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Abstract
We implement finite transducers in a new fast and simple automata library Mata. Finite
transducers are finite state machines modelling rational relations. Our primary use case for
finite transducers is encoding replace operations (replacing a word or a regular pattern with
a string literal). A recent automata-based SMT string solver Z3-Noodler uses Mata as a
backbone of its decision procedure. Z3-Noodler needs finite transducers to analyse string
manipulating programs with replace operations. The analysis of said programs used in web
applications prevents software attacks such as cross-site scripting (XSS) or code injection.

The distinctive features of Mata include simplicity (simple to use, modify and extend)
and efficiency (fast to run). We design the representation and algorithms for finite trans-
ducers to fit the simplicity and efficiency requirements. We inherit and extend the existing
data structures and algorithms for finite automata in Mata to represent the finite trans-
ducers and their operations. The representation for finite transducers serves as a common
data structure and interface for the finite transducers and future representation of automata
using multi-terminal binary decision diagrams to handle large alphabets.

We further extend the design with algorithms to construct finite transducers modelling
replace operations defined in SMT-LIB.

Finally, we run an experimental evaluation of performance of finite transducers in Mata
on a new benchmark with replace operations from runs of Z3-Noodler and from solving
problems in pattern matching.

Abstrakt
Implementujeme konečné převodníky do nové rychlé a jednoduché automatové knihovny
Mata. Konečné převodníky jsou konečné stavové stoje modelující regulární relace. Naše
hlavní použití pro konečné převodníky je kódovaní operací nahrazení (nahrazení slova nebo
regulárního vzoru řetězcem). Nový SMT nástroj pro řešení formulí s omezeními nad řetězci
Z3-Noodler používá knihovnu Mata jako základ pro jeho rozhodovací proceduru. Z3-
Noodler potřebuje konečné převodníky k analýze programů manipulujících s řetězci s op-
eracemi nahrazení. Analýzou zmíněných programů používaných ve webových aplikacích se
zabrání útokům jako cross-site scripting (XSS) nebo vložení kódu.

Hlavní odlišující vlastnosti knihovny Mata zahrnují jednoduchost (jednoduchá k užívání,
úpravě a rozšíření) a efektivitu (pracuje rychle). Reprezentaci a algoritmy pro konečné
převodníky jsme navrhli s ohledem na tyto vlastnosti knihovny.

K reprezentaci konečných převodníků a jejich algoritmů znovupoužijeme a rozšíříme ex-
istující datové struktury a algoritmy pro konečné automaty v knihovně Mata. Reprezentace
pro konečné převodníky slouží jako společná reprezentace pro konečné převodníky a budoucí
reprezentaci automatů využívajících multi-terminálních binárních rozhodovacích diagramů
pro práci s velkými abecedami.

Navíc rozšíříme návrh o algoritmy pro konstrukci konečných převodníků modelujících
operace nahrazení definovaných v SMT-LIB.

Nakonec experimentálně vyhodnotíme efektivitu konečných převodníků v knihovně Mata
na nové sadě příkladů s operacemi nahrazení z běhů nástroje Z3-Noodler a z řešení prob-
lémů nalezení vzoru.
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Rozšířený abstrakt
Konečné automaty nachází mnohá použití, ať už v oblasti výzkumu, nebo v průmyslu. Práce
s konečnými automaty může ale v některých případech být výpočetně náročná. Z toho
důvodu se postupně objevil značný počet automatových knihoven, každá s vlastními pod-
porovanými typy automatů a operacemi nad nimi. Návrh implementace každé z knihoven
dává určité výhody a nevýhody. Nedávno byla předvedena nová automatová knihovna
Mata. Mata je již nyní používána pro uvažování nad regulárními výrazy a pro řešení
omezení nad řetězci. Aby však Mata dobře pracovala i v jiných doménách jako regulární
model checking nebo rozhodování logik jako WS1S nebo kvantifikovaná Presburgerova arit-
metika, podpora pro konečné převodníky je nutná. V této práci přidáváme konečné převod-
níky do knihovny Mata.

Podobně jako konečné automaty, konečné převodníky jsou konečné stavové stroje.
Odlišují se od konečných automatů tím, že pracují s více paměťovými páskami (zatímco
konečné automaty pracují pouze s jednou páskou). Každý běh reprezentuje n-tici slov
(každá páska reprezentuje jedno slovo). Zatímco konečné automaty modelují regulární
jazyky, konečné převodníky modelují relace mezi regulárními jazyky. Konkrétně, konečné
převodníky modelují množinu n-tic slov. Konečné převodníky mají rozsáhlé využití v mnoha
aplikačních doménách jako zpracování řeči a jazyka (výpočetní lingvistika), překladače pro-
gramů, parametrické unit testování, paralelizace kódu, webová bezpečnost, nebo verifikace
programů.

Hlavními charakteristikami knihovny Mata určujícími povahu této práce je efektivita
a jednoduchost. Efektivita automatových algoritmů je důležitá pro mnohé příklady použití,
kde jsou automatové problémy výpočetně náročné a každé zpomalení práce s automatem
způsobuje značné zpomalení celkově. Mnohé automatové knihovny jsou dobře optimal-
izované na vybranou množinu operací, předpokládají určitý způsob práce s knihovnou,
nebo limitují, jak je možné knihovnu využívat. Cílem knihovny Mata je dosáhnout rych-
lého výpočtu operací v různých aplikacích, poskytovat optimalizované obecné algoritmy
i speciální konkrétně zaměřené algoritmy, obzvláště pro její aplikaci v uvažování o omezeních
nad řetězci. Jednoduchost knihovny se zaměřuje na dodání pochopitelného a přístupného
rozhraní pro automatové operace, jednoduchou integraci knihovny do existujících nástrojů
a jednoduchou rozšiřitelnost a upravitelnost implementovaných algoritmů a automatových
modelů. Mata využívá datových struktur navržených tak, aby umožnily knihovně rychlé
výpočty, ale také jejich jednoduchou modifikaci uživatelem pro vlastní použití a poskytující
rozšiřitelné rozhraní pro přidávání nových automatových modelů, nebo speciálních operací.

Naším prvním a hlavním případem použití pro konečné převodníky v knihovně Mata
je uvažování o omezeních nad řetězci. V posledních dvou desetiletích se oblast uvažování
o řetězcových omezeních dočkala značné pozornosti od výzkumu i z praxe. Výzkum je
hlavně motivován použitím nástrojů pro analýzu programů pro webové aplikace. Uvažování
o omezeních na řetězci zabraňuje útokům jako cross-site scripting (XSS) nebo code injec-
tion objevováním zranitelností v programech. Existuje velké množství SMT nástrojů pro
uvažování nad řetězcovými omezeními, každý implementující vlastní techniky a optimal-
izace.

Použití přístupů k uvažování o omezeních nad řetězci založených na automateh nedávno
získalo značnou popularitu. Použití automatů pro uvažování o omezeních nad řetězci je
přirozeným krokem, neboť řetězcová omezení obsahují hodně regulárních výrazů a reg-
ulárních omezení. Tato práce je značně motivována existujícími technikami založenými
na automatech nedávno uvedenými v nástroji pro uvažování o omezeních nad řetězci Z3-
Noodler. Z3-Noodler používá automaty jako hlavní podstatu jeho rozhodovací pro-



cedury. Z3-Noodler umí řešit řetězcové rovnice s regulárními omezeními, ale nedokáže
jednoduše řešit omezení obsahující operace nahrazení jako replaceAll (nahrazení všech
výskytů vzoru za řetězec). Jednou z hlavních motivací pro tuto práci je kódování operací
nahrazení v nástroji Z3-Noodler.

V této práci navrhneme reprezentaci a algoritmy pro konečné převodníky v knihovně
Mata. Upravíme návrh tak, aby splňoval požadavky knihovny na jednoduchost a efektiv-
itu. Modelujeme konečné převodníky pomocí zdědění existujících datových struktur pro
konečné automaty v knihovně Mata. Rozšíříme datové struktury pro konečné převodníky
jako konečný automat s úrovněmi pro stavy. Tento přístup nám umožňuje zdědit také
velké množství existujících operací pro konečné automaty s pouze mírnými úpravami pro
funkčnost s konečnými převodníky. Reprezentace konečných převodníků zároveň slouží jako
datová struktura i pro automaty s multi-terminálními binárními rozhodovacími stromy pro
práci s velkými abecedami. Dále rozšíříme konečné převodníky algoritmy pro konstrukci
konečných převodníků modelujících operace nahrazení definované v SMT-LIB. Nakonec ex-
perimentálně porovnáme čas běhu konečných převodníků implementovaných v knihovně
Mata na nové sadě příkladů získaných z běhů nástroje Z3-Noodler. Zvolený přístup
se zdá být vhodný, a přestože pro uvažování o řetězcových operacích je Mata pomalejší,
pracuje dostatečně rychle pro naše případy použití. Naopak na příkladech z oblasti nalezení
vzorů schopnost knihovny Mata pracovat s nedeterminismem jasně překonává determini-
stické přístupy.
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Chapter 1

Introduction

Finite automata can be found in numerous fields, both in research and in the industry.
In some use cases, handling finite automata can be computationally costly. Therefore, a
number of automata libraries have emerged throughout the years, each with their own set
of supported automata types and operations. Their respective design and implementation
decisions give various advantages and disadvantages to each library. Recently, a new finite
automata library called Mata [29] has been introduced. Mata is already used to reason
about regular expressions and in string solving. However, in order for Mata to work well in
other applications such as regular model checking, string solving with advanced constraints,
or deciding logics such as WS1S or quantified Presburger arithmetic, support for finite
transducers is necessary. In this work, we add finite transducers to Mata.

The same as finite automata, finite transducers are finite state machines. They differ
from finite automata by working with multiple memory tapes (whereas finite automata work
with only one memory tape). Each run represents an 𝑛-tuple of words (each tape represents
a single word). While a finite automaton models a regular language, a finite transducer
models a rational relation. That is, an 𝑛-tape finite transducer models a set of 𝑛-tuples
of words. Finite state transducers are of immense practical use in numerous domains such
as language and speech processing (computational linguistics) [65], software compilers [7],
parameterized unit testing [82], code parallelization [83], web security [52], or verification
of software programs [35].

The two distinctive features of Mata, which determine our work in this thesis, are
efficiency and simplicity. The efficiency of automata algorithms is crucial since in many
use cases, automata problems are computationally hard and every small decrease in perfor-
mance of the often used low-level operations causes a significant slowdown. Many automata
libraries are well-optimized on only a subset of operations, presume a certain specific ap-
proach to using them, or make limitations on how one can utilize the library. Mata wants
to achieve fast computation on operations in various applications, providing optimized gen-
eral operations on finite automata as well as several purpose-specific algorithms, especially
for its applications in string solving. The simplicity of Mata focuses on delivering an ap-
proachable interface for automata operations, easy integration of Mata into the existing
tools, and further extensibility and modifiability of implemented algorithms and automata
models. The underlying data structures in Mata are designed to make it possible for Mata
to run sufficiently fast, but also enable easy modification by the user for their own use cases,
and give an extensible interface for adding new automata models, or purpose-specific opera-
tions. The design decisions behind Mata, and a comparison with other automata libraries
are further discussed in Chapter 3.
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Our first and primary use case for finite transducers in Mata, beside others, is string
solving. In the last two decades, string solving enjoys a lot of attention from the research
and the industry. The work on string solving is primarily motivated by its uses in analysis
of programs for web applications. String solving allows us to prevent software attacks such
as cross-site scripting (XSS) or code injection by discovering security vulnerabilities in the
programs. There exists numerous SMT string solvers, each applying their unique techniques
and optimizations for specific operations.

The use of automata-based techniques has recently gained noticeable popularity among
the string solving community. Using automata for string solving is a natural approach: we
have to deal with a lot of regular expressions and regular constraints in the solved formu-
lae. The work in this thesis is highly motivated by an automata-based technique introduced
recently in a novel SMT string solver Z3-Noodler. Z3-Noodler uses automata as the
backbone of its decision procedure. Z3-Noodler can solve word equations with regular
constraints, but cannot be used to solve word equations and constraints with replace oper-
ations such as replaceAll (replacing all words or regular patterns with a string literal), as
explored in [22] for analysis of string manipulating programs in web applications. One of
the main motivations for adding finite transducers to Mata is encoding replace operations
in Z3-Noodler. The broader context of string solving and related work relevant to this
thesis is given in Chapter 4.

In this work, we design the representation and algorithms for finite transducers in Mata.
To maintain the simplicity and efficiency requirements of Mata, we want to keep the data
structures and algorithms for finite transducers simple. Since finite transducers have nor-
mally 𝑛-tape alphabets, a support for special 𝑛-tape symbols would have to be introduced
to Mata, with special operations and data structures supporting 𝑛 tapes. We did not
want to introduce a new data structure just for finite transducers, or complicate the ex-
isting data structures. Therefore, we designed a representation of finite transducers and
algorithms for them in such a way that we reuse the existing data structures and algo-
rithms already implemented in Mata without having to do too many modifications. For
the representation of finite transducers, we inherit the data structure for finite automata,
and only extend the data structure with a mapping of states to 𝑛 levels, each corresponding
to one tape. We represent the 𝑛-tape symbols as a simple sequence of single finite automata
symbols (a sequence of finite automata transitions with states annotated with a level, one
state and transition for each tape). All data structures for finite automata are therefore
directly reusable for finite transducers. This also allows us to inherit large portions of finite
automata operations for finite transducers with only slight modifications. No special data
structures need to be added, and the encoding of a finite transducer as a finite automaton
with levels is intuitive.

In order to achieve this, we had to solve technical problems regarding especially ep-
silon transitions. A single epsilon transition between the subsequent tapes represents a
no-operation transition, where the transducer does not read/write anything on the tape.
We also work on a parallel project where we need to handle automata with large alphabets
using automata with multi-terminal binary decision diagrams (called BDDAs here) as seen
in an automata library Mona [44] (see Section 3.2). BDDAs also use 𝑛-tape symbols. The
representation for 𝑛-tape transducer transitions is very close to BDD-like transitions in
Mona, integrating MTBDDs into the transition relation. Therefore, the representation for
finite transducers simultaneously serves as a common representation for future implementa-
tion of BDDAs. BDDAs also use jumps (special transitions performing multiple transitions
in a single transition) and don’t care symbols (matching any symbol in the alphabet).
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Hence, we further design epsilon and don’t care jumps for finite transducers. By only using
levels, we are able to encode epsilon transitions (a simple change of a state as for the finite
automata) between states with the same level. Levels further encode epsilon jumps (no
operation is performed on the jumped over tapes), and don’t care jumps (any symbol is
accepted on the jumped over tapes) between states with different levels. We restrict the
jumps to be allowed to jump only up to the next state with the level of the first tape. This
allows us to use the existing algorithms such as subset and product construction for the
finite transducers without modifications and without having to store the information about
lengths of jumps into a pair of states in a worklist. Depending on whether one works with
finite transducers or BDDAs, a different interpretation of jumps is possible with a minimal
change in the algorithms, all with a single transition representation: a jump in a finite
transducer repeats the symbol jumped over on all tapes, whereas in BDDAs, the jumped
over symbol is used only for the first tape jumped over, followed by a sequence of don’t care
transitions. This is to our best knowledge a unique approach for encoding finite automata,
transducers and BDDAs with a single automaton data structure and shared algorithms
with only minimal modifications and support for epsilon and don’t care transitions.

We further extend the design with algorithms to construct finite transducers modelling
replace operations defined in SMT-LIB [13].

Finally, we run an experimental evaluation of the performance of finite transducers in
Mata on a new benchmark with replace operations from runs of Z3-Noodler and solving
problems in pattern matching. The experimental results show that even though Mata is
slower than the state-of-the-art, it performs well enough for our use cases. Moreover, the
support for nondeterminism in Mata allows for great performance of NFTs on complex
regular expressions found in practice.

The described design is feasible. Finite transducers perform sufficiently well and are
prepared for Z3-Noodler and string solving in general.

Contribution. The contributions of this work can be summarized as follows:

• Design of data structures and algorithms for finite transducers in automata library
Mata.

• Implementation of the proposed data structures and algorithms in Mata.

• A new benchmark of replace operations encoded as finite transducers, derived from
SMT-LIB benchmarks from real problems and pattern matching.

• Experimental evaluation of the implemented algorithms on a variety of benchmark
problems from practice.
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Chapter 2

Preliminaries

In this chapter, we will define several terms and notions used throughout this thesis. We
follow the usual definitions of automata theory, as used in works such as [38] or [78] with
custom modifications and additions.

Alphabets. We define an alphabet Σ = {𝑎, 𝑏, 𝑐, . . .} as a set of symbols where symbols are
usually denoted by 𝑎, 𝑏, 𝑐, . . .. Σ* denotes a set of all finite words (literals or strings) over
the alphabet Σ. We usually denote words 𝑢, 𝑣, 𝑤, . . .. 𝑢[𝑛 : 𝑚] represents a substring of 𝑢
containing symbols in the interval of indices (indexed from 0) between 𝑛 and 𝑚 (including
the symbol on the index 𝑛 and excluding the symbol on the index 𝑚). Furthermore, we
use two special symbols: an epsilon symbol 𝜖 /∈ Σ, representing an empty symbol (or word,
𝜖 ∈ Σ*), and a don’t care symbol, denoted ?, representing any single symbol from Σ. Alphabet
with epsilon symbols (epsilons) is denoted Σ𝜖 = Σ ∪ {𝜖}.

We denote concatenation on words 𝑤1, 𝑤2 using 𝑤1 · 𝑤2, sometimes for convenience
omitting the concatenation operator (𝑤1𝑤2), where 𝜖 is the neutral element of concatenation
(𝜖 · 𝑤 = 𝑤 · 𝜖 = 𝑤).

2.1 Finite Automata
In this section, we lay foundation to finite automata and their features utilized in this work.

Finite automata are finite state machines used to represent a regular language, com-
prising a set of words. Operations on finite automata represent various set operations.

We can work with either deterministic, or non-deterministic finite automata, called
DFA, or NFA, respectively. An intuitive encoding of problems into automata often leads
to NFAs, while automata operations on DFAs are usually faster and simpler.

Definition 1 (Nondeterministic finite automaton).
A nondeterministic finite automaton (NFA) over the alphabet Σ is a 5-tuple

𝒜 = (𝑄,Σ, post , 𝐼, 𝐹 )

where

• 𝑄 is a finite set of states,

• Σ is the alphabet of 𝒜,
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• post : 𝑄× Σ→ 2𝑄 is a symbol-post function where 𝑞
𝑎−→ 𝑞′ (or (𝑞, 𝑎, 𝑞′))

for 𝑞′ ∈ post(𝑞, 𝑎) is a transition,

• 𝐼 ⊆ 𝑄 is a finite set of initial states, and

• 𝐹 ⊆ 𝑄 is a finite set of final states.

A set of all transitions of 𝒜 forms a transition relation of 𝒜, denoted Δ.

Δ(𝑞, 𝑎) ≡ post(𝑞, 𝑎)

.
Furthermore, we define a state-post function post(𝑞) = {(𝑎, post(𝑞, 𝑎)) | post(𝑞, 𝑎) ̸= ∅}

for a state 𝑞. Symbol-post function and State-post function are called post-image functions.
post can be generalized to a set of source states over a given transition symbol, post(𝑆, 𝑎)
where 𝑆 ∈ 𝑄 and 𝑎 ∈ Σ as post(𝑆, 𝑎) =

⋃︀
𝑠∈𝑆 post(𝑠, 𝑎).

Definition 2 (NFA with epsilon symbols).
An NFA with epsilon symbols is a 5-tuple 𝒜 = (𝑄,Σ𝜖, post , 𝐼, 𝐹 ) where

• 𝑄, 𝐼, 𝐹 are the same as for normal NFA, and

• symbol-post function post : 𝑄× Σ𝜖 → 2𝑄 allows epsilon symbols.

We will often denote NFA with epsilons as just NFA when it is clear whether we allow
epsilon transitions or not in regard to the context.

We define a run (path) of 𝒜 over a word 𝑤 ∈ Σ* as a sequence of states and symbols
𝑞0𝑎1𝑞1𝑎2 . . . 𝑎𝑛𝑞𝑛 where ∀1 ≤ 𝑖 ≤ 𝑛 : 𝑞𝑖 ∈ post(𝑞𝑖−1, 𝑎𝑖) ∧ 𝑎𝑖 ∈ Σ𝜖 ∧ 𝑤 = 𝑎1𝑎2 . . . 𝑎𝑛. We
further distinguish runs as accepting runs and non-accepting runs (not accepting runs). A
run is accepting if and only if 𝑞0 ∈ 𝐼 and 𝑞𝑛 ∈ 𝐹 . A (potentially infinite) set of words for
which there exists an accepting run of 𝒜 defines a regular language ℒ(𝒜) ⊆ Σ𝜖 of NFA 𝒜.
ℒ(𝒜)<𝑖 (ℒ(𝒜)≤𝑖) means a regular language ℒ(𝒜) containing only words of at most length
𝑖− 1 (𝑖).

States 𝑄 can be divided into useful states and useless states. A state 𝑞 is useful if there
exists an accepting run over states 𝑞0, 𝑞1, . . . , 𝑞𝑛 where 𝑞 ∈ {𝑞0, 𝑞1, . . . , 𝑞𝑛}. Otherwise, 𝑞 is
useless.

We also distinguish between reachable and unreachable states. A state 𝑞 is reachable if
there exists a path 𝑞0𝑎1, . . . , 𝑎𝑛𝑞 in 𝒜 such that 𝑞0 ∈ 𝐼.

Deterministic finite automaton. We call an NFA𝒜 = (𝑄,Σ, post , 𝐼, 𝐹 ) a deterministic
finite automaton (DFA) iff ∀𝑞 ∈ 𝑄, 𝑎 ∈ Σ : |post(𝑞, 𝑎)| ≤ 1, and |𝐼| = 1.

A conversion from NFA to DFA, called determinization, is possible (NFAs and DFAs
have the same expressive power), but it is a computationally expensive operation.

Algorithms. Often times a computation of a minimal, or at least minimized automaton
can improve performance of operations performed on the automaton, but the operation itself
is expensive and choosing the ideal minimization method (Brzozowski’s [20], Hopcroft’s [53],
. . .) for typical structures of finite automata appearing in one’s problems might be hard.

However, NFAs can succinctly represent large state space. This prevents exponential
state-space explosion which is characteristic for working with DFAs, e.g., inclusion testing.
The disadvantage of non-determinism is that NFAs require more complex algorithms, such
as simulation-based reduction [75, 51, 45].
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Definition 3 (Powerset (subset) construction).
The algorithm of powerset (subset) construction creates a deterministic finite automaton
from its equivalent non-deterministic finite automaton. Powerset construction produces a
DFA 𝐴′, where 𝑄′ = 2𝑄, 𝐹 ′ = {𝑆 ∈ 𝑄′|𝑆 ∩ 𝐹 ̸= ∅}, 𝐼 ′ = 𝐼 and for 𝑆 ∈ 𝑄′:

post ′(𝑆, 𝑎) =
⋃︁
𝑠∈𝑆

post(𝑠, 𝑎).

Definition 4 (Product construction).
Product construction is an algorithm where, given two NFAs 𝐴1 = (𝑄1,Σ, post1, 𝐼1, 𝐹1) and
𝐴2 = (𝑄2,Σ, post2, 𝐼2, 𝐹2) over an alphabet Σ, the algorithm yields a product NFA 𝐴 as a
5-tuple deterministic finite automaton 𝐴 = (𝑄,Σ, post , 𝐼, 𝐹 ) where:

• 𝑄 = 𝑄1 ×𝑄2,

• post : 𝑄× Σ→ 𝑃 (𝑄),

• 𝐼 = 𝐼1 × 𝐼2, and

• 𝐹 = 𝐹1 × 𝐹2.

post is constructed as ([𝑞1, 𝑞2], 𝑎) = post1(𝑞1, 𝑎)×post2(𝑞2, 𝑎) where [𝑞1, 𝑞2] denotes a pair
of states, often called a macrostate or a product state. For pairs of states 𝑞1 ∈ 𝑄1 and 𝑞2 ∈ 𝑄2

and a common transition symbol 𝑎 of transitions 𝑞′1 ∈ post1(𝑞1, 𝑎) and 𝑞′2 ∈ post2(𝑞2, 𝑎), a
single product transition is denoted as [𝑞1, 𝑞2]

𝑎−→ [𝑞′1, 𝑞
′
2], where [𝑞′1, 𝑞

′
2] ∈ post([𝑞1, 𝑞2], 𝑎) for

the corresponding states [𝑞1, 𝑞2] and [𝑞′1, 𝑞
′
2] in 𝐴.

When applied to computing an intersection of NFAs, the language of 𝐴 is equal to
ℒ(𝐴) = ℒ(𝐴1) ∩ ℒ(𝐴2).

In this work, we will utilize the classic product construction algorithm, as shown in
Algorithm 1.

Input : NFA 𝐴1 = (𝑄1,Σ, post1, 𝐼1, 𝐹1), NFA 𝐴2 = (𝑄2,Σ, post2, 𝐼2, 𝐹2)
Output: NFA 𝐴 = (𝐴1 ∩𝐴2) = (𝑄,Σ, post , 𝐼, 𝐹 ) with

ℒ(𝐴1 ∩𝐴2) = ℒ(𝐴1) ∩ ℒ(𝐴2)

1 𝑄, post , 𝐹 ← ∅
2 𝐼 ← 𝐼1 × 𝐹2

3 𝑊 ← 𝐼
4 while 𝑊 ̸= ∅ do
5 pick [𝑞1, 𝑞2] from 𝑊
6 add [𝑞1, 𝑞2] to 𝑄
7 if 𝑞1 ∈ 𝐹1 and 𝑞2 ∈ 𝐹2 then
8 add [𝑞1, 𝑞2] to 𝐹

9 forall 𝑎 ∈ Σ do
10 forall 𝑞′1 ∈ post1(𝑞1, 𝑎), 𝑞

′
2 ∈ post2(𝑞2, 𝑎) do

11 if [𝑞′1, 𝑞
′
2] /∈ 𝑄 then

12 add [𝑞′1, 𝑞
′
2] to 𝑊

13 add [𝑞′1, 𝑞
′
2] to post([𝑞1, 𝑞2], 𝑎)

Algorithm 1: Product construction algorithm in its classic implementation.
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Applications. Many problems can be efficiently encoded into NFAs and solved by per-
forming operations on NFAs, such as membership or emptiness testing, reachability testing
and more.

Further improvements to automata theory may be widely applicable to large-scale
automata-based technologies, e.g., pattern matching, analysis and verification of complex
systems, analysis of genetic information, run-time monitoring, deciding logics (linear integer
arithmetic or monadic second-order logic, . . . ).

2.2 Finite Transducers
In this section, we define finite state transducers (further also called finite transducers or
just transducers) and the corresponding operations.

Finite transducers are finite state machines with multiple memory tapes. Each run of a
finite transducer represents an 𝑛-tuple of words. While a finite automaton models a regular
language, finite transducers model rational relations (or regular relations), subsets of the
Cartesian product of regular languages. That is, a finite transducer models a set of 𝑛-tuples
of words.

Henceforth, each 2-tape finite transducer can be thought of as a translator translating
(transducing) between the languages: a 2-tape finite transducer precisely models a trans-
lator from an input language to an output language, modelling a so-called binary rational
relation), a subset of Σ*

1×Σ*
2. In this work, we usually work with binary rational relations,

but in general an n-ary rational relation can be modelled by an 𝑛-tape transducer.
Definition 5 (Nondeterministic finite transducer).
An 𝑛-tape nondeterministic finite state transducer (NFST ; nondeterministic finite trans-
ducer, NFT ) over an alphabet Γ is a 5-tuple 𝒯 = (𝑄,Γ, post , 𝐼, 𝐹 ) where

• 𝑄 is a finite set of states,

• Γ = (Σ𝜖)
𝑛 is an 𝑛-tape alphabet of 𝒯 ,

• post : 𝑄× Γ→ 2𝑄 is a symbol-post function where 𝑞
𝛾−→ 𝑞′ (or (𝑞, 𝛾, 𝑞′)) for

𝑞′ ∈ post(𝑞, 𝛾) is a transition for 𝛾 = [ 𝑎1 𝑎2 ... 𝑎𝑛 ] = (𝑎1, 𝑎2, . . . , 𝑎𝑛) ∈ (Σ𝜖)
𝑛,

• 𝐼 ⊆ 𝑄 is a finite set of initial states, and

• 𝐹 ⊆ 𝑄 is a finite set of final states.
NFT 𝒯 is syntactically an NFA over Γ. 𝒯 accepts word 𝑤̄ = 𝛾1 ∘ 𝛾2 ∘ . . . ∘ 𝛾𝑚 =

(𝑎11, 𝑎
2
1, . . . , 𝑎

𝑛
1 )∘ (𝑎12, 𝑎22, . . . , 𝑎𝑛2 )∘ . . .∘ (𝑎1𝑚, 𝑎2𝑚, . . . , 𝑎𝑛𝑚) if there exists an accepting run of 𝒯

for 𝑤̄ where ∘ is a concatenation operator performing component-wise concatenation over
tuples: (𝑎11, 𝑎21, . . . , 𝑎𝑛1 )∘(𝑎12, 𝑎22, . . . , 𝑎𝑛2 ) = (𝑎11𝑎

1
2, 𝑎

2
1𝑎

2
2, . . . , 𝑎

𝑛
1𝑎

𝑛
2 ). When the context is clear,

we sometimes omit ∘, similarly as for NFA.
An alternative definition of NFTs could allow for each tape to have a different alphabet,

resulting in Γ = Σ1 × Σ2 × . . . × Σ𝑛. In this thesis, we consider only NFTs where all
tapes have the same alphabet, but generalization to varying alphabets is possible and all
algorithms and approaches presented in this work can be easily modified to support this
alternative definition.

We use Id(Σ) to symbolically denote a set of identity transition symbols between two
states, that is, for states 𝑞, 𝑞′ ∈ 𝑄, transitions

(𝑞, Id(Σ), 𝑞′) = {(𝑞, 𝛾, 𝑞′) | 𝛾 = (𝑎1, . . . , 𝑎𝑛) ∈ Σ𝑛 ∧ 𝑎1 = . . . = 𝑎𝑛}.
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We represent an NFT which is constructed as an identity NFT for a given NFA, denoted
as 𝒯Id(𝒜). 𝒯Id(𝒜) is constructed from 𝒜 by extending the existing 𝒜 transitions by repeating
the same transition symbol as is the existing transition symbol in 𝒜 for each tape.

A (potentially infinite) set of words for which there exists an accepting run of 𝒯 defines
a rational relation 𝑅(𝒯 ) ⊆ (Σ*

𝜖 )
𝑛 of NFT 𝒯 .

Unless it is clear from the context, we will explicitly differentiate between an NFA
transition (over a single memory tape), and an NFT transition (over multiple memory
tapes—all tapes in the NFT).

Deterministic finite transducer. An 𝑛-tape deterministic finite state transducer
(DFST ; deterministic finite transducer, DFT ) over an alphabet Γ is an
NFT 𝒯 = (𝑄,Γ, post , 𝐼, 𝐹 ) where |𝐼| = 1 and ∀𝛾 ∈ Γ, 𝑞 ∈ 𝑄 : |post(𝑞, 𝛾)| = 1.

2-tape NFTs are called nondeterministic finite input output transducers where the first
tape is the input tape and the second tape is the output tape. Unless we explicitly state the
number of tapes, we will further consider 2-tape NFTs.

We will sometimes abuse the notation for transitions, especially for transition symbols,
to simplify the depiction of design ideas and algorithms. We might use words, or even entire
automata as transition symbols, which symbolically represents that the transition (or a
single transducer tape) is replaced with a corresponding sequence of transitions containing
the transitions in the word or the automaton.
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Chapter 3

Automata Libraries

Uses of automata theory in computer science are ubiquitous, with applications in a large
group of domains such as reasoning about reactive systems; fast and robust regex matching;
reasoning about programs using dynamic memory; and modelling, analysis, or detection of
vulnerabilities in software. Furthermore, improvements in the area of SMT string solving
may lead to a wide area of possible applications, such as an analysis of security policies.

The success of finite automata is underlined by the vast variety in automata libraries,
each providing support for a different set of automata models, and various supported op-
erations on these models using different algorithms.

Numerous libraries aim to serve as a general-purpose automata libraries (e.g., [81, 29, 8])
while others closely specialize on just specific use cases for which the libraries highly optimize
(e.g., in [44, 54]).

3.1 Mata
Mata is a new finite automata library introduced in the work [29]. Mata is built with
simplicity, extensibility, and performance in mind. Mata currently provides support for
DFAs and NFAs, with the set of classic operations on finite automata (testing for member-
ship, emptiness, inclusion, or equivalence; complementation, determinization, intersection,
union, minimization, and reduction), parsing finite automata to/from a textual format and
parsing NFAs from regular expressions. All the operations are provided in both C++ and
Python interfaces, with rich visualization options in the Python interface. Mata works
with explicit alphabets, but can handle large alphabets compactly, applying techniques
such as mintermization during preprocessing, if necessary.

Mata also implements specialized and well-optimized algorithms for simulation-based
size reduction [75, 6], and antichain-based inclusion and equivalence testing [34].

Mata not only provides the user with a clear and understandable interface to common
automata operations, but also allows for precise low-level access to the underlying data
structures to better optimize for user- and use case-specific operations.

The basis of the performance of Mata is its three-level data structure called Delta,
representing a transition relation of an automaton (see Section 5.1 for an explanation of
Delta, its advantages and disadvantages, and its application to finite transducers).

The performance of Mata have been evaluated in [40] (as eNfa), and in [29]. Fur-
thermore, Mata is used as an underlying finite automata library for a novel string solver
Z3-Noodler in [17, 27, 28], where Mata handles creation and storing of finite automata
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and performing automata operations on them. In these papers, Mata performs well, and
outperforms even the state-of-the-art automata libraries described in Section 3.2.

From these results, we can see that Mata offers an interesting set of features, namely
performance and extensibility, and is applicable in numerous areas for both the research
and industry use-cases.

To further extend the applicability of Mata in the fields of string solving, (abstract)
regular model checking, etc., adding support for other finite automata models is planned. In
this work, we add finite transducers. Other models include automata using multi-terminal
binary decision diagrams (BDDAs) as in Mona for the handling of large alphabets, finite
automata with registers for counting operations, or finite automata with arbitrary registers.

3.2 Other Automata Libraries
There are many automata libraries. Each library uses different data structures for storing
the automata instances, and each library represents the transition relation and transition
symbols differently. This significantly influences what kind of operations can be used and
how they perform. Each library is written in a different programming language, usually
providing the interface for that programming language alone. This gives rise to unique
advantages and disadvantages for each library.

For example, automata libraries FAdo [8] and Automata.py [39] are automata libraries
with a support for NFAs and DFAs. Automata.py stores transitions in a hash map
mapping source states to a hash map of symbols with a set of target states. The advantage
is that using maps is comfortable for the user, but the disadvantage is that hashing in
general is costly.

Libraries such as Spot [36], Mosel [57], and Owl [59] have BDDs on their transitions
to represent a set of symbols on a transition succinctly.

Mona [44] is another automata library for DFAs, written in C. Mona is a well-optimized
automata library used, beside others, for deciding WS𝑘S logics. It utilizes a symbolic
representation of the transition relation with MTBDDs to handle large alphabets with bit
vectors. Implicit determinization of automata used in Mona after every operation provides
interesting advantages for certain algorithms, but might be unnecessarily expensive for other
algorithms (as can be seen in Chapter 7).

BDD automata. An automaton with MTBDDs integrated into the transition relation
(we call them BDDAs in this work) is an automata machine where each MTBDD represents
one set of all transitions from a given source state, as applied in Mona. However, Mona
implements BDDAs restricted to only deterministic automata. The terminals of MTBDDs
represent the successor states of the transitions (BDDs alone use only true and false values
as terminals). Therefore, MTBDDs even more compactly represent the transition relation.

Another compact symbolic representation of transition relation is used in tree automata
library Vata [60]. Vata also utilizes MTBDDs for transition relations from source states.
Vata implements fast antichain-based inclusion check [34] and simulation-based size reduc-
tion [75, 6] algorithms.

Symbolic representations in comparison with the explicit ones allow interesting opti-
mizations [33], but working with symbolic automata is more complex and applying general
automata algorithms for symbolic automata may prove difficult [33, 49].
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A different automata models are alternating finite automata (AFA). They provide im-
plicit operations on many automata operations, but similarly to symbolic representations,
adaption of complex finite automata algorithms may prove non-trivial. AFA libraries do
not seem to outperform the finite automata libraries, as shown in [40].

An implementation of weighted automata appears in Awali [63]. Awali uses vectors
to store the transition relations: a vector of transitions and each state maintains a vector
of indices of transitions outgoing and a vector of transitions ingoing to the state.

AutomataLib [54], written in Java, and Automata.net [81], written in C#, are
popular finite automata libraries.

AutomataLib stores its transition relation as a 2D matrix of states and symbols to
target states. It is well optimized for working with DFAs.

On the other hand, Automata.net uses hash maps to store the transition relation
where for each state, a dynamic array of transitions is constructed. Automata.net
parametrizes automata with effective Boolean algebras. It uses its predicates to anno-
tate each transition of a symbolic NFA. Automata.net is a mature and well-optimized
automata library providing a set of novel algorithms (such as optimized minimization [32]).

Brics [68], written in Java, is a finite automata library encoding the transition relation
as a set of hash maps for each source state. The transition symbols are represented using
symbol ranges.

This all makes it hard for the user to choose one automata library which can be used
for all their work. The choice often depends on multiple factors, where not all of them can
be fully satisfied. Mata tries to provide an all-around good set of features to allow for
easy experimenting with new ideas, implementing prototypes of new algorithms, and when
the prototype is feasible, optimizing the implementation to sufficiently replace the state-of-
the-art purpose-specific automata libraries. For our use cases (mainly string solving as of
now), this approach seems to work well. Moreover, Z3-Noodler already uses Mata for
the finite automata. Therefore, Mata is a viable option for our intent to add support for
generally usable finite transducers performant enough to be applicable in string solving in
Z3-Noodler.
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Chapter 4

String Solving

Despite the continuous efforts to mitigate vulnerabilities often found in web applications
of today, the lists of common vulnerabilities such as CVE, CWE and OWASP TOP still
list vulnerabilities related to cross-site scripting (XSS), and code injection (including SQL-
injection) or execution attacks as the top critical software vulnerabilities [72, 73, 74, 30, 31].
And even though vulnerabilities in web applications cost the firms and users considerably
more than many other types of software bugs, an efficient technique for fighting these
attacks is still missing. Precise detection of security vulnerabilities of web applications is
crucial for many players in the industry. The ability to detect security vulnerabilities before
the software goes to production and during the production itself minimizes security risks
and production costs of many a web technology today.

During the last two to three decades, a great development efforts have been put into
improving SMT solvers for specific theories (specific constraint languages). Namely, mod-
elling and deciding constraints over a language of strings, also known as string constraint
solving, is one of the dominant fields of active research.

In order to prevent the aforementioned attacks, techniques utilizing string solving are
often used to discover security vulnerabilities in web applications and web service APIs,
as presented by works: [48, 11, 66, 42, 85, 80], and many more. Besides XSS and code
injection, string solving is also successfully applied to the analysis of smart contracts [9],
and analysis of user accept policies (e.g., as used in Amazon Web Services [61, 10] where
there is run a billion SMT queries a day [76] to analyse cloud access policies—placing first
in OWASP’21 [74] as the most critical software bug—and correct security configurations).

This greatly motivates the research of tools for string solving and the corresponding
techniques, usually as an extension of the existing SMT solvers implementing a solver for
the theory of strings. Using an existing SMT solver based on the DPLL(T) approach [71] has
an advantage of being able to seamlessly integrate with solvers for other theories, notably
the theory of integers (used for lengths of strings), or the theory of arrays (reasoning about
array data structures with strings). We have seen a rapid growth of various procedures for
SMT string constraint solving, implemented in numerous state-of-the-art SMT solvers.

Some of the most prominent SMT solvers with string solving capabilities include cvc5 [12],
Z3 [67], or their derivations such as Trau [2], Z3str3RE [15, 14], Z3str4 [16]. To name
a few more independent string solvers, a well known string solvers include OSTRICH [26],
Norn [4], and others.

To further motivate the development of string solving, SMT string solvers are annually
compared in a competition SMT-COMP [43] on various benchmarks both from the industry
and research, solving instances of practical problems.
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4.1 Noodler
There are several SMT solvers which make use of finite automata as the model for encod-
ing the solved SMT formulae or parts of the formula, namely Z3str3RE [15], Trau [2],
Norn [4], and others, e.g., [26]. We can see that the idea of using finite automata is not en-
tirely new, but it is still an area which has not been thoroughly explored. Novel approaches
showing great potential to solving SMT string constraints using automata models are regu-
larly devised. Other tools, such as [37], use automata for analysis of web applications, but
are limited to input filter regexes.

A new SMT string solver called Z3-Noodler [17, 27, 28] has been recently introduced,
already outperforming the well-established state-of-the-art string solvers. Z3-Noodler is
derived from Z3 [67] where it replaces its theory of string.

Z3-Noodler brings a novel approach to solving string constraints using a method called
stabilization, a new procedure for solving word (dis)equations in combination with regular
constraints. The stabilization-based procedure seamlessly integrates with the well-used
existing algorithms such as Align&Split (first implemented in a string solver Norn [4, 3],
and later adopted by a multitude of other state-of-the-art string solvers—OSTRICH [62,
23, 26, 24, 25], Z3str3RE [15, 14], Sloth [46], . . . ), used to convert regular constraints into
length constraints, and Nielsen transformation [70], used for solving quadratic equations.

Thanks to this combination of approaches, Z3-Noodler is able to uniquely utilize infor-
mation from both the regular constraints (encoded as finite automata) and word equations
to efficiently prune the searched state space, mitigating the effects of possible combinatorial
state space explosion.

The stabilization-based procedure makes Z3-Noodler superior to other state-of-the-
art string solvers on many benchmarks, as seen in the latest results from Z3-Noodler [28],
and in previous articles [17, 27].

Z3-Noodler, as opposed to many other state-of-the-art SMT string solvers, is based
on automata techniques, utilizing finite automata to intuitively encode regular constraints.
Z3-Noodler uses Mata as the underlying automata library.

This gives Z3-Noodler unique opportunities for efficient string solving of SMT for-
mulae, which other SMT solvers cannot utilize. The finite automata represent regular
languages of string variables in the formula and the corresponding constraints. Using finite
automata allows us to solve the satisfiability of the SMT formula by performing standard
automata operations. The performance results of Z3-Noodler clearly show that, when
implemented correctly, automata-based algorithms can be more performant than the clas-
sic approaches to string solving, and importantly, are often orthogonal to the techniques
used in other SMT solvers which gives a great improvement when adding Z3-Noodler
into a portfolio of string solvers. This is the reason it is so important that all implemented
automata models in Mata are as performant as possible.

4.2 Software Vulnerabilities in Web Applications
Many programs utilize strings as ubiquitous data structures, handling both the program
data and user-supplied input data. Popular programming languages for web technologies
such as JavaScript, PHP, or even Python use strings as the dominant data structure. Strings
are used as keys to maps, contain names for procedures to be dynamically executed, or
encode other types of information which is to be decoded later on, e.g., for serialization
during communication between programs, even over the internet such as communication
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between data servers and user web applications. Analysis of string manipulating programs
is further hindered by the lack of standardization, loose syntax or the dynamic nature of
languages used in web applications: mostly scripting languages such as PHP or JavaScript.

At the same time, as shown in [79], classic software verification methods such as symbolic
execution or model checking approaches are insufficient when working with strings. Using
strings is highly error-prone and can cause security vulnerabilities on multiple levels in the
stack: database security, server-site vulnerabilities, application level vulnerabilities such as
the aforementioned vulnerabilities of unsafe handling of strings supplied by the users, with
potentially malicious intent of stealing information or attacking the infrastructure.

XSS and code injection can be performed when working with strings submitted by an
untrusted and unverified user without proper sanitization.

Untrusted inputs from a user should be sanitized (e.g., by escaping the input string) in
order to prevent arbitrary malicious code execution. The user with a malicious intent can
inject a dangerous code which is afterwards executed on a server of the web application, or
locally on user’s computers.

To illustrate the vulnerabilities, have a look at the following typical software vulnera-
bilities of software programs manipulating strings, for example [41, 58] and many more.

Cross-site scripting attack. Have a look at one textbook example of a cross-site script-
ing attack where text inputs are sanitized incorrectly in Listing 4.1. This code allows for
insertion of malicious script executing an arbitrary code.

1 <?php
2 $input_from_user = $_POST["update_account_form"];
3 $body = replace(
4 "/\<script.*?\>.*?\<\/script.*?\>/i",
5 "",
6 $input_from_user);
7 update_user_account($body);
8 ?>

Listing 4.1: Example of a cross-site scripting attack. An incorrectly sanitized user input
can be stored directly in the database and execute an arbitrary malicious code.

The example accepts input from a user who fills in a form to update user account
information on the website. The input is taken through a sanitization function replace
which replaces a substring matched by the regular expression in the first argument with
the string in the second argument in the string supplied by its last argument. The idea is
that all occurrences of malicious scripts inside <script> and </script> tags are replaced
with an empty string.

However, this sanitization function may be incorrect. Depending on the replacement
semantics, the replacement of .* (Kleene star) can be performed either greedily (at which
point the function would sanitize correctly) or reluctantly (the function would sanitize
incorrectly). Let us see an example of cracker’s input:

«script></script>script>perform_malicious_action(”danger”)</script>

which will be replaced with the reluctant semantics to
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<script>perform_malicious_action(”danger”)</script>

matching only the inner pair of <script>, </script> tags.
But if we apply greedy semantics, the user input will be correctly sanitized:

””

where XSS is prevented from occuring.
A different example 4.2 adapted from [58] shows how incorrectly handled implicit

browser transductions in JavaScript can allow XSS attack by executing arbitrary mali-
cious code on the user’s local browser. Implicit browser transductions code and decode
HTML codes in the input string (e.g., replacing string containing a single quote with its
HTML code ”&#39;”).

Having an input from a user (stored in a variable goal), we want to show a but-
ton with the goal specified by the user which executes the corresponding action. Ideally,
performAction(goal) function would refuse to execute the action if the action was un-
specified (therefore possibly malicious). If we pass some valid string as a user, for example
Study & Research, the implicit browser transductions correctly handle the input, encode
& and the button is displayed. However, if an attacker passes a string that contains an
arbitrary malicious code, constructed in such a way that escaping the input will produce an
executable piece of code instead of a button, the browser can perform an action specified
by the attacker (here simple alert(danger)) on user’s browser.

var text = htmlEscape(goal);
var action = escapeString(text);
element.innerHTML = '<button onclick=
"performAction(\'' + action + '\')">' + text + '</button>';

When inserted into the HTML, the button will look like the following examples. Using the
correct (expected) input:

<button onclick="performAction('Study &amp; Research')">
Study &amp; Research</button>

However, using an unexpected input with malicious intent produces the following:

<button onclick="performAction('&#39;);alert(danger);//')">
&#39;);alert(1);//')</button>

Listing 4.2: Example of a classic cross-site scripting attack using incorrectly handled implicit
browser transductions where a malicious attacker’s input can be run directly in the user’s
local browser.

We can see that even if the code tries to sanitize the input string collected from the user,
the sanitization is not performed correctly, resulting in a malicious code alert(1) being
executed. For the sanitization to work as expected, the sanitization functions htmlEscape
(converting HTML special characters to their entity names) and escapeString (escaping
control characters) need to be performed in the opposite order.

Sadly, such examples do not occur only in textbooks. Real websites use sanitization
functions sparingly or do not sanitize user inputs at all. This gives a large attack vector
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to anyone trying to target the servers of these websites with stored user data, for example.
Henceforth, there is a high demand for a toolset to verify that such sanitizations are correct
and safe, and implicit browser transductions are handled properly.

Consider recent works [69, 64] which perform static analysis of JavaScript code using
abstract automata-based domains for symbolic execution and static analysis, but cannot
reason about relations between string variables in the program: modifications of strings such
as sanitization functions cannot be properly modelled and reasoned about, and reasoning
about additional constraints such as integers, arrays and more in conjunction with strings
becomes quickly problematic.

4.3 Replace Operations in String Solving
One of the most needed applications for finite transducers, beside others, is modelling both
the input sanitization functions and the implicit browser transductions. Both applications
create binary rational relations between two languages, giving a relation between strings
from one language and strings in the other language. Such operations allow for replacing
a substring specified by a regular pattern or a word with another string. String replace
operations and the rewriting rules [55, 56] can be easily encoded as finite transducers, and
resolved by applying standard finite transducer operations on the computed transducers.
However, as we have seen in the examples above, choosing the correct replacement semantics
is important as well. Finite transducers directly implement both the reluctant replacement
and greedy replacement. Depending on the use-case, both semantics are useful.

The sanitized inputs are verified by testing for emptiness of intersection with the typical
database of XSS attack patterns, represented as regular languages. SMT solvers with
support for finite transducers can reason about sanitization functions and implicit browser
transductions to verify the requested properties.

By adding support for finite transducers in Mata, we primarily focus on using finite
transducers in Z3-Noodler to allow Z3-Noodler to solve replace operations in web
applications.

The only unsupported operations in Z3-Noodler are at the time of writing string op-
erations str.replace_all and str.replace_re_all from the theory of strings in SMT-
LIB [21]. Furthermore, the string operations str.replace and str.replace_re are han-
dled by a modified Z3-Noodler version of theory rewriter (replacing Z3 own theory
rewriter) applying rewriting rules to convert both operations to a combination of word
equations, disequations, and length and regular constraints. However, the generated corre-
sponding (dis)equations and constraints negatively impact the performance of the decision
procedure.

For this reason, adding support for finite transducers in Mata is paramount to the
capabilities of Z3-Noodler and its overall expressiveness and performance.
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Chapter 5

Finite Transducers in Mata

This chapter describes our proposed solution for representation of NFTs in Mata. We
describe how Mata models the transition relation, how we model NFTs using the transition
relation, what data structures we use, and how we implement the necessary algorithms for
NFTs working with these data structures.

We propose utilizing the existing data structures in Mata (used for NFAs) for imple-
menting finite transducers. The main advantage is that NFAs, NFTs, and BDDAs can all
use the same single data structure, sharing a lot of the existing algorithms on the data struc-
tures, as further explained in Sections 5.3 and 5.2, which meets the simplicity requirement
of Mata.

5.1 Transition Relation in Mata
Mata provides a class Nfa which encompasses both NFAs and DFAs and operations on
them. The class Nfa defines which states in the represented automaton are initial (a set of
initial states) and which are final (a set of final states). Furthermore, Nfa allows for storing
of arbitrary context in the automaton itself.

The most important data structure for the representation of the finite state machines and
the efficiency of the algorithms run on the representation is the representation of transition
relation, called Delta in Mata. Delta defines the set of states of the finite automaton,
and gives the transition relation of the finite automaton. Delta is designed in such a way
that the often used operations such as iteration over transitions, or adding and removing
transitions are performant, while the less used operations such as reversal of transition
relation can be less performant.

States are represented as unsigned integers, numbered from 0. This allows adding new
states to the automaton to be as easy as getting the number of states in Delta (constant
time operation) and adding a number equal to the number of new states we want to add.
Such states are immediately allocated in Delta and can be used in initial or final states
sets.

Transition symbols are internally stored as unsigned integers as well, numbered from 0,
where the last several unsigned integer values are reserved for epsilon symbols and special
symbols (e.g., don’t care symbols in the proposed NFTs implementation). Mata provides
several alphabet types which map the actual transition symbols to their internal values.

The use of unsigned integers for states and symbols gives implicit ordering over both
states and symbols, and querying them by accessing the index corresponding to the internal
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state/symbol value in an ordered vector. Delta is a three-level data structure where each
level represents one element from the three-tuple (𝑞, 𝑠, 𝑞′) representing a single transition
as:

1. source states,

2. transition symbols,

3. target states.

Each level is internally stored in memory as a sorted vector of unsigned integers,
stored in a low-level data structure provided by Mata called OrdVector, a wrapper over
std::vector maintaining a set of elements inserted into std::vector ordered.

OrdVector therefore has constant time access to stored elements and operations on the
largest element (implemented internally as push_back(), pop_back()), fast linear iteration
over the elements, and linear union, intersection, and difference. Since vectors are ordered,
lookup for states and symbols is logarithmic using binary search. Insertion and removal of
elements are logarithmic, but they must shift elements in the memory in the underlying
std::vector which slows the operations down.

Due to this, Mata tries to iterate over OrdVector as often as possible since internally,
std::vector stores elements in a continuous array on the heap with good memory locality,
and add elements one after the other in ascending order given by the value of the inserted
elements at the end of the ordered vector. Mata implements several algorithms for ease of
use of the iteration, such as synchronized traversal over multiple ordered vectors. General
insertion and removal of transitions are logarithmic, but Mata algorithms are written in
such a way that the general insertion and removal are seldom used.

This pairs well with underlying data structures for sets of initial and final states, im-
plemented as sparse sets [19] allowing for constant element lookup, insertion and removal,
and fast linear iteration through elements.

The Figure 5.1 visualizes the three-level Delta data structure, as presented in [29]. We
can see that when we access by source state 𝑞 the index in the first vector of source states,
we get a vector post of type StatePost (StatePost [q]), representing post(𝑞), which is a
vector of symbol posts for each transition symbol 𝑎 leading from source state 𝑞, of type
SymbolPost. Each symbol post for symbol 𝑎 represents post(𝑞, 𝑎), storing the transition
symbol 𝑎 and a set of target states represented as an OrdVector.

Notice that since Mata supports epsilon symbols as maximal unsigned integer values,
the symbol posts for epsilons are always at the end of state posts. Epsilon state posts can
be therefore accessed in constant time instead of having to search the whole state post
to look them up. Mata operations take advantage of this in numerous operations using
epsilon symbols, such as in string solving [17].

Example 1. Have a look at the example in Figure 5.2. We perform an intersection of
two NFAs (their transition relations at the top) using product construction, as described
in Chapter 2, constructing a product transition relation (at the bottom). Mata takes
advantage of its Delta with ordered states and symbols.

During the construction, new product transitions are often appended at the end of the
existing vectors (algorithms try to minimize the number of binary searches in the lower
levels in Delta). In this example, computation of the new transitions for product state
(1, 3) creates 4 new transitions, introducing new product states, e.g., (0, 1) (product state
3), and (0, 3) (product state 4).
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Figure 5.1: The visualization of the three-level data structure representing the transition
relation of a finite automaton in Mata, called Delta.

We can see that we first insert into a vector of target states for post(2, 𝑐) in the product
the product state 3, and only then create a new product state 4 and append it after the
product state 3.

5.2 Transducers as Level Automata
In this section, we explain how we encode NFTs to reuse data structures for NFAs.

Example 2. In Figure 5.3, we show a 2-tape input/output NFT 𝒯 accepting a rational
relation with an input language of sequences of 𝑎𝑏𝑐, and the corresponding output language
where each input transition symbol in a sequence is replaced accoringly as: input transition
symbol 𝑎 is replaced with 𝑏𝑐, 𝑏 is erased, and 𝑐 is replaced with 𝑎. That is, for language
Σ = {𝑎, 𝑏, 𝑐}, 𝒯 accepting language (𝑎𝑏𝑐)* on the input tape, the following transductions
are performed on each sequence 𝑎𝑏𝑐: 𝑎→ 𝑏𝑐, 𝑏→ 𝜖, and 𝑐→ 𝑎.

For example, the input word 𝑎𝑏𝑐𝑎𝑏𝑐 is accepted on the input tape and produces a word
𝑏𝑐𝑎𝑏𝑐𝑎 on the output tape.

A level automaton is an NFA extended with a function lev : 𝑄→ N annotating states
with levels.

An 𝑛-tape NFT 𝒯 accepts a relation ℒ(𝒯 ) = {𝑤̄ ∈ (Σ*)𝑛 | 𝑤̄ = 𝛾1 ∘ 𝛾2 ∘ . . . ∘ 𝛾𝑚 =
(𝑎11, 𝑎

2
1, . . . , 𝑎

𝑛
1 )∘ (𝑎12, 𝑎22, . . . , 𝑎𝑛2 )∘ . . .∘ (𝑎1𝑚, 𝑎2𝑚, . . . , 𝑎𝑛𝑚)}. We represent the same automaton

as a level automaton𝒜 over the alphabet Σ by unfolding 𝒯 transitions (𝑞, (𝑎1, 𝑎2, . . . , 𝑎𝑛), 𝑞′)
into a sequence of NFA transitions (𝑞, 𝑎1, 𝑞1), (𝑞1, 𝑎2, 𝑞2) . . . , (𝑞𝑛−1, 𝑎𝑛, 𝑞

′). lev(𝑞) = lev(𝑞′) =
0, ∀𝑖 ∈ {1, . . . 𝑛 − 1} : lev(𝑞𝑖) = 𝑖. The level automaton corresponding to 𝒯 accepts lan-
guage ℒ(𝒜) = {𝜆 ∈ Σ* | 𝜆 = 𝑎11 · 𝑎21 · . . . · 𝑎𝑛1 · 𝑎12 · 𝑎22 · . . . · 𝑎𝑛2 · . . . 𝑎1𝑚 · 𝑎2𝑚 · . . . · 𝑎𝑛𝑚}. That
is, NFT symbol 𝛾 = (𝑎1, 𝑎2, . . . , 𝑎𝑛) ∈ Γ is perceived as a word (a sequence of symbols)
𝑎1 ·𝑎2 · . . . ·𝑎𝑛 ∈ Σ*. The symbol 𝛾 is not read by the level automaton as a single symbol, but
it is read sequentially, one tape per transition. A similar approach to this simplest repre-
sentation with unfolding has been used in Lash [84], a tool for reasoning about arithmetic
with an integrated automata library.
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Figure 5.2: The visualization of intersection product construction on NFAs utilizing the
advantages of the three-level transition relation Delta.

Figure 5.3: Example of a 2-tape input/output NFT.

Example 3. The NFT from Example 2 is represented as a level automaton in the Fig-
ure 5.4.

The transitions from states with level 0 represent the input tape, and the transitions
from states with level 1 represent the output tape.

Intuitively, we can still see that the same rewriting rules apply. The input word 𝑎𝑏𝑐𝑎𝑏𝑐
is still accepted on the input tape and produces the same word 𝑏𝑐𝑎𝑏𝑐𝑎 on the output tape.
Notice that we need epsilon symbols to encode the rewriting rules applied here. Efficient
handling of epsilon transitions in level automata is a complicated problem. We further
discuss this in Section 5.4.

5.3 Class Hierarchy
We propose that Nfa is a base class from which NFTs, and future BDDAs and register
automata inherit, including all operations on Nfa where only a few specific operations
need to be modified. The Figure 5.5 shows the proposed class inheritance hierarchy. This
hierarchy also allows us to add model-specific operations to each automata model without
modifying operations for the other automata. BDDAs in our representation only extend
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Figure 5.4: 2-tape NFT from Example 2 represented as a level automaton with states
annotated by levels.

the functionality of NFTs, and can therefore inherit most of the algorithms directly from
NFTs and only modify some algorithms specific to BDDA use cases.

We want to reuse Delta for the representation of transition relation in finite transducers.
NFTs and BDDAs can directly utilize Nfa with all the underlying data structures. The

only modification of Nfa to support NFTs and BDDAs is adding a vector of state levels
(represented by std::vector<unsigned>) indexed by the automaton states. The vector
maps each automaton state to its level in the finite state machine. 𝑛-tape NFT has 𝑛 levels.
Therefore, in a representation of an 𝑛-tape NFT, the vector of state levels maps to values
from 0 to 𝑛− 1. One transition in NFT corresponds to 𝑛 transitions in Nfa.

Each transition in Nfa corresponds to one level of the NFT, i.e., one tape of the NFT.
NFT transition always starts at level 0. A transition from level 0 to level 1 represents the
operation on the first NFT tape, from level 1 to level 2 the operation on the second NFT
tape, and so on. Finally, the transition from state with level 𝑛− 1 back to state with level
0 corresponds to the last tape in the NFT, finishing the sequence of NFA transitions for a
single NFT transition.

For this reason, NFTs can have only states 𝑞 with lev(𝑞) = 0 as initial or final states.
This is crucial for many algorithms (more in 5.5) which rely on certain invariants in the
representation of NFTs, such as that NFTs always synchronize in states with state level 0
and each step in operations must consider the entire state levels sequence from 0 to 𝑛− 1
as a single abstract step (a single complete NFT transition).

For the 2-tape (input/output) NFTs, the levels used will be 0 and 1, where transitions
from states with levels 0 represent the input transitions and transitions from states with
levels 1 represent the output transitions.

Since levels directly represent their corresponding tapes, we use the terms level and tape
interchangeably when the meaning is clear.

5.4 Epsilon and Don’t Care Transitions
The approach used in Lash does not support epsilon and don’t care transitions. However,
finite transducers need support for epsilon transitions: epsilon symbols are often used to,
e.g., model a removal of a malicious substring or model sanitization function HTMLEscape
in web applications.

Notice that BDDAs are similar to the level automata, only slightly modified. BDDAs do
not have epsilon symbols, but need don’t care symbols (matching any transition symbol)
with jumps. An interesting and tricky problem is how to add support for epsilons and
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Figure 5.5: A class inheritance hierarchy for NFAs, NFTs, and future BDDAs and register
automata. All of these finite state machines utilize the same data structure, with mostly
the same algorithms, where only a few algorithms must be modified for each respective type
of finite state machines. Each type of finite state machines can further extend the set of
operations by their own specific operations. Since BDDAs only extend the functionality of
transducers, BDDAs can inherit directly from NFTs, modifying a few algorithms of NFTs
together with the base Nfa algorithms.

don’t care symbols to level automata elegantly to allow reusing the existing finite automata
algorithms without large modifications to the algorithms and without complicating the data
structures for NFAs used to represent level automata. We pay close attention to the careful
design of epsilon transitions and don’t care jumps which work well with NFAs and their
algorithms.

Mata already supports epsilon symbols 𝜖 as (several) last transition symbol(s) in the
range of possible transition symbols given by the data type for the symbol. Similarly, we
reserve a new symbol at the end of the range for the don’t care symbol ?.

An epsilon symbol on a transition from state with level 𝑘 to level 𝑘 + 1 mod 𝑛 in
Nfa representing an NFT means that the tape corresponding to the level 𝑘 does not read
from / write on the tape 𝑘 any symbol.

We also allow jumps where the transition goes from a state with level 𝑘 to any other
state with level 𝑙 where 𝑙 ̸= 𝑘+1. However, we restrict the jumps for 𝑛-tape NFT as follows:

• The jump cannot jump over a state with level 0. That is, if we need to jump further,
the transition can at most jump to the next state with level 0.

• A jump of length 𝑘 > 1 (the length of one is a normal transition in Nfa which we call
just a transition) is interpreted the same as if we made 𝑘 transitions in Nfa with the
transition symbol on the jump transition. That is, a jump of length 3 (over 3 tapes)
with transition symbol 𝜖 means that the transducer made 3 normal transitions with
𝜖 as a transition symbol for each of them.

• Jumping from a state 𝑞 where lev(𝑞) = 0 to a next state 𝑞′ where lev(𝑞′) = 0 with
transition symbol 𝜖 means that only the internal state of the NFT has changed (the
state has changed) without reading or writing anything on any of the tapes.
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• Jumping from a state 𝑞 where lev(𝑞) = 0 to a next state 𝑞′ where lev(𝑞′) = 0 with
transition symbol 𝑎 ∈ Σ means that we performed an identity NFT transition over 𝑎
where all tapes read/write symbol 𝑎.

NFTs and BDDAs interpret the same instance of an NFT automaton slightly differently.
BDDAs change the interpretation of a jump to a single transition symbol (from the jump
transition) followed by a sequence of don’t care symbols for the remaining tapes (levels), as
opposed to the NFT interpretation where all transitions in the jump use the jump symbol.
We easily implemented this BDDA interpretation next to the NFT interpretation.

No-operation transitions. An epsilon transition from a state with level 𝑘 to 𝑘 + 1
mod 𝑛 can be understood as a no-operation transition nop, i.e., a transition where the tape
𝑘 does not perform any operation (no reading nor writing). In essence, the impact of nop is
the same as if reading an empty string 𝜖 on the tape 𝑘. An epsilon jump from a state with
level 0 to another state with level 0 is a simple change of states (as per the usual definition
of epsilon transitions in NFAs). It has the same effect as a sequence of nop transitions on
all tapes (or a sequence of 𝜖 symbols).

Depending on the application, one might prefer to use 𝜖 symbols or nop transitions as
needed.

5.5 Algorithms
For general uses of transducers in Mata, we have implemented general automata operations
for creating, modifying, and manipulating transducers. Furthermore, we have implemented
several transducer-specific operations.

NFA operations. Thanks to our design choices, the general NFA operations such as
concatenation, union, etc. can be reused from NFA without many modifications. We only
need to remember to correctly set levels of states when renumbering states in the result
NFT.

Further, we discuss several more significant modifications to existing operations and
algorithms for several NFT-specific operations.

5.5.1 Synchronization

All operations performing some kind of traversal over multiple transition relations (or multi-
ple transitions in one transition relation simultaneously) start the computation from states
with level 0. NFTs are always synchronized on states with level 0, that is, after each NFT
transition is completed (all tape operations are handled). If the macrostate in a worklist
contains only states with levels 0, the NFTs are synchronized and the next macrostate can
be computed. When the synchronized NFTs perform one transition, due to the supported
jumps, the new macrostate may contain states with different levels.

Since jumps can jump at most to the next state with level 0, we always know which
states in the macrostate are ”ahead” and which are ”behind” by the following method. If
we expand a macrostate with states with levels 𝑘 and 𝑙 where 𝑘 > 𝑙, we know that the state
with level 𝑘 must be ahead of the state with level 𝑙. If any of the states has level 0 (and
there are other states with non-zero levels), we know that the state 0 must be ahead of
all the other states with non-zero levels, and synchronized with all other states with levels
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0. That holds since the states with levels 0 can only be the next states with levels 0, and
not the states with level 0 behind (as the first step from the synchronized states is to move
immediately out of the states with level 0). The same holds for BDDAs using the same
constraints as NFTs. Only the state in the macrostate with the level furthest behind is
expanded (performs its transitions, if possible). The others are at least one level ahead and
therefore cannot be expanded and must wait for the states behind to get to at least their
levels first before being expanded themselves.

Example 4. If we perform synchronization over three 4-tape NFTs, starting from macrostate
with levels (0, 0, 0), we perform one transition and may end up in a macrostate with levels
(3, 1, 0) where the first NFT made a jump of length 3, the second performed normal tran-
sition (jump of length 0), and the last NFT performed a jump to the next state with level
0. When expanding the macrostate (3, 1, 0) later on, we know that the state with level 0 is
ahead of the other states with levels 3 and 1. And we further know that state with level 3
must be ahead of the state with level 1. Therefore, the state with level 1 must be expanded
up until the level reaches 3 or greater (the next level 0). Then we may get (3, 3, 0), both
the first and the second state are expanded to states with levels (0, 0, 0) and the macrostate
is synchronized again.

The Figure 5.6 shows an example of how may synchronization on a pair of NFTs using
jumps look.

0 1 2 3 0 1

Figure 5.6: An example of 4-tape NFTs with jumps during synchronization. Jumps can
start in state with any level and jump up to the next state with level 0. The jumps cannot
jump over states with level 0, however. The numbers denote the levels for the corresponding
states below. The highlighted states depict the states with level 0, the vertical lines visually
set apart NFT transitions (there is one NFT transition, consisting of several tapes, between
each pair of vertical lines).

Alternative representation of jumps. If the restriction of allowed jumps being only
to the next state with level 0 is too strict, an alternative approach where jumps are allowed
to jump over (potentially multiple) states with level 0 can be chosen. However, during oper-
ations such as product construction, additional information must be added to the worklist

26



containing macrostates: a list of lengths of each jump performed during the expansion of
the last macrostate in order to know how far ahead are the states jumped to in relation to
the other states in the macrostate.

We deem this approach inferior to our chosen approach since it distorts the simplicity
of a single data structure and algorithms on it for NFAs, NFTs, and BDDAs.

5.5.2 Projection

The first standard operation on transducers is projection. Given an 𝑛-tape NFT 𝒯 , we can
perform projection to a specified set of tapes, or project out a specified set of tapes.

The transitions remain the same, the only change is that we remove certain tapes
(meaning that for every NFT transition we remove transition symbols on those tapes). In
Mata, this means removing all states with certain levels 𝑘 and their outgoing transitions
and redirecting ingoing transitions to these states to the next states with levels 𝑘+1 mod 𝑛
where the outgoing transitions were previously leading to. This can be iteratively performed
on all tapes specified for removal. When the modification is performed, all remaining levels
are shifted toward 0 to start at 0 and end with 𝑙 − 1 where 𝑙 is the new number of tapes
remaining in the NFT.

Projection to, denoted project_to𝑀 (𝒯 ) where 𝑀 ⊆ {0, 1, . . . , 𝑛 − 1} is an operation
which keeps only tapes 𝑡 ∈𝑀 , and removes from 𝒯 all other tapes 𝑜 /∈𝑀 . In practice, this
means that an 𝑛-tape NFT will be modified into an |𝑀 |-tape NFT. If |𝑀 | = 1, we create
a 1-tape NFT (containing only states with level 0) which is semantically equivalent to a
corresponding NFA with the same transitions.

Projection out, denoted project_out𝑀 (𝒯 ), performs the same operation, only now
instead of keeping the specified tapes 𝑜 ∈ 𝑀 , we remove all tapes 𝑜 ∈ 𝑀 , and keep only
the tapes 𝑡 ∈ {0, 1, . . . , 𝑛− 1} ∖𝑀 . If |𝑀 |+ 1 = 𝑛, we project out all tapes except for one.
This creates a 1-tape NFT, which is again semantically equivalent to a corresponding NFA
with the same transitions.

Note that for either variation, removing the first tape in NFT transitions requires setting
new initial states (the original targets of transitions from the states with level 0 become the
new initial states). Similarly, removing the last tape in NFT transitions requires setting
new final states (the original source of ingoing transitions to the final states become the
new final states). If jump transitions are involved, one may need to expand the jumps into
normal transitions between levels to set the correct initial and final states on the new first
and last tape.

Example 5. Given an NFT 𝒯 with 5 tapes, with levels {0, 1, 2, 3, 4}.
We can perform the following operations:

• project_out{3}(𝒯 ) which deletes tape 3 from 𝒯 , leaving tapes {0, 1, 2, 4} which are
then renumbered to {0, 1, 2, 3}.

• On the result, we can perform project_to{1,3}(𝒯 ) which performs the same as if
calling project_out{0,2}(𝒯 ). Tapes 0 and 2 are removed, leaving tapes {1, 3}, which
are then renumbered to {0, 1}.

• Now, performing project_to{1}(𝒯 ) gives us NFT with only one tape, which repre-
sents the NFA for the tape 1. Performing project_out{1}(𝒯 ) instead would give us
NFT with only one tape representing the NFA for the tape 0.
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5.5.3 Intersection

For constructing the intersection of two NFTs, we make use of the inheritance of NFTs from
NFAs and utilize the classic intersection computation on NFA using the standard product
construction algorithm (as described in Chapter 2). The only modification is adding support
for proper assignment of levels to new macrostates depending on the levels of the original
NFT states in the macrostate, and handling of various combinations of transition symbols
during the process of adding transitions leading from the macrostates.

Given 𝒯1 with 𝑄1 and 𝒯2 with 𝑄2, construct the intersection 𝒯 = 𝒯1 ∩ 𝒯2.
A new level lev(𝑞′) for a new macrostate 𝑞′ = (𝑞′1, 𝑞

′
2), given a current macrostate

𝑞 = (𝑞1, 𝑞2) ∈ 𝑄1 × 𝑄2 where 𝑞′1 and 𝑞′2 are targets of transitions from 𝑞1 and 𝑞2, is
determined as follows:

• If lev(𝑞′1) = 0 or lev(𝑞′2) = 0 (holds for both equal 0, too),
lev(𝑞′) = max(lev(𝑞′1), lev(𝑞′2)). If both target states have levels 0, we are finishing an
entire NFT transition and enter a synchronized macrostate 𝑞′, lev(𝑞′) = 0. Otherwise,
only 𝑞′1 = 0 (𝑞′2 = 0) holds, and 𝑞′1 (𝑞′2) must be ”further ahead” of 𝑞′2 (𝑞′1), and must
wait for 𝑞′2 (𝑞′1) to catch up, therefore, 0 < lev(𝑞′) < 𝑛.

• Otherwise, lev(𝑞′) = min(lev(𝑞′1), lev(𝑞′2)). That is, if both 0 < lev(𝑞′1), lev(𝑞′2) < 𝑛,
we must wait for the state further behind to catch up, so we choose the lower level as
lev(𝑞′).

A new transition symbol 𝑎 ∈ Σ for a new transition (𝑞, 𝑎, 𝑞′) is chosen by the following
rules:

• If (𝑞1, 𝑎, 𝑞′1) ∈ post1 and (𝑞2, 𝑎, 𝑞
′
2) ∈ post2, (𝑞, 𝑎, 𝑞′) ∈ post .

• If (𝑞1, 𝜖, 𝑞
′
1) ∈ post1 and (𝑞2, 𝜖, 𝑞

′
2) ∈ post2, (𝑞, 𝜖, 𝑞′) ∈ post . Epsilon symbols are

handled here as normal symbols 𝑎 ∈ Σ. This ensures that only matching 𝜖 symbols
are synchronized.

• If (𝑞1, ?, 𝑞′1) ∈ post1 (or (𝑞2, ?, 𝑞
′
2) ∈ post2), 𝑎 from (𝑞2, 𝑎, 𝑞

′
2) ((𝑞1, 𝑎, 𝑞′1)) is used. This

holds for (𝑞1, ?, 𝑞
′
1) ∈ post1 and (𝑞2, ?, 𝑞

′
2) ∈ post2, too. This works if one of the

symbols is ? and the other is 𝜖, too: (𝑞, 𝜖, 𝑞′) is produced in such a case.

The rules are visualized in the Table 5.1.

∩ ? 𝜖 a b
? ? 𝜖 a b
𝜖 𝜖 𝜖

a a a
b b b

Table 5.1: Synchronization rules for transitions symbols during intersection. The row lists
the symbols on transitions in 𝒯1, the column in 𝒯2.

Finally, ? transitions must be handled separately since the classic intersection algorithm
for NFAs does not match ? with any other symbol than ?.
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5.5.4 Composition

When working with NFTs as transduction machines taking some input, modifying it and
outputting some output, we often encounter problems where we want to perform multiple
transductions on the input, one after the other. In the same way as we can compose
mathematical functions (𝑓 ∘ 𝑔)(𝑥) meaning 𝑓(𝑔(𝑥)) (perform 𝑔 on 𝑥 and perform 𝑓 on the
result of 𝑔(𝑥)), we can perform multiple NFT transductions sequentially: 𝒯2 ∘ 𝒯1 (perform
the transduction of 𝒯1 on the input, and then perform the transduction of 𝒯2 on the result),
denoted as compose(𝒯1, 𝒯2). Using the Unix pipe notation, we can express the same with
𝒯1||𝒯2 (perform the transduction of 𝒯1 on the input, and then pipe the result to 𝒯2 to
perform the transduction of 𝒯2 on the result).

For each NFT, we need to specify which tape(s) 𝑇 to synchronize on with the other
NFT. These are the tapes we expect to act as a mediator between the output of 𝒯1 and the
input of 𝒯2. To create a new product transition, the symbols on the corresponding tapes
in both NFTs must be compatible (the same symbol, or pairs like (?, 𝑎) for 𝑎 ∈ Σ, etc.).

The composition comprises the following steps:

• Extending the NFTs to contain matching tapes,

• Adding special self-loops on states with level 0 to allow for proper handling of 𝜖 and
? symbols on the transitions,

• Performing NFT intersection as described in Section 5.5.3, and

• Projecting out the synchronization tapes (as described in Section 5.5.2) which were
”consumed” by the composition.

Example 6. Throughout this section, we will demonstrate the composition algorithm on
the following example. Given NFT 𝒯1 with tapes 0, 1, and 2, and 𝒯2 with tapes 2, 3, and 4,
we want to compute 𝒯1||𝒯2, synchronizing both NFTs on tape 2. For clarity, we number the
tapes uniquely between both NFTs in this example. Internally, each NFT has tapes with
levels from 0 to 2 and for each NFT, we specify which tape(s) the NFTs should synchronize
on.

Extending NFTs with additional tapes. The first step of the composition is to extend
the input NFTs by inserting additional levels 𝑘 (additional states with levels 𝑘) into each
transition with ? symbols on the transitions at levels 𝑘. This operation balances out the
NFTs so both have the same tapes in the same order. This allows us to perform the classic
NFA intersection for each level in both NFTs during NFT intersection. We use ? symbols
since for each NFT 𝒯𝑖, the other NFT 𝒯𝑗 does not care what transitions over what symbols
𝒯𝑖 performs during the intersection. Hence, from the point of view 𝒯𝑗 , 𝒯𝑖 can perform any
transition.

Example 7. Continuing the example, we extend each NFT transition in 𝒯1 with new
transitions as follows: from existing states 𝑞2 with level 2 to new states 𝑞3 with levels 3
(using the original transition symbol on transitions outgoing from 𝑞2), from 𝑞3 to new states
𝑞4 with levels 4 using ? symbol, and finally from 𝑞4 to the next existing states 𝑞0 with levels
0 (the original targets of transitions from 𝑞2) using ? symbol (finishing the original NFT
transition).

Figure 5.7 shows a depiction of a single transition in 𝒯1 and 𝒯2 before and after extension.
We can see that after the extension, both 𝒯1 and 𝒯2 have the same tapes.
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0 1 2

2 3 4

(a) Before extension

0 1 2

2 3 40 1

? ?

3 4

? ?

(b) After extention

Figure 5.7: A depiction of a single transition in NFTs 𝒯1 (top) and 𝒯2 (bottom) before
extension (Figure 5.7a) and after extension with ? transitions on inserted tapes to balance
out the tapes in both NFTs (Figure 5.7b). The red states together with the outgoing
transitions represent the tape 𝒯1 and 𝒯2 are synchornized on. The blue states represent the
newly inserted tapes with ? symbols on transitions.

Thanks to this general approach, we can compute compositions of any 𝑛-tape and 𝑚-
tape NFTs, synchronizing on any tape(s)1, with the tapes being in an arbitrary order.

As an optimization, when adding multiple subsequent ? transitions during the extension,
we can instead add only a single ? jump from the first state in the sequence leading to the
last state in the sequence, without having to create new states for all inserted tapes being
jumped over.

Adding self-loops. The next step is to add self-loops to all states with level 0 in both
NFTs. These self-loops serve the purpose of nondeterministic ”waiting” loops for waiting
at the beginning of an NFT transition in one NFT for the other NFT for epsilon transitions
on the tapes being synchronized on.

The self-loops is a symbolic name since they are self-loops in the sense of NFT transitions
(from state with level 0 back to the same state), but they lead over several tapes (i.e., several
states with transitions).

The symbols on the self-loops are added as follows:

• For the transitions on the synchronization tapes, the symbol 𝜖 is used, being handled
as a normal transition symbol the other NFT can synchronize with the 𝜖 symbol on
any non-self-loop transition.

• For the transitions on tapes added by the extension, the symbol ? is used. ? here has
the same role as ? symbols added during extension.

• For the transitions on the remaining tapes (the original non-synchronizing tapes), 𝜖
symbol is used to represent the waiting on all NFT’s own transitions.

Example 8. Figure 5.8 shows how a single transition in NFTs looks after adding the
”waiting” self-loops.

Intersection. When NFTs are balanced out and self-loops are added, we can perform an
NFT intersection, as per Section 5.5.3. The intersection produces a new NFT representing
the composition of 𝒯 = 𝒯1||𝒯 2, only currently 𝒯 still contains all the tapes from the
balanced 𝒯1 and 𝒯2. Other than that, the composition is complete.

1When synchronizing on multiple tapes, the tapes must be in the same order in both NFTs.
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Figure 5.8: A depiction of a single transition in NFTs 𝒯1 (top) and 𝒯2 (bottom) after adding
the ”waiting” self-loops.

Note that since we added the self-loops, we no longer need to separately handle 𝜖
transitions. 𝜖 symbols are handled as normal transitions, producing an 𝜖 transition in the
product iff both NFTs perform an 𝜖 transition, or one of them performs a ? transition.

Furthermore, we prevent self-loops in both NFTs from synchronizing with each other.
That is, we cannot construct a new macrostate 𝑞′ = (𝑞𝑙1, 𝑞𝑙2) where both 𝑞𝑙1 and 𝑞𝑙2 are
self-loop states. This would represent a situation where both NFTs are waiting for the
other, but none moves forward. Since these macrostates are not useful, we prevent their
creation entirely.

Projecting out the tapes the composition synchronized on. To clean up 𝒯 , we
need to project out the tapes we synchronized on, as these are the tapes that have been
”consumed” by the composition (used as the link between the output of 𝒯1 and input of
𝒯2).

Example 9. To finish our example, Figure 5.9 depicts a single product transition after
composition is performed, and the synchronization tapes are projected out.

0 1 3 4

0 1 2 3

Figure 5.9: A depiction of a single product transition in 𝒯 = 𝒯1||𝒯2 synchronized on tape
2. The levels at the top represent the original tapes before renumbering. The levels at the
bottom represented the final tapes after renumbering.

Optimization for 2-tape NFTs. For working with only 2-tape NFTs, a specialized
algorithm for composition can be utilized. We presume that input/output NFTs always
input on the first tape and output on the second tape. The algorithm would still utilize
the general idea of NFT intersection, but now no extension of NFTs and no self-loops are
necessary. For each macrostate, we would first perform a step in 𝒯1 on level 0, then perform
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the synchronized step on levels 1 in 𝒯1 and 0 in 𝒯2 (if such a step is possible as per NFT
intersection rules), then finish the composition of the current transition by performing a
step in 𝒯2 on level 1, constructing a new macrostate from targets of transitions on levels 1
of both NFTs. Handling of jumps is similar to NFT intersection: waiting for the state ”left
behind” to catch up with the state jumped to. This approach no longer handles 𝜖 symbols
as normal symbols 𝑎 ∈ Σ, but instead uses the classic synchronization on 𝜖 symbols used
in the intersection for NFAs.

When adding support for transducers to Z3-Noodler, it may be advantageous to utilize
this specialized variation of composition as string replace operations in Z3-Noodler only
ever work with 2 tapes.

5.5.5 Application

When we construct an NFT 𝒯 , the most intuitive use of 𝒯 is to perform the transduction
𝒯 encodes (reading the input on the input tapes and outputting the output on the output
tapes). This operation is called application.

We can apply 𝒯 on a word 𝑤, or on a regular language ℒ(𝒜) for some 𝒜.

Application on a word. We can either apply 𝒯 on a word 𝑤 ∈ Σ* on a given tape
(at level 𝑘), or apply 𝒯 on an 𝑙-tuple of words (𝑤𝑖) where 𝑙 < 𝑛, 𝑖 ∈ {0, . . . , 𝑛 − 1} and 𝑖
specifies on which tape (level) we want to apply the respective words on (for tape 𝑖, one
word 𝑤𝑖).

The result of the application on a word (or on a tuple of words) is a set of tuples of
size (𝑛 − 𝑙) of words. We read the word(s) and move through the NFT according to the
transition symbols in the word(s) on the corresponding tapes, similarly to performing a run
on a word in NFA, only now to potentially multiple tapes (multiple words). During the
traversal, we construct the result by appending the transition symbols on the remaining
tapes to the result constructed so far for the current state. This gives us the corresponding
word on the remaining tapes when the words on the given tapes are (𝑤𝑖).

Focusing on 2-tape NFTs 𝒯 , the application equals to translation from the input word
𝑤 to the output word 𝑤′ (similarly to what a natural language translator does) where
𝑤′ = apply(𝒯 , 𝑤). By convention, we presume the input tape is at level 0 and the output
tape is at level 1.

The application on a word is equivalent to 𝒯Id(𝒜)||𝒯 where 𝒜 represents DFA accepting
only 𝑤. This gives us an NFT encoding the result. For 2-tape 𝒯 , we get a 1-tape NFT,
equal to the corresponding NFA encoding the set of words in the result.

Application on a language. Application of 𝑛-tape NFT 𝒯 on a regular language ℒ(𝒜)
instead of a single word is performed similarly to the application on a single word, but now
the result is a regular language (for 2-tape NFTs) or an NFT 𝒯 ′ with 𝑛− 1 tapes.

The application on a language ℒ(𝒜), similarly to the application on a word, is equivalent
to 𝒯Id(𝒜)||𝒯 . The resulting NFT encodes the result. For 2-tape 𝒯 , we get a 1-tape NFT,
equal to the corresponding NFA encoding the regular language of the result.
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5.6 Implementation
The proposed data structures for finite transducers, and standard operations on finite trans-
ducers were implemented in Mata. The code is accessible in a GitHub repository2 and will
be merged into the main Mata GitHub repository3.

The NFA operations for NFTs have to be modified in places where we need to correctly
set and reset the vector of levels for transducer states, or where we handle epsilon, nop and
don’t care symbols in automata algorithms.

Number of levels. Each NFT also stores the number of tapes (levels) used. If the
number of tapes is set to 1, it means that the NFT is equivalent to NFA and the NFT
operations will behave the same as a corresponding NFA operations (with an equivalent
transition relation where all don’t care transitions are replaced with transitions between
the same states over the whole alphabet). This keeps the behaviour of operations on NFTs
and NFAs consistent between automata models.

Single epsilon for epsilon and nop transitions. We have decided to unify the symbols
for epsilon transitions and nop transitions. We represent both transitions with a transition
over 𝜖, corresponding to the largest unsigned integer value of a symbol in Mata.

To distinguish between both, we check whether the epsilon transition leads from a state
with level 𝑘 to a state with level 𝑘 + 1 mod 𝑛 or not whenever we encounter the symbol
in algorithms. This operation has constant complexity, since a set of levels in Mata is a
state-indexable vector of levels.

We decided for this approach since all operations in Mata already support epsilon
transitions, checking for existence of epsilon transitions and accessing them has constant
complexity, and adding handling for yet another special transition symbol further compli-
cates the logic for many operations which do not have to distinguish between epsilon and
no-operation transitions.

Specifying tapes to work on. Since we aim to implement NFTs in Mata so they are
usable for general purposes, not only limited to string solving, we allow for the majority of
operations to specify what is the interpretation of each tape: e.g., which tapes are to be the
input tapes, and which are to be the output tapes in application on a word or a language;
or which tape(s) to use for synchronization during composition.

Be mindful that using different tapes for some operations may affect the performance
of these operations. For example, application on the first tape is more performant than the
application on the last tape in an 𝑛-tape NFT.

Basis of the implementation. For the implementation of the current interface and
algorithms specific for NFTs (composition and projection), we used the existing imple-
mentation for a simple prototype BDDA representation using NFAs with levels (supporting
simple composition and projection operations), which was implemented previously in Mata.
we further modified the interface for the existing operations, expanded the interface with
new operations, added string solving-specific operations (construction of typical NFTs used
in string solving, NFTs for replace operations, . . . ). We collaborated with our colleagues

2https://github.com/Adda0/mata/tree/transducers
3https://github.com/VeriFIT/mata/
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needing BDDAs to define the same interface for NFTs and future proper implementation of
BDDAs, inherited from NFTs. As a result of discussions and collaboration, we add support
for NFTs (this work, extending the existing implementations for projection and composi-
tion) and we plan to add support for BDDAs in the future: using the defined common
interface, where BDDAs inherit operations from NFTs where the cores of the NFT- and
BDDA-specific operations from Section 5.5 (composition, projection) are modified and ex-
tended versions of the existing implementations for simple BDDA implementation. Thanks
to this, we are able to add official support for BDDAs into Mata easily. The proper sup-
port for BDDAs inheriting from NFTs is planned to be implemented when the current
implementation for NFTs matures enough.
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Chapter 6

Transducers for String Solving

We discuss in this chapter how to utilize finite transducers in Z3-Noodler to solve SMT
string constraints str.replace, str.replace_re, str.replace_all and
str.replace_re_all.

6.1 Replace Operations
A general regular replacement operation has the following form:

replaced_string = replace(input_string, pattern, replacement)

where replace determines the type of the regular replacement (the semantics of the re-
placement operation). input_string represents the original input string where we want
to replace some regular pattern with a replacement literal. Regular pattern can be a
string literal (a word) or a regular language describing the substring (or substrings) of
input_string we are trying to replace.

There are various replacement semantics for replace operations. The popular regular
replacement types are reluctant replacement, greedy replacement, possessive replacement, or
declarative replacement. For example, the reluctant replacement matches a given pattern
(a regular language) with the shortest substring of the input_string, while the greedy
replacement matches the longest substring. These types produce the same result when
pattern is a string literal. Possessive replacement semantics is that of the greedy one,
but without backtracking on the substring matched so far (we match on the first longest
match). Declarative replacement matches every occurrence of regular pattern in the given
input_string.

A procedural regular replacements enforce the matching of the left-most occurrence of
pattern. Procedural replacements encompass the greedy and reluctant replacements, since
both match in input_string from the left to the right. They start with the first character
in the word and by using backtracking continue through the word until the end of the word.

Since SMT-LIB defines only replacement operations of type reluctant replacement with
the left-most matching and other types of the replacement operations are not allowed in
SMT formulae in SMT-LIB format (which Z3-Noodler solves), we focus in this work
solely on the reluctant replacement type.

We denote reluctant regular replacement as 𝑥𝜋→𝑦 where 𝑥 is the input_string, 𝜋 is
the regular pattern (a literal or a regular language) and 𝑦 is the replacement.
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6.2 Encoding Reluctant Replacement as Transducers
SMT-LIB supports two types of reluctant replacements: a reluctant all replacement which
replaces all occurrences of the shortest left-most matches of pattern, and a reluctant single
replacement which replaces only the first shortest left-most occurrence of pattern.

Empty word in pattern. If the pattern contains an empty word 𝜖, a special handling
of 𝜖 matching needs to be performed. In such a case, one encodes the replacement operation
as if 𝜖 /∈ 𝜋, and solves the replacement for two options:

• Tries solving for just 𝜖 manually, and alternatively

• Solves the reluctant replacement without the epsilon if the 𝜖 match fails.

Since SMT-LIB works only with reluctant replacements, the reluctant replacement would
always pick the shortest replacement, i.e., the 𝜖 replacement. The reluctant match of 𝜖 will
always succeed, and longer matches will not be needed nor accepted. SMT-LIB declares
results to such patterns with 𝜖 to be equal to replacement ·input_string (prepending the
replacement to the input_string). No replacement NFT needs to be constructed in this
case.

Definition 6 (Reluctant all replacement).
A reluctant all replacement 𝑥+𝜋→𝑦 is defined as follows:

𝑥+𝜋→𝑦 = {𝑢 · 𝑦 · 𝑤+
𝜋→𝑦}

where 𝑢, 𝑣, 𝑤, 𝑥, 𝑦 ∈ Σ*, 𝜋 is a regular language (regex), 𝑥 = 𝑢𝑣𝑤, 𝑢 /∈ Σ*𝜋Σ*, 𝑣 ∈ 𝜋, and
to ensure the shortest left-most matching, the following must hold: ∀𝑢 = 𝑢1𝑢2, 𝑣 = 𝑣1𝑣2,
𝑤 = 𝑤1𝑤2 : if 𝑣2 ̸= 𝜖 then 𝑣1 /∈ 𝜋 (the shortest match—if 𝑣1 is not a match, then surely the
shortest match is 𝑣 = 𝑣1𝑣2); if 𝑢2 ̸= 𝜖 then 𝑢2𝑣1 /∈ 𝜋 ∧ 𝑢2𝑣𝑤1 /∈ 𝜋 (the left-most match is 𝑣
since there is no match of 𝜋 before 𝑣).

A reluctant single replacement is defined similarly, only the recursive replacement of 𝑤
is no longer performed since after the first replacement of 𝑣, no more pattern matchings are
tried on the substring 𝑤 after the replaced substring 𝑣.

Definition 7 (Reluctant single replacement).
A reluctant single replacement 𝑥1𝜋→𝑦 is defined as reluctant all replacement, only with the
recursive replacement removed:

𝑥1𝜋→𝑦 = {𝑢 · 𝑦 · 𝑤}.

Example 10. For 𝑎, 𝑏, 𝑐 ∈ Σ: (𝑎𝑎𝑏𝑎𝑎𝑏𝑎)+𝑎𝑎→𝑐 = {𝑐𝑏𝑐𝑏𝑎}; (𝑎𝑎𝑏𝑎𝑎𝑏𝑎)1𝑎𝑎→𝑐 = {𝑐𝑏𝑎𝑎𝑏𝑎}.

6.3 Transducers for Regex Reluctant Replacement
First, we introduce a method for constructing a finite transducer 𝒯𝑥+

𝜋→𝑦
for the most general

case of reluctant regular replacement, a regex reluctant all replacement 𝑥+𝜋→𝑦, where the
pattern 𝜋 being replaced is specified as a regular language, and we replace all occurrences
of 𝜋.
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We follow the idea of the existing procedure for constructing NFT for regex reluctant
all replacement operation taken from [41], but we modify the method to fit SMT-LIB
requirements for replacement operations and our implemented representation of NFTs in
Mata.

The approach constructs two main NFTs where one non-deterministically finds a pos-
sible beginning of a pattern match and inserts a special symbol $ at the found location in
the input word 𝑥. The symbol $ serves as a begin marker for the searched pattern.

Since we have a reluctant replacement matching the shortest left-most pattern match,
we know that when we insert the correct begin marker into the input word (followed by
a match of 𝜋), we can simply read the characters following $ until we read a matching
pattern. There is no need for us to explicitly mark the end of the pattern with another
special symbol.1

However, in order to construct the NFT for the begin marker, we first construct a DFT
to find a possible end marker $2 which denotes the end of a pattern. The end marker
DFT is however constructed for the reverse of the searched pattern 𝜋, rev(𝜋). This way,
we deterministically find the ends of rev(𝜋). This gives us the potential beginning of the
reverse of rev(𝜋), that is, the original 𝜋 in 𝑥.

We will explain the construction on a running example. Given 𝑥+𝜋→𝑦 where 𝜋 = 𝑎+𝑏+𝑐,
construct 𝒯𝑥+

𝜋→𝑦
.

6.3.1 End Marker DFT

Here, we construct a DFT 𝒯end marking the end of a regular pattern rev(𝜋).
First, we construct DFA 𝒜rev(𝜋) for rev(𝜋). Note that here we treat 𝜖 as a special tran-

sition symbol used in the construction of 𝒯𝑥+
𝜋→𝑦

. Hence, 𝒜rev(𝜋) cannot contain 𝜖 symbols.
Also note that we require 𝒜rev(𝜋) to be deterministic.

See Figure 6.1a for DFA 𝒜𝑐𝑏+𝑎+ for rev(𝜋) = 𝑐𝑏+𝑎+.
𝒜rev(𝜋) accepts rev(𝜋), but for replace operations, we need the 𝒯𝑥+

𝜋→𝑦
to read any 𝑥 ∈ Σ*

and replace only the requested pattern, leaving the rest of 𝑥 unmodified. Therefore, we
generalize 𝒜rev(𝜋), producing 𝒜gen

rev(𝜋), which accepts any word 𝑥 ∈ Σ*. Think of 𝒜gen
rev(𝜋) as

the input tape of an NFT which needs to read any word on its input, and only perform a
specific operation (replacement here) for a specified pattern in the input word.

Given𝒜rev(𝜋) = (𝑄,Σ, post , {𝑞0}, 𝐹 ), we construct𝒜gen
rev(𝜋) = (𝑄gen,Σ, postgen, {𝑠0}, 𝐹 gen)

where 𝑄gen = {𝑡 | 𝑡 ⊆ 𝑄} following these rules:
We define a bijective mappingℳ : 𝑄gen → 2𝑄 such that ∀𝑠 ∈ 𝑄gen, 𝑎 ∈ Σ : 𝑠′ ∈ postgen(𝑠, 𝑎)
iff ℳ(𝑠′) = {𝑞0} ∪ {𝑞′ | ∃𝑞 ∈ℳ(𝑠) : 𝑞′ ∈ post(𝑞, 𝑎)} and ℳ(𝑠0) = {𝑞0}.

Intuitively, we construct a new DFA from 𝒜rev(𝜋) where each state 𝑠 maps to a set
of states in 𝒜rev(𝜋) which can be reached from 𝑞0 with the same substrings of ℒ(𝒜rev(𝜋)).
Since 𝒜rev(𝜋) is deterministic, each substring will end in at most one state 𝑠. Thus, 𝒜gen

rev(𝜋)
remains deterministic.

However, when we encounter state 𝑠 where 𝐹 ∩ℳ(𝑠) ̸= ∅, we know that we have reached
a state in the constructed 𝒜gen

rev(𝜋) where the substring corresponding to 𝑠 is accepted by
𝒜rev(𝜋). That means that we have reached an end of an accepted word in 𝒜rev(𝜋) which
we want to mark (insert an end marker $ after this substring). Therefore, during the

1This would not be the case for, e.g., the greedy replacement, however.
2For simplicity, we use the same symbol to denote both the begin marker and the end marker. The reason

for this is that these two markers are never used simultaneously and there is a close connection between
them. The connection will be further explained later.
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construction, we create a new final state 𝑠𝑓 , and each time we encounter such a state 𝑠,
we add a transition 𝑠

𝜖−→ 𝑠𝑓 , and redirect all transitions which would normally go from 𝑠 to
start in 𝑠𝑓 . Thus, the only outgoing transition from 𝑠 is the epsilon transition, and we did
not introduce a non-deterministic choice of transitions from 𝑠. Then, all states except for
states 𝑠 where 𝐹 ∩ℳ(𝑠) ̸= ∅ are made final since we want to accept any arbitrary input.
We omit the original final states, since reaching these states is a significant event in reading
an arbitrary input, which we need to handle separately.
𝒜gen

rev(𝜋) represents an DFA which states how ”far” into rev(𝜋) we are when reading an
arbitrary input. Each symbol either resets DFA (simulating manual backtracking) to some
previous matched state or all the way up to 𝑠0 (no even partial match was found, we start
from the beginning of the pattern), or advances to the next state in the DFA following the
pattern.

Now, 𝒜gen
rev(𝜋) accepts any string 𝑥 on its input. During the run of 𝑥 on 𝒜gen

rev(𝜋), each
time an end of a substring 𝑥2 is encountered where 𝑥2 ∈ rev(𝜋) and 𝑥 = 𝑥1𝑥2𝑥3, an epsilon
transition is taken. If we were to insert $ into 𝑥 each time an epsilon transition is taken,
we would modify 𝑥 in such a way that the word would remain the same, only interspersed
with $ after each end of 𝑥2 (since 𝒜gen

rev(𝜋) is deterministic, no other transition can be taken
from the source state of the epsilon transition). These $ represent the end markers we want
to insert with 𝒯end.

See Figure 6.1b showing a generalized modification of DFA 𝒜𝑐𝑏+𝑎+ , 𝒜gen
𝑐𝑏+𝑎+

. For ex-
ample, a word 𝑐𝑏𝑐𝑏𝑏𝑎$𝑎$𝑎$𝑏𝑐𝑏 would be accepted by this automaton, where the imaginary
string symbol $ symbolically represents places where an epsilon transition was taken in the
automaton.

Next, we can construct 𝒯end from 𝒜gen
rev(𝜋). We simply consider the current transitions

as the input tape of 𝒯end, and we add transition symbols for the output tape: for all 𝑎 ∈ Σ,
the symbol on the output tape is 𝑎 again, only for the input symbol 𝜖, the output symbol
is $.

We can see the final 𝒯end for 𝒜gen
𝑐𝑏+𝑎+

in Figure 6.1c.

6.3.2 Begin Marker NFT

We could start constructing the begin marker NFT 𝒯begin from 𝒯end by reversing all tran-
sitions in 𝒯end. However, considering reversing a single transducer transition (consisting of
operations on the input and output tapes), represented as a sequence of two NFA transi-
tions in Mata from state with level 0 to 1 and back to some state with level 0, we instead
utilize 𝒜gen

rev(𝜋) before its conversion to 𝒯end (and 𝒯end is therefore never truly constructed in
Mata).

We reverse all transitions in 𝒜gen
rev(𝜋), effectively obtaining the foundation for an NFA

for marking beginnings of 𝜋. We can now construct 𝒯begin the same way as we constructed
𝒯end from 𝒜gen

rev(𝜋), except now $ as the output symbol for the epsilon symbol on the input
tape represents the begin marker instead of the end marker. This is why we use the same
marker for symbols for both the begin and end marker, as noted earlier. They mark the
same location, only once operating on rev(𝜋), then on 𝜋.

However, marking beginnings is a non-deterministic operation. We cannot know in
advance whether the currently read symbol in an arbitrary input string marks a beginning
of a full match in 𝜋. Henceforth, we have to introduce another source of non-determinism,
which gives us the smart ”look-ahead” ability for marking beginnings for only those inputs
that will later on truly match in 𝜋. All potentially incorrectly inserted begin markers in
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the input word end in a non-accepting run for the word with such begin markers. We add
a new initial state 𝑠′0 and add 𝜖 transducer transitions 𝑠′0

𝜖−→ 𝑠 (𝜖 as the transition symbol
on all tapes) leading to all states 𝑠 which are final in 𝒜gen

rev(𝜋), that is, all except those which
map to a set of states containing the original final state from 𝒜rev(𝜋). The previous initial
state of 𝒯begin is set as the only final state and is removed from the initial states.

The Figure 6.2 shows a 𝒯begin for rev(𝒜gen
𝑐𝑏+𝑎+

).

6.3.3 Reluctant Replacement NFT

When we have the begin marker NFT 𝒯begin, we can construct the second NFT performing
the actual replacement. These two NFTs are used to finally construct the whole 𝒯𝑥+

𝜋→𝑦
.

We already can non-deterministically find the correct begin markers, but we now need
to perform the actual replacement(s) on the input string annotated with begin markers.

We construct an NFT 𝒯 $
𝑥+
𝜋→𝑦

which models the actual reluctant replacement. The idea
is that we read the input string annotated with begin markers and output the same symbols
unmodified on the output tape. Once we encounter the begin marker, we know we have
found the first left-most match, which needs to be replaced. Therefore, we switch to a
”replacement” mode where we read the match without outputting anything, removing all
symbols of the match and all additional begin markers inside the match. After the match
is read, we can insert the replacement for the match onto the output tape. When the
replacement is inserted, we return to the beginning to potentially perform replacement on
another match.

First, we convert the 𝒜𝜋 into a new NFA 𝒜short
𝜋 which accepts (matches) only the

shortest input words. This can be easily performed by removing all outgoing transitions
from all final states in 𝒜𝜋. Clearly,

ℒ(𝒜short
𝜋 ) = {𝑢 ∈ ℒ(𝒜𝜋) | ¬∃𝑢′, 𝑣 ∈ Σ* : 𝑢′ ∈ ℒ(𝒜𝜋)

<|𝑢| ∧ 𝑢 = 𝑢′𝑣 ∧ 𝑣 ̸= 𝜖}.

𝒜short
𝜋 now matches the shortest words in the language of𝒜𝜋, but does not allow skipping

over additional $ encountered during the reading of the match. Such $ need to be skipped,
since $ inside the shortest left-most match represent beginnings of potential matches further
to the right than the left-most match. We need to therefore add a self loop to every state
in 𝒜short

𝜋 with transition symbol $.
Now, the final modification is to keep the next begin marker for the next shortest left-

most match. 𝒜short′
𝜋 can be constructed given Σ*

$ = Σ* ∪ {$} as 𝒜short′
𝜋 = 𝒜short

𝜋 ∩ Σ*
$ · {$}.

𝒜short′
𝜋 can be converted into 𝒯 short′

𝜋 where the existing transitions are the input tape
transitions, and the output symbols are all 𝜖 (NFT only reading the input word—the
match—and consuming the whole match including $ inside the match).

Figure 6.3a symbolically shows how to construct 𝒯 $
𝑥+
𝜋→𝑦

for replacing all shortest left-
most occurrences of regular language 𝜋 with 𝑦.

To replace only one occurrence (the first shortest left-most match), a variation of 𝒯 $
𝑥+
𝜋→𝑦

,
𝒯 $
𝑥1
𝜋→𝑦

can be constructed, as seen in Figure 6.3b. Here we do not return to the beginning af-
ter the first replace, but move to a new state with just reads the rest of the word unmodified
while removing the additional $.
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6.3.4 Whole Regex Reluctant Replace NFT

We have constructed 𝒯begin to insert non-deterministically begin markers into the input
word, and constructed 𝒯 $

𝑥+
𝜋→𝑦

(or 𝒯 $
𝑥1
𝜋→𝑦

) to perform the replacement upon encountering
matches prepended with $. 𝒯𝑥+

𝜋→𝑦
(and similarly 𝒯𝑥1

𝜋→𝑦
) can be constructed by connecting

these two NFTs into a sequence using composition: 𝒯𝑥+
𝜋→𝑦

= 𝒯begin||𝒯 $
𝑥+
𝜋→𝑦

and
𝒯𝑥1

𝜋→𝑦
= 𝒯begin||𝒯 $

𝑥1
𝜋→𝑦

.

ℒ(𝒯𝑥+
𝜋→𝑦

) = {(𝑢, 𝑣) ∈ Σ* × Σ* | 𝑣 = 𝑢+𝜋→𝑦},ℒ(𝒯𝑥1
𝜋→𝑦

) = {(𝑢, 𝑣) ∈ Σ* × Σ* | 𝑣 = 𝑢1𝜋→𝑦}.

6.4 Transducers for Literal Reluctant Replacement
Constructing NFTs for regex reluctant replacement is expensive. Therefore, when the
pattern to be replaced is of a simpler form, namely a string literal, or even a single symbol,
a corresponding NFT for reluctant replacement can be constructed faster.

6.4.1 Single Symbol Replacement

We can construct a replacement DFT for a single symbol reluctant replacement by creating
a single-state DFT with Id(Σ) self-loop transducer transitions. Then only modify the
output transition for the input symbol by replacing it with a transition (or a sequence of
transitions) outputting 𝑦 on the output tape (𝑦 can be either a single symbol or a literal) to
produce the replacement. The handling of all and single reluctant replacement variations
is the same as for regex reluctant replacement: we either return to the original state, or
create a new final state with Id(Σ) self-loop transitions.

6.4.2 Replacement of Finite String Literal

To construct an NFT for the replacement of a string literal 𝑧 with 𝑦, we need to construct
two NFTs.

First, we want to annotate the end of the input words 𝑥 similarly to how 𝒯end annotates
the end of the patterns, but now a simple NFT 𝒯$ with an initial state 𝑞0, final state 𝑞𝑓 ,
and transitions (𝑞0, Id(Σ), 𝑞0), and (𝑞0, (𝜖, $), 𝑞𝑓 ) will suffice. (𝑢, 𝑢$) ∈ ℒ(𝒯$).

Second, we need to construct an NFT 𝒯 $
𝑥+
𝑧→𝑦

for replacing all literals, or 𝒯 $
𝑥1
𝑧→𝑦

for
replacing only the first left-most the shortest literal.
𝒯 $
𝑥+
𝑧→𝑦

= (𝑄,Γ, post , {𝑞0}, {𝑞𝑓}) can be constructed using the following method. We
construct an NFT for 𝑧 where 𝑧 represents the input tape and a sequence of 𝜖 symbols
represents the corresponding output tape. Each state 𝑞 uniquely maps to its corresponding
substring of 𝑦: ℳ : 𝑄 → Σ* is a bijection where ℳ(𝑞0) = 𝜖, ℳ(𝑞1) = 𝑦[0 : 1], ℳ(𝑞1) =
𝑦[0 : 2],ℳ(𝑞2) = 𝑦[0 : 3], etc. Each state therefore represents a ”buffer” of symbols read so
far on the input tape which have not been outputted on the output tape yet. We already
have transitions as constructed from 𝑧 for each state.

Now we add additional transitions as follows:

• If $ is read on the input tape, we output the contents of the buffer ℳ(𝑞) where 𝑞
is the current state (symbols read from the input word but not outputted onto the
output tape yet) and move to 𝑞𝑓 .
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• If 𝑎 ∈ Σ and 𝑧 =ℳ(𝑞) · 𝑎 (𝑎 is the last symbol in 𝑦), we perform the replacement:
outputting 𝑦, and move to the beginning 𝑞0 to continue replacing the next match.

• If 𝑎 ∈ Σ and 𝑎 ̸= 𝑧[|ℳ(𝑞)| : |ℳ(𝑞)| + 1] (𝑎 is not the next symbol in 𝑧—those
transitions are already in 𝒯 $

𝑥+
𝑧→𝑦

), we determine the longest prefix 𝑝 of 𝑧 = 𝑝𝑣 such
that 𝑢𝑝 = ℳ(𝑞) · 𝑎 from left to right. We output 𝑢 onto the output tape (as a
sequence of transition symbols) and move to state 𝑞′ = ℳ(𝑝) which represents the
longest prefix of 𝑧 currently being ”buffered” and not processed yet.

When constructing 𝒯 $
𝑥1
𝑧→𝑦

, instead of moving to 𝑞0 after reading 𝑧 and outputting the
replacement 𝑦, we move to a final state 𝑞𝑓 , and add transitions to simply read the rest of
the input word and output the word unmodified onto the output tape, removing $ at the
end: (𝑞𝑓 , Id(Σ), 𝑞𝑓 ) and (𝑞𝑓 , ($, 𝜖), 𝑞𝑓 ).

To construct 𝒯𝑥+
𝑧→𝑦

(or 𝒯𝑥1
𝑧→𝑦

), a composition of 𝒯$ and 𝒯 $
𝑥+
𝑧→𝑦

(or 𝒯 $
𝑥1
𝑧→𝑦

) is performed:
𝒯𝑥+

𝑧→𝑦
= 𝒯$||𝒯 $

𝑥+
𝑧→𝑦

or 𝒯𝑥1
𝑧→𝑦

= 𝒯$||𝒯 $
𝑥1
𝑧→𝑦

.

Example 11. For literal reluctant all replacement 𝑥+𝑐𝑐→𝑎, we can see that ℳ(0) = 𝜖,
ℳ(1) = 𝑐, ℳ(2) = 𝑐𝑐.

Figure 6.4 shows both variations (replace all and replace single) NFTs for 𝑥+𝑐𝑐→𝑎.
Thanks to our approach, 𝒯𝑥+

𝑧→𝑦
and 𝒯𝑥1

𝑧→𝑦
maintain the same structure after composition

as 𝒯 $
𝑥+
𝑧→𝑦

and 𝒯 $
𝑥1
𝑧→𝑦

. The only difference is that marker symbols $ are replaced with 𝜖.

Note that this approach could be generalized to a regex replacement where the regex
has finite length, similarly to how [41] models finite regex replacements. However, for our
uses in Z3-Noodler, we currently do not solve any industry benchmarks where finite regex
replacement occurs. Further, when modelling finite regex replacement for regex 𝜋 with the
maximal length 𝑛 of a string 𝑢 ∈ ℒ(𝜋), one needs to create states for all possible substrings
of Σ≤𝑛, each with the transitions similar to those in 𝒯𝑥+

𝑧→𝑦
. This is computationally costly,

and the constructed state space increases dramatically.

6.5 Solving SMT Formulae with Replace Operations
The main decision procedure of Z3-Noodler rewrites SMT formulae into a form where
the formula contains regular constraints (where both the variables and the regular con-
straints have assigned regular languages) and Z3-Noodler checks whether the languages
for variables after restricting the languages by the string constraints are non-empty. If
during the procedure a language of some variable becomes empty, there is no assignment
for the formula which could assign the variable a word satisfying the constraints.

The formulae solved by Z3-Noodler which contain replace operations always follow
the following general structure:

𝑥 ∈ . . . ∧ 𝑢 = replace(. . . (replace(replace(𝑥, 𝜋1, 𝑦1), 𝜋2, 𝑦2) . . .), 𝜋𝑛, 𝑦𝑛) ∧ 𝑢 ∈ . . . .

We have a sequence of nested replace operations. There can be between one and about
200 nested replace operations on the benchmarks from industry solved by Z3-Noodler,
usually working with small tens of unique transition symbols3.

3This is thanks to that our decision procedure in Z3-Noodler substitutes transition symbols not explic-
itly worked with in the formula with just two ”dummy” transition symbols.
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Example 12. An encoding for operation toUpper which replaces all lowercase letters in 𝑥
with uppercase letters looks like this:

𝑥 ∈ . . . ∧ 𝑢 = replace(. . . (replace(replace(𝑥, ‘a‘, ‘A‘), ‘b‘, ‘B‘) . . .), ‘z‘, ‘Z‘) ∧ 𝑢 ∈ . . . .

.
Another often performed operation is HTMLEscape which properly escapes special HTML

symbols from the input string 𝑥 so as not to break the HTML when the user input gets
inserted into the HTML webpage:

𝑥 ∈ . . . ∧ 𝑢 = replace(. . . (replace(replace(𝑥, ‘<‘, “&lt;“), ‘&‘, “&amp;“) . . .),
from_code(39), “&#39;“) ∧ 𝑢 ∈ . . .

where from_code(𝑛) performs a conversion from integer code 𝑛 to its corresponding Unicode
character.

And finally, there are operations working with regexes 𝜋:

𝑥 ∈ . . . ∧ 𝑢 = replace(𝑥, “.d+.“, “_$1“) ∧ 𝑢 ∈ . . .

where regex “.d+.“ represents a regex describing one or more occurrences of d surrounded
by one character from both sides. For example, adde matches, but aed does not.

All of these examples come with variants for replacing all or only the first occurrence
of the regex or literal, and with varying number of nested replacements.

The general approach to extend string solvers with support for replace operations and
string transformations in general has already been pioneered in the context of monadic
decomposition-based algorithms, as seen in [23, 1, 5, 47]. However, adding this support for
Z3-Noodler for its stabilization decision procedure is a challenging task with interesting
qualities.

As seen in Example 12, we often reason about regular languages for both the input and
output language of a sequence of nested replace operations. Internally in Z3-Noodler,
each level of the nested hierarchy will get assigned a new fresh variable 𝑥𝑖, so we obtain
from

𝑥 ∈ . . . ∧ 𝑢 = replace(. . . (replace(replace(𝑥, 𝜋1, 𝑦1), 𝜋2, 𝑦2) . . .), 𝜋𝑛, 𝑦𝑛) ∧ 𝑢 ∈ . . . .

a formula similar to

𝑥 ∈ . . . ∧ 𝑢1 = replace(𝑥, 𝜋1, 𝑦1) ∧ 𝑢2 = replace(𝑢1, 𝜋2, 𝑦2) ∧ . . .∧
𝑢 = replace(𝑢𝑛−1, 𝜋𝑛, 𝑦𝑛) ∧ 𝑢 ∈ . . . .

Since we need to propagate the properties of 𝑥 over all the replace operations to 𝑢, we
need a method to propagate the information over the replace operation. Remember that
now we consider both 𝑢 and 𝑥 to be string variables with an assigned regular language,
ℒ(𝑢) and ℒ(𝑥). The problem can be therefore split into smaller problems of form 𝑢 = 𝑥+𝜋→𝑦

(representing a single replace operation from above) and propagating the information from
𝑥 to 𝑢.

In string solving, we work with NFTs with two tapes: the input tape and the output
tape. We define project_input(𝒯 ) and project_output(𝒯 ) as special cases of projections,
performing project_to{0}(𝒯 ) and project_to{1}(𝒯 ), respectively. Performing projection

42



on either tape produces an NFA representing the language of the corresponding tape. The
projection of NFT 𝒯 to its output tape, project_output(𝒯 ), gives us the forward image
of 𝒯 , NFA 𝒜out. Similarly, the projection of NFT 𝒯 to its input tape, project_input(𝒯 ),
gives us the backward image of 𝒯 , NFA 𝒜in.

For the given problem 𝑢 = 𝑥+𝜋→𝑦 with 𝒜𝑥 and 𝒜𝑢 being the NFAs representing the
regular languages assigned to variables 𝑥 and 𝑢, we can compute the language (the corre-
sponding NFA) of the forward image as project_output(𝒯Id(𝒜𝑥)||𝒯𝑥+

𝜋→𝑦
), i.e., the forward

application (propagation) of 𝒯𝑥+
𝜋→𝑦

on 𝒜𝑥 which gives us the admissible ℒ(𝑢) for the given
ℒ(𝑥). The backward image can be computed as project_input(𝒯𝑥+

𝜋→𝑦
||𝒯Id(𝒜𝑢)), that is,

backward application (propagation) of 𝒯𝑥+
𝜋→𝑦

on 𝒜𝑢 which gives us the admissible ℒ(𝑥) for
the given ℒ(𝑢).

Languages of variables as concatenations of regular languages A decision proce-
dure in Z3-Noodler, called stabilization [27] performs automata operations on languages
for variables which may be represented as a concatenation of multiple regular languages for
other variables. For an algorithm called noodlification performed as a part of this proce-
dure, we need to concatenate these languages with special epsilon symbols (different from
those used in construction of NFTs for replace operations). Therefore, we need to handle
these symbols during replace operations as regular symbols, not epsilon symbols, in order to
maintain a clear separation of languages of each individual variables in the concatenation.4.

Flattening of the nested hierarchy of replace operations. To further optimize
the computation of 𝑢 from 𝑥 through a nested hierarchy of replace operations, one can
precompute 𝒯seq as a sequential composition of all NFTs for the corresponding replace
operations.

Then, the hierarchy is flattened into a single 𝒯seq performing all the replace operations
simultaneously: 𝑢 = 𝒯seq(𝑥).

Note that in the benchmarks solved by Z3-Noodler, the patterns being replaced are
unique in that the replacement of one NFT is never later in the sequence matched to the
pattern of another NFT. E.g., operation toUpper performs a sequence of transductions,
each matching one of the lowercase letters of the alphabet and replacing it with its up-
percase version. It never happens that the uppercase letter replacing the lowercase one is
later replaced with some other letter. Therefore, an optimization of flattening a sequence
of transducers satisfying this property can be utilized: the transductions in the whole se-
quence are associative. We can construct the intermediate NFTs for composition of any
combination of NFTs in the sequence, disregarding the order of the NFTs in the sequence,
to more quickly construct the final NFTs for the whole sequence. The reason for why
the nested hierarchy is necessary for SMT formulae encoded in SMT-LIB format is that
since the SMT-LIB format does not allow specifying a single replace operation with multi-
ple (pattern, replacement) pairs, performing operations such as toUpper can be encoded
only as a sequence of independent replacements which is however a suboptimal encoding for
SMT solvers, especially those which can utilize the abilities of NFTs for the representation
of replace operations.

4The epsilon nature of these special symbols is utilized only in noodlification to indicate move between
languages of variables in the concatenated language.
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Length constraints. Some variables may be length constrained in addition to the string
constraints. Length constraints for variables are in Z3-Noodler solved separately using a
LIA (linear integer arithmetic) solver provided by Z3. If the variables 𝑢 and 𝑥 are length
variables, we need to maintain the information about lengths through the replace operation
(which can in general change the length of words between 𝑢 and 𝑥). To propagate lengths
of words through the replace operations, an option would be to compute an existential
Presburger formula 𝜑 based on a computation of a Parikh image of 𝑥+𝜋→𝑦, as described
in [5].

We compute the standard Parikh image [77] on the NFT for replace operation, with
the whole 𝑛-tuples of transition symbols being handled as single macro symbols (obtaining
an NFA over the language of said 𝑛-tuples). 𝜑 now encodes the relationship between the
number of occurrences of 𝑛-tuples (macro symbols) in 𝑠 ∈ ℒ(𝒯𝑥+

𝜋→𝑦
). To get the relationship

between the actual letters 𝑎 ∈ Σ inside the 𝑛-tuples 𝛼, we must extend 𝜑 with variables
𝑎𝑖 counting the number of occurrences of each 𝑎 on each tape 𝑖 (𝑖-th element of 𝛼), and
compute the relationship between each 𝑎𝑖 and #𝛼, representing the number of 𝛼 symbols
in the Parikh image, as: 𝑎𝑖 =

∑︀
𝛼∈Σ𝑛

𝜖 :𝛼[𝑖]=𝑎#𝛼 where it must hold that |𝑥𝑖| =
∑︀

𝑎∈Σ 𝑎𝑖 is
the length of words on each tape 𝑖.

The existing decision procedure of Z3-Noodler will have to be modified further as
follows:

• Adding saturation of replace operations, similarly to how Z3-Noodler saturates
other string functions,

• Inclusion graph [17] used by Z3-Noodler will have to be extended to support replace
operations.

6.6 Implementation.
The discussed algorithms for modelling replace operations using NFTs were implemented
in Mata. The code is accessible in a GitHub repository5 and will be merged into the main
Mata GitHub repository6.

Words and identity insertion. We also implemented a few utility functions which are
useful when constructing or modifying NFTs7 such as

• inserting an identity transition over all tapes (all tapes read/write the same symbol)
over the given alphabet for a specified state.
This is specially useful for string solving where usually one specially handles a small
subset of transitions symbols, but wants to leave the remaining symbols in the input
word unmodified.

• inserting a word for specified tapes or inserting words, one for each tape.
This allows one to quickly create transducers which read a specific word, replace a
specific string literal with a given literal, or remove a specified literal from the input
word.

5https://github.com/Adda0/mata/tree/transducers
6https://github.com/VeriFIT/mata/
7Especially during construction of NFTs for the replace operations and other often used operations in

string solving.
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Chapter 7

Experimental Evaluation

We implemented NFTs with a simple data structure inherited from NFAs without having
to substantially modify the NFA algorithms. For our experiments, we are interested in
how Mata performs when running operations on NFTs modelling the replace operations
required by Z3-Noodler. Modelling replace operations in Z3-Noodler is not the only
use case for NFTs in Mata, but it is the first domain where NFTs will be used. We want
to see whether Mata is performant enough for our use cases and whether the performance
of Mata is comparable with the well-optimized state-of-the-art.

We compare the performance of Mata with a state-of-the-art automata library Mona [44].
Even if Mona does not support finite transducers directly, we have chosen Mona to com-
pare Mata against because Mona is a well-optimized library which, thanks to its ability to
encode transition relation into MTBDDs, provides a reasonable model for encoding finite
transducers. Each tape in a transducer can be encoded as a single variable in the BDD
for a given transition. A sequence of variables then encodes an NFT transition, where the
leaves of the MTBDDs are target states and edges represent the transition symbols. Each
transition symbol is encoded as a bit vector (a sequence of bits). An NFT transition is then
encoded as dummy_1|bitvec_1|dummy_2|bitvec_2 where | denotes the concatenation of
bit vectors. bitvec_i represents a bit vector for a transition symbol on the tape 𝑖. dummy_i
are additional dummy symbols used for determinization (as Mona implicitly determinizes
after every operation).

Performing operations such as composition, projection, or application on NFTs is,
thanks to how Mata encodes NFTs as a representation very close to the representation
of BDDAs, a natural operation for Mona in the encoding explained above.

Intuitively, Mata performs modified NFA operations on NFTs while Mona performs
its BDD-like operations with the proper encoding.

Our goal in these experiments is not to outperform Mona, but to compare how tech-
niques for NFTs using explicit alphabets with support for nondeterminism (Mata) perform
against symbolic alphabets with binary representation of transition relations (binary bit
vectors in Mona) without support for nondeterminism.

7.1 Benchmarks.
For the first group of benchmarks, we have generated a new set of benchmarks from runs of
Z3-Noodler on benchmarks from SMT-LIB [13] which contain string replace operations
str.replace, str.replace_all, str.replace_re and str.replace_re_all. The replace
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operations appear in SMT-LIB benchmarks
non-incremental/QF_SLIA/20230331-transducer-plus
(TransducerPlus, called transducer plus in our experiments), and
non-incremental/QF_SLIA/20230403-webapp
(Webapp, called webapp in our experiments).

We compare the performance of Mata and Mona on benchmarks for the following
operations

• projection to input/output tapes,

• application on a literal (forward/backward),

• application on a language (forward/backward),

• composition of two NFTs, and

• composition of NFTs used during replace NFT construction.

We collect NFTs for each unique replace operation in benchmarks from SMT-LIB solved
by Z3-Noodler. Furthermore, we extend this list by constructing NFTs for partial com-
positions of a sequence of replace operations (various subsequences) which appear in the
SMT-LIB benchmarks.

Projection benchmark. The projection benchmark consists of unique single 2-tape
NFTs for replace operations found in SMT-LIB formulae solved by Z3-Noodler. We
perform projection to tape 0 (projecting out the tape 1), and projection to tape 1 (pro-
jecting out the tape 0). We remove duplicated NFTs in each benchmark, which in total
produces 1749 instances (202 from Webapp, 1547 from TransducerPlus).

Application on a literal benchmark. The application on a literal benchmark consists
of pairs (𝑢, 𝒯 ) where 𝑢 is a string literal and 𝒯 is a 2-tape NFT for replace operations
found in SMT-LIB formulae solved by Z3-Noodler. 𝑢 is constructed as the longest word
in the pattern of the replace operation constrained to the maximal length of word 5 (5
is up to a few exceptions a sufficient length for all replace operations in SMT-LIB). We
perform the forward application of 𝒯 on 𝑢 (Id(𝑢)||𝒯 ). This simulates the forward image
propagation, as described in 6.5, which is an operation to be used in Z3-Noodler. We
remove duplicated pairs (𝑢, 𝒯 ) in each SMT-LIB benchmark, which leaves us in total with
2027 instances (211 from Webapp, 1816 from TransducerPlus).

In addition, we create a second benchmark performing the backward application of 𝒯
on 𝑢 (𝒯 ||𝒯Id(𝑢)). This simulates the backward image propagation, as described in 6.5, which
is an operation to be used in Z3-Noodler. We remove duplicated pairs (𝒯 , 𝑢) in each
SMT-LIB benchmark, which leaves us in total with 2030 instances (214 from Webapp and
1816 from TransducerPlus).

Application on a language benchmark. The application on a language benchmark
consists of pairs (𝒯Id(Σ*), 𝒯 ) where 𝒯Id(Σ*) is a regular language Σ* converted into an identity
NFT, and 𝒯 is a 2-tape NFT for replace operations found in SMT-LIB formulae solved by
Z3-Noodler. We choose 𝒯Id(Σ*) as the regular language since Σ* is the most difficult case
for our method to compute (for each state in 𝒯 , we need to compute operations for all
symbols in the language). We perform the forward application of 𝒯 on 𝒯Id(Σ*) (𝒯Id(Σ*)||𝒯 ).
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This simulates the forward image propagation, as described in 6.5, which is an operation
to be used in Z3-Noodler. We remove duplicated pairs (𝒯Id(Σ*), 𝒯 ) in each benchmark,
which in total produces 1750 instances (203 from Webapp, 1547 from TransducerPlus).

In addition, we create a second benchmark from forward language application bench-
mark, performing the backward application of 𝒯 on 𝒯Id(Σ*) (𝒯 ||𝒯Id(Σ*)). This simulates
the backward image propagation, as described in 6.5, which is an operation to be used
in Z3-Noodler, too. The number of instances is the same as for the forward language
application benchmark.

Composition. Last but not least, we compare the performance of Mata and Mona
on the composition operation. The composition benchmark contains pairs (𝒯1, 𝒯2) where
we perform composition 𝒯1||𝒯2. We performed composition of various NFTs appearing
in a sequence in SMT-LIB benchmarks, including composition of pre-constructed partial
compositions of NFTs for replace operations in these sequences.

We remove duplicated pairs (𝒯1, 𝒯2) in each SMT-LIB benchmark, which leaves us in
total with 2879 instances (130 from Webapp, 2749 from TransducerPlus).

Moreover, we collect intermediate NFTs 𝒯begin and 𝒯 $
𝑥+
𝜋→𝑦

(or 𝒯 $
𝑥1
𝜋→𝑦

) from all 𝒯𝑥+
𝜋→𝑦

(or
𝒯𝑥1

𝜋→𝑦
). We remove duplicated pairs (𝒯begin, 𝒯 $

𝑥+
𝜋→𝑦

) in each SMT-LIB benchmark, which
leaves us in total with 2282 instances (252 from Webapp, 2030 from TransducerPlus).

Pattern matching benchmark. For a second benchmark, we introduce a regular pat-
tern with counters, appearing often in works on pattern matching [50], containing complext
replaceAll operations. The pattern looks similar to the following regular expression:
#.*u.{i, j}u.{k, l}$ where # denotes the beginning of a line, . matches any character,
* denotes Kleene star (zero or more repetitions), {i, j} denotes a repetition where the
number of repetitions is between 𝑖 and 𝑗, and $ denotes the end of a line. u stands here
for an arbitrary specific string, e.g., <script>. The pattern reads as follows: Starting with
any sequence of characters, we match words that end with two strings u separated by 𝑖 to
𝑗 characters and followed by another 𝑘 to 𝑙 characters until the end of the line.

This is one of many examples of such regular patterns. For the purpose of experimental
evaluation, we simplify the pattern as follows: #.*a.{i}$ where a stands for a single symbol
and { i } for a fixed number 𝑖 of repetitions. The pattern reads as: match any word that
has symbol a 𝑖 symbols away from the end of the word.

Usually, the integers for repetitions in pattern matching are parametric, giving us a
parametric benchmark SymbolFromEnd with varying numbers of repetitions. We have
limited our benchmark to numbers 𝑖 between 1 and 150 We construct 𝒯𝑥+

𝜋→𝑦
and 𝒯𝑥1

𝜋→𝑦

for the regular pattern #.*a.{i} replacing the pattern with an empty string. In total, we
create 300 instances in SymbolFromEnd benchmark.

We compare the performance of Mata and Mona on operations application on a lan-
guage (applying 𝒯𝑥+

𝜋→𝑦
and 𝒯𝑥1

𝜋→𝑦
on a language of the matched pattern), and composition

constructing the resulting NFT for replace operation.

Rationale for chosen benchmarks. All of these are the operations which will often be
used on NFTs created to replace operations in Z3-Noodler and will make up the main set
of operations on NFTs once support for transducers is introduced in Z3-Noodler as well.
Furthermore, these are the operations usually performed in any general use of transducers,
since they comprise all the transducer-specific operations one needs when working with
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transducers. The benchmarks TransducerPlus and Webapp from runs of Z3-Noodler
are practical, but very simple benchmarks with small regular patterns, which is however the
first planned application of NFTs in Mata. The benchmark SymbolFromEnd created
from pattern matching benchmarks is practical, and produces a complex problem instances.
The benchmark represents what happens when NFTs are applied to complex replaceAll
problems and problems from other domains than the simplest string solving examples in
SMT-LIB.

Note that since self-loops cannot be easily added to an existing NFT in Mona, for all
operations using composition, we extend the NFTs from benchmarks with additional tapes
to synchronize the tapes in both NFTs and add self-loops manually before measuring the
runtimes of operations.

The generated benchmarks are accessible in a GitHub repository1.

7.2 Results
The experiments were run on GNU/Linux system Ubuntu 22.04.4 LTS (with the Linux
kernel GNU/Linux 5.15.0-106-generic x86_64, CPU AMD Ryzen 5 5600G @ 3.892GHz)
with timeout set to 120 seconds. Due to small runtimes on the majority of instances (a few
milliseconds and less), each benchmark instance was run 3 times and the resulting runtime
is computed as the mean of the 3 runs, which mitigates unexpected runtime deviations
caused by waiting for the assignment of computation unit.

The experimental pipeline and all the raw results of run experiments are accessible in
a GitHub repository2.

The scatter plots show the comparison between Mata and Mona. The axis are linear
with runtimes in milliseconds. The horizontal and vertical dotted lines represent the time-
outs. For graphs with limited range on the axis to more clearly see the comparison on the
majority of the results, all results beyond the displayed area are depicted as timeouts on
the dotted lines. When constructing the tables, after computing the number of timeouts
for each tool, the instances with timeouts are dropped from the results. Therefore, the
tables show runtimes for instances where both tools finished. All tables in this chapter
show the tool used; number of timeouts; and runtimes: minimal, maximal, mean, quantile
0.25, median (quantile 0.50), quantile 0.75, and standard deviation. The times shown in
the tables are in milliseconds.

7.2.1 Projection

We show the performance of projection on a 2-tape NFTs on the input tape (projecting out
the output tape), and the output tape (projecting out the input tape) separately, since in
2-tape NFTs, both cases project the first or the last tape, which requires a more complex
modification of the NFT than projection of a tape in the middle between another tapes.
This results in different runtimes for each projection.

Table 7.1 shows comparison of performance of Mata and Mona on the projection
operation on both benchmarks.

The figures in Figure 7.1 show the same comparison between Mata and Mona with
scatter plots: Figure 7.1a shows the projection to tape 1 (projecting out the tape 0) and
Figure 7.1b the projection to tape 0 (projecting out the tape 1).

1https://github.com/Adda0/smt-lib-replace-transducers-benchmarks
2https://github.com/Adda0/Transducers-in-Automata-Library-Mata_experiments
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method TOs min max mean q(0.25) median q(0.75) std. dev
mata-0 0 0.07 321.07 3.22 1.39 2.70 3.92 11.40
mona-0 0 0.02 2846.18 6.47 0.40 1.58 2.83 98.03
mata-1 0 0.10 2894.50 53.88 7.43 58.67 67.35 100.94
mona-1 0 0.03 3189.42 7.84 0.47 2.23 4.08 109.72

Table 7.1: Projection on both benchmarks. −𝑖 after the tool name specifies which tape was
projected out.
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Figure 7.1: Scatter plots comparing performance of Mata and Mona on operation projec-
tion.

We can see that all projections to tape 1 finish in under 350 ms in Mata. By comparing
means, we can see that the Mata is about 2 times slower than Mona, but is still fast,
finishing 75% of executions in under 4 ms, compared to Mona’s runtime under 3 ms.

On the other hand, projecting to tape 0, i.e., projecting out the tape 1 is more expensive
operation for Mata in the implemented data structure. However, even than Mata finishes
0.75% of executions in under 70 ms. Comparing to Mona, encoding of NFTs in Mona
ensures that the projecting out the tape 1 is similarly expensive to projecting out the tape
0. If the performance of Mata on projection to tape 0 proves insufficient when support for
NFTs is added in Z3-Noodler, one can omit projecting synchronization levels after every
composition (and keep the synchronization levels inside the NFT), or apply the suggested
specialization for composition for 2-tape NFTs which does not need to perform projection
at all.

7.2.2 Application

For each unique NFT 𝒯 , we applied 𝒯 on a word and on a language using NFT application.
Table 7.2 shows comparison of performance of Mata and Mona on the application

operation on both benchmarks applying 𝒯 on a language Σ*. The NFT is forward applied
on the language (𝒯Id(Σ*)||𝒯 ). This simulates the forward image propagation, as described
in 6.5.

Table 7.3 shows comparison of performance of Mata and Mona on the application
operation on both benchmarks applying 𝒯 on a language Σ*. The NFT is backward applied
on the language (𝒯 ||𝒯Id(Σ*)). This simulates the backward image propagation, as described
in 6.5.

Table 7.4 shows comparison of performance of Mata and Mona on the application
operation on both benchmarks applying 𝒯 on a literal.
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method TOs min max mean q(0.25) median q(0.75) std. dev
mata 1 0.07 4.77 2.65 0.91 3.26 3.63 1.41
mona 1 0.05 1.97 0.89 0.39 1.05 1.15 0.47

Table 7.2: Language application on both benchmarks where 𝒯 is forward applied on the
language (𝒯Id(Σ*)||𝒯 ), simulating the forward image propagation.

method TOs min max mean q(0.25) median q(0.75) std. dev
mata 5 0.20 98138.12 436.31 5.95 31.09 50.79 4598.41
mona 5 0.05 8186.49 45.42 1.18 17.19 46.31 298.65

Table 7.3: Language application on both benchmarks where 𝒯 is backward applied on the
language (𝒯 ||Id(ℒ(𝜋))), simulating backward image propagation.

Table 7.5 shows comparison of performance of Mata and Mona on the application
operation on both benchmarks backward applying 𝒯 on a literal.
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Figure 7.2: Scatter plots for comparing the performance of Mata and Mona on forward
application operation on both benchmarks.

From the results in Table 7.4 and Table 7.2 and scatter plots in Figures 7.2 and 7.3, we
can see that applying 𝒯 on a fairly constrained language (in our case directly a literal) is a
quick operation where Mata performs comparably with Mona. However, applying 𝒯 on
a large language such as Σ* (used in our experiments), the application gets more expensive
for Mata, but even then Mata runs in under 4 ms on the forward application benchmark.

This application on Σ* is actually the worst case scenario for Mata, as with Σ*, Mata
has to apply all transition symbols 𝑎 ∈ Σ for each state 𝑠 ∈ 𝑄 of 𝒯 . Nevertheless, the
computation for both the forward and backward application operations for both the literal
and the language finishes in 75% cases in at most 50 ms, which should be fast enough for
Z3-Noodler, especially considering the results of the applications and computations can
be cached and reused during a run of Z3-Noodler. Notice that for application on a literal,
Mata is about 2 to 3 times slower, however, when the language gets larger (Σ* in our case),
the performance on the 3rd quartile is comparable to Mona on the backward application
on the language, and only 2 times slower on the forward application on the language. We
can see that the backward application is more difficult for both libraries. When backward
applying 𝒯 on a literal, Mata times out on a few instances. This calls for a close inspection
of the particular instances. If we find a reason for this slowdown, subsequent optimization
of the data structures and algorithms in Mata according to the results should be possible.
Considering our future uses for application operation in Z3-Noodler, we will sometimes
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method TOs min max mean q(0.25) median q(0.75) std. dev
mata 0 0.14 0.69 0.24 0.22 0.24 0.26 0.05
mona 0 0.17 0.52 0.25 0.24 0.25 0.26 0.05

Table 7.4: Literal application on both benchmarks.

method TOs min max mean q(0.25) median q(0.75) std. dev
mata 16 0.08 51476.79 554.98 3.65 19.41 39.40 4282.76
mona 1 0.05 11863.97 79.63 1.44 11.07 32.10 707.64

Table 7.5: Backward literal application on both benchmarks.

apply on the whole language Σ*, but more often we will apply on a more constrained subset
𝐿 ⊂ Σ* which should therefore perform better on Z3-Noodler runs. If the performance is
then still insufficient, we can implement the aforementioned optimization for composition
for 2-tape NFTs and use in Z3-Noodler this version instead of the general application
implementation for multi-tape NFTs.

7.2.3 Composition

Table 7.6 shows comparison of performance of Mata and Mona on the composition oper-
ation on both benchmarks.

method TOs min max mean q(0.25) median q(0.75) std. dev
mata 15 0.07 54411.24 434.64 3.20 4.16 28.52 3977.53
mona 0 0.05 10476.19 51.04 1.26 1.93 20.97 542.09

Table 7.6: Composition on both benchmarks.

Table 7.7 shows comparison of performance of Mata and Mona on the composition
operation constructing NFTs for replace operations on both benchmarks.

We can see that performance of Mata is comparable to the performance of Mona on
numerous instances for composition constructing replace NFTs, but there is also a similarly
large group of instances in the TransducerPlus benchmark where Mata runs slower.
Mata also has 15 timeouts on the largest compositions created as partial compositions
of a long sequence of compositions. In general, the runtime of Mata is sufficient. We
can see that 75% of instances common in string solving are solved in less than 28 ms in
Mata compared to 21 ms in Mona. Only the partial compositions containing considerably
larger NFTs show noticeable slowdown for Mata. Composition creating the replace NFTs
runs much faster, and Mata is comparable to Mona on many instances, even if slower
on other instances. The runtime for 75% of cases is under 9 ms, about two times higher
then for Mona. As mentioned earlier, if the performance of NFTs in Mata proves to be
a bottleneck in string solving, a specialized algorithm for composition of 2-tape NFTs can
be used instead of the general algorithm for multi-tape NFTs.

7.2.4 Pattern matching benchmark.

The Table 7.8 shows the comparison of Mata and Mona on pattern matching benchmark
SymbolFromEnd on application on the language operation.
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Figure 7.3: Scatter plots for comparing the performance of Mata and Mona on backward
application operations on both benchmarks.

method TOs min max mean q(0.25) median q(0.75) std. dev
mata 0 0.15 25.52 6.35 2.48 7.89 8.89 3.49
mona 0 0.18 25.44 2.59 1.01 2.73 3.52 1.81

Table 7.7: Composition constructing NFTs for replace operations on both benchmarks.

The Table 7.9 shows the comparison of Mata and Mona on pattern matching bench-
mark SymbolFromEnd on the construction of the replace NFT operation.

Mata computed all pattern matching benchmarks quickly, running at most 8 s on the
largest instance with 150 repetitions on the application on the language operation. Mona
managed to compute only the first smallest 14 instances (for both the replace single and
replace all variants, in total finishing 28 on instances). In the remaining 272 instances,
Mona fails to determinize the pattern and runs out of memory. The similar results can be
seen in construction of replace NFTs. Even if the intermediate NFTs are small compared
to the final NFTs for replace operations, Mona manages to compute only the first smallest
35 instances (for both the replace single and replace all variants, in total finishing on 70
instances). In the remaining 232 instances, Mona fails to determinize the pattern and
runs out of memory. The tables show that on the smallest instances, Mona runs faster,
but quickly starts timing out when the lack of support for nondeterminism starts being
an issue for Mona. This benchmark clearly shows that once you start using NFTs on
problems from practice more complex than the simple replace operations in string solving
benchmarks from SMT-LIB, the ability to use explicit symbols on transitions and handling
nondeterminism becomes crucial to all tools applicable to these problem domains.

7.3 Summary
For the string solving benchmarks, the experiments show that Mata has higher base run-
time in comparison with Mona, but in general, 75% of examples are finished in about the
same time in Mata as in Mona, finishing in under 50 ms. Mata runs comparably with
Mona on application on a literal and projection to tape 1. Otherwise, Mata runs slower
than Mona, but even then its runtime is reasonable. There are a few instances where Mata
fails to compute the composition and times out whereas Mona succeeds in computing the
composition. Considering that Mona is a well-optimized library for applications on binary
representations of transition symbols, and the experiments are run on the extreme cases
(application on Σ*) of the operations performed in string solving, which are the most un-
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Figure 7.4: Scatter plots for comparing the performance of Mata and Mona on composi-
tion operations on both benchmarks.

method TOs min max mean q(0.25) median q(0.75) std. dev
mata 0 0.97 8070.18 2397.81 461.98 1743.10 4035.48 2233.84
mona 272 0.29 13095.06 1614.42 2.39 39.25 970.33 3485.11

Table 7.8: Application on language on SymbolFromEnd.

favourable cases for Mata, we consider a success that NFTs in Mata are able to get close
to the performance of Mona, and even outperform Mona in some cases. For most cases,
the performance of Mata should be improved by implementing the optimized composition
specialized for 2-tape NFTs which omits having to insert self-loops and additional levels
into the composed NFTs.

The experiments shown are not the only use cases for NFTs in Mata, but they repre-
sent a selection of operations that will be performed in Z3-Noodler. Furthermore, the
instances of replace operations appearing in SMT-LIB benchmarks are relatively small and
easy to compute. When applying NFTs to examples from practice from other domains, e.g.,
pattern matching [50], the patterns being matched get progressively larger and introduce
more nondeterminism. With the larger patterns, the advantage of Mata being able to
handle nondeterminism naturally proves to be crucial for efficient creation and handling
the corresponding NFTs, quickly outperforming tools without proper support for nonde-
terminism. That is because the complexity of determinization of similar patterns usually
increases exponentially to the numbers in counters.

Due to how close are the representations of NFTs in Mata and Mona, both libraries
perform similar operations, only Mona on deterministic versions of these NFTs. Either
Mona implements more performant data structures than Delta for NFAs in Mata, or
Mona uses some algorithmic heuristics unknown to us at the moment, which should be
however applicable to Mata if we find out about them. We believe that the fast performance
of Mona on small replace operations from string solving shows that there is still space for
optimizations of the performance of data structures and low-level operations used in Mata.
We noticed similar problems with noticeable slowdowns on various NFA benchmarks in our
earlier work on Mata in article [29]. Mata should be able to get even closer to the
performance of Mona after thorough optimization of the data structures in Mata. Since
this is the initial implementation of NFTs, we plan to further thoroughly analyse and
optimize the operations used for both NFAs and NFTs.

We conclude that NFTs in Mata are a competitive implementation of NFTs, are pre-
pared and ready to be used in Z3-Noodler, and the experimental evaluation shows that
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method TOs min max mean q(0.25) median q(0.75) std. dev
mata 0 1.79 7900.85 2211.33 446.27 1623.44 3680.46 1983.68
mona 232 1.04 12664.70 2987.85 79.46 1304.86 4614.69 3791.32

Table 7.9: Composition for replace construction on SymbolFromEnd.

0 5000 10000 15000
0

5000

10000

15000
Apply Language

Mata [ms]

M
on

a 
[m

s]

Benchmark
SymbolFromEnd

(a) Application on the language.

0 5000 10000
0

5000

10000

Construct Replace

Mata [ms]

M
on

a 
[m

s]

Benchmark
SymbolFromEnd

(b) Composition constructing replace opera-
tions.

Figure 7.5: Scatter plots for comparing the performance of Mata and Mona on Symbol-
FromEnd.

the performance of Mata should be sufficient for the uses in string solving. Moreover, we
conclude that NFTs in Mata are capable of handling complex tasks with nondeterminism
or large regular expressions, such as working with counting regular expressions, and are
generally applicable to a large group of domains beside string solving.
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Chapter 8

Conclusion

We have added support for a new model for finite state machines, finite transducers, to
Mata, explained the principles behind NFTs and specifically NFTs in the context of Mata
and Z3-Noodler for string solving. We have created a new data structure derived from
the existing data structures for NFAs in Mata as NFAs with levels, which fit well in the
overall structure and design decision of Mata. The introduced algorithms on NFTs are
closely related to the corresponding BDD-like algorithms on BDDAs and maintain the two
main goals of Mata: simplicity and efficiency, while keeping Mata easily extensible and
understandable for a wide variety of users and applicable to both the areas of automata
research and the industry. Thanks to these design decision, further extending Mata with
support for handling BDDAs will be effortless. We further focussed on utilizing NFTs in
string solving by adding algorithms to model string replace operations defined in SMT-LIB
which will be used in Z3-Noodler for solving SMT formulae with string replace operations,
previously unsolvable by Z3-Noodler.

We compared the performance of NFTs in Mata with a natural encoding of transducers
in the automata library Mona. The experiments show that Mata performs slower than
Mona in string solving, but still runs reasonably fast. When applied to complex regular
expressions such as pattern matching, Mata clearly outperforms approaches without proper
support for nondeterminism. The performance of Mata on 2-tape NFTs can be further
improved by applying the specialized algorithm for composition for 2-tape NFTs.

Overall, the design and implementation of NFTs in Mata is feasible, functional, per-
forms sufficiently enough, and is widely usable, with ready-for-use support for solving SMT
formulae with string replace operations in Z3-Noodler.

Future work. We continue optimizing and developing Mata and the implementation
of NFTs. In the future, we want to apply NFTs to solving string SMT formulae in Z3-
Noodler. In addition, depending on the performance of NFTs in Z3-Noodler, we intend
to add support for symbolic representations for large alphabets using bit vectors represent-
ing sequences of bits, as used in tool Lash [18] and transition representation specific to
NFTs to encode NFT operations such as identity more easily. If the performance of compo-
sition of NFTs in Z3-Noodler proves to be a bottleneck, we can implement the optimized
algorithm specialized for 2-tape NFTs. Since the representation of NFTs in Mata is close
to BDDAs, we intend to study various optimizations used for BDDAs to further improve
the performance of NFTs in Mata, leading to adding support for BDDAs in Mata.
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Appendix A

Contents of the Storage Media

The following list lists the contents of the included storage media. Listed are only the few
top-level folders in the folder hierarchy.

• mata/: The main folder containing the source code for Mata automata library, with
the reference implementation of finite transducers.

• docs/: The LaTeX source files for this work.

• benchmarks/: The benchmarks generated from runs of Z3-Noodler on SMT-LIB
benchmarks, used in comparison of Mata with Mona.

• experiments/: The experimental pipeline with the source code for running experi-
ments comparing Mata with Mona, source code for Mona.

– results/raw/: The storage of raw generated CSV files when running experi-
ments.

– results/processed/: The CSV files with appropriate names prepared for anal-
ysis for experiments shown in this work.

– analysis/: The scripts for analysing run experiments (generate graphs and
tables shown in this work).

∗ plots/: The graphs, tables and plots generated from analysis of the run
experiments shown in this work.

67



Appendix B

Reference Implementation Manual

Here, we describe how our reference implementation for transducers in Mata can be run,
tested, and how one can reproduce the experiments shown in this work.

The experiments shown in this work were run on GNU/Linux system Ubuntu 22.04.4
LTS (with the Linux kernel GNU/Linux 5.15.0-106-generic x86_64). The experiments
should be runnable on any Unix-like system, provided the following requirements are met.

The following programs are required for the implementation and experimental pipeline
to run:

• Python 3.10.12 or higher,

• C++ compiler, experiments run on g++ (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0,

• cmake 3.22.1 or higher,

The experiments can be run as follows:

• Compile and install Mata with finite transducers:
make -C mata release
sudo make -C mata install

• Compile programs in experimental pipeline:
cd experiments/
make -C mona
make -C mata

• Run an experiment:
./run_on_benchmark.py –runs <RUNS> –timeout <TIMEOUT> <OPERATION> <PATH>
where <RUNS> is to be replaced with the number of runs on each benchmark instance
should be run; <TIMEOUT> is the requested timeout for each benchmark instance in
seconds; <OPERATION> is the benchmark operation to run; and <PATH> is the path to a
file containing a benchmark instance in .mata format, or a folder containing (possibly
inside additional subfolders) files with the benchmark instances in .mata format to
run the experiments on.

• Run all experiments from this work:
./run_all_experiments.sh

• See generated CSV files with results in results/raw/.
Copy the files over to results/processed/ with descriptive names.
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• Analyse the results:
cd experiments/analyse
python -m venv .venv
source .venv/bin/activate
pip install -r requirements.txt
analyse.py where analyse.py expects the following CSV files with results in
results/processed/:

– results/processed/<BENCHMARK>_apply_language.csv
– results/processed/<BENCHMARK>_apply_literal.csv
– results/processed/<BENCHMARK>_apply_language_backward.csv
– results/processed/<BENCHMARK>_apply_literal_backward.csv
– results/processed/<BENCHMARK>_projection.csv
– results/processed/<BENCHAMRK>_composition.csv
– results/processed/<BENCHAMRK>_composition_construct_replace.csv

where <BENCHMARK> is replaced with transducer-plus and webapp.
Further, results for benchmark SymbolFromEnd are expected:

– results/processed/symbol_from_end_apply_language.csv
– results/processed/symbol_from_end_construct_replace.csv

69


	Introduction
	Preliminaries
	Finite Automata
	Finite Transducers

	Automata Libraries
	Mata
	Other Automata Libraries

	String Solving
	Noodler
	Software Vulnerabilities in Web Applications
	Replace Operations in String Solving

	Finite Transducers in Mata
	Transition Relation in Mata
	Transducers as Level Automata
	Class Hierarchy
	Epsilon and Don't Care Transitions
	Algorithms
	Synchronization
	Projection
	Intersection
	Composition
	Application

	Implementation

	Transducers for String Solving
	Replace Operations
	Encoding Reluctant Replacement as Transducers
	Transducers for Regex Reluctant Replacement
	End Marker DFT
	Begin Marker NFT
	Reluctant Replacement NFT
	Whole Regex Reluctant Replace NFT

	Transducers for Literal Reluctant Replacement
	Single Symbol Replacement
	Replacement of Finite String Literal

	Solving SMT Formulae with Replace Operations
	Implementation.

	Experimental Evaluation
	Benchmarks.
	Results
	Projection
	Application
	Composition
	Pattern matching benchmark.

	Summary

	Conclusion
	Bibliography
	Contents of the Storage Media
	Reference Implementation Manual

