
Modelling of Neural Network Hardware Accelerators

Author: Ing. Jan Klhůfek Supervisor: Ing. Vojtěch Mrázek, Ph.D.

Mo�va�on

DRAM
Global
Buffer

PE

PE PE

ALU fetch data to run

a MAC here

ALU

Buffer ALU

RF ALU

Normalized Energy Cost

200×

6×

PE ALU 2×

1×

1× (Reference)

DRAM ALU

0.5 – 1.0 kB

100 – 500 kB

NoC: 200 – 1000 PEs

Accelergy

Timeloop

Aim of the thesis

References and contribu�ons

[1]

[2]

A. Parashar et al., “Timeloop: A systematic approach to dnn

accelerator evaluation,” in 2019 IEEE International

Symposium on Performance Analysis of Systems and Software

(ISPASS), 2019, pp. 304–315.

J. Klhufek, et al., “Exploiting Quantization and Mapping

Synergy in Hardware-Aware Deep Neural Network

Accelerators “ [In preparation]

We extended the SOTA tool Timeloop [1] to enable mixed-

precision quantization modelling in HW, intended for research

purposes. The impact of this work on a real use case will be

presented in [2].

Implementa�on results and future work

Today’s Convolutional Neural Networks (CNN) contain tens of

millions to billions of parameters. This complexity

necessitates huge number of computations – up to trillions of

FLoating-point Operations Per Second (FLOPS). As we strive for

real-time processing in embedded devices like smartphones,

the demand for integrating these models is increasing.

Tackling the challenge of integration of a CNN model onto the

target hardware (HW) is far from trivial. It requires meticulous

model optimization to reduce both the number of

computations and memory size, but most importantly, these

optimizations must be done with the target hardware

architecture in mind. The focus of this work is on the analytical

modelling of mapping a workload onto a hardware accelerator,

with a particular emphasis on supporting quantization as a

way to optimize the memory utilization of the model onto the

hardware. This opens up new possibilities for exploring the

synergy between model optimization and HW deployment.

Figure 1: Impact of model's weights 

quantization on HW energy consumption

CNN Model Creation Training

HW performance

metrics
Network

configuration

Optimization

specification
Analytical model

Optimization Inference

O
n
-c

h
ip

B
u
ff

er 168 PE Array

Eyeriss

...
NVIDIA Jetson
Google TPU

0.72

0.02

0.04

Conv

Input

Pooling

Extracted

FMAPs
Reduced
FMAPs

Pooling
...

...

Fully connected
layers
F

l

a

t

t

e

n

e

d

of output
0

1

9

Probability

Feature extraction Classification

Conv
Pruning

Quantization

Floating

point
Integer

3452.3194 3452

32 bit 8 bit

01010101 01010101

0101010101010101

01010101

HW architecture

description

The extension’s implementation utilizes a bit-packing technique,

which effectivelly allows to store as many data elements into

memory word as the word bits allow. Figure 1 illustrates the

application of this technique in deploying the AlexNet CNN on a fixed

HW architecture. By merely adjusting the precision of weights from

16 bits to 4 bits, we achieve energy savings of up to 27%. Notably,

the reduction in the hardware’s energy consumption can be

observed primarily in the memories responsible for weight storage.

In future work, the exploration of more optimizations and the use of

flexible hardware architectures that could influence computational

units in addition to memory could be possible.The goal of this work was to extend a state-of-the-art (SOTA)

analytical model to support hardware quantization, a

technique that reduces memory footprint and transfers,

leading to energy savings. Using such a model is orders of

magnitude faster than real hardware inference, which enables

feasible evaluation of HW metrics for various quantization

strategies. Quantization maps infinite values to a finite set of

values (floating-point to integer), optimizing memory use by

using lower bitwidth and reduced precision – thus increasing

the hardware performance and reducing the overall energy

consumption. In order to achieve this, it is necessary to

diligently map the CNN into the HW and schedule its

operations in time. Energy savings are achieved by lowering

the overall accesses to higher memory levels, such as the off-

chip DRAM, which consumes over two orders of magnitude

more energy per access.

16
_1

6_
16

16
_1

5_
16

16
_1

4_
16

16
_1

3_
16

16
_1

2_
16

16
_1

1_
16

16
_1

0_
16

16
_9

_1
6

16
_8

_1
6

16
_7

_1
6

16
_6

_1
6

16
_5

_1
6

16
_4

_1
6

16
_3

_1
6

16
_2

_1
6

16
_1

_1
6

Bitwidth Setting

0

20%

40%

60%

80%

100%

N
o
rm

a
li
z
e
d
 E

n
e
rg

y

Energy Components

Compute [uJ]

Psum scratchpad [uJ]

Weights scratchpad [uJ]

Ifmap scratchpad [uJ]

Shared global buffer [uJ]

DRAM [uJ]


