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ABSTRACT

In the field of recommender systems, shallow autoencoders have
recently gained significant attention. One of the most highly ac-
claimed shallow autoencoders is easer, favored for its competitive
recommendation accuracy and simultaneous simplicity. However,
the poor scalability of easer (both in time and especially in mem-
ory) severely restricts its use in production environments with vast
item sets. In this paper, we propose a hyperefficient factorization
technique for sparse approximate inversion of the data-Grammatrix
used in easer. The resulting autoencoder, sansa, is an end-to-end
sparse solution with prescribable density and almost arbitrarily low
memory requirements — even for training. As such, sansa allows
us to effortlessly scale the concept of easer to millions of items
and beyond.
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1 INTRODUCTION

Although data sparsity is typically viewed as an obstacle for rec-
ommender systems (RS), it presents an opportunity for developing
efficient algorithms, e.g., via collaborative filtering (CF). Conceptu-
ally, CF methods extract the wisdom of the crowd from a (poten-
tially very sparse) graph representation of the interactions inside
the crowd. Over the years, many CF methods have been developed,
with the current state-of-the-art dominated by graph neural net-
works [21, 31, 37, 47] and autoencoders [28, 33, 38, 41]. Among
especially popular shallow autoencoders [33, 41], the linear model
easer [41] is one of the most prospective thanks to its state-of-the-
art recommendation accuracy — even compared to deeper models
[15], straightforward implementation derived from the closed-form
solution, and faster training than deeper models, e.g., [28, 33]. Given
training data — a user–item interaction matrix1 - ∈ R |U |× |I | —
the training of easer proceeds as follows:

(1) Compute a regularized Grammian � = -)- + _� . (This step
may be done in the pre-training phase.)

(2) Compute % = �−1.
(3) Post-process % (by column scaling) to obtain weights �.

During the inference, the model predicts ratings as ®A) = ®D)�, where
®D is the input vector of the user’s feedback.

Unfortunately, broader adoption of easer in real-world RS is dif-
ficult due to the model’s poor scalability with respect to the volume
of items |I |. Inverting a large matrix (Step 2) can be prohibitively
slow for use in production software. More importantly, the learned
weight matrix may require too much memory — even if the data-
Gram item–item matrix � is very sparse. It is well known that
the inverse of an irreducible matrix is fully dense (regardless of
the sparsity of the original matrix); see [16, 36]. Since the eventual
irreducibility of � stems from the connectedness of the underlying
item–item network, we may expect the weight density to cause
a problem. As an example, for a dataset with 1 million items, easer

would have up to 1 trillion parameters, requiring up to 4 TB of
memory (using float32) during inference; this is far too expensive
for many relevant use-cases.

Our paper offers a solution: an accurate sparse approximate
model. To facilitate efficient training, we propose a sparse approxi-
mate inversion framework with two specific variants depending on

1The matrix is typically large, sparse, and overdetermined ( |U | ≫ |I |).
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training-time resource availability. When training time, rather than
memory, is limiting, we propose a fast (but more memory-intensive)
training procedure by exploiting the sparsity or supernodal struc-
ture of �. Otherwise, if memory is the bottleneck (as common in
large-scale production RS), we utilize the sparsity of item associa-
tions for a fast, end-to-end sparse training with almost arbitrarily
low memory overhead. This allows us to effortlessly scale the con-
cept of easer to millions of items and beyond.

1.1 Related work

On domains with vast item sets, direct data about the relation
between a random item pair is statistically unlikely to exist (-)- is
sparse; see Section 4 for an example). Since both users and itemsmay
have only a few interactions, locally-focused CFmethods [21, 31, 47]
may struggle with long-tail items and niche users. The power of
easer stems from its ability to find important long-distance item
relations via long chains of users [41], making it very desirable for
use in large-scale settings. However, its difficult scalability poses
a severe obstacle, motivating several modifications [24, 40, 42–44,
46]. For conciseness, we only discuss the two variants focusing on
efficient, scalable training.

elsa [46] approximates the weight matrix of easer as the Gram-
mian of a dense low-rank weight matrix optimized by gradient
descent. It improves both training time and memory complexity
over basic easer and even achieves slightly higher accuracy on
smaller datasets — likely due to the regularization effect of rank
reduction. However, low-rank approximation limits the expressive-
ness of the autoencoder; see, e.g., [9]. This can negatively affect
recommendation quality [40, 42], especially on domains with ex-
tensive long-tail, where dependencies may be crucial despite being
subtle.

mrf [42] method learns a sparse full-rank approximation of �−1

from a Markov Random Field (hence the name mrf). The method es-
timates �−1 through inverses of leading clusters interconnected by
interfaces (see, e.g., [2, 17] for more details), i.e., a specific domain
decomposition where the interfaces represent overlaps [26, 39].
Crucially, mrf closely matches the performance of dense easer

even at high compression rates and allows for a trade-off between
model size, training time, and recommendation accuracy. The ap-
proach demonstrates that exploiting data sparsity is the key to
training large-scale CF models efficiently and proves the viability of
scaling easer-like methods to domains with vast item sets, where
-)- is sparse. Unfortunately, the training of mrf may still require
significant resources. The sparsity pattern in mrf is estimated from
a dense item correlation matrix, which can be very large2. Even
inverting small matrices may be memory costly if their number is
too large — they must be kept in memory simultaneously (which is
expensive) or progressively loaded (slow). In contrast, our proposal
can extract relations outside leading clusters and, more importantly,
train end-to-end sparsely, resulting in substantial efficiency gains.

2 MODEL ARCHITECTURE

As in [42], we propose a full-rank sparse modification of easer.
The final model weights arise from the sparse approximation of

2Thematrix has | I |2 entries. E.g., for Amazon Books [32] with | I | = 91599, thematrix
requires 33.6 GB (in float32) — and item sets can be much larger.

�−1 = (-)- + _� )−1 by applying the original post-processing
(scaling). Motivated by memory-critical problems, we design the ar-
chitecture so that the maximum density of weights can be selected
by a parameter, and training memory can be restricted. The model
converges to easer as the allowed density increases.

Contemporary matrix inversion research [5, 11, 19, 36, 45] im-
plies that sparse approximate inverses extract dominant informa-
tion reliably and that finding the (right) inverse of � is equivalent
to solving |I | independent problems� ®< 9 = ®4 9 with the complexity
dominated by the LU decomposition of �. Sparse LU factorization
is well-understood, but it may suffer from instabilities that are hard
to cure in parallel environments and the constraining sequentiality
of the (fan-out) back substitution. However, the LU factorization for
a symmetric positive definite (SPD) matrix � reduces to Cholesky
factorization, which a) is unconditionally backward stable, b) with
well-parallelizable fan-in phase, and c) avoids the fan-out phase
chokepoint. Our idea is then to reduce the problem of sparse ap-
proximation of �−1 into two simpler problems:

(1) Find a sparse approximate square-root-free Cholesky decom-

position � ≈ !̂�̂!̂) .

(2) Find a sparse approximate inverse  of the matrix !̂.

The resulting factorization  ) �̂−1 is used to build the encoder
layer,) and the decoder layer/ of our Scalable Approximate Non-
Symmetric Autoencoder (sansa). Formally, sansa approximates
the encoder–decoder matrix � of easer using a two-layer linear
model with no activation:

� ≈,)/ .

We illustrate the architecture of sansa in Fig. 1. The inference is
analogous to the original. For a user’s feedback vector ®D, the rat-
ings are obtained by two sparse matrix–vector multiplications,
®A) = (®D),) )/ . Note that,)/ approximates � before forcing its
diagonal to zero. This constraint is merely a residual connection3

which may be imposed by masking out input items in the prediction
if self-similarity is prohibited.

Implicitly representing �−1 as  ) �̂−1 yields a much denser
operator with equal storage cost [5]. Such compression is advan-
tageous in RS: compared to sparse single-layer models (such as
mrf), a sparse linear model with two layers and the same number
of parameters will generate denser prediction vectors from sparse
input interactions, i.e., recommend more items. Additionally, factor-
ized approaches are able to circumvent the part of training memory
overhead stemming from the computation of-)- +_� , as Cholesky
factorization can use this matrix implicitly from - [7].

3 MODEL TRAINING

Our attention now turns to specificmethods used to train sansa. We
then describe the training procedure and explain how our factorized
approach implies a reasonable training loss.

3Let � be the weight matrix of easer before applying the diagonal constraint and

let ®1 = diag(�) and � = � − diag( ®1 ) (that is, � is obtained from � by setting its

diagonal entries to zero). The prediction computes ®?) = ®D)� = ®D) � − ®D) diag( ®1 ) .

But ®1 = −®1, since � is computed by scaling the columns of�−1 by the reciprocals of
their (negative) diagonal entries. That is, ®?) = ®D)� = ®D) � − ®D) (−� ) = ®D) (� + � ) .
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3.1 On computation of sparse approximate
inverses

An essential advantage of the mentioned approximate inverse re-
search [1, 5, 8, 36] (compared to, e.g., mrf) is the ability to consider
non-local dependencies in addition to the closely connected clusters,
and detect such links automatically. While more possible ways exist
[5], we focus on highly parallel, scalable approaches developed for
high-performance computing (HPC). As discussed earlier, we target

factorizations of the form �−1 ≈ "̂ =  ) �̂−1 , which are reliable
since � is SPD. Let us emphasize the following. We are looking for

"̂ which operates (when applied from the right) as closely to �−1

as possible, i.e., formally, we want "̂ to minimize ∥� − �" ∥�
4 —

this is a different problem than minimizing ∥"̂ − �−1∥; see [11].
Algorithmically, for � = !�!) , we first compute its sparse approx-

imate decomposition !̂�̂!̂) with small ∥! − !̂∥� and ∥� − �̂ ∥� ,

and then find sparse  ≈ !̂−1 such that ∥� − !̂ ∥� is small. The fi-

nal product  ) �̂−1 is a good sparse approximation of �−1 since

∥� − �( ) �̂−1 )∥� = ∥� − (!�!) ) ( ) �̂−1 )∥� is (relatively)

small. While specific approaches for obtaining  and �̂ may not be
optimal, the computed approximation converges to �−1 as the al-
lowed density increases.

3.1.1 Methods for approximate Cholesky factorization. Modern
sparse Cholesky factorization starts by finding a permutation that
(approximately) minimizes fill-in and enhances parallelizability.5

Besides lowering memory requirements, this also reduces informa-
tion loss in the a posteriori sparsification. Approximation may be
applied before, during, and after the factorization. Sparsification
before factorization is often suboptimal since it may lose subtle
relations among data, as clearly shown, e.g., in a structural me-
chanics problem [4]. However, it may help decrease the time and
memory requirements if a large matrix strongly fills. A better way
is to sparsify the (possibly filled in) exact factor !. The use of Frobe-
nius norm guarantees that zeroing entries smallest in magnitude

in ! delivers the best approximate factor !̂ with a given density.

Moreover, factors !̂ converge monotonically to ! with increasing

density (i.e., denser !̂ are better).
Unfortunately, the amount of generated fill-in (that needs to be

stored) may limit the applicability of this variant for denser input
matrices - . Luckily, the symbolic factorization phase computes
the size of the (complete) factor ! in nearly linear complexity [36]
and can provide a warning. Then, if memory is limiting, it is pos-
sible to sparsify during factorization using incomplete Cholesky
factorization (ICF) — e.g., [29] based on Crout form of the algorithm,
with practically linear complexity for close to uniform distribution
of nonzeros in � [25]. It operates with prescribed, almost arbitrarily

small memory overhead, but with some trade-offs: 1) incomplete
factorization may break down; additional regularization of � may
be needed to prevent this, and 2) compared to the a posteriori spar-
sified complete factorization, the convergence to the exact factor !
may not be monotone.

Summarizing, users of sansa can select from two sparse (approx-
imate) Cholesky factorization variants. When training memory is
not severely limiting, the preferable method is sansa (cholmod),

4The choice of Frobenius norm matches the objective function of easer .
5The complexity of this search is loosely bounded by$ (density(�) × |I |3 ) [22].

which uses the (numerically) exact block column code CHOLMOD
[10] and a posteriori sparsification to the target density. When
training memory is restrictive (as in domains with large item sets),

we can use sansa (icf), which constructs !̂ by sparsification on
the fly using ICF [29]. For sansa (icf), users may select to compute

denser !̂ to help stabilize the factorization (the factor is sparsified
to the target density afterward). Unsurprisingly, when ICF is used
for a denser �, we should expect a less accurate approximation due
to the loss of information throughout the incomplete factorization.

3.1.2 Approximate inverse of !̂ and training loss. As mentioned
above, there are more ways to compute  . We select a parallelizable
approach based on minimizing the Frobenius norm of the residual

matrix ' = � − !̂ (the minimization agrees with the objective
function; see Section 3.1). Specifically, we use a modified Minimal
Residual (MR) algorithm [12]. Conveniently, MR finds the domi-
nant sparsity pattern automatically6. We use global sparsification
instead of the standard column-by-column one to allow for nonho-
mogenous patterns. The minimization first adjusts the entire matrix
using progressively finer scans, after which it finetunes the columns
with highest residual norms — hence the Uniform Minimal Resid-
ual (UMR) algorithm. Each iteration first computes ' and selects
columns for modification. The matrix ' also shows an explainable
training loss: the mean of squared column norms of ' is equal to

= · MSE(� , !̂ ), or equivalently
∥�−!̂ ∥2

�

∥� ∥2
�

— the relative residual

norm squared. Individual iterations optimize "batches" of columns
to manage memory requirements.

Since !̂ is unit lower triangular, we propose a better choice of
the initial guess for (U)MR. Inverting just the signs of the subdi-

agonal entries of !̂ gives  (0) = 2� − !̂. This guess is essentially
for free and corresponds to a step of Schultz iterative process [35]

with initial guess  (0)
(2ℎ.

= � . One step of this process from the initial
guess � exactly inverts matrices of form � + # , where # is a strictly

(lower, or upper) triangular matrix such that # 2
= 0. When !̂ is

sparse, few subdiagonal entries of !̂ exist and are mostly small in

magnitude. Hence, the subdiagonal part of !̂ (denoted # ) satisfies
# 2 ≈ 0. The initial guess is also closely linked to column elimina-
tion matrices and their inverses [18]. Therefore, the initial guess

2� − !̂ can be very close to !̂−1, needing only minor refinement, as
verified in our experiments (Section 4).

3.2 Training procedure

The only compute-intensive part is the encoder training performed
using the factorized sparse inversion. The training begins by find-
ing a suitable item permutation7 represented by matrix % . Then
a sparse approximate !�!) factorization of %�%) is computed. We

get a nonsingular diagonal matrix �̂ and a unit lower triangular

matrix !̂ such that !̂�̂!̂) ≈ %�%) .
To obtain the approximate inversion, we invert �̂ and compute

an approximate inverse of !̂ in two steps. First, we take the "free"

initial guess (0) = 2� − !̂ ≈ !̂−1. If (0) is not accurate enough, we
refine it using the UMR algorithm, which performs a given number

6Recall that mrf relies on the computation of a dense statistical matrix to find its
sparsity pattern, see Section 1.1.
7Our codes use COLAMD [14].
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1: input user–item interaction matrix - , L2 regularization _
2: compute sparse !�!) ≈ % (-)- + _� )%) (for a permutation % )
3: compute sparse  ≈ !−1

4: , ←  %

5: /0 ← �−1,

6: ®A ← diag(,)/0)

7: / ← scale the columns of /0 by −1/®A
8: return,) , /

Algorithm 1: The training procedure of sansa is based on

factorized sparse approximate inversion. The final scaling is

applied to the decoder only.

Figure 1: sansa is a sparse nonsymmetric encoder–decoder

model. To disallow recommending input items, we mask

the prediction vector, or add an input–output residual con-

nection.

of scans and finetune steps8. Once the iteration process ends, we

have a sparse  ≈ !̂−1, a dense vector representing �̂−1, and a vec-
tor representing % . The encoder layer of sansa, the matrix,) ,
is obtained by transposing the column-permuted approximate in-
verse  . Note that,) is no longer lower triangular. To summarize,
the approximation of �−1 is expressed using the encoder,) and

the diagonal matrix �̂−1 as

,) �̂−1, = %) ) �̂−1 % ≈ %) !̂−) �̂−1!̂−1% ≈ �−1 .

Finally, we apply column scaling — corresponding to scaling
the 9-th column of �−1 by −�−19 9 in the original model — to ob-

tain the approximation of the weights �. Scaling only the decoder
layer is sufficient (hence, sansa is a nonsymmetric autoencoder):

/ = −(�−1, )diag(,) �̂−1, )−1. We summarize the training pro-
cedure in Algorithm 1.

4 EXPERIMENTS

In the previous sections, we proposed methods for constructing
sparse approximations of easer for inference with limited memory.
The two methods suit different RS scenarios, depending on whether
training memory limitations play a decisive role. We conduct ex-
periments on popular music and book datasets to address the two
scenarios. For logical coherence, we validate the robustness of our
approach in Section 4.1.1 before demonstrating our main contribu-
tion — the unparalleled scalability of sansa (icf) to large domains
— in Section 4.1.2.

8All UMR iterations first compute ' = � − !̂ (8 ) , where  (8 ) is the current approxi-

mation of !̂−1 . ' is also used to calculate the training loss.

First, we evaluate the accuracy and efficiency of the a poste-
riori sparsified (cholmod) variant. We selected the Million Song
Dataset (MSD) [6] for this test since it is with 41 140 items among
the largest benchmark datasets for CF. However, it is still small
enough to allow the complete sparse factorization on a moderately
sized m6i.4xlarge instance with 64 GB RAM. Most importantly,
MSD challenges the robustness of sparse approaches because it
is densely connected: although the interaction density is 0.14%,
the item–item matrix � is 41.54% dense. We use the established
preprocessing and evaluation protocol of [28] for reproducibil-
ity and evaluate accuracy using the same metrics, i.e., Recall@20
(r@20), Recall@50 (r@50), and nDCG@100 (n@100). For baselines,
we trained dense easer [41] using the same L2 regularization as
sansa (cholmod), as well as the other sparse approach - mrf [42].
For context, we also include the results of additional relevant base-
lines reprinted from [28] and [38]. These include: deep variational
autoencoder recvae [38], ranked second on MSD according to their
paper; linear low-rank factorization model wmf [23]; multinomial
variational autoencoder mult-vaepr [28].

To demonstrate the scalability of sansa (icf), we selected Ama-

zon Books [32], the largest and sparsest commonly used bench-
mark with 91 599 items, interaction density 0.062%, and item–item
matrix density 3.94%, hence nearest to the intended real-world use
of sansa. We follow the preprocessing and evaluation protocol
of the well-known benchmark [13] and evaluate not only recom-
mendation accuracy (namely, Recall@20 (r@20) 9 and nDCG@20
(n@20)) and model compression (with respect to dense easer), but
also training time (using time.perf_counter) and memory re-
quirements (using the memory-profilermodule). As for baselines,
we compare sansa (icf) with mrf and the results of other state-of-
the-art models reprinted from [13], namely: easer [41] (which we
did not reproduce ourselves due to high training cost); linear model
slim [33] — current state-of-the-art on Amazon Books according
to [13]; item-oriented neighborhood-based method itemcf [34],
ranked second in [13]; graph convolutional network ultragcn

[31], ranked second among graph convolution methods in [13].
All codes used in experiments (including configs), results, and

logs are available at https://github.com/glami/sansa/.

4.1 Results

4.1.1 Robustness and efficiency. The results in Table 1 demonstrate
the robustness of sansa: if we allow sufficient weight density and
train the model long enough, sansa can achieve the same accuracy
as dense easer. Table 1 and Fig. 2 also illustrate the monotonic
convergence for the a posteriori sparsified (cholmod) variant —
the approximation quality improves with increased density. Even
very sparse models can approximate easer with high accuracy,
despite the high density of item–item links inMSD; 50 to 1 000 times
sparser full-rank models perform on par with easer. 10

9Note that [13] and [28] use different definitions of recall. In each experiment, we use
the recalls used in corresponding evaluation protocols.
10We observed similar behavior on other dense CF datasets — Goodbooks-10k
[48], MovieLens-20M [20], and Netflix Prize [3]. Interestingly, both mrf and
sansa (cholmod) slightly outperform state-of-the-art easer on Goodbooks-10k, hint-
ing at a possible beneficial effect of sparse modeling on recommendation accuracy in
dense domains, as argued by [40].

https://github.com/glami/sansa/
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MSD

d% model r@20 r@50 n@100 time

mrf (A = 0) 0.330 0.421 0.385 64 s
0.1 mrf (A = 0.5) 0.326 0.417 0.380 55 s

sansa (ch.) 0.328 0.422 0.383 200 s
sansa (icf) 0.288 0.385 0.346 190 s
mrf (A = 0) 0.333 0.427 0.389 183 s

0.5 mrf (A = 0.5) 0.329 0.424 0.384 90 s
sansa (ch.) 0.331 0.426 0.387 253 s
sansa (icf) 0.276 0.370 0.337 632 s
mrf (A = 0) 0.333 0.428 0.390 1031 s

2.0 mrf (A = 0.5) 0.329 0.426 0.385 457 s
sansa (ch.) 0.332 0.427 0.388 502 s
sansa (icf) 0.298 0.399 0.359 528 s
easer 0.332 0.428 0.388 312 s

results reprinted from [38] and [28]
recvae 0.276 0.374 0.326 ——
wmf 0.257 0.312 0.257 ——
mult-vaepr 0.266 0.364 0.316 ——

Table 1: Highly compressed sansa (cholmod) andmrfmodels

achieve accuracy comparable to easer even on dense datasets.

As the number of nonzeros in the approximation increases,

imposing sparsity via masking (mrf) becomes a performance

bottleneck; sansa uses efficient sparse operations which scale

better. The standard error in accuracy measurements is about

0.001.

Figure 2: Accuracy of sansa (cholmod) on MSD after various

number of training scans B and finetune steps 5 .

In larger domains, it may be desirable to trade recommendation
accuracy for shorter training. For example, mrf uses parameter A to
prune dependencies between item clusters. sansa provides a simi-
lar (although less interpretable) possibility: applying fewer UMR
iterations yields a coarser approximation. To analyze the trade-off,
we compared checkpoints of sansa (cholmod) trained for different
numbers of UMR scans B and finetune steps 5 against two baselines:
easer to measure the distance from the uncompressed model, and
a deep variational autoencoder recvae [38], ranked second on MSD
according to [38]. The results in Fig. 2 show that short training can,
too, produce a close approximation of the dense easer. Notably,
we can train very sparse models using but a few short UMR itera-
tions and obtain performance close to state-of-the-art. We discuss
how sparsity helps this trade-off in Section 4.1.2. For completeness,
sansa (icf) performed about 6-17% worse than sansa (cholmod)

on MSD, but this is to be expected: incomplete factorization of
a dense matrix loses information during computation and requires
more robust regularization to prevent breakdowns. For example,
the breakdowns at 0.5% density forced restarts with additional di-
agonal shifts, further decreasing accuracy and increasing training
time. Nevertheless, various early checkpoints of sansa (cholmod)

(Fig. 2) and even the icf variant outperform other models on MSD.
We conclude that very sparse or coarse approximations of easer

can be competitive yet very cheap and practical (e.g., for ensemble
models).

Compared with mrf, in terms of accuracy, sansa (cholmod)

performs in between mrf (A = 0) and pruned mrf (A = 0.5) on
all tested density levels (3%), see Fig. 2. 11 At 3 = 0.1%, imposing
the computed sparsity pattern is inexpensive, and mrf trains three
to four times faster than sansa (cholmod). However, masking
operations on sparse matrices do not scale well as the number of
nonzeros increases 12. As a result, training mrf becomes expensive
as the total number of nonzero elements in the approximation
increases, since A -pruning does not help with this problem. At
3 = 2%, sansa (cholmod) trains almost as fast as the pruned
mrf (A = 0.5). Lastly, vectors predicted by a two-layer sansa are
significantly denser. Hence, sansa can recommendmore items from
sparse inputs than mrf, which may be desirable in practice.

4.1.2 Extreme scalability. Restrictive memory limitations of a very
large item–item network can be avoided through its inevitable
sparsity (i.e., -)- is sparse). In such cases, ! is likely sparse, too,

and !̂ computed by ICF should be close to !. At the same time, for

very sparse !̂, the free initial guess 2� − !̂ is very close to the ex-

act !̂−1, needing little to no refinement. As a result, our method
essentially reduces the sparse approximate inversion to a cheaply
obtained incomplete factorization. This shortcut fundamentally
reduces training time and memory requirements.

Therefore, it is by no surprise that on Amazon Books, sansa (icf)

with 0.84 million parameters (10 000 times compressed with respect
to dense easer) trains orders of magnitude faster than any other
non-sparse state-of-the-art method (dense autoencoders, nearest

11A more accurate comparison is difficult, as mrf uses additional data normalization
to tackle popularity bias, see [42] and Section 1.1.
12Compared with that, sansa performs its training using Cholesky factorization, sparse
matrix–matrix multiplications, sparsifications and element-wise operations working
on contiguous memory, and (block) column manipulations - all efficient sparse matrix
operations.
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Amazon Books

results reprinted from [13]:
sansa mrf mrf easer slim item- ultra-

(icf) (A = 0) (A = 0.5) cf gcn

r@20 0.077 0.071 0.069 0.071 0.075 0.074 0.068
n@20 0.064 0.058 0.055 0.057 0.060 0.061 0.056

training resources

vCPU 2 16 16 28 28 28 20*
memory usage (GB):
peak 9.18 96.45 96.58 —— not measured; costly ——
avg. 3.87 49.12 49.75 —— not measured; costly ——
time 49 s 172 s 167 s 222 m 316 m 57 m 45 m

*and a GPU (RTX 2080)

Figure 3: Thanks to end-to-end sparsity, training sansa (icf)

on 2 vCPUs takes about 3 times less than mrf on 16 vCPUs

and orders of magnitude less than non-sparse model train-

ing. the training of sansa requires minuscule memory - un-

paralleled even with mrf. As a bonus, it also achieves new

state-of-the-art accuracy. the standard error in accuracy mea-

surements is about 0.0005.

Figure 4: Comparison of time and memory usage of

sansa (icf) versus mrf on Amazon Books. The final flatline

on each graph corresponds to the evaluation.

neighbors approaches or graph neural networks); see Table 3. Fur-
thermore, sansa (icf) trains more than three times faster than mrf

— partially due to the discussed performance bottleneck caused by
masking but also due to the large number of leading clusters requir-
ing inversion. Moreover, this speedup was achieved on a single-core
r6i.large instance (2 vCPUs, 16 GB RAM), which is much smaller
compared to r6i.4xlarge with eight cores (16 vCPUs, 128 GB
RAM) needed for mrf 13. As such, training sansa (icf) is much
more cost-effective compared to other models, e.g., in terms of total

13mrf cannot be tested on a smaller instance due to training memory requirements
approaching 100 GB. Instances used in [13] are even larger, with up to 28 vCPUs and
500+ GB RAM, or 20 vCPUs and a GPU.

FLOPs. In addition, thanks to efficient sparse operations, the train-
ing requires merely one tenth of the memory required for mrf
training (Table 3, Fig. 4), and this edge can be improved further:
our code keeps up to two copies of -)- in memory, amounting to
about 8 GB for Amazon Books. This overhead can be eliminated
by implicitly constructing -)- during ICF (see Section 2). For per-
spective, sansa (icf) for Amazon Books could then be trained on
a Raspberry Pi or a smartphone.

While beating easer in terms of accuracy was never our goal,
we surpassed its reported performance on Amazon Books by a non-
trivial margin and, with it, the current state-of-the-art according
to [13]. Since mrf does not outperform easer in our experiment,
we do not attribute the accuracy improvement to the regulariza-
tion effect of sparse approximation discussed by [40]. However,
sansa (icf) differs from easer (and sansa (cholmod) and mrf) in
scaling (and, hence, also in the used L2 regularization). The scaling
is necessary to stabilize the incomplete factorization (see [29] and
Section 4.1.1); we leave the analysis of its effect on recommendation
and its interpretation for future research.

5 CONCLUSION AND FUTUREWORK

Compared with other approaches, easer takes advantage of long-
distance information, crucial for accurate and diverse CF modeling,
but expensive to extract and store on vast domains. We propose
a solution to this deal-breaking bottleneck using contemporary
numerical methods for sparse approximate inversion. Modern ap-
proximate inversion allows for the extraction of long-distance infor-
mation to improve over principally local methods like mrf or graph
convolutions. Moreover, sparse approximate inverses can reliably
find dominant model information and offer strong compression,
further improved by factorization. Where previous approaches lack
efficiency in attempting to overpower the problem using operations
tailored to dense structures, our end-to-end sparse method is tightly
coupled with characteristics of the considered task. Hence, the re-
sulting model, sansa, trains faster and with minuscule memory
requirements. Finally, the method implies a coherent training loss
and a simple set of hyperparameters for straightforward production
use. Thanks to these properties, sansa provides a robust yet attain-
able baseline for researchers with limited resources and large-scale
industry environments.

As the next step, we plan to test sansa in large-scale online ex-
periments. A more long-term goal is further improving the method.
In particular, we plan to add tree parallelism based on a nested
dissection approach for reordering [27, 30], which should provide
an additional boost to scalability. Tree parallelism can mitigate
the sequential nature of ICF and result in an HPC-class training al-
gorithm suitable even for the most extensive CF tasks. Interestingly,
the nested dissection should also reveal an "arterial structure" of
the item–item network. Understanding this structure and the latent
embeddings produced by sansa will benefit interpretability and
enable new uses for, e.g., knowledge distillation.
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