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Abstrakt

Moderné nanopórové sekvenátory ponúkajú užívateľovi možnosť rozhodnúť sa, či sa

reťazec DNA odmietne alebo bude sekvenovaný. Rozhodnutia sú založené na surovom

nanopórovom signále v reálnom čase. Táto funkčnosť nanopórových sekvenátorov sa

nazýva selektívne sekvenovanie. Sekvenovacie pokrytie možno navýšiť adaptívnym

vzorkovaním požadovaných reťazcov DNA a odmietaním ostatných. V súčasnosti pre-

bieha výskum viacerých metód na adaptívne vzorkovanie.

Našou prácou uľahčujeme vývoj a testovanie nástrojov na adaptívne vzorkovanie.

Predstavujeme sekvenovací emulátor schopný emulovať selektívne sekvenovanie. Opisu-

jeme jeho vývoj a demonštrujeme jeho využitie v kombinácii so známym nástrojom na

adaptívne vzorkovanie. Taktiež skúmame možnosti využitia strojového učenia pre účely

adaptívneho vzorkovania. Navrhujeme klasifikátor založený na konvolučnej neurónovej

sieti, ktorý robí rýchle rozhodnutia o sekvenovanej DNA. Klasifikátor porovnávame s

iným nástrojom na adaptívne vzorkovanie a prezentujeme naše zistenia.

Kľúčové slová: sekvenovanie, adaptívne, emulátor, vzorkovanie
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Abstract

Modern nanopore sequencers provide users with the option to decide if a DNA sequence

is rejected or sequenced. Decisions are made based on the raw nanopore signal in real

time. This feature of nanopore sequencers is called selective sequencing. One can

increase the sequencing coverage by adaptively sampling the desired DNA sequences

and rejecting the undesired ones. The potential coverage gain achieved by adaptive

sampling increases with the decision speed. Various methods to perform adaptive

sampling are currently being researched.

We facilitate the development and testing of adaptive sampling tools by introducing

a sequencing emulator capable of emulating the selective sequencing. We describe in

detail the development of the emulator and demonstrate its use in combination with a

well-known adaptive sampling tool. We also study the potential use of machine learning

for adaptive sampling. We propose a convolutional neural network classifier that makes

fast decisions about sequenced DNA. We compare the classifier with another adaptive

sampling tool and present our findings.

Keywords: sequencing, adaptive, emulator, sampling
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Introduction

Recent sequencing devices come with an exciting new feature. The user is allowed to

intervene during the sequencing run based on the sequencing data distributed in real

time. One can decide if the sequencing of a read continues or if the read is rejected and

another one is sequenced instead. A sequencing strategy can be chosen based on the

objectives of the sequencing run. The new capability of sequencing devices has poten-

tial applications in many areas utilizing sequencing technology. However, the research

into techniques to realize the feature’s full potential is still ongoing. One must be able

to make rapid decisions about individual sequenced reads in order to gain an advan-

tage during the sequencing run. Typically, the similarity between reads and desired

reference genomes is evaluated to make a decision. The need for fast decisions about a

read’s biological origin based on its small portion constitutes a difficult problem in the

field of bioinformatics. Current approaches often run into scalability issues. Decision-

making algorithms are computationally intensive. The difficulty of the problem grows

with the size of reference genome. For a long time, deciding about the nature of reads

based on their similarity to human genome sized sequences seemed like an unatain-

able goal. The recent use of GPU hardware helped accelerate the decision-making

algorithms. However, reported results keep falling short of the scientific community’s

original expectations.

In our work, we study the area of controlling sequencing runs. After reviewing the

current research, we find that advancements in the area might be hampered by the

required expertise in both the fields of biology and informatics. One must setup a se-

quencing run using a physical sequencing device in order to observe the impact of a new

algorithm on a sequencing run. We address the issue by developing a realistic sequenc-

ing emulator. The emulator facilitates the development of decision-making algorithms

and reduces calibration costs when deploying the algorithm in diverse conditions.

We demonstrate the use of the emulator throughout this thesis when it facilitates the

development of our own decision-making algorithm. We study a potential of machine

learning to develop an algorithm specialized for use with a single reference genome. In

mission-critical epidemiological applications, which utilize sequencing technologies on

a mass scale, the flexibility of the algorithm can be sacrificed for a performance gain.

We propose an approach to accelerate the sequencing of SARS-CoV-2 clinical samples.

1



2 Introduction

In Chapter 1, we review the current research in the field and further elaborate

on notable results. In Chapter 2, we describe the design and development of the se-

quencing emulator. We reserve a space to describe in detail the notable issues that we

encountered during the development. Finally, we demonstrate the use of the emulator

by fine-tuning the configuration of a third-party decision-making tool well known by

the community using the emulated sequencing runs. In Chapter 3, we propose a ma-

chine learning model to make decisions about read’s biological origin. We describe its

development and test it in realistic conditions using the emulator. Finally, we discuss

the results.



Chapter 1

Research Overview

The DNA sequencing is the process of determining the order of nucleotides in a DNA

sequence. The device performing sequencing is called sequencer. In this thesis, we study

the sequencers manufactured by Oxford Nanopore Technologies, which use nanopore se-

quencing technology. The nanopore sequencer contains a disposable component called

flowcell, on which nanopore channels are located. A nanopore channel is a protein

structure whose shape resembles a tunnel or channel. The number of channels depends

on the sequencer variant; it ranges between 128 and thousands of channels. To every

DNA sequence in a sequenced sample, the adapter is attached as a part of sequencing

library preparation. An adapter enables a DNA sequence to attach to the nanopore

channel and insert into it. The part of the adapter is a motor protein, which maintains

a stable speed of DNA sequence when passing through the channel. A carrier electric

current is passing through the nanopore channel. It controls the function of the mo-

tor protein. Individual nucleotides of the DNA sequence passing through the channel

obstruct the stream of electrons, producing a modulated output signal. Each context

of several nucleotides creates a unique signal signature. The output signal produced

by a DNA sequence passing through the nanopore channel is called a read and is dis-

tributed to the sequencer control software in real time. The order of nucleotides in

DNA sequences is determined by the analysis of reads yielded during the sequencing

run.

Nanopore sequencing greatly facilitated the spread of a sequencing technology

among its possible applications. Some of the nanopore sequencing benefits are compact

form factor of nanopore sequencers and high potential length of produced reads. Exper-

iments confirm that DNA sequences hundreds of kilobases (kb) long can be sequenced

in single pieces[12]. That is a vast improvement over the previous generation of se-

quencing technology capable of producing reads of up to hundreds of bases long. Even

though the sequencing accuracy of the previous generation sequencers is still superior

to nanopore sequencing, the increased potential read length allows a better extraction

3
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of information about the structure of a genome, e.g., the discovery of its new structural

variants. Long repeating regions in a genome are notoriously difficult to assemble when

only short reads unable to cover them are available. Nanopore sequencing technology

helps to tackle this problem by being able to cover many of those regions in a single

read, thus identifying the structure of the regions and the number of its repetitions.

Other beneficial characteristics of nanopore sequencers are their low energy demand,

ability to sequence RNA sequences, avoiding the need for their transcription to cDNA

and output information being available in real time. Said benefits play a part in the

spread of the sequencing technology into fields such as cancer research, food safety

check or customized medicine.

The sequencing technology also plays a key role in modern epidemiology[15]. The

analysis of viral and bacterial genomes provides means for scientists to determine the

nature of their interaction with host organisms, the way they spread among hosts, or

their resistance towards various external conditions. The proper medical treatment

can be chosen for a patient based on the antibiotic resistance analysis driven by the

sequencing of clinical samples contaning the bacteria. A continuous monitoring of the

viral genome after an epidemic outbreak allows one to keep track of the genome’s

evolution based on time and specific climate conditions. Gathered information can

be used to better understand the function of the virus and to implement restrictive

measures designed to effectively limit the spread of the virus. The gathered information

also plays a key role in a potential vaccine design. Viral genome sequencing has already

proven itself to be an effective method for the analysis of Ebola, Zika and SARS-CoV-2

viruses[15].

The field of epidemiology presents additional challenges for modern sequencing tech-

nology. Viral genome expression in a clinical sample is typically too low, which makes

it difficult to gather sufficient read coverage of the genome for its consequent assembly

by directly sequencing the sample. In theory, it is possible to sequence the sample long

enough to ensure that proper viral genome coverage is reached. However, the process

is time-consuming. Such long sequencing runs would easily wear out the disposable

parts of the nanopore sequencer, making the whole process expensive on a mass scale.

In some scenarios, the sequencing duration necessary to achieve sufficient read cov-

erage would even surpass the operational lifetime of those sequencer components. In

addition, an enormous number of reads that are not of interest would be produced

during the run. These data need to be stored and analyzed in order to determine their

significance in the context of the viral genome analysis. It has been documented that

samples from patients with an acute Ebola infection contained a sufficient number of

viral copies to obtain the desired genome coverage in a reasonable time by directly

sequencing the clinical sample[15]. However, in general, a bioinformatic protocol may

have to be designed for application to a clinical sample of the virus as a part of the
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sequencing run preparation process. The protocol aims to artificially amplify the viral

genome expression in a sample. It performs targeted enrichment of the viral genome. It

increases the absolute number of copies of the viral genome in the sample and removes

host background DNA, thus further increasing the relative representation of the viral

genome in the sample. A bioinformatic protocol for targeted enrichment is commonly

used for routine sequencing of Zika and SARS-CoV-2 viruses[15].

1.1 Selective Sequencing

Oxford Nanopore Technologies is an established manufacturer of nanopore sequencers.

In addition to the benefits described in the beginning of this chapter, Oxford Nanopore’s

sequencers introduce a feature that enables a user to actively alter the sequencing run

at any moment based on a real-time distributed raw output signal from the sequencer.

The feature is called the selective sequencing. A bi-directional communication can be

established between a user software and the nanopore sequencer. The user software

is provided with the raw sequencing signal gathered during the fixed time period for

each nanopore channel. The sequencer receives commands specific to a single nanopore

channel ordered by the user software based on the provided data. Using commands,

the user software can interrupt the sequencing of a DNA sequence that is currently

in a nanopore channel. The sequencer reverses the polarity of electric current passing

through the channel, thus reversing the function of a motor protein that is otherwise

inserting the DNA sequence deeper into the channel. In the reverse setting, the motor

protein ejects the DNA sequence out of the channel. The process is called unblocking of

the nanopore channel. After the process is finished, the nanopore channel is no longer

blocked by a DNA sequence in it, and another DNA sequence can start sequencing.

The user software performs adaptive sampling using commands to control the selective

sequencing run and is often referred to as the adaptive sampling tool [17]. The feature is

exposed to adaptive sampling tool through a programming interface called Read Until

API [28]. The interface executes the communication with the sequencer. It exposes the

current sequencing data and communicates commands to the sequencer.

Rejective commands ordered by the adaptive sampling tool are supposed to ensure

that only DNA sequences relevant for future data analysis are sequenced. Several

possible applications can be found for the feature. The biological background that is not

subject to future analysis can be suppressed in sequencing data. Achieving background

suppression can decrease the amount of data processed during the genome assembly,

saving time and computational resources. When performing a sequencing of various

clinical samples distinguished by unique markers called barcodes, i.e., performing the

multiplex sequencing, selective sequencing based on barcodes can be used to maintain
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a balanced coverage among all of the sequenced samples. Once a sufficient coverage

of an individual clinical sample is reached, further reads belonging to that sample can

be rejected in favor of less covered ones. Selective sequencing can be used to enrich

the desired reads in sequencing data. The sequencing speed of the current MinION

sequencer nanopore channel is 450 bases per second. It is therefore not uncommon that

a single DNA sequence occupies a nanopore channel for more than 20 seconds. Early

detection of undesired read and consequent unblocking of the nanopore channel can

save a significant amount of time that could be spent sequencing a desired read instead.

Using selective sequencing, it is possible to achieve a higher expression of desired reads

in sequencing data, relative to undesired ones, than expected based on the expression of

a desired genome in the sequenced sample. The increased expression is called relative

enrichment. If the desired genome is enriched to such an extent that an absolute

number of desired bases is higher than a number of desired bases potentially achievable

during a non-selective sequencing run, the effect is called absolute enrichment.

To achieve relative enrichment of a desired genome, a performant and precise adap-

tive sampling tool is needed. High performance is necessary to keep up with the

sequencing speed of nanopore channels while filtering out undesired reads. The pre-

cision ensures that desired reads are not unblocked incorrectly. Achieving absolute

enrichment is even more challenging task. It requires the adaptive sampling tool to

increase the throughput of nanopore channels for desired reads in comparison with

a non-selective sequencing run. The task is made more challenging by the fact that

selective sequencing, in general, decreases the throughput of nanopore channels. The

reasons are multiple. Part of a DNA sequence needs to be sequenced for an informed

selective decision to take place. It is not uncommon that more than 450 bases (1 second

of sequencing time) are necessary for the decision to be made[23]. Also, the decision-

making process consumes a non-trivial amount of time, while the DNA sequence is

being sequenced and further inserted into a nanopore channel. After an unblocking

decision is made, the DNA sequence needs to be ejected from a nanopore channel.

Throughout the duration of the unblocking process, only a short read is produced,

and the yield of a nanopore channel is decreased. Another reason for a lower through-

put of nanopore channels during the selective sequencing run is their increased failure

rate[23]. Frequent polarity changes of the electric current undergone by nanopore chan-

nels increase the chance of them losing their structural integrity. Such changes render

nanopore channels unable to attach a DNA sequence or let a DNA sequence pass

through. Therefore, after several hours of selective sequencing, a decreased throughput

of nanopore channels is observed. The failure rate increases with the frequency of re-

ceived unblocking decisions[23]. If the sequenced sample consists of short enough DNA

sequences, almost no advantage can be gained using selective sequencing. By the time

the read is ejected from the nanopore channel, it would have already been sequenced
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in a non-selective sequencing run anyway. Therefore, the potential gain from selective

sequencing increases with the length of DNA sequences in the sample.

The scientific community is currently inventing and developing methods to facil-

itate selective sequencing execution. While high relative enrichment is successfully

being achieved since earlier published experiments[25], the levels of absolute enrich-

ment remain rather modest, not surpassing 5-fold enrichment[23]. At such low levels,

selective sequencing can at best supplement the commonly used bioinformatic proto-

cols for targeted enrichment, which are used to amplify the number of copies of the

desired genome in the sample much more significantly. Such assistance of selective

sequencing accompanied by prior targeted enrichment can help shorten the time nec-

essary to obtain the desired coverage of the target genome if absolute enrichment is

consistently achieved during the sequencing run. The time necessary to accumulate a

specified read coverage of a genome is called time to answer [23] and its decrease is con-

sidered a valuable improvement even in settings where absolute enrichment achieved

by selective sequencing alone is not sufficient and targeted enrichment methods need

to be deployed.

There are two major approaches to adaptive sampling execution. In the first ap-

proach, the unblocking decisions are made based on the raw sequencing signal, often

referred to as a squiggle. Therefore, we say that the decisions are made in a squiggle

space. In the second approach, the unblocking decisions are made based on a sequence

of nucleotides represented in text form. These sequences are extracted from the raw

signal by a transformative process called base calling. We say that the decisions are

made in a sequence space. In the following sections, we describe both approaches and

their notable results.

1.2 Squiggle Space Selection

To our knowledge, the first experiments with selective sequencing were published by

Loose et al.[21]. Back then, the sequencing speed of nanopore sequencers used to be

70 bases per second. Overall requirements for adaptive sampling tools were therefore

less demanding. A comparison to a reference sequence was used to determine if a

read is desired or should be unblocked. A reference squiggle was syntehsized from the

reference sequence using a Hidden Markov Model. The model is designed, trained and

made publicly available by Oxford Nanopore Technologies. The adaptive sampling tool

aligned chunks of the raw signal directly to the reference squiggle using the Dynamic

Time Warping (DTW) algorithm[31]. The reached alignment score was used as a

criterion based on which the unblocking decision was made. A server with 22 CPU

cores was used for computations. The adaptive sampling tool was able to sample
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a 5kb region of a reference genome and normalize a genome coverage when divided

into 2kb regions. DTW is a dynamic programming-based algorithm. Its worst case

time complexity is O(nm) such that n is the length of a reference squiggle, and m

is the length of an obtained and aligned squiggle. As demonstrated by Loose et al.,

the straight-forward use of the DTW algorithm in an adaptive sampling tool requires

substantial computational power, even when aligning to a relatively short reference

squiggle corresponding to a few kilobases. Scaling adaptive sampling up to human

chromosome-like reference sequence lengths is highly unrealistic. Limited results of the

work could not be replicated once the nanopore channel sequencing speed has been

increased to the current 450 bases per second.

Masutani et al.[14] improved on the existing approach. They introduced a statisti-

cal model of selective sequencing. The model is based on prior knowledge of probability

distributions D0, D1, such that D0 models the alignment score distribution of undesired

squiggles, and D1 models the alignment score distribution of desired ones. Using the

statistical model and distributions D0, D1, a score threshold Θ is determined. Thresh-

old Θ is used as an unblocking criterion for a scores of the alignments of live squiggles

to reference squiggle during the selective sequencing run. The authors showed that the

dependency of distributions D0, D1 on the sequenced sample properties, such as GC

content or a fraction of DNA sequences being desired, is negligible as long as the sam-

ple background consisting of undesired DNA sequences can be considered statistically

random.

To speed up the DTW algorithm, three heuristical optimizations were introduced.

Firstly, the live squiggle is compacted by a process that authors call re-chunking. In an

average squiggle, more than 8 discrete signal values correspond to a single nucleotide.

Squiggle re-chunking eliminates some of the redundant information contained in it.

The squiggle is divided into non-overlapping regions. Every chunking region is sequen-

tially processed. A current average signal value is computed and updated as algorithm

iterates over the discrete signal values. If the distance between the current average

value and a processed value is lower than a threshold τ , the processed value is consid-

ered redundant, it is removed and the average value is updated. The reference squiggle

undergoes the equivalent transformation, resulting in shorter squiggles being aligned.

Secondly, seeding is used in the alignment process. Only a sub-squiggle s-times shorter

than the original one is aligned to the reference squiggle. Consequently, k candidates

with the best alignment score are selected in O(n) time complexity using Floyd-Rivest

algorithm. Knowing the alignment starting positions of all k candidates, their align-

ments are extended to the full length, and the one with the best score is selected. The

time complexity of the alignment using the seeding method is O(nm/s), due to the

fact that k is negligibly small compared to the length of the reference squiggle. Lastly,

an alignment prunning is added, based on the monotonicity of scores in the DTW
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Total kb Total reads Target kb Target reads

Repl.1 175 467 97 704 1698 161

Control 1 319 785 73 779 1660 120

Repl.2 129 430 65 949 1277 121

Control 1 283 144 68 119 1401 102

Table 1.1: Results of selective sequencing using S.cerevisiae and lambda phage[14]

dynamic programming table 1.1:

j ≤ j′ =⇒ min(D[i][j]) ≤ min(D[i][j′]) (1.1)

Once the alignment score surpasses the classifier threshold Θ, the alignment com-

putation can be interrupted prematurely without a loss of information. Using the

parameters τ = 0, 36, s = 3, k = 14, an accuracy of 80% was achieved in comparison

with the original DTW algorithm. At the same time, approximately 6-fold alignment

acceleration was reached. Consequent experiments were conducted on a MacBook Pro

with an Intel®Core i5 2GHz CPU and an 8GB of RAM which is a significant im-

provement over a server appliance due to its portability, allowing the conduction of

field experiments. During the experiment, even nanopore channels were performing

the selective sequencing, while the odd ones served as a control. The amplified region

of the reference sequence was 200kb long, representing 0.12% of the sequenced sample.

For illustration, we include the results of the experiment in Table 1.1.

A significant decrease in throughput is observed for nanopore channels participating

in selective sequencing, demonstrating the difficulties in increasing the throughput for

desired reads in order to achieve absolute enrichment. This is mainly due to the high

number of signals necessary for the alignment to make an unblocking decision about a

live squiggle. While practically no absolute enrichment was reached, a 34-fold relative

enrichment of desired reads was achieved. However, the experiments demonstrated

that selective sequencing can be performed using the increased sequencing speed of 450

bases per second and a reference sequence hundreds of kilobases long. It still applies

on the submission day of this thesis that adaptive sampling methods evaluating the

raw sequencing signal in squiggle space do not scale well when increasing the reference

sequence length to human chromosome-like sizes[17].

1.3 Sequence Space Selection

In recent years, the base calling process has been significantly sped up, mainly due to

a new base caller designs based on a recurrent neural networks (RNN). Due to their
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nature, RNN models can be efficiently simulated using GPU hardware, thus increasing

the base caller throughput and creating new potential base caller applications, such as

low latency live base calling. More recently, base callers have been further optimized

and achieve sufficient performance even when simulated on CPUs[32]. Not only is the

base calling step currently rapid enough for its application in adaptive sampling, the

base called sequence of nucleotides proves to be a more compact representation of a

DNA sequence. Well-established tools using advanced heuristics, such as minimap2,

can be used to align a sequence to the reference sequence.

To our knowledge, the first attempt to perform adaptive sampling in the sequence

space was a Read Until with Basecall and Reference-Informed Criteria (RUBRIC) pub-

lished by Edwards et al.[25]. The adaptive sampling hardware infrastructure consisted

of a notebook controlling the MinION sequencer and communicating the live sequenc-

ing data to a desktop computer in the form of queries over the network. The desktop

PC was a Dell Optilex 9020 with an Intel®Core i7 3.6GHz CPU and 16GB of RAM.

The unblocking decision is based on the alignment score of the live sequence to refer-

ence sequence alignment. Experiments did not show promising results. Base calling

process turned out to be computationally intensive enough for the rather powerful

desktop PC to only partially keep up with the base calling requests from the notebook.

The absolute enrichment reached throughout the experiments was < 2%. However, the

undesired background of the sequenced sample was successfully suppressed when 330-

fold relative enrichment of desired read coverage was achieved. The length of enriched

region rose to 4.6 Mb. Edwards et al. demonstrated the unavoidable complexity of

the adaptive sampling implementation. The nanopore channel live data were obtained

from the Read Until API even in moments when no DNA sequences were actually se-

quenced. The raw signal produced by the nanopore channel while no DNA sequence is

being sequenced or a DNA sequence is stuck and not moving in the nanopore channel

is called the stall signal. Edwards et al. report that 89% of the raw sequencing signal

obtained from the sequencer was the stall signal, which held no valuable information

about a DNA sequence, yet kept loading the adaptive sampling pipeline with data.

The authors had to design a statistical method for stall signal recognition and filtering.

However, even with the filtering in place, authors report a decrease in the throughput

of the adaptive sampling pipeline due to the excessive amount of stall signal being

received.

Loose et al. improved on the existing approach by utilizing a GPU hardware to

perform the base calling transformation in their adaptive sampling tool Readfish. For

the first time, the authors scaled the adaptive sampling to human chromosome-like

reference sequence length[23]. A ONT GridION MK-1 platform with integrated GPU

is used for adaptive sampling execution. At the same time, the improved Read Until

API that recognizes and filters out the stall signal is used, thus significantly decreasing
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the load put on the pipeline. Loose et al. demostrated significantly lower unblocking

decision latency due to the use of GPU for base calling. Authors achieved absolute

enrichment of single human chromosome when sequencing long DNA sequences of a

human sample. However, 1.2 seconds of sequencing corresponding to approximately

540 bases was necessary to successfully align read chunks to the reference sequence,

slowing down execution of unblocking decisions. Another metagenomic sequencing

experiment tested the ability to enrich the Saccharomyces cerevisiae representing 2%

of the sequenced sample. Authors report 1.6-fold absolute enrichment, thus shortening

the time necessary to achieve a desired genome coverage by 40%.

Recently, Ulrich et al.[17] pointed out the fact that minimap2 is not well-suited

for the alignment of short reads. The tool was primarily designed for efficient long-

read alignment and reaches lower sensitivity and specificity when used for adaptive

sampling. The authors developed adaptive sampling tool ReadBouncer [18]. They

proposed the use of interleaved bloom filter data structure as a reference sequence index.

Instead of actual alignment of the live sequence to the reference sequence, a similarity

to the reference sequence is estimated using a k-mer hashing method. The authors

report consistently higher classification accuracy compared to minimap2 using 360

bases long sequences. Also, a lower average decision response time is achieved. These

improvements should theoretically lead to higher achievable enrichments. However, the

tools were only tested using a sequencing emulation that provides limited information

about the effects of the improvements.

The results suggest that even though the invention of new adaptive sampling meth-

ods capable of making more rapid unblocking decisions would be beneficial, their im-

pact on the selective sequencing may be limited due to the long chunks of sequenced

raw data needed for classification. Currently, long sequencing of a DNA sequence is

required before making the unblocking decision. This causes a significant decrease in

the nanopore channel throughput, making it difficult to achieve substantial absolute

enrichment. The longest phase of adaptive sampling decision-making being waiting for

a sufficient amount of the raw data to be produced, reducing the amount of data nec-

essary for the classification could have a large impact on potential adaptive sampling

performance. Currently, there is no consensus in the scientific community about the

preferred approach optimizing adaptive sampling performance. Both adaptive sam-

pling in the squiggle space and the sequence space are being studied and considered

viable options. Our work follows up on the current research and mentioned ideas in

order to design an improved adaptive sampling tool.
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Chapter 2

Virtual Sequencing

The development of a filtering pipeline performing real-time adaptive sampling often

requires numerous experiments in a realistic setup. While some of the pipeline compo-

nents can be developed and fine-tuned as standalone tools, it is their interconnection

into a single filtering mechanism and actual deployment that often require additional

calibration. One must take into account factors such as hardware limitations of their

particular setup and properties of the sequenced sample. Both factors are highly vari-

able and may require different pipeline configuration in order to make it work efficiently.

Currently, it is rather difficult and costly to test and observe the impact that the specific

pipeline configuration has on adaptive sampling performance during a real sequencing

run. As we explain in detail in this chapter, actual sequencing of the sample using the

physical device is often necessary in order to evaluate a filtering pipeline under realistic

conditions and set it up properly. This increases the cost and difficulty of the adaptive

sampling technology deployment by the community and also makes the research in

the field less accessible as both knowledge in the fields of information technology and

biology is necessary.

In this chapter, we the describe design and implementation of the tool for emulation

of sequencing runs, which we call the virtual sequencer. It emulates the real MinION

nanopore sequencer together with its selective sequencing capabilities using stored data

from previous sequencing runs. It provides the means to test and configure a filtering

pipeline based on its performance relative to the specific hardware available and DNA

sample properties, if those are known beforehand. In addition, we demonstrate such

pipeline configuration process. We connect the Readfish[23] tool for adaptive sampling

to the virtual sequencer and attempt to enrich the Saccharomyces cerevisiae in the

ZymoBIOMICS sample[8] using emulated sequencing data. We discuss some of the

configuration details that proved to be crucial for adaptive sampling performance and

present the results.

13
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2.1 Available Sequencing Emulators

To our knowledge, currently the only available emulator of nanopore sequencing runs

is the playback feature of Oxford Nanopore’s MinKNOW software. Ulrich et al.[17]

experimented with the feature while trying to compare Readfish to their own tool for

adaptive sampling. The MinKNOW playback feature uses specialized bulk fast5 files

to replay the stored sequencing run exactly as it happened in the past. Additional

information stored in the bulk fast5 allows for emulation detail that would not have

been possible to achieve using standard fast5 files containing the raw sequencing sig-

nals. However, its support for the emulation of selective sequencing capabilities of the

physical device is very limited. Once the filtering pipeline, such as Readfish, decides to

eject the DNA sequence out of the nanopore channel, MinKNOW emulation breaks the

currently sequenced read into two reads, generates a new unique read identifier for the

read and otherwise continues to emulate the sequencing of the original read without

any change.

As demonstrated by Ulrich et al., resulting statistics obtained from such emulated

sequencing runs are misleading and limited. First, the number of on-target and off-

target bases obtained during the emulated run is fixed regardless of adaptive sampling

use and its performance. This is because the ejection of a DNA sequence causes no

change in the nature of the currently sequenced sequence and does not affect the

sequencing run itself. Thus, the only property of the emulated runs that can be changed

by adaptive sampling is the number of on-target and off-target reads. Typically, the

increased number of off-target reads is expected. A well-performing adaptive sampling

tool will reject many off-target reads quickly, which in the context of MinKNOW

emulation means breaking off-target reads into multiple reads. Similarly, the number

of on-target reads is expected to increase as little as possible, indicating high sensitivity

of an adaptive sampling tool. Thus, the use of well-performing adaptive sampling tool

leads to quite counterintuitive behavior of the emulator.

While the described metric can provide some insight into the comparison of adaptive

sampling tools, it is not sufficient for fine-tuning the tool configuration for optimal per-

formance. The available result data provide no information about relative enrichment

nor absolute enrichment of the on-target bases. Therefore, it is not possible to observe

the actual impact of the improved tool or pipeline component on the achievement of

adaptive sampling’s main objective without using the physical sequencing device.

MinKNOW playback feature also provides information about the length distribu-

tion of rejected reads. The information is crucial for verification that an adaptive

sampling tool is able to keep up with the amount of sequencing data presented to it

at every moment. It might be helphul while configuring the adaptive sampling tool to

better utilize the GPU resources, if those are being used. However, the emulation of
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the computational load itself that is put on a filtering pipeline is not necessarily real-

istic and can be exaggerated. Long off-target reads seem to be the biggest source of

inaccuracies. In MinKNOW emulation, ejecting such a read is not accompanied by the

actual read ejection and a wait for another DNA sequence to load into the nanopore

channel. In practice, such a pause helps to relieve the pressure on the computing

resources used by the filering pipeline. Instead, the sequencing of a new read starts

instantly in the emulation, and the read is again an off-target read with certainty. This

unchanging nature of the new read compared to the previously ejected read may be

realistic enough, if an on-target fraction in a sequenced sample is very small. How-

ever, the bigger is the fraction of the on-target genome, the more the distribution of

the sequenced reads skewed by the emulation, therefore putting additional unrealistic

pressure on the filtering pipeline. That may cause the length distribution of rejected

reads to be too pessimistic as the adaptive sampling was operating under an unrealistic

load.

By creating the virtual sequencer, we try to address these inaccuracies and provide

a more realistic way to emulate the sequencing runs with adaptive sampling. While

the MinKNOW playback feature can be useful for troubleshooting and can provide

some insight into the performance of an adaptive sampling tool, the virtual sequencer

is intended as a complete replacement for a sequencing device, facilitating research

and development of adaptive sampling tools without the need for any prior detailed

knowledge of biology and sequencing technologies.

2.2 Virtual Sequencer Design

In order to discuss the design of our tool, we need to first describe the design and

components participating in the actual selective sequencing process. The architecture

is visualized in Figure 2.1. The sequencer device is controlled by MinKNOW control

software. MinKNOW comes with a graphical interface that allows the user to con-

trol any of the operational aspects of the sequencing run. Settings and commands

are communicated to the sequencer by the MinKNOW software. MinKNOW is also

responsible for processing the sequencer output, a stream of discrete values produced

by each nanopore channel in real time, called the raw signal. Apart from storing the

raw signals along with their other attributes constituting reads in fast5 output files,

MinKNOW is also responsible for presenting the currently sequenced data for selective

sequencing purposes. For every nanopore channel, a signal sequenced in user-defined

time period is made available through the gRPC framework[28]. The obtained portion

of the raw signal is also called data chunk. The Read Until API communicates with the

MinKNOW software using this framework. It obtains the data chunks from the past
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Figure 2.1: Components participating in selective sequencing

time period and sends the decisions of the filtering pipeline to MinKNOW. The read

can either be rejected using the unblock decision, or it can continue to be sequenced

using the stop receiving decision, in which case no more data chunks will be received

for that particular read in future time periods. Decisions are further communicated

to the sequencer by the MinKNOW software. Implementation of the Read Until API

is provided by Oxford Nanopore Technologies. However, in principle, it is a task for

the filtering pipeline developers to develop an API that suits their needs. The Read

Until API can cache sequencing data from multiple time periods or process them in

any way imaginable for adaptive sampling purposes. Multiple implementations exist

today [28][20].

The virtual sequencer tool simplifies that design. Its architecture is visualized in

Figure 2.2. The virtual sequencer core collapses some of the physical sequencer and

MinKNOW features into a single virtual component. The virtual sequencer core uses

the raw signal from a previous finished sequencing run to mimic MinKNOW’s feature

of presenting the sequencing signals for selective sequencing purposes. The virtual

sequencer core also produces its own sequencing summary output which is discussed in

detail in Section 2.3.2. The Read Until API keeps an instance of the virtual sequencer

core and controls it directly. Similarly to the previous architecture, it obtains the

sequencing data from past time period and directly controls the propagation of the

filtering pipeline decisions. The virtual sequencer core stops presenting the raw data

for a read, if the stop receiving decision is received. When the unblock decision is

received, the virtual sequencer core emulates the DNA sequence ejection from the

nanopore channel, followed by the emulation of loading a next sequenced DNA into a

nanopore channel. The sequencing of the read that would otherwise have started on
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Figure 2.2: Architecture of the virtual sequencer

that nanopore channel after the sequencing of the recently ejected read has finished,

is started earlier in the emulation. Filtering pipeline can therefore effectively modify

the sequencing run that is being replayed. Reads from the future provide the source

of the data in the emulation, thus preserving many properties of the real sequencing

run. As an example, we can state the distribution of the DNA sequences loaded into

a nanopore channel after the sequence ejection based on the filtering pipeline decision.

Also, the time necessary to load another DNA sequence into the nanopore channel is

preserved; it is drawn directly from the data being replayed. If hours-long emulations

with intensive adaptive sampling are desirable, tens of hours-long sequencing runs are

necessary for playback to provide enough future data. If no adaptive sampling-related

decision is made by the filtering pipeline during the entire emulated run, the differences

between the actual sequencing run and its emulation will be negligible. The filtering

pipeline component remains unchanged in the design.

We consider the necessity to record a bulk fast5 file during the sequencing run

in order to replay it an unnecessary limitation. Therefore, the virtual sequencer is

designed to replay fast5 files, which are a standard data product of a sequencing run.

This decision greatly increases its usability but also brings some inherent limitations

to the design. We discuss those in the following section. Sequencers from Oxford

Nanopore Technologies are also capable of sequencing RNA sequences. Since the output

fast5 format of such sequencing runs remains unchanged, the virtual sequencer can also

emulate those runs with simple parameter changes.

The virtual sequencer uses a precomputed index for an emulation of the sequencing
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run. The purpose of the index is to hold the information about the order of individual

reads for each nanopore channel, in which they are supposed to be emulated. Reads are

sorted based on the starting time, of their sequencing during the original sequencing

run. Index data for each nanopore channel is loaded in batches continuously during

the entire emulation. Original fast5 files still need to be accessible for an emulation

to take place. This is because the index does not keep any more information about

the reads except their order and a pointer to fast5 files where further information can

be found and loaded. The approach also makes the index format more flexible. If we

decided to use additional read metadata from fast5 files in the future, the change would

not require changes in the index format. This allows the user to avoid the potential

recomputation of several indices each time we introduce a new feature.

Besides the objectives that we describe in detail in the following sections, our overall

implementation objective is to make the virtual sequencer feel familiar to an end user -

that is, a filtering pipeline developer. That endeavor starts with the design components

resembling the actual adaptive sampling setup, as shown in Figure 2.2, and goes as deep

as mimicking relevant interfaces wherever possible and providing as much of the real

life functionality as possible. Thus a filtering pipeline tuned to work with the virtual

sequencer requires only minimal changes for use in a real adaptive sampling setup. The

modular architecture of the virtual sequencer allows us to potentially mimic multiple

well-known Read Until APIs if necessary in the future.

2.3 Implementation Details

We chose Oxford Nanopore’s Read Until API[28] as a feature reference and provided

the functionality presented on its public interface in the Virtual Sequencer. We study

adaptive sampling-related literature and Oxford Nanopore’s materials in order to gain

further insight into the inner workings of selective sequencing capabilities in a physi-

cal sequencer[23][28]. We implemented the tool using Python programming language.

The choice simplifies the interface bindings to the Readfish tool and provides us with

access to Oxford Nanopore’s ont_fast5_api tool[27] for enumeration of fast5 files in-

stead of implementing and maintaining our own. Our python interfaces can still be

bound to adaptive sampling tools implemented in other programming languages, such

as ReadBouncer[18] implemented in C++. In the following subsections, we describe

various aspects of the virtual sequencer implementation.

2.3.1 Read Indexer

The read indexer computes an emulation index holding information about the sequenc-

ing order of reads during the emulation and a pointer to fast5 files, where more read
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Peak memory usage computation time

Regular sort 1.83 GB 18m 42s

Online sort 0.30 GB 19m 37s

Table 2.1: Comparison of regular sort and online sort

metadata can be found for each read. The Read Indexer enumerates all of the reads in

all of the fast5 files that form the real sequencing run output. The index stores as little

information as possible in order to avoid unnecessary data redundancy. In particular,

we store the read identifier, channel identifier and starting time. The fast5 file format

allows random access to read metadata using read identifier. The index entry consists

of read identifier and a file pointer, which is simply an order of the fast5 file in the

sequencing run folder when sorted numerically according to unique part of the fast5

file name. Both the read indexer and virtual sequencer sort the fast5 file names the

same way to obtain an identical mapping of file orders to file descriptors. Index entries

are sorted based on the starting time and output to the read queue file identified by

channel identifier. To reduce the index size, a binary format is used.

With index entries being compact, it is possible to simply extract index entries from

the entire sequencing run and subsequently sort them for every queue corresponding

to an individual nanopore channel. However, this approach requires storing all of the

index entries at once, thus increasing peak memory usage to an extend that might not

be acceptable for some applications. In addition, reads in fast5 files are not completely

out of order either. Even though we do not understand the exact read ordering in

fast5 files produced by MinKNOW, our experience suggests that the ordering of reads

is close enough to our desired order that a naive online sorting algorithm is beneficial

to employ instead of a regular sort. The online sorting algorithm allows the reads to

be continuously stored in output index files throughout the indexing process. Thus

reducing peak memory usage when indexing large sequencing data. The algorithm

assumes that the reads are loaded in the proper order and tries to append the read at

the end of the queue. If that is not possible, it moves one element towards the beginning

of the queue and tries again. That repeats until the read is successfully inserted in the

sorted queue. We call the number of steps taken towards the beginning of the queue

during the sorting insert a sorting distance. We always keep a minimum number of

sorted reads in the cache and check if the sorting distance did not exceed that number,

which would mean that we might not have been able to insert the read in a proper

position in the queue due to the lack of past queued data. We use a simple array as a

sorted container because this check would not have been possible if we simply used a

heap data structure.
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We compare on real data using regular sorting and online sorting approaches. The

sequencing data were 312 GB in size. We built an index of size 216 MB in less than 20

minutes. Table 2.1 shows that our online sorting algorithm reduces the peak memory

usage 6-fold while paying a little time penalty. The overall average sorting distance

is 2.41. The low sorting distance also makes the insert to the sorted array in a con-

stant time superior to using the heap data structure or inserting with binary search in

O(log(n)) time with the number of cached reads.

2.3.2 Virtual Sequencer Core

The core of the virtual sequencer is a multi-threaded application. Loosely coupled com-

ponents of the core are executed asynchronously in order to minimize internal latencies.

While Python’s Global Interpreter Lock [11] prevents multiple threads of a single pro-

cess from executing CPU tasks concurrently, this does not constitute a problem for the

core, designed specifically to avoid any intensive computation. On the other hand, the

core’s asynchronous design benefits massively from a concurrent execution of CPU and

I/O tasks that take place continuously during the entire emulation. The asynchronous

design is depicted in Figure 2.3.

The read loader thread loads future reads and their metadata from the index and

fast5 files into the cache. It maintains the minimal number of future reads in cache

for each nanopore channel to prevent running out of future reads even under heavy

load of unblock decisions. The read scheduler thread loads future reads from the cache

and schedules them for sequencing. Any unblock decision is communicated to the read

scheduler, which reschedules the future read for an earlier sequencing. Read scheduler

keeps a saved time record for each nanopore channel. Every time a read is rejected by

a filtering pipeline, the saved time record is updated for the relevant nanopore channel,

and a future read is rescheduled accordingly. Once the time to sequence a particular

read has come, the live-read provider is notified with all the necessary read metadata.

The live-read provider is responsible for presenting the new sequenced data chunks for

each user-defined time period. It keeps track of currently active nanopore channels,

for which selective sequencing capabilities are emulated. When the stop receiving com-

mand is received or if read sequencing is finished, it updates the active channel list

without the need for the read scheduler’s intervention. Only newly scheduled reads

are obtained from the read scheduler. Raw data chunks themselves are stored in a

proper data structure and obtained by the Read Until API’s processor thread. Filter-

ing pipeline decisions are pre-processed in the user thread that executes the filtering

pipeline algorithm. Multiple validation checks are made in order to prevent incorrect

behavior and take unnecessary load off the simulation thread. Invalid decisions are the

ones that came too late, near the end of the sequencing of the read or even after the



2.3. IMPLEMENTATION DETAILS 21

Figure 2.3: Asynchronous design of the virtual sequencer core

read sequencing has ended. Also the repeating repeating decisions; all tend to occur

naturally.

The read scheduler maintains one future read per nanopore channel stored in the

heap data structure. Once unblock decisions are introduced in the design, choosing

the right data structure for read scheduling is important. Frequent rescheduling of

the reads would make the maintenance of a sorted array inefficient. Insertion of the

freshly rescheduled reads would take O(n) time. Having a sorted array of reads is not

even absolutely necessary. Only the information about the read with minimal starting

time that needs to be scheduled is needed. Therefore, we use the heap data structure

to store the reads. When a future read needs to be rescheduled due to an unblock

decision, we insert a fresh version of the read in the heap in O(log(n)) time. We avoid

the need for the removal of the expired read version by storing the fresh upcoming

read for every nanopore channel in a separate data structure. That way, when the

next read is pulled from the heap, it can be compared to a fresh read scheduled for the

corresponding nanopore channel in order to recognize expired future reads abandoned

in the heap data structure.

The virtual sequencer core produces its own sequencing output. It makes no sense

for the core to output the authentic sequencing data as they are already present and

act as the data source of the emulation. Therefore, only the record of the modifications

to the sequencing run caused by unblock decisions is output to enable evaluation of

the emulated run later. More specifically, an output entry consists of read identifier, a

sequenced length and a single-digit decision value. We describe the evaluation of the

emulated run in Section 2.4.
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The virtual sequencer currently supports DNA sequencing at a speed of 450 bases

per second. In the fast5 file, we find the sampling rate of 4000 signal samples per second

used by the physical sequencer. Similarly, we support RNA sequencing at a speed of 70

bases per second. We found the sampling rate to be slightly lower 3012 signal samples

per second. These are the attributes of the most commonly used nanopore channels for

DNA and RNA sequencing. Other sequencing speeds and sampling rates are currently

not supported.

We encountered timing issues during the development of the virtual sequencer core.

Multiple reads scheduled for almost the same time combined with a large number of

unblock decisions, typically delivered in batches, can put the read scheduler under

load, causing non-negligible internal latencies. Unpredictable latency in unblocking

and rescheduling of the reads leads to inaccurate reporting of the sequenced length of

unblocked reads, because length reporting takes place on a user thread. Solving this

issue by assigning the read scheduler with the reporting feature would further overload

a critical section of the code. Besides those issues, the physical sequencer seems to be

able to unblock reads almost instantly, allowing a user to specify latencies of 0.1s[30].

Therefore, we decided to prioritize low unblock latency over the timely start of new read

sequencing. By reducing the time spent in synchronized critical sections of code and by

ublocking reads in multiple sections of code, we managed to keep the unblock latency

under 0.01s, which is equivalent to a 4.5 sequenced nucleotides, considering the current

DNA sequencing speed. Delayed starts of read sequencing caused by ocasional bursts of

unblock decisions are projected into saved time records to keep the emulation consistent.

The typical inconsistent behavior can be described as follows. The scheduled read

starts to be sequenced with a delay due to the internal latency. Its starting time is

updated, so the live-read provider presents the correct data chunks to the Read Until

API. The read may happen to be unblocked early by the filtering pipeline, saving a

lot of sequencing time. However, the saved time is too optimistic because the delay is

not included in it. Therefore, it is higher than realistically achievable. A saved time

record is updated with a new saved time value. A series of such inaccuracies can lead

to a situation when saved time record for a particular nanopore channel is so high

that future reads are being scheduled in the past instead of the future. Normalizing

such inconsistencies creates an error-prone emulation environment where many other

logical errors can be hidden, harming the realism of the emulation. The approach

of prioritizing the unblock latency and compensating for delays makes the emulation

effectively slow down on less performant CPUs to meet their capabilities. However,

the emulation remains consistent, reported lenghts of unblocked reads are accurate and

comparisons of the experiments conducted on the same device are relevant.
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2.3.3 Known Limitations

The virtual sequencer emulates sequencing runs based on fast5 files. That greatly

increases its usability by avoiding the need for recording specialized bulk fast5 files to

be able to replay them in the future. However, this decision has its drawbacks and

introduces some known limitations that need to be understood. Fast5 files do not

necessarily contain the continuous raw signal divided between the read records. DNA

sequences may take a variable amount of time to properly attach to a nanopore channel

and start to be sequenced. The time may be seconds long. During that time, mostly the

carrier signal is recorded by the physical sequencer, also called stall signal. MinKNOW

software tries to omit the stall signal in fast5 files. Using proprietary algorithms, it

tries to detect the stall signal recorded between the sequencing of two DNA sequences.

Sometimes, two reads follow each other so closely on a single nanopore channel that

no signal is omitted and concatenation of the signals stored in fast5 file produces a

continuous signal. This is not very common and often the signal obtained from fast5

files is discontinuous.

The Oxford Nanopore’s Read Until API introduces the option to configure Min-

KNOW software to filter the presented raw signal by various classes[29]. Those are

extraordinarily poorly documented. Unintuitive class names seem to have no further

explanation available for the integrators of the Read Until API. Our conclusion is later

confirmed by Payne et al.[12]. Payne et al. observe the raw signal in bulk fast5 files

using the visualizer software that they developed and deduce the meaning of individual

classes based on the annotations in the file. Although they admitted that not all classes

seemed to have clear meaning, they successfully identified and described most of them.

The virtual sequencer is not able to support the filtering functionality because no

signal annotations are present in the fast5 file format. Only a default setting can be

used, which is defined by the logic of the stall signal-omitting algorithms of MinKNOW

software. The Read Until API default filter setting allows MinKNOW to present

the sequencing signal produced by DNA sequences in the nanopore channel and their

adapters. Other signals recorded during various transitioning states of the nanopore

channels are often considered a burden for a filtering pipeline with limited resources.

Fortunately, we are able to support the default and most commonly used Read Until

API setting of the filters. All signals corresponding to other classes mentioned in bulk

fast5 files is effectively filtered out by the virtual sequencer as it is simply not present

in fast5 files.

Nanopore channels commonly fail during sequencing run. The DNA sequence may

get stuck in the nanopore channel, or the structural integrity of the protein forming

the channel may be broken. Both cause the nanopore channel to stop working cor-

rectly. Payne et al.[23] observe an increased rate of lost nanopore channels on flowcells
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performing the selective sequencing. The more intensive the channel unblocking, the

greater the rate at which the channels were lost. We do not emulate this behavior in

the virtual sequencer. We expect that may cause the emulation to allow for a little op-

timistic enrichment to be achieved. However, the effect is compensated to some extent.

Nanopore channels are being lost even during the non-selective sequencing run. Reads

drawn further and further from the future in order to emulate the selective sequencing

capabilities also brings the point of nanopore channel failure closer from the future to

the present, therefore also increasing the rate at which channels are being lost. It even

applies to the emulation that the more intensive the channel unblocking, the greater

the failure rate becomes, just like observed during real sequencing runs. However, we

did not examine in detail the impact of this design simplification on the emulated run.

As of the submission day of this thesis, we have not managed to find out about

the speed at which DNA sequences are ejected from the nanopore channel once the

unblock decision is communicated to the physical sequencer. We also have no knowl-

edge regarding the difference between the ejection speed of DNA and RNA sequence.

Therefore, for the demonstration, we chose the ejection speed of 10-times the DNA

sequencing speed, approximately 4500 bases per second. This is a guess on our side,

and it might undermine the ability of the virtual sequencer to plausibly predict the

results of adaptive sampling experiments using a real sequencing device. However, the

sequence ejection speed is not the most impactful factor throughout an adaptive sam-

pling experiment, and its impact decreases with the data chunk length necessary for

the filtering pipeline to make an unblocking decision.

2.3.4 Integration

The filtering pipeline interacts with the virtual sequencer core through the Read Until

API implementation. We implement a Read Until Simulator, which directly controls

an instance of the virtual sequencer core. The read until simulator design is intended

to resemble the architecture of Oxford Nanopore’s Read Until API. Its public interface

mimics the Read Until API wherever possible to ensure a minimum effort is needed

the filtering pipeline to be used with the Read Until API. The initialization aspect

of the interface has to be modified as read until simulator no longer connects to the

MinKNOW software using the gRPC framework. We were not able to obtain a full

design of the read chunk data structure obtained from the MinKNOW software and

consequently presented on the Read Until API public interface. Therefore, we mimic

at least those data members of the structure that are used in the Read Until API

source code. Other aspects of the Read Until API interface remain unchanged. The

read until simulator actually inherits most of its implementation from the Read Until

API to minimize maintenance costs once Read Until API updates are released.
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The Readfish adaptive sampling tool is known to use a slightly modified version of

the Read Until API called Read Until API v2. The modifications adjust the API to

use a Python 3 programming language. Authors also add a new cache implementation

that concatenates the read chunks obtained from the MinKNOW software that belong

to a single read. Thus allowing Readfish to base its decisions on multiple data chunks

if one chunk is not sufficient. The public interface of the Read Until API v2 undergoes

only a few minor changes.

We connect the virtual sequencer to the Readfish tool. The Readfish has been

shown on multiple occasions to work reliably in combination with the MinKNOW and

a physical sequencer[23][17]. Our communication in the Nanopore Community also

suggests that it is well adopted by the community. Therefore, the Readfish functioning

without any issues when combined with the virtual sequencer is an important sign of

the credibility of our emulations. In addition, several of Readfish’s scripts designed for

different types of adaptive sampling analyses, along with its extensive possible config-

uration using TOML files with comprehensive output prove to be a useful testing tool

for the virtual sequencer. We modify the unblock_all and ru_gen scripts from the

Readfish project and connect them to the virtual sequencer. The unblock_all script

unblocks all obtained reads after a fixed specified period of time. The ru_gen script

performs an analysis on the obtained data chunks. It uses Python bindings for Oxford

Nanopore’s Guppy base caller to base call the data chunks. Then the Python binding

for minimap2 is used to align the base called sequences to the reference sequence. The

unblocking decision is made based on the alignment and a TOML configuration file.

A decision may be defined for various alignment results. The reference sequence may

even be divided into multiple regions if amplifying or depleting specific regions of the

reference sequence is desired. We also include Readfish’s validate script without any

changes to allow a convenient way to validate a TOML configuration file. The modi-

fications necessary for the integration are subtle. Mainly, we change the initialization

part of the Read Until API, which is replaced by the read until simulator, and add

several new terminal parameters to facilitate the initialization.

The Readfish integration helped us identify some of the virtual sequencer’s weak-

nesses. Emulated runs helped us spot the timing issues described in the previous

section. We also experienced problems with using a Python binding for the Guppy

base caller. It turns out that the Guppy’ output produced for short data chunks only

dozens of values long is problematic. Short signals are notoriously difficult to base call

and the quality of the base called sequence is poor. Guppy can not base call such short

data chunks properly. The data structure produced by base calling short data chunks

is not just less populated with data. It is a whole different data structure where many

fields are omitted. The program that tries to access them runs into a runtime error

when executed. This unoptimal software design helped us find that such short data
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chunks are not being obtained from MinKNOW software in reality. We find empirically

that data chunks at least 100 samples long do not cause such problems. Aiming to keep

the Readfish unchanged during the process of connecting to the virtual sequencer, we

set a threshold for the minimum data chunk length presented by the virtual sequencer

core.

2.4 Results

We perform a series of experiments using the Readfish connected to the virtual se-

quencer. We emulate the sequencing of the ZymoBIOMICS standard sample based

on a fast5 data[8]. ZymoBIOMICS Microbial Community Standards[24] define the

composition and other attributes of metagenomic DNA samples to facilitate the re-

producibility of metagenomic sequencing experiments. The sequencing run that we

emulate is approximately 48 hours long. Therefore, it has a substantial number of

future data to draw from. Much like Payne et al.[23] did in their own experiment, we

attempt to enrich the Saccharomyces cerevisiae, which is represented in the sample at

approximately 2%. We demonstrate the use of the virtual sequencer for fine-tuning the

Readfish tool configuration in order to maximize its adaptive sampling performance.

We use the virtual sequencer output to evaluate the results. The output entries

consist of read identifier, a sequenced length of the read, and a desicion value. This

information effectively documents the changes made to the sequencing run by the adap-

tive sampling tool. In order to evaluate the sequencing run, we base call the original

fast5 files using the Guppy base caller. The virtual sequencer provides information

about the the highest ranking fast5 file that was actually used during the emulation.

This helps reduce the amount of data that needs to be base called. Then we align the

base called sequences to a reference sequence using minimap2. The minimap2 align-

ments serve as the ground truth for our evaluation. During the evaluation, we use read

identifier to determine if the read is aligned to the reference sequence. This way, we

calculate the number of on-target and off-target bases, the number of on-target and

off-taget reads and the mean on-target and off-target read length.

We perform a series of 10 minute-long sequencing experiments to properly calibrate

the adaptive sampling setup. We use a desktop PC with AMD®Ryzen 7 5700G 3.8GHz

CPU and 32 GB of RAM accompanied by NVIDIA®GeForce RTX 3060 Ti GPU. We

computed an emulation index and observe the virtual sequencer scaling the sequencing

emulation to 312 GB of data. At first, we emulate the sequencing run using a primitive

testing application for a filtering pipeline. The application waits for 10 minutes and

then finishes the emulation. Without a single interaction, the virtual sequencer replays

the sequencing run much like it originally happened, creating a baseline for future
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comparisons.

Then we attempt to enrich the Saccharomyces cerevisiae. We downloaded the

FASTA file with the consensus genome of Saccharomyces cerevisiae[6]. We precom-

puted a minimizer index using minimap2 and configured it as a reference index for

Readfish tool. We configured all 16 chromosomes in the FASTA file as target refer-

ence regions. Firstly, we chose Readfish reference configuration publicly available on

Github[19]. We configure Readfish to send stop_receiving command if the data chunk

aligns to the reference and proceed otherwise. We set the maximum number of data

chunks received per read to 12. If the raw signal consisting of 12 concatenated data

chunks can not be aligned to the reference sequence, the read will be unblocked by de-

fault. We set the data chunk length to 0.4 seconds of sequencing like Payne et al. This

equals approximately 180 sequenced bases. On Guppy server, we choose fast model

variant to minimize the decision latency. We emulate the sequencing for 10 minutes.

Table 2.2 shows that the average length of on-target reads slightly increased, in-

dicating small number of incorrectly unblocked reads. On average, almost 2200 bases

were sequenced before unblocking an off-target read, which limited the potential enrich-

ment. We still observe a 1.5-fold absolute enrichment of the target genome coverage.

In order to lower the number of sequenced off-target bases, we decrease the max-

imum number of data chunks allowed to be aligned before the read is unblocked by

default. We allow at most 3 data chunks. Table 2.2 shows an increase in number of

sequenced on-target bases and a significant decrease in the average length of off-target

reads. However, we also notice a decrease in the average length of on-target reads.

This is because 3 data chunks were not always sufficient for read to properly align to

the reference sequence.

During the emulation, we notice that the GPU utilization is extraordinarily low -

almost never surpassing the 8% threshold. Therefore, we use the HAC (high accuracy)

base calling model in the Guppy server. We expect that the higher base calling accuracy

will allow shorter data chunks to align to the reference sequence. Table 2.2 shows that

the average length of on-target reads increased, almost compensating for the decreased

maximum data chunks setting. The average length of off-target reads is practically

unchanged, indicating that the GPU’s performance is not a bottleneck for adaptive

sampling performance.

We attempt to further improve the absolute enrichment of Saccharomyces cere-

visiae. The sequenced sample is a standardized ZymoBiomics metagenomic sample.

Therefore, we have knowledge about all of the genomes contained in it. We decided

to exploit this knowledge to configure the Readfish with a better-informed adaptive

sampling strategy. We obtain the consensus genomes of Pseudomonas aeruginosa[5],

Escherichia coli [3], Salmonella enterica[7], Enterococcus faecalis[2], Staphylococcus au-

reus [10], Listeria monocytogenes[4] and Bacillus subtilis [1], which are all present in the
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Original

Run

Adaptive

Max 12 Chunks

Adaptive

Max 3 Chunks

Adaptive

Max 3 Chunks HAC

On-target

Read Count
547 810 2047 2036

Off-target

Read Count
27063 38815 90577 90040

On-target

Avg. Length
3236.38b 3281.97b 3172.02b 3242.54b

Off-target

Avg. Length
3541.05b 2181.77b 677.18b 681.89b

On-target

Bases
1.77M 2.66M 6.49M 6.60M

Off-target

Bases
95.83M 84.69M 61.34M 61.40M

Absolute

Enrichment
1.00x 1.50x 3.67x 3.72x

Table 2.2: Impact of adaptive sampling configuration on sequencing run (1)

sequenced sample. In previous experiments, reads had to be aligned to the reference

sequence in order to be sequenced; otherwise, they were rejected once the maximum

allowed number of data chunks has been received. In the following experiments, the

logic is inverted. The depleted genomes are included in a reference index. A read needs

to be aligned to any of the reference sequence target regions in order to be rejected,

rather than being rejected by default. The Saccharomyces cerevisiae is still present

in the reference index. For a read to be sequenced, it has to be aligned to the Sac-

charomyces cerevisiae regions in the reference index. However, the maximum number

of allowed data chunks can be increased because the rejection of off-target reads is no

longer bound to it. While many off-target reads will be rejected as soon as they are

aligned to some of the target regions, the Readfish can obtain a sufficient amount of

data for the rest of the reads to make a well-informed decision. The read is still rejected

by default once the maximum allowed number of data chunks has been received. We

run a series of 10 minute-long emulations and experiment with the values of maximum

allowed data chunks.

Tables 2.3 and 2.4 show an increase in the average length of on-target reads as it

approaches the average on-target read length of the entire replayed sequencing run.

Figure 2.4 shows that some reads can not be aligned to the reference sequence even

when 12 data chunks are used. The balance between obtaining enough data chunks to

make an informed unblocking decision and wasting sequencing resources on reads that
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Figure 2.4: Off-target read length distribution when processing at most 12 data chunks

will not align to the reference sequence needs to be found. Figure 2.5 shows the peak

in the histogram created by reads that could not be aligned to the reference sequence,

shifting to the side as we lower the maximum number of data chunks to 5. Table 2.4

shows an increasing absolute enrichment of the target genome and a decreasing number

of sequenced off-target bases as we lower the maximum number data chunks. The loss of

Saccharomyces cerevisiae reads produced by incorrectly unblocking short data chunks

that could not align to the reference sequence is compensated by unblocking off-target

reads as soon as they are recognized. The trend reaches its peak when at most 5 data

chunks are allowed.

While 10 minute-long experiments are useful for calibration, they may produce too

optimistic results. We notice that most nanopore channels are operational during the

initial 10 minutes of the sequencing run. Due to the destructive effect that sequencing
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Figure 2.5: Off-target read length distribution when processing at most 5 data chunks

has on some fraction of the channels, the absolute enrichment can become more modest

once the sample is sequenced for a long time. We use the inverted adaptive sampling

logic from the previous experiment and set the maximum number of data chunks to 5.

We emulate the sequencing run for 3 hours; however, we run out of future sequencing

data to draw from in slightly less than two hours. We try again, but this time we

emulate the sequencing run for 1 hour. Figures 2.6 and 2.7 compare the off-target read

length distribution of the original sequencing run and the selective sequencing run.

We compare our experiment to the similar experiment conducted by Payne et al.[23].

We expect absolute enrichments achieved in experiments to differ. The authors used

different hardware for their computations. They also conducted their experiment with a

slightly different setup. While we attempt to enrich the Saccharomyces cerevisiae right

from the start of the experiment, Payne et al. only start rejecting reads aligned to a
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Inverted

Max 12 Chunks

Inverted

Max 10 Chunks

Inverted

Max 8 Chunks

On-target Read Count 1736 1827 1922

Off-target Read Count 77274 80521 84540

On-target Avg. Length 3343.34b 3333.71b 3339.79b

Off-target Avg. Length 870.16b 813.47b 753.20b

On-target Bases 5.80M 6.09M 6.42M

Off-target Bases 67.24M 65.5M 63.68M

Absolute Enrichment 3.28x 3.44x 3.62x

Table 2.3: Impact of adaptive sampling configuration on sequencing run (2)

Inverted

Max 6 Chunks

Inverted

Max 5 Chunks

Inverted

Max 4 Chunks

On-target Read Count 2005 2113 2196

Off-target Read Count 88336 92848 96673

On-target Avg. Length 3322.86b 3322.57b 3302.11b

Off-target Avg. Length 701.74b 647.97b 603.90b

On-target Bases 6.66M 7.02M 7.25M

Off-target Bases 61.99M 60.16M 58.38M

Absolute Enrichment 3.76x 3.97x 4.09x

Table 2.4: Impact of adaptive sampling configuration on sequencing run (3)

Original Run
Adaptive

Sampling Run

On-target Read Count 4310 14358

Off-target Read Count 189113 635277

On-target Avg. Length 3562.47b 3459.40b

Off-target Avg. Length 3725.40b 663.10b

On-target Bases 15.35M 49.67M

Off-target Bases 704.52M 421.26M

Absolute Enrichment 1.00x 3.24x

Table 2.5: Emulated adaptive sampling performance

particular reference genome once the desired read coverage of the genome is reached.

This delays the sequencing phase, in which Saccharomyces cerevisiae is being enriched

alone for approximately 2 hours, thus decreasing the average enrichment. The Readfish

configuration used by the authors in the experiment has not been published. Therefore,
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Figure 2.6: Off-target read length distribution in the original sequencing run

it is unknown. Payne et al. sequenced the sample for 16 hours and reported 1.6-fold

absolute enrichment of Saccharomyces cerevisiae. The enrichment is estimated based

on the known sample composition and the amount of sequencing data yielded in non-

selective sequencing experiments conducted using similar sequencing samples.

Table 2.5 shows a 3.2-fold enrichment in the experiment. We attribute a partial

responsibility for the different results to the likely differing Readfish configurations in

the experiments and different setups of the experiments. However, considering these

factors, the comparison suggests that the results yielded by the emulation are not fully

realistic. This is likely caused by the known limitations described in Section 2.3.3. If

more realistic prediction of results is desired, the nanopore channel ejection speed needs

to be determined and a model of an increased nanopore channel failure rate needs to

be added to the emulation. However, the experiments confirm that the emulations
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Figure 2.7: Off-target read length distribution in the selective sequencing run

conducted using the virtual sequencer are consistent and allow the different adaptive

sampling tool configurations to be evaluated.
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Chapter 3

Adaptive Sampling

Considerable effort is currently being invested in the research and development of tools

for adaptive sampling execution that provide general sampling capabilities. An arbi-

trary reference genome can be configured to be enriched or depleted during the selective

sequencing run. Methods that determine the similarity of data chunks to the arbitrar-

ily chosen reference genome with high sensitivity and specificity are being researched.

They operate with the sequences of nucleotides[23][17] or with the raw signal[26]. Such

general sampling capabilities provide clear advantages of simple configuration and de-

ployment in diverse field experiments. However, generality has its cost in these methods

as not all of the sequencing data features can be used when determining the similarity

to the reference genome. In some applications, the need for single genome sequencing

is strong enough that a genome-specific adaptive sampling method may be beneficial.

One of such applications is the recent effort to study the SARS-CoV-2 virus. The

number of SARS-CoV-2 genome copies in the sequencing sample is often amplified

using biological methods, such as polymerase chain reaction[15], to achieve satisfac-

tory sequencing coverage. An adaptive sampling method specialized for enriching the

SARS-CoV-2 and exploiting all of the features in the sequencing data could repre-

sent the way to achieve a better adaptive sampling performance in a narrowly scoped,

mission-critical operations of epidemiology.

We wonder if a higher adaptive sampling performance can be achieved at the cost

of the sampling method’s generality. We describe our approach to the fast determi-

nation of the similarity between chunks of raw sequencing data and the SARS-CoV-2

genome. We implement the adaptive sampling tool called selectify, which integrates

the suggested decision-making algorithm. Then we attempt to enrich the SARS-CoV-2

sequencing data while emulating the sequencing run using the virtual sequencer.

35
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3.1 General Approach

To increase the efficiency of an adaptive sampling method, the decision-making re-

sponse time needs to be decreased while high decision sensitivity and specificity are

preserved. The time necessary for a read rejection to be executed consists of three

elements. The dominant element is typically the time needed for sequencing the data

chunk, based on which the unblocking decision is made. The second element is the

time necessary for an unblocking decision to be made. The final element is the time

necessary for ejecting the unblocked read from the nanopore channel. As we observed

in the experiments in the previous chapter, fast decision-making process may have lim-

ited impact if long data chunks are necessary for the algorithm to decide about their

nature. Current state-of-the-art adaptive sampling methods often use base calling in

order to transform the raw signal into a sequence of nucleotides. Even though modern

base callers based on a reccurent neural networks are considerably faster compared to

the previous generation, especially when run on specialized hardware such as a GPU,

their use is an added step in a decision-making process. While base calling time may

not be an issue most of the time, the emerging issue is a pessimistic prospect of de-

creasing the data chunk length necessary for a proper base calling. Base calling of

short data chunks leads to poor base calling quality because the signal normalization

step fails during the base calling process. As a result, more chunks of data need to be

obtained from MinKNOW software to retry the base calling. This makes it difficult to

reduce the time necessary to obtain the satisfactory data chunk length for further pro-

cessing, which is a dominant fraction of the time that a decision-making process takes.

In the current literature[17], the adaptive sampling tool’s sensitivity and specificity are

evaluated using a 360 base-long testing data samples, which take at least 0.8 seconds

to obtain.

Our goal is to significantly reduce the decision-making response time by decreasing

the necessary data chunk length. Because of the limitations mentioned, this is not re-

alistically achievable when deciding based on a base called sequencing data. Therefore,

we skip the base calling step and make unblocking decisions based on the raw signal.

Current methods for providing general adaptive sampling capabilities without the use

of base calling are computationaly intensive and do not scale well when a large refer-

ence genome is desired[17]. This is caused by the variable nature of the raw nanopore

signal, with multiple discrete variable values representing a single nucleotide. However,

in our setting, the general sampling capabilities are not necessary. Only a similarity to

a fixed reference signal has to be determined. We use a convolutional neural network

model (CNN) to learn to distinguish a SARS-CoV-2 -related raw signal. We design

and train the classifier aiming at its compact design, allowing for short response times

while emphasizing on the minimum data chunk length needed to make an unblocking
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decision. The trained classifier is an integral part of the selectify adaptive sampling

tool.

3.2 Polymerase Chain Reaction

Viral genome expression in a SARS-CoV-2 clinical sample is low, on average only 10-48

genome copies per microlitre[15]. This constitutes an issue for sequencing methods that

often require a bioinformatic protocol for targeted enrichment to amplify the number

of viral genome copies in the sample. However, the low viral genome coverage yielded

during the sequencing of the original clinical sample also hampers any potential train-

ing of a classification model due to the lack of training data. Therefore, we resort to

extracting the training data from clinical samples where the viral genome was amplified

using a targeted enrichment protocol. Polymerase chain reaction (PCR)-based bioin-

formatic protocols are commonly used. Such modified clinical samples have specific

properties that need to be understood.

PCR is a laboratory technique. It relies on using short synthetic DNA sequences

called primers and a DNA polymerase enzyme. The clinical sample temperature is first

increased in order to divide double-stranded DNA sequences in the sample into single

strands. Every primer sequence is a complementary sequence to some short region of a

divided single strand. After the decrease of clinical sample’s temperature, primers ligate

on the single strands, marking the beginnings of amplified regions. Primers ligation

to a single strand is much more likely compared to a ligation of two strands because

compact primer sequences can move in the sample with significantly less resistance.

Primers ligated on DNA strands create a two-stranded initiation for the polymerase

enzyme. In the following chain reaction, the polymerase enzyme elongates the primer

sequences, thus efectively synthesizing a complementary strand copy. Consequently, the

temperature is risen again. Elongated strands called amplicons are divided from their

complementary strands. The described process repeats itself in multiple iterations.

After the sample temperature decreases, primers ligate on single strands of DNA again.

This time, newly synthesized amplicons participate in the chemical reaction. Therefore,

the number of synthesized amplicons grows exponentially with the number of iterations.

To efficiently utilize the sequencing resources, multiple clinical samples are se-

quenced in a single sequencing run. Individual clinical samples, while still separate, are

marked with a unique marker called barcode. As a step in sequencing sample prepara-

tion, a barcode sequence is added at both ends of every DNA sequence in the sample.

Uniquely barcoded clinical samples are then merged and sequenced as a single clini-

cal sample. Such a process is called multiplex sequencing and uses barcodes to assign

individual reads to a specific patient.
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The design of the targeted enrichment protocol has various consequences for our

use of the sequencing data as classifier training data. Firstly, the read beginnings

in the stored sequencing data are not randomly distributed around the entire viral

genome. Almost all of the reads start at specified primer binding positions. Therefore,

extracting a fixed portion of reads for training data set will not result in training data

randomly covering the whole genome. Secondly, barcode sequences may pose an issue

for a practical use of a trained classifier as multiple barcoding kits are available on the

market. In addition, barcodes may not be used at all when performing the sequencing

of a single clinical sample.

3.3 Read Classification

3.3.1 Training Datasets

Ongoing efforts focused on monitoring SARS-CoV-2 spread and evolution provide us

with a vital source of training data. We used sequencing data produced in Institute

of Virology, Slovak Academy of Sciences. Sequenced sample was prepared using the

protocol published by Brejová et al.[13]. Analysis performed after the sequencing run

yields statistics of barcode occurrences and viral genome coverage achieved for each

barcode. It also yields the list of read identifiers that were successfully aligned to

SARS-CoV-2 genome with respect to each barcode. We use the alignmet scores of

full reads as the ground truth for the labeling of the training data. We call reads that

could be aligned to SARS-CoV-2 genome positive training examples. On the contrary,

reads that could not be aligned to SARS-CoV-2 genome are called negative training

examples. Using the statistics, we extract the training dataset from the sequencing

data. Firstly, we parse the statistics files and load all read identifiers corresponding to

reads that aligned well to SARS-CoV-2. Next, we enumerate all of the reads stored in

all of the fast5 files produced during the sequencing run. We use loaded read identifiers

to determine the positive or negative nature of the reads. Knowing the target number

of examples in the training dataset, we keep the number of positive and negative

training examples approximately balanced. For each training example, the first 5 000

raw signal values (equivalent to 562 bases) are extracted from a fast5 file. We do

not trim the beginnings of the raw signal produced by adapter sequences and barcode

sequences passing through the nanopore channel. This information could be lacking

while classifying the live raw signals. We normalize the raw signal using a modified

z-score 3.1 and add binary label at the end.
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X̄ = median(X)

MAD = median(||Xi − X̄||)

modified_z_score =
0.6745× (Xi − X̄)

MAD
(3.1)

Reads that are shorter than 675 bases are not included in the dataset. Consequently,

a random permutation of the training data is generated, and the data is stored in a

binary file.

At first, we extract only one training example per read, we choose the first 5 000 raw

signal values. Even though the training dataset does not cover the whole SARS-CoV-2

genome, its purpose is to enable us to observe the properties of various model designs

trained on the dataset. We extract approximately 160 000 positive training examples

and a similar number of negative training examples. We designate a tenth of the data

to be the testing data; the rest is used for the training of the CNN model.

3.3.2 Classifier Architecture

We use a CNN for the classification of the raw sequencing signal. Reassured by the

work of Mostavi et al.[22], we believe that, similarly to a picture, some patterns of

a local character can be observed in the sequenced signals. Exploiting this locality

using a convolutional neural network helps us reduce the number of parameters in

our model. Mostavi et al. already demonstrated that considering larger patterns or

patterns spanning multiple discontinuous parts of a genome does not help the model

classify a read more accurately. The authors tried to build a two-dimensional picture

out of a base called DNA sequence stored in a one-dimensional line. This way, filters of

convolutional layer could consider multiple regions of a signal in dot product during the

forward pass. No significant statistical correlation was found and the approach did not

overcome the one where a one-dimensional kernel is used for one-dimensional data. We

follow the approach of using one-dimensional kernels for convolutional layers. However,

instead of base called sequences of nucleotides, we are working with the raw sequencing

signal. Unlike Mostavi et al., we find that it is beneficial to move the kernel by a smaller

stride during the forward pass. The authors were not confident that there were any

significant correlations in neighboring gene expressions, since they achieved the best

results using the stride of the size of the kernel. In the raw signal, multiple variable

values represent a single nucleotide, and even the number of values corresponding to

a single nucleotide is variable. Therefore, neighboring regions of the raw signal might

be correlated as they might represent various changes in nanopore channel state. As

mentioned by the authors, increasing the depth of the CNN does not help to yield better

accuracy, which we experimentally confirmed. Adding multiple layers to the model led

to increasingly bad results in both time complexity and classification accuracy.
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In the following text, we demonstrate the iterative process of designing a CNN

model for the classification task. Using multiple experiments, we try to understand

the properties of the raw sequencing signal. We use Keras framework to build and

run CNN models. Model architectures are illustrated using the Keras building blocks

in the Python programming language. For each design iteration, we report accuracy,

specificity, sensitivity, precision and F1-score. Because of the intended model applica-

tion, we also report the classification time. We classify testing examples one-by-one

to avoid batching optimizations of the Keras framework that affect the performance

results.

The initial CNN classifier design M1 is shown in Figure 3.1. We use a sequence

of convolutional layers to explore the local features of an input signal with each layer

perceiving the input from a more global perspective than the previous one. The used

kernel size and stride are to some extent arbitrarily chosen, however, the choice is based

on the experience of Mostavi et al. We use a pooling layer to compact the convolutional

layer activation tensors and train a dense layer on the compacted inputs. We use one-

hot encoding for the output layer to provide the adaptive sampling tool with access to

information about the confidence of the input classification.

cnn = Sequential()

cnn.add(Conv1D(filters=32, kernel_size=75, strides=10, activation=’relu’,

padding=’same’, input_shape=input_shape))

cnn.add(Conv1D(filters=64, kernel_size=75, strides=10, activation=’relu’,

padding=’same’))

cnn.add(Conv1D(filters=128, kernel_size=75, strides=10,

activation=’relu’, padding=’same’))

cnn.add(MaxPooling1D(pool_size=2))

cnn.add(Flatten())

cnn.add(Dense(128, activation=’tanh’))

cnn.add(Dense(2, activation=’softmax’))

Listing 3.1: M1 design

We find out that less than 5 000 raw signal values are necessary for correct clas-

sification. Minimizing the necessary length, we find that 3 000 values, equivalent to

approximately 337 bases, are sufficient for a model to identify a read’s biological origin

with an accuracy of >91%. We also find that due to the classification of smaller inputs

containing fewer features for a model to learn, M1 can be further simplified. We modify

M1 in multiple iterations. We remove the dense layer. We move the last convolutional

layer below the pooling layer, allowing it to explore more global features of the input

signal. Finally, we decrease the number of filters for the last convolutional layer to
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avoid overfitting and decrease classification time. We illustrate model M2 in Figure

below.

Listing 3.2: M2 design

cnn = Sequential()

cnn.add(Conv1D(filters=32, kernel_size=75, strides=10, activation=’relu’,

padding=’same’, input_shape=input_shape))

cnn.add(Conv1D(filters=64, kernel_size=75, strides=10, activation=’relu’,

padding=’same’))

cnn.add(MaxPooling1D(pool_size=2))

cnn.add(Conv1D(filters=64, kernel_size=75, strides=10, activation=’relu’,

padding=’same’))

cnn.add(Flatten())

cnn.add(Dense(2, activation=’softmax’))

Table 3.1 shows that M2 achieves similar testing accuracy to M1, while Table 3.2

shows decrease in classification time due to the more compact design. Even though

both experimental models proved the ability to classify the raw signal with an accuracy

of > 91%, they have various shortcomings that need to be addressed. Both models

exhibit symptoms of overfitting during the training. The validation accuracy of >

96% surpasses the testing accuracy by a large margin. The lack of any learning rate

scheduling mechanism makes the learning progress unstable towards the end of the

training. Finally, some of the model hyperparameters, such as kernel size and strides,

are chosen arbitrarily without proper research.

We set most of the neural network hyperparameters, such as layer layout, empir-

ically using published knowledge[22] and our own experiments. However, the kernel

size and strides hyperparameters depend heavily on the raw signal properties, that we

do not understand. Therefore, we search for a better combination using a limited grid

search. Using a GPU to accelerate the training, we encounter issues with the repro-

ducibility of the training. With testing accuracy deviation being potentially higher

than an improvement achieved by the fine-tuning of the hyperparameters, we could

come to false conclusions. We solve the issue by seeding all of the random generators

with a fixed seed. We randomly initialize all neural network layers using the fixed seed.

We also limit the internal parallelism capabilities of the GPU, thus achieving higher

reproducibility of GPU computations at the cost of training speed. We find a more

optimal hyperparameter combination. Model M3, illustrated in Figure 3.3, consistently

achieves testing accuracy of >93%.
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Listing 3.3: M3 design

cnn = Sequential()

cnn.add(Conv1D(filters=32, kernel_size=60, strides=7, activation=’relu’,

padding=’same’, input_shape=input_shape))

cnn.add(Conv1D(filters=64, kernel_size=60, strides=7, activation=’relu’,

padding=’same’))

cnn.add(MaxPooling1D(pool_size=2))

cnn.add(Conv1D(filters=64, kernel_size=60, strides=7, activation=’relu’,

padding=’same’))

cnn.add(Flatten())

cnn.add(Dense(2, activation=’softmax’))

We further modify M3 in multiple iterations to solve the remaining issues. We find

that a higher number of trainable parameters helps model to achieve higher testing

accuracy, if the overfitting effect can be limited. We double the number of filters for

all convolutional layers to increase their feature extraction capacity. We add dropout

layers to limit the potential overfitting. The dropout layer rate is set to mimic the

relatively high error rate of nanopore reads. We also schedule the learning rate by

decreasing it exponentially as the training progresses. We illustrate the changes in

Figure 3.4. Table 3.1 shows an improvement in the testing accuracy, which is >93.8%.

At the same time, the overfitting symptoms persist during training. At this point, the

most likely cause for the model to overfit is the compact training dataset. Later, we

report the testing results using larger datasets.

The yield of PCR amplification in the clinical sample varies greatly. Unsuccessful

PCR amplification has various potential causes. To name at least one, viral genomes

evolve over time. If a viral region designated for primer sequences to ligate to mutates

during the evolution of the virus, primer sequence ligation on the strand sequence may

be weak, or primers may be completely unable to ligate to the strand sequence. Such

changes of the amplified viral genome typically require a redesign of the primer scheme.

Poor primer ligation may lower the quality of amplicons or prevent some regions of the

target sequence from being amplified completely. The described training dataset is

deliberately extracted from the sequencing data produced from a clinical sample where

PCR amplification yield was high. For most of patient samples, approximately 90% of

the reads could be aligned to a SARS-CoV-2 genome, indicating both high amplicon

yield and reasonable amplicon quality. For the next experiment, we extracted the

training data from a sequencing run with a lower PCR yield. The data were also

produced by the Institute of Virology, Slovak Academy of Sciences. We chose the reads

from patient samples, where approximately 30% of the reads could be aligned to the

SARS-CoV-2 genome. We expect aligned amplicons to have lower quality and want to
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observe how it affects the testing accuracy. We extract approximately 150 000 positive

training examples and a similar number of negative training examples.

Listing 3.4: M4 design

cnn = Sequential()

cnn.add(Conv1D(filters=64, kernel_size=60, strides=7, activation=’relu’,

padding=’same’, input_shape=input_shape))

cnn.add(Dropout(rate=0.1, seed=SEED))

cnn.add(Conv1D(filters=128, kernel_size=60, strides=7, activation=’relu’,

padding=’same’))

cnn.add(MaxPooling1D(pool_size=2))

cnn.add(Dropout(rate=0.1, seed=SEED))

cnn.add(Conv1D(filters=128, kernel_size=60, strides=7, activation=’relu’,

padding=’same’))

cnn.add(Flatten())

cnn.add(Dense(2, activation=’softmax’))

learning_rate_schedule =

keras.optimizers.schedules.ExponentialDecay(initial_learning_rate=0.0005,

decay_steps=10_000, decay_rate=0.96, staircase=True)

Table 3.1 shows significantly decreased testing accuracy and M4 being unable to fit

the training data. The training accuracy was only 92% compared to previous >98%.

The data labeling method using full read alignment to SARS-CoV-2 genome might

provide us with an incorrect ground truth when using a training dataset extracted from

a low-quality sequencing data. It is possible that the training dataset contains large

numbers of SARS-CoV-2 reads with poor quality. If those reads can not be aligned to

the target sequence, our labeling method considers them negative training examples.

Thus forcing the CNN model to distinguish between low-quality SARS-CoV-2 reads

and well-aligned ones. To prove our hypothesis, we train M4 on another training

dataset. We use positive training examples extracted from low-quality sequencing

data. We expect a greater quality-related variation compared to the original training

dataset. We combine the positive examples with the negative training examples from

the original dataset, expecting them to contain a low number of SARS-CoV-2 reads

that could not be aligned to the target sequence. Table 3.1 shows the testing accuracy

of >95%, which is comparable to the previous experiments with M4.

In the experiments conducted so far, we have only used the first 3 000 raw signal

values for training examples. Even though the results seem promising, they may be just

a consequence of the limited training dataset. The training examples do not cover the
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Model Name Sensitivity Specificity Precision Accuracy F1-score

M1 93.49% 89.85% 89.45% 91.60% 91.43%

M2 93.67% 90.82% 90.39% 92.18% 91.99%

M3 94.35% 92.49% 92.05% 93.38% 93.18%

M4 94.03% 93.77% 93.29% 93.90% 93.65%

M4* 86.15% 87.43% 85.44% 86.84% 85.79%

M4** 95.57% 95.23% 94.54% 95.39% 95.05%

M5 95.71% 96.61% 94.86% 96.26% 95.28%

M6 95.98% 97.85% 96.67% 97.09% 96.32%

M7 96.14% 96.38% 94.54% 96.30% 95.33%

M8 95.31% 96.07% 94.06% 95.78% 94.68%

Table 3.1: Classification measurements of the proposed classifiers

* - measurements on low-quality sequencing data

** - measurements on high-quality sequencing data using combined training dataset

Model Name Average time Maximum time Minimum time

M1 2.69ms 26.49ms 2.56ms

M2 2.55ms 18.21ms 2.35ms

M3 2.50ms 10.03ms 2.37ms

M4 2.87ms 17.87ms 2.67ms

M5 2.87ms 76.91ms 2.62ms

M6 2.85ms 102.03ms 2.62ms

M7 2.79ms 71.92ms 2.64ms

M8 2.76ms 65.90ms 2.52ms

Table 3.2: Classification times of the proposed classifiers
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entire SARS-CoV-2 genome. The coverage is limited due to the fixed set of amplicon

starting positions coming from the primer scheme of a PCR amplification protocol. To

train a CNN model that can be applied to an adaptive sampling task, we conducted

a series of experiments increasing the demands for the generalization of the raw signal

features.

First, we extract a new training dataset from the sequencing data. Instead of one

window of 5 000 raw signal values, multiple windows of the raw signal are extracted

from fast5 files. Each signal window forms an individual training example, and we

extract as many of them as can be fit into the read. This greatly increases the training

data coverage of the target sequence and the size of the training dataset. We extract

approximately 600 000 positive training examples and a similar number of negative

training examples. We designate a tenth of the dataset as testing data and use the

rest for training. We train model M5 and examine its ability to learn the features

from a richer dataset. Again, the first 3 000 raw signal values of each training example

are used during the training. Table 3.1 shows that M5 achieved a testing accuracy of

>95%. An increased size of the training dataset helps M5 avoid overfitting during the

training.

In a real adaptive sampling scenario, an arbitrary portion of the raw signal can form

a classification input. We demonstrated that the increased training dataset coverage of

both target and non-tartget genomes does not harm the model’s ability to classify the

raw signal. However, M5 was still trained and tested using fixed regions of the target

genome. To mimic classification inputs during a real adaptive sampling scenario, we

further modify the training process. Again, we use an input window of 3 000 raw signal

values from each training example, but this time its position within the 5 000 value-

long training example is chosen randomly each time. This way, raw signal motives

can be located in multiple regions of the inputs during training. We use a uniform

probability distribution to position the input window within the training example. We

expect the model to learn more general input features in order to classify the signal.

We train model M6 using the described technique. During the evaluation of the model,

we implement the same random positioning of the testing inputs. Table 3.1 shows even

higher testing accuracy of >97%.

Since the achieved results are optimistic, we aim to shorten the input length nec-

essary for the raw signal classification. We train a model M7 using the inputs of 2500

raw signal values, which is equivalent to approximately 281 bases. We also train a

model M8 using the inputs of 2000 raw signal values, approximately 225 bases. Table

3.1 shows an acceptable decrease in testing accuracy and a decrease in classification

time as we lower the input length.
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3.3.3 Selectify

We implemented a simple adaptive sampling tool. Its integral part is the trained

classification model described in the previous section. Data chunks obtained using the

Read Until API are filtered before the classification step. Even if the Read Until API

is configured with a chunk length sufficient to form a classifier input, shorter chunks

produced by DNA sequences that just started sequencing can be received from the

API. Only data chunks of sufficient length are normalized and classified. The proceed

decision is made for the rest of the chunks. A minimum classification confidence can

be set for selectify to make ublock or stop receiving decisions. If a data chunk is not

classified with satisfactory confidence, proceed decision is made by default. At most

two data chunks per read are classified. If a confident enough classification can not be

achieved, stop receiving decision is made by default as a conservative sampling strategy.

3.4 Results

We connect selectify to the virtual sequencer and test the classifier in emulated con-

ditions. We emulate the sequencing run used for the training of the classifier. We

compare statistics from a 10 minute-long non-selective sequencing run and selective

sequencing runs using Readfish and selectify adaptive sampling tools. We configure

Readfish with a consensus genome of SARS-CoV-2[9] as a reference sequence. The

stop receiving decision is sent if the data chunk aligns to the reference sequence. We

set the maximum number of processed data chunks to 3 and use the HAC base calling

model for Guppy server. We test selectify in two configurations. Firstly, a 90% data

chunk classification confidence is required for selectify to make the decision. In the

second experiment, 75% classification confidence is sufficient.

During emulated runs, we find that selectify is unable to correctly classify regions of

the genome that are not covered by the training dataset. We overestimated the level of

raw signal generalization that the model is capable of. Instead, non-overlapping train-

ing example windows caused the model to poorly classify data chunks positioned over

the boundary of two training examples. Therefore, we generated a new dataset, but this

time we overlapped training examples and made sure that the ends of the reads were

also covered. We also ensure that all individual barcoded samples are represented in the

dataset. We extracted approximately 5 training examples per read. Training dataset

consists of examples extracted from 1 500 reads per each of the 96 barcoded samples

in the merged sequenced sample. Overall, the training dataset contains approximately

720 000 positive training examples and a similar number of negative training examples.

We train M8 using the new dataset for 2 hours and achieve testing accuracy of 95.67%.
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Original Run Readfish Selectify - 90% Selectify - 75%

On-target Read Count 15592 16193 16597 16720

Off-target Read Count 3704 4061 3887 3920

On-target Avg. Length 1936.54b 1917.21b 1791.99b 1758.27b

Off-target Avg. Length 1290.07b 898.60b 1210.10b 1192.99b

On-target Bases 30.19M 31.05M 29.74M 29.40M

Off-target Bases 4.78M 3.65M 4.70M 4.68M

Absolute Enrichment 1.00x 1.03x 0.99x 0.97x

Table 3.3: Comparison of the Readfish and selectify in the emulated run

Table 3.3 shows, that Readfish was able to achieve negligible absolute enrichment.

The potential gain of unblocking off-target reads was limited by the low average length

of off-target reads in the sequenced sample. Selectify decreases the average length of

on-target reads more significantly than Readfish and is unable to deplete the biological

background of the sample. This is because the diverse nature of host background DNA

was not fully covered by the training dataset. Even when requiring 90% classification

confidence for unblock decisions, on-target reads are being unblocked during the emu-

lation. This is likely caused by the potential differences in 96 different clinical samples

merged into a single sample that are not covered by the training dataset.

Table 3.4 shows a decrease in selectify’s sensitivity compared to Readfish and its

tragic specificity of >8%. The results demonstrate that our proposed adaptive sampling

method has potential use only when sequencing samples whose composition is precisely

known and can be covered by a training dataset. Figure 3.1 shows a distribution of read

alignment starting positions of on-target reads unblocked by selectify. The distribution

is normalized by the total number of reads whose alignment to the reference sequence

starts at the particular position during the emulated run. We observe that multiple

critical areas of the target genome are consistently being depleted due to incorrect

classifications. The genome variation occurring in these areas is not properly expressed

in the training dataset. Figure 3.2 shows the reversed distribution of alignment starting

positions of on-target reads sequenced by selectify. A large portion of the target genome

was consistently classified correctly. Selectify’s specificity slightly increases with the

decreasing classification confidence threshold, but this comes at the cost of its decreased

sensitivity. We measured the average time needed for data chunk classification in

both Readfish and selectify. Table 3.5 shows that selectify accelerates data chunk

classification by 1.6-fold compared to Readfish.

Selectify’s faster decisions combined with potentially shorter data chunks needed

for the classification could lead to an increase in adaptive sampling performance when

applied to a sequencing sample with known composition. The classification speed is
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Figure 3.1: Distribution of unblocked on-target read alignment positions

increased at the cost of the model being unable to extract more general features from

the training dataset. Therefore, the classifier’s accuracy is sensitive to sequencing data

deviating from the training data. However, clinical samples contain rapidly evolving

viral DNA and a diverse host background DNA. Selectify’s current design leads to the

depletion of newly introduced variants of viral DNA, while these variants are often of

the greatest interest. The strict laboratory conditions that are required for selectify’s

high adaptive sampling performance are therefore incompatible with its application in

the field of epidemiology.
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Figure 3.2: Distribution of sequenced on-target read alignment positions

Readfish Selectify - 90% Selectify - 75%

Accuracy 86.58% 75.27% 73.93%

Sensitivity 98.78% 91.00% 88.87%

Specificity 37.90% 8.13% 10.23%

Precission 86.38% 80.88% 80.85%

Table 3.4: Classification measurements of the Readfish and selectify

Readfish Selectify - 90%

Time per data chunk 4.45ms 2.68ms

Acceleration 1.00x 1.66x

Table 3.5: Average classification times per data chunk in the emulated run
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Discussion

In our work, we aim to develop a tool that will make the research of adaptive sampling

methods more accessible and cost-efficient. We introduce the virtual sequencer, a piece

of software able to emulate selective sequencing using a previously finished sequencing

run. Unlike MinKNOW’s playback feature, the virtual sequencer is designed with

the intention of replacing the role of the physical sequencer during the development

of an adaptive sampling tool. We demonstrate its capabilities on multiple occasions.

First, we fine-tune the Readfish configuration in the emulated environment in order to

maximize its adaptive sampling performance. Next, we utilize the virtual sequencer

in the development of our own adaptive sampling tool. Finally, we use the emulated

sequencing runs to compare the two adaptive sampling tools in identical conditions

and report extensive statistics. The virtual sequencer already provides an emulated

environment for unbiased comparisons of various adaptive sampling methods. However,

its ability to predict the coverage achieved during a real sequencing run is limited due

to its several design simplifications. As a result, the reported coverage of emulated

runs tends to be higher than is achievable in real conditions.

In order to bring the emulation closer to reality, various parameters of the physical

sequencer need to be accessed and incorporated in the virtual sequencer. The future

development might include direct comparisons with the physical sequencer, which could

help identify residual differences. Also, the analysis of real selective sequencing runs

recorded in bulk fast5 files would provide us with the raw signal annotated by Min-

KNOW software. Examination of the annotations could help us identify the speed, at

which DNA sequences are ejected from the nanopore channel. As far as we know, the

ejection speed of nanopore channels remains the most significant unknown parameter

in our emulations.

We study potential applications of machine learning in adaptive sampling. In our

proposed adaptive sampling method, adaptive sampling generality is sacrificed in fa-

vor of increased performance. We design a convolutional neural network classifier

trained specifically to adaptively sample SARS-CoV-2 viral DNA sequences while se-

quencing clinical sample. We integrate the classifier into the adaptive sampling tool

selectify. Selectify proves itself in terms of decision speed. It requires significantly

shorter data chunks to make decisions, and the average time to classify a data chunk
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is lower compared to Readfish. However, we were unable to adaptively sample target

DNA sequences from a clinical sample. The design of the classifier makes it unable

to generalize features of the training dataset in such a way that viral DNA variants

not expressed in the dataset can be correctly classified. Therefore, the diverse and

rapidly evolving nature of viral clinical samples makes it unsuitable for use in the field

of epidemiology.

However, less ambitious experiments should be conducted with selectify to further

study its properties. Unlike viral clinical samples, ZymoBIOMICS Microbial Com-

munity Standard samples have a known composition. Therefore, the genomes in the

sample can be well covered by the training dataset. In such a relaxed setting, selec-

tify might be able to leverage its design to adaptively sample underrepresented DNA

sequences from the sample with notable performance.
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