
Advanced control methods of robotic arm with

computer vision integration

Peter Papcun

Technical University of Košice

Faculty of Electrical Engineering and Informatics

Department of Cybernetics and Artificial Intelligence

Košice, Slovakia

peter.papcun@tuke.sk

Oliver Kudzia

Technical University of Košice

Faculty of Electrical Engineering and Informatics

Department of Cybernetics and Artificial Intelligence

Košice, Slovakia

oliver.kudzia@student.tuke.sk

Abstract—The aim of this article is to model, physically
construct and program a six-axis robotic arm capable of grasping
objects based on visual feedback from a computer vision system
using a Kinect sensor. This article focuses on the theory behind
robotic arm control as well as what kind of actuators are typically
used and also on object recognition analysis using depth maps.
Next it covers the construction aspects of the arm, describes the
software part of the arm control and communication architecture.
The object recognition algorithm and its integration into the
arm’s control system is also described. This article includes
visualization and a graphical user interface, which acts like a
controller for the robot. Finally, the achieved results based on
experiments are presented in evaluation section.

Index Terms—robotic arm, kinematics, control, computer vi-
sion, Kinect

I. INTRODUCTION

With the increasing power of computational technology,

the boundaries of its applicability have significantly shifted.

Gradual progress in the field of microchips has allowed for the

creation of new sensors, including camera systems. Nowadays,

such systems can be found in various industries - they can

be used in autonomous vehicles to detect other participants in

traffic or in manufacturing for quality control, sorting products

or other tasks. This technology can also greatly expand the

capabilities of robotics, as it mimics the optical system of

humans and receives visual stimuli from the surrounding

environment.

This work builds on the foundations of the bachelor’s thesis

Design and realization of the robotic arm’s model with base

control [1] and continues in the field of robotic arms and their

control. The aim is to create a six degree of freedom robotic

arm with stepper motor actuators and expand its control with

computer vision integration. The communication between the

arm and the computer vision algorithm will be mediated by

a client-server architecture. The objects placed on workplane

will be recognized using a depth map extracted from the depth

camera provided by the Microsoft Kinect V2 sensor. The main

purpose is to use this information to grab and manipulate with

objects in pre-defined space. The arm will perform a series

of actions by moving the detected objects to a storage area.

After satisfying certain conditions it will assemble a simple

three-component part. Besides creating a physical model of the

robotic arm, the work also includes its virtual representation

in the form of visualization and a graphical user interface with

elements for controlling both the virtual and physical models.

II. ANALYSIS OF KINEMATICS

From a control perspective, it is necessary to initially

characterize a robot with parameters that allow working with

its mathematical model. Generally, the parametric description

of a robot is called kinematic structure, providing values

for translational and rotational components. Combining these

components leads to the creation of a kinematic chain. As

stated in [2], robots are classified based on their kinematic

structure to:

• serial robots - an open kinematic chain (open loop), such

as a robotic arm,

• parallel robots - a closed kinematic chain (closed loop),

such as a Stewart platform,

• hybrid robots - a combination of both types of chains.

Another essential criteria in robot classification is the number

of degrees of freedom. The degree of freedom is defined as

the number of parameters needed to specify the mechanism’s

configuration concerning the number of links, joints, and

mobility at each joint [3]. In the context of industrial robotic

arms, this concept describes a rotational joint with a single axis

of rotation. According to [2], robots are categorized based on

the number of degrees of freedom to:

• universal robots - with exactly six degrees of freedom,

uniquely defining the position and orientation of the

object’s manipulation in a Cartesian coordinate system,

• redundant robots - with more than six degrees of freedom,

much more flexibility, making it capable of moving in

confined space,

• deficient robots - with less than six degrees of freedom,

typically SCARA robots.

From these concepts, it is evident that an industrial robotic

arm is classified as a serial universal robot. As mentioned

earlier, industrial robots use only two basic types of kinematic

pairs in their kinematic chains - rotational (R) and translational

(T). Based on the axis of the coordinate system, rotations

are denoted by Rx, Ry , Rz , and translations by Tx, Ty ,



Tz respectively. To fully determine any point in space, six

independent coordinates in total are required.

A. Forward and Inverse Kinematics

An important part of the analysis of robotic arm kinematics

is to know the complete kinematic model of the mechanical

system, which provides all the essential quantities for both

the dynamic model and the control of the robotic system. This

mainly involves the position and orientation of the end effector

given time t and the corresponding movement of the individual

links of the entire mechanism. The position of these links is

generally described by coordinates. In robotics, the term joint

variables is often used to indicate the rotation or translation

of individual motion axes. Within kinematics, two important

concepts are introduced – forward and inverse kinematics. Fig-

ure 1 illustrates the relationship between forward and inverse

kinematics. Angles α, β, γ, δ, ϵ... represent all the rotations of

Fig. 1. Schematic representation of forward and inverse kinematics

n joints within the kinematic chain. Coordinates Tx, Ty, Tz

and Rx, Ry, Rz represent the final position and orientation of

the end effector in a Cartesian coordinate system.

Forward kinematics deals with computing the end effector

coordinates of the kinematic chain based on its joint rotations.

For example a robotic manipulator consists of serial links,

which are attached to each other by rotational or prismatic

joints from their base up to the end effector. To systematically

solve the forward kinematic task of the robot, an appropriate

kinematic model [4] must be used. Each rotation and trans-

lation can be mathematically interpreted as a transformation

matrix and expresses one coordinate system. Multiplying

these matrices in series results in a homogeneous composite

transformation matrix. The calculated matrix contains infor-

mation about the end effector position in space. However, an

additional calculation, further explained in [1], is required to

determine the orientation of this point.

Conversely, the problem of inverse kinematics is substan-

tially more complex and has been studied for many decades. It

is necessary for the control of industrial robotic arms and its

solution is computationally expensive. The definition of the

inverse kinematic task is opposite to forward kinematics. It

refers to the backward process calculating the parameters of

joint rotations based on the specified position and orientation

of the end effector. The tasks to be performed by the robotic

manipulator are defined in Cartesian space, while the actu-

ators operate in so-called joint space. The conversion of the

position and orientation of the manipulator’s end effector from

Cartesian space to joint space is called the inverse kinematic

problem. There are two main approaches for solving it –

geometric and algebraic – which are used for the analytical

derivation of the inverse kinematic solution. [4]

However, inverse kinematic solutions have certain disadvan-

tages, such as non-existence of solutions or multiple solutions,

which results in higher computational complexity when the

number of joints in the kinematic structure increases. For this

reason a lot of research currently attempts to find new methods

to solve the problem of inverse kinematics with reduced

computational complexity, faster, and more accurately. The

most commonly used methods for solving inverse kinematics

can be classified into three categories – algebraic, geometric,

and iterative methods. These methods are further explained in

[4], [5] and [1].

B. Actuators

Each controlled axis of a robotic system requires its own

actuation, which must provide precise and slow, or fast move-

ments with sufficient acceleration and deceleration. The drive

unit is typically referred to as an actuator and belongs to the

set of components that act upon the system. Electric drive is

the most commonly used type of drive in practice and is most

suitable for robots that do not only require high speeds and

power, but also precision and repeatability. Their use in this

sector is particularly interesting due to their simple integration

into the system as well as their control and reliability. Electric

drives are classified as motors or servo motors powered by

direct or alternating current and stepper motors.

The most popular motor is the stepper motor, which pro-

vides high accuracy and good controllability. It works with

individual discrete states called steps. As stated in [6], elec-

tromagnetic stepper motors are multi-polar and multi-phase

synchronous motors adapted to operate in a stepping mode.

They are most commonly used as open-loop positional digital

servo drives, without direct sensing of the rotor position of the

motor. In terms of coil winding, there are unipolar and bipolar

motors. The principle of motor operation involves gradually

switching current impulses to the stator coils, creating a

rotational magnetic field. The frequency of coil switching

determines the rotational speed of the magnetic field, which

is directly proportional to the speed of the motor. In robot

motion control systems, stepper motors are typically part of a

closed loop system, where feedback is provided through the

sensor response from an encoder located inside the joint.

A significant part of the robotics joint actuation solution are

gearboxes. In practice, there are various types of gearboxes,

such as spur gears, worm gears, tooth belts or chains. Servo

drive speeds are reduced through special robust gearboxes with

high reduction ratios and operating without backlash. High

reduction ratios make it possible to achieve larger torques

required for the movements of robotic arms. [7]

III. OBJECT RECOGNITION ANALYSIS

Besides to conventional color cameras (similar to human

vision), there is a special kind able to provide information



about the distance between the camera and the environment

– a depth camera. It allows to obtain data from an additional

dimension, giving it an advantage especially in more complex

tasks where a regular camera system is no longer sufficient.

For example in mobile robotics it is used for determining

distances of objects surrounding the robot for the purpose of

obstacle avoidance or for mapping the environment. It can be

also applied in object detection and recognition.

A. Microsoft Kinect V2

In 2010 Microsoft introduced a new type of sensor. The

Kinect was designed to serve as an interactive controller for

Xbox consoles. It consists of a camera system composed

of a color RGB camera and an infrared laser projector. A

newer version of the Kinect sensor (labeled as Kinect V2)

released in 2012 uses Time-of-Flight technology to capture

depth information. The working principle is based on emitting

infrared light beams into the environment and measuring the

time it takes for them to be reflected back to projector. [8]

TABLE I
TECHNICAL SPECIFICATIONS OF KINECT SENSORS

Parameter Kinect V1 Kinect V2

RGB camera 640× 480 px 1920× 1080 px

Frame rate 30 fps 30 fps

Depth/IR camera 320× 240 px 512× 424 px

Max distance ∼ 4500 mm ∼ 4500 mm

Min distance 400 mm 500 mm

Principle Structured Light Time-of-flight

The technical specifications of both versions of the Kinect

sensor are compared in Table I. There are many studies

describing the differences and comparisons between these two

versions. For example, [9] further discusses the use of this

technology in robotics and computer vision.

In order to use this sensor in a computer vision application,

it is necessary to process image information on a computer.

Since Kinect is primarily a peripheral for Xbox consoles,

Microsoft has introduced a special adapter to connect Kinect

sensor to a computer running Windows operating system on

it via USB 3.0. Working with data gathered from sensor is

possible in multiple programming languages with appropriate

libraries installed.

B. Depth Map

A depth map is represented by a two-dimensional matrix

of distances between the depth camera sensor and the surface.

The Kinect sensor measures these distances in millimeters,

with values ranging from a range of 400mm ≤ d ≤ 4500mm.

However, the acquired depth map is generated by projecting

surface points only and therefore does not obtain full vol-

umetric data of the scenery. As stated in [10], information

from the depth map can also be accessed through projection

into a point cloud. This approach allows, among the other

things, potential visualization of data in the form of isolated

points in 3D space. As the Kinect captures RGBD data (three

color channels for red, green, and blue and one channel for

depth), it also allows assign a color value for each point. The

advantage of transforming a depth map into a point cloud

is its applicability in algorithms like 3D SIFT for keypoint

detection and descriptor extraction. These kind of methods

are particularly useful for advanced computer vision tasks.

C. Image processing methods

In general every image information obtained through cam-

eras needs to be pre-processed. From an information theory

perspective, the pre-processing does not result in any loss of

information, it can only be highlighted or suppressed. This

is mainly due to the fact that the captured image contains

redundant data, which can be reduced using certain methods.

The most common image disturbances are noise, distortions

caused by the properties of the imaging device (correction

is done using affine transformations) [11], and bad ratios of

brightness and contrast. Various types of methods or algo-

rithms from the computer vision domain can be applied later

after pre-processing.

D. Object recognition

By combining multiple image processing methods we can

obtain an algorithm capable of object recognition. The task is

to identify for example the type of object. Using basic image

processing methods, it is able to convert the full-color image

into a grayscale image. That way, we can handle data with

better computation efficiency. Then, by applying operations

such as Gaussian blur (which involves convolution) or edge

detection (e.g. Canny edge detector) the resulting image is

prepared to be used for specific computer vision methods. For

example, the Hough transform has the capability to identify

either lines or circles in the image. All methods contribute

to the extraction of data which may be useful in solving the

given problem. A similar approach can be used to evaluate

depth maps. The only difference is that now we also have

information about depth of the image. For a better illustration,

the parallel between a depth map (in this case represented as

a point cloud) and a grayscale image is illustrated in Figure 2.

Objects protruding from a homogeneous surface plane (shown

Fig. 2. Transformation of depth map to grayscale image

in dark red color in a point cloud) have lower pixel brightness

values than their surroundings. This way, a grayscale image

suitable for pre-processing by conventional computer vision

methods can be obtained. The advantage of this solution is

the gathering more information to support recognition.



IV. DESIGN AND REALIZATION OF ROBOTIC ARM

The process of developing a robotic arm consisted of several

steps. At the beginning, a full design of the robotic arm model

was created, focusing on its construction aspects, drive units

and sensors. The design of individual parts was made in CAD

software Fusion 360. The arm’s actuators are NEMA stepper

motors and microswitches implemented in each joint are used

for arm centering. The development of the robot components

started with the design of its base. The base is the most critical

part because the entire weight of the arm rests on it. As for

the next part, standard industrial GX-12 connectors are located

at the rear of the base, providing I/O interface for sensors

and actuators. A NEMA 23 stepper motor is propulsing first

joint of the arm, providing sufficient rotation torque. The same

type of stepper motor also drives the second joint, which is

located above the base and must also provide sufficient torque.

A NEMA 17 motor is located in the middle of the robotic arm.

The top part of the robot contains the last three joints driven

by small NEMA 14 motors. Microswitches inside each joint

are used to detect certain position and together with motors

they form an open-loop system similar to a 3D printer. This

microswitch system is later used in centering procedure of the

arm. A gripping mechanism is also present as the end effector

of the arm. As a robotic gripper we used the one used in open-

source project of the company BCN3D [15]. The power supply

and signals for gripper are transmitted by a cable with special

connector located at the top part of the robot. The final model

of the robotic arm is shown in Figure 3. The designed parts

were physically manufactured using 3D printing technology.

Later they were assembled using standard fastener materials

(screws and nuts) of the DIN 912 and DIN 934 standards.

As shown in the figure, a two-color combination of blue and

black was chosen.

Fig. 3. Physical model of the robotic arm

It was also necessary to resolve how the arm should be

controlled. Given that specialized control units are used in

practice to control industrial robotic arms [12], we took

inspiration from this approach. All key control elements,

such as stepper motor drivers, main control unit, single-board

computer Raspberry Pi and power supply are stored in one

place. This mediate the transfer of important electrical signals

between the control system and the arm. We have created

a decentralized control architecture that combines a local

control box with a laptop via the TCP protocol. A summary

diagram of the control architecture is shown in Figure 4

with symbolic representations of the communication flows

through arrows. The block structure divided into several parts

expresses specific topological connections of control programs

and their relationships. The control is divided into a part with

Fig. 4. Communication and control architecture

calculations performed on the laptop and a part with control

procedures launched on local devices inside the control box.

Communication between the laptop and the Raspberry Pi is

done by a client-server architecture via mobile access point.

Core of the control program consists of five applications:

1) The WPF GUI application is a graphical user interface

made using the Windows Presentation Foundation [17].

2) The VisualizationServer application handles the visual-

ization of the robotic arm using the Open3D library [16].

3) The ComputerVisionServer application is responsible

for obtaining the depth map from the Kinect sensor,

preprocessing it, detecting and identifying the topmost

object, and interpreting it into a four-value data structure.

4) The RasbperryServer application runs on a single-board

computer Raspberry Pi inside the control box, after it

receives data from the laptop it transmits them via UART

serial communication to the main control unit (custom

board based on STM32 microchip).

5) The Multicast application serves as a communication

mediator between the graphical interface and all other

server applications.

Each application performs a specific task in whole control

process. The kinematic calculations for the robotic arm are

computed on the laptop. Similarly, arm visualization represent-

ing a virtual twin is running on the same computer together

with the graphical user interface for manual arm control. Also,

the computer vision module is operated through this user

interface. The Table II lists the IP addresses and correspond-

ing ports of each application. From the control architecture

diagram, it follows that the graphical interface connects to

the Multicast server as a client application (the last row

in the table) and communicates with the other applications.



TABLE II
LIST OF IP CONFIGURATIONS FOR APPLICATIONS

Application IP adress Port

VisualizationServer 127.0.0.1 27001

ComputerVisionServer 127.0.0.1 27002

RaspberryServer 192.168.137.94 27003

Multicast 127.0.0.1 27000

The transmitted data is encoded in the JSON format, which

has been chosen for its convenient manipulation in various

programming languages.

V. COMPUTER VISION INTEGRATION

After creating the robotic arm, we moved on to designing

a computer vision module and integrating it into the control

system. Initially, the location of the Kinect had to be de-

termined. We created a stand from aluminum profiles. Total

workspace created beneath the camera system has dimensions

of 610mm× 350mm× 750mm, providing enough clearance

for the robotic arm to perform its tasks. Optimal sizes and

shapes of the objects the robotic arm will manipulate were

also chosen during this process. We decided to use three types

of objects:

• box – a block with a square-shaped plan with a cylindrical

opening in the upper part,

• cylinder – an object with circle-shaped plan,

• toroid – a ring with an annulus-shaped plan.

Combination of these bodies creates simple three-component

part symbolizing a metal base (box) with an axis (cylinder)

and a bearing (toroid).

The next step was to design the individual parts of the

computer vision system. This includes the method of extract-

ing the depth map, its preprocessing, object recognition, and

subsequent use of the obtained information in the arm control

process. This way, the arm is able to respond to visual stimuli

in the form of object recognition and subsequent manipulation

of the object to the storage region. The depth map is obtained

from the Kinect sensor using a special adapter with a USB

cable connected to a desktop computer. At the beginning of

the recognition algorithm, an initial sensor calibration is per-

formed to determine the equation of the workspace plane. For

this purpose, the RANSAC method [13] is used to determine

the distance between the sensor and the plane. The task of

the application ComputerVisionServer.py running on a laptop

is to capture the depth map, preprocess it, and then detect

and identify the topmost object if a request is received from

the client. The coordinates of found object are remapped from

the image coordinate system to the robotic arm coordinate

system before being sent. The output from the computer vision

system is a four-value data structure, which includes three

Cartesian coordinates of the object x, y, z defined as floats

and the type of the object defined as a string (for example

300,−15, 64, “cylinder”). The entire structure of the algorithm

is schematically shown as a simple block diagram in Figure 5.

The final stage of the entire algorithm is to identify the

type of the topmost detected object. The recognition solution

Fig. 5. Simple block diagram of the algorithm

is inspired by the voting system used in the Hough transform

[14]. We simplified this idea and adapted it to the needs

of our program. The voting process involves a step-by-step

search and analysis of each layer of the depth map (Figure 6).

Starting from the highest detected point, we move downwards

by n layers, as shown in the figure. In each layer, a certain

series of operations is performed, which contributes to the

voting system. These operations include counting the number

of blobs, finding line segments as well as their lengths and

counting the number of detected circles and their radii. Voting

Fig. 6. Cross-section analysis of a depth map used in the algorithm

is done by gradually contributing heuristically chosen floating

point numbers within the range ⟨−5.0; 5.0⟩ to each of the

three object types based on certain pre-defined conditions

preprogrammed into the system. The object with the highest

accumulated voting number determines the final recognition

outcome.

VI. VISUALIZATION AND USER INTERFACE

As part of the solution of robotic arm control system, a

visualization and a graphical user interface were created. The

visualization software allows to test kinematic calculations and

verify both forward and inverse kinematics of the arm. As

an example, graphic elements for manual control of forward

kinematics are displayed in Figure 7. Additionally, it protects

the construction of the physical model from damage caused

by illegal kinematic poses. Arbitrary given robot kinematic

position can be at first tested virtually and then can be sent to

physical model of the arm. The user interface acts as a central

controller for the robotic arm with the ability to interactively

work with both the virtual and physical models. It also contains

control elements for the computer vision module to recognize,

manipulate and assemble three-component part.



User interface is divided into three main tabs in the top

panel of the window. Tab named Model is the most important

part of the interface. It consists of a few tabs located in

the left panel – Forward Kinematics, Inverse Kinematics,

Computer Vision, Visualisation Mesh, Connection and Ap-

plications. The functionality of each tab is described by its

name. The startup procedure is simple and consists of three

operations. The first step is to run each application server

from the Applications menu. A command-line shell for each

application is automatically opened in the background. Within

the command-line an appropriate Python script is executed. On

Fig. 7. Graphical user interface for robotic arm

the Raspberry Pi computer this step must be done manually

by running the RaspberryServer.py application. The order

in which the VisualizationServer.py, ComputerVisionServer.py,

and RaspberryServer.py applications are launched does not

matter. However, it is important to start Multicast.py as the last

application due to the communication architecture. All servers

are interconnected through the Multicast.py, allowing the GUI

to communicate with them. The connection is established by

entering the appropriate IP address and port in the Connection

GUI section. A green indicator in the upper right corner of the

window informs the user of a successful connection.

VII. EVALUATION OF THE EXPERIMENTS

In the final process we verified individual parts of the

robotic system. Achieving the given task required a series of

steps which are hierarchically interconnected. The assembly

of the three-component part is conditioned by the correct ar-

rangement and number of objects within the storage area. The

positions of these objects on the surface are conditioned by the

proper gripping and manipulation with detected object, which

relates to the kinematic precision of the robotic arm. In order

to ensure an incremental form of testing, the evaluation of

the solution was divided into three phases. Firstly, the robotic

arm and its ability to grip objects were tested. Secondly,

the reliability of the recognition algorithm was evaluated.

Finally, the success of assembling a three-component part was

experimentally verified.

A. Kinematic Precision Testing

The testing of the robotic arm was performed by measuring

the precision of the end effector position. This determined the

ability of inverse kinematics to acquire the given point with a

certain accuracy. Experimental verification was carried out by

randomly generating a set of points within a defined space in

front of the arm. The generated values were for the x-axis in

the range of x ∈ ⟨180.0; 400.0; ⟩, for the y-axis in the range of

y ∈ ⟨−270.0; 270.0; ⟩, and for the z-axis in the range of z ∈
⟨0.0; 500.0; ⟩. We performed 8 independent experiments using

the Euclidean distance metrics between the given point and the

actual point acquired by the end effector of the manipulator.

The measurements showed that the average deviation between

the expected and actual point was approximately 17mm.

B. Object Grip and Manipulation Testing

Further testing of the robotic arm focused on grasping and

moving with objects, thus verifying the arm’s ability to pick up

objects from a pile located in front of the robot. The geometric

properties of each object satisfies the requirements for gripping

with the gripper mechanism. Also, the weight of the objects

are appropriate for this task. A total of 24 independent attempts

were performed – 8 attempts for each type of object. We found

out that the box did not cause any significant problems in the

gripping procedure. The only problematic cases were when

the orientation of the box was at an angle of around 45◦ ± 5◦

with respect to the reference coordinate frame of the working

plane.

C. Object Recognition Evaluation

The process of experimental verification of recognizing

the topmost object found in workspace was carried out by

randomly placing a varying number of objects in front of the

robot. A total of 30 attempts were made, with 10 attempts

reserved for each type of object. As each recognition test was

conducted with a different number of objects and variable

density of their arrangement, we also examined possible

effects on our recognition algorithm. No correlation was found

between the number of objects and the results, because the

algorithm is only set to search for and identify the highest

object in the heap. However, some problems arose with objects

of similar height and close proximity to each other. The

layered scanning implemented in the algorithm captured lines

and circles from the vicinity of the highest point, which led

to incorrect identification of object type. We summarized the

results in the confusion matrix. Analysis of the matrix revealed

that the cylinder had the least stable recognition success rate.

Categorization of the box showed the best results with 90%

accuracy. The cylinder object was successfully recognized in

60% of cases due to the similar radius of the circle found in

the box or toroid. The toroid had a higher, 70% success rate,

and the algorithm confused this object with the box in 30%

of cases.



D. Part Assembly Experiments

In order to evaluate the success of the assembly in some

way, we chose a quantitative approach to test this process.

We created Table III with a set of three columns representing

the number of complete, partial and failed assemblies. After

conducting 20 attempts, we recorded the results in the table

according to the outcome of each attempt. Results provided in

TABLE III
SUCCESS TABLE OF PART ASSEMBLY

Complete assemblies Partial assemblies Failed assemblies

12 4 4

the table shows that the robotic arm was able to successfully

assemble the part with a 60% success rate, while the remaining

40% of all attempted trials resulted in the arm assembling the

part either partially or unsuccessfully. The achieved results of

the robotic system can be improved with sufficient time for

fine-tuning critical segments of the robotic system, such as a

more precise recognition algorithm or the upgrade of objects

to weight more.

VIII. CONCLUSION

The goal was to design, model, and construct a physical

model of a robotic arm, program its control, and expand it to

work with image information obtained from a Kinect sensor.

The combination of the arm and the camera resulted in a

robotic system capable of grasping objects and assembling

them into a simple three-component assembly. The entire

project can be summarized in several stages. Initially, it was

necessary to consider what the robotic arm would look like

and what tools would be used in the process of physically

constructing the robot. We also became familiar with the

Kinect sensor, using the programming language Python to

communicate with it. Initial tests were performed to obtain

a depth map from the sensor, and an object recognition

algorithm was devised. Due to the fact that the robotic arm

and computer vision system can work separately, it was nec-

essary to properly connect these units. This stage involved the

development of control infrastructure for the robotic system.

We came up with a decentralized architecture where part of

the operations are performed on a laptop, and a portion is

executed locally in the robot’s control unit. The entire control

system uses a client-server architecture and facilitates data

exchange between the software running on the laptop and

the control program in the box. Additionally, we created a

virtual representation of the arm in the form of visualization

and a graphical user interface that provides interactive control

of the robot without the presence of its physical form. The

interface offers the possibility of manual mode for controlling

kinematics and gripping mechanisms. Control with computer

vision integration is available to the user in a semi-automatic

mode with sequential command triggering. After recognizing

an object and moving it to a storage surface via the robotic

arm, it is checked whether a simple three-component assembly

can be assembled from the recognized objects. If this condition

is met, the assembly is assembled without any necessary user

intervention.

REFERENCES

[1] Kudzia, O. Návrh a realizácia modelu robotického ramena so základným
riadenı́m. Technická Univerzita V Košiciach, Bakalárska Práca. (2021)

[2] Skařupa, J. Prumyslové roboty a manipulátory. (VŠB-Technická uni-
verzita,2008)

[3] Pennestri, E., Cavacece, M. & Vita, L. On the computation of degrees-
of-freedom: a didactic perspective. International Design Engineering

Technical Conferences And Computers And Information In Engineering

Conference. 47438 pp. 1733-1741 (2005)
[4] Kucuk, S. & Bingul, Z. Robot kinematics: Forward and Inverse kine-

matics. (INTECH Open Access Publisher,2006)
[5] Dahari, M. & Tan, J. Forward and inverse kinematics model for robotic

welding process using KR-16KS KUKA robot. 2011 Fourth Interna-

tional Conference On Modeling, Simulation And Applied Optimization.
pp. 1-6 (2011)

[6] Žalman, M. Akčné členy. (Slovenská technická univerzita v Bratislave,
Fakulta elektrotechniky a informatiky,2002)

[7] Levice, S. Základné moduly robota – Pohony. (2015),
https://www.spslevice.sk/ucebnice/SOC/SOC%20-%20PRI/107-
Zakladne moduly robota.htm, [online]. cit. 2023-08-03

[8] Le, T. & Lin, C. Color and depth mapping of Kinect v2. The 16th In-

ternational Conference On Automation Technology. pp. 208-213 (2019)
[9] Wasenmüller, O. & Stricker, D. Comparison of kinect v1 and v2 depth

images in terms of accuracy and precision. Computer Vision–ACCV

2016 Workshops: ACCV 2016 International Workshops, Taipei, Taiwan,

November 20-24, 2016, Revised Selected Papers, Part II 13. pp. 34-45
(2017)

[10] Šikudová, E., Černeková, Z., Benešová, W., Haladová, Z. & Kučerová, J.
Počı́tačové videnie. Detekcia A Rozpoznávanie Objektov. pp. 397 (2013)

[11] Bieniecki, W., Grabowski, S. & Rozenberg, W. Image preprocessing for
improving ocr accuracy. 2007 International Conference On Perspective

Technologies And Methods In MEMS Design. pp. 75-80 (2007)
[12] AG, K. KUKA KR C4. (2023), https://www.kuka.com/en-

us/products/robotics-systems/robot-controllers/kr-c4, [online]. cit.
2023-23-03

[13] Fischler, M. & Bolles, R. Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated
cartography. Communications Of The ACM. 24, 381-395 (1981)

[14] Duda, R. & Hart, P. Use of the Hough transformation to detect lines
and curves in pictures. Communications Of The ACM. 15, 11-15 (1972)

[15] BCN3D BCN3D MOVEO: A Fully Open Source 3D Printed
Robot Arm. (2016), https://www.bcn3d.com/bcn3d-moveo-the-future-of-
learning-robotic-arm/, [online]. cit. 2023-21-03

[16] Zhou, Q., Park, J. & Koltun, V. Open3D: A Modern Library for 3D
Data Processing. ArXiv:1801.09847. (2018)

[17] Microsoft What is Windows Presentation Foundation
- WPF .NET. (2023), https://learn.microsoft.com/en-
us/dotnet/desktop/wpf/overview/?view=netdesktop-7.0, [online]. cit.
2023-05-04


