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v



vi



Abstract

The scheduling of operating rooms in healthcare institutions is an essential task impacting
the quality of patient care and operating expenses. Planning rules utilised in hospitals often
result in suboptimal schedules. Optimisation techniques offer a promising solution. However,
solving the operating room scheduling problem is challenging due to the large number of
variables and constraints. This work addresses the problem by utilising the branch-and-
price algorithm. Results show that most of the computation time is consumed by solving
pricing problems. Thus, a machine learning model is proposed to accelerate the algorithm by
analysing the structure of the problem and guiding the order for solving pricing problems.
The algorithm is evaluated on synthetic instances generated based on real-world hospital
settings. Results demonstrate significant improvements reducing more than 40 % of the
number of solved pricing problems and over 10 % of computation time compared to the
baseline method. This approach improves the efficiency of the branch-and-price algorithm
and can be applied to other optimisation problems with similar characteristics.

Keywords: Operating room planning, branch-and-price, column generation, machine learn-
ing.

Abstrakt

Plánováńı operačńıch sál̊u ve zdravotnických zař́ızeńıch je zásadńı úkol ovlivňuj́ıćı kvalitu
péče o pacienty a provozńı náklady. Plánovaćı pravidla použ́ıvaná v nemocnićıch často vedou
k suboptimálńım rozvrh̊um. Optimalizačńı techniky nab́ızej́ı slibné východisko. Řešeńı
problému plánováńı operačńıch sál̊u je však obt́ıžné kv̊uli velkému počtu proměnných a
omezeńı. Tato práce řeš́ı tento problém využit́ım algoritmu branch-and-price. Výsledky
ukazuj́ı, že většina výpočetńıho času je strávena řešeńım pricing problémů. Proto je navržen
model strojového učeńı, který algoritmus urychluje analýzou struktury problému a určeńım
pořad́ı řešeńı pricing problémů. Tento algoritmus je hodnocen na syntetických instanćıch
generovaných na základě nastaveńı reálných nemocnic. Výsledky ukazuj́ı významné sńıžeńı
počtu vyřešených pricing problémů přes 40 % a sńıžeńı výpočetńıho času v́ıce než 10 % ve
srovnáńı s p̊uvodńı metodou. Tento př́ıstup zlepšuje efektivitu algoritmu branch-and-price
a může být aplikován i na jiné optimalizačńı problémy s podobnými vlastnostmi.

Kĺıčová slova: Plánováńı operačńıch mı́stnost́ı, branch-and-price, column generation, stro-
jové učeńı.
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Chapter 1

Introduction

With the increasing demand for medical services healthcare institutions face a wide range

of challenges, for example, rising costs, workforce shortages, or the need to adopt new tech-

nologies and innovative solutions to provide better care. In recent decades, many of these

institutions have begun to deal with the issue of how to improve the quality of patient care

while reducing operating expenses. Hospital managers are constantly looking for effective

ways to minimise the required expenses and meet the needs of both hospital employees and

patients. In this regard, we can identify operating room (OR) as a major cost driver, as it

accounts for more than 40 % of the hospital’s total expenses and a similarly large proportion

of its total revenues [1]. This is caused both by the significant initial costs of surgical facilities

and the costs of staff and equipment required to provide and maintain surgical services.

In this context, the scheduling of ORs is an important problem to study since it plays a

crucial role in improving the quality of care and reducing costs of healthcare provision.

Wisely chosen scheduling procedures in OR planning could, among others, lead to better

utilisation of resources and shorter waiting time of patients, a higher number of performed

surgeries, and, therefore, significant savings in time and money. However, nowadays, the

vast majority of surgical planning in hospitals is done without optimised planning tools.

Most of the planning is ruled by simple strategies stemming from common sense: operating

room time is arranged in blocks, and these blocks are then allocated to different specialities

according to their requirements on time and equipment. It is common that specific time slots

are allocated to specific specialities just because it has always been done that way, regardless

of the efficiency of these schedules.

The reason for using rather simple rules, resulting in schedules that are far from optimal, is

that many variables are involved in the OR scheduling problem: preferences of each surgeon

on time slots and ORs, limited resources, various surgery durations, and many more. To

handle all of them as efficiently as possible, one has to move from paper-and-pen planning

following simple rules to more advanced techniques. The field of optimisation can play

a crucial role in addressing the challenges of scheduling surgeries in a hospital setting. By

leveraging mathematical models and algorithms, optimisation approaches can help to balance

many variables involved in the scheduling process and find efficient solutions that satisfy the

needs of patients, surgeons, and hospital managers.

Nevertheless, from the optimisation point of view, the problem of ORs scheduling is also not
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CHAPTER 1. INTRODUCTION

an easy task to solve. A mathematical formulation of a real-world problem which involves

hundreds of patients and several weeks of planning horizon leads to an enormous number

of variables, not speaking about all the constraints the model should reflect. Solving such

tasks with traditional optimisation techniques would lead to hours of computation with

an uncertain result. Moreover, in a real-life setting, where sudden situations often occur,

such as an urgently admitted patient or an illness of a doctor, it is necessary to design

flexible systems that can offer optimal or near optimal solutions in a limited time. To make

decisions that would otherwise be computationally intractable, state-of-the-art optimisation

algorithms nowadays heavily rely on manually designed heuristics. Machine learning methods

offer a promising way for making such decisions in a more automated and optimised manner.

By leveraging the power of machine learning, optimisation algorithms can learn from data

and improve the ability to find high-quality solutions to challenging problems such as OR

scheduling.

1.1 Motivation

An operating room, also known as an operating theatre, is an essential part of any hospital

as it plays a crucial role in the diagnosis, treatment, and care of patients. It is where

surgical procedures are performed, ranging from routine surgeries to complex and challenging

operations, all performed by teams of surgeons, anesthesiologists, nurses, and support staff.

Effective scheduling of ORs helps to ensure that surgical procedures are performed in a

timely and efficient manner. To understand the characteristics of problems that hospitals

encounter during operating room planning, we describe here the scheduling process from the

hospital’s management perspective.

The complex problem of operating room scheduling requires careful planning and coordina-

tion between multiple departments. It is commonly represented as a three-level decision-

making procedure, including strategic, tactical, and operational level [2].

• At the strategic decision level, the number of operating rooms and working hours,

together with the OR capacity assigned to each surgical specialty, are specified. This

phase determines long-term decisions on the distribution of ORs by predicting the total

demand of operating time for each department based on the past periods. Decisions

on this level are made within a long planning horizon of several months to one year or

longer.

• At the tactical decision level, a cyclic timetable, also known as master surgical schedule

(MSS), is built on the medium-term standpoint following the decisions made on the

strategic level. It divides the decided open time of available ORs into different surgeons

or surgery groups over the scheduling window, typically in a range of weeks. This

process is standardly reviewed every few months. An example of how the MSS might

look like is shown in Figure 1.1.

• At the operational decision level, the last phase of the scheduling procedure, short-

term decision-making is proceeded based on the constructed MSS. Surgeries from the

waiting list are scheduled to specific OR, day, and starting time. The process is often

divided into two stages. The first stage, known as the advance scheduling problem,

involves selecting candidate patients from a waiting list of patients and assigning them

2



CHAPTER 1. INTRODUCTION

a surgery date and an OR. The second stage, referred to as the allocation scheduling

problem, involves the sequencing of patients in each operating room on each day [3].

Upper management is typically responsible for making strategic decisions that affect the

long-term future of the hospital. This may include decisions of opening a new cancer center

or aligning the hospital with a regional healthcare system. Such decisions are critical to the

overall success and growth of the hospital [4]. On the other hand, operational decisions re-

lated to the day of surgery, such as staff allocation, urgent case prioritization, and scheduling

of additional cases, are typically the focus of clinicians following the long terms goals set by

the upper management of the hospital. These decisions are short-term in nature and are

aimed at ensuring the smooth and efficient functioning of the operating room from day to

day.

Each hospital must also decide on the strategy of booking patients. Typically, hospitals

adopt one of three main planning strategies: open scheduling, block scheduling or modified

block scheduling [2].

• In the open scheduling strategy, patients are not classified into specialty groups. They

are instead scheduled based on the convenience of surgeons and patients’ priority,

usually following the first-come-first-served rule.

• In the block scheduling strategy, the available capacity of ORs is divided into pre-defined

time intervals (usually of half-day length) called blocks. Each block is then assigned to

a particular surgeon or a group of surgeons based on the MSS, and they can arrange

their surgical cases in this block as they wish.

• The modified block scheduling strategy is a combination of the first two policies. It

assigns some of the blocks to specific specialties while keeping others open and releases

unused capacity of blocks for other specialties at a later time.

In practice, the block scheduling strategy and modified block scheduling strategy are widely

applied in hospitals [5]. That is because the preference of surgeons is to centralize their

OR1 OR2 OR3 OR4 OR5

morning afternoon morning afternoon morning afternoon morning afternoon morning afternoon

Monday

Tuesday

Wednesday

Thursday

Friday

GEN GEN GEN GEN ORT ORT HEA HEA NEU NEU

URO GEN GEN GEN ORT HEA HEA OTO OTO

URO URO GEN GEN OTO OTO NEU NEU

GEN ORT ORT ORT ORT HEA HEA OTO OTO

GEN GEN ORT ORT NEU NEU HEA URO

general surgery

urology

orthopedics

otorhinolaryngology

neurosurgery

cardiac surgery

Figure 1.1: An example of master surgical schedule for a time horizon of one week.
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CHAPTER 1. INTRODUCTION

cases rather than to scatter them throughout the day. This makes scheduling easier since

each surgeon has a fixed working time. Moreover, it reduces the complexity of scheduling

problems as the surgeries only need to be allocated to blocks instead of specific time slots in

the day [6].

The emphasis of this thesis is put on the lowest decision level of operating room scheduling,

operation decision level. We aim to solve both discussed stages, namely assigning patients to

ORs (advanced scheduling problem) and sequencing them (allocating scheduling problem).

For that purpose, a block scheduling policy is assumed so that a given number of operating

room blocks is assigned in advance to each surgeon.

1.2 Related work

This section aims at providing a comprehensive literature review on how operational research

is applied to surgical planning and scheduling while also considering the potential for applying

machine learning. We survey the literature across multiple fields related to this topic. At

first, we focus on the methods used in OR scheduling. Particular attention is paid to the

most prominent models and solution approaches used to address the problems arising in

surgery scheduling. At second, we conduct a comprehensive literature review on the topic of

the branch-and-price algorithm, as we use it to solve the problem in the following chapters

of this work. Lastly, our focus is directed toward existing studies utilising machine learning

techniques to address combinatorial optimisation problems.

1.2.1 OR planning and scheduling

In the past years, the area of surgery planning has received growing attention in the opti-

misation community. Several comprehensive articles are providing an in-depth review of the

current state of research and methods in the field of operating room planning and scheduling,

such as [2], [4], or [6]. As [6] stated, the total number of papers dealing with this topic is

large. However, since the problem investigated in this work is focused on operating room

planning at the operational level, in the following paragraphs, we concentrate only on the

literature at the operational level. We discuss the relevant literature from the perspective of

problem characteristics, objectives, and appropriate solution methodologies.

Problem characteristics

As mentioned in Section 1.2, OR scheduling problem on the operational level is typically

approached as a two-stage problem – advance scheduling problem and allocation scheduling

problem. In literature, authors mostly handle it as a two-step hierarchical method, where the

problem can be broken down into two distinct yet interconnected problems that are solved

separately [5]. In recent years, a limited number of articles also tackle the more complex

problem of integrating both stages together, such as [7].

4



CHAPTER 1. INTRODUCTION

Objectives

In literature, studies approach the problem of OR scheduling from various angles, and many

objectives are developed to model the preferences of different participants of the process.

These include, for example, the cost of the performed surgeries [8], cost of resources [9],

overutilisation and underutilisation [10], preferences of surgeons [11], patient urgency, or the

number of patient waiting days [12]. Therefore, many papers model the OR scheduling as

multi-objective optimisation problem. For instance, [13] specified a multi-criteria objective

function that aimed to minimise the peak use of recovery beds, the occurrence of recovery

overtime, and the violation of preferences of patients and surgeons. Differently, [14] focused

on maximising capacity utilisation and minimising the risk of overtime, which could lead to

cancelled surgeries. On top of that, [12] focused also on the number of scheduled patients

and their priority. [15] sought to simultaneously maximise revenues and the total number of

scheduled patients.

Solution methodologies

Various optimisation techniques, such as linear programming, mixed-integer programming,

or dynamic programming, were introduced in the literature proposing exact solution method-

ologies. For example, [16] proposed an integer linear programming model to schedule elective

surgeries from the waiting list on a weekly horizon. [17] presented a modified block strat-

egy for the daily scheduling of elective patients modeled by mixed integer programming

and constraint programming. Some works also aimed at the decomposition of the original

formulation by reformulating, such as [7].

Apart from exact methodologies, heuristics approaches are also mentioned in the literature.

For example, [18] tackled the problem through two sequential steps: first, they utilised

column generation to address a linear program problem, and then employed a diving heuristic

to obtain a feasible integer solution.

In recent years, research interest is moving towards more robust optimisation approaches,

where, for example, the uncertainty of surgical durations is also considered. [3] proposed

advance scheduling problem where uncertainty is considered via stochastic surgery duration.

Different stochastic models were formulated and solved using the sample average approxi-

mation method and Benders decomposition technique. Other robust methods also include

heuristics and metaheuristics techniques. In [14], various heuristics and local search meth-

ods that use statistical information on surgery duration were proposed to maximise capacity

utilisation and minimise the risk of overtime and thus canceled surgeries. In [19], a two-level

metaheuristic was developed to assign surgical cases to operating room blocks.

1.2.2 Branch-and-price in surgery scheduling

One of the long-established and commonly used combinatorial optimisation methods, which

was not mentioned in the previous section, is the branch-and-price algorithm. This method

aims to solve integer linear program (ILP) and mixed-integer linear program (MILP) prob-

lems with many variables. It has been successfully applied to a wide range of problems

5



CHAPTER 1. INTRODUCTION

including routing, transportation, resource allocation, and scheduling. Nowadays, there ex-

ists a growing interest in applying this algorithm to solve surgery scheduling problems, which

are characterised by their high complexity and the need to consider multiple objectives.

[18] was among the first applications of the branch-and-price algorithm to surgery schedul-

ing. In the study, they analysed a problem where a set of surgical cases is assigned to several

operating rooms with the objective to minimise total operating costs. They first formulated

this problem as an integer problem and then reformulated it using Dantzig-Wolf decompo-

sition as a set partitioning problem. Based on this formulation, a branch-and-price exact

solution algorithm was designed where columns for the linear program (LP) relaxation were

created using a column generation algorithm. This approach was found to outperform ex-

isting methods in terms of solution quality and computational time. In [5], they followed

up with a two-stage approach for an open-scheduling strategy. The first stage aimed at

maximising the room utilisation via column generation, the second stage used a genetic al-

gorithm for minimising the costs of idle time and overtime. Another paper on this topic

is [13]. In contrast to [18], they studied how to sequence surgical cases in OR, i.e., how

to arrange a set of surgical cases in a given operating room. To solve it, they applied a

branch-and-price framework based on dynamic programming. On top of that, they elabo-

rated on various branching strategies and branching schemes and examined their impact on

the solution quality.

Recent works are based on the branch-and-price algorithm and develop more advanced vari-

ants. For example, [7] presented a branch-and-price algorithm extended by cutting plane

procedures, called the branch-and-price-and-cut algorithm, that addresses both assigning

set of patients to different ORs on different days and sequencing these patients to maximise

the total scheduled surgical time. They also considered the maximum daily working hours

of surgeons, prevented overlapping surgeries performed by the same surgeon, allowed time

for obligatory cleaning when switching from infectious to noninfectious cases, and respected

the surgery deadlines. In a similar manner, [20] also presented a branch-and-price-and-cut

algorithm for the same problem. This paper considered a different model of the sequence-

dependent operating room cleaning times that arise due to surgeries with varying levels of

infection. In addition, human resources constraints were introduced.

Above mentioned studies demonstrated the potential of the branch-and-price algorithm to

effectively solve complex surgery scheduling problems. However, certain factors can limit its

effectiveness, including the size of the resulting mixed-integer program and the quality of the

lower bounds generated through the column generation iterations. Thus, there is still a need

for further research to develop more effective variants of the algorithm and machine-learning

approaches hold promise for improvement.

1.2.3 Application of machine learning in combinatorial optimisation

Over the past few years, machine learning (ML) algorithms have gained increased attention

from researchers for their potential to solve combinatorial optimisation problems. A clear

proof of this trend is a recent study [21], which provides a comprehensive overview of ML

techniques for combinatorial optimisation. It exhaustively surveys and highlights most of the

recent attempts, both from the perspective of machine learning and operation research com-
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munities, at how machine learning can leverage solving combinatorial optimisation problems.

Since there are different strategies how to enhance combinatorial optimisation methods using

ML, we limit our overview to techniques and applications close to our problem, therefore

reviewing mainly machine learning applications in operating room planning, branch-and-

price, and related methods. To better understand the topic of how ML can be applied in

combinatorial optimisation, readers are encouraged to refer to [21].

With regard to existing studies combining OR scheduling and ML, there are few works so

far. The main research is led towards estimating surgery case durations [22], [23], [24], which

is critical for optimising operating room utilisation. Some articles, as [25], also try to predict

which surgical cases have a potential risk of cancellation.

In terms of branch-and-price, there are several directions addressing the usage of machine

learning. One can put his attention on the branching procedure as the choice of right vari-

ables to branch on can significantly reduce the final size of the branching tree. Several papers

have covered this topic seeking to imitate strong branching, a powerful but computationally

heavy branching rule consistently resulting in the smallest branching trees. [26] proposed

a novel approach applying a graph neural network to learn branch-and-bound variable se-

lection policies. The developed method involves constructing a graph representation of the

combinatorial optimisation problem, where nodes represent the objects to be optimised, and

edges encode the relationships between these objects. Other papers considering this topic

are [27] and [28].

Another area of branch-and-price, where optimisation could be applied, is focused on column

generation. [29] discussed the use of neural networks to predict optimal dual variables for the

cutting stock problem. This information is then re-used for a solution algorithm, a stabilised

column generation, to speed up the computation time.

Pricing problems are often a bottleneck of the algorithm as they are solved repetitively and

can be extremely time-consuming. [30] stemmed from the idea that a pricing problem is

repetitive in nature and the same problem is solved from scratch with a difference only

in the input dual prices. They proposed to use a regression model learned from previous

executions of the pricing problem for predicting a tight upper bound on the optimal value

of the subproblem at each column generation iteration so that the solution space of pricing

problems is reduced in future iterations. Another work incorporating the same idea is [31].

Some works aim to reduce the complexity of the subproblem by selecting only promising

variables to perform the optimisation on. For example, [32] proposed a partial pricing

scheme for a personalised aircrew rostering problem in which the subproblem only includes

the variables likely to be selected in an optimal or near-optimal solution. The task of selecting

the most promising variables is performed by a deep neural network trained on historical

data. In this manner, a reduced subproblem is solved instead of the full one, decreasing the

problem’s complexity and execution time. [33] aimed at problems where the largest portion

of the computing time consumes the subproblem. The core idea lies in reducing the searched

network size by keeping only the most promising edges, which have a high chance of being

a part of promising columns. Similar idea is also proposed by [34], [35] and [36].

Some works also study the impact of selected subproblems on the master problem. [37]

presented a model behaving as a column selector designed for problems where a large portion

of the computing time is spent in solving the master problem. In each column generation
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iteration, they framed the column selection as a column classification task. Whether to

select the column or not is determined by an ML model performing a one-step lookahead

to identify the column that offers the maximum improvement to the master problem in the

next iteration, thus speeding up the solving time.

1.3 Contribution

This work aims to design a surgery planning algorithm that addresses the problem of as-

signing patients to operating room blocks. We first express this problem as a mixed-integer

program (MIP) and then reformulate it in terms of a branch-and-price algorithm that allows

us to handle a large number of variables. Finally, we enhance the proposed algorithm by

machine learning techniques.

The first contribution lies in an original formulation of the surgery scheduling problem con-

sidering multiple factors simultaneously, such as minimising patient waiting time, operating

room idle and overtime, the number of days a surgeon must come to the hospital, and max-

imising the number of operated patients. Simultaneously to assigning patients to appropriate

operating rooms, our goal is to optimise the sequencing of surgical procedures by taking into

account sequence-dependent setup times. In other words, the stated formulation allows for

solving both the advance scheduling problem and allocating scheduling problem at once.

As this is a complex combinatorial problem, it is essential to design new methods able to

reduce the computational time spent on solving it. The main contribution of this work is

then in reformulating the proposed problem in terms of the branch-and-price algorithm and

the design of a novel application of machine learning, specifically aiming at enhancing the

solution-space exploration process utilised in pricing problems. One of the common strategies

for finding a new column for the master problem is to solve existing pricing problems until

a column with a negative reduced cost is not found. However, we do not know in advance

which of the pricing problems has the potential of generating a column with a negative

reduced cost. To guide the search, we propose a machine learning-based “ranker” of the

pricing problems. It analyses the structure of the instance being solved and, based on data

collected from previously solved instances, ranks pricing problems according to the amount

of negative reduced cost they are expected to obtain. Pricing problems are then solved in

the order advised by the ranker.

Unlike some existing works that rely solely on end-to-end ML applications, our approach

considers the underlying properties of the studied problem and combines this knowledge

with ML. As mentioned in the previous subsection, the literature contains some papers that

explore how to utilise the already gained knowledge from the solved pricing problems using

machine learning. We do not try to reduce the number of column generation iterations,

how it was proposed in [37], which describes the approach close to ours. Instead, we aim to

reduce the number of pricing problems. Such approach is helpful for our and many other

applications, where the majority of the computation time of the algorithm is spent solving

pricing problems.

The last contribution lies in the development of a synthetic data generation method that

reflects the real data with a high degree of accuracy. Traditionally, uniform distributions are
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used in scheduling to generate parameters such as capacity, release time, and due date. By

generating parameters from a uniform distribution, researchers can model a range of possible

scenarios and test the robustness of their solutions under different conditions. However, there

are numerous disadvantages to such an approach. A major one is that uniform distributions

do not always accurately reflect real-world scenarios. Traditional scheduling algorithms do

not suffer from this limitation; their complexity and process of finding solutions remain

the same. However, for machine learning models, utilising parameters only from uniform

distributions can be a huge drawback to their performance. By providing real-world data,

ML can demonstrate its benefit over traditional scheduling methods as it may extract hidden

patterns from the data and learn from them in a way that traditional scheduling algorithms

never could. For that reason, we survey real data from hospitals to obtain credible parameters

further used to estimate parameter distributions. With this information, we develop an

automated process for generating instances that resemble real scenarios. That allows us to

work with more instances, which can also be adjusted according to the specific requirements

of the task at hand. This provides a unique contribution to the field of scheduling and

machine learning.

Finally, the developed branch-and-price algorithm leveraged by a ML-based ranker is then

tested on the generated synthetic instances. Results show that the proposed utilisation of

machine learning significantly decreases the number of solved pricing problems and also the

computing time spent on solving them compared to the baseline method without machine

learning. In particular, we show that our approach is able to reduce the number of solved

pricing problems by up to 48 % and the overall computation time by up to 17 %. As a result,

our approach makes the branch-and-price more efficient and scalable. It can also be utilised

in other applications, with the most notable results on problems where the computational

time is spent mostly on solving the pricing problems.

1.4 Outline

The rest of the thesis is organized as follows. In Chapter 2, we introduce the addressed

problem and present an integer program to solve it. Subsequently, Chapter 3 focuses on a

general overview of the branch-and-price algorithm, also describing column generation and

branch-and-bound methods, and applies it to transform the model introduced in Chapter

2. Additional improvements made on the branch-and-price algorithm are described here as

well. In Chapter 4, we propose a machine learning framework for guiding the process of

searching new variables in column generation. Chapter 5 provides a description of the data

generation procedure and exhaustive experimental evaluation of the developed methodology.

Finally, the thesis is concluded and ideas for future work are outlined in Chapter 6.
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Chapter 2

Problem statement

In this work, we study the operating room scheduling problem consisting of two phases –

assigning patients to operating rooms and putting them into a sequence accordingly. The

general scheme of the assigning phase is as follows: select a set of patients from a waiting list

of patients and assign them to a set of available operating room blocks in a given planning

horizon, taking into account the availability of surgeons. We assume a block scheduling

strategy, where the number and the length of available blocks are given. Since each block is

related to a specific day, by assigning a patient to a block, the day of the surgery is fixed as

well. In the sequencing phase, given the sets of patients assigned to operating room blocks,

the aim is to determine the order in which the assigned patients will be operated within each

operating room block. Such a sequencing is needed because the setup times to clean and

prepare the room in between the surgeries are varying according to the type of performed

surgery.

Several assumptions are made in regard to clarify the problem we study:

1. the type and duration of each surgery is estimated in advance and is deterministic,

2. emergency cases are not taken into account, i.e., the patient waiting list does not change

during the scheduling horizon and the day each patient is ready to undergo surgery is

determined in advance,

3. a single surgical specialty is considered,

4. surgeon for each surgical case is determined and cannot be changed,

5. a block scheduling strategy is used, i.e., a given number of operating room blocks is

assigned to each surgeon in advance following the MSS,

6. the ORs are identical in terms of available time and equipment, i.e. a patient can be

operated in any operating room in which the surgeon is available.

Note that, in usual practice, when a date is assigned to a surgical case, the operating theatre

planners also specify the other members of the surgical team. The assumption is made

that the human and instrumental resources, except for the surgeons, are always available

whenever they are needed. This assumption can simplify the surgical planning process and

avoid the need for extensive coordination. Nonetheless, it should be noted that the implicit

allocation of team members can have some drawbacks such as reduced flexibility in adapting

to unexpected events.
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The high-level definition of the problem described above can be modelled as an integer

programming problem. Specifically, in the remainder of this chapter, we introduce a mixed-

integer quadratic program (MIQP) – a MIP model with a quadratic objective. We consider

the model proposed in [3] as a baseline and introduce some modifications in order to make

the model more realistic and applicable.

2.1 Notation

The following notations are used throughout the work.

Indices and sets:

P set of patients (index p = 1, . . . , P ),

R set of operating rooms (index r = 1, . . . , R),

B set of blocks (index b = 1, . . . , B),

S set of surgeons (index s = 1, . . . , S),

D set of days in a planning horizon (index d = 1, . . . , D),

Bd set of blocks in day d,

Brd set of blocks in day d in room r,

Sb set of surgeons available in block b.

Parameters:

ap release time of patient p,

qp clinical priority coefficient of patient p,

tp expected surgery duration of patient p,

tpp′ sequence dependent setup time between patient p and patient p′,

lps equals 1 if patient p needs to be treated by surgeon s; 0 otherwise,

db day to which the block b is assigned,

cb capacity of block b,

omax
b maximum overtime allowed by block b,

omax
r maximum overtime allowed by operating room r,

v maximum number of blocks assigned to a surgeon in any day,

vs maximum number of patients assigned to surgeon s in any day,

mj weight of term j (j = 1, . . . , 5) in the objective function.
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Variables:

xpb =







1 if patient p is scheduled to be operated in block b,

0 otherwise,

nsd =







1 if surgeon s is scheduled for surgery in day d,

0 otherwise,

ypp′b =







1 if patient p is immediately followed by patient p′ in block b,

0 otherwise,

eb =







1 if block b is not empty,

0 otherwise,

ob amount of overtime of block b,

zb amount of idle time of block b.

2.2 Mathematical formulation

Let us consider a set of planning days D and a set of parallel operating rooms R available on

each day of the planning horizon. We consider a block scheduling strategy. Therefore, there

is a set of blocks B splitting every room in each day into a morning and afternoon section so

that there are (2 ·D · R) unique blocks in total. The regular capacity of a block is denoted

by the parameter cb. It is also assumed we have a set of surgeons S. We suppose MSS as

given. In other words, a set Sb of surgeons available to be assigned to block b is known a

priori for each block in each day over the considered time horizon. Let P be a set of patients.

The allocation of surgeons to the patients is known a priori and is given by parameter lps.

All patients are described by a release time ap, an expected surgery duration tp, and a

clinical priority coefficient qp, which is used to distinguish the urgency of the surgery. The

sequence-dependent setup time between every two patients is also determined in advance by

a parameter tpp′ . The task is to select candidate patients from a set of patients P, assign

them to a proper operating room block from the set of blocks B and sequence the patients

assigned to each block, taking into consideration all elements from the objective function

described further in Section 2.2.1 and constraints described further in Section 2.2.2.

To formulate the task, we introduce a binary decision variable for assigning a patient to

a specific block. We denote it by xpb, and it yields 1 if the surgery of patient p can be

performed in OR block b, otherwise, it is 0. To model the sequencing of patients, a binary

variable ypp′b is used. It yields 1 if the surgery of patient p is immediately followed by the

surgery of patient p′ in OR block b, otherwise, it is 0. As the surgeon-patient assignment is

given, we could avoid a variable for a surgeon in the formulation of the problem. However,

the usage of such a variable in the model allows us to introduce additional constraints and

objectives regarding the surgeons and their preferences. Therefore, we introduce a binary

variable nsd. It yields 1 if surgeon s is scheduled for at least one surgery in day d. Also,

additional variables for the overtime and idle time of the blocks – o, z, respectively – reflect

13



CHAPTER 2. PROBLEM STATEMENT

the aspect of under and over-utilisation of operating rooms to the problem.

2.2.1 Objective function

Many studies have approached the studied problem from different perspectives, focusing

either on the interests of hospital management, patients, or surgeons. The objective function

we introduce combines multiple terms simultaneously so that none of the perspectives is

neglected. This approach benefits from the improved flexibility of the model, allowing it to

be customised to suit the specific requirements of different healthcare facilities and enabling

optimised surgery planning in diverse contexts.

We aim at minimising the number of unscheduled patients (those not admitted to surgery

within the planning horizon), overtime and idle time in operating rooms, the number of days

patients have to wait for their surgery, and the number of days surgeons have to come to

the hospital. To do so, we introduce an objective function that is made up of five terms as

follows:

min m1





∑

p∈P

∑

d∈D

∑

b∈Bd

(d− ap)qpxpb



−m2





∑

p∈P

∑

b∈B

xpb



+m3

(

∑

s∈S

∑

d∈D

nsd

)

+

+m4

(

∑

b∈B

o2b

)

+m5

(

∑

b∈B

z2b

)

.

(2.1)

The first term represents the penalty of waiting days for scheduled patients. The term

is weighted by the patient urgency parameter qp so that the tardiness of urgent patients

imposes a bigger penalty on the objective function. The second term is associated with the

penalty for the number of unscheduled patients. The third term introduces preferences of

the surgeons by penalising the total number of days the surgeons are planned to come to

the hospital to accomplish their surgeries. The fourth term minimises the total overtime of

blocks during the planning horizon, and, finally, the fifth term minimises the total idle time

of blocks. The motivation for introducing the last two terms are the expenses associated

with operating the room. The cost of each additional minute in the operating room is much

greater than the cost of a regular one. Similarly, underutilisation of the operating room leads

to financial losses, as fixed expenses such as rent and maintenance continue to increase even

when the operating room is not in use [6]. It is important to observe that the expressions

representing the overtime and idle time of the blocks are squared to impose a higher penalty

on longer periods of under/over-utilisation, because the square function amplifies the penalty

as the length of the period increases. In such a way, one longer under/over-utilisation is more

costly than multiple shorter ones.

One problem arising with using multiple objectives simultaneously is that these objectives

may have different scales or units, making it difficult to compare them directly. A common

approach to address this issue is to homogenise the objectives by scaling them with appro-

priate coefficients. In our case, to obtain a well-balanced multi-objective function, each term

is scaled by a coefficient mj , j = 1, . . . , 5.
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2.2.2 Constraints

The first set of constraints we introduce concerns patients. The constraints should ensure

that if a patient’s surgery is scheduled, then it has to be in a block where the patient’s surgeon

is able to perform the surgery, and, at the same time, the surgery has to be scheduled after

the release date of the patient. Constraint (2.2) guarantee that each patient receives surgical

services at most once. Constraint (2.3) makes xpb to be 1 only if a patient is scheduled to a

block assigned to a surgeon that should treat the patient. Constraint (2.4) makes xpb to be

1 only if the patient is available at the time when the block is planned.

∑

b∈B

xpb ≤ 1, ∀p ∈ P, (2.2)

xpb = 0, ∀p ∈ P, b ∈ B :
∑

s∈Sb

lps = 0, (2.3)

xpb = 0, ∀p ∈ P, b ∈ B : ap > db. (2.4)

Next, we need to constrain surgeons to show up in the hospital when the surgeries of their pa-

tients are scheduled. Constraint (2.5) makes nsd to be 1 when a surgeon has surgery/surgeries

in any of the blocks of a day. Parameter vs additionally brings the restriction over the max-

imum number of surgeries per day allowed to be accomplished by a surgeon.

∑

b∈Bd

∑

p∈P:lps=1

xpb ≤ vs nsd, ∀s ∈ S, d ∈ D. (2.5)

Additional constraints limiting the time utilisation of operating rooms and blocks are also

introduced. Constraint (2.6) forces the overtime of the block to be not more than the maxi-

mum permitted overtime of a block. Constraint (2.7) forces the overtime in each operating

room and day to be not more than the maximum permitted overtime.

ob ≤ omax
b , ∀b ∈ B, (2.6)

∑

b∈Brd

ob ≤ omax
r , ∀r ∈ R, d ∈ D. (2.7)

Next, we want to extend the problem by sequencing patients in blocks. One of the most

important factors there is the surgery setup time, which is the time interval between surgeries

required to clean, disinfect, and prepare the operating room for subsequent surgery. Usually,

the setup time varies based on the type of the upcoming surgery and the preceding performed

surgery. The goal is to optimise the sequencing of surgeries to minimise the total setup time

between surgeries, as it potentially allows for more surgeries to be scheduled in the same

operating room. This can be achieved by consecutively scheduling surgeries with similar

equipment and setup requirements or by scheduling surgeries with longer setup times at the

end of the day to minimise the impact on subsequent surgeries. To address this, we introduce

constraint (2.8).

∑

p∈P

tpxpb +
∑

p,p′∈P:p ̸=p′

tpp′ypp′b − cb = ob − zb, ∀b ∈ B. (2.8)
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This constraint ensures that the total time spent on surgeries and set-up times for patients

assigned to each block does not exceed the maximum capacity of that block while also

considering overtime of the block. The left-hand side of the equation consists of three terms.

The first term is the total time spent on surgeries in a block, the second term is the overall

setup time between all pairs of subsequent patients in the block, and the third term represents

the capacity of the block. The right-hand side consists of two terms – allowed overtime and

idle time of the block. The idle time variable behaves here as a slack variable because it

transforms the inequality constraint into equality.

Lastly, we constrain the precedence relationships in each OR block. A set {0, P+1} represents

the dummy patients, where patient 0 stands for the beginning of the block schedule and P+1

stands for the end of the block schedule. These dummy patients are introduced to ensure that

every patient has a predecessor and successor so that there is no isolated patient. Constraints

(2.9) and (2.10) ensure that every patient assigned to a block has exactly one predecessor

and one successor. Constraints (2.11) and (2.12) say that if the block is not empty, i.e.,

at least one patient is scheduled to the block, exactly one patient has to be sequenced first

(right after the dummy patient 0) and one patient has to be sequenced last (right before the

dummy patient P + 1). Constraints (2.13) and (2.14) enforce eb to be 1 only if at least one

patient is scheduled to the block.

∑

p′∈(P\p)∪(P+1)

ypp′b = xpb, ∀p ∈ P, b ∈ B, (2.9)

∑

p∈(P\p′)∪0

ypp′b = xp′b, ∀p′ ∈ P, b ∈ B, (2.10)

∑

p∈P

yp(P+1)b = eb, ∀b ∈ B, (2.11)

∑

p′∈P

y0p′b = eb, ∀b ∈ B, (2.12)

xpb ≤ eb, ∀p ∈ P, b ∈ B, (2.13)

eb ≤
∑

p∈P

xpb, ∀b ∈ B. (2.14)
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2.2.3 Final model

In conclusion, a single MIQP model (2.15) is constructed by combining the previously de-

veloped objective, constraints, and additional domain specifications for variables.

min m1





∑

p∈P

∑

d∈D

∑

b∈Bd

(d− ap)qpxpb



−m2





∑

p∈P

∑

b∈B

xpb



+m3

(

∑

s∈S

∑

d∈D

nsd

)

+

+m4

(

∑

b∈B

o2b

)

+m5

(

∑

b∈B

z2b

)

,

subject to
∑

b∈B

xpb ≤ 1, ∀p ∈ P,

∑

p∈P

tpxpb +
∑

p,p′∈P:p ̸=p′

tpp′ypp′b − cb = ob − zb, ∀b ∈ B,

ob ≤ omax
b , ∀b ∈ B,

∑

b∈Brd

ob ≤ omax
r , ∀r ∈ R, d ∈ D,

∑

b∈Bd

∑

p∈P:lps=1

xpb ≤ vs nsd, ∀s ∈ S, d ∈ D,

xpb = 0, ∀p ∈ P, b ∈ B :
∑

s∈Sb

lps = 0,

xpb = 0, ∀p ∈ P, b ∈ B : ap > db,
∑

p′∈(P\p)∪(P+1)

ypp′b = xpb, ∀p ∈ P, b ∈ B,

∑

p∈(P\p′)∪0

ypp′b = xp′b, ∀p′ ∈ P, b ∈ B,

∑

p∈P

yp(P+1)b = eb, ∀b ∈ B,

∑

p′∈P

y0p′b = eb, ∀b ∈ B,

xpb ≤ eb, ∀p ∈ P, b ∈ B,

eb ≤
∑

p∈P

xpb, ∀b ∈ B,

xpb ∈ {0, 1}, ∀p ∈ P, b ∈ B,

nsd ∈ {0, 1}, ∀s ∈ S, d ∈ D,

eb ∈ {0, 1}, ∀b ∈ B,

ypp′b ∈ {0, 1}, ∀p ∈ P, p′ ∈ P \ p, b ∈ B,

ob ≥ 0, ∀b ∈ B,

zb ≥ 0, ∀b ∈ B. (2.15)
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Chapter 3

Branch-and-price

To achieve success in solving integer programming problems with a huge number of variables,

such as the one presented in Chapter 2, it is crucial to use formulations where the linear

relaxations provide tight approximations so that it can be combined with branch-and-bound,

a popular method for solving integer linear programs, to obtain an integral solution. However,

model (2.15) cannot be used directly because its linear relaxation is very weak, except when

relatively small instances are considered. To overcome this difficulty, a powerful alternative,

known as branch-and-price, should be employed.

Branch-and-price is a hybrid optimisation approach for solving large-scale integer linear

programs that combines branch-and-bound, a popular technique for solving integer linear

programs, with column generation, a technique for generating columns (variables) on-the-

fly to strengthen the LP relaxations [38]. In column generation, the original problem is

decomposed into a master problem and a pricing problem. Instead of handling large number

of variables at once, sets of columns are left out of the master problem as most of these

columns are likely to have their associated variable equal to zero in the optimal solution

anyway. Then, the pricing problem is solved to identify columns with a profitable reduced

cost. If such columns are found, they are iteratively added to the master problem, which is

then reoptimised. Branching occurs when no profitable columns are found, but the solution

fails to satisfy the integrality conditions. Branch-and-price uses column generation at every

node of the branch-and-bound tree [39].

In the rest of this chapter, we will first describe the branch-and-price algorithm in general

and then apply it to develop a new procedure for solving the model (2.15). The developed

procedure will then be accelerated using standard techniques from the literature. Note that

we provide here just a brief overview of the method. A comprehensive treatment of the

branch-and-price method is provided in [38].

3.1 General scheme

As indicated above, numerous large-scale integer linear programming models are inapplicable

in practice. Fortunately, many of them often exhibit a decomposable structure suitable for re-

formulations that allow to obtain stronger bounds or reduce symmetries. Dantzig and Wolfe

[40] were among the first to exploit this idea in the following manner: the original problem,
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linking constraints A1 A2 . . . Ak ≥ b

D1

D2

. . .

Dk

≥ d1

≥ d2

...

≥ dk

objective vectors c1 c2 . . . ck

variable vectors x1 x2 . . . xk

independent

constraints

Figure 3.1: Schema of the Dantzig-Wolfe decomposition.

which may be too large and complex to solve, is broken down into smaller subproblems tied

together by a relatively small set of constraints. These subproblems with original constraints

are then solved individually on a smaller scale, leading to a more tractable solution [40].

Consider an integer program, called the original problem, of the form

min c⊤x,

subject to Ax ≥ b,

Dx ≥ d,

x ∈ Z
n
+,

(3.1)

where A ∈ R
m×n, D ∈ R

l×n, b ∈ R
m, c ∈ R

n, d ∈ R
l, m ∈ N, n ∈ N, l ∈ N. The decompos-

able structural property becomes apparent when the coefficient matrix of such a problem is

arranged in a standard format, revealing a pattern similar to the one illustrated in Figure

3.1. In this figure, the constraint matrix is partitioned into non-zero blocks that consist of

linking constraints A1, . . . ,Ak, binding the columns together, and independent constraints

D1, . . . ,Dk, describing individual subproblems, together forming a block-diagonal matrix.

Dantzig and Wolfe proposed that each of the k sets of independent constraints constitutes a

subproblem of secondary importance to the whole program that should be studied separately

[40]. The original formulation of the problem can be decomposed into the so-called mas-

ter problem, taking control over the linking constraints in the matrix A, and a subproblem,

repeatedly solving individual problems respecting the constraint set Dx ≥ d.

The linear program called master problem (MP) is defined as follows:

v(MP) := min
∑

j∈J

cjθj ,

subject to
∑

j∈J

ajθj ≥ b,

θj ≥ 0, ∀j ∈ J ,

(3.2)

where θj are variables associated with all feasible solutions within a solution space given

implicitly by the original formulation and J is the index set of the variables θj . In many
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applications, this often results in a huge master problem, as the number of variables grows

exponentially with respect to the number of variables in the original formulation. In such

a case, working with the master problem explicitly is not possible. However, given that

only a few of these variables exhibit non-zero values in an optimal solution, it is reasonable

not to consider all of them at once. Instead, we create a restricted master problem (RMP)

by considering only a reasonably small subset J ′ ⊆ J of these variables. From that, we

iteratively insert new variables (columns) into the restricted master problem until reaching a

point where one can prove that it represents an optimal solution for the master problem, re-

quiring no further additional columns [38]. This is the basic principle of a column generation

algorithm.

Let θ and π be primal and dual solutions of the current RMP, respectively. The reduced

cost cj of variable θj is defined as

cj = cj − π
⊤aj . (3.3)

In a minimisation problem, a column is considered potentially beneficial for improving the

current solution of the RMP if its reduced cost is negative. To find such a column, one solves

the pricing problem, also called subproblem:

v(PP) := min
j∈J ′

{cj − π
⊤aj}. (3.4)

When v(PP) < 0, the variable θj is considered potentially beneficial and its coefficient column

(cj ,aj) is added to the RMP. Note that, for some problems, the search for a column with

negative reduced cost can be distributed across multiple pricing problems. Additionally, note

that, as π also stands for dual prices of the constraints present in the master problem (3.2),

the linking constraints of the original problem do not need to be explicitly present in the

subproblem.

The process of solving alternately restricted master problem and subproblem is repeated

until no further improving variable, i.e., no column with negative reduced cost, is found.

At that point, an optimal solution to the RMP is obtained. If this solution is integral, it

also represents a solution of the original formulation. If not, additional branching must be

employed to obtain integer solutions. This approach of combining column generation with

branch-and-bound is known as the branch-and-price method [41].

In the branch-and-price algorithm, the branching tree is constructed and searched using

the branch-and-bound method. Each node of the tree represents a subtask of the initial

problem created by branching on a variable. The search process in the branching tree starts

at the root node, representing the initial restricted master problem. The column generation

algorithm evaluates the linear relaxation of the problem. If the solution is integral, then this

solution is feasible for the original problem, and the algorithm can terminate. If the solution

is not integral, one has to select a fractional variable that is not yet fixed and branch on

that variable by creating an additional integrality constraint. Accordingly, the search space

is split into disjoint parts, and the column generation process is repeated recursively for each

disjoint part until a node is reached where the relaxation has an integer solution.

The overall goal is to find the incumbent solution, an integer solution with the lowest objective
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value among all the feasible integer solutions in the branching tree. To ensure the optimal

integer solution is found, all the nodes in the branching tree yielding an integer solution

must be explored. However, it can be a time-consuming procedure, as in the worst case,

branching may require enumerating all possible solutions, which can be exponential in the

number of variables. Nevertheless, in practice, many branches may be pruned by bounds

obtained through column generation procedures:

1. upper bound : during the search process, the algorithm maintains an upper bound,

which is the best integer feasible solution found so far. The upper bound is updated

whenever a node is reached with a feasible integer solution with a lower objective value

than the current upper bound. Often this bound is very tight and allows for efficient

pruning.

2. lower bound : at each node, the solution of linear relaxation of RMP acts as a lower

bound for the problem considering the active branching constraints. The current node

can be fathomed whenever it exceeds the upper bound since a better integer solution

has already been found elsewhere in the tree.

3.2 Baseline methodology

3.2.1 Column generation

To take advantage of the branch-and-price algorithm in our problem, we have to prepare

the column generation by decomposing the original problem (2.15) to a master problem

and subproblem via Dantzig-Wolfe decomposition. When decomposing, the first step should

typically be to choose proper variables respecting the structure of the problem. In our sce-

nario, the initial problem was allocating patients to blocks and determining their sequencing

within each block. Attempting to solve this task for all blocks and patients simultaneously

results in a highly complex problem with many variables. Nevertheless, this problem can

be naturally divided into individual blocks. We propose to achieve the decomposition by

transforming the original variables into a more compact and problem-suited set of variables

on the block level. For that reason, we introduce a variable (column) that captures the

relevant information about patients and their sequences for individual blocks. This variable

is called a pattern and is defined as a possible sequence of patients assigned to a specific

block satisfying maximum block overtime, surgeon availability and covering each patient at

most once. Each pattern ωj can be interpreted as a column of values for a specified block.

The column includes the following indicators:

• patient indicators up, p = 1, . . . , P : gets one if patient p is covered by pattern ωj ,

otherwise, it is zero,

• surgeon indicators gs, s = 1, . . . , S: gets one if surgeon s is covered by pattern ωj ,

otherwise, it is zero,

• block indicators wb, b = 1, . . . , B: gets one if block b is covered by pattern ωj , otherwise,

it is zero,

• overtime indicator h: indicates the amount of overtime in pattern ωj ,

• idle time indicator k: indicates the amount of idle time in pattern ωj .
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In this manner, a pattern can be represented as a single column by concatenating the values

for the patient, surgeon and block indicators, and values of overtime and idle time. This

vector would have a length of (P + S +B + 2). An illustration of how some of the patterns

might look like for a setup with three patients and two blocks is shown in Figure 3.2.

By introducing these new variables, patterns, we can decompose the original problem formu-

lation into a master problem and subproblems as follows: the master problem will hold only

the important connecting constraints, looking at the problem comprehensively to combine

the patterns so that an overall solution for the entire system is obtained, whereas subprob-

lems will take care of the actual scheduling and sequencing problems happening in each

block independently. Specifically, in the OR scheduling, it means the master problem would

hold the connecting constraints, ensuring that each patient is scheduled at most once, the

maximal overtime in a room is respected, etc. In contrast, the subproblem would hold con-

straints for individual OR blocks, ensuring the overtime of a block is respected, a surgeon is

not scheduled to the block if he is not available, patients are sequenced optimally, etc. This

approach allows us to break down the initial complex task into smaller, more manageable

subproblems, where the complexity of the solution space is significantly reduced.

Master problem

Let Ω = Ω1 ∪ . . . ∪ ΩB be a union of feasible patterns for all the considered blocks in the

time horizon. In the following, we call the master problem the Dantzig-Wolfe decomposition

of the model (2.15) followed by its linear relaxation. As the size of set Ω grows exponentially

with the number of patients, we introduce a RMP(Ω), the restriction of the master problem

ω1 ω2 ω3 ω4 ω5

1 1 1 0 1 u1

1 1 1 0 0 u2

0 1 1 1 1 u3

1 1 1 0 1 g1

0 1 1 1 1 g2

0 0 10 0 0 h

40 0 0 60 30 k

1 0 0 1 1 w1

0 1 1 0 0 w2

patient

indicators

surgeon

indicators

block

indicators

overtime

idle time

Figure 3.2: Example of five achievable columns ω1, . . . , ω5 for an instance with three patients
and two blocks. For example, pattern ω1 assigns patient 1 and patient 2 to block 1 and
sequences them so the idle time of block 1 is 40 units. The rest of the patterns can be
described in a similar manner. It should be noted that although the indicators are the same
for patterns ω2 and ω3, there is a difference in the amount of overtime. That is caused by a
different sequencing of the patients.
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to a subset of variables Ω ⊂ Ω, in a following manner:

v(MP (Ω)) := min m1





∑

p∈P

∑

d∈D

∑

ω∈Ω

(d− ap)qpupdωθω



−m5





∑

p∈P

∑

d∈D

∑

ω∈Ω

updωθω



+

+m6

(

∑

s∈S

∑

d∈D

nsd

)

+m7





∑

r∈R

∑

d∈D

∑

ω∈Ω

h2rdωθω



+m8





∑

r∈R

∑

d∈D

∑

ω∈Ω

k2rdωθω



 ,

(3.5)

subject to

∑

ω∈Ω

wbωθω = 1, ∀b ∈ B, (3.6)

∑

d∈D

∑

ω∈Ω

updωθω ≤ 1, ∀p ∈ P, (3.7)

∑

ω∈Ω

gsdωθω ≤ v nsd, ∀s ∈ S, d ∈ D, (3.8)

∑

ω∈Ω

hrdωθω ≤ omax
r , ∀r ∈ R, d ∈ D, (3.9)

θω ≥ 0, ∀ω ∈ Ω, (3.10)

nsd ≥ 0, ∀s ∈ S, d ∈ D, (3.11)

where θω indicates whether a pattern ω is selected (θω = 1) or not (θω = 0) in the solution;

updω indicates if pattern ω contains patient p in day d (updω = 1) or not (updω = 0); wbω

indicates whether pattern ω is in Ωb (wbω = 1) or not (wbω = 0); hrdω indicates the amount

of overtime of pattern ω if the pattern is related to room r in day d, otherwise it is zero

(hrdω = 0); krdω indicates the amount of idle time of pattern ω if the pattern is related to

room r in day d, otherwise it is zero (hrdω = 0); gsdω indicates if pattern ω is related to

surgeon s in day d (gsdω = 1) or not (gsdω = 0). Constraints (3.6) ensure that for every block

exactly one pattern is used. Constraints (3.7) correspond to constraints (2.2) and guarantee

that every patient is scheduled at most once. Constraints (3.8) correspond to constraints

(2.5) and connect decision variable nsd indicating if a surgeon is scheduled for surgery in a

day with an analogical pattern’s variable gsω. Constraints (3.9) correspond to constraints

(2.7) and connect maximum permitted overtime in each operating room and day with an

analogical pattern’s variable hω. Finally, constraints (3.10) and (3.11) indicate the domain

of variables.

The question is to determine how a new variable should be generated in each iteration of

column generation so that the restricted master problem solution is improved. The dual

formulation of the master problem could help us here. Let D(Ω) be the dual program of

MP (Ω):

v(D(Ω)) := max
∑

p∈P

θp +
∑

b∈B

µb +
∑

r∈R

∑

d∈D

omax
r ξrd, (3.12)
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subject to

∑

p∈P

∑

d∈D

updωθp +
∑

b∈B

wbωµb +
∑

r∈R

∑

d∈D

hrdωξrd +
∑

s∈S

∑

d∈D

gsdωζsd ≤

m1

∑

p∈P

∑

d∈D

(d− ap)qpupdω −m5

∑

p∈P

∑

d∈D

updω +m7

∑

r∈R

∑

d∈D

hrdω +m8

∑

r∈R

∑

d∈D

krdω

∀ω ∈ Ω,

(3.13)

−v ζsd ≤ m6, ∀s ∈ S, d ∈ D, (3.14)

θp ≤ 0, ∀p ∈ P, (3.15)

ξrd ≤ 0, ∀r ∈ R, d ∈ D, (3.16)

ζsd ≤ 0, ∀s ∈ S, d ∈ D. (3.17)

In this model, θp is the non-positive dual variable associated with the surgical service of

patient p (constraints (3.6)), µb is a dual variable associated with usage of block b (constraints

(3.7)), ξrd is the non-positive dual variable associated with maximum overtime in room r in

day d (constraints (3.8)) and ζsd is the non-positive dual variable associated with a maximum

number of surgeries performed by surgeon s in day d (constraints (3.9)).

Moving back to the question of how new variables should be generated, the utilisation of

the dual problem is as follows: we need to find a pattern so that a corresponding constraint

(3.13) in the dual problem would be violated, making the dual problem infeasible. Such a

constraint in dual formulation corresponds to the variable that could improve the solution

of the master problem. Finding a variable like this requires the construction of a separate

algorithm known as a pricing problem.

Summarising, the overall principle of the column generation method is to solve restricted

master problem RMP (Ω), identify the violated dual constraints in D(Ω), i.e., primal vari-

ables (patterns) with a negative reduced cost, by solving pricing problems. Corresponding

variables are then integrated into the set Ω. The process is repeated until the pricing problem

solution proves that no violated constraint exists.

Pricing problem

The purpose of the pricing problem is to search for a pattern ω ∈ Ω\Ω so that for a given

block b′ in day d′ and room r′ holds

−
∑

p∈P

θpx̂p − µb′ − ξr′d′ ô−
∑

s∈S

ζsd′ n̂s+

+m1

∑

p∈P

(d′ − ap)qpx̂p −m5

∑

p∈P

x̂p +m7ô
2 +m8ẑ

2 < 0,
(3.18)

where x̂p indicates whether patient p is selected or not, n̂s determines whether surgeon s is

assigned or not, ŷpp′ represents if the patient p is scheduled before patient p′ in the block

or not, ê indicates if the block is selected or not, ô represents the block’s overtime and ẑ

represents the block’s idle time. A pattern satisfying this condition is violating the dual

constraint (3.13), which exactly corresponds to a primal variable with a negative reduced

cost.
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Following that, the pricing problem for a specific block b′ in day d′ and room r′ can be

formulated as:

v(PP ) := min −
∑

p∈P

θpx̂p − µb′ − ξr′d′ ô−
∑

s∈Sb′

ζsd′ n̂s+

+m1

∑

p∈P

(d′ − ap)qpx̂p −m5

∑

p∈P

x̂p +m7ô
2 +m8ẑ

2,
(3.19)

subject to

∑

p∈P

tpx̂p − cb′ = ô− ẑ, (3.20)

ô ≤ omax
b′ , (3.21)

x̂p ≤ n̂s, ∀p ∈ P, s ∈ Sb′ : lps = 1, (3.22)

x̂p = 0, ∀p :
∑

s∈Sb′

lps = 0, (3.23)

x̂p = 0, ∀p : ap > d′, (3.24)

n̂s = 0, ∀s ∈ S \ Sb′ , (3.25)
∑

p′∈(P\p)∪(P+1)

ŷpp′ = x̂p, ∀p ∈ P, (3.26)

∑

p∈(P\p′)∪0

ŷpp′ = x̂p′ , ∀p′ ∈ P, (3.27)

∑

p∈P

ŷp(P+1) = ê, (3.28)

∑

p′∈P

ŷ0p′ = ê, ∀b ∈ B, (3.29)

x̂p ≤ ê, ∀p ∈ P, (3.30)

ê ≤
∑

p∈P

x̂p, (3.31)

x̂p ∈ {0, 1}, ∀p ∈ P, (3.32)

n̂s ∈ {0, 1}, ∀s ∈ Sb′ , (3.33)

ê ∈ {0, 1}, (3.34)

ŷpp′ ∈ {0, 1}, ∀p ∈ P, p′ ∈ P \ p, (3.35)

ô ≥ 0, (3.36)

ẑ ≥ 0. (3.37)

The constraints are exactly the same as in the original formulation (2.15), yet, the complexity

of the problem has been fundamentally reduced. We are now limited to one specific block

only, so variables x̂p, n̂sd, ê, ŷpp′ , ô, ẑ are transformed to variables xpb, nsd, eb, ypp′b, ob, zb

of the master problem respectively, but linked to a block. Therefore, the decomposition

resulted in a subproblem of generating feasible patient schedules for individual blocks. In

our case, the subproblem is usually viewed as a somehow modified version of the knapsack

problem – we are trying to fit as many patients (objects) as we can, considering their urgency

(cost), into one block (knapsack) so that the time spent on surgeries (weight) is minimal.
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Note that the pricing problem is solved separately for each of the considered operating room

blocks. Therefore, there are B pricing problems to solve in total. If the objective value of

a subproblem is negative, a new variable with a column corresponding to this solution can

be added to the RMP. In practice, there are multiple ways how to approach the process of

adding new columns. Luckily, the success of the column generation method does not depend

on selecting only the column with the highest reduced cost. Although identifying the column

with the most negative reduced cost increases the probability that it will improve the master

problem solution, it does not guarantee it. In fact, any column with a negative reduced cost

could suffice. Thus, in some iterations of the column generation process, it may be enough

to obtain a solution with a negative reduced cost rather than searching for the one with the

most negative reduced cost. Essentially, we only have to iterate over all the pricing problems

when proof of the optimality is needed (i.e., to prove that there are no columns with negative

reduced cost). That allows for developing a wide range of ways to approach the search for

new columns.

One of the most common approaches is to add the first column with a negative reduced

cost encountered. This approach reduces the computation time required for each iteration,

as it is not needed to solve every pricing problem. However, it may increase the number of

iterations, so its overall effect is uncertain. Another possible alternative is to add a column

with the highest reduced cost, which is motivated by the fact that the highest reduced cost

is likely to significantly impact the master problem. However, this may not always be true.

Additionally, it is necessary to iterate across all pricing problems to utilise this approach,

which can be time-consuming. Another alternative is to choose all columns with a negative

reduced cost encountered during the process. The impact on computation time is difficult

to estimate. While it doesn’t affect the time needed to solve the pricing problem, it may

increase the time required to solve the restricted master and potentially increase or decrease

the number of iterations needed.

3.2.2 Branching

In the previous section, we developed a column generation algorithm. However, the solution

of linear relaxation of the restricted master problem is rarely integer-valued. Therefore, it is

combined with a branch-and-bound procedure to produce integer solutions. The branching

step is used to select a fractional variable from the current solution obtained from column

generation, create branches based on the possible values that the variable can take on, and

then resolve the problem again in each branch separately with the selected variable fixed.

This process is repeated until an integer solution is obtained. Progressively, all the nodes

produced by branching are explored to find the overall optimal solution.

However, some aspects of branching are still not very well defined, such as which variables

to use for branching or how to search the branching tree. In the following paragraphs, we

talk about these aspects of branching in detail.
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Branching strategy

First, one must decide the strategy for branching. The most natural branching strategy

would be to pick one of the fractional variables θk of the RMP and perform 0-1 branching,

i.e., derive two branches where θk is respectively set to 0 (i.e., k-th pattern is not selected in

the solution) and 1 (i.e., k-th pattern is selected in the solution). This, however, could be

a bad choice for several reasons: (i) the variables in the RMP are only loosely connected to

the variables of the original problem, (ii) fixed patterns could change the pricing problems,

(iii) unbalanced tree may be created – when the pattern is fixed to zero (i.e. is not selected),

it hardly reduces the search space as only a single pattern is prohibited.

To prevent these issues, we propose to use a different option: branching on original variables.

Research [42] has shown that branching on the original variables often yields better results

than branching on the master variables. We develop 0-1 branching decisions on original

variables both for the patient variable xpb and surgeon variable nsd.

Regarding the patient-block assignments, fixing variable xpb to zero (xpb = 0) forbids patient

p to be assigned to block b and fixing variable xpb to one (xpb = 1) requires patient p to be

assigned to block b. To fix a patient p not to be assigned to block b, all columns associated

with block b that have a one in the row corresponding to the patient’s indicator up are

removed. To fix a patient p to be assigned to block b, all columns associated with block b

that have a zero in the row corresponding to the patient’s indicator up are also removed.

It can be seen that the suggested branching scheme is compatible with the pricing problem.

It allows to modify the pricing problem during column generation in a way that prevents

the generation of infeasible columns resulting from the branching constraints. The pricing

problem involves the solution of a knapsack problem for each block. Forbidding the assign-

ment of patient p to block b is accomplished by involving additional constraint x̂p = 0 in the

pricing problem of block b. Requiring the assignment of patient p to block b is accomplished

by involving additional constraint x̂p = 1 in the pricing problem of block b.

Regarding the surgeon-day assignments, fixing variable nsd to zero (nsd = 0) forbids surgeon

s to be assigned to day d and fixing variable nsd to one (nsd = 1) requires surgeon s to be

assigned to day d. To fix a surgeon s to not be assigned to day d, all columns associated

with day d that have a one in the row corresponding to surgeon’s indicator gs are removed.

To fix a surgeon s to be assigned to day d, no columns need to be removed. Fixing in the

case of surgeon-day assignments also have some implications on the dual program of master

problem. Specifically, following the duality theory, (i) in case of nsd = 1, the dual problem

objective function (3.12) is extended with an additional term:

v(D(Ω)) := max
∑

p∈P

θp +
∑

b∈B

µb +
∑

r∈R

∑

d∈D

omax
r ξrd + v ζsd, (3.38)

(ii) both in the case nsd = 0 and nsd = 1, constraint (3.14) for surgeon s in day d is removed.

It might be considered to incorporate the presented branching constraints directly in the

subproblem. However, that is not possible as a surgeon does not directly determine the

pricing problem and patterns used in it. Therefore, for some surgeon-day combinations, the

condition where a surgeon is assigned to a day may conflict with constraint (3.25). We could

28



CHAPTER 3. BRANCH-AND-PRICE

think of skipping those subproblems for which the solution is infeasible, but the optimal

solution may be missed by ignoring the infeasible subproblems. To prevent such problems,

we directly add branching constraints for surgeon-day combination to the master problem.

Variable selection

In addition to the above-mentioned branching strategies, if there are more fractional variables

simultaneously, one has to decide which variable to branch on next. According to [42], the

first possible strategy for variable selection is to choose the most fractional variable to resolve

the least-decided assignments first. Since we consider that values for variables xpb and nsd

are between 0 and 1, it would mean selecting the variable with a value closest to 0.5. Another

strategy would be to select a variable with the value closest to 1 to resolve the almost-decided

assignments first.

However, in the given formulation, neither strategy provides a clear advantage or preference.

For that reason, we proceed with a random strategy: among all the fractional variables, one

is chosen randomly. This approach ensures fairness and avoids bias towards any particular

variable. It is worth noting that even though there is no preference for most or least decided

variables, the algorithm prioritises fractional surgeon-day assignments over patient-block

assignments. This preference is based on the assumption that fixing a surgeon has a broader

impact on all the patients allocated to that surgeon, making it a more ”covering” constraint.

Branching scheme

We have already outlined how the current set of feasible solutions can be divided into smaller

subsets via branching. Still, we have to specify how the next node to be solved is selected.

Two common strategies used in searching the space are depth-first search and breadth-first

search, each with its own advantages and disadvantages.

Depth-first search strategy explores the search tree in a depth-first manner. It starts in the

root node and explores as far as possible along each branch before backtracking. Depth-first

search is often used when the goal is to quickly find a feasible solution (i.e., integer solution),

as experience has shown that feasible solutions are more likely to be found deeper in the tree

rather than closer to the root [43].

Breadth-first search strategy explores the search tree in a breadth-first manner, exploring all

the nodes at the current level before moving on to the next level. This ensures that the

optimal solution, if it exists, will be found at the shallowest possible level, making breadth-

first search more suitable for problems where the optimal solution is likely to be located

at a higher level of the tree. However, breadth-first search tends to be slower compared to

depth-first search, as it explores more nodes at each level before moving on to the next level

[43].

It is known that the branch-and-price algorithm can be quite weak in generating good integer

solutions quickly since the relaxed master problem solution is rarely integer-valued [44]. As a

result, obtaining a good feasible solution as early as possible is the primary goal, preventing

the generation of large branch-and-bound trees. For that reason, we choose to use the

depth-first search strategy.
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The whole procedure of branch-and-price described above is illustrated in Figure 3.3.

Initial columns

Solve linear re-
laxation of RMP

Solve pricing prob-
lem based on

RMP dual prices

New column found?

Add column to RMP

Solution better than
incumbent solution?

Any variable
fractional?

Pick unfathomed node

Prune current node

Update incum-
bent solution

Branch to fixate one
fractional variable

Any remaining
unfathomed node?

Incumbent solution

Column generation

No

Yes

Yes

No

Yes

No

Yes

No

Figure 3.3: Schema of the branch-and-price algorithm.
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3.3 Enhanced methodology

In many cases, acceleration techniques are crucial components that contribute to the effec-

tiveness of the branch-and-price approach. Often these are simple but essential adjustments

of the plain algorithm for obtaining high-quality solutions within a reduced time. In this

context, we provide an overview of some of these strategies used in our method. We rec-

ommend referring to more comprehensive studies, such as [45], [46] or [39], for a general

overview and in-depth understanding of presented techniques.

3.3.1 Initialisation procedure

Running the column generation, there are two critical situations leading to infeasibility we

should be aware of: at the start, when no variables (columns) are generated, and after

branching when removing some of the patterns according to the applied branching scheme

[39]. Imagine a situation when there is an operating room block in the planning horizon

in which, unfortunately, no surgeon is available to perform surgeries. Or maybe there is a

block available to some surgeons but due to the branching constraints, all of them are forced

not to operate in this block. Both of these situations lead to infeasible RMP even when

the MP should have a feasible solution. The infeasibility is caused by constraint (3.6) in

the RMP, which is forcing each block to be selected exactly once. Nonetheless, not every

block necessarily has to be used in the optimal solution, some of them may stay empty. To

address this issue, we generate a trivial pattern – a column with no assigned patients – for

each block at the very beginning. This way, at least one feasible solution for the RMP is

ensured comprising of all the trivial patterns.

One has to be careful with handling trivial patterns during the branching procedure, espe-

cially in the case of patient-block assignment. As described in Section 3.2.2, to fix a patient

p to be assigned to block b, all columns associated with block b that have 0 in the row

corresponding to patient p are removed. The rule must be followed by trivial patterns as

well, but they cannot be eliminated easily. Thus, when a new branch where patient p is

assigned to block b (xpb = 1) is developed, the trivial pattern for block b is replaced with

a so-called minimal pattern. In this pattern, the indicator for the assignment of patient p

is changed from 0 to 1, the rest stays the same. The process is illustrated in Figure 3.4 on

an instance with three patients, two blocks and two trivial patterns, where a new branching

rule assigning patient 1 to block 1 is created.

Furthermore, in order to warm-up the column generation algorithm and generate an initial

feasible solution that is not just trivial, a heuristic can be employed. The heuristic utilised

in our case is a greedy one. Initially, patients are sorted based on their release dates. Then,

for each patient, available blocks that the patient can be assigned to are retrieved and sorted

based on their day. Subsequently, for each block, the capacity is checked to determine if

it can accommodate the patient. If there is enough capacity, the patient is assigned to the

block and sequenced after the last patient that was assigned to the same block. The heuristic

iterates over all the patients. The whole process is described in Algorithm 1.
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Figure 3.4: Process of converting a trivial pattern ω1 to a minimal pattern ω′
1 for an instance

with three patients and two blocks when a patient-block assignment occurs in the branching
procedure. In this example, an assignment of patient 1 to block 1 (x11 = 1) is applied.
Therefore, indicator of patient 1 in ω′

1 is fixed to 1, and, as both block here have a capacity
of 100 units and the length of patient’s 1 surgery is 30 units, the idle time of ω′

1 is reduced
to 70 units.

3.3.2 Master heuristic

The master heuristic (MH) is a technique that helps with obtaining a smaller branching tree.

That is particularly useful in our use case, as we are working with quite weak branching

conditions, and the branching tree might, eventually, get very large. MH can be utilised as

follows: at the end of the column generation procedure, we set every θ variable in the master

problem as a binary variable by editing constraint (3.10) to:

θω ∈ {0, 1}, ∀ω ∈ Ω. (3.39)

We re-run the edited master problem forcing it to be solved as an integer program. Suppose

the obtained solution is better than the incumbent solution (i.e., the objective value is

lower). In that case, it is used to replace it since it is possible to find a better integral

solution immediately. Otherwise, the obtained integer solution is neglected. The process of

branching is then resumed. The procedure is described in Algorithm 2.

The advantage of this heuristic is that the provided solution may not be optimal, but it

can often give a good upper bound for subsequent column generation runs. In addition,

master heuristics can be used to find feasible solutions quickly in situations where finding the

optimal solution is computationally intractable. The disadvantage is that it may increase the

computational complexity of the problem. However, the modified problem can typically be

solved in a reasonable time. Additionally, it can be accelerated using additional constraints

on the objective value: the objective value has to be greater than the value obtained by
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Algorithm 1: Initial feasible solution generation

Input: instance

Output: RMP

patterns← ∅

patients ← sort instance.patients by release date

for patient in patients do

blocks ← sort patient.blocks by day

for block in blocks do

if block.capacity ≥ patient.duration then

add trivial pattern (patient, block) to patterns

block.capacity ← block.capacity − patient.duration

break

end

end

end

RMP ← load master problem together with patterns

Algorithm 2: Master heuristic

Input: RMP, incumbentSolution

Output: solutionMH

integerRMP ← RMP with integrality constraints on θ variables

solutionMH ← solveMasterProblem(integerRMP)

linear relaxation and lesser than the value of the known upper bound. This can lead to

earlier termination as the search space is pruned.

3.3.3 Reduced cost fixing

Reduced cost fixing is other well-known technique used in LP-based branch-and-bound al-

gorithms. Its main idea is based on reduced cost. Given a linear programming model and

any optimal solution to this model, the reduced cost of a variable indicates the amount by

which an objective function coefficient would have to improve before it would be possible for

a corresponding variable to assume a positive value in the optimal solution. By the reduced

cost of the variable, we can determine whether it has improvement potential on the objec-

tive value or not: if the reduced cost of the variable in the LP solution is greater than the

difference between the LP’s lower bound and upper bound, and the variable takes a value of

0, then it can be permanently fixed to 0 [45].

In our case, reduced cost fixing proceeds in each node of the branching tree straight after

column generation for nsd variables. Formally, for an RMP with current objective value zLP

as the lower bound, and incumbent integer solution objective value zH as the upper bound,

when for any nsd variable with reduced cost csd following conditions hold:

zLP + csd > zH , (3.40)
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Algorithm 3: Reduced cost fixing

Input: RMP, solutionRMP, incumbentSolution

Output: fixedRMP

fixedRMP ← RMP

for surgeon in RMP.surgeons do

for day in RMP.days do

reducedCost ← get reduced cost of (surgeon, day) variable from solutionRMP

if solutionRMP.obj + reducedCost > incumbentSolution.obj then

fix (surgeon, day) variable to 0 in fixedRMP

end

end

end

we can permanently set nsd = 0 because fixing the variable to 1 would lead to a worse

solution than the best integer solution so far. The procedure is described in Algorithm 3

The potential of this technique strongly depends on the quality of the provided RMP solution

and the current incumbent solution. The closer the two bounds are, the more variables have

the potential to be fixed.

3.3.4 Consequencing branching constraints

To speed up the branching process, we may take advantage of the branching rules devel-

oped for the patient-block or surgeon-day combination that does not satisfy the integrality

condition.

In the case of the patient-block branching rule, for the branch where patient p is assigned to

block b (xpb = 1), an additional condition may be developed. If patient p is scheduled to a

block, then also patient’s surgeon s = s(p) have to be scheduled to the same day:

nsd = 1. (3.41)

In the same manner, in the case of the surgeon-day branching rule, if surgeon s is not

scheduled to a day d (nsd = 0), then also none of his patients can be scheduled to any block

in the same day:

xpb = 0, ∀b ∈ Bd, p ∈ P : lps = 1. (3.42)

These additional conditions can further help to reduce the size of the search space and speed

up the branching process. The process is described in Algorithm 4.

3.3.5 Maximal branching depth

We have also developed a simple yet effective rule for the branching. Specifically, after

entering every node, we check whether the depth of the current node in the branching tree

exceeds a predefined threshold value. If it does, we halt the column generation procedure
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Algorithm 4: Consequencing branching constraints

Input: RMP, constraint

Output: extendedRMP

extendedRMP ← RMP with constraint applied

if (patient, block) variable is fixed to one in the constraint then

fix (patient.surgeon, block.day) variable to 1 in extendedRMP

end

if (surgeon, day) variable is fixed to zero in the constraint then

for patient in surgeon.patients do

for block in day.blocks do

fix (patient, block) variable to 0 in extendedRMP

end

end

end

and, instead, we solve the original ILP model defined by (2.15) with additional constraints

representing the branching decisions made up to the current node. The extension of the

problem with additional branching decisions reduces the complexity of the initial problem

that originally was hard to solve in a reasonable time. By solving the ILP model with these

additional constraints, we immediately obtain an integral solution that is compared to the

current incumbent solution and potentially updated if the new solution is better. Finally,

we prune the node and move on to the next node in the branching tree.

This rule can significantly speed up the optimisation process by preventing the branch-and-

price procedure from diving too deep into the branching tree. Furthermore, the threshold

value can be adjusted to balance the tradeoff between the complexity of solved ILP and

search efficiency. On the one hand, if the threshold is set too high, the algorithm may get

stuck in a region deep in the branching tree where the optimal solution cannot be found. On

the other hand, if the threshold is set too low, the number of developed branching constraints

is small, resulting in an insignificant reduction in the complexity of the original problem and

longer solving times.

3.3.6 Final overview

The resulting method with all the improvements is described in Algorithm 5. In partic-

ular, function initialisation() stands for the initialisation procedure described in Section

3.3.1, function solveOriginalProblem() represents the original problem indicated by model

(2.15), function solveMasterProblem() represents the master problem as described in Sec-

tion 3.2.1, function solvePricingProblems() represents the pricing problem as explained

in Section 3.2.1, function solveMasterHeuristic() indicates the master heuristic procedure

depicted in Section 3.3.2, function reducedCostFixing() stands for the reduced cost fixing

procedure described in Section 3.3.3, and function consequencingBranch() represents the

consequencing branching procedure described in Section 3.3.4.
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Algorithm 5: Enhanced branch-and-price algorithm

Input: upperBound, maxDepth, instance

Output: incumbentSolution

RMP ← initialisation(instance) incumbentSolution ← upperBound

stack ← ∅

stack.push(RMP)

while stack ̸= ∅ do

RMP ← stack.pop()

if currentDepth is higher than maxDepth then

solutionILP ← solveOriginalProblem(RMP.branchingConstraints)

if solutionILP.obj < incumbentSolution.obj then

incumbentSolution ← solutionILP

end

continue // fathom current node in the branching tree

end

do

solutionRMP ← solveMasterProblem(RMP)

column ← solvePricingProblems(solutionRMP)

if column.reducedCost < 0 then

add column to RMP

end

while column.reducedCost < 0

if solutionRMP.obj ≥ incumbentSolution.obj then

continue // fathom current node in the branching tree

end

if solutionRMP is integral then

incumbentSolution ← solutionRMP

else

solutionMH ← solveMasterHeuristic(RMP, incumbentSolution)

if solutionMH.obj < incumbentSolution.obj then

incumbentSolution ← solutionMH

end

fixedRMP ← reducedCostFixing(RMP, solutionRMP, incumbentSolution)

constraint0, constraint1 ← find a fractional combination and fix it to 0 and 1

stack.push(consequencingBranch(fixedRMP, constraint0))

stack.push(consequencingBranch(fixedRMP, constraint1))

end

end
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Machine learning

In the previous chapter, we introduced the branch-and-price algorithm with several tradi-

tional techniques that can improve performance. However, the conventional methods for

improving the branch-and-price algorithm have several drawbacks. Firstly, there is a lack of

systematic techniques to improve algorithm performance on unseen instances by utilising the

experience from past instances. This results in neglecting all the information acquired during

previous runs when faced with a new instance. Secondly, developing efficient heuristic rules

demands considerable time and effort for designing and testing. These observations could

lead to the following question: is it possible to extract any useful information from solved

instances and employ it effectively to accelerate the solving process on unseen instances?

One of the crucial components of the branch-and-price algorithm is the column generation

procedure. The algorithm produces columns with negative reduced costs by iteratively solv-

ing the master problem and pricing problems. In our case, the pricing problem is a knapsack

problem unique to each block, and even though it is a simplified version of the entire problem,

solving it can still pose computational challenges. Moreover, from the nature of the problem,

it is a repetitive task – similar pricing problems are solved repeatedly, often exhibiting minor

variations. This raises the question of how to approach the process of searching for new

columns smartly so that time is saved and information from previous runs is utilised.

In Section 3.2.1, we mentioned some traditional ways to approach the search for new columns.

Most commonly, the space of pricing problems is either explored randomly until a column

with a negative reduced cost is not found or is explored fully to obtain a column with the

most negative reduced cost. However, in the second case, unfortunately, we must go through

all the pricing problems, which takes a long time when there are many OR blocks. While

we can shorten the traversal time by being satisfied with the first pattern with the negative

cost found, we risk that such a column will not significantly impact the master problem.

Furthermore, when, for example, there is only one column with a reduced cost, even random

traversal can take a considerable amount of time.

To accelerate the procedure, we propose a new approach to search for improving patterns

based on machine learning. This approach applies a trained model at each column generation

iteration to predict the order in which the pricing problems should be solved. The order

should reflect the reduced cost the column produced by the pricing problem will obtain. This

way, we can effectively combine the benefits of multiple standard methods for searching the
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space of pricing problems. The trained model ensures that columns with the most negative

reduced costs (i.e., high-quality patterns) are added to the master problem while significantly

reducing the search time, as the space of possible solutions is explored in an informed way

based on the knowledge obtained from the previously solved instances. Moreover, the ranking

can be performed in a very short computational time.

In fact, at each iteration of column generation, the fundamental question we ask is: ”Given

the current solution of the master problem and all the possible pricing problems to be solved,

what is the optimal order in which to solve them to obtain a pattern with the highest negative

reduced cost as early as possible?” Essentially, this is a ranking task where each pricing

problem we encounter needs to be compared to other available pricing problems. In the

following sections of this chapter, we give the necessary background: introduce the general

concept of learning-to-rank problems, commonly used ranking algorithms for solving them,

and quality functions to measure the performance. Then, we explain the process of gathering

data to train the model. Finally, we describe the solution methodology employed to address

the described task using the collected data.

4.1 Learning to rank

Learning to rank is an application of machine learning to solve ranking problems. It employs

a supervised machine learning approach to learn from historic data and create a model that

can generate a ranking for a given set of items according to their relevance to a given query

[47]. In traditional supervised machine learning, a model is trained to predict a class or value

for a single instance. For example, in a classification problem, the model is trained to classify

a single instance into one of several predefined classes. Similarly, in a regression problem, the

model is trained to predict a single value for a given instance. The main difference between

mentioned approach and learning to rank (LTR) is that the latter deals with ranking a set

of items and generating their relative order instead of predicting a single value for each

instance independently of the others. That is more challenging than conventional supervised

learning tasks primarily because of its hierarchical structure. For instance, a model that

outputs scores of −∞, 0,+∞ for three items, respectively, would produce the same ranking

as a model that outputs scores of 0.1, 2, 5 for the same three items. LTR is particularly

useful in search engines, where the goal is to provide users with the most relevant results for

their queries. However, LTR can be helpful in any task where a ranked list of items should

be produced [47].

The LTR problem is defined as follows: let q be a query sampled from a query distribution

Q. For this query, we are given a set of items {x1, . . . ,xn} with each item xi representing

a vector of features, and a relevance vector r = (r1, . . . , rn) ∈ R
n. A learning-to-rank model

is a function f that takes an item xi and returns a score si. For query q, a vector of scores

s = (f(x1), . . . , f(xn)) ∈ R
n is computed. To measure the performance of the model, i.e.,

how well the vector of scores s agrees with the relevance vector r, we use a loss function

L(f, q) such that r is contained in q, and s is computed internally. The goal of the LTR task

is to, having Q queries {q1, . . . , qQ}, find a model f from a given class of functions F so the
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loss is minimised:

f = argmin
f∈F

1

Q

Q
∑

i=1

L(f, qi). (4.1)

Various machine learning methods, such as support vector machines, neural networks, or

gradient boosting decision trees, can be used for the ranking task. Although neural net-

works have demonstrated significant achievements in various machine learning tasks, gradi-

ent boosting decision trees (GBDT) remain the leading algorithm for tabular datasets having

diverse and noisy features, specifically outperforming other machine learning methods in the

learning-to-rank problem [48]. That is mainly due to their ability to capture complex in-

teractions between input features, handle missing values and handle both continuous and

categorical variables. As a result, in the following, we will focus on a solution approach based

on GBDT.

4.1.1 Gradient boosting decision trees

Gradient boosting decision trees is a popular supervised machine learning algorithm first

introduced in [49]. It is an ensemble method combining multiple weak learners (in our

case, decision trees) to form one strong learner. Like other boosting methods, the training

of each weak learner depends on already trained learners. It works as follows: initially, a

single learner (decision tree) is created. Subsequently, other weak learners (decision trees)

are trained to correct the errors made by the previous learner and incorporated into it

as ”boosted” participants, together forming a strong learner. Specifically, each successive

learner predicts the residuals (the difference between the actual and predicted values) of the

preceding learner. The process continues until the ending conditions are not met [49].

Formally, let’s assume a set of training data {(xi, yi)}
n
i=1, where x is a vector of all the

input variables and y is a vector of output variables. The goal is to train a model f to

predict values of the form ŷ = f(x) by minimising an arbitrary differentiable loss function

L(y, f(x)). We start this process with a function model

f0(x) = argmin
γ

n
∑

i=1

L(yi, γ), (4.2)

where γ is a constant value. In each subsequent iteration j, the gradient boosting algorithm

improves on the current model fj by constructing a new model which adds an estimator hj

such that, together with fj−1, it provides more accurate predictions in a form:

fj(x) = fj−1(x) + hj(x). (4.3)

To achieve a more accurate prediction through hj(x), we should recall our ultimate objective:

to utilise learner f in correctly predicting the output variable y so that f(x) = y holds.

Therefore, in our setting, the task of finding an optimal hj during the j-th iteration reduces

to fitting the learner to residuals in a form

rij = yi − fj−1(xi), i = 1, . . . , n. (4.4)

Unfortunately, finding an optimal hj at each iteration for an arbitrary loss function might,
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in general, be infeasible. Therefore, the idea is to, at least, minimise the difference between

y and fj−1(x) as much as possible, such that

hj = argmin
h∈H

n
∑

i=1

L(yi, fj−1(xi) + h(xi)) (4.5)

holds. To perform it, we find the local direction of the steepest descent on the loss function

L(y, fj−1(x)), which is, in fact, a negative gradient of the function concerning the predictions

of the current ensemble model, and move towards that direction. This is the core principle

of the gradient descent algorithm. Using it, the estimator hj is obtained by computing the

gradients, also called pseudo-residuals:

pij = −

[

∂L(yi, f(xi))

∂f(xi)

]

f(x)=fj−1(x)

, i = 1, . . . , n, (4.6)

and fitting hj ∈ H to a new set of data {(xi, pij)}
n
i=1. Note that this training set is similar

to the original one, but the original labels yi are replaced with the gradients pij .

Finally, the resulting estimator hj is added to the current ensemble model fj−1 forming a

better model fj , and the process is repeated until a stopping criterion is reached. In practice,

the stopping criterion can be based on the number of added trees, the improvement in the

loss function, or the generalisation performance of the model on a validation set.

4.1.2 Ranking metrics

The choice of metric is critical for evaluating the effectiveness of ranking algorithms. It

depends on the application and the problem at hand. In this section, we will focus on three

widely used metrics in learning to rank: average precision (AP), discounted cumulative gain

(DCG), and negative discounted cumulative gain (NDCG).

Average precision

AP is a widely used metric in information retrieval to evaluate the quality of a ranking

algorithm working with binary relevance, i.e. when the relevance score ri of an item xi can

be only 0 (item is not relevant) or 1 (item is relevant) [47]. It measures the average precision

at different ranks. The precision at a particular rank k is defined as the fraction of relevant

items among the top k items returned by the algorithm. The average precision is the average

of the precision scores at all ranks where relevant items are retrieved.

Specifically, in order to obtain precision for a given query q, we measure out of top k retrieved

items, how many of them are relevant:

P@k(q) =
1

k

k
∑

i=1

ri. (4.7)

By computing (4.7) for k = 1, . . . , nq, where nq is the total number of items returned by the
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algorithm for query q, we obtain the average precision:

AP(q) =
1

∑nq

i=1 ri

nq
∑

k=1

P@k(q) · rk. (4.8)

A drawback of AP is that it does not consider the order of the retrieved items, only if

the relevant items are present. In some cases, this may lead to inaccuracies and decreased

performance. For example, consider an engine that retrieves ten items in response to a user

query. If there are five relevant items in total, and the search engine retrieves all five of

these, the AP score will be the same, regardless of the order in which the items appear. In

this case, a ranking metric that takes into account the position of the relevant items may

provide a more accurate evaluation.

Discounted cumulative gain

DCG is another widely used metric in learning-to-rank problems. It is used for tasks with

binary relevance as well as with graded relevance, i.e. when the relevance score ri of an item

xi is a discrete value in a defined range indicating the degree of relevance, for example, 0

(bad), 1 (fair), 2 (good), 3 (excellent), 4 (perfect) [47]. The essential principle of DCG is that

more relevant items should be ranked above irrelevant ones. In that manner, it overcomes

the drawbacks of AP explained above.

The discounted cumulative gain for a given query q is defined as

DCG(q) =

nq
∑

k=1

2rk − 1

log2(k + 1)
, (4.9)

where with the numerator, we measure how relevant the item is (the gain), and with the

denominator, we measure a penalty for the rank of a retrieved item (the discount). Alto-

gether, DCG value goes high when relevant items are ranked high (i.e., the higher the DCG,

the better the ranking algorithm).

It is worth noting that using a variant of DCG, referred to as DCG@k, is also common in

many applications. DCG@k calculates the DCG only up to a fixed rank k, corresponding

to the maximum number of items a user is willing to examine. Therefore, only the top k

relevant items contribute to the final calculation. It is often used in real-world applications,

where users typically look at only a few top-ranked items. The formula for DCG@k is simply

a truncated version of equation (4.9):

DCG@k(q) =

k
∑

i=1

2ri − 1

log2(i+ 1)
. (4.10)

One of the biggest drawbacks of the DCG metric is that, because of its cumulative nature,

as the length of recommended items increases, there is a high chance that DCG increases as

well. This means a longer recommendation list can have a higher DCG score than a shorter

list, even if the shorter list contains better recommendations. To overcome this drawback,

the concept of a normalised version is utilised.
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Normalised discounted cumulative gain

NDCG is an extension of DCG that normalises the score by dividing it by the maximum

achievable DCG score for a given set of recommendations [47]. In this manner, it considers

that the maximum possible score should also depend on the number of relevant documents.

Formally, NDCG is given as:

NDCG =
DCG

IDCG
, (4.11)

where IDCG is the ideal DCG score defined as the maximum possible DCG value that can

be obtained for a given set of items. It is computed by applying (4.9) for the ideal relevance

scores. This normalisation process ensures that the metric is bounded between 0 and 1, with

a score of 1 indicating a perfect ranking. That makes it easier to compare the effectiveness of

different recommendation systems. It is the most common metric for most use cases. Note

that, similarly to DCG, it is possible to use a truncated version of NDCG, NDCG@k, where

only top k relevant items contribute to the calculation of NDCG.

4.1.3 Ranking algorithms

Several algorithms have been proposed to address the learning-to-rank task, each with its

unique approach and advantages. This section will explore three prominent algorithms:

RankNet, LambdaRank, and LambdaMART. These algorithms were initially developed by

Christopher Burges at Microsoft and have gained considerable popularity, playing a crucial

role in advancing the state-of-the-art in the ranking domain [50].

RankNet

For a given query, each possible pair of distinct items Ii and Ij with feature vectors xi and

xj respectively is presented to model f with parameters θ, which computes scores si = f(xi)

and sj = f(xj). Let Ii▷ Ij denote that item Ii is ranked higher than item Ij . Thus, the two

output scores si and sj are mapped to a probability Pij that Ii is ranked higher than Ij via

a sigmoid function:

Pij = P (Ii ▷ Ij) ≡
1

1 + e−σ(si−sj)
, (4.12)

where σ determines the shape of the sigmoid. Let P̄ij be the true probability that item Ii

should be ranked higher than item Ij , defined as

P̄ij =







1 if Ii ▷ Ij ,

0 otherwise.
(4.13)

To express the difference between the predicted and true probability, a cross-entropy loss

function in a form

L(Ii, Ij) = −P̄ij logPij − (1− P̄ij) log(1− Pij) (4.14)

is employed. To find the optimal model with a minimal loss, RankNet utilises a gradient

descent technique, similarly to what we saw in the case of gradient boosting decision trees
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in Section 4.1.1. Specifically, the gradient of the loss function L(Ii, Ij) with respect to the

model parameters is used to update the parameters of the model as follows:

θ ← θ − η
∂L(Ii, Ij)

∂θ
, (4.15)

where η is a parameter representing the learning rate. After the parameters of the model are

updated, the optimisation process is repeated until the loss function converges to a minimum.

Note that RankNet was introduced with a neural network as its function class F . However,

the underlying model is not restricted to neural networks; any model with a differentiable

function of the model parameters may be used.

With minimising the loss function L, the objective of RankNet is to minimise the number of

pairwise errors in the ranking. A pairwise error is an incorrect order between a pair of results

in a ranked list, where a lower-rated result is ranked above a higher-rated result. That is not

suitable in most applications because the loss function treats the errors equally regardless of

whether two items are wrongly ranked at the top or bottom of a query. However, the top of

the query is crucial for most use cases. Therefore, we should mainly optimise the order of

items in the first few positions. [51] proposed a possible solution to this issue in a method

called LambdaRank.

LambdaRank

First, it was noticed that, when training the RankNet, only the gradients of the loss with

respect to the scores are required to employ the gradient descent method, not the actual loss

[51]. To obtain the desired gradients, we re-use the gradient of the loss with respect to the

model parameters and rewrite it in the following way:

∂L(Ii, Ij)

∂θ
=

∂L(Ii, Ij)

∂si

∂si

∂θ
+

∂L(Ii, Ij)

∂sj

∂sj

∂θ
= λij

(

∂si

∂θ
−

∂sj

∂θ

)

, (4.16)

where λij describes the desired difference of scores for the pair of items Ii and Ij . By

summing λij over all possible sets of pairs where item Ii is a member in query q, we obtain

λi. This λi corresponds to the gradient of the loss with respect to the obtained score. It

can be visualised as an arrow attached to the item in the ranked list, the direction of which

indicates the direction we want the item to move, and the length of which indicates by how

much.

Additionally, in [51], the authors discovered a critical limitation when employing the λ

gradients: their lack of positional awareness. A solution proposed to solve this issue involves

scaling λij by the change in NDCG (which is a positionally-aware ranking metric) obtained

by swapping the documents:

λij =
∂L(Ii, Ij)

∂si
=

−σ

1 + eσ(si−sj)
|∆NDCG|, (4.17)

where |∆NDCG| indicates the size of the change in NDCG given by swapping the rank posi-

tions of item Ii and Ij while leaving the rank positions of all other items unchanged. The

overall LambdaRank’s fundamental concept is to utilise these modified gradients to train a

RankNet instead of deriving them from a loss function.
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LambdaMART

LambdaMART is a method inspired by LambdaRank, but based on a function class of mod-

els called multiple additive regression trees (MART). Whereas MART employs GBDT for

making predictions, LambdaMART employs GBDT using a cost function based on Lamb-

daRank for ranking tasks. As mentioned in Section 4.1.1, gradient information alone is

sufficient for constructing gradient boosting models. Therefore, LamdaMART benefits from

this methodology enabled by GBDT while simultaneously replacing the original gradients

with λ gradients introduced in LamdbaRank. This forms the fundamental concept behind

LambdaMART. Experimental datasets have shown that LambdaMART outperforms both

LambdaRank and the original RankNet [50].

4.2 Dataset collection

As in every supervised machine learning problem, a labelled dataset is required to train the

model. Assuming that we specifically want to develop a ranking model, we work with a

dataset that comprises queries of items and a ground truth ordering of the items in queries.

For a query q we have n items {I1, . . . , In} to be ranked by their relevance. Each query-item

pair (q, Ii) is represented by a numerical vector, called a feature vector, xi = φ(q, Ii) ∈ R
m,

where m is the number of features describing the query-item pair. A relevance score ri that

says how relevant an item is to query q is assigned to each item Ii . The final training dataset

is defined as D = {(xq
i , r

q
i )} for q = 1, . . . , Q, i = 1, . . . , nq, where x

q
i is i-th feature vector in

query q and r
q
i is a relevance score of i-th item in query q. Note that, in general, queries can

be of variable length.

In learning-to-rank tasks, the dataset’s structure is important. Apart from the features

defining each item in the dataset and the relevance score representing the desired outcome,

queries are part of the input. They play a crucial role in the learning process as they

represent the context in which the items are ranked. It means that the same set of items

can have a different ranking depending on the context defined by the query. In our case of

ranking the pricing problems, the query refers to the current state of the restricted master

problem (i.e., the values of primal and dual variables). Each item represents one of the

pricing problems that can be solved. The relevance score is obtained from the reduced cost

the pricing problem can achieve compared to other available pricing problems in the same

query. Note that the query length is fixed in every instance to the total number of OR blocks

but varies for different instances.

4.2.1 Features

The extracted feature vectors represent the characteristics of individual pricing problems

to be solved at a given iteration of column generation in a given node of the branching

tree. Using the features, we want to describe the pricing problem so that a ranking model

can compare the usefulness of pricing problems given the context of the current restricted

master problem. However, sorting the pricing problems according to the reduced cost is not

a straightforward task as it is influenced by the overall structure of the problem (number
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Table 4.1: Description of features extracted for a pricing problem of block b.

Feature Description Type

count average histogram value

overall days days in the instance ✓

overall patients patients in the instance ✓

overall surgeons surgeons in the instance ✓

involved patterns1 patterns involved in block b ✓

involved patients1 patients involved in block b ✓

involved surgeons1 surgeons involved in block b ✓

µ variable µb extracted from RMP solution ✓

block load1 sum of surgery durations of patients in-
volved in block b

✓

schedule integral Is the current RMP solution integral in
terms of block b (i.e., yes/no, 1/0)?

✓

clinical priority1 clinical priority of patients involved in block
b

✓ ✓

waiting days1 waiting days of patients involved in block b ✓ ✓

surgery time1 surgery time of patients involved in block b ✓ ✓

setup time1 setup time of surgeries of patients’ involved
in block b

✓ ✓

patient branching 0 number of branching constraints forbidding
any patient to be assigned to block b

✓

patient branching 1 number of branching constraints assigning
any patient to block b

✓

surgeon branching 0 number of branching constraints forbidding
any surgeon to be assigned to the day of
block b

✓

surgeon branching 1 number of branching constraints assigning
any surgeon to the day of block b

✓

1 Feature is measured over the set of patterns/patients/surgeons with full involvement, partial
involvement and possible involvement.

of patients, number of available surgeons, overtime of blocks, etc.), and the current solution

of the master problem (optimal values of the master problem’s dual variables are used as

parameters in the pricing problems). Hence, no unique set of properties indicates which

pricing problem will be useful.

Moreover, the definition of features is complicated because the number of variables, con-

straints and parameters describing the pricing problem varies according to the provided

instance. However, the traditional machine learning models, therefore also the ranking mod-

els, expect the dimensionality of the input data to be always the same. As we work with

instances and therefore pricing problems of arbitrary size, it is not evident at first sight how

to condense the input into a fixed-size features.

We are dealing with a complex combinatorial problem with no clear way to define the fea-

tures to learn from, such as when working with images or text. This fact and the issues listed

above lead us to develop hand-crafted features based on expertise in the field and domain

knowledge of which parameters could affect the solution of pricing problems. As a result,

in Table 4.1, we propose a set of features specifically designed for our task. In total, there

are 17 types of features defined. We propose four ways how to measure them: by counting
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Figure 4.1: The process of assigning binary and graded relevance scores (ranks) to a set of
four pricing problems with feature vectors x1, . . . , x4 in query q based on obtained reduced
costs.

the elements (count), creating an average over the elements (average), making a histogram

with a specified number of bins over the elements (histogram) or extracting the value of

the feature (value). In addition, some of the features are measured over the set of pat-

terns/patients/surgeons with three possible types of involvements in the current solution of

RMP: (i) full involvement (pattern/patient/surgeon is fully assigned to block b in the current

solution of RMP, i.e., the value of the corresponding variable is 1), (ii) partial involvement

(pattern/patient/surgeon is partially assigned to block b in the current solution of RMP,

i.e., the value of the corresponding variable is between 0 and 1), (iii) possible involvement

(pattern/patient/surgeon is not assigned to block b in the current solution of RMP but could

be, i.e. the value of the corresponding variable is 0). For example, when extracting the value

of the clinical priority feature for block b, we first list the fully assigned patients to the block

and then measure the average value and histogram over their clinical priorities. The same

can be done for the partially and possibly assigned patients to the same block.

4.2.2 Relevance scores

Apart from the features, we must define relevance scores the ranking algorithm can learn

from. Each pricing problem obtains a relevance score relative to other pricing problems in the

same query. The score is acquired by solving all the pricing problems in one query, observing

the reduced cost they produce and sorting them from the most relevant (i.e., pricing problem

with the highest negative reduced cost) to the least relevant (i.e., pricing problem with the

lowest negative reduced cost). This order is typically induced by giving either a binary or

graded judgement. When employing binary ranking, 1 is assigned to all pricing problems

that yield a negative reduced cost, while 0 is assigned to the remaining ones. Conversely,

when using graded ranking, pricing problems are initially sorted based on their reduced cost

and subsequently assigned increasing values starting from the lowest-ordered problem to the

highest-ordered one. In this manner, the maximum achievable rank corresponds to the total

number of pricing problems in the query. The process of assigning relevance scores to the

pricing problems is illustrated in Figure 4.1.
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4.3 Solution methodology

First, a dataset D is collected. The dataset consists of features (described in Section 4.2.1)

and relevance scores (described in Section 4.2.2). Since we also need the ground truth

relevance scores (i.e., we need to know the objective value acquired for the pricing problem),

the idea for obtaining them is to solve a set of prepared instances. This means collecting

all the proceeded RMP iterations as a set of queries, retrieving all the candidate pricing

problems with their features and solving them to obtain the relevance scores. We build on

the idea that by collecting a large number of pricing problems associated with various master

problems, we can infer the impact of the pricing problems on the current master problem,

even when dealing with instances that have not been encountered before.

After acquiring the dataset, the ranking model, specifically LambdaMART (described in

Section 4.1.3), undergoes a training phase. During the training process, the model learns a

function that takes the current state of RMP and features describing the pricing problems,

and produces the relevance scores. The learning is done by adjusting the internal param-

eters of the LambdaMART model with underlying GBDT iteratively (described in Section

4.1.1). The objective is to minimise a loss function that quantifies the difference between the

predicted and true relevance scores in the training set. However, the final goal is to be able

to generalise to unseen instances. For that reason, a part of the collected dataset is reserved

for testing purposes to evaluate the model’s performance on unseen data. The performance

is measured using NDCG metric (described in Section 4.1.2).

Once the model is trained, we incorporate it into the branch-and-price procedure. At each

iteration of the column generation after re-optimising the RMP, we employ the trained

ranking model to predict the ranking of pricing problems for blocks 1, . . . , B. From the

unknown
columns

problem 1

pricing problems

Ranking model
Restricted master problem

added
columns

(1) Optimise RMP
and extract

      values of

problem 2

problem 3

problem B

new column

(2) Extract feature vectors 

...

1.

sorted pricing
problems

2.

3.

B.

...

(3) Solve pricing
problems in advised order

most relevant

least relevant

Figure 4.2: Solution process of adding new columns based on the guideline of ranking model
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vectors of features x1, . . . ,xB extracted for all the blocks, we compute a vector of scores

s = (f(x1), . . . , f(xB)) and use it to compute the ordering of the pricing problems z from

the one with the highest obtained ranking to the one with the lowest obtained ranking:

z = arg sort(s). This ordering is delivered to the procedure of generating an improving

pattern. It serves as a guide for exploring the space of pricing problems, indicating the

order in which they should be solved. Following this order, we prioritise the most promising

pricing problems, increasing the chances of finding a negative reduced cost pattern early in

the process. Note that finding an optimum is guaranteed as, in the worst case, we iterate

over all the pricing problems to prove that there is none with a negative reduced cost.

This process is schematically described in Figure 4.2.

48



Chapter 5

Experiments

In this chapter, we perform a comprehensive evaluation of the developed methods. First,

in Section 5.1, we examine the instance parameters commonly employed in real-world sce-

narios and establish a systematic procedure for generating synthetic instances based on the

parameters. Next, in Section 5.2, we compare the performance of the reference MIQP model

with the baseline branch-and-price model. Section 5.3 focuses on the training and evalu-

ation of the ML ranking model. Lastly, in Section 5.4, we compare the branch-and-price

approach enhanced with the trained ranking model against the baseline branch-and-price

model. We also compare multiple strategies for selecting pricing problems and the effect of

adding multiple patterns at once.

In the following, we perform the experiments on two sets of instances: small and large.

All experiments involving large instances were performed on a cluster with two Intel Xeon

E5-2690 v4 with 14 cores operating at a frequency of 2.6 GHz with 256 GB of RAM. All

experiments involving small instances were performed on a system with Apple M2 chip with

8 cores operating at a frequency of 3.49 GHz with 8 GB of RAM. All the algorithms were

implemented in Python 3.9. Gurobi 10.0.0 solver was used for the LP models.

5.1 Instance generation

As a result of the complex formulation and the large number of parameters involved in the

problem formulation, there is a lack of existing benchmark instances that cover all aspects

of our problem. Therefore, we have developed a procedure for generating instances, which

will be outlined in this section.

Traditionally, uniform distributions have been employed in scheduling to estimate parame-

ters, enabling researchers to test the robustness of their solutions across various scenarios.

However, relying solely on uniform distributions has significant drawbacks, as they may not

accurately capture the complexities of real-world scenarios. While traditional scheduling

algorithms remain unaffected by this limitation, machine learning models can suffer a per-

formance drawback. To overcome this, we conduct a comprehensive hospital data survey to

obtain credible parameters. The parameters predominantly draw inspiration from real plans

used in the University Hospital of Hradec Králové, but adaptations were necessary to fill in

the unknown gaps. For example, hospitals usually do not record the number of waiting days
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of the patient or his release date. Therefore, several parameters are derived from literature

or based on our domain knowledge.

The process of generating instances is as follows: the user specifies the number of ORs,

blocks, surgeons, patients and a time horizon as R, B, S, P , and D, respectively. First,

R operating rooms and B blocks are created. The parametrisation is generated based on

Section 5.1.1 for each operating room and block. Subsequently, surgeons are created and

allocated to generated blocks. The parametrisation is generated for each surgeon based on

Section 5.1.2. Finally, P patients are created and allocated to generated surgeons. The

parametrisation is generated for each patient based on Section 5.1.3. The instance is then

finalised by establishing the objective function coefficients as described in Section 5.1.4.

5.1.1 OR blocks and rooms

Based on a real-world hospital setting, we consider a department with 1 operating room that

is further split into two blocks: morning and afternoon. Considering the operating block’s

parameters, based on [3], the block capacity cb is set to 240 minutes, and maximal block

overtime omax
b to 60 minutes. Considering the operating room’s parameters, based on [3],

the maximal OR overtime omax
r is set to 90 minutes.

5.1.2 Surgeons

We consider a single discipline where all surgeons are equally loaded. The number of available

days to conduct surgeries is generated for each surgeon. According to [18], surgeons usually

attend the hospital between 3 and 5 days a week. Therefore, we assign each surgeon to 33

% of all blocks available in one week. The same time blocks are allocated to the surgeon in

every week across the whole time horizon. The assignment of surgical cases to surgeons is

generated uniformly at random. Parameter v of the maximal number of blocks assigned to

any surgeon on any day is set to 2, as, according to Section 5.1.1, there are two blocks per

day. Parameter vs of a maximal number of patients assigned to a surgeon s in any day is set

to the total number of surgeon’s patients in the given time horizon.

5.1.3 Patients

We assume elective patients only. We classify patients into two clinical priority classes:

normal and high-priority. It is worth noting that the priority does not stand for urgent

surgeries, as we consider elective patients only. Patients might just be on the waiting list for

too long, generate higher revenues for the hospital, or there is a higher medical priority. The

priority can be based on release and due time [3] or can be assigned randomly. According to

the Institute of Health Information and Statistics of the Czech Republic, in 2019, 17 % of the

total number of surgeries in the hospitals of the Czech Republic were urgent [52]. Therefore,

we randomly assign 20 % of patients to the high-priority group; the rest is assigned to the

normal-priority group. The priority is reflected by the parameter qp.

Each patient is also assigned to a group so that a setup time parameter between every two

patients tpp′ can be modelled. Introducing this parameter is motivated by the cleaning and
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preparation times needed between the surgeries in real-world settings of hospitals. We define

six groups, each representing one type of surgery that can be performed. Each patient is

uniformly at random assigned to one of these groups. Following the findings presented in

[53], we establish setup times in minutes for each pair of groups using the following matrix:

1 2 3 4 5 6




































1 0 20 25 30 35 40

2 20 0 20 25 30 35

3 25 20 0 20 25 30

4 30 25 20 0 20 25

5 35 30 25 20 0 20

6 40 35 30 25 20 0

.

The rows and columns in this matrix correspond to the group numbers (1 to 6). Note that

when two patients are from the same group, no time is required to clean or prepare the

operating room. Otherwise, as the distance between the group of two patients increases, the

setup time also increases.

Regarding the release date ap, we assume that 70 % of patients are randomly selected and

prepared before the start of the time horizon (i.e., their release date is day 0). For the rest of

the patients, we model the release date as a Poisson process in the following manner: on each

day of the time horizon, we independently extract one value from the Poisson distribution

with a mean equal to the ratio of unscheduled patients to the remaining time horizon. This

value represents the number of patients with a release date equal to this day. Then, we

randomly select this number of patients from the unscheduled patients. We iterate over the

time horizon until all patients are not scheduled. The illustration of described distribution

is shown in Figure 5.1. The motivation for including patients with a release date after the

start of the time horizon is that some patients may have additional pre-operation procedures

or are not available for personal reasons. The ratio is based on [54], where they considered

a patient list with 80 initial patients rising to a total of 132 due to new arrivals.

The surgery duration of a patient can be modelled by various distributions. A log-normal

distribution is assumed to copy the real-life surgery durations to a great extent [55]. Based

on the mean surgery durations presented in [3], we establish a log-normal distribution with

a mean of 1 hour and a standard deviation of 30 minutes. For each patient, the surgery

duration parameter tp is extracted from this distribution. The illustration of described

distribution is shown in Figure 5.1.

5.1.4 Objective function

Choosing appropriate values for the coefficients mj , j = 1, . . . , 5 is critical as it significantly

affects the behaviour of the optimisation process and the resulting solution. The coefficients

can be determined based on various factors, such as the relative importance of the objectives

or expert knowledge of the problem domain.

In [3], the authors utilised the following coefficient values: m1 = 30, m2 = 300, m3 = 15,

m4 = 2. Based on these, we propose the following coefficient values for our problem: m1 = 10
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Figure 5.1: Distribution of patient’s parameters on a sample size 10 000.

(representing the coefficient for waiting days), m2 = 100 (reflecting the coefficient for the

number of unscheduled patients), m3 = 10 (indicating the coefficient for the number of sur-

geon attendance days), m4 = 1 (representing the coefficient for room overtime), and m5 = 1

(reflecting the coefficient for room idle time). Our primary focus lies in minimising the num-

ber of scheduled patients. Therefore, the corresponding coefficient carries significant weight

compared to the others. Additionally, we consider the number of waiting days of patients

and the number of days a surgeon must be present at the hospital equally undesirable. Same

holds for overtime and idle time. Furthermore, as their units are minutes, their weight is

significantly lower.

It is important to note that each hospital might have different preferences. Thus, the choice

of coefficients should be determined in cooperation with the hospital management.

5.2 Experiment 1: comparison of original formulation and

branch-and-price formulation on large instances

We start the experiments by comparing the performance of the original formulation ILP

model presented in Chapter 2 and the branch-and-price formulation presented in Chapter

3. In Chapter 3, we mentioned that ILP is impractical for large problems due to its compu-

tational complexity and scalability issues. Thus, this experiment aims to demonstrate that

the branch-and-price algorithm truly outperforms ILP on generated data and is reasonable

to utilise it in our task of OR scheduling, especially for large instances.

5.2.1 Settings

The experiment was conducted on instances with the following parameters: time horizon of

{5,10} days, 1 OR, {30,40,50} patients, and 4 surgeons. For each combination of parameters,

3 instances were randomly generated based on the description depicted in Section 5.1, forming

a dataset consisting of 18 instances. The time limit for solving one instance was set to 4 hours.

A random strategy for searching for improving patterns was employed in the branch-and-

price algorithm (i.e., pricing problems were solved in random order, and the first encountered
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pattern with a negative reduced cost was added). One pattern per one column generation

iteration was added at maximum.

5.2.2 Results

The results of the experiment are demonstrated in Table 5.1. The table is divided into two

parts according to the methods. In the first part, we find the results for the ILP model, and

in the second part, we find the results for the branch-and-price model. The first column of

each method presents the objective value of the best solution found within the specified time

limit. The second column of each method presents the runtime of the algorithm.

The results show that the ILP model performs better than the branch-and-price model for

smaller instances. When considering a time horizon of 5 days, the runtime of the ILP model

is, on average, approximately two times shorter than in the case of branch-and-price. For

both methods, most instances can find an optimal value within the time limit; therefore,

the average objective value is more or less the same. Nonetheless, when the time horizon

is extended to 10 days, branch-and-price outperforms the ILP method. In the case of ILP,

all but one instance reach the time limit before the optimum is found. The branch-and-

price algorithm can find the optimum within the time limit for four instances. The average

objective value remains more or less the same for both methods. Therefore, the branch-and-

price method demonstrates its dominance for larger instances, where the ILP formulation

struggles to provide optimal solutions within the given time limit. Moreover, it is crucial

to understand that the branch-and-price method’s performance advantage will become in-

creasingly apparent for even larger problem sizes. As the complexity of the instances grows,

the computational demands imposed on the ILP increase, failing to deliver optimal solutions

within an acceptable time.

These findings emphasise the practical significance of utilising the branch-and-price algorithm

for OR scheduling tasks involving large-scale instances. The algorithm’s ability to handle

larger instances efficiently and its competitive objective values make it a suitable choice.

5.3 Experiment 2: ML ranking model evaluation

The second experiment aims to train and evaluate a ranking model theoretically described

in Chapter 4, further utilised in the branch-and-price algorithm. The section is organised

similarly to the solution methodology described in Section 4.3. Accordingly, we establish the

ranking model, gather data for its training, conduct the training process, and evaluate its

performance. Subsequently, we analyse its performance when employed in the branch-and-

price procedure. Lastly, we investigate the model’s predictions on the test data.

5.3.1 Model training

First, we established the model itself. Based on the description of popular ranking models

in Section 4.1.3, we decided to adopt the LamdbaMART model. A popular framework often

used for learning to rank tasks and implementing the LamdbaMARTmodel is LigthGBM. It is
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Table 5.1: Results for ILP and branch-and-price methods. Instances have following param-
eters: time horizon of {5,10} days, 1 OR, 4 surgeons, and {30,40,50} patients. Gray cells
indicate instances that were not solved to the optimality within the given time limit.

Size Instance ILP Branch-and-price

Value Time [s] Value Time [s]

5
d
ay
s

0 p30 119310 218 119310 590
0 p40 112660 586 112660 3549
0 p50 54690 13695 54690 10286
1 p30 132340 49 132340 526
1 p40 55150 4546 55150 1155
1 p50 170115 1278 170115 2594
2 p30 116790 192 116790 236
2 p40 112845 388 112845 7841
2 p50 112520 1149 112530 14403

Average 109602 2456 109603 4576

10
d
ay
s

0 p30 478315 176 478315 1522
0 p40 400740 14401 400720 8223
0 p50 343170 14402 343145 14405
1 p30 419250 14401 419250 1738
1 p40 515375 10416 515395 14408
1 p50 515945 14403 515925 14401
2 p30 493830 14401 493830 965
2 p40 517150 14401 517155 14400
2 p50 515250 14404 515275 14407

Average 466558 12378 466557 9386

a framework developed by Microsoft that uses conventional GBDT with the addition of novel

techniques. One of the key ones is its leaf-wise tree-splitting approach, instead of level-wise

tree-splitting employed by other boosting algorithms. In the leaf-wise strategy, the algorithm

selects the leaf node it believes will yield the largest decrease in loss at each step. Oppositely,

the level-wise strategy prioritises splitting the nodes closer to the tree root growing the tree

level by level. The difference is shown in Figure 5.2. Using the leaf-wise approach, the

GBDT produces more complex trees resulting in a lower value of loss function than in the

level-wise approach. Another key feature of LightGBM is a histogram-based algorithm used

for computing gradients. It buckets continuous feature values into discrete bins, significantly

reducing memory consumption and allowing it to handle large-scale datasets.

We utilised the LambdaMART model implementation within the LigthGBM framework.

The used parameter settings for this model are provided in Table 5.2. Note that one of

the parameters defines the objective as LambdaRank instead of LambdaMART. However,

LambdaMART is considered the boosted tree version of LambdaRank. Hence, by utilis-

ing the LambdaRank objective along with LigthGBM’s GBDT, we effectively obtain the

LambdaMART algorithm.

Additionally, before training the model, we collected a dataset consisting of diverse instances.

It was gathered by solving instances with the following parameters: time horizon of {5,10}

days, 1 OR, {10,20,30} patients, and 2 surgeons. For each combination of parameters, 30
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(a) leaf-wise strategy

(b) level-wise strategy

Figure 5.2: Tree growth strategies used in gradient boosted decision trees.

instances were randomly generated based on the description depicted in Section 5.1, forming

a pool of 120 instances. Based on the methodology for collecting pricing problem features

in queries together with ranking scores described in Section 4.3, a total number of 58 408

queries and 932 190 pricing problems were recorded, including 92 feature values and both

binary and graded relevance scores.

Once the training dataset was ready, we trained the LambdaMART model. In fact, we

trained two different models – one with binary and one with graded relevance scores. In that

manner, the binary ranker decided whether the pricing problem was relevant, whereas the

graded ranker decided to what extent the pricing problem was relevant. In both cases, the

training was done on 80 % of the collected queries, and the other 20 % was used for testing

purposes. The split was done randomly. In total, we trained the models for 3000 iterations,

and the training process took less than 5 minutes.

To evaluate the quality of rankings produced by trained models, we employed the NDCG@k

metric, where k ∈ {1, 2, 5, 10}, on a test part of the collected dataset. By considering the

NDCG of top k ranked items only, we assess the performance of trained models in predicting

Table 5.2: Parameters used for training the ranking model.

Parameter Description Value

Learning rate Boosting learning rate 0.1
Num leaves Maximal number of leaves in one tree 31
Max depth Maximal depth of one tree ∞
Min data Minimal number of data in one leaf 20
Max bin Maximal number of bins that feature values will be

bucketed in
255

Num iterations Number of boosting iterations 3000
Objective Learning objective function lambdarank
Metric Metric to be evaluated on the test set ndcg
Boosting Type of boosting method gbdt
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k most relevant pricing problems among all the pricing problems. The results are presented

in Table 5.3. We obtained NDCG@1 of 0.84 for the graded ranker, progressively increasing

to NDCG@10 of 0.94. We obtained NDCG@1 of 0.93 for the binary ranker, progressively

increasing to NDCG@10 of 0.96. It is apparent that both models perform reasonably well

across different positions. For example, in the case of the graded learner, the NDCG@1

score of 0.84 suggests that the top-ranked pricing problem in the list has achieved 84 %

of the maximum possible relevance score compared to the ideal order. Hence, the top-

ranked pricing problem has a relatively high level of relevance compared to other problems.

NDCG@10 score of 0.94 suggests that, on average, the top 10 pricing problems returned by

the ranker are aligning by 94 % with the ideal ranking. The NDCG scores for both models

increase as the position moves further down the list, indicating that the ranking quality

improves as more items are considered. It is worth noting that the binary ranker generally

outperforms the graded ranker in terms of NDCG scores for all positions. However, this may

be caused by the binary ranker only assessing whether the PP is relevant, which is a simpler

learning task than evaluating the extent to which the PP is relevant.

We have shown that both trained ranking models effectively evaluate and predict the rele-

vance of pricing problems. They exhibit reasonable performance across different positions,

as evidenced by the NDCG scores in Table 5.3. Following that, we can proceed to the ex-

periment of incorporating machine learning models into the branch-and-price procedure and

comparing the performance of both rankers on unseen data.

5.3.2 Settings

The experiment was conducted on instances with the following parameters: time horizon of

{5,10} days, 1 OR, {10,20} patients, and 2 surgeons. For each combination of parameters, 5

instances were randomly generated based on the description depicted in Section 5.1, forming

a dataset consisting of 20 instances. The time limit for solving one instance was set to 2

hours. A ranked strategy for searching for improving patterns was employed in the branch-

and-price algorithm (i.e., pricing problems were solved in the order advised by the ranking

model, and the first encountered pattern with a negative reduced cost was added). One

pattern per one column generation iteration was added at maximum.

5.3.3 Results

The results of the experiment are demonstrated in Table 5.4. The table is divided into

two parts according to the methods. In the first part, we find the results for the graded

ranker, and in the second part, we find the results for the binary ranker. The first column

of each method presents the algorithm’s runtime, further split into two columns – column

Table 5.3: Resulting NDCG@k metrics for trained ranking models.

Ranker NDCG@1 NDCG@2 NDCG@5 NDCG@10

Graded 0.84 0.87 0.93 0.94
Binary 0.93 0.93 0.95 0.96
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Table 5.4: Results for branch-and-price enhanced with binary and graded ranker. Instances
have following parameters: time horizon of {5,10} days, 1 OR, 2 surgeons, and {10,20}
patients.

Size Instance Graded ranker Binary ranker

Time [s] #N #CG #PP Time [s] #N #CG #PP

Total PP Total PP

5
d
ay
s

0 p10 4.20 3.17 11 97 238 4.56 3.28 11 104 233
0 p20 32.10 27.86 27 181 480 20.37 17.73 19 116 327
1 p10 0.82 0.58 5 32 93 1.62 1.20 5 39 106
1 p20 203.01 174.11 115 914 2508 230.02 197.07 117 939 2569
2 p10 1.25 0.89 5 44 116 1.52 1.07 5 50 125
2 p20 25.10 22.52 9 92 201 21.11 18.60 9 95 205
3 p10 6.89 5.85 11 97 214 7.11 6.18 11 80 208
3 p20 11.43 9.68 9 73 172 12.12 10.36 9 75 188
4 p10 1.96 1.39 9 67 172 2.08 1.53 9 61 165
4 p20 42.44 34.07 29 267 718 57.96 46.74 41 357 1001

Avg 32.92 28.01 23 186 491 35.85 30.38 24 192 513

10
d
ay
s

0 p10 5.09 3.16 9 82 294 6.30 4.31 9 73 298
0 p20 22.94 13.49 13 144 528 31.86 19.46 13 162 565
1 p10 3.06 1.83 9 57 288 2.79 1.73 9 55 275
1 p20 32.86 20.79 17 177 726 33.69 21.51 17 175 690
2 p10 8.57 5.18 31 144 895 7.68 4.74 31 132 832
2 p20 107.97 63.19 21 526 1229 120.73 74.89 21 503 1221
3 p10 10.23 6.83 19 120 575 8.83 5.85 19 108 538
3 p20 302.85 237.75 25 596 1711 327.43 260.95 25 576 1699
4 p10 12.59 7.95 51 198 1348 8.12 5.23 37 118 922
4 p20 61.53 43.23 15 242 890 61.22 44.19 15 228 864

Avg 56.77 40.34 21 229 848 60.86 44.28 20 213 790

’Total’ measures the overall runtime, and column ’PP’ measures the runtime spent on solving

pricing problems. Three more columns are listed in the table beside the runtime. Column

’#N’ indicates the number of nodes searched in the branching tree, column ’#CG’ indicates

the number of column generation iterations solved, and column ’#PP’ indicates the number

of pricing problems solved.

When comparing the graded and binary rankers, concerning the number of nodes in the

branching tree, column generation iterations, and pricing problems solved, both rankers

perform more or less the same. For both rankers, the number of column generation iterations

and solved pricing problems increases when the time horizon increases. The number of nodes

in the branching tree slightly decreases. In terms of runtime, the graded ranker performs

significantly better than the binary ranker. In the case of both shorter and longer time

horizons, the difference in time is around 10 %. Therefore, we consider the graded ranker as

the model we continue the experiments with.

Furthermore, to observe the predictions made by the graded ranker, we employ the shapley

additive explanations (SHAP) technique. This method, introduced in [56], enables to explain

individual predictions by leveraging the concept of Shapley value. In coalitional game theory,
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the Shapley value determines each player’s contribution to a collaborative work. Similarly,

SHAP employs this concept, where each feature within the input feature vector acts as

a player in a coalition, and SHAP quantifies the contribution of each feature towards the

model’s predictions [56].

Figure 5.3 represents the impact of the most important features on the model output. The

position on the y-axis indicates features ordered according to their importance while the

position on the x-axis represents the obtained SHAP value. Each point corresponds to a

Shapley value for one feature in a particular item of the dataset. The colour indicates the

feature’s value from low (blue) to high (red). Overlapping points are jittered in the y-axis

direction to better understand the Shapley value’s spread. A dot on the left side of the axis

indicates a negative influence on the prediction, whereas a dot on the right side represents

a positive influence. The distance between the dot and the axis’s central point signifies the

−8 −6 −4 −2 0 2 4

SHAP value (impact on model output)

surgery time histogram 1

# fully involved patients

surgery time fractional average

# instance days

clinical priority possible histogram 0

surgery time fractional histogram 1

# partially involved patients

surgery time possible histogram 1

block load fractional

setup time possible average

block load

# possible patterns

# possible patients

surgery time possible average

mu

Low

High

F
ea
tu
re

va
lu
e

Figure 5.3: SHAP plot for graded ranker indicating the involvement of the most significant
features in making predictions.
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Figure 5.4: SHAP plot for graded ranker indicating how the features participate in making
a single prediction.
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magnitude of the effect, with greater distances indicating a stronger impact of the feature

on the prediction.

By examining the plot, it is apparent that among the most influencing features is the surgery

duration of patients that might be involved in the block, µb variable, and the number of

patients and patterns that might be assigned to the block. Also, the block load plays a

significant role. In most features, it holds that the higher the feature value is, the more

positive impact it has on the relevance. For example, a high value of µb, simply from the

formulation of the pricing problem, often results in a pattern with a negative reduced cost.

An interesting observation is that the relevance diminishes as the number of possible patterns

for a block increases. This could be attributed to the fact that when numerous patterns have

already been generated for a particular block, the likelihood of the pricing problem producing

a new improving pattern becomes small.

Additionally, Figure 5.4 indicates an example of how each of the features participated in

making a single prediction. Again, the higher the SHAP value, the more positive impact

on the relevance. For the presented pricing problem, it might be assumed that there was

a relatively small number of patterns generated for the block (SHAP value is very high),

increasing the relevance of the pricing problem, but, on the other hand, the number of

patients that might be assigned to the block was low (SHAP value is very low), decreasing

the relevance of the pricing problem.

5.4 Experiment 3: comparison of standard branch-and-price

and ML-boosted branch-and-price

The final experiment compares the standard branch-and-price approach and the improved

version incorporating the ranking model trained in Section 5.3. The objective is to determine

if the ranking model can improve the branch-and-price algorithm in terms of computation

time and search-space efficiency. Several strategies for obtaining new columns, such as ran-

dom selection and prioritising high-value patterns, are assessed to evaluate the effectiveness

of the enhanced approach. Furthermore, the impact of adding multiple columns at once is

observed.

5.4.1 Settings

The experiment was conducted on instances with the following parameters: time horizon of

{5,10} days, 1 OR, {10,20} patients, and 2 surgeons. For each combination of parameters, 5

instances were randomly generated based on the description depicted in Section 5.1, forming

a dataset consisting of 20 instances. The time limit for solving one instance was set to 2

hours. Multiple strategies for searching for new columns were utilised:

• ”k improving” strategy – pricing problems are randomly sorted; the algorithm searches

for the first k improving patterns; these patterns are subsequently added to the RMP

• ”k fixed” strategy – the pricing problems are randomly sorted; the algorithm solves

first k patterns; all improving patterns among the solved ones are subsequently added

to the RMP

59



CHAPTER 5. EXPERIMENTS

• ”k best” strategy – pricing problems are randomly sorted; the algorithm solves all of

them; k patterns with the highest negative reduced cost are added to the RMP

• ”k ML improving” strategy – pricing problems are sorted in the order advised by the

ranking model; the algorithm searches for the first k improving patterns; these patterns

are subsequently added to the RMP

• ”k ML fixed” strategy – the pricing problems are sorted in the order advised by the

ranking model; the algorithm solves first k patterns; all improving patterns among the

solved ones are subsequently added to the RMP,

where k ∈ {1, 3, 5} is the maximum number of columns added at once to the RMP. In all

strategies, if it is impossible to find k improving patterns, all found improving patterns are

added to the RMP.

5.4.2 Results

The results of the experiment are demonstrated in Table 5.5. The presented numbers are

the averages over all instances in the dataset. The first three columns, ’Size’, ’Patterns’

and ’Strategy’, represent the considered time horizon, number of patterns to be added, and

strategy for obtaining new columns, respectively. The next column presents the algorithm’s

runtime, further split into three columns – column ’Total’ measures the overall runtime, col-

umn ’PP’ measures the runtime spent on solving pricing problems and column ’ML’ measures

the runtime spent on making the predictions with the ranking model. Four more columns are

listed in the table beside the runtime. Column ’#N’ indicates the number of nodes searched

in the branching tree, column ’#CG’ indicates the number of column generation iterations

solved, column ’#PP’ indicates the number of pricing problems solved, and column ’PP

reduced’ indicates the percentage by which the ML-enhanced version of branch-and-price

reduces the number of pricing problems solved compared to the best-performing strategy of

branch-and-price without ranker.

The first observation from the results is that the ML-boosted branch-and-price approach con-

sistently reduces the number of solved pricing problems compared to the standard branch-

and-price approach. As indicated in the last column of the table, both in the shorter and

longer time horizon, savings are, in most cases, over 30 %. An exception occurs for instances

with a time horizon of five days when more patterns are added to the RMP. In this case,

with a total of 10 pricing problems to be searched, finding five improvements becomes rare,

resulting in an almost complete exploration of the search space. Therefore, the ML-enhanced

approach reaches its limits in reducing the number of solved pricing problems when the num-

ber of patterns to be added exceeds the available opportunities for significant improvements.

In other cases, the results are considerable, and the ranking model provides valuable guidance

in selecting promising patterns.

It is also important to note that there is always a minimum number of patterns that must

be solved, regardless of the approach employed. In each column generation iteration, at

best, one pricing problem has to be solved to find an improving pattern. Additionally, in

each node, at least once in the last column generation iteration, all possible pricing problems

have to be solved to prove that there is no improving pattern, and we solved the RMP

to optimality. For example, when the time horizon is 5 days and ”ML fixed” strategy is
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employed, 22 nodes and 179 column generation iterations are utilised. It means that at

least 178 + 10 · 22 = 398 pricing problems have to be solved in the optimal case. In reality,

we solved a total of 480 problems. This outcome indicates that the algorithm effectively

navigated the problem space, minimising solving irrelevant pricing problems and reaching

almost the minimal number of them.

Another observation is that according to the column ’PP’ in the ’Time’ section, the majority

of the run time is spent on solving pricing problems. Therefore, utilising a machine learn-

ing guide to reduce the number of pricing problems should significantly improve efficiency.

However, although the ML-enhanced approach significantly reduces the number of solved

pricing problems, the overall runtime is not proportionately reduced. Nevertheless, the ML

component itself only constitutes a small portion of time spent on solving subproblems, as

the column ’ML’ in the ’Time’ section indicates. Hence, the additional time spent on solving

pricing problems can be most likely attributed to the fact that the ML-enhanced approach

tends to recommend more complex pricing problems that are likely to yield significant im-

provements in the objective value. It is worth noting that for a broader time horizon or

multiple operating rooms, the number of pricing problems to solve will increase. Thus, we

can expect that in such cases, time savings will increase because the chance of finding an

improving pattern may decrease when randomly searching the space, especially if there is a

limited number of them.

In terms of runtime, for both the shorter and longer time horizon, the strategy of selecting 5

patterns at once is the best-found option. In the case of a time horizon of 5 days, the best-

obtained result is 21.29 seconds on average, obtained by the ”fixed” strategy of standard

branch-and-price. In the case of a time horizon of 10 days, the best-obtained result is 26.22

seconds on average, obtained by the ”ML improving” strategy of machine learning enhanced

branch-and-price. In the later, the runtime is reduced by 17 % compared to the best runtime

obtained by traditional branch-and-price on the same instances.

Furthermore, the ML-boosted branch-and-price approach consistently saves time compared

to the ”best” strategy. This time-saving effect is particularly prominent for larger instances

when a smaller number of patterns to be added is considered. This indicates that the ranking

model provides valuable guidance in selecting promising patterns for column generation.

However, surprisingly, even a random strategy for obtaining new columns outperforms the

best choice strategy in terms of runtime.
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Table 5.5: Results for baseline branch-and-price and branch-and-price enhanced with graded
ranker. Instances have following parameters: time horizon of {5,10} days, 1 OR, 2 surgeons,
and {10,20} patients. Averages over instances are presented in the table.

Size Patterns Strategy Time [s] #N #CG #PP PP
reduced

[%]Total PP ML

5
d
ay

s

1

improving 29.92 24.43 30.00 213.70 922.00
fixed 30.57 24.93 30.00 213.70 922.00
best 54.83 49.92 26.60 202.80 2028.00
ML improving 28.41 24.27 0.90 22.20 179.40 479.50 48
ML fixed 29.98 25.39 1.02 22.20 179.40 479.50 48

3

improving 27.10 23.83 24.20 107.00 974.00
fixed 28.89 24.34 28.20 173.20 908.60
best 21.58 19.24 20.60 92.60 926.00
ML improving 27.91 24.71 0.62 23.60 110.20 859.10 5
ML fixed 30.65 26.31 0.80 28.20 140.10 639.10 30

5

improving 24.48 21.67 21.00 88.30 874.70
fixed 21.29 18.47 21.80 130.00 824.40
best 30.38 26.98 26.40 109.00 1090.00
ML improving 28.98 25.83 0.59 25.40 109.40 1056.10 0
ML fixed 27.39 24.30 0.63 25.40 109.40 674.00 18

10
d
ay

s

1

improving 36.55 23.18 23.20 211.30 1286.50
fixed 35.79 22.44 23.20 211.30 1286.50
best 83.06 71.14 19.00 177.10 3542.00
ML improving 52.77 37.83 2.05 21.00 222.60 841.10 35
ML fixed 55.95 39.35 2.02 21.00 222.60 841.10 35

3

improving 32.68 25.32 21.80 102.10 1417.60
fixed 36.40 22.85 24.40 190.70 1343.50
best 51.05 41.24 19.80 105.00 2100.00
ML improving 31.24 23.59 0.86 20.80 96.80 917.10 32
ML fixed 40.96 30.12 1.22 25.40 134.80 919.40 32

5

improving 31.66 24.42 26.00 84.70 1512.80
fixed 38.47 26.51 23.20 170.00 1422.70
best 35.94 28.71 19.40 75.90 1518.00
ML improving 26.22 20.35 0.67 21.00 73.50 1010.30 29
ML fixed 32.34 24.03 0.78 20.80 85.20 758.50 47
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Conclusion

In this thesis, we addressed the problem of surgery planning and designed an algorithm that

assigns patients to operating rooms. Our work made several contributions to the field of

surgery scheduling and machine learning.

Firstly, we formulated the OR scheduling problem as a MIQP with an objective function

simultaneously incorporating multiple factors. By taking into account sequence-dependent

setup times, we addressed both the advance scheduling problem and the allocation scheduling

problem in an integrated manner.

Given the complexity of the problem, it was crucial to design a method that could reduce

the computational time required to solve it. Therefore, we developed a branch-and-price

algorithm that leveraged the power of column generation and branch-and-bound methods to

handle many variables efficiently. Moreover, several improvements were made to the branch-

and-price algorithm leading to the ability to demonstrate its benefits over the original MIQP

formulation on larger instances.

One of the main contributions of this work is the design of a novel application of machine

learning in the branch-and-price algorithm. We introduced a machine learning-based ranker

that guides the search for new variables in the column generation process. The ranker

analyses the structure of the instance being solved and ranks the pricing problems based on

the expected amount of negative reduced cost they can obtain.

To evaluate the effectiveness of the developed algorithm, we constructed a synthetic data

generation method that accurately reflected real-world scenarios. This allowed us to test

our algorithm on a wide range of instances. The experimental evaluation showed that our

algorithm, enhanced with machine learning, significantly outperformed the baseline method.

We achieved a reduction of up to 48 % in the number of solved pricing problems and up to

17 % in the overall computation time.

Results have demonstrated the efficiency of our solution, making it applicable to other opti-

misation problems where the computational time is primarily spent on solving pricing prob-

lems. Moreover, the results have demonstrated significant promise in merging the fields of

machine learning and combinatorial optimisation. Although the techniques employed in this

thesis are still in the early stages of development, combining the strengths of both disciplines

has opened up new avenues for innovation in solving complex optimisation problems.
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6.1 Future work

While this thesis has made significant strides in improving OR scheduling through optimi-

sation and machine learning, there are several avenues for future research and development.

So far, we have designed the task of ranking pricing problems so the amount of negative

reduced cost was considered. However, a pattern with negative reduced cost does not guar-

antee an improvement in the objective value of RMP. To address this limitation, we can

move from ranking pricing problems according to the reduced cost to ranking pricing prob-

lems according to an improvement in the objective value of RMP they yield. Nonetheless,

although these patterns might guide the algorithm towards an optimal RMP solution, there

is still a possibility that they may not align well with the binary decisions we encounter dur-

ing branching. In such cases, generated patterns could become irrelevant and be eliminated.

Therefore, we could move the task even further by asking how likely the pattern is to be

present in the final integer solution.

The results have shown that the ranking model provides valuable guidance in selecting

promising patterns in medium-sized instances. However, further investigation on larger

instances should be performed to provide additional insights into the effectiveness of the

ranking model. When utilising more rooms and enlarging the time horizon, the number of

OR blocks grows. In such a setting, the effect of machine learning is expected to be even

more significant as the probability of discovering an improving pattern randomly decreases,

particularly if the number of improving patterns is limited.

In addition to incorporating larger instances, it is worth exploring additional strategies for

searching for improving patterns. We performed the final experiments only when 1, 3 and 5

patterns were added simultaneously. One potential approach is incorporating more selected

patterns, such as 10, 15, or 20. This variation in the number of patterns allows for broader

solution-space exploration. Furthermore, it would be beneficial to experiment with a dy-

namically changing number of patterns added. For instance, the current depth of the search

could be considered. By adjusting the number of added patterns based on depth, the search

process could add more patterns at once early in the tree, where the potential for generating

many improving patterns is high, while saving time on solving pricing problems in deeper

areas of the tree, where improving patterns are generated rarely.

Lastly, improvements may also be considered regarding the developed machine learning

method. The results have shown that the training of the model and its inference can be

done in a very short time. Therefore, an idea worth testing is an online utilisation of the

ranking model. We may consider to incorporate the training process directly in the branch-

ing tree, learning from the instance being solved, instead of training the model on historical

data. This way, we can enable the model to dynamically adjust the rankings based on the

problem at hand. Additionally, we may consider utilising different types of machine learning

techniques, such as graph neural networks, which have shown promising results in various

problems in combinatorial optimisation.
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heuristic for the operating room scheduling and assignment problem”, Computers &

Operations Research, vol. 54, pp. 21–34, Feb. 2015. doi: 10.1016/j.cor.2014.08.014.

[Online]. Available: https://doi.org/10.1016/j.cor.2014.08.014.

[20] R. Bargetto, T. Garaix, and X. Xie, “A branch-and-price-and-cut algorithm for oper-

ating room scheduling under human resource constraints”, Computers & Operations

Research, vol. 152, p. 106 136, Apr. 2023. doi: 10.1016/j.cor.2022.106136. [Online].

Available: https://doi.org/10.1016/j.cor.2022.106136.

[21] Y. Bengio, A. Lodi, and A. Prouvost, “Machine learning for combinatorial optimiza-

tion: A methodological tour d’horizon”, European Journal of Operational Research,

vol. 290, no. 2, pp. 405–421, Apr. 2021. doi: 10.1016/j.ejor.2020.07.063. [Online].

Available: https://doi.org/10.1016/j.ejor.2020.07.063.

[22] J. Chu, C.-H. Hsieh, Y.-N. Shih, et al., “Operating room usage time estimation

with machine learning models”, Healthcare, vol. 10, no. 8, p. 1518, Aug. 2022. doi:

10.3390/healthcare10081518. [Online]. Available: https://doi.org/10.3390/

healthcare10081518.

[23] B. Abbou, O. Tal, G. Frenkel, R. Rubin, and N. Rappoport, “Optimizing operation

room utilization—a prediction model”, Big Data and Cognitive Computing, vol. 6,

no. 3, p. 76, Jul. 2022. doi: 10.3390/bdcc6030076. [Online]. Available: https://doi.

org/10.3390/bdcc6030076.

[24] M. A. Bartek, R. C. Saxena, S. Solomon, et al., “Improving operating room efficiency:

Machine learning approach to predict case-time duration”, Journal of the Ameri-

can College of Surgeons, vol. 229, no. 4, 346–354e3, Oct. 2019. doi: 10.1016/j.

jamcollsurg.2019.05.029. [Online]. Available: https://doi.org/10.1016/j.

jamcollsurg.2019.05.029.

[25] L. Luo, F. Zhang, Y. Yao, R. Gong, M. Fu, and J. Xiao, “Machine learning for identifi-

cation of surgeries with high risks of cancellation”, Health Informatics Journal, vol. 26,

no. 1, pp. 141–155, Dec. 2018. doi: 10.1177/1460458218813602. [Online]. Available:

https://doi.org/10.1177/1460458218813602.

[26] M. Gasse, D. Chételat, N. Ferroni, L. Charlin, and A. Lodi, Exact combinatorial opti-

mization with graph convolutional neural networks, 2019. doi: 10.48550/ARXIV.1906.

01629. [Online]. Available: https://arxiv.org/abs/1906.01629.

[27] A. M. Alvarez, Q. Louveaux, and L. Wehenkel, “A machine learning-based approxima-

tion of strong branching”, INFORMS Journal on Computing, vol. 29, no. 1, pp. 185–

195, Jan. 2017. doi: 10.1287/ijoc.2016.0723. [Online]. Available: https://doi.

org/10.1287/ijoc.2016.0723.

[28] N. Furian, M. O’Sullivan, C. Walker, and E. Çela, “A machine learning-based branch
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