Event Tracing for Windows (ETW) is a crucial component of Windows security. Most Antivirus and security solutions depend on data from ETW to protect the system. Attackers are motivated to attack ETW to prevent being detected, leading to large impact on system security. Research in cooperation with ESET has been ongoing.

Motivation and Aims
- Event Tracing for Windows (ETW) is a crucial component of Windows security.
- Most Antivirus and security solutions depend on data from ETW to protect the system.
- Attackers are motivated to attack ETW to prevent being detected.
- Large impact of such attacks on system security.
- Research in cooperation with ESET.

Event Tracing for Windows (ETW)
- Event logging platform integrated in Microsoft Windows since Windows Vista.
- Live event processing, event storage and filtering.
- Logs events from:
 - Windows kernel
 - System programs and components
 - User programs
- Provides these events to:
 - System tools (event viewer)
 - Monitoring tools
 - Resource management
 - Antimalware and security software
- Disabling this functionality blinds most system monitoring and security tools.

Analysis of Specific Attacks Against ETW
- Malicious rootkit designed to blind security software by stealthily disabling event logging.
- Attributed to the Lazarus APT group affiliated with North Korea.
- Sophisticated nation-sponsored threat actor.
- Elevation of privilege via BYOVD (Bring Your Own Vulnerable Driver).
- Abusing vulnerable third party kernel drivers to gain access to kernel memory.
- Overwriting ETW configuration directly in kernel memory to disable logging - hard to detect by conventional means.
- This makes subsequent malicious activity harder to identify for security software.

Proof of Concept
- Analyzed the malicious rootkit and discovered two methods to attack ETW:
 - Removing kernel provider callbacks
 - Disabling system loggers
- Created a Proof of Concept of these two attacks in order to develop countermeasures.

Detected the attacks
- Created an implemented two methods for detecting such attacks on ETW.
- Statistical approach from user-mode, monitoring message volumes per provider. A drop in message volume indicates a possible ongoing attack.
- Monitoring ETW structures from kernel-mode, detecting changes to ETW configuration using a kernel-mode driver and alerting the user via a usermode app.

Mitigating the attacks
- Proposed two preventive measures:
 - Expanding windows kernel protection mechanisms (kernel patch protection) - verifying checksums of memory regions and using a secure api to update them when the data changes.
 - Implementing access control in kernel memory, for example by segmentation as demonstrated by the MemoryRanger tool (github.com/IgorKorkin/MemoryRanger).

Conclusion
- Analyzed a series of sophisticated blinding attacks against ETW.
- Described undocumented parts of the Windows kernel and the ETW framework.
- Implemented and evaluated a Proof of Concept based on these attacks.
- Created and implemented a two methods of reliably detecting and identifying such blinding attacks against ETW.
- Proposed two approaches to prevent such attacks from succeeding in the future.
- Results were published on two conferences.
- Real-world impact in pointing out weaknesses in the ETW framework.

Publications
- KÁLNAI, Peter; HAVRÁNEK, Matěj. Lazarus declares war on system monitoring. In AVAR conference. 2022.

This work was presented as part of two conference contributions [1, 2] and published as part of a conference journal article [1].

2. KÁLNAI, Peter; HAVRÁNEK, Matěj. Lazarus declares war on system monitoring. In AVAR conference. 2022.