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Abstract

Developmental dyslexia, the disorder related to reading, affects an
estimated 5–10 % of the population, making it the most common learn-
ing disability. It can severely impact one’s academic and occupational
performance if unmitigated, so early and easy detection is essential.
This thesis explores the use of eye-tracking technology and machine-
learning techniques as a fast pre-screening solution.

Based on an analysis of the existing research, we propose a variety
of established and new data transformations, including extraction of
gaze-event-based statistics in the form of vectors or visualisation of
multi-dimensional gaze event sequences as fixed-size images, among
others. With our Python implementation, enabled by scikit-learn and
PyTorch, we evaluate these representations using appropriate neural
networks such as Multilayer perceptron, Gated recurrent unit and
Convolutional neural network on four tasks read by Czech children.

Our experiments show that neural networkmodels, specifically the
neural network trained on the images with augmentations, achieved a
mean balanced accuracy of up to 92 %, six p.p. above the best 1-Nearest
neighbour baseline. The results are also analysed individually per
dataset and participant with limitations in mind. Finally, suggestions
for further research areas are outlined.
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1 Introduction

Dyslexia is among the most common learning disabilities, affecting 5–
10 % of the population [1], children and adults alike. The condition can
impair the individual’s academic and occupational performance [2, 3],
whichmay beminimised by early detection and support [4]. Therefore,
providing fast and reliable diagnostic tools at an early age is of great
interest.

Eye-tracking technologies enable us to record eye movements dur-
ing various activities [5], including reading. The differences in reading
are well-studied and involve lower reading speeds or a higher chance
of rereading already visited sections [6]. Such dissimilarities raise
questions about the viability of machine learning in this area.

The existing research focuses primarily on using Support vector
machines on statistics extracted from vectors of gaze event sequences
which aggregate the eye movement time series [7]. This thesis con-
tributes to verifying the outlined approaches of dyslexia detection on
four tasks read by 35 Czech children. In doing so, we aim to explore a
broader range of data representations and neural network models.

Aside from testing the well-established vectors of gaze event statis-
tics, we propose representing the eye movements by gaze event se-
quences or fixed-size images. We classify these data types with ap-
propriate neural networks, Multilayer perceptron for vectors, Gated
recurrent unit for sequences and Convolutional neural network for
images, achieving a mean accuracy of up to 92 % compared to the
best 1-Nearest neighbour baseline accuracy of around 86 %. We also
present an ensemble combination of the four tasks for each model,
which did not improve average accuracy but slightly stabilised the
results.

This thesis starts by describing the dyslexia detection problem
in Chapter 2. In the following Chapter 3, we define the dataset and
the proposed representations. Afterwards, Chapter 4 briefly explains
the compared machine learning methods. Later, Chapter 5 proposes
the methodology of the experiments, the validation and the evalua-
tion process. Finally, in Chapter 6, we look at the results and draw
conclusions in Chapter 7.
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2 Dyslexia detection

The eleventh edition of the International Classification of Diseases
(ICD-11), developed by the World Health Organisation, characterises
the Developmental learning disorder with impairment in reading by
‘significant and persistent difficulties in learning academic skills related to
reading, such as word reading accuracy, reading fluency, and reading com-
prehension. The individual’s performance in reading is markedly below what
would be expected for chronological age and level of intellectual function-
ing’ [8]. While there is a debate over whether reading comprehension
is an inherent part of dyslexia or a separate issue [9], this is irrelevant
to this thesis as it only focuses on reading fluency.

The prevalence estimates of dyslexia are directly affected by the
used definition and diagnostic criteria, ranging from just above 5 % to
almost 18 % [1], although the majority falls under 10 %. Studies also
show higher occurrence in boys, but this is believed to be caused by
generally lower referral rates for girls [10]. Finally, studies on ortho-
graphically shallow languages (like Czech) suggest lower prevalence
rates than studies on deeper ones (e.g. English), which might be due
to differing methodologies [11].

ICD-11 notes that dyslexia ‘results in significant impairment in the
individual’s academic or occupational functioning’ [8]. This can limit aca-
demic and professional choices, as people with dyslexia may avoid
tasks involving reading [2]. It may also damage the person’s self-
esteem and lead to other mood disorders [3]. Early detection can
lead to improvements in confidence and the development of coping
strategies [4].

Section 2.1 looks at the typicalmethod of studying reading through
eye movements and its ins and outs. The following Section 2.2 details
the existing research on machine learning using this method.

2.1 Eye movements

In general, the motivation for analysing eye movements is that cog-
nitive processes, such as perception, memory, language or decision-
making, influence them. This eye-mind link, as it is sometimes called,
makes eye-tracking suitable for exploring various mental processes
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2. Dyslexia detection

and patterns, particularly disorders [5]. As such, attempts to use it
for diagnosing neurodevelopment disorders have been tried as well,
including ADHD, autism and learning disabilities [12].

The eye, similar to cameras, gathers, focuses and detects light. The
image’s detail depends on the region of the retina the light falls onto.
The highest acuity, along with colour vision, is primarily a product
of the fovea centralis, where lies the highest concentration of cones,
the colour-sensitive photoreceptors. The fovea captures the centre of
the visual field, approximately 1◦20′ out of the full 140◦ [13]. The rest
of the field is first caught by parafovea and then the periphery, which
are increasingly less detailed [14], as shown in Figure 2.1.

Figure 2.1: Illustration of visual span during reading [15]. The number
of letters covered by each vision depends on the distance and font
size.

A fixation is an essential type of gaze event during which the eye
is fixed on a visual target. Since the fovea is small, the eye cannot
take the entirety of the visual field in a single fixation. Instead, the
eye makes a sequence of shorter fixations with a slight offset. The
specific length depends on various factors, including the nature of
the visual stimuli and the task, as well as the individual’s skill and
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2. Dyslexia detection

mental state. However, the fixations generally last for about 180 to 330
milliseconds [14].

The process of moving between fixations is called a saccade. The
duration and velocity again vary based on the task, specifically, the
distance travelled. During reading, we want to move the centre of
vision by the size of the fovea (a 2◦ rotation), which usually lasts
about 30 milliseconds [14]. For reading tasks, it is also reasonable to
differentiate between forward saccades (progressions) and backward
saccades (regressions) depending onwhether the reader is continuing
reading or returning to an earlier part of the text. Moreover, by analogy,
this can also be done with fixations, but it is rarely so.

Lorem ipsum dolor sit amet. . .
fixation

(forward) saccade

regression

Figure 2.2: Visualisation of fixations, forward and backward saccades.

While saccades and fixations, as seen in Figure 2.2, are the most
commonly observed gaze events, some researchers choose to recognise
others as well: smooth pursuit (following a moving object), vergence
(bringing the eyes together to focus on near objects), glissade (short
back and forth saccades before the eyes fully fixate) [16].

The differences in eye movement patterns among people with
dyslexia are well-researched, going back to 1958 [6]. The studies gen-
erally agree on fixations of dyslexic readers being more frequent and
longer, the saccades being shorter, with a higher proportion of re-
gressions. It is also generally accepted that these abnormalities result
from the difficulties the person has with reading rather than being the
cause [17].

2.1.1 Eye-tracking

From a technical point of view, tracking eye movements involves shin-
ing some light source, usually an infrared light, into the eye with a
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2. Dyslexia detection

given frequency. The eye-tracking software then identifies the pupil’s
centre from a cornea’s reflection. During the experiments, calibrations,
during which users look at a series of pre-determined locations on
the screen, are regularly done to establish a baseline from which the
relative gaze position is calculated [5].

Stabilisation via a chin rest may be used to maximise accuracy, and
a higher frequency device may increase precision. Nonetheless, the
real-world outcomeswill varywidely due to circumstances beyond the
eye-tracker choice, like the experiment setup and procedure, as well as
user-specific behaviour and physiology. For this reason, data cleaning
ought to be performed during the pre-processing of the data [5].

The raw output of the devices consists primarily of X and Y coordi-
nate time series for each eye (in pixels), although additional measures
such as pupil size can also be seen. These series are then aggregated
into gaze events, fixations and saccades, and blinks and lost data. For
this, a broad selection of commercial and open-source software pack-
ages is available, each offering different algorithms and parameters. A
noteworthy ability is the recognition of the Areas of interest (AOI),
that is, the matching of the fixations to the visual stimuli [5].

Finally, most circumstances do not necessitate analysis of both
eyes. We may average or subtract the coordinates in such cases or only
consider the eye with better data coverage.

2.2 Related work

The earliest cases of dyslexia detection models came up in the early
2010s [7, 12]. Al-Edaily et al. [18], for example, used simple thresh-
olds on simple statistics such as total fixation duration, mean fixation
duration or fixation count. The accuracy of individual features on 14
children (7 with and 7 without dyslexia) aged 10–12 reading Arabic
script reached 70 % and above.

The first instance of machine learning usage for eye-tracking anal-
ysis was a 2015 paper by Rello et al. [19]. The paper achieved an
accuracy of around 80 % on 12 readings from 97 Spanish speakers
(48 of whom were dyslexic) aged 11–54 using Support vector ma-
chines (SVM). The authors established the method of aggregating
gaze events globally (on the entire text) into statistics, stating reading
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2. Dyslexia detection

time (time spent in the AOI) and mean fixation duration as the most
valuable features while also noting the importance of considering age.

The dataset of 185 Swedish children aged 9–10, 97 classified as
high-risk, is one of the largest and most well-studied. Firstly, Nilsson
Benfatto et al. [20] achieved an accuracy of 95.6 % byusing SVM-RFE to
select 48 of their original 168 features relating to fixation duration and
saccade position. Secondly, a Portuguese paper [21] explored a range
of methods on wavelet transformed data claiming to achieve 97.3 % ac-
curacy usingRandomForest. On the other hand, Jothi Prabha et al. [22]
ended up ranking the Hybrid SVM-PSO model [23] as best at 96.6 %
accuracy, preferring features based on fixation and saccade counts
and lengths. Finally, Nerušil et al. [24] tried a Convolutional neural
network (CNN) on pre-processed time series resulting in 96.6 %.

Smyrnakis et al. [25] proposed a custom score made from mean
fixation time, saccade length quartiles, the number of short regressions,
fixation count, skipped word count and other event statistics. The
score differentiated 69 Greek children, 32 dyslexic, aged 9–13, with an
accuracy of 94.2 % on one text and 87.9 % on another. Asvestopoulou et
al. [26] then expanded on this work by fitting SVM, k-means andNaive
Bayes models, with the SVM model coming on top with 97.1 % and
89.39 % accuracies, respectively. The used feature selection, LASSO,
also identified features with the most predictive power: the mean
saccade length, the number of short forward saccades, and, to a lesser
degree, the median saccade length and the number of multiply fixated
words.

Another research done by Szalma et al. [27] tested SVM on a group
of 48 Hungarian young adults (20–28 y.o.) with accuracies ranging
from 70 % to 90 % depending on the level of overfitting. Notable fea-
tures included an Interquartile range (IRQ) of forward saccade count
divided by word, median saccade amplitude or median regression
amplitude. The follow-up papers [28, 29] investigated the effect of
spacing level on detection, favouring larger spacings. By looking at
a broader range of feature selection methods, they also reported the
median of progressive and all saccade amplitudes, a median of fixa-
tion duration and an IRQ of forward glissade duration as the most
important.

Vajs et al. [30, 31] tried detection based on gaze event statistics
and raw time series data evaluated on 30 Serbian children (7—13),
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2. Dyslexia detection

half dyslexic. In the former case, all four models (Linear Regression,
SVM, k-NN and Random Forest) achieved an accuracy of around
90 %, with the highest relevance given to the unique event features
presented by the authors. In the latter case, they trainedCNNon image
visualisations of the gaze, reaching accuracies up to 87 % depending
on the selected hyper-parameters.

Even among the less studied datasets, SVM tends to dominate
the research. Gran Ekstrand et al. [32] attained an average accuracy
of 87.9 % on the 2726 Swedish participants aged around 9. While El
Hmimdi et al. [33] reached an accuracy of up to 80 % with SVM on
87 French students (12–18), 46 dyslexic, Linear Regression slightly
outperformed it at 81.25 %, and both significantly outperformed the
MLP model. Raatikainen et al. [34] similarly achieved an accuracy of
up to 89.8 % on 165 Finish youngsters (around 12 y.o.), 30 of whom
were dyslexic, outmatching the Random Forest by three percentual
points.

Neural networks also started to be explored in recent years. One of
the earliest attempts was a Master’s thesis by Lustig [35] comparing
SVM to MLP and LSTM on 18 participants, half dyslexic. The feature-
based SVM and MLP models came on top with 83 % accuracy versus
the X coordinate sequence-based LSTM with 78 %. Similarly, Haller
et al. [36] tested the SVM, LSTM and CNNmodels on 62 Mandarin
Chinese children, 33 with dyslexia, reaching 90 % accuracy with all of
them. Here, both neural networks used word-by-word sequences of
gaze event statistics rather than the events or raw coordinate pairs.

Some studies looked into identifying reading skills more broadly.
Zhan et al. [37] tried to assess the reading abilities of 74 Chinese
students aged 17–21, among which 38 were deemed to have lower
proficiency. The custom model with 95.09 % accuracy helped them
determine fixation and saccade rates as most important, followed by
regression rate, count, and pupil diameter. In contrast, Lou et al. [38]
chose to predict the literacy skills of 61 Chinese undergrad students in
their twenties (the class breakdown was not stated). The SVM model
with the highest accuracy of 80.03 % utilised the duration of different
types of fixations across varying text sections.

While differing methodologies, small and sometimes even imbal-
anced datasets, and different languages researched make it harder
to draw absolute conclusions, existing literature does confirm that
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2. Dyslexia detection

Table 2.1: Overview of ML methods and data types used in existing
research: The cells include the number of studies researching the
given model on a given data type, except the totals since some studies
research multiple approaches.

Algorithm Global stat. Per AOI stat. Time series Total

SVM 10 2 1 13
Random Forest 2 1 1 4
LR 3 3
k-NN 2 1 3
CNN 1 2 3
Naive-Bayes 1 1 2
MLP 1 1 2
k-Means 1 1
Decission Tree 1 1
Gauss. Process 1 1
adaBoost 1 1
RNN 1 1
LSTM 1 1
Custom model 2 2

Total 22 5 11

machine learning is a helpful tool for dyslexia detection. SVM stands
out as the state-of-the-art method (see Table 2.1), achieving an ac-
curacy of up to 90 % on gaze event statistics. The literature varies in
which specific statistics are used, only preferring the ones based on
fixation duration and saccade length and noting the importance of
progression differentiation. At the same time, alternative neural net-
work approaches also show promising results, potentially superseding
SVM, but more research is needed.
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3 Data and preprocessing

This chapter describes the data and our approach to representing
them. Section 3.1 details the format of the data as received. Section 3.2
continues with the resulting data types we explore in our work.

3.1 Collection

The data for this thesis was provided by a research team from the
Faculty of Arts of Masaryk University as part of a pilot experiment
on the differences between dyslexic and non-dyslexic readers. This
experiment is part of a larger project supported by the Technology
Agency of the Czech Republic1 and approved by the Research Ethics
Committee of Masaryk University.

The sample consists of 35 4th-grade children (i.e. aged 9–10), of
which 13 were diagnosed with dyslexia by the Pedagogicko-psycholo-
gická poradna Brno. The procedure took approximately 30 minutes
and involved the participants fixing their heads with a chinrest located
55–60 cm in front of a 22′′ LCD monitor (1680 × 1050 resolution) that
displayed the stimuli.

The eye-tracking was enabled by commercial solutions from Sen-
soMotoric Instruments:

• Experiment Center 3.7.69, software for the experiment design;

• REDm 250, an eye-tracking device with a 250 Hz sampling rate;

• iViewX to control the device;

• BeGaze 3.7 for the velocity-based gaze event detection and export
of the data as described in Subsection 3.1.2.

3.1.1 Tasks

The pilot experiment utilised four verbal tasks from the standardised
battery for diagnosing dyslexia in the Czech Republic [39] and five

1. See https://starfos.tacr.cz/en/project/TL05000177.
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3. Data and preprocessing

additional non-verbal. For purposes of machine learning, only three
types of reading tasks were considered:

Grid reading of syllables and short words embedded in a 7 × 7 grid
without a time limit, as shown in Figure 3.1;

Figure 3.1: Illustration of the grid task, adapted from the battery (5× 5
initially) [39], obscured at the request of the authors.

Text reading of meaningful continuous texts limited to 2 minutes, as
illustrated in Figure 3.2. This task consisted of two trials:

Hard text age appropriate;

Easy text aimed at younger pupils;

Pseudo-text reading of a meaningless continuous text limited to 2
minutes. The structure of the text matched the Czech language,
but the words were fictitious.

The remaining tasks were structured differently, so they were deemed
out of this thesis’s scope.

10



3. Data and preprocessing

Figure 3.2: Illustration of the easy text task [39], obscured at the request
of the authors.

3.1.2 Events data format

The BeGaze software transforms the raw time series the eye-tracking
device generates into gaze event data (as described in Section 2.1).
These are made available in files individually for each participant,
providing the data from an eye with better data coverage. Each file
line represents a gaze event whose type is defined in the Category
column: one of Fixation, Saccade or Blink. Explanation of the columns
used in this thesis follows:

General trial attributes

• Participant: The ID of the participant.

• Trial Length (in ms): The total time length of the task for a given
participant.

Additionally, the classification of the participants was located in an-
other file.

Common gaze event attributes

All event types shared a set of common columns:

• Event Start Trial Time (in ms): The offset from the trial’s start
until the event’s beginning;

11



3. Data and preprocessing

• Event End Trial Time (in ms): The offset from the trial’s start until
the event’s end;

• Event Duration (in ms): This should be the subtraction of the
values above.

Fixation attributes

Fixations are aggregated from several raw coordinates, and so aside
from the estimated position of the fixation’s centre dispersion of the
raw values is also included:

• Fixation Position X and Y (in px);

• Fixation Dispersion X and Y (in px);

• AOI name: All tasks, except for the hard text, had predefined
Areas of interest (AOIs): The grid had an AOI for each cell (49),
while text-based tasks had one for each line (9–12 including
the heading). The AOIs usually covered multiple fixations, and
fixations that were too far from the content were grouped in the
White Space AOI.

Saccade attributes

• Saccade Start Position X and Y (in px);

• Saccade End Position X and Y (in px);

• Saccade Amplitude (in °): The eye angle between the start and
end of the saccade.

Further, Saccade Length (in px) can be calculated as a Euclidean dis-
tance between the starting and ending positions.

3.2 Feature extraction

Processing raw time series is significantly resource-consuming, which
leads us to search for ways to simplify the data. Gaze events are an
improvement but, at the same time, high-dimensional. One way to
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3. Data and preprocessing

further trivialise this work is to aggregate the gaze events into statistics
at different levels of detail. Alternatively, we can focus only on one
gaze event type, like fixations, and analyse their sequences.

3.2.1 Custom AOI definitions

Since AOI names for all trials were not made available to us, a need
for custom labels arose. We can use a moving grid to account for the
potential differences in coordinates between participants.

The idea is to find AOI positions that maximise the number of
fixations in them and lump the fixations outside together. To make
the search easier, we can split it into finding the bounds on X-axis and
then the Y-axis.

For the first task, we can start the search from the bottom right cor-
ner, move the bounds to the left corner, and take the first combination
of borders that cover the maximum of fixations. Then we can divide
the inner area regularly into forty-nine (7 × 7) cells.

We must also consider that not all participants have finished the
entire text in time for the remaining trials. Searching for X-axis bound
stays the same, but we search for the lower Y-axis from the top down.
For each explored bound, we find the lowest estimated row count that
maximises the fixation count. Similarly, we select the lowest maximis-
ing lower bound at the end, like in Figure 3.3.

Figure 3.3: The grid for a single participant on easy text with fixations
coloured by the original AOI labels (red signifies white space).

As a result, we have both the rough AOI labels and estimated row
counts. Additionally, we can use these AOIs to categorise the saccades.

13



3. Data and preprocessing

If the saccade ends in a region later than it started, we can assume it is a
progression and, in the opposite case, a regression. If the saccade does
not change the region and the length is small, we say it is a refocus.
Finally, in the text-based tasks, if the change in the X coordinate is
more considerable (larger than 25 pixels), we categorise it based on
the direction.

This algorithm determines only a rough estimate, e.g. it does not
reckon with fixations that fall into white space between words. If
available, it should be replaced with the native solution from the gaze
event extraction software.

3.2.2 Gaze event statistics

Aggregating gaze event attributes is usually done globally, on the
whole trial, but we can also examine them on a more granular level:
e.g. per AOI or per time window.

Global statistics

The global level statistics are fixed-length vectors of features, each of
which is a real number statistic or some other descriptive attribute.
These statistics should ideally have different class distributions, like
in Figure 3.4.

The backbones of the global statistics are the counts of each gaze
event type (fixation, saccade, blink). In the case of saccades, we also
recognise progression and regression counts and their proportions of
the total and the saccade-to-fixation ratio.

For saccades, we can aggregate their time, length and amplitude
using mean, median and Interquartile range (IQR), the difference be-
tween the 75th and 25th quartile. On top of it, the totals of the time
and length can also be considered.

Similarly, we can use the same aggregations for fixations: on their
time and X, Y coordinate dispersions. Here, only the time’s sum has
meaning. We also apply the same statistics to the fixations excluding
the non-AOI (i.e. white space) ones: the so-called visits. Aside from
the total visit count, we are also interested in the mean, median and
IQR of the visit counts per AOI.
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Figure 3.4: Comparison of the fixation time sum between dyslexics
(D) and non-dyslexics (I) on grid.

Finally, we shall look at the blink rate: the number of blinks per
second. Besides, the trial length and estimated row count (as described
in the previous subsection) add up to 46 features (45 in the grid’s case).

If we exclude AOI-related statistics, trial length, row count, blink
statistics and saccade-to-fixation ratio, we get a reduced set of 27 fea-
tures relevant to smaller parts of the tasks.

Per AOI statistics

Similarly, we can investigate the same statistics per AOI. For the sake of
simplicity, we have explored a single statistic and eliminated any global
attribute like the trial length. While any statistic from the reduced
feature set should work, the sum of fixation time is the most promising
based on existing research.

Per time window statistics

Another option is to split the trial into time segments of the same
length (e.g. 5 s) and do the aggregations. We need to remember that
some events could spanmultiple segments, in which case we put them
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3. Data and preprocessing

into the first relevant segment for convenience. This results in time
series of 27 features.

3.2.3 Fixation sequences

We define fixation sequences as sequences of tuples made from all the
fixation-related ordinal features (X, Y positions, duration and X, Y
dispersions). Alternatively, we can view them as matrices of size 5 ×
fixation count. AOI labels were omitted since such categorical features
necessitate specific encoding and are no more than a different position
representation.

3.2.4 Fixation visualisations

In addition to using raw fixation sequences, we may also represent
them as images. Among the various methods available, we have cho-
sen an approach that preserves all five explicit features, even though
it does not preserve the order of fixations. Expressly, we represent
fixations as ellipses where the fixation coordinates determine their
position on the canvas, and the dispersion defines their width and
height. The duration of each fixation is represented by its colour, as
seen in Figure 3.5.

To map fixation duration to colour, we use Matplotlib’s hot colour-
map, which ranges from black (for minimum values) through red and
yellow to white (for maximum values). It is important to note that this
normalisation and the choice of canvas boundaries were performed
before splitting the datasets, which may have introduced some data
leakage.
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(a) Non-dyslexic participant. (b) Dyslexic participant.

(c) The fixation duration colourmap a.

a. See https://matplotlib.org/stable/tutorials/colors/colormaps.html.

Figure 3.5: Illustrations of the grid reading task overlaid by the rescaled
fixture visualisations.

4 Machine learning methods

Detecting dyslexia can be viewed as an instance of binary classification.
Machine learning, the process of improving a program’s performance
using data [40], can also be applied to the classification problem.
Specifically, providing pre-labelled data to the learning process is
called supervised learning. The twomethods explored in this thesis are
k-Nearest neighbours (Section 4.1) and Neural networks (Section 4.2).

4.1 k-Nearest neighbours

The k-Nearest neighbours (k-NN) is a distance-based supervised
method. The idea with this group of models is that the instances
of the same class are typically close to each other. Formally, we can
use a distance metric dist : X × X → R, where X is the set of data
examples. For all x, y, z ∈ X, the following axioms have to hold [41]:
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4. Machine learning methods

• Reflexivity: dist(x, x) = 0;

• Positivity: x ̸= y ⇔ dist(x, y) > 0;

• Symmetry: dist(x, y) = dist(y, x);

• Triangle inequality: dist(x, y) ≤ dist(x, z) + dist(z, y).

Supposewehave a training set of n pairs T = {(x⃗1, c1), . . . , (x⃗n, cn)},
where x⃗i ∈ Tx is typically a d-dimensional vector (Tx ⊆ R

d), and
ci ∈ Tc is the category label. For distance metric dist and positive
integer k, we can define the set of k nearest neighbours Nk(x⃗) ⊆ Tx,
|Nk(x⃗)| = k, ∀x⃗′ ∈ Nk(x⃗), ∀x⃗′′ ∈ Tx \ Nk(x⃗) : dist(x⃗, x⃗′) ≤ dist(x⃗, x⃗′′).
In that case, we can label x⃗ with the most common label of the points
in Nk(x⃗) [42].

The most straightforward option for the distance metric is the Eu-
clidean distance,which is the distance between twopoints in Euclidean
space, as seen in Equation 4.1.

dist(x⃗, y⃗) =

√

√

√

√

d

∑
i=1

(xi − yi)2 (4.1)

4.1.1 Dynamic time warping

In the case of time series or sequential data, we do not have individ-
ual inputs in the form of d-dimensional vectors but variable-length
sequences of d-dimensional points. Since regular Euclidean distance
or its generalisations cannot handle such inputs, we have to look for
other metrics, like Dynamic time warping (DTW) [43].

Let us consider two sequences x = ⟨x1, . . . , xm⟩ and y = ⟨y1, . . . , yn⟩
in the d-dimensional space (xi, yj ∈ R

d) with lengths m and n, respec-
tively. DTW then forms an optimisation problem:

DTW(x, y) = min
π

∑
(i,j)∈π

dist(xi, yj), (4.2)

where dist is a distance function (e.g. Euclidean distance) and π =
⟨π1, . . . , πo⟩ is an alignment between the two sequences, i.e. it satisfies:
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4. Machine learning methods

• It is a list of index pairs πk = (ik, jk) for 1 ≤ ik ≤ m and 1 ≤ jk ≤
n;

• It starts at the beginning of the sequences π1 = (1, 1) and ends
at their end πo = (m, n);

• It walks through all points in order, i.e. for all πk = (ik, jk) and
πk−1 = (ik−1, jk−1) where 1 < k ≤ o, ik−1 ≤ ik ≤ ik−1 + 1 and
jk−1 ≤ jk ≤ jk−1 + 1.

Notice that DTW is not technically a proper distance metric, as
it does not satisfy the triangle inequality, which is, however, not in
conflict with the k-NN algorithm.

4.1.2 Min-max scaling

When using Euclidean distance in machine learning models, we need
to consider that it uses absolute distances of features. Therefore it can
overfocus on features with large ranges. The simplest solution is to
rescale all features into a fixed range [44], such as [0, 1]:

x′ij =
xij − mink(xkj)

maxk(xkj)− mink(xkj)
, (4.3)

where i is the sample index and j is the feature index. The extremes
are always calculated per feature, even for sequential data, where we
calculate the extremes across the entire sequence.

4.2 Neural networks

Artificial neural networks are machine learning techniques inspired
by the biological neural networks that constitute brains. They are
collections of smaller units, called (artificial) neurons, connected to
pass a signal in the form of real numbers. Individual variants differ in
either the architecture or the unit design.

4.2.1 Multilayer perceptron

The most straightforward architecture is the Feedforward neural net-
work [45], where the neurons are organised into layers, usually fully
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4. Machine learning methods

connected to the neurons from the previous layer. The input layer
consists of n virtual neurons, where n is the input length, that only
passes the values into the next layer. The last layer is called the output
layer, and its number of neurons determines the output size. We speak
of Multilayer perceptron (MLP) if more (hidden) layers exist between
the input and output, as shown in Figure 4.1.

...
...

...

Input
layer

Hidden layer

Output
layer

Figure 4.1: Illustration of a fully connected multilayer perceptron with
a single hidden layer.

In the basic neurondesign,we see the vector of inputs (x1, . . . , xn) ∈
R

n combined with the weights (w1, . . . , wn) ∈ R
n into the so-called

inner potential ξ, almost always by summing the per-element products
with the bias wo ∈ R, a non-input weight:

ξ = w0 +
n

∑
i=1

wixi. (4.4)

The activation function σ : R → R finally transforms the inner poten-
tial into output y = σ(ξ).

The activation function can be an arbitrary differentiable function,
but for the hidden layers, we generally use non-linear activations like
the Rectified linear unit (ReLU):

ReLU(ξ) = max(0, ξ). (4.5)
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Themost commonly used output activation for binary classification
is the (logistic) sigmoid:

sigmoid(ξ) =
1

1 + e−ξ
. (4.6)

The range of this function is between 0 and 1, meaningwe can interpret
it as class probability and use a single output neuron.

Alternatively, for the classification of n classes, we use softmax
activation on n neurons:

so f tmax(ξi) =
eξi

∑
n
j=1 ξ j

, (4.7)

where ξi is the i-th output inner potential. By scaling the sum of the
outputs to 1, softmax again allows for the probability interpretation.

4.2.2 Gated recurrent unit

The typical neural network only accepts vectors of fixed length. Recur-
rent neural networks (RNNs) [45] implement a form of memory to
support sequential data. The network activity can be split into time
steps, and in each step, the recurrent units process not only the input
in that step but also the output from the previous one.

h0 A A A A=A

h1

x1

h2

x2

h3

x3

hn

xn

h

x . . .

. . .

Figure 4.2: Illustration of an unrolling of a recurrent unit.

Just like in Figure 4.2, for a given input sequence x = ⟨x1, . . . , xn⟩,
xt ∈ R

d, the single hidden recurrent neuron outputs a hidden se-

21
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quence h = ⟨h1, . . . , hn⟩, ht ∈ R:

ht = σ(v0 +
n

∑
i=1

vih(t−1)i + w0 +
n

∑
i=1

wixti)

= σ(v0 + Vh(t−1) + w0 + Wxt),

(4.8)

where h0 would be the initial hidden state (e.g. zeroes). The activation
function commonly used in RNNs is the hyperbolic tangent σ = tanh.
Since these recurrent layers produce sequences of hidden states, we
can take the last state hn as an output for classification purposes.

Unfortunately, this basic architecture is plagued by the explod-
ing/vanishing gradient when learned with gradient-based methods.
Several improvements were proposed, such as the Long short-term
memory (LSTM) or simpler Gated recurrent unit (GRU) [45]. Un-
like RNN, where the hidden state serves as memory, LSTM uses an
additional memory channel, and a system of gates that control the
information flow more granularly. GRU retains the gating system but
without the second memory channel, which speeds up the processing,
but potentially leads to worse outcomes.

The structure of GRUs allows the cell to forget its state before
updating it:

rt = sigmoid(v0,r + Vrh(t−1) + w0,r + Wrxt)

zt = sigmoid(v0,z + Vzh(t−1) + w0,z + Wzxt)

nt = tanh(v0,n + Vnh(t−1) + rt ∗ (w0,n + Wnxt))

ht = (1 − zt) ∗ nt + zt ∗ ht−1,

(4.9)

where ∗ is theHadamard product and rt, zt and nt are the reset, update
and new gates, respectively.

4.2.3 Convolutional neural network

For the processing of high-dimensional data (like images), we of-
ten use Convolutional neural networks (CNNs) [45]. Unlike MLPs,
layers of which are usually fully-connected, the CNNs include so-
called convolutional and pooling layers (Figure 4.3), which utilise
weight-sharing to reduce the total weights count and, by proxy, the
computational costs.
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Figure 4.3: Illustration of the typical CNN for classification of im-
ages [46].

In each convolutional layer, we have feature maps, groups of neu-
rons that share their weights. The neurons in a given feature map are
connected to a subset of the neurons from the previous layer called a
receptive field with the same (kernel) size. These fields can intersect,
and the distance between them is called stride length. For example,
the receptive fields are often squares with some small stride in image
processing, and each feature map detects some specific element in the
previous layer (e.g. shape or colour).

The pooling layer follows a convolutional layer (or a sequence
thereof) and reduces the number of neurons. Similarly to convolu-
tional layers, pooling, split into several channels to match the feature
maps, connects its neurons to small clusters from the previous layer.
Unlike in convolutional and dense (fully-connected) layers, the neu-
rons in the pooling layer combine the outputs from their receptive
layer without any weights:

• Max pooling: The neuron calculates the maximum;

• Average pooling: The neuron calculates the average.

4.2.4 Learning

The previous subsections detail the inner working of the neuron net-
works, but the learning itself can be described as an optimisation
problem [45]. Specifically, we are minimising the error, i.e. the output
of the so-called loss function. The typical loss function for classification
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(with softmax output) is cross-entropy:

E =
1

n

n

∑
i=1

(− log yi,ci
), (4.10)

where n is the number of samples, ci is the category of the i-th sample,
and so yi,ci

is the outputted probability of the correct class.
In the case of binary classification (with sigmoid output, i.e. ci ∈

{0, 1}), the cross-entropy simplifies to:

E =
1

n

n

∑
i=1

−(ci log yi + (1 − ci) log(1 − yi)). (4.11)

The optimisation is commonly done by the gradient descent algo-
rithms, which adjust the weights with the negative gradient of the
error to find a local minimum. The most straightforward iteration
implementation is the Stochastic gradient descent:

w(t) = w(t−1) − η∇E, (4.12)

where η is the learning rate. SGD is usually not applied to all samples
at once, but in each iteration (epoch), we update the weights several
times to disjoint subsets (batches). The gradient itself∇E is calculated
using backpropagation.

Many extensions were proposed to deal with various issues the
SGD faces, like the exploding/vanishing gradient. These include Mo-
mentum, AdaGrad, RMSProp or Adam (Adaptive moment estima-
tion) [45].

4.2.5 Input standardisation

The expected struggle in neural networks is some part of the network
increasing and decreasing out of control (e.g. the exploding/vanishing
gradient). For this reason, keeping parts of the network around zero
is best. Inside the network, this is achieved by an appropriate weight
initialisation. Outside, we can standardise the inputs [45]:

x′ij =
xij − xj

σj
, (4.13)
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4. Machine learning methods

where i is the sample index, j is the feature index, xj is the average of
the feature and σj is its standard deviation. The statistics are always
calculated per feature, even for sequential data, where we calculate
the statistics across the entire sequence.

4.3 Ensemble

The idea behind ensemble learning is that combiningmultiple learning
algorithms could lead to a better outcome. Notably, neural networks
can also be viewed as ensembles of neurons and layers.

The most elementary type of ensemble is majority voting [47]. In
the case of binary classification and an odd number of classifiers, we
select the class that the majority of them predict. For an even number
of classifiers and a tie scenario, we either have to give some larger
weight or choose the class randomly.
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5 Experiment setup

This thesis’s central core is examining different machine-learning ap-
proaches to dyslexia detection rather than implementing a specific
model. As such, great care has to be taken when designing the experi-
ments and evaluating the results. On the other hand, we can exploit
Python’s rich data-science ecosystem for conducting experiments.

As such, the technologies used are described in Section 5.1, while
the project structure in Appendix B. Section 5.2 introduces the valida-
tion and evaluation process, including the model details. Additionally,
Section 5.3 introduces the data augmentation strategy.

5.1 Machine learning in Python

The backbone of data science in Python is NumPy, which offers basic
numerical data structures far exceeding the standard library in func-
tionality and performance. This library is then built upon by SciPy,
providing a broad range of algorithms, Pandas for data analysis and
manipulation and Matplotlib powering the visualisations. The pre-
sentation of the code and results can be boosted further with Jupyter
notebooks.

The most common libraries that enable machine learning are scikit-
learn [48], which covers the basic models and evaluation, and PyTorch,
which implements an in-depth neural network interface. When it
comes to time series and sequences, there are fewer established pack-
ages. However, there are smaller projects like tsaug, for time series
augmentation, or tslearn [49], for time series models utilising scikit
API.

5.2 Evaluation

The central choiceswe have tomake during the design of the validation
and evaluation are selecting the validation method, the evaluation
metric and the hyper-tuning technique. The specific circumstances
that drive our decision process are the dataset size and its unbalanced
nature.
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5.2.1 k-fold cross-validation

One of the most common pitfalls of machine learning is overfitting:
Training and evaluating the model on the same data may lead to
unfounded confidence in its abilities regardless of the ability to process
unseen instances. The solution is to split the data into two subsets: the
training and testing sets.

However, this practice needs to be revised in the case of small
datasets, as a small training set cannot cover the total variability of
the real world. To better represent the available material, we can split
the set into k folds and iteratively use one fold for testing and the rest
for training [50]. Further, we can repeat this procedure n times with
differently shuffled splits, which yields n × k results. In this thesis, we
use ten repeats (n = 10) of 5-fold cross-validation (k = 5), i.e. we
evaluate each model 50 times.

The class imbalance requires another revision. If we used standard
shuffled k-fold cross-validation with imbalanced data, we could end
up with folds with a testing set of a single class. To avoid this, we can
stratify the process by separately sampling each class, as shown in
Figure 5.1.

5.2.2 Balanced accuracy

Let us consider dyslexic participants as positive cases and non-dyslexic
(intact) as negative and look at their classification’s correctness. We
can sort them into true positives (TPs), false positives (FPs), true
negatives (TNs) and false negatives (FNs), as seen in Table 5.1.

Table 5.1: A confusion matrix

True class
Dyslexic Intact

Predicted class
Dyslexic TP FP

Intact FN TN

These counts can be combined into manymetrics, among which ac-
curacy is the simplest: it describes the proportion of correctly classified
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Figure 5.1: Example of stratified 5-fold cross-validation: dyslexic par-
ticipants on the right of the vertical line, non-dyslexic on the left.

points, as defined in Equation 5.1.

accuracy =
TP + TN

TP + TN + FP + FN
(5.1)

A baseline model always returning the same class would achieve
only 50 % accuracy if we had perfectly balanced data. On the other
hand, for imbalanced data, such a model returning the majority class
could achieve an accuracy equal to the proportion of that class (i.e.
more than 50 %). Since we are typically more interested in detecting
the minority class, we have to balance the metric.

One such correction is the balanced accuracy [51], commonly de-
fined as an average of the true positive rate (recall) and the true nega-
tive rate (specificity). The most significant advantage of this metric is
that the results are fully comparable with accuracy on balanced data,
which is the case of most existing research. The slight disadvantage
is that insufficient models will achieve 40–60 %; lower values usually
only happen due to an implementation mistake (e.g. reversed testing
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labels).

recall =
TP

TP + FN

speci f icity =
TN

TN + FP

balanced accuracy =
recall + speci f icity

2

(5.2)

5.2.3 Hyper-parameter tuning

Most machine learning models come with parameters that can be
tuned to improve their performance. The best combination of param-
eters should be chosen using training data only to avoid overfitting,
and the cross-validation techniques can again be used to make the
choice more representative.

However, this approach clashes with our decision to use k-fold
cross-validation for the final evaluation. The synthesis of these prac-
tices is called nested k-fold cross-validation,wherewe perform another
cross-validation in each fold. The drawback of such a technique is that
we practically would not evaluate the performance of a single model
(with the same parameters) but of an ensemble of models (with dif-
ferent parameters in each fold).

As a compromise, we decided to conduct the tuning on a single
k-fold shuffle out of 10. While this does lead to some degree of data
leakage (and over-fitting), we believe there is no better way to get
stable results on such a small sample.

Since the parameters are usually continuous variables, we cannot
test them all, so we have to select and compare only their subset. While
an exhaustive search would lead to a more definitive outcome, it is
also time-consuming, so a manual search using educated guesses was
done instead.

The baseline

As a baseline for our experiments, we have chosen the k-nearest neigh-
bours for its simplicity. It has several parameters, like the distance
function and, most notably, the k. However, since we are utilising it as
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a baseline, we limit ourselves to 1-nearest neighbour and the Euclidean
distance function.

Similarly, the time series variant used Euclidean distance for the
DTW calculation. Be aware that tslearn’s implementation differs from
the definition in Subsection 4.1.1 in that it optimises the root of the
sum of squared distances rather than the sum of the distances.

Neural networks

The universal hyper-parameters of neural networks are the learning
rate and the number of epochs. The learning rates tested were the
negative exponents of 10 (10−1, . . . , 10−4). The epoch number was
then chosen with a form of early stopping: the lowest number with
the highest accuracy on a given learning rate.

As for the architecture, the global and per AOIMLPs had only a sin-
gle ReLU hidden layer half the size of the input and single sigmoidal
output neuron. The GRUs also had the same output layer and a single
hidden layer, but the size was hyper-tuned for each task and ranged be-
tween 8 and 32 neurons. Finally, the CNNwas the pre-trained resnet18
with two softmax output neurons.

Feature selection was only done for the GRUs (fixation sequences)
and is further discussed in Section 6.2.

Ensemble

The ensemble is a Majority voting of the samemodel on different tasks.
Since there are four tasks, we must either ignore one task or give two
votes to one task. Both approaches were compared on the single 5-fold,
where the ignored task was the worst performing, the doubled task
was the best performing, and the better performing was used for the
final evaluation.

5.3 Data augmentation

Another way to address the data size and imbalance is data augmen-
tation: the idea is to create artificial samples, which can make the
training less monotone and balance the data.
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Specifically, we will employ augmentation for fixation visualisa-
tions by augmenting the fixation sequences. First, we drop some fixa-
tions with a probability of 0.1 % and then add gaussian noise (with 0
mean and different standard deviations for each feature). Resulting
effect can be seen in Figure 5.2.

(a) Original visualisation.

(b) Augmented visualisation.

Figure 5.2: Fixation visualisation of the easy text reading task.

To keep the running time low, we added three samples per dyslexic
participant and 1 per non-dyslexic, which increases the mean propor-
tion of dyslexics in training set from 31.4 % to 47.9 %.
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6 Results

Let us remember the experiment setup. We test different representa-
tions of gaze event data with two types of models: 1-Nearest neigh-
bour as the baseline and neural networks as our primary focus. We
evaluate the models with balanced accuracy on ten shuffles of 5-fold
cross-validation, leading to 50 readings that we characterise by their
mean and standard deviation. We train each model on four tasks and
evaluate a majority voting ensemble built from them.

Section 6.1 explores the statistical-based approach, which aggre-
gates the events on different degrees of granularity. On the other
hand, the sequence-based technique is examined in its raw form in
Section 6.2 and in image form in Section 6.3. Finally, we conclude by
evaluating all 12 models per task and analysing the participants from
the point of view of classification error in Section 6.4.

6.1 Gaze event statistics

The three levels of granularity at which we calculate the statistics are
on the whole trial (global), on the AOIs and on time windows of equal
size.

6.1.1 Global statistics

Looking at Table 6.1, the complete feature set of 45–46 real number
statistics shows clear supremacy of the MLP over the baseline, on
average by ten p.p. The grid-based task and meaningful text reading
have similar results on MLP, around 84 %, but pseudo-text achieves
16p.p. less. The ensemble of three successful tasks leads to further but
negligible improvement. Aside from adam optimiser, L-BFGSwas also
tried, but the results were five p.p. lower on average (see Appendix A).

Reducing the feature set to 27 features that are also relevant on
more granular levels leads to an average performance reduction of
almost six p.p. on MLP. Table 6.2 also demonstrates that the neural
networks struggled to outperform the baseline.
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Table 6.1: Ballanced accuracy on global gaze event statistics with
complete feature set.

Task 1-NN MLP

grid 79.87 ± 16.17 % 82.23 ± 13.58 %
easy text 72.88 ± 16.66 % 85.22 ± 13.14 %
hard text 69.35 ± 17.99 % 85.85 ± 13.70 %
pseudo-text 59.55 ± 15.08 % 68.17 ± 17.58 %

ensemble 81.05 ± 16.96 % 85.88 ± 12.37 %

Table 6.2: Ballanced accuracy on global gaze event statistics with
reduced feature set.

Task 1-NN MLP

grid 73.72 ± 17.81 % 72.87 ± 17.36 %
easy text 73.47 ± 16.64 % 85.77 ± 13.49 %
hard text 69.50 ± 18.22 % 72.47 ± 17.21 %
pseudo-text 68.67 ± 14.68 % 67.33 ± 16.51 %

ensemble 76.78 ± 16.44 % 84.53 ± 12.75 %

If we look at Figure 6.1, the results from 1-NN models evaluated
on each feature separately, the most exciting features across the tasks
were IQR of fixation duration, IQR of visit duration (same, but without
white space fixations), total fixation duration and total trial duration.

0% 25% 50% 75% 100%

Total Fixation Time [ms]
Mean Saccade Length [px]

Median Fixation Dispersion Y [px]
IQR Saccade Time [ms]

Median Visit Dispersion Y [px]
IQR Fixation Time [ms]

(a) grid
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0% 25% 50% 75% 100%

Median Saccade Amplitude [°]
Blink Count

Mean Fixation Time [ms]
Mean Visit Time [ms]

Median Fixation Time [ms]
IQR Visit Time [ms]

IQR Fixation Dispersion Y [px]
IQR Fixation Time [ms]
Median Visit Time [ms]
Total Visit Time [ms]

Trial Length [ms]
Total Fixation Time [ms]

(b) easy text

0% 25% 50% 75% 100%

IQR Visit Time [ms]
Progression Count

IQR Fixation Time [ms]
Total Saccade Length [px]

Visit Count
Fixation Count

Total Saccade Time [ms]
IQR Visit Count

(c) hard text

0% 25% 50% 75% 100%

Median Fixation Time [ms]
Progression Proportion

Blink Rate
Total Saccade Time [ms]

Total Saccade Length [px]
IQR Fixation Time [ms]

IQR Visit Time [ms]

(d) pseudo-text

Figure 6.1: Comparison of the balanced accuracy means of the best 1-
NNmodels trained on single feature; red line shows the worst possible
result.
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6.1.2 Per AOI statistics

The total fixation duration per AOI (49 grid cells or 9-11 lines of text)
follows similar trends to global statistics. Again, Table 6.3 reveals
significantly poorer performance on the pseudo-text task, this time by
20p.p. on MLP. It is also worth mentioning that the training iterations
on this task were longer than the rest (over 100 epochs versus below
10). At 80 % accuracy, MLP on per AOI statistics performed worse
than on global statistics by four p.p. and was even outperformed by
the baseline on the hard task. The L-BFGS results can again be seen in
Appendix A.

Table 6.3: Ballanced accuracy on per AOI gaze event statistics.

Task 1-NN MLP

grid 69.37 ± 14.85 % 79.60 ± 12.96 %
easy text 73.92 ± 14.87 % 80.18 ± 14.57 %
hard text 84.60 ± 14.04 % 81.33 ± 15.21 %
pseudo-text 61.98 ± 17.35 % 60.83 ± 19.69 %

ensemble 78.53 ± 16.85 % 80.67 ± 15.08 %

6.1.3 Statistics time series

In addition to the two area-based granularities, time-based was briefly
attempted, albeit only with the baseline. As a reminder, we create
a series of 5-second windows with 27 statistics, where each event is
assigned to the window in which it started. The average accuracy of
71 % is basically the same as the baseline’s performance on the global
scope with the same features. However, as Table 6.4 presents, this is
skewed by exceptional results on the easy task.

6.2 Fixation sequences

While fixation sequences can be represented by up to 5 features (X,
Y coordinates, fixation duration and X, Y dispersion), only some
combinations were tried. In Table 6.5, we can compare the baseline
results on the most interesting ones. We can see a particular usefulness
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Table 6.4: Ballanced accuracy on gaze event statistics time series.

Task 1-NN (DTW)

grid 73.22 ± 19.56 %
easy text 83.55 ± 12.58 %
hard text 63.75 ± 17.11 %
pseudo-text 63.42 ± 17.58 %

ensemble 83.78 ± 14.54 %

of the fixation duration, followed by the X coordinate. Interestingly, the
Y coordinate seems to play some role in the hard task and pseudo-task.

Table 6.5: Ballanced accuracy of 1-NN on fixation sequences per fea-
ture combination (X, Y are coordinates, L is fixation duration and DX

is dispersion on x axis).

grid easy text hard text pseudo-text

X 49.1 ± 12.4 % 65.7 ± 16.1 % 71.5 ± 15.3 % 71.5 ± 13.8 %
L 67.0 ± 16.0 % 80.2 ± 13.4 % 67.9 ± 16.0 % 61.4 ± 15.5 %
XY 50.1 ± 14.3 % 69.4 ± 16.6 % 86.0 ± 13.0 % 68.5 ± 17.0 %
XL 69.5 ± 15.5 % 77.5 ± 16.5 % 79.7 ± 15.0 % 65.3 ± 16.1 %
XYL 64.9 ± 14.7 % 75.6 ± 17.0 % 82.3 ± 14.1 % 73.8 ± 16.7 %
XLDX 67.0 ± 16.7 % 80.1 ± 15.9 % 80.7 ± 13.8 % 71.9 ± 15.3 %

The feature combinations for the final evaluation in Table 6.6 were
the best combinations on the single 5-fold. The GRU achieves better
outcomes on sequences of the hard text and pseud-text than the MLP
on global statistics by 2p.p. and 4p.p., respectively. However, more
feature combinations were tried in this approach. The training also
took significantly longer (over 100 epochs compared to below ten on
MLPs), which might bring the worth of this approach into question.

6.3 Fixation visualisations

Fixation images visualise the five sequential features, omitting the
order. As the results of resnet18 without data augmentation are similar
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6. Results

Table 6.6: Ballanced accuracy on fixation sequences (X, Y are coordi-
nates, L is fixation duration).

Task 1-NN (DTW) GRU

grid 69.50 ± 15.48 % (XL) 78.95 ± 16.11 % (XL)
easy text 80.20 ± 13.43 % (L) 77.18 ± 15.84 % (XL)
hard text 85.98 ± 13.01 % (XY) 88.07 ± 11.73 % (XYL)
pseudo-text 73.82 ± 16.67 % (XYL) 72.63 ± 15.83 % (XYL)

ensemble 82.53 ± 15.05 % 86.20 ± 15.48 %

to the fixation sequences, both above 79 % on average, we can conclude
that the fixation order is unimportant. Looking at the Table 6.7, the
data augmentation has a minimal effect outside of the hard text, only
raising the average accuracy by one p.p., but the non-dyslexic points
were only doubled. The decline on the grid task could be due to too
drastic augmentation of the coordinates, decaying the grid structure.

Table 6.7: Ballanced accuracy on fixation visualisations (augmentation
doubles the intact points and quadruples the dyslexics).

Task resnet18 resnet18 + augmented data

grid 76.83 ± 18.35 % 75.60 ± 18.17 %
easy text 78.40 ± 14.23 % 78.87 ± 13.50 %
hard text 88.78 ± 13.18 % 92.03 ± 9.48 %
pseudo-text 74.13 ± 17.03 % 75.82 ± 15.41 %

ensemble 88.12 ± 13.75 % 89.50 ± 12.30 %

6.4 Summary

We can reach more interesting observations by looking at the results
per task instead of per data type, like in Figure 6.2. First, the boxplots
evidently show that models trained on the hard text lead to the best
outcomes, followed by the easy text, grid and pseudo-text, respectively.
Specifically, pseudo-text fails to achieve more than 80 % on any model.
Unless a different method is required, this task is not worthwhile.
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6. Results
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(c) hard text
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(e) ensemble

Figure 6.2: Final comparison of the balanced accuracy across the 50
folds per dataset; red line shows the worst possible result.
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6. Results

Ensembles on the same data type generally lead to more stable
results but worse than the best model. Notably, the third quartile of the
AOI-based models is lower than 100 %, suggesting this is either a less
practical approach or that the AOI detection has to be improved. As for
the models and data types, the fixation sequences and visualisations
worked the best, followed by the global statistics fit with MLP.

If we look at which participants the models failed to classify the
most in Figure 6.3, we can see that the most anomalous on the hard
text were dyslexic No. 6 and non-dyslexics No. 32 and 37. These par-
ticipants were considered unusual in reading for their class, which
suggests that to improve the classification further, we might need to
utilise some non-reading tasks as well.
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0

50

100

grid

0

50

100

easy text

0

50

100

hard text

4 5 6 7 8 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

0

50

100

pseudo-text

Dyslexic Intact

Figure 6.3: The failed experiment count per participant.
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7 Conclusion

This thesis aimed to test machine learning on dyslexia detection from
text-reading eye movements. For this purpose, we trained a selection
of neural network models (MLP, CNN, GRU) and compared them
to the 1-NN baseline on various custom data representations. The
best model, fine-tuned resnet-18 trained on fixation images with data
augmentation, achieved an accuracy of up to 92 %, six p.p. above the
best baseline model.

Among the four reading tasks, we identified hard text, the age-
appropriate reading task, to work best across models and data repre-
sentations. The participants the model struggled with had outlying
reading abilities for their class, so non-reading tasks should be ex-
plored to improve the results further. On the other hand, the pseudo-
text failed to prove its usefulness with the methods tried.

The experiments also showed promising results throughout the
data representations. The least interesting turned out to be the per
AOI statistics, possibly due to only using a single statistic for each AOI.
On the opposite side of the spectrum, we have fixation sequences and
images that both worked well, even if slower than global statistics (by
one and two orders of magnitude, respectively). Data augmentation,
only examined on fixation images, only led to improvements on one
task, motivating more research.

The results need not be overstated, as the datasets were small and,
consequently, the experimental setup had to allow for a degree of
data leakage. Similarly, while balanced accuracy accounted for the
dataset imbalance in the scoring, the training imbalance could have
negatively affected the neural network models. Overall, the model
scores were sensitive to the hyper-parameters, so the experiments
should be replicated on a more extensive and cleaner dataset.

Additional areas for further research include other data represen-
tations (e.g. saccade sequences and images or raw eye-movement
time series), pre-processing approaches (e.g. magnitude spectrum of
sequences), data augmentation outside the fixation images (e.g. on
fixation sequences), feature selection on the statistics and comparing
the neural networks to the most researched models (SVMs).
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A Results of MLPs with L-BFGS optimiser

TheMLPs have also been learnt with Limited-memory BFGS (L-BFGS)
in the early stages as it works well on small datasets without hyper-
parameter tuning. While, in general, it performed worse than adam,
there is a rare occurrence of the ensemble noticeably improving the
score beyond the best task model on global statistics. Specifically,
the accuracy has grown from an average of 78 % on the three tasks
(without pseudo-text) to 85 %.

Table A.1: Ballanced accuracy from MLP with L-BFGS optimiser.

Task Global statistics Per AOI statistics

grid 75.80 ± 16.47 % 68.32 ± 18.87 %
easy text 81.60 ± 14.54 % 76.58 ± 16.31 %
hard text 77.33 ± 15.97 % 85.48 ± 15.42 %
pseudo-text 65.07 ± 18.37 % 64.67 ± 15.87 %

ensemble 85.02 ± 15.14 % 79.13 ± 16.59 %
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B Code structure

The implementation of the thesis is included in the SDIPR.zip attach-
ment, which is structered as follows:

SDIPR.zip
data

...
exports

data
...

predicted
...

utils
__init__.py
aoi.py
ensenmble.py
evaluate.py
io.py
model.py
preprocessing.py
pytorch.py
transform.py

evaluate_fixation_sequences.ipynb
evaluate_fixation_visualisations.ipynb
evaluate_global_statistics.ipynb
evaluate_per_aoi_statistics.ipynb
evaluate_statistics_time_series.ipynb
extract_features.ipynb
final_evaluation.ipynb
README.md
spec-file.yml

The root of the archive contains instructions for environment prepa-
ration README.md, the conda environment specification spec-file.yml

and the Jupyter notebooks *.ipynb. Each evaluate_* notebook con-
tains experiment for the given data representation and final_evalu-

ation has some further analyses. The extract_features.ipynb con-
tains the code for transforming the raw data into the final representa-
tions.
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B. Code structure

data directory

This directory would normally contain the gaze event data, but they
were excluded at the request of the authors. Note that the names of
the tasks are bit different from how they were named in the thesis:

• T1 = grid;

• T3-bert = easy text;

• T3-veverka = hard text;

• T4 = pseudo-text.

exports directory

This directory contains both the final data representations (in data)
and the predicted classes from the experiments (in predicted).

utils directory

This directory contains all the Python code produced for the thesis,
split into multiple modules:

• aoi.py: Functions for AOI detection and identification;

• ensemble.py: Implements the majority voting ensemble from
predictions;

• evaluate.py: Contains functions to run the experiments;

• io.py: Functions for loading and saving data;

• model.py: Classes that represent the neural networks;

• preprocessing.py: Contains the min-max scaler for time series
data;

• pytorch.py: Utility classes and functions to prepare data for
PyTorch;

• transform.py: Functions for extracting the examined data rep-
resentations from the gaze event data.
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