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Abstrakt

Malware je dnes jednou z nejvýznamněǰśıch bezpečnostńıch hrozeb. Pro účin-
nou ochranu před malwarem je zásadńı jeho včasná detekce. Strojové učeńı
se ukázalo jako užitečný nástroj pro automatickou detekci malwaru. Výzkum
však ukázal, že modely strojového učeńı jsou zranitelné v̊uči adversariálńım
útok̊um. Tato práce se zabývá adversariálńımi uč́ıćımi technikami v oblasti de-
tekce malwaru. Ćılem bylo aplikovat některé existuj́ıćı metody pro generováńı
vzork̊u adversariálńıho malwaru, otestovat jejich účinnost proti vybraným de-
tektor̊um malwaru, porovnat dosaženou mı́ru úniku a praktickou použitelnost.
Práce zač́ıná úvodem do adversariálńıho strojového učeńı, následuje popis
portable executable formátu soubor̊u a přehled publikaćı, které se zaměřuj́ı
na vytvářeńı adversariálńıch vzork̊u malwaru. Dále jsou popsány techniky
použité k vytvořeńı vzork̊u malwaru pro experimentálńı vyhodnoceńı. Nako-
nec jsou popsány provedené experimenty, zahrnuj́ıćı sledováńı času potřebného
k vytvořeńı vzork̊u, změn velikosti vzorku po použit́ı generátoru, testováńı
účinnosti proti antivirovým programům, kombinováńı aplikace v́ıce generátor̊u
na vzorek a jejich vyhodnoceńı. Pro účely experiment̊u bylo vybráno pět
generátor̊u: Partial DOS, Full DOS, GAMMA padding, GAMMA section-
injection a Gym-malware. Výsledky ukázaly, že použit́ı optimalizovaných mo-
difikaćı, na dř́ıve detekovaný malware, může vést k nesprávnému vyhodno-
ceńı klasifikátorem jako benigńıho souboru. Bylo také zjǐstěno, že vygenero-
vané vzorky škodlivého softwaru lze úspěšně použ́ıt proti jiným detekčńım
model̊um, než které byly použity k jejich vygenerováńı, a že použit́ım kom-
binaćı generátor̊u lze vytvořit nové vzorky, které se vyhnou detekci. Experi-
menty ukazuj́ı, že největš́ı potenciál v praxi má generátor Gym-malware, který
využ́ıvá př́ıstup zpětnovazebńıho učeńı. Tento generátor dosáhl pr̊uměrné doby
generováńı vzorku 5,73 sekundy a nejvyšš́ı mı́ry úniku 67 %. Při použit́ı v
kombinaci se sebou samým, se mı́ra úniku zlepšila na 78 %.

Kĺıčová slova adversariálńı vzorky, detekce malwaru, strojové učeńı, PE
soubory
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Abstract

Malware is one of the most significant security threats today. Early detection is
important for effective malware protection. Machine learning has proven to be
a useful tool for automated malware detection. However, research has shown
that machine learning models are vulnerable to adversarial attacks. This the-
sis discusses adversarial learning techniques in malware detection. The aim is
to apply some existing methods for generating adversarial malware samples,
test their effectiveness against selected malware detectors, and compare the
evasion rate achieved and their practical applicability. The thesis begins with
an introduction to adversarial machine learning, followed by a description of
the portable executable file format and a review of publications that focus
on generating adversarial malware samples. The techniques used to generate
malware samples for experimental evaluation are then presented. Finally, the
experiments performed are described, including observation of the time re-
quired to generate samples, changes in sample size after using the generator,
testing effectiveness against antivirus programs, combining the use of multiple
generators to generate samples, and evaluation of the results. Five generators
were selected for the experiments: Partial DOS, Full DOS, GAMMA padding,
GAMMA section-injection and Gym-malware. The results showed that ap-
plying optimised modifications to previously detected malware can lead to
incorrect classification of the file as benign. It was also found that gener-
ated malware samples can be successfully used against detection models other
than those used to generate them, and that using combinations of generators
can create new samples that evade detection. Experiments show that the
Gym-malware generator, which uses a reinforcement learning approach, has
the greatest practical potential. This generator achieved an average sample
generation time of 5.73 seconds and the highest evasion rate of 67%. When
used in combination with itself, the evasion rate improved to 78%.

Keywords adversarial examples, malware detection, machine learning, PE
files
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Introduction

Technology has become an essential part of our lives. We interact with tech-
nology every day in both our personal and professional lives. Unfortunately,
as technology continues to evolve and expand its reach into different areas,
cyber-attacks are on the rise. As a result, cybersecurity is becoming increas-
ingly important.

One of the most common types of attack is malware [1]. Malware is any
malicious software created with malicious intent. Malware can come in many
forms. Examples of malware types include viruses, worms, trojan horses, spy-
ware, and ransomware. Today, malware is developed for a variety of operating
systems, including Windows, Linux, MacOS, and Android. However, the most
common target of attacks is the Windows operating system [2], mainly due to
its widespread use in both personal and professional environments.

Early detection of malware is critical for protecting computers and the
Internet. However, malware detection is a very challenging area due to a large
amount of new malicious codes that are created every day [3]. Since it is
not possible to analyse each sample individually, automated mechanisms are
needed to detect malware.

Antivirus companies typically use signature-based detection [4]. Signa-
tures are specific patterns that can be used to identify malicious files, for
example, a sequence of bytes, a file hash, or a string. When the file is anal-
ysed, the antivirus system compares its contents with the signatures of known
malware already stored in the database. If a match is found, the file is flagged
as malware. Signature-based detection methods are fast and effective in de-
tecting known malware. However, they are limited in that they cannot detect
new malware that does not yet have a signature in the antivirus database.
Malware authors can modify malicious code to change the signature of the
program to avoid later detection. To do this, they use obfuscation techniques
such as encryption, oligomorphic, polymorphic, metamorphic, stealth, and
packing methods [5]. Obfuscation aims to make a malware code more difficult
to analyse by trying to hide its true behaviour. Due to these weaknesses, an-

1



Introduction

tivirus companies also use a behaviour-based method to track file behaviour.
This method can detect some unknown or obfuscated malware. However, this
process can be time-consuming and inefficient.

Today, machine learning models are being applied in various areas of hu-
man life. For example, they can be found in language translation systems,
image recognition systems, weather forecasting systems, recommendation sys-
tems, self-driving cars, and disease diagnosis systems. Machine learning has
also proven to be a useful tool in cybersecurity. For example, it has been
used to automate malware detection [5]. Machine learning can make analysis
easier and potentially help detect malware more efficiently than other ap-
proaches. Unlike signature-based methods, it can detect previously unknown
or obfuscated malware. However, it can be difficult to explain why the model
classifies a particular file as malicious or benign [6], which can leave hidden
vulnerabilities for attackers to exploit.

While machine learning models have many potential benefits, they have
been shown to be vulnerable to adversarial attacks [7]. Attackers can create
adversarial examples, which are deliberately modified input data to a machine
learning model, to mislead the model into making an error in its predictions.
For example, in malware detection, a small modification to a malware file can
often cause it to be misclassified as a benign file. Adversarial machine learning
is the field that studies attacks on machine learning models and defences
against those attacks.

Malware detection seems to be a never-ending battle between malware
authors and defenders [8]. Attackers are constantly looking for new ways to
evade detection and compromise systems, whilst defenders develop new meth-
ods to detect and prevent these attacks. Each malware detection method has
its advantages and disadvantages. In different scenarios, one method may be
more successful than another. At the same time, relying on a single detec-
tion method may not be sufficient. Creating an effective malware detection
method is a very challenging task that requires continuous research and devel-
opment in the field of cybersecurity. Research is essential to stay ahead of new
and emerging threats, as well as to improve the accuracy and effectiveness of
existing detection methods.

The aim of this thesis is to introduce adversarial machine learning tech-
niques in the field of malware detection, apply some existing methods to gen-
erate adversarial malware samples, and then test the effectiveness of these
techniques against selected malware detectors, comparing their evasion rate
and practical usability.
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The thesis is organised into the following five chapters:

• Chapter 1 introduces the field of adversarial machine learning, including
basic terminology and taxonomy. The state-of-the-art techniques used
to generate adversarial examples are described, as well as ways to defend
against adversarial attacks.

• Chapter 2 contains a description of the format of portable executable
files and also describes the different types of manipulation of portable
executable malware files to create adversarial malware samples.

• Chapter 3 provides an overview of the publications focused on the cre-
ation of adversarial portable executable malware samples. The chapter
is divided into several sections based on the approach used to create
adversarial samples.

• Chapter 4 describes the techniques used to create adversarial malware
samples in this thesis.

• Chapter 5 describes the experiments performed and their evaluation.
The purpose of the experiments, their setup, the metrics used for evalua-
tion, and the datasets are presented. In addition, individual experiments
are described and their results are discussed.

3





Chapter 1

Adversarial Machine Learning

In this chapter, we first introduce the field of adversarial machine learning,
including its basic terminology and taxonomy. Then, we present state-of-the-
art techniques used to create adversarial samples. Finally, we explain how to
defend against adversarial attacks.

1.1 Terminology and Taxonomy

Adversarial machine learning (AML) is a subfield of machine learning (ML)
that focuses on the vulnerability of ML models to adversarial attacks. An
attacker, commonly known as an adversary, can manipulate the input data
of an ML model to produce incorrect results, which may have serious conse-
quences. To do this, the adversary creates manipulated input data, called an
adversarial example (AE).

The process of creating adversarial examples is called an adversarial attack
and can be performed using several different techniques, such as gradient-
based methods, reinforcement learning, generative adversarial networks, and
evolutionary algorithms. The difference between the original example and its
adversarial version is called the adversarial perturbation, which can be very
small but still significantly change the behaviour of the ML model.

The transferability refers to the ability of an adversarial example to remain
harmful to models other than the one used to generate it. This means that
if an attacker successfully creates an adversarial example for one model, that
example can also be used to attack other models [9].

Adversarial attacks can be classified according to several different aspects.
These categories include the stage of learning at which the attack is executed,
the adversary’s knowledge of the target model, the adversary’s space, and the
adversary’s goals.
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1. Adversarial Machine Learning

1.1.1 Attack Timing

Machine learning involves a training phase, during which the model learns,
and a testing phase, during which the model is tested on a new unlabelled
data. Adversarial attacks on a machine learning system can occur during the
training or the testing/deployment phase.

Attacks during the training phase are called poisoning attacks. An at-
tacker attempts to gain control over some of the training data, its labels, model
parameters, or the code of the machine learning algorithm. For example, the
attacker can inject malicious data into the training dataset to influence the
model parameters and cause the model to misclassify future inputs.

Attacks during the testing/deployment phase can be divided into two dif-
ferent types. The first type is called evasion attacks, where the attacker’s
goal is to modify test samples to create adversarial examples that are similar
to the original samples, but change the model’s prediction. The second type is
called privacy attacks, where the attacker tries to infer sensitive information
about training data or may try to gain information about the parameters or
internal workings of the ML model [10].

1.1.2 Adversarial Knowledge

The attacker may have varying degrees of knowledge of the target model.
This knowledge can range from complete knowledge of the target system to
zero knowledge. It can include training data, parameters, feature sets, learn-
ing algorithms, or objective functions that are minimised during training.
Depending on the level of this knowledge; different attack scenarios can be
described.

In the case of a white-box attack scenario, the attacker has perfect
knowledge of the target model, including its architecture, learning method,
parameter values, and possibly even training data.

On the contrary, in a black-box attack scenario, the attacker has no
knowledge of the target model. However, by using the target model as an
oracle, the attacker can gain knowledge of the relevant output for each sub-
mitted sample (for example, in the case of malware detection, whether the file
is classified as malware or benign).

In a grey-box attack scenario, the attacker has limited knowledge of
the target model. This is a scenario where the attacker has more knowledge
than in a black-box attack, but less knowledge than in a white-box attack.
Typically, this means that the attacker knows the set of features and the
learning algorithm, but does not know the classifier parameters or the training
data [7].
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1.1.3 Adversarial Space

From the perspective of the space in which an attacker creates adversarial
examples, adversarial attacks can be divided into feature-space attacks and
problem-space attacks as described in [11].

The problem space Z, also known as the input space, contains samples
from a particular domain, such as images or portable executable (PE) files.
Each sample z ∈ Z in the problem space is assigned a ground-truth label
y ∈ Y, where Y denotes the corresponding label space. In the context of
PE malware detection, the problem space refers to the space of all possible
PE files, and the label space denotes the space of detection labels, such as
Y = ¶0, 1♢, where 0 denotes malware, and 1 denotes goodware.

In the case of feature-space attack, we have a classification model f and
a given input sample z with a corresponding representation of the features
x ∈ X, where X denotes the feature space that numerically describes the
internal structure of the samples in the problem space. This can be written as
f(x) = y. The attacker tries to minimise the distance between x′ and x in the
feature space so that the resulting adversarial example x′ ∈ X is misclassified
by the classification model f :

min
x′

distance(x′, x)

f(x′) = y′ ̸= y
(1.1)

where distance(x′, x) is the distance metric between x′ and x in the feature
space.

In the case of problem-space attack, the attacker aims to modify the
example z ∈ Z with minimal cost so that the resulting adversarial example
z′ ∈ Z in the problem space can also be misclassified by the target model f in
the following way:

min
z′

cost(z′, z)

f(ϕ(z′)) = y′ ̸= y
(1.2)

where cost(z′, z) is the cost function that transforms z into z′ in the problem
space, and ϕ is the feature mapping function defined as ϕ : Z → X. In other
words, the feature mapping function ϕ maps the problem space to the feature
space.

The inverse feature mapping function ϕ−1 can then be used to find the
corresponding sample z′ from the generated adversarial sample x′, that is,
ϕ−1(x′) = z′.

1.1.4 Adversarial Goals

The aim of the attacker is to fool the target ML model into producing in-
correct results. According to [12], the attacker’s goals are divided into three

7



1. Adversarial Machine Learning

categories: Untargeted Misclassification, Targeted Misclassification, and Con-
fidence Reduction.

In the case of Untargeted Misclassification, the attacker tries to change
the output of the model to a different value from its original prediction. For
example, if the ML model predicts that a malware file belongs to the family
A, the attacker will try to get the model to misclassify it as a different family.

On the other hand, in the case of Targeted Misclassification, the attack
is directed at a specific target. The attacker tries to change the output of
the model to the target value. For example, if an ML model predicts that a
malware file is family A, the attacker’s goal is to force the model to misclassify
it as family B.

The final category is Confidence Reduction, where the attacker’s goal
is to reduce confidence in the prediction of the ML model. It is not necessary
to change the prediction value; a simple confidence reduction is sufficient to
achieve the goal.

1.2 Adversarial Example Generation

When creating adversarial examples in various areas of machine learning, it
may be necessary to use different techniques and approaches. In the case of
images, the data is represented as pixels. By adding imperceptible noise to
the input image, an adversarial example can be created to cause the machine
learning model to misclassify the image. An example of this attack is shown
in Figure 1.1.

Original Image Adversarial ExampleAdversarial Perturbation

Cat Dog

Figure 1.1: Example of an adversarial attack in the image domain [13].

Creating adversarial malware examples requires more sophisticated tech-
niques than creating adversarial images. Executable files have a much more
complex structure, as they are composed of a sequence of bytes. It is impor-
tant to note that changing pixels in an image is not the same as changing
bytes in an executable file.

Adversarial attacks in the field of malware are based on strategically mod-
ifying, inserting, or removing certain bytes in the original malware file in such

8



1.2. Adversarial Example Generation

a way that its original properties are not affected (preserving the file format,
executability, and maliciousness) while generating adversarial malware that
is incorrectly classified by the target malware detection model (such as an
antivirus tool or a machine learning-based malware classifier) as benign.

Preserving the original properties of a PE file is not an easy task. A PE
file has a fixed structure that must be followed to properly load the file into
memory and execute it. The PE file format only determines its structure, but
cannot ensure the correctness of the content of individual file elements. An
improper file transformation can cause the modified PE file to crash during
runtime and prevent it from running normally. However, file transformation
can also damage the original functionality of the file and cause adversarial
malware to no longer perform the same malicious behaviour as the original file.
Such a file would not meet the objective of an adversarial attack. Therefore,
simply preserving the file format does not necessarily mean that it will remain
executable, and preserving executability does not necessarily mean that the
original maliciousness of the PE malware will be preserved [11]. Figure 1.2
illustrates the relationship between the three challenges of adversarial attacks
in the field of PE malware.

Format-preserving

Executability-preserving

Maliciousness-preserving

Figure 1.2: Diagram showing the relationship between the three challenges
of adversarial attacks on PE malware: format-preserving, executability-
preserving, and maliciousness-preserving [11].

As mentioned above, there are several techniques to generate adversar-
ial examples, including reinforcement learning, evolutionary algorithms, gen-
erative adversarial networks, and gradient-based techniques. The following
sections of this chapter discuss these techniques in more detail.
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1. Adversarial Machine Learning

1.2.1 Gradient-based Attacks

Machine learning algorithms can be classified according to the way they learn:
supervised, unsupervised, semi-supervised, and reinforcement learning. In
supervised machine learning, the model learns from a set of labelled training
examples. Based on the input and expected output, the model creates a
mapping equation that it can later use to label the unlabelled input. In
unsupervised machine learning, the model learns only from unlabelled input.
The model classifies the input data into classes with similar characteristics.
The new input is later labelled based on the characteristics it shares with
one of these classes. Semi-supervised learning combines elements of these two
techniques. Training is done on data where some examples are labelled and
others are not. Reinforcement learning is described later in a separate section.

Consider the case of supervised learning, where we have a set of labelled
samples, that is, for each sample x we have a true label y. During the model
training process, the goal is to find the ideal parameters w of the model by
optimising the so-called loss function L. Specifically, we want to minimise this
function to reduce the error of the model predictions on the training data:

min
w

L(w, x, y). (1.3)

The training process consists of iterative adjustment of the classifier pa-
rameters in the direction of the gradient ∇wL(w, x, y).

The concept of gradient-based adversarial attacks is based on the use of
the same mechanisms. The goal is to confuse the classifier by maximising the
probability of error. This can be achieved by manipulating the input data x

to maximise the loss function L instead of adjusting the model parameters w:

max
x

L(w, x, y). (1.4)

The loss function gradient allows one to calculate an adversarial pertur-
bation δ. The perturbation is then added to the input sample x, creating an
adversarial sample x′ that can fool the model [14]. This can be expressed by
the following equation [15]:

x′ = x + δ. (1.5)

An example of a gradient-based algorithm for generating adverse samples
is the Fast Gradient Sign Method (FGSM).

FGSM is a simple method to generate adversarial samples. It uses the
gradient of the loss function L with respect to the input sample x to generate
an adversarial sample x′ that maximises the loss function. First, the loss
function gradient is calculated as follows:

∇xL(w, x, y) =
∂L(w, x, y)

∂x
. (1.6)
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1.2. Adversarial Example Generation

The direction of the gradient is then obtained using the sign function, where
the value sign(∇xL(w, x, y)) can be 1 if the gradient value is positive, 0 if the
gradient value is zero, or −1 if the gradient value is negative. The adversarial
perturbation δ is then calculated as follows:

δ = sign(∇xL(w, x, y)) × ε, (1.7)

where ε is a small number that ensures that the perturbations are small. The
resulting adversarial sample x′ can be obtained as:

x′ = x + sign(∇xL(w, x, y)) × ε. (1.8)

and then used as a new input to the classification model f , which returns the
classification result f(x′) [16].

1.2.2 Reinforcement Learning-based Attacks

Reinforcement Learning (RL) is one of the machine learning techniques, along
with supervised and unsupervised learning. Unlike these two techniques, re-
inforcement learning does not depend on a static data set but learns based on
its own experience.

The reinforcement learning model consists of two main parts: an agent and
an environment. The agent learns to perform tasks through repeated interac-
tions with the environment through trial and error. The following information
and notation are based on [17].

Agent

Environment

ActionRewardState

Figure 1.3: A basic structure of reinforcement learning.

Individual interactions occur in discrete time steps t = 0, 1, 2, 3, . . . T . At
time step t, the environment is in the state St ∈ S, where S is the set of
all possible states of the environment. The agent receives state St and then
chooses action At ∈ A(St) based on policy π, where A(St) is the set of all
available actions in state St. The policy π defines the behaviour of the agent at
a given time. In other words, it is the strategy that the agent uses to determine
the next action based on the current state. The policy maps environmental
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1. Adversarial Machine Learning

states to actions that must be taken in those states to achieve the highest
reward.

After the environment receives information about the chosen action At

from the agent, it calculates a reward Rt+1 ∈ R, where R is the set of all
possible rewards and sends it back to the agent as feedback. At the same
time, the environment transitions to a new state St+1. The reward signal
Rt ∈ R is feedback from the environment to the agent, indicating the success
or failure of the agent’s action in that state.

When this cycle is complete, we say that the one-time step has elapsed. At
each time step, the agent is in a certain state and sends the selected action as
its output to the environment, which then returns a new state and a reward
signal to the agent. This cycle repeats until the final state or the maximum
time step t = T is reached. The time that elapses between t = 0 and the end
of the environment t = T is called an episode. An episode can be written as
the following sequence: S0, A0, R1, S1, A1, R2, S2, A2, R3, . . . RT , ST .

The goal of the agent is to maximise the total amount of reward it receives.
This means not maximising immediate reward, but the cumulative reward
it receives in the long-term horizon. While the reward signal shows what is
advantageous in the present, the value function describes what is advantageous
in the long-term horizon. The value function provides an idea of the expected
cumulative reward from the current state of the environment in the future.
The goal of the agent is to maximise the total reward. The expected return
Gt is defined as the sum of the rewards Gt = Rt+1 + Rt+2 + Rt+3 + · · · + RT ,
where T is a finite time step.

1.2.3 Evolutionary Algorithm-based Attacks

Evolutionary Algorithms (EA) are optimisation methods that use the Dar-
winian principle of evolution. Essentially, a population evolves over multiple
generations based on natural selection and the survival of the fittest individ-
uals. These algorithms aim to mimic these natural processes. The goal is
to find an optimal or satisfactory solution to a problem through competition
between solutions that gradually evolve within the population [18]. Figure
1.4 shows the general principle of an evolutionary algorithm. The following
information is based on [19].

There are different versions of evolutionary algorithms, such as evolu-
tionary programming (EP), evolutionary strategy (ES), genetic programming
(GP), and genetic algorithm (GA). These versions share the same concept of
simulating evolution but differ in their application to a specific problem and
in their implementation.

To begin using EA to solve a problem, the first step is to define the repre-
sentation of candidate solutions within the original problem context. In this
context, these candidate solutions are referred to as individuals or phenotypes.
Since phenotypes can have complex structures, EA uses coding to represent
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Calculate Fitness 

Selection Crossover Mutation

Termination

Criteria

Reached?

Initialise Population

Return Best Solution

Yes

No

Figure 1.4: A basic structure of evolutionary algorithm.

the appropriate representation of individuals, which we call chromosomes or
genotypes. This is a mapping of the set of phenotypes to the set of genotypes.
Each chromosome consists of several genes. A gene is a unit of the chromo-
some and an allele is the value stored in the gene. The set of chromosomes
forms a population and each chromosome in the population consists of the
same number of genes.

After that, an initial population of individuals is created. Each individual
in the population represents an encoded solution to the given problem. This
population can be created by randomly selecting from the search space or, if
prior knowledge of the problem exists, from several known good solutions.

Once the population is created, each member must be evaluated using a
fitness function. This function takes into account the characteristics of the in-
dividual and numerically represents the quality of its solution. We then select
the individuals with the highest scores and continue with them. The selection
operator is based on Darwin’s theory of natural selection and represents the
principle of survival of the fittest. It identifies the strongest individuals in the
population, who then participate in the production of offspring.

After selecting the best members (usually the top two, but this number
can vary), these members are used to create the next generation. Using the
properties of the selected parents, new offspring are created that are a mixture
of the properties of the parents. Crossover operators take two (or more)
parents and create offspring by exchanging information between them.

Next, we need to introduce new genetic material into the population.
Without this crucial step, we would quickly get stuck in local optima and
fail to achieve optimal results. This step is called a mutation, and it involves

13



1. Adversarial Machine Learning

changing a small portion of the children so that they no longer perfectly reflect
subsets of the parents’ genes.

The process repeats until a stop condition is met. Typically, this occurs in
one of two cases: either the algorithm has run for a maximum amount of time,
or it has reached a certain performance threshold. The individual with the
highest fitness at the stopping point is considered the output of the algorithm
and represents the best solution found.

1.2.4 Generative Adversarial Network-based Attacks

A Generative Adversarial Network (GAN) is a model consisting of two neural
networks: a generator G and a discriminator D. These two networks compete
with each other, playing a minimax game for two players with a value function
V (G, D):

min
G

max
D

V (D, G) = Ex∼pdata(x)[log D(x)]+Ez∼pz(z)[log (1−D(G(z)))] (1.9)

where x are real data, z is a random noise vector, G(z) is generated data by the
generator, D(x) is the probability estimate that D recognises x as real data,
D(G(z)) is the probability estimate that D recognises the generated sample
data G(z) as real data, Ex is the expected value over all instances of real data
and Ez is the expected value over all instances of fake data generated. G tries
to minimise this value function, while D tries to maximise it [20].

Random Input 

Vector

Real Data

Generated DataGenerator

Discriminator Real or Fake?

Backpropagation

Backpropagation

Figure 1.5: A basic structure of generative adversarial network.

The goal of the generator is to create data that are indistinguishable from
the real data in the training set. This is done to fool the discriminator. The
discriminator’s goal is to distinguish fake data created by the generator from
real data in the training set, thus preventing it from being fooled by the
generator.

The generator constantly tries to improve its ability to generate real sam-
ples, while the discriminator constantly tries to improve its ability to distin-
guish between real and generated samples. This mutual competition forces
both networks to continually improve. When D(G(z)) = 0.5, the discrimina-
tor can no longer distinguish between real and generated samples. This is the
point where the model has reached its global optimal solution [21].
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The generator and the discriminator have different training processes, so
they are trained alternately. During the discriminator training phase, the
generator weights do not change. Similarly, during the generator training
phase, the discriminator weights do not change [22].

During generator training, the generator takes in a noise vector and uses
it to create fake data. The generator outputs these data directly to the dis-
criminator’s input. The discriminator penalises the generator for generating
unreliable data. Through backpropagation, the discriminator provides a clas-
sification signal that the generator uses to update its weights [23].

During discriminator training, the discriminator takes in both real and
fake data instances. Then it classifies whether each instance is real or fake
data generated by the generator. The discriminator is penalised for incorrectly
classifying real instances as fake or fake instances as real. The discriminator
then updates its weights using backpropagation [24].

1.3 Defense against Adversarial Machine Learning

Machine learning is widely used in various aspects of human life. Research and
development of mechanisms to detect and defend against machine learning at-
tacks are becoming increasingly important. These attacks can compromise the
security and reliability of machine learning models, which can have disastrous
consequences in areas such as autonomous vehicle driving, medical recogni-
tion systems, biometric systems, or malware detection systems. For example,
article [25] demonstrates how an attacker can trick a computer vision system
into misclassifying a STOP sign as a speed limit sign, simply by applying a
few pieces of tape to the sign.

Techniques used to defend against adversarial examples are known as ad-
versarial defences. These techniques are designed to ensure that the machine
learning model can correctly classify even deliberately modified examples that
cause misclassification. Methods for detecting adversarial examples are called
adversarial detection. These methods can determine whether a sample has
been altered to cause misclassification. The key property of a machine learn-
ing model that determines its ability to resist misclassification from adversarial
examples is adversarial robustness [26].

One of the most well-known techniques for defending against adversarial
examples is adversarial training. The basic idea of adversarial training is to
generate adversarial examples and add them, along with their correct labels,
to the training dataset. Training in original and adversarial examples, the
model learns to be more robust against adversarial attacks [27].

Quiring et al. introduced a defence system against adversarial examples
called PEberus [28], which won first place in the Microsoft Evasion Compe-
tition [29]. This system combines several different defensive measures, each
targeting different attack strategies. The input PE file is submitted to Se-
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mantic Gap Detectors. Semantic gaps are various unused spaces that do not
affect the functionality of the program, but affect the machine learning-based
system. These detectors check if the PE file has been attacked by an adver-
sarial attack, specifically checking if slack spaces are filled, if overlaps are too
large compared to the file size, and if the same sections are used. If the PE file
is not detected by the semantic gap detectors, the file is passed to the exist-
ing malware detectors, the Skipgram model, and the Signature-based model.
Maximum voting is used for evaluation. Then, the stateful nearest neighbor
detector is used, which continuously checks if the PE file is similar to any
previously detected malware in the history cache. The PE file is classified as
malware if any of the system components consider it harmful. Therefore, the
attacker must exploit the weaknesses of all components to successfully deceive
the system.
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Chapter 2

Portable Executable File Format

Malware can be spread using various file formats. According to AV-TEST
statistics, the majority of malware targets the Windows operating system [2],
and the most common file format used to spread malware on the Windows
operating system is the executable file [30].

The PE file format is a binary file format used in Microsoft Windows
operating systems. This format is based on the Common Object File For-
mat (COFF), a file format used in Unix operating systems. PE files include
executable files (EXE) and dynamically linked libraries (DLL) [31].

The PE file format has a fixed structure. It can be metaphorically divided
into two parts: headers and sections. It starts with a DOS Header and a DOS
Stub program. This is followed by the NT Headers, which contain the PE
signature, the File Header and the Optional Header. All the section headers
and section data are at the end of the PE file. The general structure of the
PE file is shown in Figure 2.1.

This chapter describes the PE file format with a focus on the executable
files. The parts of the file are described in the order in which they appear
when the file is traversed. Most of the information in this chapter is taken
from the official Microsoft Windows documentation [32].

2.1 DOS Header

At the beginning of each PE file, there is a 64-byte long DOS Header. This
structure is present for backward compatibility, as it allows the file to be
executed in MS-DOS system by running its DOS Stub instead of the actual
program. The DOS Header is important for the PE loader in MS-DOS system,
but for the PE loader in Windows NT systems, only two pieces of information
contained in it are relevant. These are the e_magic field and the e_lfanew

field.
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Figure 2.1: Portable Executable File Format.
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• e_magic: The first 2 bytes of the DOS Header represent the so-called
magic number. This entry has a fixed value of 0x5A4D, or MZ in Amer-
ican Standard Code for Information Interchange (ASCII), which rep-
resents the initials of Mark Zbikowski, one of the MS-DOS developers
[33].

• e_lfanew: The last 4 bytes of the DOS Header, located at offset 0x3C,
contain the offset to the beginning of the NT Headers. This field is
important for the PE loader in Windows NT systems because it tells
the loader where to locate the PE Header in the file.

2.2 DOS Stub

After the DOS Header, there is a DOS Stub program. This program is de-
signed for use with the MS-DOS system. If a Windows NT executable file
is attempted to run on the MS-DOS system, an error message is displayed
and the program is terminated. The error message that appears by default
says “This program cannot be run in DOS mode”. However, if the file is run
on the Windows NT system, the DOS Stub program is skipped, and the NT
Headers are read instead to obtain information on how to load and execute
the executable file.

2.3 Rich Header

Between the DOS Stub program and NT Headers in a PE executable file lies a
section of data known as the Rich Header. Although not officially part of the
PE file format, Rich Header can be found in PE executable files created with
the Microsoft Visual Studio toolset. This undocumented structure contains
important information about the tools used to create the executable file, such
as the names, types, specific versions, and build numbers of these tools. How-
ever, the content of the Rich Header can be completely zeroed out without
affecting the functionality of the executable file [34].

2.4 NT Headers

The NT Headers structure is a data structure that starts at an offset defined
in the e_lfanew field in the DOS Header. There are two versions of this
structure: one for 32-bit executable files and one for 64-bit executable files.
The main difference between these two versions is the version of the Optional
Header structure used. The NT Headers structure consists of three main parts:

• Signature: The first 4 bytes of the NT Headers contain a PE signature
that identifies the file as a PE format file. This field has a fixed value of
0x50450000 or PE\0\0 in ASCII (where \0\0 represents two null bytes).
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• File Header: This structure contains basic information about the PE
file.

• Optional Header: This structure provides information to the PE
loader for loading and executing the executable file.

2.5 File Header

The File Header, also known as the COFF File Header, is a 20-byte structure
with seven fields that contain essential information about the PE file. These
fields include:

• Machine: Indicates the CPU type on which the file can be executed. For
example, 0x14C for Intel 386 or 0x8664 for AMD64.

• NumberOfSections: The number of sections recorded in the Section
Table.

• TimeDateStamp: Unix timestamp indicating when the file was created.

• PointerToSymbolTable: Symbol Table offset. Typically set to 0, mean-
ing that there is no COFF symbol table present.

• NumberOfSymbols: The number of records in the symbol table. Typi-
cally set to 0, meaning there is no COFF symbol table present.

• SizeOfOptionalHeader: The size of the Optional Header. This field is
set to a non-zero value for executable files and to zero for object files.

• Characteristics: Logical sum of flags that indicate certain attributes
of the file. An attribute could indicate that the file is executable, a dy-
namic link library, or a system file. It could also indicate that debugging
information has been removed from the file.

2.6 Optional Header

The Optional Header provides information to the PE loader to load and exe-
cute an executable file. It is called an Optional Header because certain types
of file, such as object files, do not have it. However, for image files (such as
EXE files), this header is mandatory. The size of the Optional Header is not
fixed, but it can be found in the SizeOfOptionalHeader field located in the
File Header. There are two different versions of the Optional Header, depend-
ing on whether the file is 32-bit or 64-bit. The header is composed of three
main parts: Standard fields, Windows-specific fields, and Data directories.
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2.6.1 Standard Fields

The first 8 or 9 (depending on the value of the Magic field) items in the Op-
tional Header structure are standard fields defined for every implementation
of the COFF file format. These fields contain general information useful for
loading and running the executable file.

• Magic: The value of this field determines whether the executable file is
32-bit (also known as the PE32 executable) or 64-bit (also known as the
PE32 + executable). The value 0x10B identifies the PE32 format and
the value 0x20B identifies the PE32+ format.

• MajorLinkerVersion: The major version number of the linker used to
create the executable file.

• MinorLinkerVersion: The minor version number of the linker used to
create the executable file.

• SizeOfCode: The size of the code section (.text). If there are multi-
ple code sections, this value represents the sum of the sizes of all such
sections.

• SizeOfInitializedData: The size of the initialised data section (.data).
If there are multiple initialised data sections, this value represents the
sum of the sizes of all such sections.

• SizeOfUninitializedData: The size of the uninitialised data section
(.bss). If there are multiple uninitialized data sections, this value repre-
sents the sum of the sizes of all such sections.

• AddressOfEntryPoint: The relative virtual address (RVA) of the entry
point when the executable file is loaded into memory. For executable
files, this is the initial address where the program begins execution.

• BaseOfCode: The RVA of the beginning of the code section when the
executable file is loaded into memory.

In the PE32 executable file format, there is an extra field called BaseOf-
Data that is not present in the PE32+ executable file format.

• BaseOfData: The RVA for the beginning of the data section when the
executable file is loaded into memory.
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2.6.2 Windows-specific Fields

The following 21 fields of the Optional Header are marked as Windows-specific
fields. They contain additional useful information required by the Windows
PE loader and linker.

• ImageBase: Preferred address of the first byte of the file when loaded
into memory. This value must be a multiple of 64 kB. The default value
for executable files is 0x00400000. However, due to memory protection
techniques such as Address Space Layout Randomization (ASLR), the
address specified by this field is rarely used.

• SectionAlignment: Determines the alignment of sections loaded into
memory. The value of this field must be greater than or equal to the
value of the FileAlignment field. The default value is the page size for
the system.

• FileAlignment Determines the alignment of sections in the file. The
value should be a power of 2 between 512 and 64 kB (inclusive). The
default value is 512. If the SectionAlignment member is less than the
system page size, this member must be the same as SectionAlignment.

• MajorOperatingSystemVersion: Major version number of the operat-
ing system required to run the executable file.

• MinorOperatingSystemVersion: Minor version number of the operat-
ing system required to run the executable file.

• MajorImageVersion: Major version number of the executable file.

• MinorImageVersion: Minor version number of the executable file.

• MajorSubsystemVersion: Major version number of the operating sys-
tem subsystem required to run the executable file.

• MinorSubsystemVersion: Minor version number of the operating sys-
tem subsystem required to run the executable file.

• Win32VersionValue: This field is reserved and must be set to 0.

• SizeOfImage: Specifies the total size of the executable file in memory.
The value of this field must be a multiple of the SectionAlignment

value.

• SizeOfHeaders: Specifies the size of the file headers, including the DOS
Stub, NT Headers, and Section Headers. The value of this field is
rounded up to the nearest multiple of the FileAlignment field.

• CheckSum: Contains the checksum value for the entire file.
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• Subsystem: Specifies the Windows subsystem required to run the file,
such as Windows Graphic User Interface (GUI) or Windows Console.

• DllCharacteristics: This field contains flags indicating some charac-
teristics of the executable file. For example, whether it can be moved
during runtime, whether it is compatible with Data Execution Preven-
tion (DEP), or whether it does not use Structured Exception Handling
(SEH).

• SizeOfStackReserve:Specifies the number of bytes to reserve for the
stack. On loading, only the memory specified by the SizeOfStackCommit

field is committed; the rest is available in one page increments until this
reserve size is reached.

• SizeOfStackCommit: Specifies the number of bytes to commit for the
stack.

• SizeOfHeapReserve: Specifies the number of bytes to reserve for the
heap. On loading, only the memory specified by the SizeOfHeapCommit

field is committed, the rest is available in one page increments until this
reserve size is reached.

• SizeOfHeapCommit: Specifies the number of bytes to commit for the
heap.

• LoaderFlags: This member is obsolete and should not be used.

• NumberOfRvaAndSizes: The value of this field specifies the number of
items in the Data Directories.

2.6.3 Data Directories

At the end of the Optional Header, there is a field called Directory Entries.
Each directory entry is an 8-byte structure containing two 4-byte fields:

• VirtualAddress: The RVA at which the data directory starts.

• Size: The size of the data directory.

Data directories contain useful information that the loader needs and can
have different structures. The structure of a directory is determined by its
type. Some examples of data directory types include the Export Table, Import
Table, and Import Address Table.
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2.7 Section Headers

After the Optional Header and Data Directories, the Section Headers, also
known as the Section Table, follow. Each record in the Section Table repre-
sents a section header that contains information about the section to which
it refers. The number of records in the Section Table is indicated in the
NumberOfSections field, which appears in the File Header. Each section
header is 40 bytes long and contains the following fields:

• Name: 8-byte long section name. If the name is shorter than 8 bytes, the
remaining bytes are filled with null values. For example, .text\0\0\0

or .data\0\0\0.

• VirtualSize: Total size of the section when loaded into memory. If this
value is greater than SizeOfRawData, the section will be padded with
zeros.

• VirtualAddress: RVA of the first byte of the section when loaded into
memory.

• SizeOfRawData: Size of the initialised data on the disk. It must be a
multiple of the FileAlignment member of the Optional Header. If the
section contains only uninitialised data, this field should be zero. If this
is less than VirtualSize, the rest of the section is filled with zero.

• PointerToRawData: Pointer to the first byte of the section. The value
must be a multiple of the FileAlignment member of the Optional
Header structure. If the section contains only uninitialized data, this
field is set to zero.

• PointerToRelocations: Pointer to the beginning of the relocation en-
tries for the section in the file. If there are no relocations, this value is
zero.

• PointerToLineNumbers: Pointer to the beginning of COFF line number
entries for the section in the file. If there are no COFF line numbers,
this value is zero.

• NumberOfRelocations: Number of relocation entries for the section.
This value is zero for executable images.

• NumberOfLinenumbers: Number of COFF line number entries for the
section.

• Characteristics:This field includes the combined flags that indicate
the attributes of the section. This includes whether the section contains
executable code, initialised data, or uninitialised data, or whether it can
be executed as code, read from, or written to.
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The values of fields SizeOfRawData and VirtualSize may differ. The
value of SizeOfRawData must be a multiple of the value of FileAlignment

specified in the Optional Header. If the section size is smaller than this value,
the rest of the section is filled with zeros, and the field value SizeOfRawData

is rounded up to the nearest multiple of the value FileAlignment. When
the section is loaded into memory, this alignment is not taken into account,
and only the actual size of the section is occupied. In this case, the value of
SizeOfRawData will be greater than the value of VirtualSize. However, if
the section contains uninitialized data, these data are not reflected on the disk.
But when the section is mapped into memory, it expands to reserve memory
space for later initialisation and use of uninitialized data. This means that
the section on disk will take up less space than in memory. In this case, the
value of VirtualSize will be greater than the value of SizeOfRawData.

2.8 Sections

Section data immediately follow Section Headers and occupy the rest of the
file. Each section contains things like the actual code of the program, as well
as data and resources that the program uses. Data for each section are located
at an offset given by the PointerToRawData field in the Section Header. The
size of these data is determined by the field SizeOfRawData. There are several
special sections, each with its own purpose, such as:

• .text: Contains the executable code of the program.

• .data: Contains initialised (non-zero) data.

• .rdata: Contains initialised data for read-only purposes only.

• .bss: Contains uninitialized (zeroed) data.

• .idata: Contains import tables.

• .edata: Contains export tables.

• .debug: Contains compiler information for debugging.

• .rsrc: Contains resources used by the program, including images, icons,
or even embedded binary files.

• .reloc: Contains relocation information.

• .tls: Provides storage for each thread of the program being executed.
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2.9 Windows PE Format Manipulations

Manipulation of PE files to create an adversarial malware sample that remains
functional can be a complex task. A single byte can be changed inappropri-
ately and the file can be corrupted.

A PE file is made up of many parts, which can be divided into two groups:
modifiable and immutable. The modifiable parts of the file can be changed
without changing the functionality of the file. For this reason, these parts
can be used to create adversarial examples. On the other hand, modifying
the immutable parts of a file can either break the functionality of the file or
change its behaviour. These parts are important for the correct functioning
of the file and must therefore remain unchanged.

Adversarial techniques exploit the redundancy and technical characteris-
tics of the file format to modify files. An attacker looks for suitable places to
modify bytes without breaking the structure or creating space for injecting a
malicious payload [35].

This section presents some of these manipulations. The manipulations
described in this section are mainly based on the work of Demetrio et al.
[35, 36, 38].

Manipulating DOS Header and Stub

Partial DOS and Full DOS manipulations involve modifying bytes in the DOS
Header and Stub program. These sections can be modified without damaging
the file structure because they are only preserved in the PE file for backward
compatibility with older Microsoft operating systems, as described in Section
2.1 and Section 2.2 . The magic number MZ, located in the first two bytes of
the file, and the 4-byte integer at offset 0x3C, which contains the address of
the PE signature, must not be modified. An attacker can use all other bytes
as space to store the adversarial payload. Partial DOS modifies 58 bytes
between the magic number and the PE signature offset, in the range from
0x02 to 0x3C. Full DOS extends this range by adding all bytes in the range
from 0x40 to the PE signature location. The number of these bytes varies in
different executable files.

Section Injection

The section injection technique allows an attacker to insert new sections into
a binary file, providing additional space to store an adversarial payload. The
attacker creates a new section which is inserted into the target executable
along with a new section entry in the section table.
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Padding

Padding consists of adding bytes to the end of the file. Since all the adversarial
content is added to the end of the file, the structure of the original file is not
changed.

Perturb Header Fields

Manipulation Header Fields modify specific fields within NT Headers and
Section Headers. This includes, for example, changing section names, breaking
a checksum, or changing debugging information.

Filling Slack Space

As described in Section 2.7, the values of the SizeOfRawData and VirtualSize
fields may differ to maintain alignment within the file. This creates a space
between sections, called a slack space. The bytes in this space can be freely
modified because the executable code never references these bytes, so their
existence is ignored. Slack space manipulation takes advantage of these spaces
and inserts malicious adversarial payloads into them.

Extend the DOS Header

The Extend manipulation allows the creation of a new space inside the ex-
ecutable, specifically by increasing the size of the DOS Header, where an
adversary can then insert an adversarial payload. To keep the file structure
uncorrupted, the adversary must: choose a size that does not interfere with
the file’s alignment, increase the field containing the header size, and increase
the offset of each section entry. After this modification, the loader skips the
adversarial payload when looking for the PE signature, without changing the
rest of the execution flow.

Content Shifting

Shift manipulation allows a new space to be created within the executable by
shifting the contents of a section to make space for an adversarial payload.
Each section entry in the section table specifies an offset within the binary
where the loader can find the contents of that section. Each of these offsets is
a multiple of the file alignment specified in the Optional Header. The loader
reads these entries and loads the contents of each section into memory by
looking inside the binary at the offset specified by that entry. An attacker can
increase the offset of each section to create a space before the start of each
section and fill the newly created spaces with chunks of bytes. In this way, the
loader will look for the contents of each section and ignore any unfavourable
distortions introduced between them.
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API Injection

The goal of the Application Programming Interface (API) Injection technique
is to add records to the Import Address Table of the executable. This table
specifies which function from which library must be included during the load-
ing process. An attacker cannot remove the API because this would break the
functionality of the program, but they can inject new API imports. Adding
entries to this table will increase the number of APIs that the operating sys-
tem will include during the loading process, but that the program will not
use.

Binary Rewriting

Binary rewriting techniques allow various ways of modifying the code of a
program. These include manipulations such as replacing a set of instructions
with others that are semantically equivalent (e.g. replacing addition with
subtraction and changing the sign of the values); adding dead code that will
never be executed; encrypting or encoding the contents of one binary file
within another binary file and decoding it at runtime; setting an entry point
in a new executable part that jumps back to the original code; saving the code
of one file as a resource of another binary file that is then loaded at runtime.
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Related Work

This chapter provides an overview of publications that focus on creating at-
tacks against the detection of malicious PE software. The chapter is divided
into several sections based on the approach used to create adversarial exam-
ples.

3.1 Gradient-based Attacks

Kolosnjaji et al. in [39] presented a gradient-based white-box attack against
the MalConv network. The basic idea of the attack is to systematically ma-
nipulate some bytes in the malware file to maximise the probability that the
modified sample will be classified as harmless. The attack allows manipulation
of any byte in the file, but to ensure that the malware file remains functional,
the authors only use manipulation of padding bytes appended to the end of
the file in their work. The appended bytes are generated using the gradient
descent method, where each byte is optimised one byte at a time. The authors
conducted an experiment in which bytes were added at the end of each file
using two different strategies. The first strategy was a random attack, where
random byte values were inserted. The second strategy was a gradient-based
attack. Random bytes were shown to be ineffective in bypassing the network.
However, the gradient-based attack outperforms random byte injection; the
authors were able to achieve a 60% evasion rate against the MalConv network
using the gradient-based attack simply by modifying 1% of the bytes in the
PE file.

Kreuk et al. proposed an improved gradient-based white-box attack against
MalConv in [40]. Unlike [39], where bytes are only inserted at the end of the
file, Kreuk et al. used two methods to insert a sequence of bytes, the ad-
versarial payload, into the original malware file. The first method is based
on inserting the adversarial payload into a slack region, which is the region
of unused bytes of file sections whose physical size is larger than the virtual
size. The second method is based on adding the adversarial payload to the
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end of the file, where the adversarial payload is considered a new section and
appended to the file. When generating the adversarial version of the mal-
ware sample, the adversarial payload is first appended or inserted, which is
randomly and uniformly initialised. The inserted adversarial payload is then
perturbed using iterative FGSM until the file is misclassified.

Suciu et al. describe and compare several attack strategies in [41]. These
fall into two categories: append attacks and slack attacks. The authors pro-
pose improved attacks based on FGSM, called append-FGSM and slack-FGSM
attacks, and compare their effectiveness against MalConv. In the append-
FGSM attack, random bytes are added to the malware file and optimised
using a one-step FGSM. To address the non-differentiability problem, the
added bytes are updated in the embedding space using the gradient and then
mapped to the nearest byte value. The slack-FGSM attack identifies slack
regions. These are areas that are not mapped into memory and can be used
to inject adversarial noise. The appropriate bytes are modified using an ap-
proach similar to the append-FGSM attack. Experimental results show that
the slack-FGSM attack is more effective with fewer modified bytes than the
append-FGSM attack.

Demetrio et al. [42] used an integrated gradient technique to identify the
main characteristics by which MalConv distinguishes malware from benign
files. The results showed that MalConv relies primarily on the characteristics
of the PE file header to differentiate between malware and benign samples.
As a result, MalConv mostly ignores the data and text sections where the
malicious content is often hidden. Based on this observation, Demetrio et
al. introduced the Partial DOS attack, which is similar to the attack in [39].
However, the main difference is that [39] inserts adversarial bytes at the end
of the PE file, while this attack modifies the bytes in the DOS header. This
approach is more effective because it requires the manipulation of much fewer
bytes to bypass the detector. In total, 58 bytes located between the e_magic

field and the value of the e_lfanew field at offset 0x3C were marked as editable.
These two values were not included because they should not be modified to
maintain file functionality. The results showed that only a few perturbed bytes
are sufficient to bypass MalConv with high probability.

Demetrio et al. introduced the RAMEN framework [35], which provides a
unified approach to white-box and black-box adversarial attacks against PE
malware detectors. In addition to generalising and describing previous attacks
against machine learning models, this framework includes three new attacks
based on modifications to the PE file format that preserves its functionality.
The first attack, Full DOS, extends the previous Partial DOS attack [42]. Full
DOS allows modification of all available bytes in the entire DOS header up
to the PE signature. However, it still has limitations and cannot modify the
magic number MZ and the four-byte value at offset 0x3C that contains the
PE signature offset. The second attack, Extend, allows the DOS header to be
expanded, creating new space for inserting malicious bytes without disrupting
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the structure of the executable. The third attack, Shift, allows the contents of
the first section to be shifted to create a new space for inserting an adversarial
payload.

3.2 Reinforcement Learning-based Attacks

Anderson et al. introduced the Gym-malware framework [43], which is based
on a reinforcement learning approach. It is a black-box attack where the
attacker does not know the target model, except for the ability to obtain labels
for input samples whether they are malicious or benign files. The environment
consists of a malware sample and the target of the attack, which is an anti-
malware engine, specifically a gradient-boosted decision tree (GBDT) model.
The agent is the algorithm used to modify the environment and has a set
of operations that can be applied to the PE file. The default agent is Actor-
Critic with Experience Replay (ACER). Through a series of games against the
anti-malware engine, the agent learns which sequence of operations is likely
to evade the detector for a given malware sample.

Song et al. proposed the MAB-Malware framework [44], which approaches
the problem of adversarial attack as a multi-armed bandit problem, to find
a balance between exploiting successful patterns and exploring new variants.
The authors propose a stateless modelling approach that can significantly re-
duce the learning effort and lead to more productive AE generation. Many
actions to transform PE malware are independent and, according to the re-
sults, often only one or two actions are needed to generate an AE. They also
suggested that modelling actions and content as integral units for manipulat-
ing PE files. If the content associated with an action proved useful in one
AE, the same action-content pair is likely to be useful for some other sam-
ples. The authors also found that most actions are redundant and assigning
rewards to these actions complicates the learning process. Therefore, they
proposed an action minimisation process that minimises AEs by removing
redundant actions and further reducing significant actions into even smaller
actions, called micro-actions. Rewards are then assigned only to these essen-
tial micro-actions. The results showed that MAB-Malware achieved an eva-
sion rate of 74.4% against GBDT, 97.7% against MalConv, and up to 48.3%
against commercial antiviruses. Furthermore, the authors demonstrated that
the transferability of adversarial attacks between GBDT and MalConv detec-
tors is greater than 80%, while the transferability of attacks between these
detectors and commercial AV is only 7%.

3.3 Evolutionary Algorithm-based Attacks

Castro et al. introduced the AIMED [45] system, which uses genetic pro-
gramming algorithms to generate adversarial examples. Nine types of file
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modification operations are defined. Modifications are first applied to the
original malware to create a population. Then, each modified example in the
population is evaluated using a fitness function, which includes four phases:
functionality (checking the file for corruption), detection (scanning the file
using commercial engines or research models to determine whether it is con-
sidered malicious), similarity (calculating the difference between the malware
mutation and the original file it came from), and generation (using the current
generation number to prefer the newest members of the population). Each of
these phases contributes a value to the fitness function. The following steps
are selection, crossover, and mutation. This process is repeated until the
generated malware can evade the malware classifier.

Wang and Miikkulainen proposed the MDEA model [46] to detect malware.
MDEA consists of a detection model based on the MalConv network and an
evolutionary optimisation algorithm. To create adversarial malware samples,
an action space is defined that contains 10 different methods to modify binary
programs. The evolutionary algorithm generates different sequences of actions
by selecting actions from the action space until the generated adversarial mal-
ware can evade the target malware detector. Once the action sequences are
found successfully, they are applied to the corresponding malware samples.
All newly generated malware samples are added to the training set, and the
detection model is retrained. This process is a form of adversarial training.
The results demonstrate that retraining the model with evolutionary malware
samples significantly improves its performance.

Demetrio et al. introduced GAMMA, a black-box attack framework that
includes two types of attacks [36]. The attacks are based on injecting harmless
content, extracted from goodware, into malicious files. This involves either
inserting harmless content at the end of a file (padding attack) or into newly
created sections (section-injection attack). To make the attack difficult to
detect, it is formalised as a constrained minimisation problem that optimises
the trade-off between the probability of evading detection and the size of the
injected payload. The problem is solved using a genetic algorithm.

3.4 Generative Adversarial Network-based Attacks

Hu and Tan introduced a model called MalGAN in their article [47], based
on generative adversarial networks. The authors consider adding only some
irrelevant API calls to the original malware sample to generate adversarial
malware samples in the feature space. For each program, a 160-sized binary
feature vector is created based on 160 system APIs. MalGAN includes two
feedforward neural networks: a generator and a substitute detector. The in-
put to the generator is the malware feature vector and a noise vector. The
generator is used to transform the vector of malware features into its adver-
sarial version. A black-box detector is also used, which receives adversarial
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examples created by the generator and benign examples from the training set.
The black-box detector evaluates the input examples and determines whether
the sample is benign or malicious. The resulting decision from the black-box
detector, along with the adversarial examples from the generator and the be-
nign examples, is fed into the substitute detector. The substitute detector
is used to mimic the black-box detector by learning the classification rules of
malware and goodware classified by the black-box detector. Adversarial exam-
ples are dynamically generated according to the feedback from the black-box
detector. The generator and the substitute detector work together to attack
the black-box detector.

Later, Kawai et al. presented an improved MalGAN [48]. In their paper,
the authors discuss the problems of MalGAN and try to improve them. The
issues include importing the malware detector into MalGAN, reducing the
number of features used in MalGAN to 128, using the same API list for both
MalGAN and the detector, and using multiple malware to learn in MalGAN.
The improvements include executing malware detectors externally, adding all
the APIs used for the malware to the feature quantities, creating MalGAN and
detector API lists from different training data, and using only one malware
for MalGAN.

3.5 Combination of Techniques

Vaya and Sen created the Pesidious [49] tool to generate adversarial PE
malware samples. Pesidious is based on a combination of two techniques,
namely generative adversarial networks and reinforcement learning, and is
implemented using MalGAN [47] and Gym-malware [43]. In this case, the
generative adversarial network is used to generate benign looking imports and
sections, and reinforcement learning is used to train the agent to select the
best mutation sequence for the malware sample to evade the malware classi-
fier. The default malware classifier is the gradient boosting classifier, and the
following mutations are available for generating adversarial samples: add im-
ports received from GAN, add sections received from GAN, append bytes to
sections, rename sections, UPX pack, UPX unpack, add/remove the signature,
and append a random number of bytes.

Kozák and Jureček [50] proposed an adversarial attack strategy that com-
bines existing malware adversarial example generators to increase their poten-
tial and create more sophisticated adversarial examples that are more likely
to evade malware classifiers. Unlike [49], this method combines two sepa-
rate AE generators. The authors tested combinations of five different AE
generators: MAB-Malware [44], AMG (PPO and random agent) [51], FGSM
[40] and Partial DOS [42]. First, the authors created samples using individ-
ual generators and tested them against nine selected antivirus programs on
VirusTotal. They then used the unsuccessful samples from the first generator
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as input to the second generator, creating new samples that were again tested
against selected antivirus products. The results showed that combining differ-
ent generators can significantly improve their effectiveness against antivirus
programs. The most effective combination of generators was AMG-random
and MAB-malware, which achieved an average detection rate of 15.9% against
anti-virus products. This is an average improvement of over 36% and 627%
respectively compared to using AMG-random and MAB-malware generators
alone.
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Selected Methods

This chapter describes the tools and techniques used to create adversarial
malware samples in this thesis. A description of how to install, run, and use
the libraries and scripts is provided in a separate document included in the
files accompanying this thesis.

4.1 Malware Classifiers

In this section, we describe two popular machine learning-based malware de-
tectors that we used as target detectors in the creation of adversarial malware
samples. Both models were trained in the EMBER dataset [52].

4.1.1 MalConv

MalConv is a convolutional neural network (CNN) developed by Raff et al.
[53], whose architecture is shown in Figure 4.1. MalConv distinguishes be-
tween malicious and benign files purely based on their byte representation,
without extracting any features. First, the size of the input file is limited to 2
MB. If the file size is less than 2 MB, the file is padded with a value of 256 (the
padding value does not correspond to a valid byte to properly represent the
absence of information); otherwise, the file is truncated and only the first 2
MB are analysed. For our experiments, we used the MalConv model provided
by Anderson et al. [52], which differs from the original model by setting the
maximum input file size at 1 MB. The first layer of the network is the embed-
ding layer, which is defined by the function ϕ : ¶0, 1, . . . , 256♢ → R

d×8, which
maps each input byte to an eight-dimensional vector in the embedding space.
The goal of this step is to learn to represent bytes that have semantically
similar behaviour as closer points in this space, thus providing a meaningful
measure of the distance between bytes. The embedding layer is learnt during
training and then used as a look-up. Create an eight-dimensional embedding
for each byte, which is then fed into two convolutional layers. Each of the
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convolutional layers iterates over nonoverlapping windows of 500 bytes with a
total of 128 convolutional filters. The output of the two convolutional layers
is then multiplied, and the result is fed into the max-pooling layer. The result
is a set of the 128 most activated features of all convolution windows. The
results of these operations are passed as input to the fully connected layer for
classification. The last layer produces a prediction value f(x) between 0 and
1. It is given by the softmax function applied to the results of the dense layer
and classifies the input x as malicious if f(x) ≥ 0.5, otherwise it is benign
[42].
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Figure 4.1: The architecture of MalConv [37].

4.1.2 Gradient Boosting Decision Tree

Anderson et al. trained a Gradient Boosting Decision Tree (GBDT) model
[52, 54] on their EMBER dataset. GBDT is a model consisting of a set of se-
quentially trained decision trees. Unlike MalConv, GBDT uses a set of 2,381
manually created features derived from static analysis of binary files using the
Library to Instrument Executable Formats (LIEF). These features come from,
for example, the following sources [36]: general file information (such as vir-
tual file size, number of imported and exported functions, presence of debug
sections), header information (executable file properties, target architecture,
version), byte histogram (number of occurrences of each byte divided by the
total number of bytes), byte entropy histogram, information extracted from
strings (number of occurrences of each string and how many special characters
they contain, such as \, HKEY, http and https), section information (name,
length, entropy, and virtual size of each section), imported and exported func-
tions.

4.2 Generators of Adversarial Malware Examples

An adversarial malware example refers to a type of malicious software that has
been intentionally modified to avoid detection. This is achieved by strategi-
cally modifying, inserting, or removing certain bytes from the original malware
file while preserving its original characteristics. The goal is to maintain file
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format, executability, and maliciousness while also ensuring that the resulting
adversarial malware is incorrectly classified as harmless by the target malware
detection model, such as an antivirus tool or machine learning-based malware
classifier.

To create adversarial malware examples, we used three different tech-
niques: gradient-based techniques, evolutionary algorithm-based techniques,
and reinforcement learning-based techniques. Specifically, from gradient-based
techniques, we chose Partial DOS and Full DOS generators, which are part
of the secml-malware Python library [55]. From evolutionary algorithm-based
techniques, we selected GAMMA padding and GAMMA section-injection gen-
erators, which are also part of the secml-malware library. From reinforcement
learning-based techniques, we chose the Gym-malware generator, which is im-
plemented in the Python Gym-malware library [43]. Both libraries use LIEF
[56] to analyse and manipulate PE files. This section describes each of these
attacks in detail.

4.2.1 Partial DOS and Full DOS

The Partial DOS and Full DOS generators focus on changing the bytes in the
DOS header of the PE file. As mentioned in Chapter 2, the DOS header is
included in the file for backward compatibility with MS-DOS, but for Win-
dows, it contains only two important pieces of information, namely the first
2 bytes, which represent the magic number MZ, and the last 4 bytes at offset
0x3C, which indicate the location of the PE signature in the NT Header. All
other bytes can be used to inject a malicious payload. Specifically, when the
program is executed, control is passed to the loader, which begins to parse
the executable. After checking the magic number, it reads the PE offset and
proceeds to the PE header metadata, skipping the DOS header parsing and
stub, thus preserving the functionality of the input program. Thus, in addi-
tion to the two limitations mentioned above, the entire DOS header can be
manipulated without damaging the program.

The Partial DOS attack modifies only 58 bytes, specifically bytes in the
range 0x02 to 0x3B inclusive, ignoring the first two bytes containing the magic
number MZ and the four-byte offset between 0x3C and 0x3F.

The Full DOS attack extends the Partial DOS attack by expanding the
range of modified bytes to include all but the two aforementioned restrictions
up to the PE signature. The location of this signature can vary from file to file,
but is located at offset 0x3C. This amount can vary from sample to sample:
in our test dataset it ranges from 106 to 506 bytes.

The Partial DOS and Full DOS are gradient-based attacks. This means
that the attacker has white-box type access to the target model to calculate the
gradient of the loss function. In these attacks, an initial perturbation is applied
to the input malware file, resulting in a modified file. The manipulated file is
then encoded in feature space. The next step is to modify the representation
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based on the features of the manipulated input sample to minimise the loss
function. The solution is obtained by iterative updating the feature-based
representation using the loss function gradient. The algorithm stops either
when evasion is achieved or when the maximum allowed number of iterations
is reached. The feature-based representation obtained after this step does not
necessarily correspond to any input sample. For this reason, it is necessary to
use appropriate reconstruction strategies that ensure that the reconstructed
sample is a valid program and preserves the intended functionality of the
original malware. File reconstruction is then based on selecting the closest
byte in the embedded space.

4.2.2 GAMMA padding and GAMMA section-injection

GAMMA padding generator and GAMMA section-injection generator are
based on inserting parts extracted from harmless files into files containing
malicious code. These are black-box attacks in which only the target model
is queried and its output is observed, without access to its internal structure
and parameters. GAMMA attacks are formalised as a constrained optimisa-
tion problem:

minimize
s∈S

F (s) = f(x ⊕ s) + λ · C(s),

subject to q ≤ T
(4.1)

where x is the input malware file, s is one of the manipulations that can be
applied to the input file. F (s) is the objective function, which consists of
two contradictory parts: f(x ⊕ s), which is the output of the classifier in the
manipulated program, and C(s), which is the penalty function that evaluates
the number of bytes inserted into the input malware file. The hyperparameter
λ > 0 adjusts the trade-off between these two parts, thus supporting solutions
with fewer inserted bytes at the expense of reducing the probability of mis-
classifying the sample as benign. Since black-box optimisation of the target
requires repeated queries of the target model f , a constraint q ≤ T is used,
which is an upper bound on the maximum number of queries q that can be
performed with the query budget T .

Therefore, the goal is to minimise the probability of detection and also
minimise the size of the injected content. This optimisation problem is solved
using a black-box genetic optimiser. First, a random matrix is generated
that represents the initial population of N manipulation vectors. The algo-
rithm then iterates in three steps: selection, crossover, and mutation. During
selection, the objective function is evaluated and the N best candidate manip-
ulation vectors are selected from the current population and the population
created in the previous iteration. These are the candidate manipulation vec-
tors associated with the lowest values of F . This is followed by the crossover
function, which modifies the candidates from the previous step by mixing the
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values of pairs of randomly selected candidate vectors, and returns a new set
of N candidates. The final operation is a mutation, which randomly changes
the elements of each vector with low probability. In each iteration, N queries
are performed on the target model to evaluate the objective function of new
candidates and maintain the population of best candidates. When the maxi-
mum number of queries is reached or no further improvement in the objective
function value is observed, the best manipulation vector from the current
population is returned. The resulting sample of adversarial malware x

∗ is
obtained by applying the optimal manipulation vector s

∗ to the input sample
of malware x using the manipulation operator ⊕, such that x

∗ = x ⊕ s
∗.

4.2.3 Gym-malware

The Gym-malware generator uses a reinforcement learning approach, where
the environment consists of a malware sample and an anti-malware engine
(a gradient-boosted decision tree model). The engine was trained on 50,000
malicious and 50,000 benign samples using extracted features such as byte-
level data (e.g., histogram and entropy), headers, sections, imports, or exports.
The agent is the algorithm used to modify the environment, with the default
agent being Actor-Critic with Experience Replay (ACER) using the chainer-
rl library. The agent has a set of functionality-preserving operations it can
perform on a PE file. Through a series of games against the anti-malware
engine, the agent learns which sequences of operations are likely to evade the
detector for a given malware sample.

File mutations are actions available to the agent within the environment
where a relatively small number of changes can be made to a PE file without
affecting its format or performance. These actions include adding a function
to the import address table, manipulating existing section names, creating
new unused sections, adding bytes to the end of sections, creating a new
entry point, manipulating debug information, packing or unpacking the file,
changing the header checksum, and adding bytes to the end of a PE file.

At each step, the agent receives feedback from the environment in the
form of a reward value and a function vector summarising the state of the
environment. The reward function is measured by the antivirus engine, with
a reward of 0 for a modified sample judged malicious, and R (set to 10) for
a benign sample. The environment outputs the state as a feature vector,
which is a 2350-dimensional vector consisting of PE header metadata, section
metadata, import and export table metadata, human-readable string counts,
byte histogram and 2D byte entropy histogram.

Based on the feedback, the agent selects mutations from the action set,
and this process is repeated in multiple rounds. Each round starts with a
malware sample that is modified through a series of mutations during the
round. Rounds can be terminated prematurely if the agent evades the anti-
malware engine before completing ten allowable mutations.
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Chapter 5

Experiments

This chapter describes the experiments we performed and our results we ob-
tained. We introduce the purpose of each experiment and present the hard-
ware and software used to perform and evaluate them. Then we describe
the datasets used and explain the individual metrics used to evaluate the ex-
periments. Finally, we discuss each experiment individually and present and
discuss the results.

5.1 Purpose of Experiments

Since the goal of this thesis is to compare different methods for generating
adversarial examples, several experiments need to be performed. These ex-
periments will help us to verify and compare the different characteristics,
properties, and efficiency of the methods used to generate adversarial exam-
ples.

One of the basic characteristics we want to verify is the running time of
the algorithm used to generate each sample. An experiment that examines
this variable will help us to estimate the time requirements of each generation
method. In addition to the time requirements of the algorithms; we should
not forget the memory requirements. Some generation methods are expected
to have a significant impact on the size of the original programs. Some may
increase significantly (e.g. GAMMA padding and GAMMA section-injection
attacks), while others may decrease (e.g. Gym-malware attack), depending
on the type of file manipulation used. However, these assumptions need to be
verified experimentally.

One of the most important properties that we are interested in is the
success rate of each adversarial attack strategy. Therefore, we need to perform
an experiment that will help us determine how successful each method is
against different antivirus programs.

Studying the aforementioned properties of each method can help us to
evaluate the entire process of generating examples using a particular adver-
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sarial attack strategy. However, the question is how these properties would
change if multiple strategies were used simultaneously within a single sample
generation process. We will not examine the time and memory requirements,
as they should not be significantly different from the results measured for each
method in the combination used. Much more interesting is the success rate
of the combination of strategies. It is expected that by using a combination
of strategies during a single generation process, we could theoretically achieve
better results than by using each strategy separately. It is also possible that
some combinations will not be as effective. However, these assumptions also
need to be tested experimentally.

We, therefore, decided to perform four different experiments, the list of
which is given below. A detailed description of the experiments can be found
in the following sections.

1. Sample Generation Time: to test the time complexity of generating
individual examples using different adversarial example generators.

2. Sample Size: to investigate the change in size when generating indi-
vidual examples using different adversarial example generators.

3. Bypassing Commercial AV Products: to evaluate the success of
selected methods used to generate adversarial malware examples.

4. Combination of Multiple Techniques: to test the effectiveness of
using a combination of methods to generate adversarial malware exam-
ples.

5.2 Experimental Setup

The experiments were carried out on an NVIDIA DGX Station A100 server
running Ubuntu 20.04.5 LTS. The server is equipped with an AMD EPYC
7742 processor running at 2.25GHz with 64 cores and 512 GiB of RAM. We
also used virtual machines running Windows 11 and Kali Linux for testing
and analysis.

We used two datasets for our experiments. The first dataset contains 3625
benign executables obtained from a fresh Windows 11 installation. The second
dataset contains 3625 malicious executables obtained from the VirusShare
repository [57]. It is important to note that all 7250 samples are portable
executables.

In this study, we compared five adversarial attack strategies. Partial DOS
and Full DOS attacks were performed in a white-box environment against
the MalConv detector, using a maximum of 50 iterations. GAMMA padding
and GAMMA section-injection attacks were performed in a black-box setting
against the MalConv detector, using a maximum of 500 queries. The injection
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content was obtained by extracting 100 sections of a given type (.data, .text,
.rdata) from benign programs. The regularisation parameter was set to 10−5.

Gym-malware attack was performed in a black-box environment against
the GDBT detector using its default settings. The Gym-malware model was
trained on a dataset of 3000 malicious samples and a validation set of 1000
files that are not part of the experimental dataset described above. These
samples were also obtained from the VirusShare repository.

5.3 Evaluation Metrics

We used several metrics to evaluate the experiments. These metrics are de-
scribed in detail in this section.

The detection rate is the proportion of malware files that were correctly
classified by the target malware classifier and can be calculated as follows:

detection rate =
# correctly classified

# total
(5.1)

where # correctly classified is the number of malware samples correctly
detected as malware and # total is the total number of files submitted to the
target classifier.

The evasion rate is the proportion of malware files misclassified by the
target malware classifier and can be calculated as follows:

evasion rate =
# misclassified

# total
(5.2)

where # misclassified is the number of malware samples misclassified as be-
nign and # total is the total number of files submitted to the target classifier
after discarding files that were already incorrectly predicted before modifica-
tion.

The evasion rate mentioned above is a universal metric that can be used
to evaluate both single methods and combinations of methods. In both cases,
we are interested in the percentage of malware that escaped detection by the
antivirus program. In addition, we used the following metrics to evaluate the
combination of attacks.

The first metrics that we chose to evaluate the success of the combination
are the absolute and relative improvement in the evasion rate when using
the second attack in the combination compared to the first attack. Absolute
improvement can be described by the following formula:

improvementA = evasion rateC − evasion rate1 (5.3)

where evasion rateC is the total evasion rate when using a combination of
methods, and evasion rate1 is the evasion rate after using the first attack in
the combination alone. The result is the percentage increase in evasion rate
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between the first and second attack in the combination. For example, if the
evasion rate after the first attack in the combination is 0.01 and after the
second attack is 0.1, then the absolute improvement is 0.09, meaning that the
second attack improved the overall evasion rate by 9%.

Similarly, the relative improvement can be expressed using the formula:

improvementR =
evasion rateC − evasion rate1

evasion rate1
(5.4)

where the meaning of the variables is the same as in the previous formula 5.3.
However, in the previous case, the result expressed a percentage increase over
all samples tested. In the case of relative improvement, we limit ourselves to
the set of samples that escaped the antivirus program after the first attack.
For example, if the evasion rate after the first attack of the combination is
0.01 and after the second attack it is 0.1, then the relative improvement is 9,
i.e. the second attack improved the evasion rate of the first attack by 900%.

Next, we need to compare the combination of attacks to performing the
attacks separately to see if the combination of attacks adds any value. To do
this, we use two metrics, the first of which we will call the evasion rate benefit,
and it is defined as follows:

evasion rate benefit =
# misC − # misC,1 − # misC,2 + # misC,1,2

# total
(5.5)

where # misC is the number of malware not detected as malware after the
combination of attacks, # misC,1 represents the number of malware that were
not detected as malware after executing both the attack combination and
the first attack alone, similarly # misC,2 for the second attack. Further-
more, # misC,1,2 is the number of malware counted under both # misC,1 and
# misC,2. The denominator # total is the number of all malware in the test
set. Thus, the result generally reflects the percentage of samples that escaped
detection due to a combination of attacks; attacks performed only on these
samples would have failed. If the result is 0, then the combination did not
add anything over the first and second attacks performed separately.

The final metric is a simple comparison of the evasion rate of the combi-
nation of attacks to the evasion rate of the attacks performed separately. We
call it evasion rate cmp, and it has the following calculation:

evasion rate cmp = evasion rateC − MAX(evasion rate1, evasion rate2)
(5.6)

where evasion rateC is the evasion rate of the combination attack, while
evasion rate1 and evasion rate2 are the evasion rates of the first and second
attacks, respectively. If the result is positive, it means that the combination
of attacks performed better than the combination of the two attacks in the
combination that would have been performed alone. If the result is negative
or zero, it means that the execution of the attack combination was pointless
because one of the attacks that were part of the combination performed better
or was equal to the combination in terms of evasion rate.
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5.4 Experiments and Results

This section describes experiments in which we investigate various character-
istics of selected methods for adversarial attacks. We provide the results of
each experiment and compare the individual methods with each other.

5.4.1 Sample Generation Time

In this experiment, we measured the time required to generate individual
samples using all of the algorithms listed. The attacker’s goal is to generate
functional adversarial examples in the shortest possible time. Table 5.1 shows
the average time and standard deviation in seconds required to generate a
sample using different methods.

Table 5.1: Average time to generate the sample for each sample generator.

Attack Average Duration [s] Standard Deviation [s]

Partial DOS 99.27 31.13

Full DOS 169.08 104.53

GAMMA padding 87.61 39.28

GAMMA section-injection 118.47 69.44

Gym-malware 5.73 7.52

Figure 5.1 displays a box plot graph that shows the time required to gen-
erate a sample for each of the five tested methods of adversarial attacks. The
vertical axis represents time in seconds, and the horizontal axis represents the
individual methods. The boxes in the graph represent the range of values
measured for each method, and the red line inside the boxes represents the
median. Outliers are displayed as individual points outside the boxes.

The image shows that the Gym-malware adversarial attack was the fastest,
taking an average of less than 6 seconds, with some outlier values taking less
than 100 seconds. In contrast, the Full DOS attack took the longest time
to create adversarial examples, with an average duration of more than 160
seconds. The other three methods took similar amounts of time, around 100
seconds, although the GAMMA section-injection attack had several outlier
values with extremely long durations of over 300 seconds.

The measured times may be affected by the settings of individual algo-
rithms. For example, changing the number of iterations or queries could re-
duce the time required to generate a sample. However, such changes could
significantly degrade the quality of the samples. Therefore, it is important to
strike a balance between quality and time.

5.4.2 Sample Size

This experiment investigates how the size of original malware samples changes
when using various adversarial malware generators. The attacker’s goal is to
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Figure 5.1: Time required to generate a sample for each sample generator.

minimise the increase in the size of the generated adversarial files, making
them harder to distinguish from the original malware samples. Table 5.2 shows
the average change in file size resulting from the use of various adversarial
attack methods, measured in kilobytes.

Table 5.2: Average increase in sample size for each sample generator.

Attack Average Size Increase [kB] Standard Deviation [kB]

Partial DOS 0 0

Full DOS 0 0

GAMMA padding 223.60 48.40

GAMMA section-injection 1940.35 78088.98

Gym-malware −149.27 754.66

If partial DOS and Full DOS attacks are used, which are based on strategic
byte changes in the DOS header, the size of the resulting files does not change.
This results in an average size change of zero.

In the case of GAMMA padding and GAMMA section-injection attacks,
parts extracted from harmless files are inserted into the malicious file. The
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file size increases on average by 223,605 bytes in the case of GAMMA padding
attack and by 1,940,352 bytes in the case of GAMMA section-injection attack.

The Gym-malware attack uses various types of file manipulation. The
file size may be decreased, increased, or remain unchanged depending on the
chosen modification. On average, the file size decreases by 149,273 bytes.

5.4.3 Bypassing Commercial AV Products

In this experiment, we analysed the effectiveness of created examples of ad-
versarial malware against real AV detectors. Based on a comparative study
by AV-Comparatives [58], we selected the top ten rated AV programs for the
experiment, whose names we intentionally anonymised to minimise possible
misuse of this work. In the following results of the experiment, we present
only nine antivirus products because we gained identical results for two se-
lected AVs from the same company.

Modified malware files from various adversarial algorithms were sent to
the VirusTotal server [59] to obtain the evasion rate for each individual an-
tivirus product. To avoid skewed results, we only analysed malware samples
that achieved a 100% detection rate against all selected AV products before
modification using adversarial techniques. Malware samples for which the gen-
erators, with the appropriate settings, failed to generate adversarial malware,
were omitted from the final analysis. The aim was to have the same number
of samples generated by each generator and the same set of original malware
files modified by these individual generators. In total, 894 original malware
samples and their modified versions were obtained for each selected generator.

The results of testing the evasion rate of modified malware samples against
selected AV products are provided in Table 5.3. Each row in this table repre-
sents one of the sample modification methods used, each column in the table
shows one of the selected AV products, and the values in the table represent
the percentage of evasion achieved by the given algorithm against the given
AV product. The last column of the table displays the average evasion rate
for a given attack.

Table 5.3: The evasion rate achieved by adversarial examples generated
against real antivirus products.

Attack AV1 AV2 AV3 AV4 AV5 AV6 AV7 AV8 AV9 Average

GAMMA padding 0.00 1.79 0.45 0.22 0.45 0.90 1.34 0.56 0.45 0.68

Partial DOS 0.78 2.57 0.78 1.01 0.78 0.78 1.90 1.45 0.78 1.21

Full DOS 0.67 1.34 0.78 0.90 0.78 0.78 4.14 1.23 0.78 1.27

GAMMA section-injection 18.46 5.37 6.38 4.36 4.47 9.06 43.62 1.23 5.37 10.92

Gym-malware 45.53 19.02 44.86 67.23 41.61 53.58 53.80 26.51 44.86 44.11

From the results shown in the table, it is clear that the Gym-malware
attack achieved the highest evasion rate against all selected AV products.
Specifically, it achieved evasion rates ranging from 19% to 67.2%. The second
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best result was achieved by the GAMMA section-injection attack, with evasion
rates ranging from 1.2% to 43.6%. However, the GAMMA padding attack
achieved the worst results, as it did not fool any of the detectors tested in more
than 1.8% cases. The Full DOS and Partial DOS attacks achieved slightly
better results than the GAMMA padding attack, with the Full DOS attack
slightly outperforming the Partial DOS attack.

Next, we investigate whether the type of section extracted from benign files
affects the resulting evasion rate in GAMMA padding and GAMMA section-
injection attacks. We chose three types of sections: .data, .text, and .rdata.
The resulting evasion rate is recorded in Table 5.4.

Table 5.4: Comparison of evasion rate with different attack settings.

Attack AV1 AV2 AV3 AV4 AV5 AV6 AV7 AV8 AV9 Average

GAMMA padding (.data) 0.00 1.79 0.45 0.22 0.45 0.90 1.34 0.56 0.45 0.68

GAMMA padding (.rdata) 0.11 2.35 0.22 0.22 0.22 0.11 3.69 1.01 0.22 0.91

GAMMA padding (.text) 0.11 3.58 0.34 0.22 0.34 0.34 3.80 1.01 0.34 1.12

GAMMA section-injection (.rdata) 7.27 7.16 9.73 4.25 4.25 8.39 31.77 1.57 8.50 9.21

GAMMA section-injection (.text) 4.36 7.27 12.98 3.47 6.82 7.94 42.84 1.79 10.52 10.89

GAMMA section-injection (.data) 18.46 5.37 6.38 4.36 4.47 9.06 43.62 1.23 5.37 10.92

The measured results show that no significant changes were observed. Fur-
thermore, when comparing all attacks in Table 5.3, the resulting order of
attacks by the average evasion rate achieved, did not change.

5.4.4 Combination of Multiple Techniques

In this experiment, we studied the effect of applying multiple techniques to a
malware sample on the resulting evasion rate. We selected three adversarial
example generators that performed the best in the previous test. Specifically,
we used Full DOS, GAMMA section-injection (extraction of .data sections
from benign files), and Gym-malware. The goal of this experiment was to
demonstrate whether the application of multiple adversarial example genera-
tors to a malware sample would significantly increase its evasion rate.

An overview of the experiment is shown in Figure 5.2. First, the original
malware samples are processed by the first generator. These modified samples
are then tested against real AV detectors that are not part of the generator.
This step was already done in the previous experiment. The measured re-
sults are shown in Table 5.3. The result is a set of samples divided into two
sets. The first set consists of evasive examples that successfully evaded the
given malware detector, and this set is no longer processed. In contrast to
adversarial examples, which are generated against the target classifier, eva-
sive examples are samples that have evaded detection by the AV program,
although this AV program was not used to generate these samples. The sec-
ond set consists of failed examples that failed to evade the detector and are
used as input to the second generator. The second generator processes the
failed examples from the input, and the resulting modified samples are again
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First Generator

Malware Detector

Malware

Evasive Failed

Second Generator

Malware Detector

Evasive Failed

Figure 5.2: Method for generating adversarial examples by combining two
generators.

tested against real AV detectors. The result is again a set of samples divided
into two sets: evasive and failed. The set of evasive examples produced by
the first generator and the set of evasive examples produced by the second
generator together form the set of resulting successful adversarial examples
produced by combining these two generators. The failed examples obtained
after using the second generator are the resulting samples that did not evade
detection.

In the following parts of this section, we present the results of our ex-
periment, divided according to the evaluation metrics used. All metrics are
described in Section 5.3. The original data used to calculate the following ag-
gregated data can be found in the files attached to this thesis and in Appendix
C.

This section contains two types of tables. The first type of table lists
the measured minimum, average, and maximum values for a particular AVs
across the nine combinations of generators. The AVs selected and labelled
here correspond to those used in the previous experiment described in Section
5.4.3. The second type of table lists the measured minimum, average, and
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maximum values for a particular combination of generators across the nine
AVs. The First Generator column contains the first generator used, and the
Second Generator column contains the second generator used.

Evasion Rate

First, we present the results of the evasion rate metric. Table 5.5 shows the
results of the evasion rate for each AV. Table 5.6 shows the results for each
generator combination. Both tables contain aggregated data, specifically the
minimum, average, and maximum values across all AVs and all generator
combinations, respectively. The original tables with the detailed results of the
evasion rates obtained for each AV using each generator combination can be
found in the Appendix of this thesis.

Table 5.5: Evasion rate for each AV using all combinations of generators.

AV Minimum Average Maximum

AV1 0.78 32.39 55.26

AV2 1.45 17.79 29.53

AV3 0.90 31.15 63.09

AV4 1.45 38.59 78.19

AV5 0.78 26.76 57.61

AV6 0.90 35.91 73.60

AV7 5.26 49.32 74.50

AV8 1.57 17.80 41.39

AV9 0.78 30.79 62.75

For all AVs, we examine the minimum, average, and maximum of the
results of all combinations of generators tested in the experiment. These
results can be found in Table 5.5. For the minimum values of the evasion
rate, we can see that none of the antivirus programs reached a detection rate
of 100%. On the other hand, all these values are relatively low compared to
the average and maximum values, which tells us that some of the 9 generator
combinations were not very successful. The average evasion rates range from
about 18% to 49%, and the maximum values range from 30% to 78%. This
means that if we use all combinations in the experiment, we achieve an average
evasion rate of at least 18% for all selected AVs, and some of the combinations
achieve an evasion rate of around 30% for all AVs. The best result was achieved
by combinations of generators against AV7, where the average evasion rate is
around 49%, while the least successful was against AV2, where the average
evasion rate is around 18%.

Table 5.6 shows the results of the evasion rate achieved by each combina-
tion of generators. Here, we can see that the most successful combination was
the one in which the Gym-malware generator was used twice in a row. This
achieved a minimum evasion rate of around 30% for all AVs. The average
value for this combination is around 58%, and for at least one AV we achieved

50



5.4. Experiments and Results

Table 5.6: Evasion rate for each generator combination against all AVs.

First Generator Second Generator Minimum Average Maximum

Full DOS Full DOS 0.78 1.54 5.26

Full DOS GAMMA section-injection 1.57 10.48 43.96

Full DOS Gym-malware 23.15 38.69 61.63

GAMMA section-injection Full DOS 6.26 15.05 45.30

GAMMA section-injection GAMMA section-injection 1.90 14.03 44.52

GAMMA section-injection Gym-malware 25.39 46.97 74.50

Gym-malware Full DOS 26.51 46.16 67.34

Gym-malware GAMMA section-injection 27.18 49.22 67.79

Gym-malware Gym-malware 29.53 58.34 78.19

an evasion rate of around 78% with this combination. On the other hand,
the worst combination in terms of evasion rate is the one in which the Full
DOS generator was used twice. In this case, we have an average evasion rate
of about 2%, while for all other combinations, this value exceeds 10%, and
for some even significantly. The maximum value of the evasion rate for this
combination is about 5%, for the others we have at least about 44%.

To determine the effectiveness of using generator combinations instead of
individual generators alone, we can compare these results with the values from
the previous experiment. However, we have additional metrics for this, which
are described in Section 5.3. We analyse the results of these metrics in the
following parts of this section.

Absolute Improvement

Next, we evaluate the metric that we identified as an absolute improvement in
Section 5.3. In short, it is the percentage difference in the evasion rate between
the evasion rate achieved by combining both generators and the evasion rate
achieved by using only the first generator.

First, we focus on Table 5.7, which shows the absolute improvement val-
ues for each AV in the nine combinations of generators. Here we can see that
for some AVs we were unable to improve the evasion rate using the second
generator application. Specifically, this refers to the minimum value for AV4,
AV5, and AV9. Table 5.8 helps us to identify the relevant generators. We can
see that they are only combinations in which we use the same generator twice,
namely, the Full DOS generator or the GAMMA section-injection generator.
This may indicate that the use of these combinations is not entirely effective.
For the average values in Table 5.7, we can see that they do not differ sig-
nificantly, in all cases between about 8% and 15%. For the maximum values,
we have a slightly higher range, approximately 22% to 61%. This means that
if we use a second generator, we will improve the evasion rate by about 10%
on average after using the first generator. If we use all combinations, we will
achieve an improvement in the evasion rate of at least 22% for all AVs.
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Table 5.7: Absolute improvement for each AV using all combinations of gen-
erators.

AV Minimum Average Maximum

AV1 0.11 10.84 29.98

AV2 0.11 9.21 22.48

AV3 0.11 13.81 41.16

AV4 0.00 14.43 60.74

AV5 0.00 11.14 35.01

AV6 0.11 14.77 50.22

AV7 0.90 15.46 40.72

AV8 0.34 8.14 26.51

AV9 0.00 13.78 41.39

However, significantly more intriguing is Table 5.8, which shows the abso-
lute improvement for each generator combination in all AVs. Here, we can see
that the use of Full DOS as the second generator does not result in a signifi-
cant absolute improvement in the evasion rate for the minimum, average, and
maximum values. This means that using Full DOS as the second generator
in a combination is the least effective. We could also see this in the previous
section regarding the evasion rate, where these combinations did not achieve
the best result in any case. On the other hand, we can see that we get the
best absolute improvement by using the Gym-malware method as the second
generator in the combination. The GAMMA section-injection as the second
generator does not have the best or worst results.

Table 5.8: Absolute improvement for each generator combination against all
AVs.

First Generator Second Generator Minimum Average Maximum

Full DOS Full DOS 0.00 0.27 1.12

Full DOS GAMMA section-injection 0.67 9.21 39.82

Full DOS Gym-malware 21.92 37.42 60.74

GAMMA section-injection Full DOS 0.78 4.13 5.93

GAMMA section-injection GAMMA section-injection 0.00 3.11 10.29

GAMMA section-injection Gym-malware 20.02 36.04 51.23

Gym-malware Full DOS 0.11 2.05 7.49

Gym-malware GAMMA section-injection 0.56 5.11 10.63

Gym-malware Gym-malware 7.72 14.23 20.02

In Table 5.8, we can observe another interesting fact. As we have already
mentioned, the use of two identical generators in combination is not very effec-
tive. However, this statement does not apply to the Gym-malware generator.
In contrast, if we use the Gym-malware generator as the first generator in the
combination, then the best choice to select the second generator seems to be
the Gym-malware generator again. Full DOS and GAMMA section-injection
generators have minimal absolute improvements in the role of the second gen-
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erator. This means that the Gym-malware generator is very successful even
when used alone, combining generators does not improve it much, in the case
that this generator was used as the first generator in the combination.

The best absolute improvement values are achieved when we choose Full
DOS as the first generator and Gym-malware as the second. This results in
an absolute improvement in the evasion rate in all AVs of at least around
22%, on average 37% and up to a maximum of 61%. On the other hand, the
worst results in terms of absolute evasion rate improvement are obtained when
we choose Full DOS as both generators. In this case, we obtain a minimum
absolute improvement of 0% across all antivirus programs, an average of 0.3%
and a maximum of 1.1%. It follows that the Full DOS generator is likely to
be the least successful generator, both when used alone and in combination.

Relative Improvement

We will now examine the metric known as the relative improvement in the
evasion rate. Analogously to the improvement in the absolute evasion rate,
we can also see in the table 5.9 AVs that we did not improve the evasion rate
with the second generator. These are still the same AVs, specifically AV4, AV5,
and AV9 and combinations of generators consisting of two identical generators
Full DOS or GAMMA section-injection. Table 5.9 shows that AV7 performed
the best in terms of relative improvement of the evasion rate. Conversely, AV4
performed the worst, where in some cases the second generator managed to
increase the number of successfully modified samples (which evaded detection)
by more than 67 times.

Table 5.9: Relative improvement for each AV using all combinations of gen-
erators.

AV Minimum Average Maximum

AV1 0.61 788.88 4466.67

AV2 8.33 307.66 1675.00

AV3 3.74 732.66 5014.29

AV4 0.00 914.67 6787.50

AV5 0.00 633.29 4257.14

AV6 1.46 846.29 6000.00

AV7 2.05 232.70 983.78

AV8 3.80 510.39 2154.55

AV9 0.00 758.01 5285.71

Table 5.10 provides confirmation that the Full DOS generator, which was
used as the second generator in combination, does not appear to be an en-
tirely ideal choice. On the other hand, if this generator is chosen as the first
generator in the combination, the GAMMA section-injection or Gym-malware
generator can increase the number of samples that evade detection by up to 67
times. This shows that the Full DOS generator is not a very strong generator
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on its own. Regarding the Gym-malware generator, we can see that when it
is used as the first generator in a combination, the second generator does not
significantly increase the result, even when Gym-malware is used again as the
second generator. However, this is not a significant difference when compared
to the absolute improvement in the evasion rate. The Gym-malware genera-
tor is very successful on its own, so as the first generator in combination, it
achieves a significantly high evasion rate. Therefore, a relative improvement
in the evasion rate from 39% to 56% can cause a drastic increase in the total
evasion rate of the combination (up to 20%). We can also see that when the
Gym-malware generator is used as a second generator, different from the first
generator used, there is a huge relative improvement over the first genera-
tor. Again, we can see that Gym-malware is very effective when used in any
combination of generators.

Table 5.10: Relative improvement for each generator combination against all
AVs.

First Generator Second Generator Minimum Average Maximum

Full DOS Full DOS 0.00 18.93 62.50

Full DOS GAMMA section-injection 75.00 715.51 2400.00

Full DOS Gym-malware 983.78 4027.99 6787.50

GAMMA section-injection Full DOS 3.85 104.90 409.09

GAMMA section-injection GAMMA section-injection 0.00 58.50 181.25

GAMMA section-injection Gym-malware 70.77 741.93 2154.55

Gym-malware Full DOS 0.17 7.31 39.41

Gym-malware GAMMA section-injection 0.83 13.60 42.94

Gym-malware Gym-malware 16.31 35.90 56.12

Evasion Rate Benefit

In this section, we introduce a metric we have labeled the Evasion Rate Benefit.
This metric expresses the percentage of samples that the combination modified
in such a way that the new samples evade AV detection and these samples were
not successfully created using individual generators separately. The metric
allows us to determine whether the combination of generators successfully
modified samples that individual generators failed to modify, and whether it
produced novel results.

In Table 5.11 we can see that we can find AVs where some combinations of
generators do not bring any benefit compared to using individual generators
separately. These are AV4, AV5, and AV9. For the others, the combinations
always produced some successfully modified samples (in terms of malware
detection) that the individual generators would not have produced, even if
it was a very small percentage of samples. AV1 performed worse on this
metric, with generator combinations producing at most about 8% samples
capable of evading detection by AV1 in addition to the individual generators
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Table 5.11: Evasion rate benefit for each AV using all combinations of gener-
ators.

AV Minimum Average Maximum

AV1 0.11 3.42 7.72

AV2 0.11 6.28 14.99

AV3 0.11 7.51 18.23

AV4 0.00 4.05 10.96

AV5 0.00 6.19 16.00

AV6 0.11 6.86 20.02

AV7 0.90 5.18 11.86

AV8 0.34 5.77 15.55

AV9 0.00 7.52 17.90

used separately. In contrast, AV3 and AV6 performed the worst, with some
combinations successfully altering up to 20% additional samples.

Table 5.12: Evasion rate benefit for each generator combination against all
AVs.

First Generator Second Generator Minimum Average Maximum

Full DOS Full DOS 0.00 0.27 1.12

Full DOS GAMMA section-injection 0.00 0.81 2.80

Full DOS Gym-malware 5.93 12.96 15.88

GAMMA section-injection Full DOS 0.67 3.59 5.26

GAMMA section-injection GAMMA section-injection 0.00 3.11 10.29

GAMMA section-injection Gym-malware 5.82 13.32 19.46

Gym-malware Full DOS 0.11 1.88 7.16

Gym-malware GAMMA section-injection 0.34 2.60 4.92

Gym-malware Gym-malware 7.72 14.23 20.02

Table 5.12 demonstrates that the combination of two identical Full DOS
generators is not an effective approach. This combination does not provide
any significant benefit. However, the use of the Gym-malware generator twice
brings an average of up to 14% of new successfully modified samples, with
a maximum of around 20%. In general, this combination appears to be the
best in terms of the evasion rate benefit metric. Even so, other combinations
in which Gym-malware is used as a second generator are also very successful.
The least successful combinations are those where Full DOS is used as the
second generator.

Overall, this metric shows that by using combinations of generators, we
can create a significant percentage of new samples that are able to evade AV
detection. From this point of view, the experiment confirms the usefulness
of this method in modifying malware samples. At the same time, the tables
show that this sense is greater for some combinations of attacks and less for
others.
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Evasion Rate Comparison

The last metric examined, Evasion Rate Comparison, helps us find the answer
to the question of whether it is better to use individual generators separately
or to use them in a combination. This metric also measures the level of leak-
age and simply observes whether the result is better when a better generator
from the combination is used separately or when a combination of generators
is used. A negative value of this metric indicates that we have achieved a
better evasion rate by using the better of the two generators in that combina-
tion separately (better in terms of evasion rate). On the contrary, a positive
value indicates that we achieved a better result using the combination of both
generators.

Table 5.13: Relative improvement for each AV using all combinations of gen-
erators.

AV Minimum Average Maximum

AV1 -14.88 0.87 9.73

AV2 0.11 5.28 10.52

AV3 -4.81 4.02 18.23

AV4 -11.63 -0.31 10.96

AV5 -7.49 2.06 16.00

AV6 -5.82 3.03 20.02

AV7 -8.95 4.43 20.69

AV8 -3.36 2.52 14.88

AV9 -2.69 3.99 17.90

Looking at the minimum values in table 5.13, we can see that almost
always there was a combination of generators that were not effective due to
the negative values in this column. The exception is AV2, where we achieved
a better evasion rate in all combinations of generators used. However, the
average and maximum values show that in most cases the combination is
more effective than the better of the two generators used separately. Only
AV4 has a negative value, which means that it performed best. On the other
hand, AV2 performed the worst when comparing these programs on average.

Table 5.14 shows that combining generators using Full DOS as the first
generator and either GAMMA section-injection or Gym-malware as the second
generator yields negative results, as evidenced by both the minimum and
average values being negative. Based on the results of the previous parts
of this section, we can say that it is more advantageous to use GAMMA
section-injection and Gym-malware generators separately in such cases. We
can also see other negative values in the minimum value of this metric for
the combination of GAMMA section-injection and Gym-malware generators
used in this order. However, the average value of the combination is positive,
indicating that it may be reasonable to use this combination. However, further
research is needed to confirm this conclusion. For the remaining combinations,
we can say that using them will result in a better level of leakage than using
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Table 5.14: Relative improvement for each generator combination against all
AVs.

First Generator Second Generator Minimum Average Maximum

Full DOS Full DOS 0.00 0.27 1.12

Full DOS GAMMA section-injection -2.80 -0.45 1.57

Full DOS Gym-malware -14.88 -5.42 4.81

GAMMA section-injection Full DOS 0.78 4.13 5.93

GAMMA section-injection GAMMA section-injection 0.00 3.11 10.29

GAMMA section-injection Gym-malware -11.63 2.86 20.69

Gym-malware Full DOS 0.11 2.05 7.49

Gym-malware GAMMA section-injection 0.56 5.11 10.63

Gym-malware Gym-malware 7.72 14.23 20.02

the better of the two generators separately. Once again, the combination of
two Gym-malware generators was the best in this evaluation.
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Conclusion

This thesis investigates the use of adversarial learning techniques in the field
of malware detection. Our goal was to apply existing methods to generate
adversarial malware samples, test their effectiveness against selected malware
detectors, and compare the evasion rate achieved and the practical applicabil-
ity of these methods.

For our experiments, we chose five adversarial malware sample generators:
Partial DOS, Full DOS, GAMMA padding, GAMMA section-injection, and
Gym-malware. We compared techniques based on gradient, evolutionary al-
gorithms, and reinforcement learning, and tested them using nine different
antivirus products.

To validate and compare the different characteristics and properties of the
methods used to generate adversarial malware samples, we performed four
experiments. These included tracking the time taken to generate samples,
changes in sample size after using the generator, testing effectiveness against
antivirus programs, and combining the use of multiple generators for a sample.

The results indicate that making optimised modifications to previously
detected malware can cause the classifier to misclassify the file and label it
as benign. Furthermore, the study confirms that generated malware samples
can be successfully used against detection models other than those used to
generate them. Using combination attacks, a significant percentage of new
samples can be created that can evade detection by antivirus programs.

Experiments show that the Gym-malware generator, which uses a rein-
forcement learning approach, has the greatest practical potential. This gener-
ator produces malware samples in the shortest time, with an average sample
generation time of 5.73 seconds. The Gym-malware generator achieved the
highest evasion rate among all selected antivirus products, with the highest
evasion rate recorded at 67%. In addition, the Gym-malware generator was
found to be effective when used in combination with other generators. How-
ever, when we used Gym-malware in combination twice in a row, we achieved
the highest evasion rate, up to 78%.
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Conclusion

The results suggest that the use of generator combinations may be an
effective method of modifying malware samples to evade detection by antivirus
programs. However, the effectiveness of this approach depends on the specific
combination of generators used. The Gym-malware generator is effective,
whether used alone or in combination with other generators. The Full DOS
generator is generally the least effective, whether used alone or in combination.
The GAMMA section-injection generator is also effective when used alone in
some combinations, but significantly less so than the Gym-malware generator.

Our work highlights the importance of developing effective techniques to
detect malware and identify adversarial attacks. More research in this area is
needed to successfully combat new threats and attacks.
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Appendix A

Acronyms

ACER Actor-Critic with Experience Replay

AE Adversarial Example

AML Adversarial Machine Learning

API Application Programming Interface

ASCII American Standard Code for Information Interchange

ASLR Address Space Layout Randomization

AV Antivirus

CNN Convolutional Neural Network

COFF Common Object File Format

DEP Data Execution Prevention

DLL Dynamically Linked Library

DOS Disk Operating System

EA Evolutionary Algorithm

EP Evolutionary Programming

ES Evolutionary Strategy

EXE Executable

FGSM Fast Gradient Sign Method

GA Genetic Algorithm

GAN Generative Adversarial Network
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A. Acronyms

GBDT Gradient Boosted Decision Tree

GP Genetic Programming

GUI Graphic User Interface

ML Machine Learning

OS Operating System

PE Portable Executable

RL Reinforcement Learning

RVA Relative Virtual Address

SEH Structured Exception Handling
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Appendix B

Content of Attachments

README.pdf ............................ PDF file with thesis description
data .................................... Directory with measured data
src........................................Directory with source codes
text ........................................ Directory with thesis text

bib ................................ Directory with bibliography files
fig..........................................Directory with images
tex...............................Directory with LATEXsource codes
txt............................Directory with thesis text source files
DP Louthanova Pavla 2023.pdf...............Thesis in PDF format
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Appendix C

Combination of Multiple

Techniques

This appendix contains the measured results of the experiment described in
detail in Section 5.4.4. The results are divided according to the metric used for
the evaluation. All the tables presented have the same general structure, but
differ in the metric used for evaluation. In the upper left corner of the table,
the label of the specific AV is given, which corresponds to the label in Chapter
5. The first column lists the names of the generators used first within a given
generator combination. The first row lists the names of the second generators
used within a given generator combination. The values listed in the table
correspond to the result of the specific metric for the generator combination
in the row and column.

Evasion Rate

Table C.1: Evasion rates of combinations of AE generators against AV1.

AV1 Full DOS GAMMA section-injection Gym-malware

Full DOS 0.78 16.78 30.65

GAMMA section-injection 22.60 18.57 46.42

Gym-malware 47.20 55.26 53.24

Table C.2: Evasion rates of combinations of AE generators against AV2.

AV2 Full DOS GAMMA section-injection Gym-malware

Full DOS 1.45 6.94 23.83

GAMMA section-injection 11.30 7.94 25.39

Gym-malware 26.51 27.18 29.53
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C. Combination of Multiple Techniques

Table C.3: Evasion rates of combinations of AE generators against AV3.

AV3 Full DOS GAMMA section-injection Gym-malware

Full DOS 0.90 5.71 40.05

GAMMA section-injection 11.30 16.67 47.54

Gym-malware 46.53 48.55 63.09

Table C.4: Evasion rates of combinations of AE generators against AV4.

AV4 Full DOS GAMMA section-injection Gym-malware

Full DOS 1.45 1.57 61.63

GAMMA section-injection 9.40 4.36 55.59

Gym-malware 67.34 67.79 78.19

Table C.5: Evasion rates of combinations of AE generators against AV5.

AV5 Full DOS GAMMA section-injection Gym-malware

Full DOS 0.78 4.14 34.12

GAMMA section-injection 9.28 7.83 39.49

Gym-malware 43.40 44.18 57.61

Table C.6: Evasion rates of combinations of AE generators against AV6.

AV6 Full DOS GAMMA section-injection Gym-malware

Full DOS 0.90 8.50 47.76

GAMMA section-injection 9.84 9.40 59.28

Gym-malware 54.36 59.51 73.60

Table C.7: Evasion rates of combinations of AE generators against AV7.

AV7 Full DOS GAMMA section-injection Gym-malware

Full DOS 5.26 43.96 44.86

GAMMA section-injection 45.30 44.52 74.50

Gym-malware 55.37 64.43 65.66

Table C.8: Evasion rates of combinations of AE generators against AV8.

AV8 Full DOS GAMMA section-injection Gym-malware

Full DOS 1.57 2.46 23.15

GAMMA section-injection 6.26 1.90 27.74

Gym-malware 28.19 27.52 41.39
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Table C.9: Evasion rates of combinations of AE generators against AV9.

AV9 Full DOS GAMMA section-injection Gym-malware

Full DOS 0.78 4.25 42.17

GAMMA section-injection 10.18 15.10 46.76

Gym-malware 46.53 48.55 62.75

Absolute Improvement

Table C.10: Absolute improvements of combinations of AE generators against
AV1.

AV1 Full DOS GAMMA section-injection Gym-malware

Full DOS 0.11 16.11 29.98

GAMMA section-injection 4.14 0.11 27.96

Gym-malware 1.68 9.73 7.72

Table C.11: Absolute improvements of combinations of AE generators against
AV2.

AV2 Full DOS GAMMA section-injection Gym-malware

Full DOS 0.11 5.59 22.48

GAMMA section-injection 5.93 2.57 20.02

Gym-malware 7.49 8.17 10.52

Table C.12: Absolute improvements of combinations of AE generators against
AV3.

AV3 Full DOS GAMMA section-injection Gym-malware

Full DOS 0.11 4.92 39.26

GAMMA section-injection 4.92 10.29 41.16

Gym-malware 1.68 3.69 18.23

Table C.13: Absolute improvements of combinations of AE generators against
AV4.

AV4 Full DOS GAMMA section-injection Gym-malware

Full DOS 0.56 0.67 60.74

GAMMA section-injection 5.03 0.00 51.23

Gym-malware 0.11 0.56 10.96
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Table C.14: Absolute improvements of combinations of AE generators against
AV5.

AV5 Full DOS GAMMA section-injection Gym-malware

Full DOS 0.00 3.36 33.33

GAMMA section-injection 4.81 3.36 35.01

Gym-malware 1.79 2.57 16.00

Table C.15: Absolute improvements of combinations of AE generators against
AV6.

AV6 Full DOS GAMMA section-injection Gym-malware

Full DOS 0.11 7.72 46.98

GAMMA section-injection 0.78 0.34 50.22

Gym-malware 0.78 5.93 20.02

Table C.16: Absolute improvements of combinations of AE generators against
AV7.

AV7 Full DOS GAMMA section-injection Gym-malware

Full DOS 1.12 39.82 40.72

GAMMA section-injection 1.68 0.90 30.87

Gym-malware 1.57 10.63 11.86

Table C.17: Absolute improvements of combinations of AE generators against
AV8.

AV8 Full DOS GAMMA section-injection Gym-malware

Full DOS 0.34 1.23 21.92

GAMMA section-injection 5.03 0.67 26.51

Gym-malware 1.68 1.01 14.88

Table C.18: Absolute improvements of combinations of AE generators against
AV9.

AV9 Full DOS GAMMA section-injection Gym-malware

Full DOS 0.00 3.47 41.39

GAMMA section-injection 4.81 9.73 41.39

Gym-malware 1.68 3.69 17.90
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Relative Improvement

Table C.19: Relative improvements of combinations of AE generators against
AV1.

AV1 Full DOS GAMMA section-injection Gym-malware

Full DOS 16.67 2400.00 4466.67

GAMMA section-injection 22.42 0.61 151.52

Gym-malware 3.69 21.38 16.95

Table C.20: Relative improvements of combinations of AE generators against
AV2.

AV2 Full DOS GAMMA section-injection Gym-malware

Full DOS 8.33 416.67 1675.00

GAMMA section-injection 110.42 47.92 372.92

Gym-malware 39.41 42.94 55.29

Table C.21: Relative improvements of combinations of AE generators against
AV3.

AV3 Full DOS GAMMA section-injection Gym-malware

Full DOS 14.29 628.57 5014.29

GAMMA section-injection 77.19 161.40 645.61

Gym-malware 3.74 8.23 40.65

Table C.22: Relative improvements of combinations of AE generators against
AV4.

AV4 Full DOS GAMMA section-injection Gym-malware

Full DOS 62.50 75.00 6787.50

GAMMA section-injection 115.39 0.00 1174.36

Gym-malware 0.17 0.83 16.31

Table C.23: Relative improvements of combinations of AE generators against
AV5.

AV5 Full DOS GAMMA section-injection Gym-malware

Full DOS 0.00 428.57 4257.14

GAMMA section-injection 107.50 75.00 782.50

Gym-malware 4.30 6.18 38.44
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Table C.24: Relative improvements of combinations of AE generators against
AV6.

AV6 Full DOS GAMMA section-injection Gym-malware

Full DOS 14.29 985.71 6000.00

GAMMA section-injection 8.64 3.70 554.32

Gym-malware 1.46 11.07 37.37

Table C.25: Relative improvements of combinations of AE generators against
AV7.

AV7 Full DOS GAMMA section-injection Gym-malware

Full DOS 27.03 962.16 983.78

GAMMA section-injection 3.85 2.05 70.77

Gym-malware 2.91 19.75 22.04

Table C.26: Relative improvements of combinations of AE generators against
AV8.

AV8 Full DOS GAMMA section-injection Gym-malware

Full DOS 27.27 100.00 1781.82

GAMMA section-injection 409.09 54.55 2154.55

Gym-malware 6.33 3.80 56.12

Table C.27: Relative improvements of combinations of AE generators against
AV9.

AV9 Full DOS GAMMA section-injection Gym-malware

Full DOS 0.00 442.86 5285.71

GAMMA section-injection 89.58 181.25 770.83

Gym-malware 3.74 8.23 39.90

Evasion Rate Benefit

Table C.28: Evasion rate benefits of combinations of AE generators against
AV1.

AV1 Full DOS GAMMA section-injection Gym-malware

Full DOS 0.11 2.80 5.93

GAMMA section-injection 3.58 0.11 5.82

Gym-malware 1.45 3.24 7.72
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Table C.29: Evasion rate benefits of combinations of AE generators against
AV2.

AV2 Full DOS GAMMA section-injection Gym-malware

Full DOS 0.11 0.90 14.99

GAMMA section-injection 5.26 2.57 11.52

Gym-malware 7.16 3.47 10.52

Table C.30: Evasion rate benefits of combinations of AE generators against
AV3.

AV3 Full DOS GAMMA section-injection Gym-malware

Full DOS 0.11 0.11 14.99

GAMMA section-injection 4.25 10.29 16.00

Gym-malware 1.45 2.13 18.23

Table C.31: Evasion rate benefits of combinations of AE generators against
AV4.

AV4 Full DOS GAMMA section-injection Gym-malware

Full DOS 0.56 0.34 10.63

GAMMA section-injection 4.36 0.00 9.17

Gym-malware 0.11 0.34 10.96

Table C.32: Evasion rate benefits of combinations of AE generators against
AV5.

AV5 Full DOS GAMMA section-injection Gym-malware

Full DOS 0.00 0.00 13.87

GAMMA section-injection 4.14 3.36 15.21

Gym-malware 1.57 1.57 16.00

Table C.33: Evasion rate benefits of combinations of AE generators against
AV6.

AV6 Full DOS GAMMA section-injection Gym-malware

Full DOS 0.11 0.34 15.44

GAMMA section-injection 0.67 0.34 19.46

Gym-malware 0.67 4.70 20.02
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Table C.34: Evasion rate benefits of combinations of AE generators against
AV7.

AV7 Full DOS GAMMA section-injection Gym-malware

Full DOS 1.12 1.79 11.75

GAMMA section-injection 1.57 0.90 11.19

Gym-malware 1.57 4.92 11.86

Table C.35: Evasion rate benefits of combinations of AE generators against
AV8.

AV8 Full DOS GAMMA section-injection Gym-malware

Full DOS 0.34 0.67 13.20

GAMMA section-injection 4.36 0.67 15.55

Gym-malware 1.45 0.78 14.88

Table C.36: Evasion rate benefits of combinations of AE generators against
AV9.

AV9 Full DOS GAMMA section-injection Gym-malware

Full DOS 0.00 0.34 15.88

GAMMA section-injection 4.14 9.73 16.00

Gym-malware 1.45 2.24 17.90

Evasion Rate Comparison

Table C.37: Evasion rate comparisons of combinations of AE generators
against AV1.

AV1 Full DOS GAMMA section-injection Gym-malware

Full DOS 0.11 -1.68 -14.88

GAMMA section-injection 4.14 0.11 0.90

Gym-malware 1.68 9.73 7.72

Table C.38: Evasion rate comparisons of combinations of AE generators
against AV2.

AV2 Full DOS GAMMA section-injection Gym-malware

Full DOS 0.11 1.57 4.81

GAMMA section-injection 5.93 2.57 6.38

Gym-malware 7.49 8.17 10.52
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Table C.39: Evasion rate comparisons of combinations of AE generators
against AV3.

AV3 Full DOS GAMMA section-injection Gym-malware

Full DOS 0.11 -0.67 -4.81

GAMMA section-injection 4.92 10.29 2.69

Gym-malware 1.68 3.69 18.23

Table C.40: Evasion rate comparisons of combinations of AE generators
against AV4.

AV4 Full DOS GAMMA section-injection Gym-malware

Full DOS 0.56 -2.80 -5.59

GAMMA section-injection 5.03 0.00 -11.63

Gym-malware 0.11 0.56 10.96

Table C.41: Evasion rate comparisons of combinations of AE generators
against AV5.

AV5 Full DOS GAMMA section-injection Gym-malware

Full DOS 0.00 -0.34 -7.49

GAMMA section-injection 4.81 3.36 -2.13

Gym-malware 1.79 2.57 16.00

Table C.42: Evasion rate comparisons of combinations of AE generators
against AV6.

AV6 Full DOS GAMMA section-injection Gym-malware

Full DOS 0.11 -0.56 -5.82

GAMMA section-injection 0.78 0.34 5.71

Gym-malware 0.78 5.93 20.02

Table C.43: Evasion rate comparisons of combinations of AE generators
against AV7.

AV7 Full DOS GAMMA section-injection Gym-malware

Full DOS 1.12 0.34 -8.95

GAMMA section-injection 1.68 0.90 20.69

Gym-malware 1.57 10.63 11.86
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Table C.44: Evasion rate comparisons of combinations of AE generators
against AV8.

AV8 Full DOS GAMMA section-injection Gym-malware

Full DOS 0.34 1.23 -3.36

GAMMA section-injection 5.03 0.67 1.23

Gym-malware 1.68 1.01 14.88

Table C.45: Evasion rate comparisons of combinations of AE generators
against AV9.

AV9 Full DOS GAMMA section-injection Gym-malware

Full DOS 0.00 -1.12 -2.69

GAMMA section-injection 4.81 9.73 1.90

Gym-malware 1.68 3.69 17.90
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