Palacky University
Olomouc

v

Functional Programming Language Compiler on GraalVM Platform

One of the simplest approaches to language implementation is
interpretation. Although interpreters are favoured for their simplicity
and portability, the massive investment required to build advanced
compilers, as evidenced by the efforts in JavaScript performance
enhancement, is often too resource-intensive. Unfortunately, such
investments are not often justified, especially for research projects
or domain-specific languages (DSLs). However, modern meta-
compilation techniques, such as tracing and partial evaluation, offer
a compelling alternative. Platforms like RPython and Truffle utilize
these techniques to allow basic interpreters to achieve the
performance levels of top-tier virtual machines (VMs). While
RPython [1, 2] uses trace-based JIT compilation, Truffle [3], which
is a core component of the GraalVM platform, relies on partial
evaluation for JIT compilation guidance. This thesis primarily
focuses on the utilization of Truffle within the GraalVM ecosystem.

. TruffleScheme, a Scheme language interpreter supporting a subset of the Scheme specifications, has been created.
. TruffleScheme is on average 4.7 times faster than the Guile implementation and 1.8 times faster than the Racket

. TruffleScheme is the first publicly available implementation on the GraalVM platform that supports both Tail Call and Tail

. TruffleScheme enables interoperability with languages on the GraalVM platform, facilitating polyglot programming. A new

. A comprehensive document has been created, organized into two main sections. The first section explains theoretical

implementation.

Recursive optimizations without compromising interpreter speed, especially on the JVM which does not inherently support
TCO. Notably, the implementation of the Tail Recursive optimization significantly boosts the interpreter's speed by removing
the recursive call and the overhead associated with it.

generic APl was designed and implemented, allowing tasks like evaluating foreign language code or reading bindings from
their global environments. To enhance the developer experience, numerous primitive procedures and special forms have been
added to the language.

concepts such as meta-compilation or the First Futurama projection. The second section provides a practical guide, filled with
examples, on how to implement basic language elements such as global variables, local variables, and user-defined
procedures

. Implement an interpreter for a subset of the Scheme
specification on the GraalVM platform. The interpreter should:
o Implement functional elements that have never been
implemented on the GraalVM platform before.
o Support polyglot programming.

. Compare the performance with the existing Scheme
implementations.

.- Describe and explain the theoretical concepts underpinning the
GraalVM and the associated Truffle framework. Given the
limited resources available online, this text aims to first
introduce the theory behind the GraalVM platform and,
secondly, to provide a comprehensive guide for creating one's
own language implementation on the GraalVM platform.

IR R

Speasdup

Interoperability example

(eval-source "python" "def fibonacci(n):
if n in {0, 1}:
8 return n

Guile M Racket B TruffleScheme

return fibonacci(n - 1) + fibonacci(n - 2)")
(define python-fib (read-global-scope "python" "fibonacci"))
(python-fib 35)

1.C. F. Bolz and L. Tratt. The Impact of Meta-Tracing on VM Design and
Implementation. Science of Computer Programming, 2013.

2.C. F. Bolz, A. Cuni, M. Fijalkowski, and A. Rigo. Tracing the Meta-level:
PyPy’s Tracing JIT Compiler. In Proc. of ICOOOLPS, pages 18-25. ACM,
20009.

3.T. Waurthinger, A. WoOR, L. Stadler, G. Duboscg, D. Simon, and C.
Wimmer. Self-Optimizing AST Interpreters. In Proc. of DLS, pages 73-82,
2012.

factorial

fibanacci quicksort fak




