
Technical University of Košice
Faculty of Electrical Engineering and Informatics

Compact OPAQUE Protocol Implementation
for Embedded Cryptographic Applications

Master thesis

2024 Bc. Patrik Zeleňák

Technical University of Košice
Faculty of Electrical Engineering and Informatics

Compact OPAQUE Protocol Implementation
for Embedded Cryptographic Applications

Master thesis

Study Programme: Computer networks
Field of Study: Computer Science
Department: Department of Electronics andMultimedia Communica-

tions
Supervisor: prof. Ing. Miloš Drutarovský, CSc.

Košice 2024 Bc. Patrik Zeleňák

Abstract in English

This thesis focuses on a new and modern asymmetric password-authenticated
key exchange (aPAKE) protocol called OPAQUE, which holds significant poten-
tial to become a widely adopted method for client-server authentication. The
OPAQUE protocol works well with prime-order elliptic curves, which is a signifi-
cant advantage inmodern cryptography. However, this thesis describes the usage
of non-prime-order elliptic curves, focusing specifically onBernstein’s Curve25519.
Security concerns associatedwith this adaptation are addressed by applying a fast
transformation to transition into a more secure abstract group known as the Ris-
tretto255 group, utilizing the Ristretto255 transformation. Due to the absence of
OPAQUE implementations targeted for microcontroller units (MCUs), we chose
to develop our own implementation of the Ristretto255 transformation and sub-
sequently the entire OPAQUE protocol. This implementation employs various
strategies and optimization techniques designed for the ARM Cortex-M4 core.
Furthermore, our implementation adopts an endian-agnostic approach, ensuring
platform independence. The implementation strategies and optimization tech-
niques heavily focus on accelerating critical arithmetic operationswithinGF(2255−
19). As a result, we have created compact and fast implementations of Ristretto255
and theOPAQUEprotocol inC language, specifically targeted for theARMCortex-
M4 core. This research contributes to expanding the applicability of OPAQUE
authentication to resource-constrained embedded systems, especially those with
the ARM Cortex-M4 core, enhancing its potential for widespread adoption in
modern cryptographic applications. This thesis provides our optimized imple-
mentation of the Ristretto255 transformation as well as the entire OPAQUE pro-
tocol. The results of our measurements are available in Chapter ??

Keywords

OPAQUE protocol, aPAKE, Ristretto255, ARMCortex-M4, Embedded cryptogra-
phy, Microcontrollers

Abstrakt v slovenčine

Táto práca sa zameriava na nový a moderný asymetrický protokol pre auten-
tifikáciu heslom a výmenu kľúčov (aPAKE) nazývaný OPAQUE, ktorý má po-
tenciál stať sa široko používanou metódou pre autentifikáciu klienta a servera.
OPAQUE protokol poskytuje podporu pre eliptické krivky prvočíselného rádu,
čo je značná výhoda v oblasti modernej kryptografie. Avšak táto práca opisuje
použitie eliptických kriviek s neprvočíselným rádom, konkrétne so zameraním
na Bernsteinovu krivku Curve25519. Obavy týkajúce sa bezpečnosti súvisiace s
touto adaptáciou sú riešené aplikovaním rýchlej transformácie, ktorá zabezpečuje
prechod do bezpečnejšej abstraktnej grupy známej ako Ristretto255 grupa, pros-
trednictvom Ristretto255 transformácie. Vzhľadom na nedostatok implementá-
cií OPAQUE protokolu zameraných na mikrokontroléry sme sa rozhodli vyvinúť
vlastnú implementáciu Ristretto255 transformácie a následne celého OPAQUE
protokolu. Táto implementácia využíva rôzne stratégie a optimalizačné tech-
niky navrhnuté pre procesory s jadrom ARM Cortex-M4. Okrem toho naša im-
plementácia poskytuje kód nezávislý na endianite, čo zabezpečuje platformovú
nezávislosť. Implementačné stratégie a optimalizačné techniky sa zameriavajú
na zrýchľovanie kritických aritmetických operácií nad GF(2255 − 19). V dôsledku
toho sme vytvorili kompaktnú a rýchlu implementáciu Ristretto255 transformá-
cie a zároveň aj OPAQUEprotokolu v jazykuC, ktoré sú špeciálne optimalizované
pre procesory s jadrom ARM Cortex-M4. Táto práca prispieva k rozšíreniu ap-
likovateľnosti autentifikačného protokolu OPAQUE pre vstavané systémy, ktoré
disponujú obmedzenými požiadavkami na hardvér, najmä na tie s jadrom ARM
Cortex-M4, čím zvyšuje jeho potenciál pre široké uplatnenie v moderných kryp-
tografických aplikáciách. Táto práca poskytuje našu optimalizovanú implemen-
táciu Ristretto255 transformácie a celého OPAQUE protokolu. Výsledky našich
meraní sú k dispozícii v kapitole 7.

Klúčové slová

OPAQUE protokol, aPAKE, Ristretto255, ARM Cortex-M4, Embedded krypto-
grafia, Mikrokontroléry

iv

Bibliographic Citation

ZELEŇÁK, Patrik. Compact OPAQUE Protocol Implementation for Embedded Cryp-
tographic Applications. Košice: Technical University of Košice, Faculty of Electri-
cal Engineering and Informatics, 2024. 82s. Supervisor: prof. Ing. Miloš Dru-
tarovský, CSc.

v

Declaration

I declare that I have independently prepared the master’s thesis on the topic:
"Compact OPAQUE Protocol Implementation for Embedded Cryptographic Ap-
plications" using the literature referencedunder the professional guidance of prof.
Ing. Miloš Drutarovský, CSc.

Košice, 19.4.2024 .
Signature

Acknowledgment

I would like to thank the supervisor of my masters’s thesis, prof. Ing. Miloš Dru-
tarovský, CSc., for his methodological guidance, willingness, and expert advice
he provided me during the preparation of my master’s thesis.

Contents

List of Abbreviations 1

List of Symbols 3

Introduction 4

Opaque Protocol Overview 7

1 OPAQUE Protocol Overview 7
1.1 Offline Registration Phase . 8
1.2 Online Authentication Phase . 9

Basic Cryptographic Building Blocks and Protocols Used in OPAQUE 11

2 Basic Cryptographic Building Blocks and Concepts Used in OPAQUE 11
2.1 Group Theory Overview . 12
2.2 Modern Elliptic Curve25519 . 12
2.3 Ristretto255 Group and Transformation 15

2.3.1 Encoding from Ristretto255 Group 18
2.3.2 Decoding to Ristretto255 Group 19
2.3.3 Hash to Ristretto255 Group 19

2.4 Password-authenticated Key Exchange 21

Detailed Description of OPAQUE Phases 24

3 Detailed Description of OPAQUE Phases 24
3.1 Client to Server Registration phase 25

3.1.1 Oblivious Pseudorandom Function 25
3.2 Client to Server Authentication Phase 28

3.2.1 First AKE Message . 29
3.2.2 Second AKE Message . 30

ix

Contents

3.2.3 Third AKE Message . 32

Development Enviroment 36

4 Development Enviroment 36
4.1 Development Platform . 36

4.1.1 Programming enviroment . 37
4.1.2 Python Prototype . 37
4.1.3 Embedded Platform . 37

4.2 QEMU for Big Endian Code on Little Endian Devices 38

Implementation Strategy of Ristretto255 Transformation 40

5 Implementation Strategy
of Ristretto255 Transformation 40
5.1 Constant Time Approach . 40
5.2 Concept of Negative Elements Used GF(p) 42
5.3 Secure Wiping of Local Variable . 43
5.4 Portable Endian Agnostic Code . 44

Optimization Techniques for embedded platform 47

6 Optimization Techniques for embedded platform 47
6.1 Available High-level Ristretto255 Libraries 47
6.2 State of the Art Embedded C libraries for GF25519 48

6.2.1 TweetNaCl . 49
6.2.2 MonoCypher . 50
6.2.3 CycloneCRYPTO . 50

6.3 Function for Computation of Inverse Square Root 51
6.4 Functions for ModL Arithmetic . 53
6.5 Minimizing Processor Stack Requirements via

Shared Local Variables . 54
6.6 Approach to Using Existing Highly Optimized ASM Routines for

GF(p) Operations . 56
6.7 Additional Optimalization Approaches 57

Experimental Results 58

7 Experimental Results 58
7.1 Testing for Little Endian Platforms 58

x

Contents

7.2 Testing Big Endian in QEMU . 59
7.3 Deep Testing of Ristretto255 . 61
7.4 Target ARM Cortex M4 platform/board 64

Experimental Results 71

8 Discussion 71

9 Conclusion 74

Bibliography 76

List of Appendixes 83

Appendix A 84

Appendix B 88

Appendix C 90

xi

List of Figures

1.1 OPAQUE registration phase overview 9
1.2 OPAQUE authentication phase overview 10

2.1 Fundamental cryptographic building blocks used in OPAQUE . . . 11
2.2 Typical usage of RG255, where Curve25519 point in byte form is

transformed into the Ristretto255 group. Subsequently, a curve
point operation such as scalar multiplication of the curve point is
performed, and then transformed back into a Curve25519 point
represented in byte form within the prime subgroup L 17

3.1 OPAQUE offline registration: sequence of messages sended be-
tween client and server . 26

3.2 OPAQUE authentication: sequence of messages sended between
client and server . 29

3.3 First AKE message generation: client-side flowchart. 29
3.4 Second AKE Message Generation: Server-Side Flowchart. 32

5.1 An example pseudocode showing usage of our endian-agnostic
RG255 implementation . 46

6.1 Hierarchy of operations in theRistretto255Group supporting higher-
level protocols, such as the OPAQUE protocol. 49

7.1 Terminal output of successful Ristretto255 tests performed on a PC
platform running Windows 10 Pro 64-bit OS, operating on a little-
endian architecture . 59

7.2 Terminal output of successful Ristretto255 tests performed on big-
Endian platform running on Power-PC64 in QEMU emulator 60

1 Creating a new virtual machine in VirtualBox. 91
2 Selection of Debian 11 disk. 92

xii

List of Figures

3 Adding new disk in VirtualBox. 92
4 Setting up a shared folder in VirtualBox. 93
5 Showcase of Tmux terminal. 96
6 Showcase of debugger for PowerPc64. 98
7 First terminal window after debugging is finished on second win-

dow. 99

xiii

List of Tables

5.1 Comparison of String with Reference and Time Measurement . . . 41

6.1 Comparison of the implementation of x(p−5)/8 across various cryp-
tographic libraries . 52

7.1 Speedmeasurements for the most critical functions operating over
GF(2255 − 19) in various libraries. These libraries employ distinct
GF element representations, and the results are presented in cy-
cles. Measurements were performed on the ARMCortex-M4, with
168 MHz clock frequency, using the GCC ARM compiler with the
-Os flag set. 65

7.2 Continuation of speed measurements from Table 7.1. for the most
critical functions operating over GF(2255 − 19) in various libraries.
Measurements were performed on the ARM Cortex-M4, with 168
MHz clock frequency, using the GCC ARM compiler with the -Os
flag set. 65

7.3 Memory usage for functions operating within the modulo (2256 −
36) domain in highly-efficient ASM implementation. The memory
requirements of each function are presented in bytes. 66

7.4 Continuation of Table 7.3 for memory usage of functions operat-
ing within the modulo (2256 − 36) domain in highly-efficient ASM
implementation. The memory requirements of each function are
presented in bytes. 66

7.5 Speed for InvModL, including supporting functions and various
optimization techniques. Measurements were performed on the
ARM Cortex-M4, with 168 MHz clock frequency, using the GCC
ARM compiler with the -Os and -O3 flag set. 66

xiv

List of Tables

7.6 Speed for RG255 core functions and InvModL. The results are pre-
sented in cycles. The measurements were performed on the ARM
Cortex-M4, with 168 MHz clock frequency, using the GCC ARM
compiler, with the -Os and -O3 flag set. 67

7.7 Memory usage for RG255 functions implemented in pure C. The
memory requirements of each function are presented in bytes. . . . 67

7.8 Speed of the OPAQUE registration and authentication phases were
performed on the client-side, using our optimization techniques,
including a combination of fast C and efficientASMGF operations.
The results are presented in cycles. Measurementswere performed
on the ARM Cortex-M4, with 168 MHz clock frequency, using the
GCC ARM compiler with the -Os flag. 68

7.9 Speed of the OPAQUE registration and authentication phases were
performed on the client-side, using our optimization techniques,
including a combination of fast C and efficientASMGF operations.
The results are presented in cycles. Measurementswere performed
on the ARM Cortex-M4, with 168 MHz clock frequency, using the
GCC ARM compiler with the -O3 flag. 68

7.10 Extension of Table 7.8 shows speedmeasurements for eachOPAQUE
message generated on the client-side during both registration and
authentication phases, utilizing our optimization techniques in-
cluding a combination of fast C and highly efficient ASM GF op-
erations. The results are presented in cycles. Measurements were
performed on theARMCortex-M4, with 168MHz clock frequency,
using the GCC ARM compiler with the -Os flag set. 69

7.11 Extension of Table 7.8 shows speedmeasurements for eachOPAQUE
message generated on the client-side during both registration and
authentication phases, utilizing our optimization techniques in-
cluding a combination of fast C and highly efficient ASM GF op-
erations. The results are presented in cycles. Measurements were
performed on theARMCortex-M4, with 168MHz clock frequency,
using the GCC ARM compiler with the -O3 flag set. 69

7.12 Memory requirements of the OPAQUE messages generated and
exchanged between the client and server, measured in bytes. 70

8.1 Measured Clock Frequencies of ARM Cores 72
8.2 Comparison of implementations on CPUs with different ARM cores 72

xv

List of Tables

8.3 The processor memory stack requirements for the OPAQUE func-
tions used during the generation of OPAQUEmessages in both the
registration and authentication phases on the client-sideweremea-
sured in bytes. These measurements were performed on functions
implemented in pure C. 73

1 Debugger Commands and Descriptions 97

xvi

List of Abbreviations

AKE Authenticated Key Exchange.

aPAKE Asymmetric Password-Authenticated Key Exchange.

ARM Advanced RISC Machines.

ASM Assembly Language.

CPU Central Processing Unit.

DWT CYCCNT Data Watchpoint and Trace Cycle Counter.

ECC Elliptic Curve Cryptography.

GPU Graphics Processing Unit.

HKDF HMAC-based Extract-and-Expand Key Derivation Function.

HMAC Keyed-Hash Message Authentication Code.

HTTPS Hypertext Transfer Protocol Secure.

IoT Internet of Things.

ITM Instrumentation Trace Macrocell.

JWT JSONWeb Token.

KDF Key Derivation Function.

KSF Key Stretching Function.

LSB Least Significant Bit.

MAC Message Authentication Code.

1

List of Abbreviations

MCU Microcontroller Units.

n-POG Non-Prime-Order Group.

NIST National Institute of Standards and Technology.

OPRF Oblivious Pseudorandom Function.

OS Operating System.

PAKE Password Authenticated Key Exchange.

PC Personal Computer.

PKI Public Key Infrastructure.

PLL Phase-Locked Loop.

POG Prime-Order Group.

PRF Pseudorandom Function.

RAM Random Access Memory.

RG255 Ristretto255 Group.

RNG Random Number Generator.

SHA Secure Hash Algorithm.

SLL Secure Sockets Layer.

SRP Secure Remote Password.

TLS Transport Layer Security.

TRNG True Pseudorandom Number Generator.

USB Universal Serial Bus.

VPN Virtual Private Network.

X3DH Extended Triple Diffie-Hellman.

ZKP Zero Knowledge Proof.

2

List of Symbols

|| Byte concatenation
⊕ Binary XOR operation
GF Galois Field

Ea, b : Elliptic curve with parameters a, b
F Field of odd characteristic
:= Assignment symbol in pseudocode
← Assignment symbol in algorithm
∗ Curve point multiplication by scalar
|a| Absolute value of number a
∼ Negation
≫ Right shift operator
≪ Left shift operator
& Bitwise and operator

3

Introduction

In the digital world, we use passwords to prove who we are when accessing
our online accounts. However, this authentication system has problems. Peo-
ple have been using secret phrases or symbols to gain access to protected things
for a long time. In the digital age, we started using passwords to protect our
computer and online accounts. Traditional passwords have many issues. They
are often easy to guess, many people use the same password for multiple ac-
counts, and hackers can guess passwords or trick people into revealing them. As
digital threats have become more advanced, the problems with traditional pass-
words have becomemore obvious. Weneed betterways to keep our accounts safe.
That’s where solutions like OPAQUE protocol (hereafter referred to as OPAQUE)
[1] come in. They use mathematical techniques to prove our identity without re-
vealing our actual password, they make sure our information is safe as it travels
online, and they protect our privacy by hiding our passwords from the services
we use. In summary, traditional passwords have problems, and we need better
ways to keep our online accounts safe. Advanced solutions like OPAQUE offer
a safer and more private way to prove our identity online. There are couple of
reasons why we should consider OPAQUE when establishing secure authentifi-
cation process. One of the reasons you might prefer OPAQUE over technologies
like JWT (JSON Web Tokens) [2] or similar authentication mechanisms is the
need for a more secure channel, especially in certain contexts such as embedded
systems. It is known that JWTs are typically used for representing claims in a com-
pact and self-contained way, and they are often used in combination with HTTPS
(TLS/SLL) to secure the communication between the client and server. While
JWTs themselves do not establish secure channels, they rely on the underlying
transport layer security provided by HTTPS. Using PKI (Public Key Infrastruc-
ture) would be overkill from a performance perspective for embedded systems.

Clearly, we need something more lightweight. There are multiple methods
of authentication processes. Some are simple and fast, while others are more
secure. All of them have pros and cons. They are susceptible to eavesdropping,

4

Introduction

potentially exposing useful information to attackers, whether it is a salt or, in
a worst-case scenario, plaintext credentials.

OPAQUE is designed to provide secure channel establishment during the au-
thentication process. It ensures that the communication between the user and the
server is encrypted andprotected fromeavesdropping. This is particularly impor-
tant for maintaining the confidentiality of user credentials during the authentica-
tion process. OPAQUE is specifically designed to protect user password privacy.
It ensures that the server never learns the actual password during the authen-
tication process, making it a preferred choice when privacy is a concern. Also,
OPAQUE ensures that the server never sends its private information through
a potentially insecure communication channel, making it impossible for a threat
actor to eavesdrop on any useful information. OPAQUE is well-suited for em-
bedded systems and scenarios where secure authentication might be challenging
due to resource constraints.

In this thesis, we contribute with our own implementation of OPAQUE based
on elliptic curve cryptography (ECC).We chose the elliptic curve Curve25519 for
its speed and security aspects. It is well-known that incorporating Curve25519,
a non-prime order group curve, into protocols relying on prime order group ellip-
tic curves requires some adjustments due to a cofactor greater than 1. Following
the official OPAQUE configuration stack, we used Ristretto255, specifically de-
signed to resolve the cofactor problem and provide high-speed abstraction for
mapping points from non-prime order groups into prime order groups.

This work will be structured in the following way:
The first chapter of this thesis briefly introduces the OPAQUE protocol, its

purposes, and its usage in real-world applications. This chapter also includes
essential cryptographic primitives and techniques used in OPAQUE.

In the second chapter, we describe the concept of password-authenticated
key exchange, a non-prime-order elliptic curve (Curve25519), Ristretto255 trans-
formation, and its importance in cryptographic protocols based on prime-order
curves.

The third chapter focuses on a detailed description of OPAQUE, particularly
the offline registration phase and the client-to-server authentication phase.

The fourth chapter describes the development environment and tools used
during the development and testing of our implementation of the Ristretto255
transformation and subsequently the OPAQUE protocol.

Chapter five is dedicated to describing implementation strategies used in our
implementations of the OPAQUE protocol and Ristretto255 transformation, es-

5

Introduction

pecially approaches like constant-time, portable endian agnostic, buffer wiping,
and a method of big-endian testing in the QEMU emulator.

In the sixth chapter, we describe optimization techniques employed in our
implementations targeting embedded systems. We followed an official standards
and focused on integrating a variety of implementation and optimization tech-
niques, which have been successfully included in our library.

Finally, the seventh chapter describes the experimental results obtained by
testing various parts of our implementation, focusing on achieving bit-exact re-
sults and performance measurements.

6

1 OPAQUE Protocol Overview

Authentication via passwords is a commonly employed method across var-
ious applications. Typically, a user sends their identification and password to
a server through a secure channel. Nevertheless, this approach poses risks such
as potential servers mishandling or data breaches. Additionally, even when pass-
words are transmitted through secure channels like TLS [3], vulnerabilities to
attacks or malfunctions persist.

OPAQUE [1] stands as a first secureAsymmetric PasswordAuthenticatedKey
Exchange (aPAKE) protocol that operates independently of PKI and is resilient
against pre-computation attacks. It offers forward secrecy, safeguards passwords
from server exposure, and allows users to enhance protection against offline dic-
tionary attacks. An aPAKE [4] protocols are designed to authenticate passwords
securely and facilitate key exchange without relying on PKI or exposing pass-
words to servers. A secure aPAKE should provide optimal security, acknowledg-
ing that certain attacks are inevitable.

OPAQUE operates in two phases, registration and authenticated key exchange
phase also known as login stage. During registration, a user registers their pass-
wordwith the server andpreserves information necessary for credential recovery,
accessible only to those who possess the password. Subsequently, users leverage
their passwords to acquire these credentials and then uses them within an AKE
[5] protocol in login stage.

Furthermore, OPAQUE is adaptable, allowing users to store and access ap-
plication data on servers solely through their passwords, which is side product
of OPAQUE registration phase. OPAQUE functions as a "compiler" that trans-
forms any suitable AKE protocol into a secure aPAKE protocol. In this thesis we
employed variation of OPAQUE that is based on X3DH [6], however alternative
configurations are available [1].

OPAQUE contains two fundamental components, an oblivious pseudoran-
dom function (OPRF) [7] and an AKE protocol. OPAQUE relies on various cryp-
tographic primitives, elaborated upon:

7

Chapter 1. OPAQUE Protocol Overview

• Oblivious Pseudorandom Function: A method enabling users to compute
a pseudorandom function without disclosing the input to the server [7].

• KeyDerivation Function: Amechanism for generating encryption keys from
a shared secret, such as a password [8].

• MessageAuthentication Code: A technique ensuringmessage integrity and
authenticity during exchange between parties, for example HMAC [9].

• Cryptographic Hash Function: A function converting data into a fixed-size
output, ensuring data integrity and irreversible transformation [10].

• Memory-Hard Function: A function requiring significant memory for com-
putation, discouraging attackers from brute-force attempts. A good exam-
ple is password-hashing functiondesigned specifically for resistance against
side-channel attacks and GPU cracking called Argon2 [11].

• Authenticated Key Exchange protocol: A procedure enabling two parties to
establish a shared encryption key securely while authenticating each other
[5].

1.1 Offline Registration Phase

During registration phase (referred to as the "offline registration stage" in the
specification) inOPAQUE, a secure communication channel between the user and
the server is required. This can done through a physical connection, an out-of-
band method, or one based on Public Key Infrastructure (PKI). Note that this
is the only phase in OPAQUE that requires a server-authenticated channel that
provides confidentiality and integrity. Registration starts on the client-side by
blinding a client’s password and sending it to the server. The server then signs
that blinded password using an oprf_seed (also referred to in other literature as
a seed) and sends it back to the client. It’s important to note that the oprf_seed
and the server’s public and private keys (referred to as "general" keys later in
this thesis) are generated prior to the OPAQUE registration phase. Subsequently,
the client unblinds the signed password and uses it to generate its general public
key (note that client’s general key pair is not stored and needs to be recovered
later in authentication phase), masking key, and a special structure called an en-
velope, which is used later during client’s credentials recovery in the online au-
thentication process [1]. A masking key is deterministically generated from the

8

Chapter 1. OPAQUE Protocol Overview

Client

password oprf_seed

(salt)

export_key

�� password blinding

�� unblind signed

password

�� generation of

(clients public key,

masking key, envelope)

included in record

�� signing blinded

password

�� store record

in database

Server

blinded password

signed blinded password

registration record,

client id

server public

& private keys

Figure 1.1: OPAQUE registration phase overview

unblinded signed password and is used by server later in the login phase to en-
crypt an envelope. These three parameters make up a registration record, which
is then sent to the server along with the client’s ID, as depicted in Figure 1.1. The
user also generates an export_key as a side-product of registration phase, usable
for application specific tasks like encrypting additional data for storage on the
server, inaccessible to the server. The server obtains a record related to the user’s
registration, stores it in a database alongside other user infromation as required.
More information about OPAQUE registration is detailed in the specification [1]
and explained in Chapter 3.

1.2 Online Authentication Phase

During the online authentication phase, clients retrieve their previously regis-
tered credentials from the server, recover their private key by utilizing their pass-
word, and subsequently use this key in the Authenticated Key Exchange (AKE)
protocol (see Figure 1.2).

The authentication phase begins similarly to the registration phase. The client
uses its password to compute a blinded password and sends it to the server. How-
ever, in this phase, clients also generate their private and public keys for the Triple
Diffie-Hellman (X3DH) protocol [6], which is used to generate a shared secret
session key. We have chosen X3DH as the AKE method in accordance with the
OPAQUE specification [1], although other options are available as outlined in the
specification.

Once receiving the blinded password from the client, the server performs
a signing operation using the oprf_seed, similar to the registration phase. Ad-
ditionally, the server generates amasked_response, which serves as an encrypted

9

Chapter 1. OPAQUE Protocol Overview

envelope, and its own set of X3DH key pair (server public and private X3DH
keys). These (except server public X3DH key) are then sent to the client in a sin-
gle message. Before sending, the server also generates a session key based on all
available keys (client’s public general and X3DH keys, as well as its own server
general key pair and server X3DHkey pair). When client receives amessage from
the server containing the signed blinded password, server general public key, and
server X3DHpublic key, the client unblinds the signedpassword. Subsequently, it
uses this unblinded password to recover an envelope from themasked_response.
Additionally, an export_key (similar to that used in the registration phase) is gen-
erated. Once the envelope is successfully recovered, the client uses it to retrieve its
general public key and private key pair. Similar to the server, the client generates
a session key based on all available keys. Think of session_key as classic symmet-
ric key that is used to encrypt communication between two parties. It is worth
noting that OPAQUE provides forward secrecy, meaning that every successful
authentication produces a different session key, however the export_key remains
the same [1]. Please bear in mind that these phases are simplified versions of the
OPAQUE registration and authentication phases. More detailed information is
provided in the specification [1] and explained in Chapter 3.

OPAQUE presents a valuable building block for applocations where secure
password-based authentication and key exchange is crucial. It effectively ad-
dresses numerous concerns, encompassing the safeguarding of user passwords
against servermismanagement, mitigation of offline dictionary attacks and assur-
ance of forward secrecy. Several domains where OPAQUE has potential to offer
significant advantages include online services and websites, internet of things
(IoT) devices, mobile applications, secure messaging platforms, remote access
and virtual private networks (VPNs), external cloud storage andmanymore [12].

Client

password oprf_seed

(salt)

��� generate a

session key

from

available keys  

(general & X3DH)

export_key

�� password blindin�
�� generate X3DH keys

�� unblind signed

passwor�

�� recover an envelope

�� recover credentials,

including client priv. &

pub. keys

based on envelope

�� signing blinded

passwor�

�� masked respons�
�� X3DH server keys

�� generate a session

key from available keys  

(general and X3DH)

Server
blinded password,

X3DH client pub. key

signed blinded password,

server pub. key, masked resp.

X3DH server pub. key

verification tag clients public key

server public

& private keys

generate a masked response,

which is an encrypted envelope

Figure 1.2: OPAQUE authentication phase overview

10

2 BasicCryptographicBuildingBlocks
and Concepts Used in OPAQUE

This section introduces the fundamental cryptographic building blocks and
concepts essential to the OPAQUE protocol [1], as depicted in the pyramid dia-
gram shown in Figure 2.1. The OPAQUE protocol forms the highest layer of this
pyramid, built upon foundational blocks such as Galois Field (GF) arithmetic, el-
liptic curve cryptography (specifically Curve25519 in our implementation [13]),
and the Ristretto255 transformation [14]. All the blocks depicted in this pyramid
are described in this chapter and also implemented in our library, available in
the Appendix A. OPAQUE is briefly introduced in Section 1 and further elabo-
rated upon in Section 3, which serves as supplementary material to the official
RFC specification [1]. This supplementary material aims to enhance the reader’s
understanding of the concepts of OPAQUE.

OPAQUE

Curve25519, GF(2255-19)

Ristretto255,

Figure 2.1: Fundamental cryptographic building blocks used in OPAQUE

The primary focus of this section is to provide a concise overview of three key
components: the elliptic curve Curve25519 [13] the Ristretto255 transformation
[14] and password authenticated key exchange [4].

11

Chapter 2. Basic Cryptographic Building Blocks and Concepts Used in OPAQUE

2.1 Group Theory Overview

In this section, we will frequently refer to group. Therefore, we will provide
a brief explanation of what a group acctually is. A group is a mathematical struc-
ture that consists of a set of elements along with a binary operation. Combin-
ing any two elements with binary operation produce a third element in the set.
Structure must satisfy certain properties to be considered a group [15]. These
properties are:

• Closure: For any two elements a and b in the group, their combination using
the group operation (denoted as ·, i.e., a · b) must also belong to the same
set.

• Associativity: The group operation is associative, meaning for all elements
a, b, and c in the group, (a · b) · c = a · (b · c).

• Identity Element: There exists an identity element e in the group such that
for any element a in the group, a · e = e · a = a.

• Inverse Element: For each element a in the group, there exists an inverse
element a−1 in the group such that a·a−1 = a−1 ·a = e, where e is the identity
element.

AnAbelian group, also known as a commutative group, is a special type of group
where the group operation is commutative. Meaning, for all elements a, bwehave
a · b = b · a [16].

One important concept inmathematics is group addition. Addition is a group
operation, characterized by an identity element and prime order (in our case
prime number L). Adding the same element L-times results in the identity ele-
ment. Adding the identity element to any other element results in the unchanged
element. Negating an element results in a value that, when added to its original,
gives the identity element. Subtraction can be viewed as adding the negation of
an element, and scalar multiplication involves repeatedly adding the same ele-
ment.

2.2 Modern Elliptic Curve25519

In the field of cryptography, where keeping information secure is crucial, the
choice of mathematical structures and cryptographic protocols plays a significant
role in ensuring the safety of digital communications.

12

Chapter 2. Basic Cryptographic Building Blocks and Concepts Used in OPAQUE

Elliptic Curve Cryptography (ECC) is a modern and widely-used encryp-
tion technique employed in securing communication, relying on operations with
points on elliptic curves. Many different types of elliptic curves are utilized in
ECC, such as NIST [17], Bernstein’s [13], Edward’s[18], and more. These curves
vary in properties like the order of the curve, the cofactor, the shape of the curve,
and their computational complexity (speed) and security. While the NIST curves
workwith groups that have prime order[19], not all of them are considered trust-
worthy[20].

A common building block in modern cryptography is prime-order groups
(POGs), which form the foundation for important cryptographic algorithms and
protocols. POGs are widely used in various cryptographic protocols, like the
Zero-knowledge proof[21], PAKE and more. Prime-order groups (POGs) fa-
cilitate secure key exchange, ensuring that communication between entities re-
mains safeguarded from unauthorized access. The mathematical foundation of
POGs enhances resistance against various cryptographic attacks, including dis-
crete logarithm and factorization, thereby strengthening the overall security of
cryptographic systems.

However, in practice, many implementations either choose to use non-prime
order groups (n-POGs) for efficiency reasons, or they can be manipulated to op-
erate in n-POGs. If we want these implementations to be applied in a protocol
that uses POG, a problem arises. One example is the popular Bernstein elliptic
curve (EC) Curve25519[13], which has a non-prime order group (n-POG). To
enable the utilization of this curve in protocols designed for prime order groups
(POGs), a transformation capable of converting a group with non-prime order to
one with prime order is necessary.

For this reason, it makes sense to consider the highly efficient Curve25519,
even though it does not have a cofactor equal to 1 and is not a prime-order group.

The elliptic curve Curve25519, designed bymathematician and cryptographer
Daniel J. Bernstein, has garnered significant attention in the realm of cryptogra-
phy[13]. The emphasis in the design of Curve25519 is strongly placed on security,
providing resilient defence against various cryptographic attacks. Curve25519
provides a cryptographic security level of 128 bits. This positioning establishes
Curve25519 as a crucial element in ensuring the security of communication proto-
cols, such as TLS 1.3[22]. It is also applied for encryption in WhatsApp [23], Sig-
nal[24], and numerous other systems and protocols [16].The Curve25519 curve
exhibits excellent properties in terms of speed, security and implementation sim-
plicity. Compared to other elliptic curves, Curve25519 has several advantages. It

13

Chapter 2. Basic Cryptographic Building Blocks and Concepts Used in OPAQUE

is designed to be resistant to side-channel attacks on elliptic curves. Addition-
ally, it is very fast, and operations on this curve can be optimized (e.g., scalar
multiplication using the Montgomery ladder[16]).

Curve25519 is an elliptic curve defined over the finite field GF(p), where p is
a prime number given by 2255−19, hence the name of the elliptic curve. It’s worth
noting that the number 2255 − 19 is the largest prime number that can fit into 256
bits. The Curve25519 can be described using the Montgomery equation [18] as
follows:

y2 = x3 + 48662x2 + x (2.1)

Montgomery representation allows for the efficient implementation of various
operations on the curve, including point addition, subtraction, or scalar multipli-
cation of an elliptic curve point. Importantly, it offers a high level of security for
asymmetric public key encryption. Additionally, it facilitates the rapid computa-
tion of public and private keys through an algorithmbased onmultiplying a point
on the curve by a scalar.

The mathematical operations on the Curve25519 can be implemented with
less code and on less powerful devices. A proof of this is the cryptographic library
TweetNaCl[25]. TweetNaCl is a library based on the publicly available NaCl li-
brary (Network Communication, Cryptography, and Security library). The im-
plementation of the TweetNaCl library is very compact, and after compression
with a Python script, the size of the entire library is smaller than 100 tweets.
Curve25519 is used in various cryptographic protocols, including Diffie-Hellman
key exchange, digital signatures, and encryption. For more information about
TweetNaCl, see chapter 6.2.1.

Curve25519 parameters are deliberately selected so that the order of the group
n (representing the number of all points on the curve) is the product of the co-
factor c and the order of the prime-order subgroup L:

n = c · L (2.2)

where L = 2252 + 27742317777372353535851937790883648493 and cofactor c is
equal to 8.

The cofactor c in elliptic curve cryptography (ECC) denotes the ratio between
the total number of points on the EC group (the order) and the order of a specific
subgroupwithin that curve. It essentially represents the ratio between the overall
number of points on the EC and the points in a smaller subgroup [16]. The choice
of the cofactor c is significant in ECC as it has implications for the security of the

14

Chapter 2. Basic Cryptographic Building Blocks and Concepts Used in OPAQUE

cryptographic system. Opting for an elliptic curve with a cofactor c equal to 1 is
desirable as it minimizes the risk of certain types of attacks. Elliptic curves with
c > 1may introduce vulnerabilities, making it generally recommended to choose
elliptic curves with c = 1 in cryptographic applications.

This is the most significant drawback of Curve25519 because it is designed to
use a cofactor c = 8. In some applications, computational complexity could be
increased due to the need to work with elements that are not part of the main
subgroup. This may negatively impact the speed and efficiency of certain crypto-
graphic operations. In other applications, additional modifications are made to
maintain security. However, there is not an universal solution that can be applied
to all applications. In many existing protocols, the complexity of managing this
abstraction is increased through ad-hoc protocol modifications[16]. However,
these modifications often become a recurring source of vulnerabilities and sub-
tle complications in design, usually preventing the application of security proofs
for the abstract protocol. The cofactor 8 issue can be efficiently addressed by
Ristretto255 transformation.

2.3 Ristretto255 Group and Transformation

Ristretto255[14] is a technique used to construct an abstract POG group of el-
liptic curves of prime order. Ristretto255 enables existing libraries containing pro-
tocols based on n-POG like the elliptic curve Curve25519 to implement a prime-
order group with fast, thin high-level abstraction.

The Ristretto255 transformation (RG255) is a modern cryptographic transfor-
mation introduced in 2019 [14]. It extends the Decaf approach proposed by the
authorM.Hamburg[26]. RG255 is utilized tomapECpoints from theCurve25519
group, which has a n-POG, to a POG. The goal of this transformation is to enable
the use of efficient Curve25519 in cryptographic protocols that require a POG,
preserving the security and efficiency of Curve25519.

Ristretto255 is a fast thin layer transformation that unambiguously maps each
point on Curve25519 to a Ristretto representation, allowing the creation of an
abstract interface for a POG using the points of the elliptic Curve25519.

An Ristretto255 element is an abstract element of a POG, and its encoding is
a unique, reversible representation of a group element. In the context of group
element encoding, this implies that if an element is encoded in a specific form,
it can be decoded back to its original form using a reversible encoding process.
The internal representation is understood to be the point on Curve25519. Each

15

Chapter 2. Basic Cryptographic Building Blocks and Concepts Used in OPAQUE

element of a group may have multiple equivalent internal representations. The
order of the abstract group formed is the same as the order of the subgroup of
Curve25519, with a value of L.

By creating an abstraction of a prime group, Ristretto255 ensures that all el-
ements of that group, except the neutral element, are generators. However, for
interoperability, a canonical generator was chosen, which can serve as an inter-
nal representation of the base point of the Curve25519. Note, that in the context
of RG255, terms canonical and non-canonical simply mean less than 2255 − 19 or
greater than or equal to 2255− 19 respectively. The encoded form of the canonical
generator g 2.3 is as follows:

g = e2f2ae0a 6abc4e71 a884a961 c500515f

58e30b6a a582dd8d b6a65945 e08d2d76
(2.3)

The Ristretto255 group is an additive abelian group designed primarily to
securely perform operations on a curve, such as addition and scalar multipli-
cation, with minimal overhead. Consequently, before any curve operation, the
initial step involves mapping byte strings into Ristretto255 points, executing op-
erations like point addition, and subsequently mapping back to byte strings. In-
ternally, a Ristretto point is represented by an Edwards point, typically in ex-
tended twisted Edwards coordinates [27]. It’s worth noting that two EC points
in extended twisted Edwards coordinates, P and Q, may represent the same
Ristretto255 point, similar to how different projective x, y, z, t coordinates may
represent the same Edwards point [28].

Edwards curves are a special type of elliptic curves is that they are birationally
equivalent to elliptic curves (Weierstrass elliptic curves) [29]. Edwards curves
have several advantages for cryptographic purposes, including complete [18] ad-
dition formulas, which simplifies operations like point addition and doubling
compared to other elliptic curve forms. The general form of an Edwards curve
[30] can also be written as:

Ea,d : ax
2 + y2 = 1 + dx2y2 (2.4)

where a, d ∈ K with ad(a − d) ̸= 0. The K is a field of odd characteristic [29].
Edwards curves are a particular type of twisted Edwards curve, in which the
parameter a can be adjusted or rescaled to equal 1.

16

Chapter 2. Basic Cryptographic Building Blocks and Concepts Used in OPAQUE

Affine addition formulae for twisted Edwards curves is defined by an equation
2.5.

(x1, y1) + (x2, y2) =

(
x1y2 + y1x2

1 + dx1y1x2y2
,
y1y2 − ax1x2

1− dx1y1x2y2

)
= (x3, y3). (2.5)

More information about Twisted Edwards curve can be found in paper [18] and
[29].

Byte representation of a Curve25519 point

Byte representation of a Curve25519 point within
the prime subgroup L

Ristretto255 prime-order
group

Curve operation

(e.g. scalar multiplication of curve point)

Ristre
tto255 decode

Ristre
tto255 encode

Figure 2.2: Typical usage of RG255, where Curve25519 point in byte form is
transformed into the Ristretto255 group. Subsequently, a curve point opera-
tion such as scalar multiplication of the curve point is performed, and then
transformed back into a Curve25519 point represented in byte formwithin the
prime subgroup L

Algorithm 2 illustrates the decoding process, which is the mapping from byte
strings to Ristretto255 points. Similarly, encoding[14] can be utilized to map the
Ristretto255 point back to the byte string. All underlying steps in Algorithms
1, 2, 4 and 3 are executed over GF(2255 − 19), including internal functions like
the inverse square root [28], denoted as INV_SQRT() [26]. Note that GF(2255 −
19) arithmetic is interesting because it is specifically designed to perform arith-
metic operations over GF efficiently. Such effciciet approaches utilized in many
fast cryptographic libraries like TweetNaCl (see Section 6.2.1), or in implementa-
tion [31]. There are various approaches to implementing the inverse square root
[32][31]. During the development of our Ristretto255 group implementation, we
found inspiration in theCycloneCRYPTO [31] approach to the inverse square root

17

Chapter 2. Basic Cryptographic Building Blocks and Concepts Used in OPAQUE

computation. Our implementation incorporates additional adjustments with the
goal of reducing the number of utilized variables, thus enhancing the efficiency
of stackmanipulation [33]. The operationswithin the abstract Ristretto255 group
include encoding, decoding, equality verification, one-way mapping, along with
two operations on Curve25519, an addition and scalar multiplication. This sec-
tion provides a brief overview of chosen operations.

2.3.1 Encoding from Ristretto255 Group

Encoding is a function from abstract elements to byte strings. Internally, an
abstract element s might have more than one possible representation, for exam-
ple the implementation might use projective coordinates [29]. When encoding,
all equivalent representations of the same element are encoded as identical byte
strings. Decoding the output of the encoding function always succeeds and re-
turns an element equivalent to the encoding input [14]. Pseudocode 1, defined
in the official Ristretto255 specification [14], internally uses constants that are
marked as bold (SQRT_M1, INVSQRT_A_MINUS_D, ONE_MINUS_D_SQ,
etc.) in Algorithms 1, 2, 4 and 3, which are also defined in the same specification
[14].

Algorithm 1 Ristretto255 Encode
Input: (x0, y0, z0, t0) representing a group element on Curve25519
Output: s as the encoded as 256-bits field element in abstract group
1: u1 ← (z0 + y0) · (z0 − y0)

2: u2 ← x0 · y0
3: (_, invsqrt)← INV _SQRT (1, u1 · u2

2)

4: den1 ← invsqrt · u1

5: den2 ← invsqrt · u2

6: z_inv ← den1 · den2 · t0
7: ix0 ← x0 · SQRT_M1
8: iy0 ← y0 · SQRT_M1
9: e_den← den1 · INVSQRT_A_MINUS_D
10: rotate← IS_NEGATIV E(t0 · z_inv)
11: x← CT_SELECT (iy0 if rotate elsex0)

12: y ← CT_SELECT (ix0 if rotate else y0)
13: z ← z0

14: den_inv ← CT_SELECT (e_den if rotate else den2)

15: rotate← IS_NEGATIVE(x · z_inv)
16: y ← CT_SELECT (−y if rotate else y)
17: s← CT_ABS(den_inv · (z − y))

18: return s

18

Chapter 2. Basic Cryptographic Building Blocks and Concepts Used in OPAQUE

2.3.2 Decoding to Ristretto255 Group

In cryptography, it is common to use a byte string to represent a cryptographic
object, whether it is a private or public key, which forms the core of asymmetric
encryption. Therefore, we need some kind of conversion tool that helps us con-
vert between the byte string representation of an element and a point on the curve.
In Ristretto255, this is achieved through decoding and encoding functions. De-
coding is a function that converts byte strings s to abstract elements (point on
the curve) with built-in validation, ensuring that only the canonical encodings
of valid elements are accepted. This built-in validation eliminates the need for
explicit invalid curve checks [14].

Algorithm 2 Ristretto255 Decoding
Input: s ,a the encoded as 256-bits field element in abstract group
Output: (x, y, 1, t) representing the group element on Curve25519 after decoding
1: if IS_NEGATIV E(s) then
2: return 1 {Decoding fails}
3: end if
4: ss← s2

5: u1 ← 1− ss

6: u2 ← 1 + ss

7: u2_sqr ← u2
2

8: v ← −(D · u2
1)− u2_sqr

9: (was_square, invsqrt)← INV _SQRT (1, v · u2_sqr)
10: den_x← invsqrt · u2

11: den_y ← invsqrt · den_x · v
12: x← CT_ABS(2 · s · den_x)
13: y ← u1 · den_y
14: t← x · y
15: if was_square = 0 then
16: return 1 {Decoding fails}
17: else if IS_NEGATIV E(t) then
18: return 1 {Decoding fails}
19: else if y = 0 then
20: return 1 {Decoding fails}
21: end if
22: return (x, y, 1, t)

2.3.3 Hash to Ristretto255 Group

The element derivation function maps deterministically from byte strings of
a fixed length to abstract elements. In practice this can be used tomap hash digest

19

Chapter 2. Basic Cryptographic Building Blocks and Concepts Used in OPAQUE

of user‘s password to point on the curve. The element derivation function has two
important properties. First, if the input is a uniformly random byte string, then
the output is (within a negligible statistical probability) a uniformly random ab-
stract group element. This means the function is suitable for selecting random
group elements [14].

To obtain such an input from an arbitrary-length byte string, a hash function
such as SHA512 can be used. Subsequently, the uniformly distributed 64-byte
string is divided into two halves. The first half (the first 32 bytes of the 64-byte
input string) is processed by the MAP function presented in Algorithm 3, which
maps the 32-byte string into point P1. The same process is performed on the sec-
ond half (the last 32 bytes of the 64-byte input string), resulting in point P2.

Finally, point addition P1 + P2 is performed, which is the output value of the
element derivation function (see Algorithm 4). It’s worth noting that both halves
need to be masked. Masking is performed on the most significant bit, which is
equivalent to interpreting the whole string (one of the 32-byte halves) as an un-
signed integer in little-endian representation and then reducing it modulo 2255,
which is denoted in Algorithm 4 on first and second line by the function called
masked(). Pseudocode of the MAP function can be seen in Algorithm 3.

Algorithm 3 Ristretto255 MAP
Input: t,D (input values)
Output: Group element represented by internal representation (w0 ·w3, w2 ·w1, w1 ·w3, w0 ·w2)

1: r ← SQRT_M1 · t2

2: u← (r + 1) ·ONE_MINUS_D_SQ
3: v ← (−1− r ·D) · (r +D)

4: (was_square, s)← INV _SQRT (u, v)

5: s_prime← −CT_ABS(ss · t)
6: ss← CT_SELECT (s ifwas_square else s_prime)

7: c← CT_SELECT (−1 ifwas_square else r)
8: N ← c · (r − 1) ·D_MINUS_ONE_SQ− v

9: w0 ← 2 · ss · v
10: w1 ← N · SQRT_AD_MINUS_ONE
11: w2 ← 1− ss2

12: w3 ← 1 + ss2

13: return (w0 · w3, w2 · w1, w1 · w3, w0 · w2)

20

Chapter 2. Basic Cryptographic Building Blocks and Concepts Used in OPAQUE

Algorithm 4 Ristretto255 Hash to group
Input: b - a uniformly distributed 64-bytes byte-string
Output: P - point on Curve25519 in extended Edwards twisted form
1: t0← masked(b[0..31])
2: t1← masked(b[32..64])
3: P1←MAP(t0)
4: P2←MAP(t1)
5: P ← P1 + P2

6: return P

2.4 Password-authenticated Key Exchange

The protocols for key exchange are protocols that allow two communicat-
ing parties to share a security key for their connection (session key). Typically,
a session key is used by both parties as the symmetric cipher key to encrypt
communication between the client and the server. Generally, both parties have
pre-generated keys stored on cryptographic devices such as USB tokens or smart
cards. However, implementing such devices significantly increases system com-
plexity and decreases user-friendliness. An alternative solution to this problem is
the use of easily memorable passwords. However, this solution compromises the
security of the system, as easily memorable passwords are selected from a much
smaller set than secure passwords or cryptographic keys stored on thementioned
devices. Therefore, password-based systems are highly vulnerable[34]. To ad-
dress the security issues of such protocols, authentication protocols based on
passwords PAKE are employed.

The PAKE protocol, introduced by Bellovin and Merritt [35], is a special kind
of protocol for swapping cryptographic keys. These protocols help two parties,
usually a client and a server, agree on a shared key using public-key cryptog-
raphy. The first well-known protocol for this purposes was the Diffie-Hellman
protocol[36]. However, it has a weakness, it’s vulnerable to man-in-the-middle
attacks[34]. PAKEprotocols are designed to enable two ormore parties to achieve
mutual authentication and exchange a secure connection key over an insecure
channel using a short and easily memorable password, without relying on a pub-
lic key infrastructure (except for user registration in case of OPAQUE). A notable
feature of these protocols is that they should also protect the client’s password.
The password is not disclosed to the server or any other entity. On the other hand,
the client never learns how the password hash was computed on server or what
salt was used. A salt, typically stored on the server, is a randomly generated string

21

Chapter 2. Basic Cryptographic Building Blocks and Concepts Used in OPAQUE

added during password processing to ensure that identical passwords produce
different outcomes for different users. When it comes to not revealing a user’s
password to the server, there is a large group of cryptographic protocols known
as Zero-knowledge proofs (ZKP) protocols. These protocols enable one party
(the prover) to prove to another party (the verifier) that a statement is true with-
out revealing any additional information, apart from the validity of the statement
itself (for example, knowledge of a password).

In simple terms, after an authentication attempt (whether valid or invalid),
both parties (client and server) should only learn whether the client’s password
matches the expected server value and no additional information.

A secure PAKE should provide the best possible security for user authentica-
tion using passwords. In practice, PAKE protocols can be used wherever secure
communication over an insecure channel is needed, such as in Bluetooth commu-
nication, securing wireless networks, IoT devices, or as a replacement for current
internet login protocols.

Despite the apparent security advantage provided by PAKE protocols com-
pared to existing approaches used for server authentication, they are still not
widely adopted. This may be due to a lack of good PAKE implementations in
programming languages used in web app and mobile app industry, making it
challenging to use these protocols. Another reason may be the limited aware-
ness of PAKE protocols. Many people may not be aware of their existence and
potential applications. Nevertheless, some PAKE protocols have found practical
use[37]. One of our main goals in this thesis was to find out whether a secure
aPAKE protocol like OPAQUE can be usable in MCU and, if so, how much time
such a protocol consumes on widely used MCUs.

One of themost widespread and relatively old PAKE protocols is the SRP pro-
tocol [38],[39], standardized as an authentication method for the TLS protocol.
Created in 1998 by T.Wu [40], SRP is implemented in cryptographic libraries such
asOpenSSL or libsodium[41]. Despite its age, SRP is still used in various projects.
For example, Apple uses the SRP protocol in its iCloud Key Vault method[42],
which backs upuser passwords forwebsites and email accounts onApple iCloud.
One disadvantage of the SRP protocol is its vulnerability to rainbow table attacks,
as it does not ensure that only the server knows the salt. When an attacker initi-
ates an SRP protocol session, they gain access to the salt, allowing them to create
potentially hashed password values and launch an attack on the server. Another
drawback is that SRP cannot be used with elliptic curves efficiently[39]. A suit-
able replacement for the SRP protocol is the relatively new OPAQUE protocol,

22

Chapter 2. Basic Cryptographic Building Blocks and Concepts Used in OPAQUE

designed in 2018 by S. Jarecki, H. Krawcyzk, and J. Xu [1]. OPAQUE works fine
with elliptic curves and is resistant to rainbow table attacks[4]. In fact, OPAQUE
provides several recommended configurations that include ECC. In our imple-
mentation, we used elliptic curve Curve25519 utilizing the Ristretto255 transfor-
mation.

23

3 Detailed Description of OPAQUE
Phases

OPAQUE, a cryptographic protocol, is a secure asymmetric password authen-
tificated key-exchange (aPAKE) that supports mutual authentication in a client-
server setting without reliance on PKI[1]. The OPAQUE is unique because it
is the first aPAKE that employs secret salt. This brings a huge differentiation
amongs other aPAKE protocols and makes OPAQUE first to be secure against
pre-computation attacks upon server compromise. Prior aPAKE protocols either
use salt in clear form that is transmitted through communication channel from
server to user, which can essentially lead to building pre-computed dictionaries,
or do not use salt at all. In addition, OPAQUE provides ability to hide users pass-
words from server even during registration phase, which means that server does
not store user passwords.

OPAQUE consists of two phases: registration and authenticated key exchange.
In the first phase, a client registers its password with the server and stores its cre-
dentials on the server. Recovering these credentials can only be donewith knowl-
edge of the client password. In the second phase, a client uses its password to re-
cover those credentials and subsequently uses them as input to an AKE protocol.
This phase has additional mechanisms to prevent an active attacker from inter-
acting with the server to guess or confirm clients registered via the first phase[1].

Before these phases, the client and server decide on a setup that completely
describes the cryptographic algorithm requirements necessary to run the proto-
col. The server generates a set of keys server_private_key and server_public_key
for the authenticated key exchange (AKE)[5] and selects a starting point called
oprf_seeds (in some literature also known as salt) for the OPRF. The server can
utilize the same server_private_key and server_public_key with several clients.
Moreover, the server has the option to utilize distinct oprf_seeds for each client, as
long as they remain consistent throughout both the registration and online AKE
phases and are consistently maintained for each client.

24

Chapter 3. Detailed Description of OPAQUE Phases

Note that in this chapter, we provide supplementary material to the official
RFC specification [1] to help readers better understand certain concepts of the
OPAQUE protocol. In subsequent sections, we will describe the types of mes-
sages used in the OPAQUE registration and authentication phases, which we
have implemented in our library (see Appendix A). We have developed a well-
documented librarywith numerous implementation andoptimization techniques,
some ofwhich are described inChapters 5 and 6. Our library is designed for small
embedded platforms, and the complete code is available in Appendix A.

3.1 Client to Server Registration phase

Registration is performed with three messages. A registration request, a reg-
istration response, and ends with the client sending a registration record to the
server. This record contains an envelope as well as additional information such as
the client’s public key andmasking key, whichwill be explained later in this chap-
ter. An envelope is then recovered on client-side during authetification phase.
During the registration phase, OPAQUE utilizes a technique called Oblivious
Pseudorandom Function (OPRF)[7]. In this process, the server signs the user’s
blinded hashed password, which is then used to create an envelope. Its very
important to note that registration phase is the only phase in OPAQUE that re-
quires a server-authenticated channel that provides confidentiality and integrity.
In other words it is necessary to perform registration of a client through secure
channel employing either physical, out-of-band, or using PKI-based approaches.

3.1.1 Oblivious Pseudorandom Function

An Oblivious Pseudorandom Function (OPRF) [7] is a collaborative two-
party protocol involving a client and a server. Its purpose is to compute a Pseu-
dorandom Function (PRF) where the server possesses the PRF key, and the client
supplies the input to the function. During this process the client gains no knowl-
edge about the PRF except for the resulting output, while the server remains
oblivious to both the client’s input and the output of the function. The OPRF
ensures a secure and mutually confidential interaction between the two parties,
preserving the privacy of each party’s sensitive information[1].

Themathematical foundation ofOPAQUE forOblivious Pseudo-RandomFunc-
tions (OPRF), commonly known as blind signing, is elegantly straightforward.
The simplicity of the mathematical processes involved contributes to the proto-
col’s accessibility, facilitating a clear understanding of its operations. Despite this

25

Chapter 3. Detailed Description of OPAQUE Phases

simplicity, OPAQUE maintains a high level of cryptographic integrity, demon-
strating the effectiveness of its design. In summary, OPAQUE combines math-
ematical clarity with cryptographic robustness in the realm of blind signing. It
looks like this:

1. Client holds input t (this could be password), Server holds secret key x.

2. Client generates random blind value r, which is just a random number from
GF.

3. Client computes T = H1(t) and then blinds it by computing r ∗ T .

4. Client sendsM = r ∗ T to Server, note thatM is known as blinded_element
in our case.

5. Server computes Z = x ∗M and returns Z to Client.

6. Client computes (1/r) ∗ Z = x ∗ T = N and stores the pair (t, N) for some
point in the future.

Whydowe actually needOPRF, andwhat is its purpose inOPAQUE?Well, the
whole registration phase is pretty much the OPRF protocol with some additional
tweaks. Let’s look at OPAQUE’s registration diagram (Figure 3.1):

(step 0)

paramscreds

ServerClient

registration request (steps 1, 2, 3)

record (step 5)

registration response (steps 4)

recordexport_key

Figure 3.1: OPAQUE offline registration: sequence of messages sended be-
tween client and server

26

Chapter 3. Detailed Description of OPAQUE Phases

As you can see in the diagram above, steps 1-3 are used during the construc-
tion of the registration request. In the process of creating the registration re-
sponse, step 4 takes place. Lastly, the construction of the record includes step
5. Note that OPRF steps are the core of the registration phase. The registra-
tion phase contains non-OPRF steps and additional tweaks, such as the creation
of the envelope, etc. The envelope is a special structure created by the client
and subsequently sent to the server. The server then stores just the envelope,
no client password, no additional password salt, etc. Now back to the question,
"What is the purpose of OPRF in OPAQUE?" As shown in the scheme above, the
client uses its password to later compute N (oprf_output) from the server’s Z.
This oprf_output is then used to create the so-called randomized_password us-
ing the hkdfExtract function [43]. Based on the randomized_password, the client
generates an envelope, client_public_key, masking_key, and export_key [1]. An
envelope, client_public_key andmasking_key creates final registration record that
is send to server by client as depicted on diagram 3.1 and their purpose will be
explained later in this chapter. For now, just keep in mind that they are stored
on server after client registers to server. Also note that client output of registra-
tion phase is an export_key. This is very unique property of OPAQUE protocol
and it can be used for application specific reason. An export_key is a value that
is available only for user and it stays the same for specific user. This means that
every time a user logs in, the same export_key will be generated on client side.
Usage of such key can be used as a symmetic key to encrypt some files and store
those encrypted files on remote storage. Purpose of exported_key can differ from
application to application or it might not be used at all. Think of it as a additional
feature provided by OPAQUE protocol[1].

Client’s envelopewith other values discussed above is generated usingStore()
function during offline registration and recover (using function Recover()) later
during online login phase [1]. HMAC-based Extract-and-ExpandKeyDerivation
Function (HKDF) is a key derivation function (KDF), that takes some source
of initial keying material and uses it to derive one or more cryptographically
strong keys[43]. In OPAQUE, there are 2 main HKDF function used (based on
SHA512[10] in case of our implementation suit) Extract() and Expand()[43].

The Extract() function extracts a pseudorandom key of fixed length from in-
put keying material ikm and an optional byte string salt.

The Expand() function expands a pseudorandom key prk using the optional
string info into selected amount of bytes of output keying material.

When discussing the creation and retrieval of the envelope, clients generate

27

Chapter 3. Detailed Description of OPAQUE Phases

their envelope using the Store() function specified in the RFC during registration,
and later retrieve it via the Recovery function, also specified in the RFC[1], when
logging in.

3.2 Client to Server Authentication Phase

The online login phase is a bit more complicated. Login consists of two parts,
OPRF and AKE [1], [5]. In this phase, a client uses its password to recover his
credentials (OPRFpart) and subsequently uses themas input to anAKEprotocol.
The AKE protocol is used to generate the session_key. Note that the session_key
differs from login to login. In other words, every time a user logs in to a server,
a new session_key will be generated to encrypt communication.

Not only the session_key is generated, but also the export_key. Note that the
export_key is not unique for every communication, it remains the same (the same
export_key as generated during the registration phase). One thing that has not
been mentioned so far is the presence of multiple private and public keys. To
make things clear, we will explain the magic behind those keys. First of all, we’ll
talk about the "general" public and private keys.

The server generates its private general key and public general key using the
DeriveKeyPair(server_private_key, server_public_key) function before commu-
nication is established. In fact these are the keys discussed in Chapter 3 when
we talk about initial setup for OPAQUE protocol, that is prior both registration
and anthetication phase. On the other hand, the client generates its general pub-
lic key (client_public_key) during the registration phase, using the Store() func-
tion when creating the registration request. Note that client’s general private key
(client_private_key) is not going to be used in this moment. Therefore, in our
implementation we decided to clear it from processor memory stack using ap-
proach described in Section 5.3. The client’s private key will be safely restored
later.

Both the client and the server also generate so-called AKE public and private
keys. The client generates AKE keys (client_public_keyshare, client_secret - pri-
vate AKE key) during the first AKE message (see Figure 3.2). The server also
generates AKE keys (server_public_keyshare, server_secret− private AKE key).
This is done in the AKE part of the login when the server constructs the second
AKE message (Figure 3.3). Note that when talking about AKE and KE messages
in this thesis, we refer to the same thing, and we will be using these two terms
interchangeably. We can see the flow of the login phase in the diagram 3.2.

28

Chapter 3. Detailed Description of OPAQUE Phases

(params, record)creds

ServerClient

AKE message 1

AKE message 3

AKE message 2

session_key(export_key, session_key)

Figure 3.2: OPAQUE authentication: sequence of messages sended between
client and server

3.2.1 First AKE Message

The login phase is initiated by the client. The client needs to generate the
KE1 message and send it to the server. The KE1 message consists of two struc-
tures calledCredentialRequest andAuthRequest. In otherwords, the client needs
to generate a blinded message (OPRF phase, the same as during registration).
This is stored in the CredentialRequest structure. In the AuthRequest structure,
client’s public information, such as the client’s public AKE key and public nonce
(public nonce will be discussed later), is stored on the server. The client also cre-
ates its own structure to hold private information like the password, blind (ran-
dom scalar - OPRF phase), AKE private key (client_secret), and also a copy of
the KE1 message. See Figure 3.3.

blind // OPRF part (random scalar r)

// copy of KE1 msg

// AKE private keyClientAkeState client_secret

KE1

CredantialRequest // OPRF part (M = rT)

// AKE public key

// used later in preamble

KE1

AuthRequest public_nonce

blind_msg

client_public_keyshare

passwordClienState

Figure 3.3: First AKE message generation: client-side flowchart.

29

Chapter 3. Detailed Description of OPAQUE Phases

3.2.2 Second AKEMessage

When the server receives the KE1 message from the client, it calculates the
evaluated_message, which is theOPRF step on the server-side. This is the same as
registration step 4 discussed previously in section 3.1.1. Besides that, the server
also generates amasking_nonce, which is a value retrieved from random number
generator (RNG) and calculates themasked_response. Be awere, that for siplicity
sake, we decided to implement linear congruent RNG (as depicted in code 7.1).
Themasking_nonce is used in the process of creation credential_response_pad as
depicted in equation 3.8. The masked response is calculated in a very specific
manner:

masking_nonce = rng() (3.1)

masked_response = credential_response_pad⊕ (server_public_key||envelope) (3.2)

Where server_public_key is the server’s "general" public key. Note that the
envelope is a structure that was created during registration and is stored in the
server’s database. One missing piece from the formula above is credential_res−
ponse_pad, which is a value expanded (using hkdfExpand) from themasking_key.
The credential response label is simply a byte-string defined in the OPAQUE pro-
tocol specification. Recall that masking_key is a value that is generated by client
during registration and stored on server. These values form the CredentialRe-
sponse structure. Note that the masked_response is later used by the client to
recover an envelope (AKE3). In the KE2 message, the AuthResponse structure
is also present, which the server needs to form. It consists of server_nonce (from
RNG), server_public_keyshare (server’s AKE key), and server_mac. We will go
deeper in a bit, but first, a quick summary.

We can divide the forming of the secondAKEmessage into two steps. The first
step is to create the evaluated_message (OPRF step 4, see section 3.1.1), use stored
themasking_key created in registration phase, and calculate themasked_response.
The next step is the logic behind the actual AKE. Now let’s talk about the AKE
logic. In this particular implementation, weuse the TripleDiffie-Hellman (X3DH)
protocol[6], a 3-message AKE that satisfies forward secrecy. This means that on
every login, client and server will agree upon diffrent session_key, which is a key
that serves as symmetric encryption key. Basically the purpose of X3DH is to cre-
ate ikm (input key material) by combining the general and AKE private server

30

Chapter 3. Detailed Description of OPAQUE Phases

keyswith the client’s general andAKEpublic keys on the server-side. Later, when
forming the AKE3 message, the client will generate ikm from the general and
AKE private client keys with the server’s general and AKE public keys. When
forming AKE2 on the server-side, formula for server-side ikm looks like this:

ikm =server_secret(AKE) · client_public_key_shared(AKE)

||server_private_key · client_public_key_shared(AKE)

||server_Secret(AKE) · client_public_key

(3.3)

where "||" denotes byte-concatenation.
Why do we actually need something like ikm? From ikm, the server can gen-

erate three things: km2, km3, and session_key. As mentioned above, X3DH pro-
vides forward secrecy because, on every login, newAKE keys are generated, thus
newsession_key. Keymaterial km2 is then used to form the server_mac, and km3

is used to form the expected_client_mac.
These MAC (Message Authentication Code) messages are used to verify the

client/server, respectively. The server sends its MAC to the client, and the client
(in AKE3 step) generates the expected_server_mac. These must match (verifica-
tion step) [1]. On the other hand, the client also sends its client_mac (in AKE3
message) to the server, which already calculates (in AKE2 step) the expected_cl−
ient_mac. If they match, they can use the session_key for encrypted communi-
cation, this is known as the finalization phase of AKE. Note that to form km2,
km3, and session_key, we need a bit more than just ikm and that missing piece is
called preamble. A preamble is just a byte-concatenation of client_identity, KE1,
server_identity, and KE2 (without server_mac).

Recall the public_nonce generated by client during creation of KE1, which
takes part in constructing a preamble. The public nonce indeed introduces ran-
domness into the firstmessage (KE1) structure inOPAQUE. This randomness en-
hances security by ensuring that each authentication attempt is unique, thereby
preventing replay attacks. Additionally, including randomness in the preamble,
further strengthens security by making it more difficult for an attacker to predict
or manipulate the authentication process. See the diagram 3.4 to better under-
stand what the server will hold and generate when forming AKE2.

31

Chapter 3. Detailed Description of OPAQUE Phases

expected_client_mac

// AKE private key

ServerState

session_key

CredantialResponse // OPRF (step 4)KE2 evaluated_msg

// from RNGmasking_nonce

// (cred_response_pad) XOR

 (server_pub_key || envelope)

masked_response

// AKE key

// from rngAuthResponse

server_public_keyshare

server_mac

server_nonce

Figure 3.4: Second AKE Message Generation: Server-Side Flowchart.

3.2.3 Third AKE Message

In thirdAKEmessage, the client recieves the KE2message from the server but
also holds a copy of theKE1message in its state (ClientState→ ClientAkeState→
KE1), alongwith other private values. These values were generated by the client
and saved during the KE1 creation process. Now, the client is ready to form the
KE3 message. This can be divided into two steps: building RecoverCredentials

structure and AKE finalization. First, let’s discuss theRecoverCredentials phase.
This is the last step of the OPRF protocol, where the client needs to perform the
OPRF finalization step, which is to calculate (1/r) ∗ Z = x ∗ T = N . Recall the
OPRF step from the registration phase of the OPAQUE protocol. The next step
is to retrieve the client’s envelope, which is stored on the server. To do so, the
client needs to use theHKDF function for extraction of the randomized_password.
A randomized_password is an output of hkdfExtract function that takes byte
string. Such byte-string is represented as concatenation of hash(N), which is
specifically hashed OPRF output N and user password, and hardened hash(N).
It may look like this:

oprf_output = hash(N || pwd), (3.4)

randomized_password = hdkfExtract(oprf_output || Harden(oprf_output)), (3.5)

where the pwd represents client’s password and the function Harden() could
be any Key Stretching Function (KSF). In this case, it is the identity function,

32

Chapter 3. Detailed Description of OPAQUE Phases

which is the same as in the OPAQUE specification. The identity function returns
the same value on the output as the input. In other words,msg = Identity(msg),
which could be simply implemented asmemcpy. So, in our case, the randomized−
_password would look like this:

oprf_output = hash(N || pwd), (3.6)

randomized_password = hdkfExtract(oprf_output || oprf_output), (3.7)

Now, when the client has its randomized password, the OPRF is done and
user can use randomized password as input to AKE. Subsequently randomized
password is used to create the masking_key using hkdfExpand. The client also
recreates credential_response_pad (recall credential_response_pad from AKE2),
which is the same process as it was on the server-side and also results in the same
value. It looks like this:

credential_response_pad = hkdfExpand(

masking_key, (masking_nonce || "CredentialResponsePad")) (3.8)

Note thatwhile the client can generate themasking key, the server needs to get
it during the registration step (in the client’s record responsemessage). So far, the
client has retrieved the randomized_password and expand credential_response−
_pad from it. But why does the client actually need credential_response_pad?
It’s simple, recall that the server sends the masked_response in KE2 to the client,
which means that at this point, the client already has masked_response received
from KE2 → CredentialResponse → masked_response. Masked response will
be used to retrieve server_public_key and the envelope.

Server calculatesmasked_response as:

masked_response = credential_response_pad⊕ (server_public_key ∥ envelope) (3.9)

Since the client recreated credential_response_pad, it is easy for the client to
get server_public_key and envelope.
All he needs to do is to XOR credential_response_pad and masked_response.

(server_public_key ∥ envelope) = masked_response ⊕ credential_response_pad (3.10)

33

Chapter 3. Detailed Description of OPAQUE Phases

The Client is now able to generate the client_private_key and export_key us-
ing theRecover() function [1], which input values are the randomized_password,
server_public_key, envelope, server_identity, and client_identity. Server’s iden-
tity is also something publicly known. This is typically a domain name, e.g., ex-
ample.com. If not specified, it defaults to the server’s public key. Server also
needs to generate its general public and private key and choose a oprf_seeds (salt)
for the OPRF process. Server‘s identity, general public and private keys, and
oprf_seeds are generated prior to both registration and authetication phase as dis-
cussed previously.

Besides the generation of the client_private_key and export_key, Recover()

also internally recreates the auth_tag and verifies it against the auth_tag from the
envelope [1].

expected_tag == envelope.auth_tag (3.11)

If those are not the same, an error will occur. This is a prevention against
attackers because only the server that the client is registered on has a valid enve-
lope. Recall that registration is done out-of-band or using PKI, so we assume that
registration is done safely. This is end of RecoverCredentials part of AKE3.

A brief summarization for clarity before we go further. During third step of
authentication phase, user retrive oprf_output which is a product of OPRF. The
oprf_output coupled with it‘s hardened verion is then used to create so called
randomize_password, which is an essential value for expansion of masking key
and other values. Note that at this point, client also generates client_private_key
and export_key, which is the same as in registration phase.

Subsequently masking_key is used to form credential_response_pad that is
necessary to obtain server_public_key and the envelope. Once the envelope is re-
covered, client will generate an expected_tag and compare it to auth_tag in the
envelope.

The second part is the AKE finalization step. This is actually pretty straight-
forward, as we already discussed most of the concepts previously. The client
generates ikm, which is very similar to what the server did in AKE2. However,
now ikm formation is on the client-side and looks like this:

ikm =client_secret(AKE) · server_public_keyshare(AKE)

|| client_secret · server_public_key

|| client_private_key · server_public_keyshare

(3.12)

34

Chapter 3. Detailed Description of OPAQUE Phases

where ’||’ denotes byte-concatination. After the server generates ikm, it also
needs to construct the preamble (similar to what the server did in AKE2). Now,
the client is able to generate its KM2, KM3, and session_key. Client computes
expected_server_mac from KM2, which is then compared to the server_mac that
comes from the server in the KE2 message. The client also creates the client_mac

from KM3 and sends it to the server. Note that the server already holds the
expected_client_mac, which it calculates during KE2 formation. The last step of
the entire OPAQUE protocol is on the server-side. The server needs to verify if
the client_mac (in the KE3message) is identical to the expected_client_mac. If so,
the client and server can use the session_key to encrypt their conversation.

35

4 Development Enviroment

The development of our RG255 implementation and subsequently OPAQUE
implementation aimed at embedded systems, requires the incorporation of fast
andmemory-efficient approaches throughout the development process. To create
such implementations, we utilized various development tools and environments
that helped us incorporate optimization approaches, evaluate the correctness of
our implementation, perform speed measurements, and more.

We had multiple ideas that we wanted to integrate into our library. One such
example is endian-agnostic code, a method that allows code to be written once
and run on both little and big endian architectures without conditional compila-
tion. However, this approach may not be efficient for embedded systems, which
are our targeted platforms. Therefore, we decided to create two archives: one for
PC (personal computer) platforms utilizing the endian-agnostic approach, and
another targeted specifically for embedded systems, particularly those running
on the ARM Cortex-M4 core.

This chapter introduces the specific development environment and tools uti-
lized throughout the entire development process.

4.1 Development Platform

In this section discuss development enviroment used during creation of both
archives discussed above. Development of whole codebase was performed on
PC with following specifications:

• CPU: Intel i5-8250U (1.60GHz)

• RAM: 8.00 GB

• Operating System: Windows 10 Pro 64-bit

36

Chapter 4. Development Enviroment

4.1.1 Programming enviroment

We prepared C implementations of Ristretto255 and OPAQUE on a PC platform
and performed various tests as described in Chapter 7. During the develpment of
our implementatios we used a latest version GCC compiler (version 13.2.0) was
used, targeting both 64-bit and 32-bit little-endian architectures. This ensure com-
patible types that are platform independent. We subled upon several problems
when using type size_t, that results in compilation errors on 64-bit platform and
no error on 32-bit platform and vice-versa, therefore we decided not to use some
critical types and rather use platform independent types like uint32_t, int32_t
etc. Implementation details and optimization techniques utilized in our library
are provided in Sections 5 and 6. Additionally, we have put a lot of effort into
writing a library that is well-documented and heavily commented, the library is
avaliable in Appendix A.

4.1.2 Python Prototype

As part of the development of our library, we also used the Python program-
ming language of version 3.9.11 [44]. Python servers as high-level environment
for debugging and reference calculations and was used for rapid prototyping of
Ristretto255, which helped me deeply analyze RG255. In the optimization phase,
we employed computational methods over finite fields using modulo 2p, where
Python was used to identify suitable points in RG255 for additional reduction,
thus bringing numbers back within the modulo p interval. More details about
this optimization technique and how we used Python to overcome some difficul-
ties are provided in Section 6.6.

4.1.3 Embedded Platform

Our main goal was to developed a fast, compact and secure implementation re-
sistant to side-channel attacks aimed for embedded systems. Therefore, we pre-
pared an archive specifically targeting ARM Cortex-M4 core, kde sme zohladnili
all optimization techniqes described in Chapter 6. Whole archive forMCU (avail-
able in Appendix A) was tested on STM32F4DISCOVERY development board,
where we performed measurements (see Chapter 7. The STM32F4DISCOVERY
board is equipped with an STM32F407VG microcontroller, which is built on the
32-bit ARM Cortex-M4 core and operates at a clock frequency of up to 168 MHz,
with 1 MB of Flash memory and 192 kB of RAM [45]. NIST has acknowledged
the widespread use of the Cortex-M4 in academic post-quantum literature and

37

Chapter 4. Development Enviroment

has recommended it to submission teams as an optimization target for the second
round [46].

The boarduses an 8MHz crystal for processor clocking, and the core processor
clock frequencywas adjusted up to amaximumof 168MHzusing a Phase-Locked
Loop (PLL) configuration. Measurements were performed using the GCC ARM
compiler from ARM GNU Toolchain, Version 13.2.Rel1, released on October 30,
2023, available at https://developer.arm.com/downloads/-/arm-gnu
-toolchaindownloads. The board incorporates an integrated ST-LINK/V2
debugger and programmer, enabling us to program and debug the microcon-
troller through the integrated ST-LINK interface, eliminating the need for an ex-
ternal debugger. In our experiment, we leveraged this feature by connecting the
board to a computer via USB, providing both power and a communication inter-
face for debugging.

Furthermore, in our experimentsweutilized the InstrumentationTraceMacro-
cell (ITM) and DWTCYCCNT (DataWatchpoint and Trace Cycle Counter), both
integral components of the ARM Cortex-M debug and trace architecture. We
employed ITM in conjunction with ST-LINK/V2, enabling the redirection of the
printf function to the ITM ports to facilitate code instrumentation. DWT CYC-
CNT is a component located in the core of the ARM Cortex-M processor, and it
is a cycle counter that increments with every central processing unit (CPU) cy-
cle. It was employed for measuring execution time and conducting performance
profiling.

4.2 QEMU for Big Endian Code on Little Endian De-
vices

One of our goals was to write code that is endian-agnostic, meaning there is no
need for conditional compilation to ensure the program runs correctly on both
big-endian or little-endian architectures. To test for bit-exact results (correct re-
sults compared to official test vectors) using this approach, we utilized theQEMU
emulator [47], which emulates the Debian 11 operating system running on a big-
endian platform called PowerPC (Power-PC64 version 5.2.0). During testing of
the endian-agnostic approach on Debian OS, we used gcc powerpc64-linux-gnu-
gcc, version 10.2.1.

This section is dedicated to describe an approach of testing code written for
big endian systems. Section 5.4, we explains how we built an endian-agnostic

38

https://developer.arm.com/downloads/-/arm-gnu-toolchaindownloads
https://developer.arm.com/downloads/-/arm-gnu-toolchaindownloads

Chapter 4. Development Enviroment

implementation of Ristretto255. When employing such an approach, errors can
easily be introduced into the code, especially when doing so for the first time.
Therefore, we need a way to test our code on a big endian device. However, dur-
ing the development of our Ristretto255 implementation, we did not have access
to such a device. Thus, we needed to find a way to test big endian code on little
endian devices. During our research, we stumbled upon an emulator, QEMU, in
combination with the GNU debugger, which offers exactly what we needed.

QEMU [47] is an open-source machine emulator and virtualizer that enables
users to execute operating systems and programs intended for one machine ar-
chitecture (such as an ARM-based system) on a different machine architecture
(such as an x86-based PC), without requiring the original hardware. It supports
emulation for a variety of architectures, including x86, ARM, PowerPC, and oth-
ers.

QEMUsupports several different operationmodes. One commonly usedmode
is System Emulation mode, which provides a virtual model of an entire machine,
including the central processing unit (CPU), memory, and emulated devices, to
run a guest OS. This mode may also work with a hypervisor such as KVM, Xen,
or Hypervisor.

Another supportedmode of QEMU is UserMode Emulation, inwhichQEMU
is capable of executing processes compiled for a different instruction set. In this
mode, system calls are adapted to accommodate endianness differences and 32/64-
bit mismatches. The primary function of user-mode emulation is to facilitate fast
cross-compilation and cross-debugging. This mode, User Mode Emulation, is
the one we utilized for testing and debugging our endian-agnostic code for big
endian systems.

When we searched for the best way to set up QEMU and GNU debugger to
test code on big endian devices, we came across a very helpful article[48], where
the author describes a step-by-step setup and debugging process. However, the
article is tailored for Linux-based operating systems, which may not be a perfect
solution for everyone, especially Windows users. Therefore, we provide a solu-
tion for Windows users in the following sections Appendix C.

39

5 Implementation Strategy
of Ristretto255 Transformation

In this section, we discuss multiple implementation strategies utilized in our
implementation of the Ristretto255 transformation. These strategies encompass
several key techniques, including constant-time operations, management of neg-
ative elements inGF(p), secure cleaning of local variables stored on the processor
memory stack, andmaintaining endian agnosticity. Each of these approacheswas
crucial in our implementation for efficiency, security, and platform compatibility.
We have incorporated all these strategies into our implementation, which are de-
tailed in Appendix A.

5.1 Constant Time Approach

High-quality cryptographic protocols require constant-time operations to pre-
vent side-channel attacks. This is why all operations should be implemented in
constant time, as suggested in RFC 8032 [49]. By constant-time implementation,
wemean an implementation that is resistant to timing attacks, which is a subclass
of side-channel attacks. A timing attack is a sophisticated method of bypassing
the security mechanisms of an application and intentionally gining leaked infor-
mation that could be used by an attacker formalicious purposes. The idea behind
timing attacks is quite simple and is based on time differences in data processing.
An attacker supplies various inputs to the algorithm or application, times the
process. If the algorithm is susceptible to timing attacks, different inputs should
be processed in different time lengths. By analyzing time differences based on
certain inputs, the attacker can guess the valid input.

Algorithm 5 shows a typical non-constant time algorithm for byte-string com-
parison that is susceptible to timing attacks. It is obvious that the execution time
of this algorithm is based on the input parameter because its execution endswhen

40

Chapter 5. Implementation Strategy
of Ristretto255 Transformation

two compared elements differ from each other. This means that if the input is the
same as the value that is being compared, we need to loop through the whole
array, thus it takes the maximum time and effort. On the other hand, if the input
differs right in the first element, the comparison ends immediately[50].

Algorithm 5 non_ct_compare(a, b), where a, b are 32-bit unsigned in-
tegers

1: n← length of a
2: for i← 0 to n− 1 do
3: if a[i] ̸= b[i] then
4: return false
5: end if
6: end for
7: return true

Table 5.1 shows the time taken for Algorithm 5 to run with different inputs.
We can clearly see that Algorithm 5 is susceptible to side-channel attacks because
the processing duration varies with different inputs. The more similar the strings
are, the longer the execution time of the comparison takes. Table 5.1 shows vari-
ous strings that were compared to a reference string along with their evaluation
times. Each string contains 32 characters, and measurements were performed
using a Python script that follows Algorithm 5.A Python script is provided in
Appendix B. However, in practice, password evaluation may be more complex
than simple string comparison, and time differences may bemore apparent when
a non-constant-time algorithm is used.

Table 5.1: Comparison of String with Reference and Time Measurement

String to Compare Reference String Time Evaluation [ns])
"eeeeeeeeeeee..." "RefString1AB..." 601
"Reeeeeeeeeee..." "RefString1AB..." 813
"RefStrieeeee..." "RefString1AB..." 1585
"RefString1AB..." "RefString1AB..." 3731

Algorithm 6 is one of the most common ways of implementing byte-string
comparison in constant time. It ensures that, regardless of the input, we loop
through the whole array. This may not be the most efficient way of byte-string
comparison in terms of performance, but it is certainly safer than Algorithm 5.

41

Chapter 5. Implementation Strategy
of Ristretto255 Transformation

Algorithm 6 ct_compare(a, b), where a, b are 32-bit unsigned integers
1: mask ← 0

2: n← length of a
3: for i← 0 to n− 1 do
4: mask or= a[i]⊕ b[i]

5: end for
6: return ((u32) (mask or (∼ mask+ 1)))≫ 31

5.2 Concept of Negative Elements Used GF(p)

One more important concept deserves attention. The evaluation of a nega-
tive byte string element. It may sound a bit confusing because all elements in
GF are essentially positive. However, the concept of a negative element has been
introduced, which is uncommon in traditional mathematics but is employed in
cryptography. Although the utilization of negative elements in a finite field is
specified in Ristretto255 [14] and RFC8032 [49], we have not found its mathe-
matical justification. Therefore, in this section, we will provide a straightforward
description of this concept.

In As per RFC8032, a field element e is considered negative if the least non-
negative integer representing e is odd, and it’s considered FALSE if it is even
[49]. For a given element e in GF, if its Least Significant Bit (LSB) is 1, then
IS_NEGATIVE(e) is true; otherwise, it’s false. Implementing this evaluation in
constant time is recommended [1]. In RG255, an evaluation of negative elements
can be seen in multiple places. For example, in the encoding algorithm on the
tenth and fifteenth rows of Algorithm 1, or in the decoding Algorithm 2 at rows
one and seventeen. For further details, please refer to Appendix A.

This approach is straightforward. Let’s examine the evaluation of negative
elements in aGF from a different perspective. Suppose e is aGF(p) element, then
its negation, denoted as−e, is calculated as−e ≡ p−e (mod p), where p is a prime
number. All calculations are performedmodulo p since operations are conducted
within the finite field.

Now, consider a GF element e and its negation −e. How do we determine
which element is negative and which is positive? One convention is to define the
odd element as negative and the even element as positive.

For example, let’s take e equal to 4 and p equal to 7. The negation −e is calcu-
lated as −e = 7 − 4, resulting in −e equal to 3, which in binary representation is
0011, while ’e’ remains 4, represented as 0100 in binary. Following the conven-

42

Chapter 5. Implementation Strategy
of Ristretto255 Transformation

tion where the term ’negative element’ denotes the one with the least significant
bit (LSB) set to 1 (i.e., an odd number), the GF element −e is identified as neg-
ative, and e as positive. It’s notable that subtracting an odd GF(p) element from
the prime p always yields an even element, and vice versa.

5.3 Secure Wiping of Local Variable

Wiping or clearing the processormemory stack after performing cryptographic
calculations in a function is a security practice aimed atminimizing the risk of sen-
sitive data exposure. In cryptography, the processor stack is a region of memory
used to store local variables and function call information. When cryptographic
operations involve sensitive information like encryption keys or intermediate re-
sults, it’s crucial to take measures to protect this data from potential attacks. Val-
ues assigned to local variables are not volatile and persist in the processor stack
even if the called function finishes. They can only be rewritten by other values,
which can introduce potential information leakage. A very simple yet efficient
method of preventing data leakage is zeroing buffers. This is done at the end
of each function that could lead to a potential leakage of sensitive information.
In our library, we drew inspiration from multiple cryptographic libraries such as
MonoCypher [51], TweetNaCl [52], and CycloneCRYPTO [32] (see Section 6.2).

From our research on these libraries, we found that, unlikeMonoCypher [51],
TweetNaCl [52] and CycloneCRYPTO [32] do not wipe internal buffers. Drawing
inspiration fromMonoCypher, we decided to incorporate buffer wiping into our
implementation, ensuring that we clear memory responsibly. Wiping function
can be seen in code 5.1.

1 void crypto_wipe(void *secret, int32_t size)

2 {

3 volatile u8 *v_secret = (u8*)secret;

4 int32_t idx;

5 ZERO(idx, v_secret, size);

6 }

Source Code 5.1: Buffer wiping function inspired by MonoCypher library

In the context of a crypto library, using volatile to prevent the compiler from
optimizing out memory zeroing is a safety precaution. The compiler’s optimiza-
tion may decide to skip the zeroing operation if it believes the memory is never
read afterward. By using volatile, we’re essentially telling the compiler not to
make that assumption and to perform the zeroing operation regardless ofwhether

43

Chapter 5. Implementation Strategy
of Ristretto255 Transformation

the memory is explicitly read afterward. This helps ensure that sensitive data is
properly wiped from memory, which is crucial for security purposes. In other
words, we need to use volatile because the compiler might skip zeroing the buffer
due to optimization and make the assumption that "Why would I write into the
buffer when it is never read?" One more comment on volatile keyword. The
"volatile" keyword is used to indicate to the compiler that a variable or object can
change its value at any time without any action being taken by the code the com-
piler finds nearby. This is typically used to prevent the compiler from optimizing
away certain accesses to memory, especially in cases where the memory might
be modified by hardware, another thread, or some other external entity that the
compiler cannot predict. Last but not least, the difference between volatile on
a pointer and volatile on a variable is that volatile on a pointer indicates that the
data being pointed to may change, while volatile on a variable indicates that the
variable itself may change at any time [53].

The concept of buffer wiping is intensively utilized in our library, for example,
in low-level GF arithmetic and in the RG255 functions such as encoding, decod-
ing, and many supportive functions (see Appendix A). However, this is an op-
tional feature that enhances security but can be disabled by simply commenting
out the buffer wiping functions

5.4 Portable Endian Agnostic Code

The development and testing of our library were performed on a little-endian
device. From the outset, our goal was to write code that would run seamlessly on
both little and big-endian platforms. However, many other libraries are designed
to use conditional compilation. In such cases, the code typically includes some-
thing like an#ifdefBIG_ENDIAN block followed by specific code for handling
endianness. However, during our research on endian independence, we stum-
bled upon an article [54] that states it is achievable without conditional compi-
lation. This highly inspired us to avoid the conditional compilation approach
in our implementation. Instead, we write code that simply runs on both little-
endian and big-endian systems. Here’s how we did it. Firstly, we need to realize
that a number represented as 8×u32 (an array of eight uint32_t elements) has the
same byte order on both little and big endian systems. Therefore, we do not need
toworry about endianness when processing 8×u32 number representations. The
problem arises when we need to manipulate bytes, in other words, when dealing
with 32 × u8 number representations, because this is endian-dependent. In our

44

Chapter 5. Implementation Strategy
of Ristretto255 Transformation

Ristretto255 implementation, we need to perform several operations with 32×u8

numbers, which means that we need to convert 8× u32 into 32× u8 number rep-
resentation and perform some operations afterward. Combining the knowledge
gathered from the article [54], we created two functions that perform conversions
from 8 × u32 into 32 × u8 little-endian order number representation (even if we
are on a big-endian device).

The functions bytes_to_int and int_to_bytes perform conversions from 32×u8

to 8 × u32 and vice versa, guaranteeing that the final product of those functions
will always be a number represented in little-endian format, regardless of the
device’s endianness.

1 void bytes_to_int(u32* uint32Array, const u8* uint8Array) {

2 for (uint8_t i = 0; i < 8; i++) {

3 uint32Array[i] = (uint8Array[i x 4 + 0] << 0) |

4 (uint8Array[i x 4 + 1] << 8) |

5 (uint8Array[i x 4 + 2] << 16)|

6 (uint8Array[i x 4 + 3] << 24);

7 }

8 }

Source Code 5.2: Definition of bytes_to_int C function

1 void int_to_bytes(u8* uint8Array, const u32* uint32Array) {

2 for (uint8_t i = 0; i < 8; i++) {

3 uint8Array[i x 4 + 0] = ((uint32Array[i] >> 0) & 0xFF);

4 uint8Array[i x 4 + 1] = ((uint32Array[i] >> 8) & 0xFF);

5 uint8Array[i x 4 + 2] = ((uint32Array[i] >> 16) & 0xFF);

6 uint8Array[i x 4 + 3] = ((uint32Array[i] >> 24) & 0xFF);

7 }

8 }

Source Code 5.3: Definition of int_to_bytes C function

Following this method, we developed the Ristretto255 protocol, ensuring en-
dian independencewith just two conversion functions. Note that ifwewerework-
ing solely on a little-endian platform, these conversions would be unnecessary
and could introduce a small overhead because we could simply cast a uint32_t ar-
ray into a uint8_t array. Additionally, it is important to note that all inputs passed

45

Chapter 5. Implementation Strategy
of Ristretto255 Transformation

Example for big - endian device  

u8 in [32] -> big endian order input bytes 
u8 out [32] -> temporary array  

in_little_endian := convert ’in ’ from big to little endian 
ristretto255_decode (ristretto_point , in_little_endian) 
ristretto255_encode (out , ristretto_point)  

at this point out [32] is filled with bytes 
in little endian order so it needs to be 
concerted to big - endian  

out_big_endian := convert ’out ’ from little to big endian

Figure 5.1: An example pseudocode showing usage of our endian-agnostic
RG255 implementation

into our endian-agnostic Ristretto255 function need to be in little-endian format
(see code 5.1).

46

6 OptimizationTechniques for embed-
ded platform

In this thesis, we are targeting embedded systems, which are typically re-
source-constrained, have a small memory and low computational power. There-
fore, our goal is to create an implementation capable of running on embedded
platforms that is reasonably fast, compact and resistant to side-channel attacks.
Additionally, the size of the processor memory stack for embedded systems is
significantly smaller compared to typical CPUs used in PC platforms, such as
the Intel i5-8250U processor that we used in developing our library (see Section
4). Therefore, function calls cannot utilize a large stack depth. Accordingly, we
made special efforts to create an implementation that minimizes requirements
on stack size. When optimizing the speed of our library, we weren’t restricted
to using only the C language, instead we aimed to find and combine efficient C
codes with highly optimized assembly (ASM) codes [31], [55] to achieve a very
fast and optimized implementation. This section discusses various optimization
techniques that have been integrated into our library, detailed in Appendix A.

6.1 Available High-level Ristretto255 Libraries

Non-prime-order curves can introduce security issues due to cofactor, poten-
tially leading to various attacks on more complex protocols. Typically, these con-
cerns are managed through additional tweaks in protocols [16], but some modi-
fications become recurring sources of vulnerabilities and subtle design complica-
tions. These alterations often prevent applying the security proofs of the abstract
protocol [26].

Ristretto255 provides the reliable abstraction necessary for implementing com-
plex protocols, offering the simplicity, efficiency, and speed characteristic of non-
prime-order curves like Bernstein’s Curve25519. Several cryptographic libraries
and frameworks are available that have implemented Ristretto255 for Curve25519

47

Chapter 6. Optimization Techniques for embedded platform

across various programming languages. Some of these implementations include:

• Rust: curve25519-dalek, by Isis Lovecruft and Henry de Valence [56].

• Go: ristretto255, by George Tankersley, Filippo Valsorda, and Henry de Va-
lence [57].

• C: libsodium, by Frank Denis [58].

• C: libristretto, by Tony Arcieri [25].

• AssemblyScript: wasm-crypto, by Frank Denis [59].

• Javascript with Typescript: noble-ed25519, by Paul Miller [60].

• Javascript: ristretto255-js, by Valeria Nikolaenko and Kevin Lewi [61].

• Zig: the Zig programming language includes ristretto255 in its standard li-
brary, implemented by Frank Denis [62].

However, none of these implementations were suitable for our goal of incor-
porating Ristretto255 into embedded systems. We faced challenges in finding
a compact, high-speed, lightweight implementation of Ristretto255 written in C.
This led us to develop our implementation, taking into account these specific re-
quirements.

The goal of our implementation was to achieve speed with minimal memory
requirements and maintain constant-time operation execution. Our goal was to
create a compact, high-speed, constant-time, and memory-efficient implementa-
tion of Ristretto255, which forms the core of this thesis, followed by the complete
OPAQUE protocol. We also wanted to create code that would run on little en-
dian as well as on big endian devices. Combination of these properties makes
a perfectly complient implementation for embedded systems.

6.2 State of theArt EmbeddedC libraries forGF25519

The purpose of Ristretto255 is to provide a way to perform operations on
Curve25519 inmore securemanner. From the perspective of high-level protocols,
Ristretto255 can be view as a intermediate layer between Curve25519 and higher-
level protocol like OPRF [7] or PAKE [4]. Such hierarchy can be seen in Figure
6.1.

48

Chapter 6. Optimization Techniques for embedded platform

 Protocols

(OPAQUE)

Operations on the Curve25519

Modular multiplicative inverse Mod L

Arithmetic in finite field GF(2255-19)

Ristretto255

Figure 6.1: Hierarchy of operations in the Ristretto255 Group supporting
higher-level protocols, such as the OPAQUE protocol.

Figure 6.1 at the highest level shows the OPAQUE protocol that is described in
detail in the specification [1], with its fundamental concepts exmpained in Chap-
ter 3. Moving from the top to the bottomof the pyramid (Figure 6.1), Ristretto255,
positioned in the second layer, represents a significant aspect of our optimization
efforts, constructed from simpler mathematical building blocks. The very bottom
layer of the pyramid (Figure 6.1) illustrates the use of arithmetic in the finite field
GF(2255 − 19).

Taking a good look at Figure 6.1, we can see that finite field arithmetic is in-
volved in all upper layers of the pyramid making it obvious pivot point for op-
timization. Therefore, during the optimization technique thinking process, our
primary focus was on optimizing the lowest layer of the pyramid,as optomiza-
tions at this level have a significant impact on all upper layers.

We searched for the appropriate approach to implement algorithms for op-
erations over GF(2255 − 19), and we identified three compact yet efficient cryp-
tographic libraries that inspired us: TweetNaCl[52], MonoCypher[51], and Cy-
cloneCRYPTO[32]. Throughout the research we deeply analyzed all of these li-
braries and identidied optimized approach that suits our needs. We specifically
aimed for combination of fast implementationwithmemory efficient internal rep-
resentation of a field element.

6.2.1 TweetNaCl

TweetNaCl[52], written by D.J. Bernstein, is a small but practical crypto-
graphic library with strong security properties in particular, it uses constant-time
algorithms to prevent side-channel attacks [16]. TweetNaCl is based on the NaCl

49

Chapter 6. Optimization Techniques for embedded platform

(Networking and Cryptography Library) with the sole purpose of being as com-
pact and practical as possible. It fits into only 100 tweets and seamlessly incorpo-
rates all 25 NaCl functions. It contains operations over GF(2255 − 19). However,
its main disadvantage is the use of an internal representation of a field element
of size 64x16 bits in radix 216, making it too large for embedded systems.

6.2.2 MonoCypher

MonoCypher[51] is a small cryptographic library written in C, comprising
fewer than 2000 lines of code. The entire code base consists of just two files, mak-
ing it user-friendly and easy to deploy. MonoCypher excels in maintaining high-
performance cryptographic primitives without unnecessary sacrifices. Remark-
ably, it stands upwell against libsodium [58], despite its compact size being closer
to TweetNaCl. MonoCypher uses a 32x10-bit internal representation of a field el-
ement, ensuring highly efficient computations overGF(2255− 19), particularly on
larger systems like desktops. MonoCypher’s field arithmetic is strongly inspired
by SUPERCOP’s ref10 [63].

6.2.3 CycloneCRYPTO

CycloneCRYPTO [32] is a cryptographic toolkit designed for use in em-
bedded systems. It provides a comprehensive set of cryptographic primitives
and building blocks, including various hash functions, symmetric encryption al-
gorithms, algorithms for asymmetric cryptography, elliptic curve cryptography
algorithms, and operations over GF(2255 − 19), using an internal representation
of 32× 8-bits.

A 32 × 8 internal representation is chosen for its perfect fit with the 256-bit
prime number p = 2255 − 19, effectively utilizing each bit. In contrast, a 32 ×
10-bit representation might lead to inefficient memory usage, with unused bits.
Conversely, a larger word size can offer techniques that enable highly efficient
computations.

Our analysis indicates that, of all the C implementations we examined, Mono-
Cypher has the fastest low-level operations over GF. However, we chose the for-
mat fromCycloneCRYPTO library for several reasons, including its compactness,
decent speed, and the elimination to/from interal element conversions. Unlike
other libraries such as TweetNaCl or MonoCypher, CycloneCRYPTO doesn’t re-
quire pack/unpack or from bytes/to bytes conversions, which would introduce
significant overhead to our implementation. Another reason for choosing Cy-

50

Chapter 6. Optimization Techniques for embedded platform

cloneCRYPTO format is its small 32 × 8-bit internal representation of a GF el-
ement. From our perspective, an 8-word representation of the GF element is
considered optimal for MCUs, and several other libraries also utilize an 8-words
representation.

6.3 Function for Computation of Inverse Square Root

The Ristretto255 transformation requires computing the inverse square root
(INV _SQRT) as depicted in the decoding algorithm (2) at line 3, the encoding
algorithm (1) at line 9, or the MAP function (3) at line 4. In fact, computing the
inverse square root (INV _SQRT) is one of the most computationally intensive
operations in theRistretto255 transformation. Therefore, we carefully selected the
best available implementation for our library. Let p = 2255−19, then computation
of INV_SQRT (specified in [14]) is computed by Algorithm 7.

Algorithm 7 Algorithm for computing INV _SQRT

Input: (u, v) - elements from GF such that u < p and v < p

Output: (was_square, r) - r is an element from GF and was_square represents
a boolean value indicating whether u/v was a square

1: r ← (uv3)(uv7)(p−5)/8

2: c← vr2

3: correct_sign_sqrt← (c = u)

4: flipped_sign_sqrt← (c = −u)
5: flipped_sign_sqrt_i← (c = −iu)
6: r ← ir if flipped_sign_sqrtorflipped_sign_sqrt_i
7: r ← −r if r is negative
8: was_square← correct_sign_sqrtorflipped_sign_sqrt
9: return was_square, r

From Algorithm 7, it can be seen that the first step is to compute r, which in-
volves the computation of x(p−5)/8. This computationmight appear challenging at
first sight. However, the computation of x(p−5)/8 is already required for Ed25519
decoding. Therefore, we can draw inspiration from existing libraries. Note that
all calculations in Algorithm 7 are performed within the field GF(p). During our
research, we stumbled upon multiple libraries that include such computations.
It is important to note that x(p−5)/8 is equivalent to x(2252−3), as shown in equa-
tions below. Therefore, such expressions can be found in multiple cryptographic
libraries.

51

Chapter 6. Optimization Techniques for embedded platform

x(2255−19−5)/8 (6.1)

2255 − 24

8
=

2255

8
− 24

8
= 2252 − 3 (6.2)

x2252−3 (6.3)

We analyzed libraries like TweetNaCl, MonoCypher, ristretto255-donna [64]
and CycloneCRYPTO and compare implementation of x(p−5)/8 for each of them.
We focused on the efficiency of computation of each implementation, in which
we observed the amount of mathematical operations in GF(p), such as multi-
plication and squaring, which indirectly indicates the performance of the given
implementations. Based on the measurements from the table 6.1, we can observe
that the implementation from CycloneCRYPTO utilizes the fewest mathematical
operations among all the analyzed implementations. This was one of the rea-
son why we choose CycloneCRYPTO’s implementation of x(p−5)/8 when imple-
menting INV_SQRT in our Ristretto255 transformation. Another reason is that
CycloneCRYPTO’s implementation uses simple approach of squaring and pow-
ering. It simply perform multiplication on squaring or multiple multiplication
performed in for loop when powering [65]. Similar approach is implemented in
TweetNaCl. On the other hand, MonoCypher and ristretto255-donna are using
optimized approach of powering and squaring, that is a bit more complicated.
MonoCypher, as well as ristretto255-donna, is using such internal representation
of GF element that allows for optimized approach of powering and squaring,
suitable for desktops[64].

Table 6.1: Comparison of the implementation of x(p−5)/8 across various cryp-
tographic libraries

Library Multiplication Squaring
TweetNaCl 250 246 (eq. to mult.)
ristretto-donna 11 254
MonoCypher 12 259
CycloneCrypto 21 243 (eq. to mult.)

As we choose CycloneCRYPTO format, we were able to truly take advantage
of highly efficient ASM implementation of operations in GF, which is ideal to
combine with ASM implementations from libraries [31], [55] (see Section 6.6).

52

Chapter 6. Optimization Techniques for embedded platform

6.4 Functions for ModL Arithmetic

Due to Ristretto255’s inclusion in various recommended OPAQUE configu-
rations, we found it necessary to integrate modular inversion modulo L into our
implementation. This integration is essential for the creation of more complex
protocols, such as OPRF.

Oblivious PseudorandomFunction [7] is essentially a blind signature scheme.
Let’s consider a simple but practical example where a blind signature of a pass-
word is performed. Blind signing starts on the client side. Firstly, the client
chooses its password and passes it to a hash function, which produces a product
known as a hash digest. Afterwards, the client blinds its password digest with
a random number r and sends the blinded digest to the server. The server signs
the blinded password and sends the blinded signature back to the client. At the
end of the blinding scheme, the client needs to perform unblinding (as shown in
the equation below), which requires the computation of modular inversion.

R′ = H(P)r·s ⇒ (R′)r
−1

= H(P)r·s·r
−1

= H(P)s, (6.4)

where H(P) is the digest of the user’s password, r is the randomly generated
number used by the user to blind the password, s is a random number provided
by the server to sign the user’s password hash, and r−1 is the modular inverse of
the user’s randomly generated number r used to unblind the signed password.

Now that we have clarified why we need modular inversion, it’s evident that
we need same way of multiplication and reduction modulo L to construct such
modular inversion. Just a quick reminder, we want to work with POGs, such as
groupwith prime order L, because every element within a POG has a multiplica-
tive inverse. This opens up opportunities for logical optimizations. In our im-
plementation, we provide support for two approaches, enabling users to choose
between two methods for computing the modular inverse modulo L using either
Barrett’s or Montgomery’s reduction algorithms. Our implementation of modu-
lar inversion draws inspiration from the MonoCypher library.

Both the Barrett algorithm and theMontgomery reduction algorithm have the
capability to speed up modular reduction. They shared some commonalities like
requirement of precomputing various constants for a given modulus L etc. [66].

Montgomery reduction involves converting numbers into and out of "Mont-
gomery form", which can be costly operations that require a true modulo opera-
tion in each direction. In contrast, Barrett reduction works directly with regular
numbers. As a result, Montgomery reduction is well-suited for modular expo-
nentiation but less suitable for handling unrelated numerical operations.

53

Chapter 6. Optimization Techniques for embedded platform

Montgomery relies onmodular congruences and exact division, while Barrett
operates by approximating the true reciprocal with bounded precision.

6.5 Minimizing Processor Stack Requirements via
Shared Local Variables

Another optimization technique that was incorporated into our implementa-
tion is efficient stack management. During the development process, we focused
on manipulating the processor stack efficiently, utilizing as few variables as pos-
sible while maintaining code readability. This was achieved through the use of
macros. The code snippet below illustrates a simple function, calculate_1, which
takes one input and one output parameter. Internally, it allocates three local vari-
ables and three buffers of length 256 bits to perform basic GF calculations.

While the code snippet 6.1 (calculate_1) is easy to read, it can be optimized
from a memory perspective. It’s unnecessary to use three buffers for such cal-
culations. Instead, we can reuse buffer a and save space on the processor stack,
which is advantageous, particularly on an MCU. The subsequent code snippet
6.3 (calculate_2) demonstrates a possible optimization where buffer a is reused,
making buffer c unnecessary, thus allowing us to save 256 bits on the stack. How-
ever, such code can become confusing and less readable, especiallywhenmultiple
buffers are reused. To efficiently manipulate the stack, using as few variables as
possible while preserving code readability, we can employ macros, as demon-
strated in code snippet 6.2 (calculate_3).

These code snippets are relativelly small, so we can’t really see big optimiza-
tion here. However, using macros becomes advantageous in situations involv-
ing more buffers to reuse. If we want to truly take advantage of buffer reuse,
while preserving code readability we can even redefine macros if needed. For
a detailed demonstration of how this optimization technique was implemented
in our library, please refer to Appendix A, specifically the files ristretto255.c and
opaque.c, where this technique is extensively used.

1 void calculate_1(uint32_t out[8], const uint32_t in[8]){

2 uint32_t a[8], b[8], c[8];

3 fmul(a, in, in); // a = in * in

4 fneg(b, a); // b = -a

5

54

Chapter 6. Optimization Techniques for embedded platform

6 // NOTE: we no longer use variable ’a’

7 fsum(c, b, in); // c = b - in

8 fmul(c, b, c); // c = b * c

9 fsub(out, c, in); // out = c - in

10 }

Source Code 6.1: Original implementation without sharing local variables

1 void calculate_2(uint32_t out[8], const uint32_t in[8]){

2 uint32_t a[8], b[8];

3 fmul(a, in, in); // a = in * in

4 fneg(b, a); // b = -a

5

6 // NOTE: we reused variable ’a’

7 fsum(a, b, in); // a = b - in

8 fmul(a, b, a); // a = b * a

9 fsub(out, a, in); // out = a - in

10 }

Source Code 6.2: Utilizing macros to maintain readability by sharing local
variables

1 void calculate_3(uint32_t out[8], const uint32_t in[8]){

2 uint32_t temp1[8], temp2[8];

3 #define a temp1

4 #define b temp2

5 fmul(a, in, in); // a = in * in

6 fneg(b, a); // b = -a

7

8 // NOTE: we reused variable ’a’ and preserve code

readability

9 #define c temp1

10 fsum(c, b, in); // c = b - in

11 fmul(c, b, c); // c = b * c

12 fsub(out, c, in); // out = c - in

13 }

Source Code 6.3: Original implementation utilizing shared local variables

55

Chapter 6. Optimization Techniques for embedded platform

6.6 Approach toUsingExistingHighlyOptimizedASM
Routines for GF(p) Operations

Continuingwith optimization, we aimed to speed up themost critical parts of
our implementation, which involved low-level operations over GF(2255 − 19). As
we chose to use CycloneCRYPTO‘s 8-word representation of the field element, we
were highly motivated to integrate fast operations such as multiplication, addi-
tion, and other operations using the 8-word representation written in ASM [31],
[55]. This implementation is noticeably faster than the CycloneCRYPTO imple-
mentation written in C, but there was more to optimize.

The assembly operations modulo (2256 − 36), making internal computations
faster. It is required to reduce the result at the end of every function to bring it
back frommodulo 2p to modulo p. In our implementation, we use an 8-word rep-
resentation operating on modulo 2p, which employs efficient ASM functions for
intermediate calculations. However, reducing at the end of every function is not
necessary, andwe can optimize it. Instead of reducing in every function, we iden-
tified and performed reduction only at some required places in the Ristretto255
implementation to bit-exact results. However integration of such approach can be
challanging and time consuming, therefore we used Python script to prototype
high-level implementation of RG255 to find as few as possible places in code,
where reduction was needed. Note that Python allows us to operate with much
larger numbers than the C language does, so our prototype does not need to use
any special library to work with big numbers. A Python script is provided in
Appendix A, along with the entire optimized library written in C.

When referring to specific places in the code where reduction needs to be ap-
plied, we aremostly addressing situations involving operations on the 32×u8 rep-
resentation. For example, the IS_NEGATIV E function checks the LSB of a GF
element, or the calculation of the absolute value of a GF element (see the discus-
sion of negative elements in Section 5.2). The utilization of the IS_NEGATIV E

function and the evaluation of the absolute value (CT_ABS function) of a GF
element can also be observed in the encoding algorithm (Algorithm 1) and the
decoding algorithm (Algorithm 2).

You can observe a demonstration of such reduction in Appendix A, specifi-
cally provided in the source file ristretto.c, where the fe25519_reduce_emil func-
tion is used to reduce GF elements modulo p.

Additionally, we test our implementation on a set of test vectors to confirm the
correctness of our implementation.

56

Chapter 6. Optimization Techniques for embedded platform

We continued our optimization efforts at higher levels of the pyramid by em-
ploying appropriate algorithms, specifically optimizing the calculation of Mod
L inversion in the Montgomery domain. For this purpose, we drew inspiration
from the Monocypher and Cyclone libraries. We identified a critical part of the
algorithm, focusing on multiplication and reduction. These parts were rewritten
in ASM, utilizing the loop unrolling [46] method in combination with UMAAL
and UMULL instructions.

Following the pyramid depicted in Figure 6.1, our optimization process in-
volved the implementation of the following tasks:

• Minimizing the utilization of local variables on the stack.

• Maintaining the constancy of execution time for GF operations and other
supporting functions (CT_SELECT,CT_ABS etc).

• Performing algorithmic optimization for modulo L arithmetic at the inter-
mediate level (Barrett and the Montgomery reduction, see Section 6.4).

The performance measurements are describerd in Section 7.

6.7 Additional Optimalization Approaches

In our implementation ofOPAQUE,weutilize a simple library [67] that specif-
ically focuses on SHA (SecureHashAlgorithm) function and theHKDF (HMAC-
based Key Derivation Function). This library provides everything we need, from
SHA functions to HKDF-extract and HKDF-expand functions. However, this li-
brary provides broader support, offering variations from SHA224 to SHA512. For
our purposes, we only require the SHA512 variation, so we removed unneces-
sary components. Additionally, we identified inefficiencies in memory manage-
ment within the code of this library. One of the core functions of the SHA512
algorithm was utilizing a buffer of length 80x64 bits, which was unnecessarily
large. Drawing inspiration from Jeffrey Walton’s implementation [68], which
is more efficient, we adjusted to utilize a buffer of length 16x64 bits. This op-
timization allowed us to save approximately 512 bytes of stack memory. For
details, please refer to Appendix A of the MCU archive, specifically in the file
/dependencies/sha384-512.c.

57

7 Experimental Results

This section describes the experimental results obtained by testing various
parts of our implementation. Firstly, we performed tests focused on achieving
bit-exact results, meaning accurate outcomes compared to official test vectors.
These tests were performed on platforms utilizing both little-endian (see Section
7.1) and big-endian architectures in Section 7.2.

Subsequently, we performed extensive numerical tests (see Section 7.3) to en-
sure the correctness of our RG255 implementation, as test vectors may not cover
all edge cases.

Secondly, performancemeasurements specifically targeted atARMCortexM4
platforms were performed using the STM32F4DISCOVERY development board,
which operates on a little-endian platform.

Since we developed a library that can be used on multiple platforms, we also
wanted to check intermediate results during extensive numerical tests. For this
purpose, we employed the modern and highly efficient hashing function xxHash
[69] to quickly generate and display hash digest of intermediate results.

7.1 Testing for Little Endian Platforms

Our code development began on a little-endian platform (see details in Ap-
pendixA) using the development environments and tools outlined in Chapter 4.
While implementing the Ristretto255 transformations and the OPAQUE protocol,
we closely adhered to their official specifications.

Our primary goal was to deliver clean and well-documented library that al-
lows readers to easily follow and verify each operation against the official specifi-
cations. Additionally, we incorporated strategies described in Chapter 5 into our
library and applied optimization techniques detailed in Chapter 6. To ensure bit-
exact results, our implementations were tested against official test vectors [14],
[1]. Our endian-agnostic implementation of RG255 was developed and initially
tested on a PC platform running Windows 10 Pro 64-bit OS, which operates on

58

Chapter 7. Experimental Results

a little-endian architecture with an Intel i5-8250U CPU, as depicted in Figure 7.1.
The properties of PC platform are discussed in detail in Chapter 4. Test include
a coplex testing utilizing xxHash and approach described in Section 7.3.

Figure 7.1: Terminal output of successful Ristretto255 tests performed on a
PC platform running Windows 10 Pro 64-bit OS, operating on a little-endian
architecture

7.2 Testing Big Endian in QEMU

This section is dedicated to testing code written for big endian systems. In
section 5.4, we explained how we built an endian-agnostic implementation of
Ristretto255, meaning it runs on both little endian and big endian systems with-
out conditional compilation. When employing such an approach, errors can eas-
ily be introduced into the code, especially when doing so for the first time. There-
fore, we need a way to test our code on a big endian device. However, during the
development of our Ristretto255 implementation, we did not have access to a de-
vice with such hardware. Thus, we needed to find a way to test big endian code
on little endian devices. During our research, we stumbled upon an emulator,
QEMU [47], in combination with the GNU debugger, which offers exactly what

59

Chapter 7. Experimental Results

we need. For more information refer to Section 4.2.

Figure 7.2: Terminal output of successful Ristretto255 tests performed on big-
Endian platform running on Power-PC64 in QEMU emulator

QEMU is an open-source machine emulator and virtualizer that enables users
to execute operating systems and programs intended for one machine architec-
ture (such as an ARM-based system) on a different machine architecture (such
as an x86-based PC), without requiring the original hardware. It supports em-
ulation for a variety of architectures, including x86, ARM, PowerPC, and others.
QEMU supports several different operation modes. One commonly used mode
is System Emulation mode, which provides a virtual model of an entire machine,
including the central processing unit (CPU), memory, and emulated devices, to
run a guest OS. This mode may also work with a hypervisor such as KVM, Xen,
or Hypervisor. Another supported mode of QEMU is User Mode Emulation, in
which QEMU is capable of executing processes compiled for a different instruc-
tion set. In this mode, system calls are adapted to accommodate endianness dif-
ferences and 32/64-bit mismatches. The primary function of user-mode emula-
tion is to facilitate fast cross-compilation and cross-debugging. This mode, User
Mode Emulation, is the one we utilized for testing and debugging our endian-
agnostic code for big endian systems.

When we searched for the best way to set up QEMU and GNU debugger to
test code on big endian devices, we came across a very helpful article [48], where

60

Chapter 7. Experimental Results

the author describes a step-by-step setup and debugging process. However, the
article is tailored for Linux-based operating systems, which may not be a perfect
solution for everyone, especially Windows users. Therefore, we provide a solu-
tion for Windows available in Appendix A.

7.3 Deep Testing of Ristretto255

Ensuring the accuracy and reliability of our implementation, we’ve designed
a comprehensive testing strategy. This strategy includes two distinct sets of tests,
each serving a specific purpose in our verification process. The first set of tests uti-
lizes traditional testing methodologies with official test vectors serving as a foun-
dational reference point. While this approach provides valuable insights into the
correctness of our implementation, we recognize its limitations. Official test vec-
tors, though rigorous, may not encompass every possible scenario or edge case
that ourRG255 implementationmight encounter in real-world usage. Thus, while
testing with test vectors forms an essential component of our validation efforts,
we acknowledge the need for additionalmeasures to ensurewider coverage. Con-
sequently, we’ve developed a supplementary suite of tests, which we refer to as
extensive numerical tests. Unlike traditional vector tests which compare result
values to test vectors, these numerical tests are designed to simulate real-world
usage conditions more closely. They are designed to run potentially millions of
iterations, providing a rigorous examination of our implementation’s behavior
across a wide spectrum of inputs and scenarios. These tests allow users to choose
the number of iterations according to their specific requirements, ensuring adapt-
ability to diverse use cases.

The construction of these extensive numerical tests involves the utilization of
multiple Ristretto255 encoding and decoding function calls (recall Algorithms 1
and 2). These functions are employed for comparing two points on the curve
or hashing a curve point using the xxHash hash function. The transformation
of a curve point into its byte-string form is necessary for actual hashing. This
transformation is achieved using encoding Algorithm 1.

It’s important to note that instead of directly comparing two points using their
internal representation, we first perform an encoding transformation to retrieve
a byte-string representation of each point. Subsequently, we compare the two
points based on their byte-string form and then transform them back to a curve
point using decoding functions, solely for testing RG255 functions.

We also employed modular arithmetic modulo L, including modular multi-

61

Chapter 7. Experimental Results

plicative inversion. Our numerical test design is presented in detail in Algorithm
8.

We also integrated a fast non-cryptographic hash function called xxHash [69]
into our extensive numerical tests. Its purpose is to hash intermediate calcula-
tions to ensure that the result of our numerical test is not calculated correctly
by accident, such as unawarely introducing errors during the calculation process
that would still yield the correct result. For incorporating this approach, we used
the xxHash hash function.

The xxHash stands out as an exceptionally rapid hash algorithm, capable of
processing at RAM speed limits. The codebase exhibits high portability and en-
sures hash consistency across all platforms, regardless of endianness. An official
library written by Yann Collet [69] contains 3 implementations of xxHash:

• XXH32: Generates 32-bit hashes via 32-bit arithmetic.

• XXH64: Generates 64-bit hashes via 64-bit arithmetic.

• XXH3 (since v0.8.0): Generates either 64- or 128-bit hashes using vectorized
arithmetic, with the latter variant termed XXH128.

Note that even though we’ve created and tested the Ristretto255 group trans-
formation and subsequently developed the entire OPAQUE protocol optimized
for ARM Cortex-M4 microprocessors, our implementation is not yet ready for
production. Currently, our library does not utilize a True Pseudorandom Num-
ber Generator (TRNG). Instead, for simplicity’s sake, we employ a linear con-
gruential generator [70], as shown in code-block 7.1. We also used our RNG in
extensive numerical tests (refer to Algorithm 8) where we first initialized a seed
(see line 2) and then generated pseudo-random scalars (see line 8). Utilization
of the same seed is crucial to replicate numerical tests across multiple platforms
and get identical results.

Additionally, asmentioned in Section 3, we haven’t integrated any key stretch-
ing function (KSF) like Argon. Instead, we’ve simply used the Identity function,
which essentially functions as a memcpy. Since the main goal of this thesis is
to create a compact implementation of the OPAQUE protocol for embedded sys-
tems, presenting and integrating various optimization techniques and other use-
ful features, such as writing endian-agnostic code that can run on both little and
big endian systems, we have chosen not to focus on KSF or TRNG to keep the
code simple. For more information please refer to Appendix A.

62

Chapter 7. Experimental Results

Algorithm 8 Deep Testing of Ristretto255 Transformation
Input: COMPLEX_TEST_ITERATIONS - an integer indicating the number of it-

erations
Output: s error/success - report message
1: xxHash_init()
2: prng_seed← s_rand()
3: Initialize k to 0 {Variable used at the end of test}
4: Generate valid initial Ristretto point Pinit

5: P1← Pinit

6: xxHash_update(P1)
7: for i = 1 to COMPLEX_TEST_ITERATIONS do
8: Generate a pseudo-random scalar SCALAR

9: Calculate SCALAR−1 ≡ inverse of SCALAR (mod L)

10: Calculate P2 := P1× SCALAR

11: xxHash_update(SCALAR)
12: xxHash_update(SCALAR−1)
13: xxHash_update(P2)
14: if (P2× SCALAR−1) (mod L) = P1 then
15: k ← k × SCALAR (mod L)

16: else
17: Test has failed
18: end if
19: P1← P2

20: end for
21: Pfinal ← P1

22: if Pinit = Pfinal × k−1 (mod L) then
23: Test ran successfully
24: else
25: Test has failed
26: end if

63

Chapter 7. Experimental Results

1 #define RAND_MAX ((1U << 31) - 1)

2

3 static inline int32_t rand() {

4 return rseed = (rseed * 1103515245 + 12345) & RAND_MAX;

5 }

Source Code 7.1: Linear congruential generator

7.4 Target ARM Cortex M4 platform/board

This section presents an experimental results obtained from the development
board STM32F4DISCOVERY discussed in detail in Section 4. Experimental mea-
surements were performed using the GCCARM compiler fromARMGNU Tool-
chain, Version 13.2 Rel1, available on website1. The compiler was primarily con-
figured with the optimization level set to -Os, a flag that prioritizes code size
optimization during the compilation process.

The board features an integrated ST-LINK/V2 debugger and programmer, al-
lowing for seamless programming and debugging of themicrocontroller through
the built-in ST-LINK interface, eliminating the need for an external debugger.
In our experiments, the board was connected to a computer via USB, provid-
ing power and a communication interface for debugging. Additionally, board
utilizes the Instrumentation Trace Macrocell (ITM) and DWT CYCCNT (Data
Watchpoint and Trace Cycle Counter) in conjunctionwith ST-LINK/V2. The ITM
was employed to redirect the printf function to ITM ports for code instrumenta-
tion. At the same time, DWT CYCCNT, situated in the ARM Cortex-M4 proces-
sor core, served as a cycle counter for measuring execution time and conducting
performance profiling. This setup was already pre-configured and ready to use
conveniently.

Firstly, we focus on themeasurement of arithmetic operations inGF(p), which
was our main priority during the optimization of our implementation. This layer
is fundamental and forms the basis for all other layers in the pyramid, as depicted
in Figure 6.1.

The measurements (see Table 7.1 and Table 7.2) indicate that MonoCypher
yields the fastest performance among all examined implementations (written in
C) ofGF(2255− 19) operations. Nevertheless, the optimized version of the 8× 32-
bits internal representation of the field element written in ASM stands out as

1https://developer.arm.com/downloads/-/arm-gnu-toolchain-downloads

64

Chapter 7. Experimental Results

the absolute fastest as we expected, eliminating the need for additional conver-
sion routines. Utilizing optimized ASM implementation for the 8× 32-bits inter-
nal representation of the field element enables computations within the modulo
(2256 − 36) domain, with additional reduction to modulo (2255 − 19) required in
only a few logical places.

Table 7.1: Speed measurements for the most critical functions operating over
GF(2255 − 19) in various libraries. These libraries employ distinct GF element
representations, and the results are presented in cycles. Measurements were
performed on the ARM Cortex-M4, with 168 MHz clock frequency, using the
GCC ARM compiler with the -Os flag set.

Implementations
GF MUL GF SQR GF ADD

(CPU cycles) (CPU cycles) (CPU cycles)
TweetNaCl 9887 NA 232
Monocypher 833 505 130
Cyclone (C) 1671 1671 400
Our Optimized (ASM) 249 195 80

Table 7.2: Continuation of speed measurements from Table 7.1. for the most
critical functions operating over GF(2255 − 19) in various libraries. Measure-
mentswere performed on theARMCortex-M4, with 168MHz clock frequency,
using the GCC ARM compiler with the -Os flag set.

Implementations
GF SUB PACK/UNPACK GF RED

(CPU Cycles) (CPU Cycles) (CPU Cycles)
TweetNaCl 241 4359/266 NA
Monocypher 130 460/369 NA
Cyclone (C) 426 NA NA
Our Optimized (ASM) 93 NA 88

By integrating a relatively small piece of code written in ASM (approximately
2.5 kB, see Table 7.3 and Table 7.4) and employing the little Fermat’s theorem
along with calculations in Montgomery’s domain, we can significantly enhance
performance. This strategic inclusion of highly efficient ASM code optimizes the
overall implementation, resulting in a significant decrease in the execution time
of the modular inversion, which can be seen in TABLE 7.5.

The speed measurements for modular multiplicative inversion modulo L (In-
vModL), including supporting functions and various optimization techniques,
are presented in Table 7.5. The results reveal that the unoptimized C variant con-
sumes twice as many CPU cycles as the optimized implementation, wherein the

65

Chapter 7. Experimental Results

most critical part was replaced with ASM code. Table 7.3 illustrates the memory
usage in bytes for each function written in ASM. This emphasizes that employing
a small ASM code snippet can enhance the speed of RG255 as well as modular
multiplicative inversion modulo L.

Table 7.3: Memory usage for functions operatingwithin themodulo (2256−36)
domain in highly-efficient ASM implementation. The memory requirements
of each function are presented in bytes.

Implementations
GF MUL GF SQR GF ADD GF SUB
(Bytes) (Bytes) (Bytes) (Bytes)

Our Optimized (ASM) 528 412 104 126

Table 7.4: Continuation of Table 7.3 for memory usage of functions operating
within themodulo (2256−36) domain in highly-efficient ASM implementation.
The memory requirements of each function are presented in bytes.

Implementations
GF RED REDC MUL256
(Bytes) (Bytes) (Bytes)

Our Optimized (ASM) 152 524 420

Table 7.5: Speed for InvModL, including supporting functions and various op-
timization techniques. Measurements were performed on the ARM Cortex-
M4, with 168 MHz clock frequency, using the GCC ARM compiler with the
-Os and -O3 flag set.

Function -Os -O3
MUL256 (C) 886 822
MUL256 (ASM) 234 237
Inv_Mont (C) 1,405,478 833,262
Inv_Mont (ASM) 672,957 453,760

Next, we performed measurements for individual parts of our library such
as Ristretto255 transformation (endode, decode, hash_to_group), InvModL, and
the entire OPAQUE, focusing on measurements from the client side, as clients
typically have fewer resources than servers in practice.

Table 7.6 illustrates measurements performed on the RG255 functions, pre-
sented in cycles. The evaluations were performed using the GCC ARM compiler,
with the -Os and -O3 flags configured for functions implemented in C. These flags
were also utilized when measuring functions implemented using the optimized
C+ASM approach. From the table, it can be seen that optimization with ASM

66

Chapter 7. Experimental Results

significantly improves performance compared to C implementation. Addition-
ally, compilation with the -O3 flag demonstrates slightly better performance than
with the -Os flag for ASM implementation. It’s worth noting that the optimized
(C + ASM) versions of RG255 functions, such as encode and decode make up
only around 2.5% of the execution time of scalar multiplication of curve points,
compared to approximately 5% for the unoptimized (pure C) versions. There-
fore, we can conclude that RG255 adds just a thin layer abstraction and presents
very small overhead, as shown in table 7.6, where encoding and decoding require
considerably fewer cycles compared to scalar multiplication or modular inver-
sion.

Table 7.6: Speed for RG255 core functions and InvModL. The results are pre-
sented in cycles. The measurements were performed on the ARM Cortex-M4,
with 168 MHz clock frequency, using the GCC ARM compiler, with the -Os
and -O3 flag set.

Function
C (CPU Cycles) C+ASM (CPU Cycles)
-Os -O3 -Os -O3

DECODE 515 021 381 982 57 335 54 926
SCALARMULT 11 319 857 7 926 035 2 560 876 2 148 528
ENCODE 520 415 386 192 58 825 56 103
HASH_TO_GROUP 1 593 455 1 180 044 184 358 174 865
InvModL 1 665 584 978 602 932 763 602 244
InvModL

1 405 478 833 362 672 957 453 760
(no wipe buffers)

Table 7.7 presents the memory usage for RG255 functions that have been im-
plemented in pure C. The memory requirements for each function are provided
in bytes, offering a clear breakdown of the resources required by these functions.

Table 7.7: Memory usage for RG255 functions implemented in pure C. The
memory requirements of each function are presented in bytes.

Functione Size (Bytes)
DECODE 415
SCALARMULT 293
ENCODE 435
HASH_TO_GROUP 947

Themeasurements of theOPAQUEprotocolwere conducted on the client side,
specifically during the registration and authentication phases performed by the
user. The measurements are presented in Table 7.8 and Table 7.9. Tables 7.8 and

67

Chapter 7. Experimental Results

7.9 detail measurements in cycles for each message generated on the client side.
This approach was chosen under the assumption that the server is potentially
not heavily resource-constrained.From Tables 7.8 with the optimization flag -Os
and 7.9 with the optimization flag -O3, we can see that the Registration phase
is around 2.5 times faster than the Authentication (login) phase in each setup.
Additionally, our optimized approach, where we combine a fast C implementa-
tion and highly efficient ASM implementations of GF operations [31], [55], cou-
pled with various optimization techniques discussed in Chapter 6, is about 3.8
times faster compared to an implementation that is written purely in C.Our op-
timized library incorporates secure buffer wiping (see Section 5.3), which is an
optional feature that can be disabled. When buffer wiping is disabled, perfor-
mance slightly increases, as shown in Tables 7.8 - 7.11

Table 7.8: Speed of the OPAQUE registration and authentication phases were
performed on the client-side, using our optimization techniques, including a
combination of fast C and efficient ASM GF operations. The results are pre-
sented in cycles. Measurements were performed on the ARMCortex-M4, with
168 MHz clock frequency, using the GCC ARM compiler with the -Os flag.

Setup
Registration Phase Login Phase

(CPU Cycles) (CPU Cycles)
ASM no wipe 7 883 913 19 548 243
ASM with wipe 10 215 861 25 314 003
Pure C no wipe 38 424 486 98 641 278

Table 7.9: Speed of the OPAQUE registration and authentication phases were
performed on the client-side, using our optimization techniques, including a
combination of fast C and efficient ASM GF operations. The results are pre-
sented in cycles. Measurements were performed on the ARMCortex-M4, with
168 MHz clock frequency, using the GCC ARM compiler with the -O3 flag.

Setup
Registration Phase Login Phase

(CPU Cycles) (CPU Cycles)
ASM no wipe 7 230 664 18 179 008
ASM with wipe 8 442 296 21 158 093
Pure C no wipe 27 927 997 71 063 248

68

Chapter 7. Experimental Results

Table 7.10: Extension of Table 7.8 shows speed measurements for each
OPAQUE message generated on the client-side during both registration and
authentication phases, utilizing our optimization techniques including a com-
bination of fast C and highly efficient ASM GF operations. The results are
presented in cycles. Measurements were performed on the ARM Cortex-M4,
with 168MHz clock frequency, using the GCCARMcompiler with the -Os flag
set.

Setup
Registration Phase Login Phase

Reg. Request Reg. Record KE1 KE3
ASM no wipe 2 289 999 5 593 924 4 438 381 15 109 863
ASM with wipe 2 988 137 7 227 744 5 823 925 19 490 089
Pure C no wipe 13 409 562 25 014 934 25 268 451 73 372 828

Table 7.11: Extension of Table 7.8 shows speed measurements for each
OPAQUE message generated on the client-side during both registration and
authentication phases, utilizing our optimization techniques including a com-
bination of fast C and highly efficient ASM GF operations. The results are
presented in cycles. Measurements were performed on the ARM Cortex-M4,
with 168 MHz clock frequency, using the GCC ARM compiler with the -O3
flag set.

Setup
Registration Phase Login Phase

Reg. Request Reg. Record KE1 KE3
ASM no wipe 2 189 663 5 041 000 4 234 479 13 944 523
ASM with wipe 2 548 919 5 893 381 5 893 381 16 210 575
Pure C no wipe 9 635 946 2 18 292 050 18 118 144 52 945 098

Table 7.12 provides memory requirements for OPAQUE messages exchanged
between the client and server during both the registration and authentication
phases. In the registration phase, the client generates and sends a RegistrationRe-
quest and RegistrationRecord, while the server generates and sends a Registra-
tionResponse message. During authentication, the client generates KE1 and KE3
messages and the server generates KE2. Table 7.12 illustrates that the messages
exchanged between the client and server are relatively small in size. This can be
particularly advantageous for embedded systems, where resources such asmem-
ory and processing power are often constrained.

69

Chapter 7. Experimental Results

Table 7.12: Memory requirements of the OPAQUE messages generated and
exchanged between the client and server, measured in bytes.

Message Type Size (Bytes)
RegistrationRequest 32
RegistrationResponse 64
RegistrationRecord 192
KE1 96
KE2 320
KE3 64

To summarize, our approach integrates the efficient 8×32-bits representation
ofGF elements with a compact yet highly efficient ASM code segment [31], [55],
alongside our sophisticated reduction technique. Such a combination appears to
yield an optimal solution for ARM Cortex-M4. Using this technique and several
other optimization techniques discussed in Chapter 6, we prepared a fast, com-
pact andmemory-efficient Ristretto255 transformation thatwas subsequently uti-
lized in our OPAQUE protocol implementation. Our library serves as a compliant
aPAKE operating at the 128-bit security level.

70

8 Discussion

In this discussion, we compare an existing implementation provided in re-
search [71] of the OPAQUE protocol designed for embedded systems to our own
implementation. Specifically, we examine an implementation intended for em-
bedded environments that relies on resource-intensive cryptographic libraries,
which may not be optimal for small resource-constrained embedded devices.

Examined implementation [71] focuses on evaluating the feasibility and ef-
ficiency of this approach, particularly on more powerful MCUs. By analyzing
these measurements, we aim to identify potential trade-offs in our optimized im-
plementation for OPAQUE’s deployment in resource-constrained embedded sys-
tems.

OPAQUE Variants for Robust ARM Architectures

During our research, we could not find any optimized implementations of the
OPAQUE protocol for relatively less powerful platforms, so we created our own
fast and compact implementation targeting ARMCortex-M4. However, there are
a couple of implementations discussed in research [71] which provide measure-
ments performed on single-board computers like the ODROID-N21 with Linux
OpenWrt 2.6.36.4brcmarm (featuring ARM Cortex-A73) and the Wi-Fi router
Asus RT-AC66U B12 running Linux OpenWrt with ARM Cortex-A9.

This subsection aims to showcasemeasurements performed on various imple-
mentations of the OPAQUE protocol using different cores, comparing them with
our implementation designed for the ARM Cortex-M4.

1ODROID-N2: https://www.hardkernel.com/shop/odroid-n2-with-4gbyte-r
am-2/

2Asus RT-AC66U B1: https://www.asus.com/networking-iot-servers/wifi-rou
ters/asus-wifi-routers/rt-ac66u-b1/

71

https://www.hardkernel.com/shop/odroid-n2-with-4gbyte-ram-2/
https://www.hardkernel.com/shop/odroid-n2-with-4gbyte-ram-2/
https://www.asus.com/networking-iot-servers/wifi-routers/asus-wifi-routers/rt-ac66u-b1/
https://www.asus.com/networking-iot-servers/wifi-routers/asus-wifi-routers/rt-ac66u-b1/

Chapter 8. Discussion

Table 8.1 shows the clock frequencies of all the cores that we are comparing.

ARM Core Clock Frequency
Cortex A73 1.8GHz
Cortex-A9 1GHz
Cortex M4 168MHz

Table 8.1: Measured Clock Frequencies of ARM Cores

Table 8.2: Comparison of implementations on CPUs with different ARM cores

CPU Type Implementation Reg. Phase [ms] Auth. Phase [ms]
ARM Cortex-A73 opaque_sha 0.789 5.034
ARM Cortex-A9 opaque_sha 2.222 36.666
ARM Cortex-M4 Our Implementation 50.251 125.941

Table 8.2 displays measurements for the ARM Cortex A73 and Cortex-A9 im-
plementations as presented in research [71] called opaque_sha, in comparison
to our optimized implementation targeting the ARM Cortex M4. The clock fre-
quencymeasurements indicate notable differences among theARMCortex cores.
The Cortex A73 exhibits the highest clock frequency among the compared cores,
followed by the Cortex-A9 and Cortex M4, in decreasing order of performance.

The higher clock frequencies of the ARM Cortex A73 and ARM Cortex-A9
cores, with an OPAQUE implementation based on utilizing the libsodium [58]
and TweetNaCl [52] cryptographic libraries, suggest greater computational ca-
pabilities but may come at the cost of increased power consumption compared to
the ARMCortexM4, which is optimized for efficiency in embedded applications.

It’s also important to note that while we used the Identity function (see sec-
tion 3.2.3), the implementation provided in [71] utilizes a slightly better option
a SHA256 hash function. Additionally, the implementation [71] utilizes the lib-
sodium cryptographic library, which employs an 8-word internal representation
of GF elements designed to run faster on more powerful CPUs.

Although the research in [71] does not provide information about the pro-
cessor memory stack requirements of the OPAQUE protocol, we have decided
to include this information for readers who may be interested in such details for
potential use. Additionally, all implementation details are provided directly in
well-documented code, available in Appendix A.

72

Chapter 8. Discussion

Table 8.3 presents the processor memory stack requirements of the functions
used during the generation of OPAQUE messages in both the registration and
authentication phases on the client-side. These measurements were specifically
conducted for OPAQUE functions implemented in pure C. The stack memory
usage, represented in bytes, offers valuable insights into the resource demands
of critical cryptographic operations within the OPAQUE protocol

Table 8.3: The processor memory stack requirements for the OPAQUE func-
tions used during the generation of OPAQUEmessages in both the registration
and authentication phases on the client-side were measured in bytes. These
measurements were performed on functions implemented in pure C.

Message Type Size (Bytes)
RegistrationRequest 1191
RegistrationRecord 1963
KE1 1330
KE3 3046

73

9 Conclusion

This thesis describes the OPAQUE protocol, a modern asymmetric password-
authenticated key exchange (aPAKE), its potential usage in real-world applica-
tions, and provides a detailed description of how it actuallyworks. The thesis also
focuses on fundamental principles when integrating a non-prime order group
into the OPAQUE protocol, such as Curve25519. We addressed security issues by
applying a thin layer of transformation to transition into a more secure abstract
group called the Ristretto255 group.

Subsequently, the thesis focuses on optimizing the Ristretto255 transforma-
tion (RG255), which is suitable for safely implementing higher-level and complex
cryptographic protocols. We analyzedRG255 and identified themost time-critical
parts, particularly operations in GF(2255 − 19).

During optimization, we analyzed multiple implementations written in the
C language and performed speed measurements. Drawing inspiration from an-
alyzed libraries, we created our implementation that uses highly efficient ASM
code to accelerate the most time-critical operations.

Experimentalmeasurementswere conducted to determine the effectiveness of
individual implementations. We proposed and followed a strategy for optimiza-
tion, which ultimately led us to the conclusion that we successfully optimized the
entire RG255 as well as much more complex cryptographic protocol OPAQUE.

We also considered minimal memory requirements, efficient stack manipu-
lation, and maintained constant-time operations. Additionally, we integrated
buffer wiping into our implementation to ensure responsible memory clearance.

In this thesis, we focused on optimizing RG255, which constituted a signifi-
cant part of our effort. More specifically, our aim was to optimize computations
in GF(2255− 19). The RG255 is reasonably optimized and suitable for integration
into other protocols that require working with POGs. The optimization of com-
putations in GF(2255− 19) accounts for approximately 20% of the total execution
time of the OPAQUE protocol, providing opportunities for further optimization
in future research.

74

Chapter 9. Conclusion

Finally, it is worth noting that some of the results from this study have al-
ready been published in the article titled "Optimization of Ristretto255 Group
Implementation for Cortex-M4 based Cryptographic Applications" authored by
E. Kupcova, P. Zelenak, M. Pleva, and M. Drutarovsky, presented at the Interna-
tional Conference Radioelektronika in April 2024 [72].

75

Bibliography

1. BOURDREZ,Daniel; KRAWCZYK,Dr.Hugo; LEWI,Kevin;WOOD,Christo-
pher A. The OPAQUE Augmented PAKE Protocol. Internet Engineering Task
Force, 2024-03. Internet-Draft, draft-irtf-cfrg-opaque-14. Internet Engineer-
ing Task Force. Available also from: https://datatracker.ietf.org/
doc/draft-irtf-cfrg-opaque/14/. Work in Progress.

2. FETT, Daniel; YASUDA, Kristina; CAMPBELL, Brian. Selective Disclosure for
JWTs (SD-JWT). Internet Engineering Task Force, 2024-03. Internet-Draft,
draft-ietf-oauth-selective-disclosure-jwt-08. Internet EngineeringTask Force.
Available also from: https://datatracker.ietf.org/doc/draft-
ietf-oauth-selective-disclosure-jwt/08/. Work in Progress.

3. RESCORLA, Eric; OKU, Kazuho; SULLIVAN, Nick; WOOD, Christopher A.
TLSEncryptedClientHello. Internet EngineeringTask Force, 2024-03. Internet-
Draft, draft-ietf-tls-esni-18. Internet Engineering Task Force. Available also
from: https://datatracker.ietf.org/doc/draft-ietf-tls-
esni/18/. Work in Progress.

4. GREEN, Matthew. Let’s talk about PAKE. 2018. Available also from: https:
//blog.cryptographyengineering.com/2018/10/19/lets-

talk-about-pake/.

5. SAINT GUILHEM, Cyprien Delpech de; FISCHLIN, Marc; WARINSCHI,
Bogdan. Authentication in Key-Exchange: Definitions, Relations and Com-
position. In: 2020 IEEE 33rd Computer Security Foundations Symposium (CSF).
2020, pp. 288–303. Available from doi: 10.1109/CSF49147.2020.00028.

6. MARLINSPIKE,M.; PERRIN, T.TheX3DHKeyAgreement Protocol. 2016.Avail-
able also from: https://signal.org/docs/specifications/x3
dh/x3dh.pdf.

7. DAVIDSON,Alex; FAZ-HERNANDEZ,Armando; SULLIVAN,Nick;WOOD,
ChristopherA.Oblivious PseudorandomFunctions (OPRFs)Using Prime-Order

76

https://datatracker.ietf.org/doc/draft-irtf-cfrg-opaque/14/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-opaque/14/
https://datatracker.ietf.org/doc/draft-ietf-oauth-selective-disclosure-jwt/08/
https://datatracker.ietf.org/doc/draft-ietf-oauth-selective-disclosure-jwt/08/
https://datatracker.ietf.org/doc/draft-ietf-tls-esni/18/
https://datatracker.ietf.org/doc/draft-ietf-tls-esni/18/
https://blog.cryptographyengineering.com/2018/10/19/lets-talk-about-pake/
https://blog.cryptographyengineering.com/2018/10/19/lets-talk-about-pake/
https://blog.cryptographyengineering.com/2018/10/19/lets-talk-about-pake/
https://doi.org/10.1109/CSF49147.2020.00028
https://signal.org/docs/specifications/x3dh/x3dh.pdf
https://signal.org/docs/specifications/x3dh/x3dh.pdf

Bibliography

Groups [RFC9497]. RFCEditor, 2023. Request forComments, no. 9497.Avail-
able from doi: 10.17487/RFC9497.

8. LAKE J.What is a key derivation function (KDF)? A comprehensive guide. 2023.
Available also from: https://www.comparitech.com/blog/informa
tion-security/key-derivation-function-kdf/.

9. KRAWCZYK, Dr. Hugo; BELLARE, Mihir; CANETTI, Ran. HMAC: Keyed-
Hashing for Message Authentication [RFC 2104]. RFC Editor, 1997. Request
for Comments, no. 2104. Available from doi: 10.17487/RFC2104.

10. HANSEN, Tony; 3RD, Donald E. Eastlake. US Secure Hash Algorithms (SHA
and HMAC-SHA) [RFC 4634]. RFC Editor, 2006. Request for Comments, no.
4634. Available from doi: 10.17487/RFC4634.

11. BIRYUKOV, Alex; DINU, Daniel; KHOVRATOVICH, Dmitry; JOSEFSSON,
Simon. Argon2 Memory-Hard Function for Password Hashing and Proof-of-Work
Applications. Internet Engineering Task Force, 2021-03. Internet-Draft, draft-
irtf-cfrg-argon2-13. Internet Engineering Task Force. Available also from: h
ttps://datatracker.ietf.org/doc/draft-irtf-cfrg-argon2

/13/. Work in Progress.

12. VASYLENKOO.TheOPAQUEAsymmetric PAKEProtocol.Make authentication
secure again. 2023. Available also from: https://medium.com/@oleksi
i.vasylenko/the-opaque-asymmetric-pake-protocol-make-

authentication-secure-again-366f821a319d.

13. BERNSTEIN, Daniel J. Curve25519: new Diffie-Hellman speed records. In:
Public Key Cryptography-PKC 2006. Springer, 2006, pp. 207–228. Available
also from: https://cr.yp.to/ecdh/curve25519-20060209.pdf..

14. VALENCE, Henry de; GRIGG, Jack; HAMBURG, Mike; LOVECRUFT, Isis;
TANKERSLEY, George; VALSORDA, Filippo. The ristretto255 and decaf448
Groups [RFC9496]. RFCEditor, 2023. Request forComments, no. 9496.Avail-
able from doi: 10.17487/RFC9496.

15. DUBINSKY E. Dautermann J., Leron U. et al. On learning fundamental con-
cepts of group theory.Educational Studies inMathematics. 1994, vol. 27, pp. 267–
305. Available from doi: 10.1007/BF01273732.

16. KLEPPMANN, MARTIN. Implementing Curve25519/X25519: A tutorial on el-
liptic curve cryptography. 2020. Available also from: https : / / martin .
kleppmann.com/papers/curve25519.pdf..

77

https://doi.org/10.17487/RFC9497
https://www.comparitech.com/blog/information-security/key-derivation-function-kdf/
https://www.comparitech.com/blog/information-security/key-derivation-function-kdf/
https://doi.org/10.17487/RFC2104
https://doi.org/10.17487/RFC4634
https://datatracker.ietf.org/doc/draft-irtf-cfrg-argon2/13/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-argon2/13/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-argon2/13/
https://medium.com/@oleksii.vasylenko/the-opaque-asymmetric-pake-protocol-make-authentication-secure-again-366f821a319d
https://medium.com/@oleksii.vasylenko/the-opaque-asymmetric-pake-protocol-make-authentication-secure-again-366f821a319d
https://medium.com/@oleksii.vasylenko/the-opaque-asymmetric-pake-protocol-make-authentication-secure-again-366f821a319d
https://cr.yp.to/ecdh/curve25519-20060209.pdf.
https://doi.org/10.17487/RFC9496
https://doi.org/10.1007/BF01273732
https://martin.kleppmann.com/papers/curve25519.pdf.
https://martin.kleppmann.com/papers/curve25519.pdf.

Bibliography

17. BROWN,Michael; HANKERSON,Darrel; LÓPEZ, Julio;MENEZES, Alfred.
Software implementation of the NIST elliptic curves over prime fields. In:
Topics in Cryptology—CT-RSA 2001. Springer, 2001, pp. 250–265.

18. EL HOUSNI, Youssef. Edwards curves. 2018. Available also from: https:
//hal.science/hal-01942759/document..

19. NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY (NIST).
Elliptic Curve Cryptography (ECC) Project. National Institute of Standards and
Technology (NIST), Accessed 2024. Available also from: https://csrc.
nist.gov/projects/elliptic-curve-cryptography.

20. KANNWISCHER, Matthias J; RIJNEVELD, Joost; SCHWABE, Peter; STOF-
FELEN, Ko. pqm4: Testing and Benchmarking NIST PQC on ARM Cortex-M4.
CSRC, 2019. Available also from: https://csrc.nist.gov/CSRC/
media/Events/Second-PQC-Standardization-Conference/doc

uments/accepted-papers/kannwischer-pqm4.pdf.

21. THALER, Justin. Proofs, Arguments, and Zero-Knowledge. 2023. Available also
from: https://people.cs.georgetown.edu/jthaler/ProofsArg
sAndZK.pdf.

22. RESCORLA, Eric.The Transport Layer Security (TLS) Protocol Version 1.3. 2018.
RFC, 8446. Internet Engineering Task Force (IETF). Available from doi: 10
.17487/RFC8446.

23. WHATSAPP. WhatsApp Encryption Overview. 2017. Available also from: h
ttps://www.whatsapp.com/security/WhatsApp- Security-

Whitepaper.pdf. Archived at https://perma.cc/QD7M-GPG5.

24. MARLINSPIKE, Moxie; PERRIN, Trevor. The X3DH Key Agreement Protocol.
2016. Available also from: https://www.signal.org/docs/specific
ations/x3dh/. Archived at https://perma.cc/MSA4-DP4G.

25. ARCIERI, T. libristretto. 2019. Available also from: https://github.com/
Ristretto/libristretto255.

26. VALENCE,Hde; GRIGG, J; HAMBURG,M; LOVECRUFT, I; TANKERSLEY,
G; VALSORDA, F. RFC 9496: The ristretto255 and decaf448 Groups. RFC Edi-
tor, 2023. Available also from: https://datatracker.ietf.org/doc/
draft-hdevalence-cfrg-ristretto/..

27. HAMBURG,Mike.Decaf: Eliminating cofactors through point compression. 2015.
Available also from: www.shiftleft.org/papers/decaf/decaf.
pdf..

78

https://hal.science/hal-01942759/document.
https://hal.science/hal-01942759/document.
https://csrc.nist.gov/projects/elliptic-curve-cryptography
https://csrc.nist.gov/projects/elliptic-curve-cryptography
https://csrc.nist.gov/CSRC/media/Events/Second-PQC-Standardization-Conference/documents/accepted-papers/kannwischer-pqm4.pdf
https://csrc.nist.gov/CSRC/media/Events/Second-PQC-Standardization-Conference/documents/accepted-papers/kannwischer-pqm4.pdf
https://csrc.nist.gov/CSRC/media/Events/Second-PQC-Standardization-Conference/documents/accepted-papers/kannwischer-pqm4.pdf
https://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.pdf
https://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.pdf
https://doi.org/10.17487/RFC8446
https://doi.org/10.17487/RFC8446
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://perma.cc/QD7M-GPG5
https://www.signal.org/docs/specifications/x3dh/
https://www.signal.org/docs/specifications/x3dh/
https://perma.cc/MSA4-DP4G
https://github.com/Ristretto/libristretto255
https://github.com/Ristretto/libristretto255
https://datatracker.ietf.org/doc/draft-hdevalence-cfrg-ristretto/.
https://datatracker.ietf.org/doc/draft-hdevalence-cfrg-ristretto/.
www.shiftleft.org/papers/decaf/decaf.pdf.
www.shiftleft.org/papers/decaf/decaf.pdf.

Bibliography

28. HISIL, Huseyin; WONG, Kenneth Koon-Ho; CARTER, Gary; DAWSON, Ed.
Twisted Edwards curves revisited. In: International Conference on the Theory
and Application of Cryptology and Information Security. Springer, 2008, pp. 326–
343. Available also from: https://eprint.iacr.org/2008/522..

29. NGUYEN, Dang. Correspondence Between Elliptic Curves in Edwards-Bernstein
andWeierstrass Forms [Department of Mathematics and Statistics, University
of Ottawa]. 2017. Available also from: https://mysite.science.uo
ttawa.ca/mnevins/papers/NguyenMScProj2017.pdf. Supervisor:
Professor Monica Nevins.

30. HISIL, Huseyin; WONG, Kenneth Koon-Ho; CARTER, Gary; DAWSON, Ed.
Twisted Edwards Curves Revisited [Cryptology ePrintArchive, Paper 2008/522].
2008. Available also from: https://eprint.iacr.org/2008/522.
https://eprint.iacr.org/2008/522.

31. HAASE, B. fe25519. Available also from: https://github.com/Bjoern
MHaase/fe25519.

32. ORYX EMBEDDED. CycloneCRYPTO. Available also from: https://oryx
-embedded.com/products/CycloneCRYPTO.html.

33. ZELENAK, P. OPAQUEC. Available also from: https://github.com/
Alg0ritmus/OPAQUE%5C-C..

34. MENEZES, Alfred J.; OORSCHOT, Paul C. van; VANSTONE, Scott A.Hand-
book of Applied Cryptography. CRC Press, 2001. Available also from: http:
//www.cacr.math.uwaterloo.ca/hac/.

35. BELLOVIN, Steven M.; MERRITT, Michael. Augmented encrypted key ex-
change: a password-based protocol secure against dictionary attacks and
password file compromise. In: Proceedings of the 1st ACM Conference on Com-
puter and Communications Security. Fairfax, Virginia, USA: Association for
Computing Machinery, 1993, pp. 244–250. CCS ’93. isbn 0897916298. Avail-
able from doi: 10.1145/168588.168618.

36. RESCORLA, Eric.Diffie-Hellman Key Agreement Method [RFC 2631]. RFC Ed-
itor, 1999. Request for Comments, no. 2631. Available from doi: 10.17487
/RFC2631.

37. HU, Xinyi; ZHANG, Junzuo; ZHANG, Zhenfeng; AL., et. Universally com-
posable anonymous password authenticated key exchange. Sci. China Inf.
Sci. 2017, vol. 60, p. 52107. Available from doi: 10.1007/s11432-016-55
22-z.

79

https://eprint.iacr.org/2008/522.
https://mysite.science.uottawa.ca/mnevins/papers/NguyenMScProj2017.pdf
https://mysite.science.uottawa.ca/mnevins/papers/NguyenMScProj2017.pdf
https://eprint.iacr.org/2008/522
https://eprint.iacr.org/2008/522
https://github.com/BjoernMHaase/fe25519
https://github.com/BjoernMHaase/fe25519
https://oryx-embedded.com/products/CycloneCRYPTO.html
https://oryx-embedded.com/products/CycloneCRYPTO.html
https://github.com/Alg0ritmus/OPAQUE%5C-C.
https://github.com/Alg0ritmus/OPAQUE%5C-C.
http://www.cacr.math.uwaterloo.ca/hac/
http://www.cacr.math.uwaterloo.ca/hac/
https://doi.org/10.1145/168588.168618
https://doi.org/10.17487/RFC2631
https://doi.org/10.17487/RFC2631
https://doi.org/10.1007/s11432-016-5522-z
https://doi.org/10.1007/s11432-016-5522-z

Bibliography

38. LEMON, Ted; CHESHIRE, Stuart. Service Registration Protocol for DNS-Based
Service Discovery. Internet Engineering Task Force, 2024-03. Internet-Draft,
draft-ietf-dnssd-srp-25. Internet EngineeringTask Force.Available also from:
https://datatracker.ietf.org/doc/draft-ietf-dnssd-srp/

25/. Work in Progress.

39. GREEN, Matthew. Should you use SRP? Available also from: https://blo
g.cryptographyengineering.com/should-you-use-srp/.

40. TAYLOR,David; PERRIN, Trevor;WU, Thomas;MAVROGIANNOPOULOS,
Nikos.Using the Secure Remote Password (SRP) Protocol for TLS Authentication
[RFC 5054]. RFC Editor, 2007. Request for Comments, no. 5054. Available
from doi: 10.17487/RFC5054.

41. SOCARDEP. SRP:AZero-Knowledge Protocol for PasswordAuthentication. 2023.
Available also from: https://medium.com/@psocarde/srp-a-zero-
knowledge-protocol-for-password-authentication-1e19582

aab29.

42. KRSTIC J. Behind the Scenes with iOS Security. 2016. Available also from: h
ttps://www.blackhat.com/docs/us-16/materials/us-16-

Krstic.pdf.

43. KRAWCZYK,Dr.Hugo; ERONEN, Pasi.HMAC-based Extract-and-ExpandKey
Derivation Function (HKDF) [RFC 5869]. RFC Editor, 2010. Request for Com-
ments, no. 5869. Available from doi: 10.17487/RFC5869.

44. PYTHON TEAM. Python. Available also from: https://www.python.
org/.

45. STMICROELECTRONICS. Discovery kit with STM32F407VG MCU * New or-
der code STM32F407G-DISC1. Available also from: https://www.st.com/
en/evaluation-tools/stm32f4discovery.html.

46. HAASE, Bjorn; LABRIQUE, Benoit. AuCPace: Efficient verifier-based PAKE
protocol tailored for the IIoT. IACR Transactions on Cryptographic Hardware
and Embedded Systems. 2019, vol. 2019, no. 2, pp. 1–48. Available from doi:
10.13154/tches.v2019.i2.1-48.

47. QEMU. QEMU - A generic and open source machine emulator and virtualizer.
Available also from: https://www.qemu.org/.

48. VEGA. QEMU + GNU Debugger Basic Tutorial. 2023. Available also from: ht
tps://mariokartwii.com/showthread.php?tid=1998.

80

https://datatracker.ietf.org/doc/draft-ietf-dnssd-srp/25/
https://datatracker.ietf.org/doc/draft-ietf-dnssd-srp/25/
https://blog.cryptographyengineering.com/should-you-use-srp/
https://blog.cryptographyengineering.com/should-you-use-srp/
https://doi.org/10.17487/RFC5054
https://medium.com/@psocarde/srp-a-zero-knowledge-protocol-for-password-authentication-1e19582aab29
https://medium.com/@psocarde/srp-a-zero-knowledge-protocol-for-password-authentication-1e19582aab29
https://medium.com/@psocarde/srp-a-zero-knowledge-protocol-for-password-authentication-1e19582aab29
https://www.blackhat.com/docs/us-16/materials/us-16-Krstic.pdf
https://www.blackhat.com/docs/us-16/materials/us-16-Krstic.pdf
https://www.blackhat.com/docs/us-16/materials/us-16-Krstic.pdf
https://doi.org/10.17487/RFC5869
https://www.python.org/
https://www.python.org/
https://www.st.com/en/evaluation-tools/stm32f4discovery.html
https://www.st.com/en/evaluation-tools/stm32f4discovery.html
https://doi.org/10.13154/tches.v2019.i2.1-48
https://www.qemu.org/
https://mariokartwii.com/showthread.php?tid=1998
https://mariokartwii.com/showthread.php?tid=1998

Bibliography

49. JOSEFSSON, Simon; LIUSVAARA, Ilari. Edwards-Curve Digital Signature Al-
gorithm (EdDSA) [RFC 8032]. RFC Editor, 2017. Request for Comments, no.
8032. Available from doi: 10.17487/RFC8032.

50. ROPE SECURITY. Timing Attack. Available also from: https://ropesec.
com/articles/timing-attacks/.

51. VAILLANT, L. Monocypher. Available also from: https://monocypher.
org/.

52. BERNSTEIN, D.J.; GASTEL, B.; ET.AL. TweetNaCl. Available also from: htt
ps://tweetnacl.cr.yp.to/.

53. Why is a point-to-volatile pointer, like "volatile int * p", useful? [online]. 2022-12.
[visited on 2024-04-07]. Available from: https://stackoverflow.com/
questions/9935190/why-is-a-point-to-volatile-pointer-

like-volatile-int-p-useful. Stack Overflow.

54. CENTER, Command. The byte order fallacy. 2016. Available also from: htt
ps://commandcenter.blogspot.com/2012/04/byte- order-

fallacy.html.

55. EMIL, L. X25519-Cortex-M4. Available also from: https://github.com/
Emill/X25519-Cortex-M4.

56. LOVECRUFT, I.; H., VALENCE. Crate curve25519_dalek. Available also from:
https://doc.dalek.rs/curve25519_dalek/..

57. TANKERSLEY, G.; VALSORDA, F.; VALENCE,H. ristretto255. Available also
from: https://github.com/gtank/ristretto255.

58. FRANK, D. libsodium. Available also from: https://doc.libsodium.
org/advanced/point-arithmetic/ristretto..

59. MILLER, P. nobleed25519. Available also from: https://github.com/
paulmillr/noble-ed25519..

60. FRANK, D. wasm-crypto. Available also from: https://github.com/
jedisct1/wasm-crypto..

61. NIKOLAENKO, V.; K., Lewi. ristretto255-js. Available also from: https://
github.com/facebook/ristretto255-js.

62. FRANK, D. Zig, a general-purpose programming language. Available also from:
https://ziglang.org/..

81

https://doi.org/10.17487/RFC8032
https://ropesec.com/articles/timing-attacks/
https://ropesec.com/articles/timing-attacks/
https://monocypher.org/
https://monocypher.org/
https://tweetnacl.cr.yp.to/
https://tweetnacl.cr.yp.to/
https://stackoverflow.com/questions/9935190/why-is-a-point-to-volatile-pointer-like-volatile-int-p-useful
https://stackoverflow.com/questions/9935190/why-is-a-point-to-volatile-pointer-like-volatile-int-p-useful
https://stackoverflow.com/questions/9935190/why-is-a-point-to-volatile-pointer-like-volatile-int-p-useful
https://commandcenter.blogspot.com/2012/04/byte-order-fallacy.html
https://commandcenter.blogspot.com/2012/04/byte-order-fallacy.html
https://commandcenter.blogspot.com/2012/04/byte-order-fallacy.html
https://github.com/Emill/X25519-Cortex-M4
https://github.com/Emill/X25519-Cortex-M4
https://doc.dalek.rs/curve25519_dalek/.
https://github.com/gtank/ristretto255
https://doc.libsodium.org/advanced/point-arithmetic/ristretto.
https://doc.libsodium.org/advanced/point-arithmetic/ristretto.
https://github.com/paulmillr/noble-ed25519.
https://github.com/paulmillr/noble-ed25519.
https://github.com/jedisct1/wasm-crypto.
https://github.com/jedisct1/wasm-crypto.
https://github.com/facebook/ristretto255-js
https://github.com/facebook/ristretto255-js
https://ziglang.org/.

Bibliography

63. VAMPIRE LAB. System for Unified Performance Evaluation Related to Crypto-
graphic Operations and Primitives. Available also from: https://github.
com/floodyberry/supercop..

64. ISIS AGORA LOVECRUFT. ristretto-donna [https://github.com/isis
lovecruft/ristretto-donna].

65. ORYX-EMBEDDED. CycloneCRYPTO: Cryptographic library for embedded sys-
tems [https://github.com/Oryx-Embedded/CycloneCRYPTO].

66. NAYUKI. Barrett Reduction Algorithm [https://www.nayuki.io/page/
barrett-reduction-algorithm]. 2019.

67. MASSAR, Jeroen. rfc6234. Available also from: https://github.com/
massar/rfc6234/tree/master.

68. WALTON, Jeffrey. SHA-Intrinsics. Available also from: https://github.
com/noloader/SHA-Intrinsics/tree/master.

69. COLLET, Yann. xxHash [https://xxhash.com/].

70. CODE, Rosetta. Linear congruential generator. Available also from: https:
//rosettacode.org/wiki/Linear_congruential_generator#C.

71. KUPCOVA, Eva. Implementácia OPAQUE protokolu pre IoT zariadenia. Košice,
2023. Technická univerzita vKošiciach, Fakulta elektrotechniky a informatiky.

72. KUPCOVA, E.; ZELENAK, P.; PLEVA, M.; DRUTAROVSKY, M. Optimiza-
tion of Ristretto255 Group Implementation for Cortex-M4 based Crypto-
graphic Applications. In: 2024 34th International Conference Radioelektronika
(RADIOELEKTRONIKA). Žilina, Slovakia, 2024.

82

https://github.com/floodyberry/supercop.
https://github.com/floodyberry/supercop.
https://github.com/isislovecruft/ristretto-donna
https://github.com/isislovecruft/ristretto-donna
https://github.com/Oryx-Embedded/CycloneCRYPTO
https://www.nayuki.io/page/barrett-reduction-algorithm
https://www.nayuki.io/page/barrett-reduction-algorithm
https://github.com/massar/rfc6234/tree/master
https://github.com/massar/rfc6234/tree/master
https://github.com/noloader/SHA-Intrinsics/tree/master
https://github.com/noloader/SHA-Intrinsics/tree/master
https://xxhash.com/
https://rosettacode.org/wiki/Linear_congruential_generator#C
https://rosettacode.org/wiki/Linear_congruential_generator#C

List of Appendixes

Appendix A Structure of Our Optimized Library.

Appendix B Non-constant Time Algorithm for String Comparison.

Appendix C Testing Big-Endian Code on QEMU Emulator in VirtualBox.

83

Appendix A

During the development and testing codebase for this thesis, we hadmultiple
ideas that we wanted to integrate into our library. One notable example is imple-
menting endian-agnostic code, enabling programs to operate seamlessly across
both little and big endian architectures without the need for conditional compi-
lation. However, we recognized that this approach might not be optimal for the
embedded systems we are focusing on, especially those using ARM Cortex-M4
cores (which is platform we were focused on). Consequently, we opted to create
two distinct archives: one tailored for PC platforms utilizing the endian-agnostic
technique (see Section 9 in Appendix A), and another specifically optimized for
embedded systems, particularly those running onARMCortex-M4 cores (Section
0.4 in Appendix A).

Main OPAQUE library

This section presents the code structure of our library designed for PC platforms,
leveraging the endian-agnostic technique discussed in Section 5.4. This technique
can be seen implemented in the ./dependencies/ristretto255.c file. As illustrated by
the code structure below, the code is organized intomultiple folders. The ./depen-
dencies/directory contains theRistretto255 transformation alongwith all support-
ing files, such as gf25519.c, which contains the C functions for GF(p) operations
discussed throughout this thesis.

The archive integrates all implementation approaches discussed in Chapter
5 and optimization techniques discussed in Chapter 6. Additionally, it includes
the ./opaque_in_details/ folder, which serves as a detailed description of how
OPAQUE works step-by-step. Within this folder, a file opaque_simulation.c sim-
ulates the client-server registration and authentication process for OPAQUE. The
complete archive is available at https://github.com/Alg0ritmus/OPAQ
UE-C.

84

https://github.com/Alg0ritmus/OPAQUE-C
https://github.com/Alg0ritmus/OPAQUE-C

Bibliography

Main archive

dependencies/
opaque_in_details/
ristretto255/
client_side.c
client_side.h
main_config.h
Makefile
opaque.c
opaque.h
oprf.c
oprf.h
OPRF.txt
README.md
server_side.c
server_side.h
test.c
test.py

dependencies/

hkdf.c
hmac.c
README.md
rfc6234.txt
sha-private.h
sha.h
sha384-512.c
usha.c

opaque_in_details/

importer.h
initial_configuration_step_0.c
offline_reg_step_1.c
offline_reg_step_2.c
offline_reg_step_3.c
online_login_step_4.c
online_login_step_5.c
online_login_step_6.c
online_login_step_7.c
opaque_simulation.c

85

Bibliography

summary_of_opaque.txt

ristretto255/

config.h
gf25519.c
gf25519.h
helpers.h
Makefile
modl.c
modl.h
prng.c
prng.h
py_modl_l_inverse.py
README.md
ristretto255.c
ristretto255.h
ristretto255_constants.h
ristretto_main.c
test_config.h
utils.c
utils.h
xxhash.c
xxhash.h

OPAQUE-MCU library

This section presents the code structure of our library specifically tailored
for embedded platforms running on ARM Cortex-M4 cores, leveraging a com-
bination of fast C libraries and highly efficient ASM GF(p) operations discussed
in detail in Section 6.6. This archive was used for the measurements described
in Chapter 7 of this thesis, which were performed on the STM32F4DISCOVERY
development board.

It’s important to note that this archive is designed for little-endian architec-
tures and contains fewer files compared to the main archive, focusing primarily
on client-side functionality. Some files, such as opaque.c, oprf.c, test.c, ristretto255/-
ristretto255.c, and others, differ from those in the main archive (see README.md
for more information).

The complete archive can be accessed at https://github.com/Alg0rit
mus/OPAQUE-C/tree/MCU_version.

86

https://github.com/Alg0ritmus/OPAQUE-C/tree/MCU_version
https://github.com/Alg0ritmus/OPAQUE-C/tree/MCU_version

Bibliography

Archive for MCUs

dependencies/
ristretto255/
Makefile
opaque.c
opaque.h
oprf.c
oprf.h
README.md
test.c

dependencies/

hkdf.c
hmac.c
README.md
rfc6234.txt
sha-private.h
sha.h
sha384-512.c
usha.c

ristretto255/

config.h
gf25519.c
gf25519.h
helpers.h
Makefile
modl.c
modl.h
prng.c
prng.h
ristretto255.c
ristretto255.h
ristretto255_constants.h
utils.c
utils.h

87

Appendix B

In this thesis, we emphasize the importance of constant-time execution of algo-
rithms in cryptographic protocols and libraries to mitigate side-channel attacks,
specifically timing attacks (refer to Chapter 5.1). Constant-time algorithms en-
sure that the execution time of an algorithm is independent of input values. As
an example, we discuss a simple string comparison algorithm that does not op-
erate in constant time, resulting in varying execution times highly dependent on
inputs.

The code snippet below illustrates the algorithmused for the results presented
in Table 5.1 in Chapter 5.1. The code first measures 10,000 dummy iterations of
a for loop, which is then subtracted from 10,000 iterations of string comparisons
to get more precise measurements. The resulting value is divided by 10,000 to
obtain the execution time for one string comparation (see line 30).

1 import time

2 def measure_string_cmp():

3 # Example string comparisons to test

4 strings_to_compare = [

5 ’eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee’,

6 ’Reeeeeeeeeeeeeeeeeeeeeeeeeeeeeee’,

7 ’RefStringeeeeeeeeeeeeeeeeeeeeeee’,

8 ’RefString1ABCDEFGHIJKLMNOPRSTXYZ’

9]

10 target_string = ’RefString1ABCDEFGHIJKLMNOPRSTXYZ’

11

12 # Get baseline time for a dummy operation (empty loop)

13 start = time.perf_counter_ns()

14 for _ in range(10_000):

15 pass

16 end = time.perf_counter_ns()

17 baseline_time = end - start

88

Bibliography

18

19 # Time measurement for each string comparison

20 for s in strings_to_compare:

21 # Perform the string comparison multiple times to

estimate

22 # and takes mean of it

23 start = time.perf_counter_ns()

24 for _ in range(10_000):

25 compare(s,target_string)

26 end = time.perf_counter_ns()

27 comparison_time = end - start

28

29 # Estimate time per comparison based on relative times

30 cpu_cycles_per_comparison = (comparison_time -

baseline_time) / 10_000

31 print(f"Estimated time: {cpu_cycles_per_comparison:.0f}

nano-seconds for \n’{s}’ == ’{target_string}’ \n")

32

33 measure_string_cmp()

Source Code 1: Python code to measure time execution of string comparisons
with non-constant approach

89

Appendix C

This section serves as a brief tutorial on testing big-endian code on the QEMU
emulator running within VirtualBox.

Testing Big-Endian Code on QEMU Emulator in Vir-
tualBox

Our setup flow for non-Linux users requires a virtual machine running a Linux-
based operating system, with QEMU emulator and GNU debugger installed. We
opted for VirtualBox due to its status as a well-maintained, well-known open-
source virtualization software developed by Oracle. VirtualBox (VB) supports
a wide range of operating systems, includingWindows (in various editions), ma-
cOS, and Linux, among others. Another requirement for testing and debugging
is a VirtualBox image of a Linux-based operating system that will be used within
VirtualBox. In this section, we will use a Debian 11 image, as recommended by
the article’s author. Finally, QEMU and the GNU debugger will be installed on
the Linux-based OS within VirtualBox.

Firstly, we need to install the latest version of VirtualBox, available at https:
//www.virtualbox.org/. I used VirtualBox version Version 7.0.14 r161095.
Installation is simple and straightforward; therefore, the installation of VirtualBox
is beyond the scope of this thesis. Whatweprovide here is a step-by-step guide for
creating a virtualmachine using aminimal installationDebian 11 image (https:
//www.linuxvmimages.com/images/debian-11/) and setting up shared
folders for convenient testing and debugging of code.

Once VirtualBox is installed on your computer, create a folder that will serve
as a shared folder. In my case, I created a folder called SHARED in C:\SHARED.
The purpose of the shared folder is to provide a way of sharing files between
the virtual machine (in this case Debian 11) and your host computer, which is
Windows 10 in my case.

Suppose you have already downloaded the Debian 11 image. We aimed for

90

https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.linuxvmimages.com/images/debian-11/
https://www.linuxvmimages.com/images/debian-11/

Bibliography

Figure 1: Creating a new virtual machine in VirtualBox.

a minimal installation VirtualBox image which is only 415 MB, but feel free to
use a regular installation that provides a graphical user interface (GUI). Once
you have downloaded the Debian image, we can create a virtual machine inside
VirtualBox that will run the downloaded Debian image.

• Open VirtualBox and create a new virtual machine. Set the name of your
virtual machine as you wish (in my case, I chose the name ’BigEndianTest-
ing’). Select Linux as the type and Debian (64-bit) as the version, as shown
in Figure 1.

• To run the downloaded Debian 11, it is crucial to choose the correct virtual
disk. By correct, I mean selecting the downloaded Debian disk with .vdi ex-
tension. If you cannot find the downloadedDebian disk among the options,
click the folder icon. A new window will pop up, where you can add the
Debian disk. Once you have selected the virtual disk, finish the installation
process(see Figure 2 and 3.

• Next, set up the shared folder. Open VM settings > Shared Folders > Add
new and set your shared folder based on the name you chose. In my case,
it’s ’SHARED’, as shown in Figure 4.

Next, we need to mount the shared folder in Debian and continue with the
installation of QEMUwith GNU debugger. This process will be exactly the same
as described in the article [48]. Since I chose minimal installation Debian 11,
only a terminal window is available, but feel free to download any GUI Debian
VirtualBox image.

The simple way of mounting a shared folder in Debian is to use a series of
commands:

91

Bibliography

Figure 2: Selection of Debian 11 disk.

Figure 3: Adding new disk in VirtualBox.

92

Bibliography

Figure 4: Setting up a shared folder in VirtualBox.

1 sudo mkdir /mnt/shared

2 sudo mount -t vboxsf SHARED /mnt/shared

Once the shared folder is mounted on the Debian VM, you can access files
from the shared folder by navigating to the mount point. In this case, since we
mounted the shared folder to "/mnt/shared", you can access its contents using
standard Linux commands.

1 cd /mnt/shared

2 ls

This will change the directory to the shared folder mount point and list the
files and directories within it. You can then manipulate these files just like any
other files on your Debian VM.

Let’s continue with the preparation of an example file that we will be using
to determine big endianness. In Debian, create a simple file that can look like an
example file inspired by Stephan Brumme (https://create.stephan-bru
mme.com/big-endian/). See code below:

1 // //

2 // endian.c

3 // Copyright (c) 2013-2015 Stephan Brumme. All rights reserved.

4 // see http://create.stephan-brumme.com/disclaimer.html

93

https://create.stephan-brumme.com/big-endian/
https://create.stephan-brumme.com/big-endian/

Bibliography

5 //

6 #include <stdio.h>

7 int main(int argc, char* argv[])

8 {

9 // on little endian systems, twoBytes is stored as 0x01, 0x00

and

10 // on big endian systems, twoBytes is stored as 0x00, 0x01

11 short twoBytes = 0x0001;

12 // get first byte of twoBytes

13 char oneByte = *(char*) &twoBytes;

14 if (oneByte == 1)

15 puts("little endian");

16 else

17 puts("big endian");

18 return 0;

19 }

Source Code 2: Example C code to evaluate endianness

The final step is to install QEMU with the GNU debugger and support for
a big-endian architecture provided byQEMU.Whendiscussing big endian, QEMU
supportsmultiple architectures such asARM,MIPS, or PowerPC.We opt for a big
endian PowerPC 64-bit architecture, which requires us to install the necessary
tools. To do this, simply follow the command flow below:

1 sudo apt-get install gcc-powerpc64-linux-gnu \

2 binutils-powerpc64-linux-gnu binutils-powerpc64-linux-gnu-dbg

Proceed to install the QEMU Emulator and GNU debugger. Note that there
are different QEMU packages available, but only ‘qemu-user‘ and ‘qemu-user-
static‘ are necessary for our purposes.

Very important step to be made is compile an example file 2 for architecture
we choose, a PowerPC 64-bit. To do so, follow subsequent code:

1 powerpc64-linux-gnu-gcc -ggdb3 -o endian endian.c -static

Where the flag -o serves to create an object file (executable), and the -ggdb3
flag generates debug information suitable for use with the GNU Debugger. The
output is an executable file named ’endian,’ which will be used as an example for
the evaluation of endianness.

Since I chose a minimal installation of Debian 11 in VirtualBox, I only have
access to one terminal. However, running the QEMU emulator and debugging

94

Bibliography

with the GNU debugger simultaneously requires multiple terminal windows. To
overcome this limitation, there are several workarounds available.

Firstly, you can use the option to create additional terminal windows by press-
ing Alt+Fn+(F1-F12), allowing you to open and switch between multiple termi-
nal windows.

Another effective workaround is to use Tmux, a terminal multiplexer that en-
ables the creation of multiple "pseudo terminals" within a single terminal ses-
sion. Tmux facilitates the simultaneous operation of various programs via one
terminal connection. Additionally, Tmux allows for detachment from the current
terminal, ensuring uninterrupted background execution of all programs. Subse-
quently, reattachment to the same or alternative terminal is possible.

For our purposes, Tmux provides an ideal solution. You can install Tmux
using the following command:

1 sudo apt-get install tmux

After installing Tmux on Debian, let’s create two windows: one for running
QEMU PowerPC emulation and one for the GNU debugger. To create new win-
dows, enter the Tmux environment:

1 Tmux

Whenwe are inside Tmux enviroment, create a newwindowby shortcutCtrl+

B and then press C. You can close active window by Ctrl +B and then X .
In Figure 5, the green panel at the bottom of the terminal indicates that the

Tmux environment is running. Within the green panel, we can observe that two
virtual windows have been created: 0 : bash− and 1 : bash∗. The number before
the separator (:) represents the index of each window. The hyphen indicates
previously used window, while the asterisk denotes the window that is currently
active. You can switch between windows using Ctrl+B followed by the window
index. For example, if the active window is window 1, to switch to window 0,
simply use the shortcut Ctrl + B + 0.For more information about basic Tmux
shortcuts, see an articlehttps://www.redhat.com/sysadmin/introduc
tion-tmux-linux.

Now when we have two separate windows, we can run QEMU PowerPC64
emulator in one window and GNU debugger in the other window. Firstly run an
example code in QEMU PowerPC64 emulator by command:

1 qemu-ppc64 -L /usr/powerpc64-linux-gnu -g 1234 ./endian

where −L/user/xxx let you to choose which elf interpreter to use and −gxxx

95

https://www.redhat.com/sysadmin/introduction-tmux-linux
https://www.redhat.com/sysadmin/introduction-tmux-linux

Bibliography

Figure 5: Showcase of Tmux terminal.

let you set port number for GDB connection.
Once you launch PowePC emulator, go to second windows using shortcut

Ctrl +B + index and run debugger:

1 gdb-multiarch -q --nh \

2 -ex ’set architecture ppc64’ \

3 -ex ’set sysroot /usr/powerpc64-linux-gnu’ \

4 -ex ’file endian \

5 -ex ’target remote localhost:1234’ \

6 -ex ’break main’ \

7 -ex continue \

8 -ex ’layout split’ \

9 -ex ’layout next’ \

10 -ex ’layout regs’

As you can seewe are running debuggerwithmultiple -ex tags. Basic descrip-
tion of used −ex tags is presented in table below:

• Set architecture: Sets the architecture we want to use.

• Set sysroot: Sets directory in which targeted libraries are located; this must
match with ELF interpreter used when launching QEMU emulator.

• file: Sets the file you want to debug.

96

Bibliography

Table 1: Debugger Commands and Descriptions

Command Description
Set architecture Sets the architecture we want to use
Set sysroot Sets directory in which targeted libraries

are located; this must match with ELF in-
terpreter used when launching QEMU em-
ulator

file Sets the file you want to debug
Target remote ma-
chine:port_number

Tells debugger what machine and port
QEMU is running on

Break main Places a breakpoint on the main function
continue Tells debugger not to stop on the first as-

sembly instruction
Layout split Splits terminal into two halves
Layout regs Tells debugger to place General Purpose

Registers (GPRs) and Special Purpose Reg-
isters (SPRs) on the upper half of the layout

• Target remote machine:port_number: Tells debugger what machine and
port QEMU is running on.

• Break main: Places a breakpoint on the main function.

• continue: Tells debugger not to stop on the first assembly instruction.

• Layout split: Splits terminal into two halves.

• Layout regs: Tells debugger to place GPRs (General Purpose Registers) and
SPRs (Special Purpose Registers) on the upper half of the layout.

When you run QEMU PowerPC emulator in one window, it should be listen-
ing on port 1234 aswe set in example, and in the otherwindow adebugger should
be running.

You can debug a programas youwish, but if you simplywant it to be executed,
you can use the continue command and let the programfinish. After the program
finishes in the debugger, you can close the debugger with the quit command (see
Figure 6. In the previous window, the one where you are running an example file
on the PowerPC architecture, you can see that the program actually finishes and

97

Bibliography

Figure 6: Showcase of debugger for PowerPc64.

prints the result. As you can see from Figure 7, the example code indicates that
we are on a big-endian architecture. Which is exactly what we wanted to achieve.

98

Bibliography

Figure 7: First terminalwindowafter debugging is finished on secondwindow.

99

	List of Abbreviations
	List of Symbols
	Introduction
	Opaque Protocol Overview
	1 OPAQUE Protocol Overview
	1.1 Offline Registration Phase
	1.2 Online Authentication Phase

	Basic Cryptographic Building Blocks and Protocols Used in OPAQUE
	2 Basic Cryptographic Building Blocks and Concepts Used in OPAQUE
	2.1 Group Theory Overview
	2.2 Modern Elliptic Curve25519
	2.3 Ristretto255 Group and Transformation
	2.3.1 Encoding from Ristretto255 Group
	2.3.2 Decoding to Ristretto255 Group
	2.3.3 Hash to Ristretto255 Group

	2.4 Password-authenticated Key Exchange

	Detailed Description of OPAQUE Phases
	3 Detailed Description of OPAQUE Phases
	3.1 Client to Server Registration phase
	3.1.1 Oblivious Pseudorandom Function

	3.2 Client to Server Authentication Phase
	3.2.1 First AKE Message
	3.2.2 Second AKE Message
	3.2.3 Third AKE Message

	Development Enviroment
	4 Development Enviroment
	4.1 Development Platform
	4.1.1 Programming enviroment
	4.1.2 Python Prototype
	4.1.3 Embedded Platform

	4.2 QEMU for Big Endian Code on Little Endian Devices

	Implementation Strategy of Ristretto255 Transformation
	5 Implementation Strategy of Ristretto255 Transformation
	5.1 Constant Time Approach
	5.2 Concept of Negative Elements Used GF(p)
	5.3 Secure Wiping of Local Variable
	5.4 Portable Endian Agnostic Code

	Optimization Techniques for embedded platform
	6 Optimization Techniques for embedded platform
	6.1 Available High-level Ristretto255 Libraries
	6.2 State of the Art Embedded C libraries for GF25519
	6.2.1 TweetNaCl
	6.2.2 MonoCypher
	6.2.3 CycloneCRYPTO

	6.3 Function for Computation of Inverse Square Root
	6.4 Functions for ModL Arithmetic
	6.5 Minimizing Processor Stack Requirements via Shared Local Variables
	6.6 Approach to Using Existing Highly Optimized ASM Routines for GF(p) Operations
	6.7 Additional Optimalization Approaches

	Experimental Results
	7 Experimental Results
	7.1 Testing for Little Endian Platforms
	7.2 Testing Big Endian in QEMU
	7.3 Deep Testing of Ristretto255
	7.4 Target ARM Cortex M4 platform/board

	Experimental Results
	8 Discussion
	9 Conclusion
	Bibliography
	List of Appendixes
	Appendix A
	Appendix B
	Appendix C

