
Detecting code quality defects in students’ solutions
Mgr. Anna Řechtáčková, supervisor RNDr. Tomáš Effenberger, Ph.D.

Code quality is a critical factor for software's
long-term maintenance cost. It is therefore
crucial to teach programming students not only
how to write functionally correct code but also
how to write code that does not suffer from code
quality defects.

Teaching this skill through manual code reviews
scales poorly. They require a lot of time, which is
costly and sometimes entirely unfeasible.

Automating code quality feedback can have a
tremendous positive impact, especially if
students receive the relevant feedback often,
quickly, and consistently. However, the output
from currently available automated tools is often
unsuitable for novice programmers.

Faculty of Informatics, Masaryk University, Brno

Motivation

There are several industry-grade linters for
Python (Pylint; Flake8 and its plugins; Ruff). They
focus on formatting or advanced constructs (e.g.
docstrings or exceptions). On the other hand,
they do not detect some of the simplest (and
most common) code quality defects in novice
code (like using a while loop where a for loop
would suit better).

There are two teaching-specific linters built on
top of the industry-grade linters. PyTA has only a
few custom detectors for code quality; it is
primarily focusing on finding bugs. Hyperstyle
was developed for one specific learning
environment, so it is difficult to reuse it anywhere
else. It provides no custom detectors.

Both tools also report many false positives and
code defects deemed irrelevant by current
state-of-the-art research.

EduLint is a Python code linter customized for novice programmers. It
uses, filters, and enhances Pylint and Flake8.

By default it detects 185 code quality defects, 17 of which are not
detected by any other tool. Additional 16 detectors were
reimplemented to improve precision or recall of existing ones.

It can be used at edulint.com or as a Python pip package. It is fully
open-source, and can be easily deployed using Docker.

Main features

1. Reports defects relevant to novice programmers. Their
relevance is supported by several recent papers and the
teaching experience of several educators at FI MU.

2. Avoids false positives. Each detector is carefully vetted before
EduLint starts reporting it.

3. Can be configured through special comments in the linted file.
This accommodates educators’ different opinions and spares
students from handling configuration files.

4. Provides descriptions and code examples for defects. These
explain to the students why the defect should be addressed and
how to fix it.

5. Can be used easily at edulint.com, without the need to install
anything.

Existing automated tools for Python

Implemented solution: EduLint

EduLint’s web interface at edulint.com

 Tool Most frequent defect Files with the defect

 Pylint missing docstring 99%

 PyTA missing docstring 99%

 Hyperstyle
possibly misspelled name
(frequently a false positive)

52%

 EduLint use augmented assign 8%

Pylint PyTA Hyperstyle EduLint

Relevance ∼ 1) ∼ 1) ∼ 1) ✓

Precision ∼ 2) ∼ 2) ∼ 2) ✓

Configurability ✓ ✕ 3) ∼ 4) ✓

Explanations ∼ 5) ✓ ✕ 6) ✓

Ease of use ✕ 7) ∼ 8) ✕ 7) ✓

The project itself and the accompanying research are ongoing. We
have one paper in review, and are preparing several others.

EduLint is used in both introductory programming courses at FI MU
and several of its seminars for high-school students. It is also fully
available to the general public.

1) Frequently reports defects deemed irrelevant by current research.
2) Reports defects with a high ratio of false positives.
3) Does not allow enabling detection of individual defects.
4) Allows only enabling of underlying linters.
5) Provides explanations only in its documentation.
6) Does not provide any explanations.
7) Needs a pip package or a docker image installed.
8) Needs a pip package installed, but generates HTML files.

Current state and future work

Many educators and researchers consider missing docstrings
irrelevant to novice programmers.

In the default configuration, EduLint intentionally reports fewer
defects so students can focus on the relevant ones. If students
want more feedback, they can enable some or all of the defects
Pylint and Flake8 can report.

✓
=

fully implements the
feature

∼ = partially implements the
feature

✕ = does not implement the
feature

Code with a defect
a = a // 2

Feedback
Use augmented assignment: a //= 2

Example

EduLint was evaluated on 100 000 submissions from novice
programmers from different sources (a university course, a contest
for high school students, and publicly available datasets). The
thesis includes a comprehensive evaluation.

Feature comparison

Most frequently reported defect by tool

mailto:anna.rechtackova@mail.muni.cz
https://edulint.com/

