Chapter 3, transpilation is a critical requirement when executing
quantum circuits on IBM Quantum systems. Failure to transpile circuits renders them
incompatible with the underlying hardware and, therefore, unusable for real-world ap-
plications. While the issue is well-documented and acknowledged within the Qiskit
community, it remains unresolved at the time of this study [48, 49]. Consequently, any
comparison with the results presented in [12] would be inherently flawed due to the
different experimental conditions.

Due to these challenges, we faced limitations when running experiments on real
quantum computers. To address the issues outlined earlier, we implemented a fix in-
volving the addition of transpilation and adopting a one-job-per-kernel-entry approach,
as detailed in Chapter 3. Transpilation, a critical requirement when executing quan-
tum circuits on IBM Quantum systems, involves adapting circuits to conform to the
target quantum system’s instruction set architecture (ISA). Our fix resolved the crit-
ical challenges, although more optimal and efficient solutions exist, as discussed later
in this chapter. Time constraints during the master’s thesis project limited our ability
to explore these alternatives fully. Consequently, we could only conduct tests on tiny
datasets, comprising a maximum of 20 train and 10 test samples.

QSVM classification necessitates two quantum kernel matrices: one for training and
one for testing. The training matrix is symmetric with size n× n, where n refers to the
number of training samples. The test matrix is m×n, where m refers to the number of
testing samples. For instance, considering the 20 train and 10 test samples dataset, our
one-job-per-kernel-entry approach translates to 390 jobs on the quantum computer.

During the debugging phase, we experimentally evaluated the ”quantum time” it
takes to run on a single job. One job consists of a parametrized quantum circuit (chosen
feature map) with a concrete sample (feature vector) as a parameter. We experimented
with the number of shots and different backends (quantum computers) and found out
that, in our case, it takes approximately 15 ‘quantum seconds’ to execute one job.
Therefore, the total time required to evaluate the small dataset containing 20 train
and 10 test samples is approximately 97.5 minutes on the quantum computer. These
limitations are further compounded by the constraints of our CTU license, which grants
us access to only 400 ‘quantum minutes’ per month.

Transitioning from the evaluation of quantum time to the impact of job queue dy-
namics, we observed significant variations in execution time due to the dynamics of the
job queue. Backend workload levels vary, leading to fluctuating queue lengths. There-
fore, we initially opted for a combination of a least busy backend and a busier backend
(in our case, ibm_torino) to examine the impact on queue wait times.

Additionally, we experimented with the number of jobs sent in a single session. Ses-
sions allow all jobs to be executed consecutively, minimizing queue wait times. However,
as the number of jobs in a session and the used quantum minutes approach the limit
imposed by the license, the queue wait time increases exponentially. Consequently, even
small datasets (e.g., 20 train and 10 test samples) could queue for up to approximately
14 days on the ibm_torino backend, leading us to explore alternative backends.

Discussion 42

Table 4.9 presents the results of our experiments conducted on IBM Quantum sys-
tems using various backend configurations. The table showcases the performance metrics
obtained from running Quantum Support Vector Machine (QSVM) classification tasks
on datasets of different sizes. We began with smaller datasets of 4 train and 2 test
samples, gradually increasing the dataset size to 8 train and 4 test samples, and finally
evaluating performance on a larger dataset with 20 train and 10 test samples.

We executed experiments on different IBM Quantum backends for each dataset size,
including ibm_torino, ibm_algiers, ibm_cairo, and ibm_kyoto. The ‘job time’ col-
umn specifies the average time each job executes on the respective backend, measured
in ‘quantum seconds’. While the accuracy and F1-score metrics are provided for com-
pleteness, it is important to note that due to the small dataset sizes, these metrics may
not accurately reflect the performance of the QSVM algorithm. However, they offer
insights into the relative performance across different backends and dataset sizes, pro-
viding a basis for comparison. Overall, the table illustrates the iterative nature of our
experiments, starting from smaller datasets and progressively scaling up to larger ones
while also exploring the performance variation across different IBM Quantum backends.

Data (Train/Test) Backend Job Time Accuracy F1-Score
4/2 ibm_torino 15s 0.5 0.333

ibm_algiers 18s 0.5 0.333
8/4 ibm_torino 18s 1 1

ibm_algiers 15s 0.75 0.733
20/10 ibm_cairo 16s 0.6 0.6

ibm_kyoto 17s 0.6 0.524

Table 4.9 Experiment Results: QSVM Classification on IBM Quantum Systems With
Various Datasets and Backends.

4.5 Discussion
In this section, we discuss the results of the experiments performed on the simulator
and IBM Quantum systems and propose optimisation techniques that could elevate the
performance of our QSVM algorithm.

The results we obtained from the simulator are remarkably similar to those reported
in the referenced paper [12]. Although our results show slightly lower values than the
results in [12], it may be attributed to differences in the chosen methodology for sample
selection. The authors of the referenced paper [12] did not specify their sample selection
process, dataset balance, or if they used the same samples across various dataset sizes.
Because of that, we could not precisely mimic the setup conditions and probably have
a difference in the used data, which might be one of the reasons why our results differ.
We have chosen to select samples randomly, focusing on having the same number of
benign and malicious samples to avoid any biases as much as we can. We do not know
if their samples do not have any bias, which could propagate to the results.

When we compare the performance of QSVM with quantum feature maps to that
of SVM with classical kernels, it is evident that QSVM consistently achieves higher or

Discussion 43

similar accuracy. In this case, we have the same input preprocessed data, and the only
difference is the chosen kernel. We can see there is a slight increase in accuracy and
F1 score with the increase in the number of qubits, which aligns with the hypothesis
presented in the reference paper [12] that precision increases with the number of qubits,
particularly on small datasets.

Regarding hardware experimentation, our focus was exploring the behaviour of IBM
Quantum systems. As mentioned earlier, we have access to the IBM Quantum Platform
thanks to the CTU license. We are one of the first users of the IBM Quantum Platform
under this licence, so a part of our research process was to explore how the IBM Quantum
environment behaves under the workload of jobs.

Despite the relatively small size of our individual jobs in terms of data volume
and quantum processing time per job, due to the nature of machine learning tasks,
a considerable number of jobs are required for our classification, especially with our
current implementation, where one job is required per kernel entry.

Our experimentation involved testing various backends, and for managing a larger
number of jobs, we opted to submit them all within a single session. When selecting the
least busy system available, we typically encountered queue times of only a few minutes.
However, with the busiest system, wait times could extend to several hours, even with a
relatively small number of jobs per session. While the quantum processing time required
to execute the jobs remained consistent across various backends, differing only by a few
seconds, these differences had a notable impact when considering our limited resources
and the larger volume of jobs we needed to process.

There are various paths to explore when it comes to optimising our implementation
of the QSVM algorithm. We can further experiment with the design of feature maps
and modify the gates used in the circuit. We can also combine different data mapping
functions.

Additionally, instead of combining classical SVM with a quantum kernel, we could
explore a fully quantum version, the quantum variational classifier, which uses a varia-
tional quantum circuit to classify in a direct analogy to conventional SVM [14]. However,
this approach may face challenges due to the limited number of quantum computational
minutes available on the IBM Quantum Platform through the CTU license. If we were
to perform training on the quantum computer, not just the evaluation of the kernel
matrix, it could consume more quantum processing time.

We can also explore different preprocessing methods for malware samples, such as the
‘Ordered Importance Features’ method, which was suggested in [12]. Furthermore, we
could explore entirely different quantum algorithms for classification, such as Quantum
Neural Networks [12].

From the implementation standpoint, we can optimise the number of quantum cir-
cuits sent within a single job to the quantum computer. Currently, we send one job per
kernel entry, but maximising the job size could reduce the number of jobs and poten-
tially decrease the quantum processing time. Additionally, further exploration of the
topology of IBM quantum computers could be helpful. Each computer has a different
layout of qubits, and specifying the qubits we want to use for computation may reduce
computation time.

Chapter 5

Conclusion

This thesis explores the application of quantum computing for malware classification.
The main objectives were to investigate the potential of quantum machine learning in
malware classification and to evaluate the performance of the Quantum Support Vector
Machine (QSVM) algorithm compared to classical approaches.

Firstly, we introduced the machine learning-based malware classification. We de-
scribed our data extraction and preprocessing techniques, such as converting binaries to
grayscale images and Principal Component Analysis. We presented the Support Vector
Machine algorithm with a focus on the kernel functions. We provided a simple introduc-
tion to quantum computing, highlighting the key aspects that need to be understood to
work with the QSVM algorithm, making it accessible to researchers without a quantum
computing background. We studied the QSVM algorithm, which combines a classical
SVM algorithm with a quantum kernel, and compared it to the SVM.

We used a publicly available PE Malware Machine Learning dataset for the malware
classification, for which we implemented a custom Python module that handles the
selection, extraction, and preprocessing of the malware samples. We implemented the
QSVM algorithm.

We addressed issues in the original implementation of classes for quantum kernel
evaluation in Qiskit Machine Library, namely the inability to split the evaluation process
into distinct parts, the absence of transpilation for fidelity circuits and the issue with
submitting all the fidelity circuits in one single job to IBM Quantum leading to exceeding
the maximum limit for job size. The absence of transpilation is a known issue within the
Qiskit community and, at the time of finishing this thesis, has not yet been resolved.
These critical issues would prevent the algorithm’s execution on the IBM Quantum
systems. We managed to fix those issues, as explained in Chapter 3. Our enhancements
address critical flaws in the original implementation and pave the way for more efficient
and practical utilisation of quantum computing resources in malware classification tasks.

Besides evaluating the algorithm on a local simulator, we also run it on a real quan-
tum computer provided by the IBM Quantum Platform. We evaluated its performance
using a publicly available PE Malware Machine Learning dataset. We tested how the
real IBM Quantum computers work under the workload of many computation jobs in
combination with the license provided to CTU from IBM. We were one of the first users

44

45

from the entire university to perform computations on the IBM Quantum computers un-
der this license. Our experiments on IBM hardware provide insights into the behaviour
and performance of quantum computers, especially in handling large-scale computations
for malware classification tasks.

Lastly, we presented the paths for further exploration and optimisation. As this
work represents initial steps in leveraging quantum computing for malware detection,
there is wide scope for improving our implemented algorithm and its performance and
exploring new quantum machine learning techniques.

This thesis lays the groundwork for future research in quantum-enhanced malware
classification. Our implementation is compatible with the IBM Quantum interface,
allowing anyone to advance the quantum machine learning field further.

Appendix A

Benchmark Results on
Simulator

In this appendix, we present the benchmark results obtained from the experiments
conducted by [12], focusing on the accuracy and F1-score comparisons of QSVMs with
different feature maps. The tables provided here showcase the performance metrics for
various datasets and qubit configurations, as detailed in Chapter 4. Additionally, it
is important to note that in the Table A.4, we omit the lines where the authors did
not provide the F1-score metric, ensuring clarity and consistency in the presentation of
results.

Data (Train/Test) Qubits ZZ Pauli ZZphi Z
500/100 4 0.78 0.75 0.82 0.81
1000/200 4 0.815 0.79 0.815 0.805

6 0.81 0.715 0.79 0.785
7 0.825 0.765 0.785 0.78

2000/400 3 0.765 0.7575 0.8 0.7825
4 0.8125 0.79 0.8075 0.8

4000/800 4 0.7925 0.786 0.811 0.8075
8000/1600 4 0.805 0.7975 0.814 0.808

Table A.2 Accuracy Comparison Between QSVMs With Different Feature Maps With Depth
2 [12].

46

47

Data (Train/Test) Qubits ZZ Pauli ZZphi Z
1000/200 6 0.828 0.739 0.817 0.815

7 0.844 0.791 0.81 0.81
2000/400 3 0.79 0.774 0.819 0.804

4 0.827 0.814 0.826 0.819

Table A.4 F1-score Comparison Between QSVMs With Different Feature Maps With Depth
2 [12].

Bibliography

1. JUREČEK, Martin. Algoritmy informačńı bezpečnosti: Detekce Malware [online].
2023. [visited on 2024-04-24]. Available from: https://courses.fit.cvut.cz/NI-
AIB/lectures/files/ni_aib_pr8.pdf.

2. MONNAPPA, K. A. Learning Malware Analysis: Explore the concepts, tools, and
techniques to analyze and investigate Windows malware. Packt Publishing, 2018.
isbn 9781788392501.

3. CyberWire: benign. In: [online]. N2K Networks, Inc., 2024 [visited on 2024-05-08].
Available from: https://thecyberwire.com/glossary/benign.

4. KATZENBEISSER, Stefan; KINDER, Johannes; VEITH, Helmut. Malware De-
tection. In: Encyclopedia of Cryptography and Security. Boston, MA: Springer US,
2011, pp. 752–755. isbn 978-1-4419-5905-8. Available from doi: 10.1007/978-1-
4419-5906-5_838.

5. SHAHZAD, R.K. Automated Malware Detection and Classification Using Super-
vised Learning. Blekinge Tekniska Högskola, 2024. Blekinge Institute of Technol-
ogy Doctoral Dissertation Series. isbn 9789172954755. Available also from: https:
//books.google.cz/books?id=HEGW0AEACAAJ.

6. MAHAJAN, Ginika; SAINI, Bhavna; ANAND, Shivam. Malware Classification Us-
ing Machine Learning Algorithms and Tools. In: 2019 Second International Con-
ference on Advanced Computational and Communication Paradigms (ICACCP).
IEEE, 2019, pp. 1–8. isbn 978-1-5386-7989-0. Available from doi: 10 . 1109 /
ICACCP.2019.8882965.

7. ZAHRADNICKÝ, Tomáš; KOKEŠ, Josef. Reverzńı inženýrstv́ı: Úvod do
reverzńıho inženýrstv́ı, analýza zásobńıku [online]. 2023. [visited on 2024-05-08].
Available from: https://courses.fit.cvut.cz/MI- REV/media/lectures/
rev01cz.pdf.

8. AI and machine learning. In: [online]. Gen Digital Inc., 2024 [visited on 2024-05-
08]. Available from: https://www.avast.com/technology/ai-and-machine-
learning.

48

https://courses.fit.cvut.cz/NI-AIB/lectures/files/ni_aib_pr8.pdf
https://courses.fit.cvut.cz/NI-AIB/lectures/files/ni_aib_pr8.pdf
https://thecyberwire.com/glossary/benign
https://doi.org/10.1007/978-1-4419-5906-5_838
https://doi.org/10.1007/978-1-4419-5906-5_838
https://books.google.cz/books?id=HEGW0AEACAAJ
https://books.google.cz/books?id=HEGW0AEACAAJ
https://doi.org/10.1109/ICACCP.2019.8882965
https://doi.org/10.1109/ICACCP.2019.8882965
https://courses.fit.cvut.cz/MI-REV/media/lectures/rev01cz.pdf
https://courses.fit.cvut.cz/MI-REV/media/lectures/rev01cz.pdf
https://www.avast.com/technology/ai-and-machine-learning
https://www.avast.com/technology/ai-and-machine-learning

Bibliography 49

9. Machine Learning in Cybersecurity. In: [online]. AO Kaspersky Lab, 2024 [visited
on 2024-05-08]. Available from: https : / / www . kaspersky . com / enterprise -
security/wiki-section/products/machine-learning-in-cybersecurity.

10. BHARTI, Kishor; CERVERA-LIERTA, Alba; KYAW, Thi Ha; HAUG, Tobias;
ALPERIN-LEA, Sumner; ANAND, Abhinav; DEGROOTE, Matthias; HEIMO-
NEN, Hermanni; KOTTMANN, Jakob S.; MENKE, Tim; MOK, Wai-Keong; SIM,
Sukin; KWEK, Leong-Chuan; ASPURU-GUZIK, Alán. Noisy intermediate-scale
quantum algorithms. Reviews of Modern Physics [online]. 2022, vol. 94, no. 1 [vis-
ited on 2024-01-29]. issn 0034-6861. Available from doi: 10.1103/RevModPhys.
94.015004.

11. GUJJU, Yaswitha; MATSUO, Atsushi; RAYMOND, Rudy. Quantum Machine
Learning on Near-Term Quantum Devices: Current State of Supervised and Un-
supervised Techniques for Real-World Applications [online]. 2023. [visited on 2024-
01-29]. Available from: https://doi.org/10.48550/arXiv.2307.00908.

12. BARRUÉ, Grégoire; QUERTIER, Tony. Quantum Machine Learning for Malware
Classification. ArXiv.org [online]. 2023, p. 30 [visited on 2023-12-09]. Available
from: https://doi.org/10.48550/arXiv.2305.09674.

13. SCHÖLKOPF, Bernhard; SMOLA, Alexander J. Learning with Kernels: Support
Vector Machines, Regularization, Optimization, and Beyond. The MIT Press, 2018.
isbn 9780262256933. Available from doi: 10.7551/mitpress/4175.001.0001.

14. HAVLÍČEK, Vojtěch; CÓRCOLES, Antonio D.; TEMME, Kristan; HARROW,
Aram W.; KANDALA, Abhinav; CHOW, Jerry M.; GAMBETTA, Jay M. Super-
vised learning with quantum-enhanced feature spaces. Nature. 2019, vol. 567, no.
7747, pp. 209–212. issn 0028-0836. Available also from: https://doi.org/10.
48550/arXiv.1804.11326.

15. QISKIT CONTRIBUTORS. IBM Quantum Platform [online]. 2024. [visited on
2024-05-04]. Available from: https://quantum.ibm.com/.

16. QISKIT CONTRIBUTORS. Qiskit: An Open-source Framework for Quantum
Computing [online]. 2024. [visited on 2024-05-04]. Available from: https : / /
github.com/Qiskit.

17. BALÍK, Miroslav; TRÁVNÍČEK, Jan; VAGNER, Ladislav; VOGEL, Josef. Pro-
gramováńı a algoritmizace 1: Algoritmy a programy, základńı podpora vývoje [on-
line]. 2023. [visited on 2024-04-29]. Available from: https://courses.fit.cvut.
cz/BI-PA1/@master/media/lectures/l01-alg-cz.pdf.

18. UCCI, Daniele; ANIELLO, Leonardo; BALDONI, Roberto. Survey of machine
learning techniques for malware analysis. Computers & Security. 2019, vol. 81,
pp. 123–147. issn 01674048. Available from doi: 10.1016/j.cose.2018.11.001.

19. NATARAJ, L.; KARTHIKEYAN, S.; JACOB, G.; MANJUNATH, B. S. Malware
Images: Visualization and Automatic Classification. In: Proceedings of the 8th In-
ternational Symposium on Visualization for Cyber Security [online]. New York, NY,
USA: ACM, 2011, pp. 1–7 [visited on 2024-01-29]. isbn 9781450306799. Available
from doi: 10.1145/2016904.2016908.

https://www.kaspersky.com/enterprise-security/wiki-section/products/machine-learning-in-cybersecurity
https://www.kaspersky.com/enterprise-security/wiki-section/products/machine-learning-in-cybersecurity
https://doi.org/10.1103/RevModPhys.94.015004
https://doi.org/10.1103/RevModPhys.94.015004
https://doi.org/10.48550/arXiv.2307.00908
https://doi.org/10.48550/arXiv.2305.09674
https://doi.org/10.7551/mitpress/4175.001.0001
https://doi.org/10.48550/arXiv.1804.11326
https://doi.org/10.48550/arXiv.1804.11326
https://quantum.ibm.com/
https://github.com/Qiskit
https://github.com/Qiskit
https://courses.fit.cvut.cz/BI-PA1/@master/media/lectures/l01-alg-cz.pdf
https://courses.fit.cvut.cz/BI-PA1/@master/media/lectures/l01-alg-cz.pdf
https://doi.org/10.1016/j.cose.2018.11.001
https://doi.org/10.1145/2016904.2016908

Bibliography 50

20. JUREČEK, Martin. Algoritmy informačńı bezpečnosti: Techniky detekce malwaru
založené na strojovém učeńı I [online]. 2023. [visited on 2024-04-24]. Available from:
https://courses.fit.cvut.cz/NI-AIB/lectures/files/ni_aib_pr9.pdf.

21. Distribution of Malware and PUA by Operating System. In: AV-ATLAS [online].
AV-TEST, 2024 [visited on 2024-04-25]. Available from: https://portal.av-
atlas.org/malware.

22. PE Format. In: Microsoft Learn [online]. Microsoft, 2024 [visited on 2024-04-25].
Available from: https://learn.microsoft.com/en-us/windows/win32/debug/
pe-format.

23. What is principal component analysis (PCA)? In: [online]. IBM, 2024 [visited
on 2024-05-08]. Available from: https://www .ibm.com/topics/principal-
component-analysis.

24. SCHÖLKOPF, B.; MIKA, S.; C.J.C., Burges.; KNIRSCH, P.; MULLER, K.R.;
RATSCH, G.; SMOLA, A.J. Input space versus feature space in kernel-based meth-
ods. IEEE Transactions on Neural Networks. 1999, vol. 10, no. 5, pp. 1000–1017.
issn 10459227. Available from doi: 10.1109/72.788641.

25. HEARST, M.A.; DUMAIS, S.T.; OSUNA, E.; PLATT, J.; SCHOLKOPF, B.
Support vector machines. IEEE Intelligent Systems and their Applications. 1998,
vol. 13, no. 4, pp. 18–28. issn 1094-7167. Available from doi: 10.1109/5254.
708428.

26. JUREČEK, Martin. Algoritmy informačńı bezpečnosti: Techniky detekce malwaru
založené na strojovém učeńı II [online]. 2023. [visited on 2024-04-24]. Available
from: https://courses.fit.cvut.cz/NI-AIB/lectures/files/ni_aib_pr10.
pdf.

27. NIELSEN, Michael A.; CHUANG, Isaac L. Quantum Computation and Quantum
Information: 10th Anniversary Edition. Cambridge University Press, 2010. isbn
9780511976667. Available from doi: 10.1017/CBO9780511976667.

28. DOMBEK, Daniel; KALVODA, Tomáš; KLEPRLÍK, Luděk; KLOUDA, Karel.
Lineárńı algebra: Studijńı text [online]. 2020. [visited on 2024-03-30]. Available
from: https://kam.fit.cvut.cz/deploy/bi-lin//lin-text.pdf.

29. QISKIT CONTRIBUTORS. Qiskit Textbook: Introduction course [online]. Github,
2023 [visited on 2024-05-04]. Available from: https : / / github . com / Qiskit /
textbook/blob/main/notebooks/intro/what-is-quantum.ipynb.

30. PHAN, Anna. Qiskit Global Summer School 2021: Introduction to Quantum Ker-
nels and SVMs [online]. 2021. [visited on 2023-12-09]. Available from: https :
//github.com/Qiskit/platypus/blob/main/notebooks/summer- school/
2021/resources/lab-notebooks/lab-3.ipynb.

31. QISKIT CONTRIBUTORS. Qiskit Machine Learning [online]. 2024. [visited on
2024-05-04]. Available from: https://qiskit-community.github.io/qiskit-
machine-learning/.

https://courses.fit.cvut.cz/NI-AIB/lectures/files/ni_aib_pr9.pdf
https://portal.av-atlas.org/malware
https://portal.av-atlas.org/malware
https://learn.microsoft.com/en-us/windows/win32/debug/pe-format
https://learn.microsoft.com/en-us/windows/win32/debug/pe-format
https://www.ibm.com/topics/principal-component-analysis
https://www.ibm.com/topics/principal-component-analysis
https://doi.org/10.1109/72.788641
https://doi.org/10.1109/5254.708428
https://doi.org/10.1109/5254.708428
https://courses.fit.cvut.cz/NI-AIB/lectures/files/ni_aib_pr10.pdf
https://courses.fit.cvut.cz/NI-AIB/lectures/files/ni_aib_pr10.pdf
https://doi.org/10.1017/CBO9780511976667
https://kam.fit.cvut.cz/deploy/bi-lin//lin-text.pdf
https://github.com/Qiskit/textbook/blob/main/notebooks/intro/what-is-quantum.ipynb
https://github.com/Qiskit/textbook/blob/main/notebooks/intro/what-is-quantum.ipynb
https://github.com/Qiskit/platypus/blob/main/notebooks/summer-school/2021/resources/lab-notebooks/lab-3.ipynb
https://github.com/Qiskit/platypus/blob/main/notebooks/summer-school/2021/resources/lab-notebooks/lab-3.ipynb
https://github.com/Qiskit/platypus/blob/main/notebooks/summer-school/2021/resources/lab-notebooks/lab-3.ipynb
https://qiskit-community.github.io/qiskit-machine-learning/
https://qiskit-community.github.io/qiskit-machine-learning/

Bibliography 51

32. QISKIT CONTRIBUTORS. Qiskit Machine Learning: FidelityQuantumKernel
[online]. 2024. [visited on 2024-05-08]. Available from: https : / / qiskit -
community.github.io/qiskit-machine-learning/stubs/qiskit_machine_
learning.kernels.FidelityQuantumKernel.html.

33. QISKIT CONTRIBUTORS. Qiskit Machine Learning: BaseKernel [online]. 2024.
[visited on 2024-05-08]. Available from: https://qiskit- community.github.
io/qiskit-machine-learning/stubs/qiskit_machine_learning.kernels.
BaseKernel.html#qiskit_machine_learning.kernels.BaseKernel.

34. QISKIT CONTRIBUTORS. Qiskit Algorithms: BaseStateFidelity. 2024. Available
also from: https://qiskit-community.github.io/qiskit-algorithms/stubs/
qiskit_algorithms.state_fidelities.BaseStateFidelity.html#qiskit_
algorithms.state_fidelities.BaseStateFidelity.

35. QISKIT CONTRIBUTORS. IBM Quantum Documentation: Sampler [online].
2024. [visited on 2024-05-08]. Available from: https://docs.quantum.ibm.com/
api/qiskit/qiskit.primitives.Sampler.

36. QISKIT CONTRIBUTORS. IBM Quantum Documentation: PauliFeatureMap [on-
line]. 2023. [visited on 2023-12-10]. Available from: https://docs.quantum.ibm.
com/api/qiskit/qiskit.circuit.library.PauliFeatureMap.

37. QISKIT CONTRIBUTORS. IBM Quantum Documentation: ZZFeatureMap [on-
line]. 2023. [visited on 2023-12-10]. Available from: https://docs.quantum.ibm.
com/api/qiskit/qiskit.circuit.library.ZZFeatureMap.

38. QISKIT CONTRIBUTORS. IBM Quantum Documentation: ZFeatureMap [on-
line]. 2023. [visited on 2023-12-10]. Available from: https://docs.quantum.ibm.
com/api/qiskit/qiskit.circuit.library.ZFeatureMap.

39. LESTER, Michael. PE Malware Machine Learning Dataset [online]. [visited on
2024-01-29]. Available from: https://practicalsecurityanalytics.com/pe-
malware-machine-learning-dataset/.

40. THE HDF GROUP. The HDF5 Library & File Format [online]. 2006. [visited on
2024-05-08]. Available from: https://www.hdfgroup.org/solutions/hdf5/.

41. PAVLOV, Igor. 7-Zip [online]. 2024. [visited on 2024-05-08]. Available from: https:
//www.7-zip.org/.

42. PEDREGOSA, F.; VAROQUAUX, G.; GRAMFORT, A.; MICHEL, V.;
THIRION, B.; GRISEL, O.; BLONDEL, M.; PRETTENHOFER, P.; WEISS,
R.; DUBOURG, V.; VANDERPLAS, J.; PASSOS, A.; COURNAPEAU, D.;
BRUCHER, M.; PERROT, M.; DUCHESNAY, E. Scikit-learn: Machine Learn-
ing in Python. Journal of Machine Learning Research. 2011, vol. 12, pp. 2825–
2830.

43. SCIKIT-LEARN DEVELOPERS. scikit-learn: sklearn.svm.SVC [online]. 2024.
[visited on 2024-05-08]. Available from: https://scikit- learn.org/stable/
modules/generated/sklearn.svm.SVC.html.

44. QISKIT CONTRIBUTORS. IBM Quantum Documentation: SamplerV2 [online].
2024. [visited on 2024-05-08]. Available from: https://docs.quantum.ibm.com/
api/qiskit-ibm-runtime/qiskit_ibm_runtime.SamplerV2.

https://qiskit-community.github.io/qiskit-machine-learning/stubs/qiskit_machine_learning.kernels.FidelityQuantumKernel.html
https://qiskit-community.github.io/qiskit-machine-learning/stubs/qiskit_machine_learning.kernels.FidelityQuantumKernel.html
https://qiskit-community.github.io/qiskit-machine-learning/stubs/qiskit_machine_learning.kernels.FidelityQuantumKernel.html
https://qiskit-community.github.io/qiskit-machine-learning/stubs/qiskit_machine_learning.kernels.BaseKernel.html#qiskit_machine_learning.kernels.BaseKernel
https://qiskit-community.github.io/qiskit-machine-learning/stubs/qiskit_machine_learning.kernels.BaseKernel.html#qiskit_machine_learning.kernels.BaseKernel
https://qiskit-community.github.io/qiskit-machine-learning/stubs/qiskit_machine_learning.kernels.BaseKernel.html#qiskit_machine_learning.kernels.BaseKernel
https://qiskit-community.github.io/qiskit-algorithms/stubs/qiskit_algorithms.state_fidelities.BaseStateFidelity.html#qiskit_algorithms.state_fidelities.BaseStateFidelity
https://qiskit-community.github.io/qiskit-algorithms/stubs/qiskit_algorithms.state_fidelities.BaseStateFidelity.html#qiskit_algorithms.state_fidelities.BaseStateFidelity
https://qiskit-community.github.io/qiskit-algorithms/stubs/qiskit_algorithms.state_fidelities.BaseStateFidelity.html#qiskit_algorithms.state_fidelities.BaseStateFidelity
https://docs.quantum.ibm.com/api/qiskit/qiskit.primitives.Sampler
https://docs.quantum.ibm.com/api/qiskit/qiskit.primitives.Sampler
https://docs.quantum.ibm.com/api/qiskit/qiskit.circuit.library.PauliFeatureMap
https://docs.quantum.ibm.com/api/qiskit/qiskit.circuit.library.PauliFeatureMap
https://docs.quantum.ibm.com/api/qiskit/qiskit.circuit.library.ZZFeatureMap
https://docs.quantum.ibm.com/api/qiskit/qiskit.circuit.library.ZZFeatureMap
https://docs.quantum.ibm.com/api/qiskit/qiskit.circuit.library.ZFeatureMap
https://docs.quantum.ibm.com/api/qiskit/qiskit.circuit.library.ZFeatureMap
https://practicalsecurityanalytics.com/pe-malware-machine-learning-dataset/
https://practicalsecurityanalytics.com/pe-malware-machine-learning-dataset/
https://www.hdfgroup.org/solutions/hdf5/
https://www.7-zip.org/
https://www.7-zip.org/
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
https://docs.quantum.ibm.com/api/qiskit-ibm-runtime/qiskit_ibm_runtime.SamplerV2
https://docs.quantum.ibm.com/api/qiskit-ibm-runtime/qiskit_ibm_runtime.SamplerV2

Bibliography 52

45. QISKIT CONTRIBUTORS. Qiskit Algorithms: ComputeUncompute [online].
2024. [visited on 2024-05-08]. Available from: https : / / qiskit - community .
github . io / qiskit - algorithms / stubs / qiskit _ algorithms . state _
fidelities.ComputeUncompute.html#qiskit_algorithms.state_fidelities.
ComputeUncompute.

46. QISKIT CONTRIBUTORS. IBM Quantum Platform: Update to Qiskit Runtime
Primitives [online]. 2024. [visited on 2024-04-27]. Available from: https://docs.
quantum.ibm.com/announcements/product- updates/2024- 02- 14- qiskit-
runtime-primitives-update#update-to-qiskit-runtime-primitives.

47. QISKIT CONTRIBUTORS. IBM Quantum Documentation: Configure runtime
compilation for Qiskit Runtime [online]. 2024. [visited on 2024-04-27]. Available
from: https://docs.quantum.ibm.com/run/configure-runtime-compilation.

48. QISKIT CONTRIBUTORS. Qiskit Runtime IBM Client: Sampler fails to run Fi-
delityKernel even if circuits are transpiled [online]. 2024. [visited on 2024-04-27].
Available from: https://github.com/Qiskit/qiskit-ibm-runtime/issues/
1519.

49. QISKIT CONTRIBUTORS. Qiskit Algorithms: ISA circuit support for latest Run-
time [online]. 2024. [visited on 2024-04-27]. Available from: https://github.com/
qiskit-community/qiskit-algorithms/issues/164.

50. QISKIT CONTRIBUTORS. IBM Quantum Documentation: Maximum execution
time for a Qiskit Runtime job or session [online]. 2024. [visited on 2024-04-27].
Available from: https://docs.quantum.ibm.com/run/max-execution-time.

51. QISKIT CONTRIBUTORS. Qiskit Runtime IBM Client: Qiskit Runtime [online].
2024. [visited on 2024-05-04]. Available from: https://docs.quantum.ibm.com/
api/qiskit-ibm-runtime/runtime_service.

52. QISKIT CONTRIBUTORS. IBM Quantum Documentation: Session [online].
2024. [visited on 2024-05-08]. Available from: https://docs.quantum.ibm.com/
api/qiskit-ibm-runtime/qiskit_ibm_runtime.Session.

53. QISKIT CONTRIBUTORS. IBM Quantum Documentation: PassManager [on-
line]. 2024. [visited on 2024-05-08]. Available from: https://docs.quantum.ibm.
com/api/qiskit/qiskit.transpiler.PassManager.

54. QISKIT CONTRIBUTORS. IBM Quantum Documentation: Preset Passmanagers
[online]. 2024. [visited on 2024-05-08]. Available from: https://docs.quantum.
ibm.com/api/qiskit/transpiler_preset#generate_preset_pass_manager.

55. CloudFIT. In: [online]. Faculty of Information Technology, CTU in Prague, 2024
[visited on 2024-05-05]. Available from: https://help.fit.cvut.cz/cloud-
fit/index.html.

56. QISKIT CONTRIBUTORS. IBM Quantum Documentation: Estimate job run time
[online]. 2024. [visited on 2024-05-08]. Available from: https://docs.quantum.
ibm.com/run/estimate-job-run-time.

57. SCIKIT-LEARN DEVELOPERS. scikit-learn: sklearn.metrics.f1 score [online].
2024. [visited on 2024-05-08]. Available from: https : / / scikit - learn . org /
stable/modules/generated/sklearn.metrics.f1%7B%5C_%7Dscore.html.

https://qiskit-community.github.io/qiskit-algorithms/stubs/qiskit_algorithms.state_fidelities.ComputeUncompute.html#qiskit_algorithms.state_fidelities.ComputeUncompute
https://qiskit-community.github.io/qiskit-algorithms/stubs/qiskit_algorithms.state_fidelities.ComputeUncompute.html#qiskit_algorithms.state_fidelities.ComputeUncompute
https://qiskit-community.github.io/qiskit-algorithms/stubs/qiskit_algorithms.state_fidelities.ComputeUncompute.html#qiskit_algorithms.state_fidelities.ComputeUncompute
https://qiskit-community.github.io/qiskit-algorithms/stubs/qiskit_algorithms.state_fidelities.ComputeUncompute.html#qiskit_algorithms.state_fidelities.ComputeUncompute
https://docs.quantum.ibm.com/announcements/product-updates/2024-02-14-qiskit-runtime-primitives-update#update-to-qiskit-runtime-primitives
https://docs.quantum.ibm.com/announcements/product-updates/2024-02-14-qiskit-runtime-primitives-update#update-to-qiskit-runtime-primitives
https://docs.quantum.ibm.com/announcements/product-updates/2024-02-14-qiskit-runtime-primitives-update#update-to-qiskit-runtime-primitives
https://docs.quantum.ibm.com/run/configure-runtime-compilation
https://github.com/Qiskit/qiskit-ibm-runtime/issues/1519
https://github.com/Qiskit/qiskit-ibm-runtime/issues/1519
https://github.com/qiskit-community/qiskit-algorithms/issues/164
https://github.com/qiskit-community/qiskit-algorithms/issues/164
https://docs.quantum.ibm.com/run/max-execution-time
https://docs.quantum.ibm.com/api/qiskit-ibm-runtime/runtime_service
https://docs.quantum.ibm.com/api/qiskit-ibm-runtime/runtime_service
https://docs.quantum.ibm.com/api/qiskit-ibm-runtime/qiskit_ibm_runtime.Session
https://docs.quantum.ibm.com/api/qiskit-ibm-runtime/qiskit_ibm_runtime.Session
https://docs.quantum.ibm.com/api/qiskit/qiskit.transpiler.PassManager
https://docs.quantum.ibm.com/api/qiskit/qiskit.transpiler.PassManager
https://docs.quantum.ibm.com/api/qiskit/transpiler_preset#generate_preset_pass_manager
https://docs.quantum.ibm.com/api/qiskit/transpiler_preset#generate_preset_pass_manager
https://help.fit.cvut.cz/cloud-fit/index.html
https://help.fit.cvut.cz/cloud-fit/index.html
https://docs.quantum.ibm.com/run/estimate-job-run-time
https://docs.quantum.ibm.com/run/estimate-job-run-time
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1%7B%5C_%7Dscore.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1%7B%5C_%7Dscore.html

Bibliography 53

58. QISKIT CONTRIBUTORS. IBM Quantum Documentation: Quantum Circuits
[online]. 2024. [visited on 2024-05-08]. Available from: https://docs.quantum.
ibm.com/api/qiskit/circuit.

https://docs.quantum.ibm.com/api/qiskit/circuit
https://docs.quantum.ibm.com/api/qiskit/circuit

Contents of Attached Media

README.txt......................................a brief summary of the contents
src...the source codes directory

54

	Acknowledgments
	Declaration
	Abstract
	List of Abbreviations
	Introduction
	Malware Classification Based on Machine Learning
	Data Extraction and Preprocessing
	Support Vector Machine

	Quantum Computing and Quantum Machine Learning
	Terminology
	Quantum Machine Learning
	IBM Quantum Platform

	QSVM for Malware Classification
	PEML Module
	SVM Module
	Implementation of QSVM

	Experiments
	Experimental Setup
	Evaluation Metrics
	Experiment Parameters
	Findings
	Discussion

	Conclusion
	Benchmark Results on Simulator
	Bibliography
	Contents of Attached Media

