
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of master’s thesis

Short-Term Precipitation Forecasting from Satellite Data Using

Machine Learning

Bc. Jiří Pihrt

Mgr. Petr Šimánek

Informatics

Knowledge Engineering

Department of Applied Mathematics

until the end of summer semester 2023/2024

Instructions

Accurate precipitation forecasting is essential for various applications, including

agriculture, transportation, and disaster management. Ground-based weather radars are

common for forecasting precipitation, but they are not always available, especially in

remote or poorly-instrumented areas. Satellite data offers an alternative way to observe

and forecast precipitation, particularly for these underserved regions. By using machine

learning techniques to predict precipitation from satellite data, it is possible to improve

short-term forecasting capabilities and provide valuable information to decision-makers

in a range of fields.

The task is as follows:

1. Conduct a literature review to gain a thorough understanding of existing techniques for

forecasting precipitation and machine learning, especially using satellite data. This will

provide the necessary background information for your work.

2. Develop a clear research question and hypothesis for your study. For example, you

could ask "Can machine learning techniques be used to accurately forecast severe rain

up to eight hours in advance using lower-resolution satellite radiance images?"

3. Inspect and understand Weather4Cast 2022 competition data. Pre-process the

necessary data for your study. Describe the dataset.

4. Train and evaluate a machine learning model on your data. You will need to decide on

an appropriate model architecture and evaluation metrics, and use them to assess the

Electronically approved by Ing. Magda Friedjungová, Ph.D. on 5 January 2023 in Prague.

model's performance.

5. Analyze and interpret the results of your study. What did you find out about the

effectiveness of machine learning techniques for short-term precipitation forecasting

using satellite data?

Electronically approved by Ing. Magda Friedjungová, Ph.D. on 5 January 2023 in Prague.

Master’s thesis

Short-Term Precipitation Forecasting from

Satellite Data Using Machine Learning

Bc. Jiř́ı Pihrt

Department of Applied Mathematics

Supervisor: Mgr. Petr Šimánek

May 4, 2023

Acknowledgements

I would like to express my sincere thanks to my supervisor Mgr. Petr Šimánek
for his leadership during the competition and for providing us with an excep-
tional work environment. I also thank my colleagues Bc. Rudolf Raevskiy
and Ing. Matej Choma for their contributions.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipulated
by the Act No. 121/2000 Coll., the Copyright Act, as amended, in particular
that the Czech Technical University in Prague has the right to conclude a
license agreement on the utilization of this thesis as a school work under the
provisions of Article 60 (1) of the Act.

In Prague on May 4, 2023

Czech Technical University in Prague

Faculty of Information Technology

© 2023 Jǐŕı Pihrt. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Pihrt, Jǐŕı. Short-Term Precipitation Forecasting from Satellite Data Using
Machine Learning. Master’s thesis. Czech Technical University in Prague,
Faculty of Information Technology, 2023.

Abstrakt

Geostacionárńı meteorologické satelity jsou zdrojem globálńıch a častých po-
zorováńı počaśı, ale nepozoruj́ı př́ımo srážky. V této práci zkoumáme me-
tody odhadováńı a předpov́ıdáńı srážek ze satelitńıch dat. Ćılem této práce je
předpovědět až 8 hodin radarových sńımk̊u srážek s vysokým rozlǐseńım z mul-
tispektrálńıch satelitńıch sńımk̊u s větš́ım kontextem ale menš́ım rozlǐseńım.
Pro tento úkol jsme vyvinuli nový model hlubokého učeńı s využit́ım neuro-
nových śıt́ı U-Net a PhyDNet. Nazvali jsme jej WeatherFusionNet, protože
slučuje tři r̊uzné zp̊usoby zpracováńı satelitńıch dat; předpov́ıdáńı budoućıch
satelitńıch sńımk̊u, odhadnut́ı srážek ve vstupńı sekvenci a př́ımé použit́ı
vstupńı sekvence. Pro trénováńı a vyzkoušeńı modelu na reálných datech jsme
se zúčastnili NeurIPS soutěže Weather4cast 2022, která poskytuje prostorově
a časově srovnané satelitńı sńımky a ćılová radarová data. WeatherFusion-
Net dosáhla prvńıho mı́sta v hlavńı části soutěže. Dále jsme experimentovali s
několika daľśımi modely, zkusili zahrnout statická data do vstupu a porovnali
náš model s předpov́ıdáńım př́ımo z radaru.

Kĺıčová slova předpověd’ počaśı, předpověd’ srážek, satelitńı data, strojové
učeńı, hluboké učeńı, neuronová śıt’, rekurentńı neuronová śıt’, konvolučńı neu-
ronová śıt’

vii

Abstract

Geostationary meteorological satellites are a source of global and frequent
weather observations, but they do not directly observe precipitation. We re-
search existing methods for inferring and forecasting rainfall from satellite
data. The aim of this thesis is to predict high resolution precipitation radar
observations up to 8 hours ahead from larger context but lower resolution
multi-spectral geostationary satellite images. We develop a novel deep learn-
ing model for this task, utilizing the U-Net and PhyDNet neural networks.
We name it WeatherFusionNet, as it fuses three different ways to process
the satellite data; predicting future satellite images, estimating precipitation
in the input sequence, and using the input sequence directly. To train and test
it on real data, we participate in the NeurIPS Weather4cast 2022 competition,
which provides spatially and temporally aligned satellite imagery and target
precipitation radar data. WeatherFusionNet achieved first place in the Core
challenge of the competition. We further experiment with several different
models, try including static data in the input, and compare our model with
a direct radar-to-radar model.

Keywords weather forecasting, precipitation forecasting, satellite data, ma-
chine learning, deep learning, neural network, recurrent neural network, con-
volutional neural network

viii

Contents

Introduction 1

1 Theoretical background 3

1.1 Weather forecasting . 3
1.1.1 Numerical weather prediction 3
1.1.2 Radar nowcasting . 5

1.2 Deep learning model architectures 5
1.2.1 U-Net . 6
1.2.2 ConvLSTM . 8
1.2.3 PhyDNet . 9

1.2.3.1 PhyCell . 11

2 Related work 13

2.1 MetNet . 13
2.2 MetNet-2 . 16
2.3 SEVIR dataset . 16
2.4 Synthetic radar . 18

2.4.1 Physics-based approaches 18
2.4.2 Machine learning approaches 18

2.4.2.1 U-Net . 19
2.4.3 Global Precipitation Measurement 20

2.4.3.1 IMERG . 20

3 Weather4cast 2022 competition 23

3.1 Data . 24
3.1.1 Satellite . 24
3.1.2 Radar . 25
3.1.3 Competition-specific details 25
3.1.4 Static data . 27

3.2 Task . 28

ix

3.3 Starter kit . 29
3.4 Solutions of other competitors 29

3.4.1 Model Ensemble for Probabilistic Rain Prediction . . . 30
3.4.2 Vision Transformers for Weather4cast 30
3.4.3 SIANet . 30
3.4.4 RainUnet . 30
3.4.5 Region-Conditioned Orthogonal 3D U-Net 31

4 WeatherFusionNet 33

4.1 Architecture . 33
4.1.1 U-Net . 34
4.1.2 Crop & Upscale . 35
4.1.3 Satellite PhyDNet . 36
4.1.4 Sat2Rad U-Net . 36
4.1.5 WeatherFusionNet . 37

4.2 Training and results . 37
4.2.1 Sat2Rad U-Net . 37
4.2.2 Satellite PhyDNet . 38
4.2.3 WeatherFusionNet . 40

4.3 Ablation study . 43
4.4 Competition results . 44

5 More experiments 45

5.1 Static data . 45
5.2 Optical flow . 46
5.3 Radar to radar . 48

Conclusion 51

Outline of future work . 52

Bibliography 53

A Acronyms 61

B Contents of enclosed medium 63

x

List of Figures

1.1 NWP ensemble . 4

1.2 Optical flow algorithms . 6

1.3 U-Net architecture . 7

1.4 LSTM unfolded . 8

1.5 ConvLSTM architecture . 9

1.6 PhyDNet disentangling architecture 10

1.7 PhyDNet recurrent block . 11

1.8 PhyCell . 12

2.1 MetNet samples . 14

2.2 MetNet architecture . 14

2.3 MetNet performance . 15

2.4 MetNet ablations . 15

2.5 MetNet-2 architecture . 16

2.6 Comparison of MetNet and MetNet-2 17

2.7 SEVIR sample . 17

2.8 Synthetic radar example . 19

2.9 Synthetic radar data sources . 20

2.10 Satellite precipitation detection . 21

2.12 IMERG example . 22

3.1 Satellite data . 24

3.2 Radar data . 25

3.3 OPERA and MSG contexts explanation 26

3.4 Radar overlaid on top of satellite 26

3.5 Region locations . 27

3.6 Data availability . 27

3.7 Static data example . 28

4.1 U-Net baseline architecture . 34

4.2 U-Net Crop & Upscale architecture 35

xi

4.3 WeatherFusionNet architecture . 36
4.4 Sat2Rad U-Net training charts . 38
4.5 Sat2Rad U-Net predictions . 39
4.6 Satellite PhyDNet training charts 39
4.7 Satellite PhyDNet predictions . 40
4.8 IoU over time . 41
4.9 WeatherFusionNet training charts 42
4.10 WeatherFusionNet predictions . 42
4.11 IoU over time (ablation) . 43

5.1 WeatherFusionNet architecture (with static data) 45
5.2 Sat2Rad Optical Flow architecture 46
5.3 IoU over time (optical flow) . 47
5.4 Sat2Rad Optical Flow predictions 48
5.5 Radar2Radar U-Net architecture 48
5.6 IoU over time (Radar2Radar U-Net) 49
5.7 Radar2Radar predictions . 49

xii

List of Tables

3.1 MSG SEVIRI satellite channel characteristics 24

4.1 PhyDNet training hyperparameters 40
4.2 U-Net training hyperparameters 41
4.3 Validation metrics . 41
4.4 Validation metrics (ablation study) 43
4.5 Heldout metrics . 44
4.6 Final competition ranking . 44

5.1 Validation metrics (static data) . 46
5.2 Validation metrics (optical flow) 47

xiii

Introduction

Precipitation forecasting is a long standing scientific challenge with direct so-
cietal impact. The task is suitable for machine learning due to vast amounts
of continuously collected data and a rich spatial and temporal structure with
long range dependencies. In the field of machine learning, deep neural net-
works have seen remarkable progress in recent years due to increased amounts
of available data, better model architectures and ease of implementation on
powerful specialized hardware such as GPUs and TPUs. [1]

Recently, a large amount of deep learning research was devoted to precipitation
forecasting from ground based precipitation radar observations. However,
ground based radars have limited range, and are not present in many less
populated areas in the world. [2]

Geostationary meteorological satellites are a tempting source of global, fre-
quent and uninterrupted weather observations. However, they do not directly
observe precipitation. This thesis focuses on methods which infer and forecast
precipitation directly from satellite images.

The aim of this thesis is to develop a deep learning model for short-term pre-
diction of precipitation from geostationary satellite images. To train and test
it on real data, we participate in the NeurIPS Weather4cast 2022 competi-
tion, which provides spatially aligned satellite imagery and target precipita-
tion radar data.

Chapters 1 and 2 present a research of current weather forecasting and deep
learning methods. Chapter 3 describes the competition and provided data.
In Chapters 4 and 5, we present our implemented approaches and experiments.

1

Chapter 1

Theoretical background

This chapter briefly explains some of the important concepts and methods
necessary for the rest of this thesis.

1.1 Weather forecasting

Deep-learning weather prediction models are often compared to traditional
techniques. This section provides a brief overview.

1.1.1 Numerical weather prediction

Typical long-term weather forecasts are generated using numerical weather
prediction (NWP) models. These models work by utilizing the laws of physics
to simulate the dynamics of the atmosphere and forecast future weather based
on current observations. The core concept is solving partial differential equa-
tions (PDEs) which govern the dynamics of the atmosphere, with an initial
condition (the observed weather), also referred to as an initial value problem.
This idea is more than 100 years old, even though there were no computers
and hardly any frequent atmospheric observations. NWP has seen substantial
advances over the past decades due to improvements in the representation of
the physics, an increase in observational data and an exponential growth in
computing power. [3, 1]

According to [4], there are seven basic equations that should, in theory, fully
describe the dynamics of the atmosphere. However, it is mathematically dif-
ficult to solve them analytically, so they need to be solved numerically with
spatial and temporal discretizations. The computational and power demands
of NWP grow as a power of the resolution of the forecast. This creates a trade-
off between the accuracy of the forecast, which requires increasing levels of
resolution, and the time required to compute the forecast. [4, 1]

3

1. Theoretical background

NWP simulations from a given input state are usually deterministic. This
contrasts with the chaotic nature of the atmosphere. Even small perturbations
in the input state can lead to vastly different predictions, and the accuracy
decreases over time. It is also unrealistic to assume that the measurements of
the current weather are perfect, due to noise and missing coverage of many
regions. This calls for a need to measure uncertainty of the forecasts.

The operationally used solution is to compute a set of Monte Carlo simulations
with slightly perturbed initial states, referred to as an ensemble. Depending
on the predictability of the current weather, the resulting forecasts will differ
to varying degrees, providing an estimate of the uncertainty of the predictions.
As shown in Figure 1.1, the ensemble can be used to estimate the probability
of weather events at a specific time. [4, 3]

Figure 1.1: Visual explanation of estimating the probability of precipitation
using a NWP ensemble. [3]

Some of the currently operational NWP systems are:

• GFS (Global Forecast System)1 and GEFS (Global Ensemble Forecast
System)

• ECMWF (European Centre for Medium-Range Weather Forecasts)2

• WRF (Weather Research and Forecasting Model)3

• HRRR (High Resolution Rapid Refresh)4

1https://www.ncei.noaa.gov/products/weather-climate-models/global-forecast
2https://www.ecmwf.int/
3https://www.mmm.ucar.edu/models/wrf
4https://rapidrefresh.noaa.gov/hrrr/

4

https://www.ncei.noaa.gov/products/weather-climate-models/global-forecast
https://www.ecmwf.int/
https://www.mmm.ucar.edu/models/wrf
https://rapidrefresh.noaa.gov/hrrr/

1.2. Deep learning model architectures

1.1.2 Radar nowcasting

NWP methods typically perform long-term forecasts over a large area, but
at the cost of a lower spatial and temporal resolution and longer compute
time, which makes them less suitable for very short-term forecasting (several
hours ahead), often called nowcasting. A desirable source of precipitation mea-
surements are precipitation radars, which produce frequent and low latency
observations.

Traditional precipitation nowcasting is usually performed in two steps through
the extrapolation of radar images, based on Lagrangian persistence. First,
a motion field (or advection field) is estimated from a sequence of past radar
images. See Figure 1.2 for an example. The techniques developed for this task
in meteorology generally match the optical flow estimation algorithms devel-
oped in computer vision, such as the Lucas–Kanade [5] method. In the second
step, the most recent radar observation is extrapolated using the estimated
motion vectors. [2]

These methods can be roughly divided into two categories:

• Object-based extrapolation first identifies a convective storm cell,
and then extrapolates its trajectory based on the estimated motion.
This technique is mainly suitable for nowcasting convective storms with
high-intensity and stability.

• Region-based extrapolation techniques work directly with the radar im-
age and extrapolate all grid values without specific classifications.

However, these methods work under the assumption that the motion and in-
tensity of the precipitation field are constant. Their performance is poor when
forecasting rapidly changing weather, especially for severe storms with abrupt
intensity, location and size changes. They are unable to represent the dynam-
ics of storm initiation or decay. [6, 7]

Some extrapolations methods are implemented in open-source Python libraries
rainymotion [8] and pySTEPS [9]. These can serve as reasonable baselines
when developing deep-learning models for this task.

1.2 Deep learning model architectures

This section describes the neural network architectures used in the practi-
cal part of this thesis. Knowledge of machine learning techniques, especially
recurrent and convolutional neural networks, is assumed.

5

1. Theoretical background

Figure 1.2: Comparison of advection fields obtained by various optical flow
methods from the pySTEPS library. [9]

1.2.1 U-Net

U-Net [10] is an image-to-image convolutional neural network. The name is
inspired by its U-shaped architecture shown in Figure 1.3. It can be described
as a symmetrical encoder-decoder architecture, consisting of a contracting
path to capture context and a symmetric expanding path that enables precise
localization, further enhanced by the usage of skip/shortcut connections.

The original U-Net proposed by [10] is illustrated in Figure 1.3. The contract-
ing path (encoder) follows the typical architecture of a convolutional network,
with unpadded convolutional layers followed by a ReLU activation function
and max-pooling to downsample the image resolution. At each downsampling
step, the amount of feature channels is doubled. Every step in the expansive
path begins with a 2 × 2 up-convolution (transposed convolution) which also
halves the amount of feature channels, a concatenation with the output of
the corresponding encoder layer, and two more 3 × 3 unpadded convolutions,
each followed by a ReLU. At the final layer, the 64 channel output is mapped
to the desired amount of output channels using a 1 × 1 convolution.

U-Net likely gained a lot of popularity due to its simple architecture, which
opens up the door to a lot of possible modifications. Over the years, many
improvements and variants have been developed. For example, the unpadded

6

1.2. Deep learning model architectures

Figure 1.3: The original U-Net architecture. Blue boxes represent multi-
channel feature maps. The number of channels is denoted on top of the box.
White boxes represent feature maps copied in skip connections. The arrows
denote the different operations. [10]

convolutions from the original proposal can be replaced with padded convolu-
tions, enabling the model to output exactly the same dimensions as the input.
Many variants make use of batch normalization [11] or similar normalization
techniques. U-Net can also be augmented with attention modules [12], or
nested skip connections [13]. A 3D U-Net [14] variant replaces 2D convolution
layers with 3D convolutions for processing 3D data.

Although U-Net was originally designed for image segmentation (classifica-
tion of each output pixel), it can be used in various image-to-image trans-
lation tasks, such as denoising [15] or super-resolution [16]. Spatio-temporal
prediction can be also be approached as an image-to-image translation task,
where the temporal dimension is flattened by concatenating the frames in
the channel dimension. Compared to recurrent networks, U-Net has a lower
computational cost and is more powerful in maintaining the multi-scale spatial
information of input data [17]. The contracting and expanding mechanisms
in U-Net can propagate information over large distances from input to output
images without the need for large convolution kernels, which are computa-
tionally expensive. U-Net is widely used in spatio-temporal forecasting tasks
including weather forecasting [18, 19, 20, 7]. 3D U-Net can also be used for
spatio-temporal prediction [21, 6], where the temporal dimension is considered

7

1. Theoretical background

as the third dimension and also processed with convolutions.

1.2.2 ConvLSTM

Recurrent neural networks (RNN) are commonly used for time series. They
are suited for tasks such as classifying all items in a sequence or predicting
the next items in a sequence. A successful and widely used RNN is the LSTM
(Long Short-Term Memory) [22] neural network.

Although LSTM has proven powerful for handling temporal correlation, it
has too much redundancy for spatial data, due to the usage of dense (fully
connected) layers. Convolutional LSTM (ConvLSTM) [23] replaces those full
connections with convolution operations. To achieve this, the hidden state
ht, the memory cell state ct, and all inputs and outputs of the gates ft, it, ot

are 3D tensors, consisting of two spatial dimensions and a channel dimension.
The key equations of ConvLSTM are:

ft = σ(Wxf ∗ xt + Whf ∗ ht−1 + Wcf ⊙ ct−1 + bf)

it = σ(Wxi ∗ xt + Whi ∗ ht−1 + Wci ⊙ ct−1 + bi)

gt = tanh(Wxg ∗ xt + Whg ∗ ht−1 + bg)

ct = ft ⊙ ct−1 + it ⊙ gt

ot = σ(Wxo ∗ xt + Who ∗ ht−1 + Wco ⊙ ct + bo)

ht = ot ⊙ tanh(ct),

(1.1)

where xt is the input at time step t, W and b are the network’s parameters
(weights and biases), σ and tanh are the sigmoid and hyperbolic tangent
functions, ‘∗’ denotes the convolution operator and ‘⊙’ denotes the Hadamard
product (point-wise multiplication). See Figure 1.4 for a visual explanation.

Figure 1.4: Visualized LSTM recurrent cell A unfolded. Yellow boxes rep-
resent fully connected layers (convolutional layers in ConvLSTM) and corre-
sponding activation functions. [24]

8

1.2. Deep learning model architectures

Like the fully connected LSTM, ConvLSTM can also be used as a build-
ing block to form more complex architectures. The authors of ConvLSTM
propose the architecture shown in Figure 1.5. It consists of an encoding net-
work and a forecasting network, which are both formed from several stacked
ConvLSTM layers (cells). The last states and cell outputs of the encoding
network layers are copied to the initial states of the forecasting network.
The states of the forecasting network are then concatenated and fed into
a 1 × 1 convolutional layer to generate the prediction sequence. [23]

Figure 1.5: Encoding-forecasting ConvLSTM architecture. [23]

1.2.3 PhyDNet

An appealing way to improve spatiotemporal prediction methods is by lever-
aging physical knowledge described by partial differential equations (PDE).
However, physics alone is not enough to describe the full visual content of
sequences of images. PhyDNet [25] (PhyD stands for physical dynamics) is
a deep RNN architecture dedicated to video prediction, which leverages phys-
ical dynamics and disentangles it from other complementary information.

To achieve this, [25] propose a disentangling architecture of two branches,
as shown in Figure 1.6. The left branch represents the physical dynamics,
and features a recurrent physically constrained cell called PhyCell, which per-
forms PDE-constrained prediction in latent space. The right branch extracts
other residual information required for future prediction, such as visual ap-
pearance and details, using ConvLSTM cells. Combining both representations
eventually leads to more accurate image sequence prediction. [25, 26]

Formally, let u = u(t, x) be the frame of a spatiotemporal sequence at time
t for spatial coordinates x = (x, y), h(t, x) ∈ H the latent representation
of the sequence up to time t, which decomposes as h = hp + hr, where hp

represents the physical component and hr the residual component of the dis-
entanglement. The sequence evolution in the latent space H is described by
the partial differential equation

∂h(t, x)

∂t
=

∂hp

∂t
+

∂hr

∂t
:= Mp(hp, u) + Mr(hr, u), (1.2)

9

1. Theoretical background

Figure 1.6: Disentangling architecture of PhyDNet, shown on the Moving
MNIST dataset. [25]

where Mp(hp, u) and Mr(hr, u) represent physical and residual dynamics in
the latent space H. The goal of PhyDNet is to learn the mapping from input
sequences to a latent space which approximates these disentangling properties.

A video frame ut at time t is mapped by a deep convolutional encoder E into
a latent space representing the targeted space H. E(ut) is then used as input
for two parallel RNNs.

The left branch in Figure 1.7 fulfills the physical part of the PDE in Equa-
tion 1.2, ∂hp(t,x)

∂t
= Mp(hp, u). This PDE is modelled by PhyCell, described

in the following section (1.2.3.1). This leads to the computation of h
p
t+1 from

E(ut) and h
p
t .

The right branch fulfills the residual part of the equation, ∂hr(t,x)
∂t

=
Mr(hr, u). A generic RNN, such as ConvLSTM, can be used for computing
hr

t+1 from E(ut) and hr
t . The network used in [25] consists of three stacked

ConvLSTM layers.

The combined representation, ht+1 = h
p
t+1 +hr

t+1, is then processed by a deep
decoder D to predict the next frame ût+1.

10

1.2. Deep learning model architectures

Figure 1.7: Left: PhyDNet recurrent neural network. Right: The same net-
work unfolded, forming a sequence to sequence model suited for multi-step
video prediction. [25]

1.2.3.1 PhyCell

PhyCell (Figure 1.8) is a physically constrained RNN cell introduced in [25]
that models the dynamics Mp(hp, u) in two steps:

Mp(h, u) := Φ(h) + C(h, u). (1.3)

The index p in hp is dropped for simplicity. The first step Φ(h) is a physical
predictor modelling the latent dynamics, and C(h, u) is a correction step,
similar to a Kalman filter [27].

The physical predictor Φ(h) is modelled as follows:

Φ(h(t, x)) =
∑

i+j<q

ci,j
∂i+jh

∂xi∂yj
(t, x), (1.4)

a linear combination with learned coefficients ci,j of spatial derivatives up to
a certain order q. This is implemented with two convolutional layers as shown
in Figure 1.8.

The first layer approximates k2 partial derivatives. The k2 convolution kernels
wi,j are constrained by moment loss regularization Lmoment. Defining a k × k

matrix ∆k
i,j , which equals 1 at position (i, j) and 0 elsewhere, the regulariza-

tion term is computed as

Lmoment =
∑

i,j≤k

♣♣M(wi,j) − ∆k
i,j ♣♣F , (1.5)

where ♣♣ · ♣♣F is the Frobenius norm and M is a moment matrix [28]. This
regularization term is added to the loss function during training.

11

1. Theoretical background

Figure 1.8: Visual explanation of PhyCell. [25]

The second layer is a 1 × 1 convolution representing the coefficients ci,j .

After discretizing the continuous time PDE in Equation 1.3 (details in [25]),
the prediction step can be written as:

h̃t+1 = ht + Φ(ht), (1.6)

and the correction step is:

ht+1 = h̃t+1 + Kt ⊙ (E(ut) − h̃t+1). (1.7)

Kalman gain Kt ∈ [0, 1] is approximated by learned convolution kernels Wh,
Wu and bias bk:

Kt = tanh(Wh ∗ h̃t+1 + Wu ∗ ut + bk). (1.8)

Note that if Kt = 0, the input is not accounted for and the dynamics follows
the physical predictor, and if Kt = 1, the latent dynamics are reset and only
driven by the input. This is similar to gating mechanisms in LSTMs. [25, 29]

12

Chapter 2

Related work

Forecasting precipitation with deep learning methods has seen notable
progress in recent years. ConvLSTM and PhyDNet described previously are
good examples. DeepMind’s DGMR (Deep Generative Model of Radar) [30]
is a more recent example. However, these models mostly work only with
precipitation radar data. This chapter showcases some of the recent advances
in using satellite data for precipitation forecasting, especially with machine
learning methods.

2.1 MetNet

Machine learning precipitation forecasting models are mostly trained on very
short lead times, usually not more than 3 hours. In 2020, Google Research
developed a model called MetNet [1], and showed that it outperforms physics-
based models up to a lead time of 8 hours (see Figure 2.3). It is relevant for
this thesis because it uses satellite imagery as one of its input data.

MetNet is a neural network that forecasts rates of precipitation with a lead
time of up to 8 hours, a spatial resolution of 1 km and a temporal resolution
of 2 minutes. It covers a 7000 × 2500 km geographical area corresponding to
the continental United States, shown in Figure 2.1.

The architecture (see Figure 2.2) uses axial self-attention [31] at its core to
aggregate a large spatial context, which is necessary for a prediction for a lead
time up to 8 hours. MetNet inputs a patch covering 1024 × 1024 km and pre-
dicts precipitation only for the center 64 × 64 km region of interest, leaving
at least 480 km of spatial context on each of the four sides of the target patch.

13

2. Related work

Figure 2.1: MetNet data source sample. Left: GOES-16 visual bands. Right:
MRMS radar precipitation rates. [1]

Figure 2.2: MetNet architecture. The input satellite and radar frames first
pass through a spatial downsampler (convolutional and pooling layers) to re-
duce image size and memory consumption. They are then encoded by a con-
volutional LSTM over the 90 minutes of input data. Axial attention [31] layers
enable the network to make use of the entirety of the encoded image to make
a prediction for a given lead time Ty. [1]

As shown in Figure 2.2, the input includes a MRMS5 radar image, 16 spectral
bands of the GOES-166 satellite with a temporal resolution of 15 minutes up
to 90 minutes to the past. Additional static features for the longitude, latitude
and elevation of each location in the patch are included, as well as for the hour,
day and month of the input time.

Although MetNet uses recurrent cells to encode the input, it does not produce
output like a RNN. Instead, forward pass through MetNet makes a prediction
for a single lead time. The desired lead time information is concatenated
with the input features to inform the model. This enables the computation in
MetNet to be conditioned on the lead time right from the beginning, allowing
every aspect of the computation to be aware of it. With the ability to change
the target lead time provided as input, the same MetNet model can be used
to forecast for the entire range of target lead times it was trained on.

5https://www.nssl.noaa.gov/projects/mrms/
6https://www.goes-r.gov/

14

https://www.nssl.noaa.gov/projects/mrms/
https://www.goes-r.gov/

2.1. MetNet

Figure 2.3: MetNet performance evaluated in terms of F1-score at 1.0 mm/h
precipitation rate threshold. MetNet outperforms the optical flow method, as
well as the physics-based model (HRRR) up to 8 hours ahead. [1]

The authors performed an ablation to study the importance of various input
characteristics. As we can see in Figure 2.4, large spatial context is useful
especially for long lead times, while large temporal context is not significant.
The MetNet-GOESOnly configuration is especially interesting for this the-
sis, as it evaluates the ability of MetNet to predict precipitation rate from
just the globally available GOES-16 satellite data. Despite starting off sub-
stantially worse, the performance of MetNet-GOESOnly approaches that of
the full MetNet configuration with increasing hours of lead time, suggesting
that input radar data becomes less necessary with time [1].

Figure 2.4: F1-score for each lead time of MetNet ablation experiments at
the 1.0 mm/h precipitation rate threshold. MetNet-ReducedSpatial has a re-
duced input spatial context by half (512 km), MetNet-ReducedTime receives
30 minutes of input instead of 90, and MetNet-GOESOnly omits the MRMS
radar input data. [1]

Although MetNet is considered a success, it is worth noting that it required
up to 256 TPUs to train [1] and the exact dataset used is not public [32].

15

2. Related work

2.2 MetNet-2

MetNet-2 [33] is a successor to MetNet, and substantially improves on its per-
formance (shown in Figure 2.6), extending the prediction to 12 hours. One of
the main challenges to achieving such a long lead time is capturing a sufficient
amount of spatial context in the input. MetNet-2 increases the input patch
to 2048 × 2048 km, which is quadruple of what is used in MetNet. To be
able to process this, MetNet-2 is distributed across 128 TPUs during training.
It also employs changes in its architecture (also detailed in Figure 2.5). At-
tention layers are replaced with more computationally efficient convolutional
layers. However standard convolutional layers have too small receptive fields
to capture such a large context, so MetNet-2 uses dilated convolutions [34],
and doubles their receptive field sizes layer after layer, to connect information
which is spatially far apart in the input.

Figure 2.5: MetNet-2 architecture. A convolutional LSTM embeds the input
step by step. A stack of convolutional blocks with increasing dilation [34] cap-
tures the large context of the encoded input. After a center crop corresponding
to the target patch area and a tiling operation that restores the 1×1 km spatial
resolution, a final stack of convolutional blocks produces a distribution over
precipitation levels for each target patch position. An embedding of the de-
sired lead time conditions each convolutional layer of the network. [33]

Along with the radar and satellite images and other static data used in Met-
Net, MetNet-2 adds preprocessed starting state used in physics-based models
as another source of input. This includes information such as temperature, hu-
midity and wind direction, which is critical for longer forecasts up to 12 hours.

2.3 SEVIR dataset

To train deep learning weather forecasting models, large and diverse datasets
containing high spatial resolution data are needed. Petabytes of weather
data, for example from GOES (Geostationary Environmental Satellite Sys-
tem)7 and NEXRAD (Next-Generation Radar)8, are available to the public.

7https://www.goes.noaa.gov/
8https://www.ncei.noaa.gov/products/radar/next-generation-weather-radar

16

https://www.goes.noaa.gov/
https://www.ncei.noaa.gov/products/radar/next-generation-weather-radar

2.3. SEVIR dataset

Figure 2.6: Comparison of F1-score using similar but distinct test sets of
MetNet-2, MetNet, and NWP for both test sets. MetNet-2 outperforms
MetNet substantially despite the data which MetNet-2 uses being harder for
NWP. [33]

However, the size and complexity of these datasets is a hindrance to devel-
oping and training models. For predicting precipitation from satellite images
specifically, we need both spatially and temporally aligned satellite and radar
data.

To help address this problem, in 2020 the SEVIR (Storm EVent ImageRy) [35]
dataset was created, which combines spatially and temporally aligned data
from multiple sources, along with baseline implementations of deep learning
models and evaluation metrics, to accelerate new machine learning innova-
tions. It contains over 10 000 weather events from the continental United
States, which each consist of 384 × 384 km image sequences spanning 4 hours.
Samples in SEVIR include five different sensing modalities: three channels
(C02, C09, C13) from the GOES-16 satellite, NEXRAD vertically integrated
liquid (precipitation estimate from radar reflectivity) mosaics, and GOES-16
GLM (Geostationary Lightning Mapper) lightning flashes. See Figure 2.7 for
an example. Events in SEVIR were carefully sampled to ensure the dataset
contains relevant severe storm cases.

Figure 2.7: An example of spatiotemporally aligned images of different data
types from the SEVIR dataset. [35]

Notable works utilizing the SEVIR dataset include [17] using GANs (Genera-
tive Adversarial Networks) [36] to make forecasts more realistic (less blurry),

17

2. Related work

and [37] studying the effects of mixed precision training [38] in deep learning
nowcasting models. However, according to [32] and our own research, SEVIR
was not yet used for predicting precipitation from satellite data.

A similar purpose is shared by Weather4cast 2022 [32], the dataset used in this
thesis. It improves upon SEVIR with more satellite channels, a larger satellite
context and a competition to predict precipitation from satellite data. More
details in Chapter 3.

2.4 Synthetic radar

The use of geostationary satellite imagery is a tempting choice for precipitation
nowcasting algorithms due to its ability to provide global and uninterrupted
coverage. However, as the satellite does not directly observe the rain, a heuris-
tic or machine learning algorithm must be used to extract the precipitation
data. To fill in gaps outside the coverage of weather radar, many works at-
tempt to develop a system that combines data from one or multiple non-radar
sources to create a radar-like depiction of precipitation, sometimes referred to
as synthetic radar. [39, 35]

2.4.1 Physics-based approaches

One approach to synthetic radar is the multi-sensor precipitation estimate
(MPE) algorithm [40], which deduces a heuristic for precipitation detection
from a physical model of the atmosphere, utilizing phenomena which are di-
rected by well-known physical laws, such as absorption and scattering of light.
However, the MPE algorithm is limited to convective rain and may produce
incorrect results in areas with other forms of precipitation, such as frontal
precipitation activities common in middle and high latitudes.

A more sophisticated version of a physics-based heuristic, the precipitation
properties (PP) algorithm [41], combines input data of NWP models, physi-
cal properties of clouds, and satellite measurements. Radar observations are
used to calibrate parameters of the algorithm. However, the retrieval of phys-
ical cloud properties, based on satellite observations at visible wavelengths, is
limited to daylight hours.

2.4.2 Machine learning approaches

Simple machine-learning algorithms have also been used for precipitation de-
tection from satellite imagery. Older techniques such as self-organizing feature
maps are explored in [42, 43]. A study in [44] compared decision trees, shallow
neural networks, and support vector machines for synthetic radar. However,
the pixel-wise splits used in this work to obtain training and test sets may

18

2.4. Synthetic radar

have led to overfitting, ignoring the smoothness of atmospheric phenomena
in time and space. The study found that the best results were achieved in
daytime conditions.

Another approach, utilizing only infrared and water vapor satellite spectral
bands (available during night time) as input, is shown in [45]. It uses a fully-
connected stacked denoising autoencoder [46] to reduce overfitting.

Authors of [39] apply a convolutional neural network to create synthetic radar.
They fuse various input sources from satellite imagery, NWP and lightning
flash detection. See example in Figure 2.8.

Figure 2.8: Left: NEXRAD radar depiction of precipitation intensity. Light-
ning flashes offshore (white plus symbols) indicate storm activity outside radar
coverage. Right: The same analysis but with storms outside radar range filled
in by fusing various non-radar sources using a CNN. [39]

2.4.2.1 U-Net

From the machine learning point of view, precipitation detection is similar
to the problem of semantic segmentation, where the input is a multichannel
image and the output is assigned to every pixel. This makes image-to-image
neural networks like U-Net an ideal candidate for this task.

A notable example of using U-Net to create synthetic radar from satellite
imagery is [2], illustrated in Figure 2.9 and Figure 2.10. To provide a bet-
ter description of atmospheric condition to the model, NWP predictions are
added as input. Specifically; convective precipitation rate, cloud work func-
tion, cloud water, precipitable water and convective potential energy on differ-
ent levels, from the GFS model. Additionally, a topography map of the area,
and the solar altitude of the current location and time are provided as input.
Comparison with other approaches, including the MPE and PP algorithms
mentioned earlier, is shown in Figure 2.11. Neural network (U-Net) and PP
approaches produce better results during daylight, but U-Net performs well
even at night and consistently beats the physics-based approaches.

19

2. Related work

(a) (b) (c) (d)

Figure 2.9: (a) The availability of data used in [2]: full view of the Meteosat-8
satellite, processed area inside it used as input, and radar coverage. (b) IR-
097 (infrared channel) from Meteosat-8. (c) Total cloud water from the GFS
model. (d) U-Net precipitation detection developed in [2].

This study also utilizes the synthetic radar for nowcasting. A neural network
approach is compared with an optical flow algorithm. Although optical flow
produced slightly better results in terms of F1-score in this work, it is stated
that a neural network should surpass simple techniques if properly tuned. [2]

2.4.3 Global Precipitation Measurement

NASA’s Global Precipitation Measurement (GPM) [47] mission is a collabo-
rative effort with the Japan Aerospace Exploration Agency (JAXA) as well
as other international space agencies to provide more accurate and frequent
precipitation measurements worldwide.

The GPM Core Observatory satellite, launched in 2014, carries the Dual-
frequency Precipitation Radar (DPR) — a spaceborne active radar with two
frequencies, and the GPM Microwave Imager (GMI) — a high-resolution
multi-channel passive microwave (PMW) radiometer. GPM is assisted by
a constellation of PMW satellites from other space agencies and missions.
However, these satellites are on the low Earth orbit, and have limited range.
The Core Observatory for example has a orbital period of 92.6 minutes.
The constellation should provide retrievals on any given Earth coordinate
90 % of the time only roughly every 3 hours [47].

2.4.3.1 IMERG

One of the key products of the GPM mission is the Integrated Multi-satellitE
Retrievals for GPM (IMERG) [48], which is a merged product of precipitation
estimates from multiple satellite sensors, including GPM (radar and PMW),
thermal infrared data from geostationary satellites, and also rain gauges
around the world.

20

2.4. Synthetic radar

(a) Topographic map of the area. (b) Input satellite view.

(c) Target ground truth radar. Colors de-
note rain (white), no rain (blue), no radar
coverage (gray).

(d) U-Net radar estimation covering
the entire satellite area.

Figure 2.10: Example of precipitation detection from satellite images. [2]

Estimates based on microwave and combined radar input data have higher
quality due to the physically direct relationships between precipitation
and the satellite data. Thermal infrared sensors estimates are lower quality,
but they provide frequent interrupted coverage due to the geostationary
orbit. The higher quality data are used as standard and are used as much
as possible, the rest is calibrated to that standard and takes a secondary
role. Finally, in locations where they exist, primarily land areas, monthly
precipitation gauge data are used to control the biases that satellite data can
exhibit. [49]

The IMERG algorithm is run three times, first 4 hours after the observa-
tion time (IMERG Early), then after 14 hours (IMERG Late), and finally
3.5 months later (IMERG Final), after all data including monthly rain gauge
data are received. The Early product is less accurate but enables important
low latency uses such as flood analysis, while the Late run is more complete
and supports next-day work, such as crop forecasting. The Final product is
considered the research-grade archival product intended for scientific analysis.

21

2. Related work

Figure 2.11: F1-score (left) and accuracy (right) of precipitation detection
algorithms for each time of day. U-Net is tested both with and without GFS
inputs. Pointwise refers to a simple CNN with only 1×1 convolutions, GFS not
used. PP and MPE are physics-based approaches described in section 2.4.1. [2]

IMERG provides precipitation estimates with a 30-minute temporal resolu-
tion and a spatial resolution of approximately 10 km [49]. See example in
Figure 2.12.

Figure 2.12: IMERG global precipitation estimation example. [49]

Because even the Early run has a latency up to 4 hours from observation
time, associated with the acquisition and processing of satellite data, IMERG
is not an ideal data source for nowcasting. The data archive can however be
used to improve forecasting models. Notable machine learning works using
IMERG include application of ConvLSTM in [50], comparison of 3D-UNet,
ConvLSTM and other architectures in [51].

22

Chapter 3

Weather4cast 2022 competition

Weather4cast9 is a NeurIPS competition organized by IARAI10 (Institute of
Advanced Research in Artificial Intelligence). The 2021 edition [52] dataset
featured a range of weather products derived from the satellite data by
EUMETSAT Satellite Application Facilities units dedicated to Nowcasting
(NWC SAF),11 from which temperature, tropopause turbulence probability
and cloud mask were selected as target variables.

The aim of the 2022 edition was to predict future high resolution radar pre-
cipitation from lower resolution satellite images.

This competition was split into two stages. Stage 1 served as a warmup
phase, allowing the participants to get familiar with the provided resources
and rapidly experiment with a limited dataset. The entire training dataset
was made public in Stage 2. Both stages had a test leaderboard, allowing
participating teams to get familiar with the submission system and compare
their submissions among each other and a baseline. To avoid overfitting over
the course of the competition, the final competition results were determined
from a different “heldout” leaderboard, which was open for only a few days
at the end of Stage 2, along with a “heldout” part of the dataset.

The competition featured two challenges:

• the main Core challenge,

• and an additional Transfer challenge, which required a model to predict
rainfall on significantly different data than it was trained on, spanning
a different year and/or different geographical regions.

9http://weather4cast.org/
10https://www.iarai.ac.at/
11https://www.nwcsaf.org/

23

http://weather4cast.org/
https://www.iarai.ac.at/
https://www.nwcsaf.org/

3. Weather4cast 2022 competition

IR_016 IR_039 IR_087 IR_097 IR_108 IR_120 IR_134 VIS006 VIS008 WV_062 WV_073

IR_016 IR_039 IR_087 IR_097 IR_108 IR_120 IR_134 VIS006 VIS008 WV_062 WV_073

IR_016 IR_039 IR_087 IR_097 IR_108 IR_120 IR_134 VIS006 VIS008 WV_062 WV_073

Figure 3.1: Satellite data examples. Rows are three random samples, columns
are the available channels.

Table 3.1: Characteristics of the MSG SEVIRI satellite channels. [32]

Channel Central Spectral Type
Name Wavelength Zone of

(µm) Characteristic Channel
VIS006 0.635 Solar Visible Window (VIS)
VIS008 0.81 Solar Visible Window (VIS)
IR 016 1.64 Solar Infrared Window (VIS)
IR 039 3.90 Solar/Thermal Infrared Window (VIS/IR)
WV 062 6.25 Thermal Infrared H2O Absorption (WV)
WV 073 7.35 Thermal Infrared H2O Absorption (WV)
IR 087 8.70 Thermal Infrared Window (IR)
IR 097 9.66 Thermal Infrared O3 Absorption (IR)
IR 108 10.80 Thermal Infrared Window (IR)
IR 120 12.00 Thermal Infrared Window (IR)
IR 134 13.40 Thermal Infrared CO2 Absorption (IR)

3.1 Data

3.1.1 Satellite

Source of the satellite data is the MSG (Meteosat Second Generation) [53] geo-
stationary meteorological series of satellites operated by the EUMETSAT12

space agency. The satellites are equipped with an instrument called SEVIRI
(Spinning Enhanced Visible Infra-Red Imager) that observes Earth in 12 spec-
tral channels, including visible and near infrared (VIS), thermal infrared (IR),
and a water vapor (WV) absorption band. 11 channels are available in this
competition, see Figure 3.1 for examples. The spectral characteristics of each
channel can be found in Table 3.1. Being geostationary, the satellite is located
on the celestial equator plane at a fixed longitude and repeatedly captures im-
ages of the entire Earth disk from a constant perspective. Images are generated
every 15 minutes in its nominal mode. The data provided in this competition
is sourced from the satellite positioned at 0 degrees longitude.

12https://www.eumetsat.int/

24

https://www.eumetsat.int/

3.1. Data

3.1.2 Radar

In this competition, the “ground truth” precipitation is represented by weather
radar data. Measuring precipitation is a common application of weather radar,
which can provide the 3D structure of precipitation systems and track their
movements over a relatively large area. A network of weather radar can cover
an even larger domain. However, it is important to note that radar measure-
ments are prone to errors caused by factors such as beam broadening, distance
from the radar site, echoes from non-meteorological targets, terrain blockage,
signal attenuation, and anomalous beam propagation. A comprehensive as-
sessment of the pros and cons of weather radar for precipitation measurement,
as well as an overview of current radar research, can be found in [54].

The radar data provided are 2D composites of the OPERA (Operational
Programme for the Exchange of Weather Radar Information) [55, 56] from
the EUMETNET13 project.

+1h +2h +3h +4h +5h +6h +7h +8h

+1h +2h +3h +4h +5h +6h +7h +8h

+1h +2h +3h +4h +5h +6h +7h +8h

Figure 3.2: Target radar sequence examples. Rows are three random samples,
columns are lead times up to 8 hours with a stride of 1 hour. Yellow color
highlights rain, and purple means no rain (threshold 0.2 mm/h).

3.1.3 Competition-specific details

The OPERA radar network data and the MSG satellite data are in different
geographical projections. Raw OPERA data are in Lambert Azimuthal Equal
Area projection, which preserves the area with respect to the earth surface.
The MSG data are in geostationary projection, where the spatial resolution is
lower as a pixel gets further from the satellite. To ease the training of the mod-
els in this competition, the radar data have been converted to geostationary
projection. With this, both satellite and radar frames align geographically,
which is especially important for convolutional networks.

13https://www.eumetnet.eu

25

https://www.eumetnet.eu

3. Weather4cast 2022 competition

Both satellite and radar data are provided as image-like 2D arrays of 252×252
pixels. However, despite being the same size, they correspond to a different
spatial area. While a satellite frame corresponds to an area of 3024×3024 km
(12 × 12 km per pixel), a radar frame covers a 6 times smaller (504 × 504 km)
area, at a 6 times higher resolution (2 × 2 km per pixel). It geographically
aligns with the center 42 × 42 pixels of the satellite frame, which is referred to
as the region of interest. The rest of the satellite frame can be interpreted as
the surrounding spatial context. This is also explained in Figures 3.3 and 3.4.

Figure 3.3: OPERA and MSG contexts explanation. [32]

Figure 3.4: Binary radar image overlaid on top a VIS006 satellite channel,
spatially and temporally aligned.

The data are geographically divided into several regions. Locations are shown
in Figure 3.5. In Stage 1 of the competition, 3 regions spanning the year 2019
were available for training. In Stage 2, 4 more regions were made public as well

26

3.1. Data

as another year (2020) for all 7 regions. The Transfer challenge also features
data from 3 different regions in the years 2019 and 2020, and one additional
year (2021) for all 10 regions. See Figure 3.6 for a visual explanation.

Figure 3.5: Geographical locations of each region. Core challenge regions are
highlighted in blue, and additional Transfer challenge regions in red. [32]

r04 r05 r06 r07b15 b34 b76 r08 r09 r10

2019

2020

2021

Stage 1
Stage 2 - Core

Stage 2 - Transfer

region name

ye
ar

Figure 3.6: Availability of each region/year in the different stages and chal-
lenges. Note that the Transfer challenge data only contain test and heldout
parts, which are meant for submissions, not for training. They contain only
input (satellite) data, the target (radar) data are not public.

3.1.4 Static data

Static data for each region, including latitude, longitude, and topological
height, were also provided, in the same resolution as satellite frames. See
example in Figure 3.7.

27

3. Weather4cast 2022 competition

Longitude Latitude Topological height

7.5

10.0

12.5

15.0

17.5

20.0

22.5

44

46

48

50

52

54

56

0

1000

2000

3000

4000

Figure 3.7: Static data for region b34 (boxi 0034). White color indicates
missing values over bodies of water.

3.2 Task

The goal of this competition was to develop a model to predict radar up to
8 hours to the future from 1 hour of satellite input. Both sequences have
a spatial resolution of 15 minutes, resulting in an input sequence of 4 frames
and 32 output frames.

Although the provided radar frames contain numerical data representing rain
rate (in mm/h), this competition’s task was simplified to binary classification.
This means a model should only predict 0/1 for rain/no rain for each pixel.
In Stage 1, the binary threshold was specified as 0 mm/h. In Stage 2, it
was increased to 0.2 mm/h, reasoned that having more training data should
allow predicting rain events of higher sparsity. A higher threshold also helps
with eliminating radar artifacts. However, this made the dataset even more
imbalanced, resulting in a more challenging task. This difficulty increase is
also reflected in lower evaluation metric values on the Stage 2 leaderboards
compared to Stage 1.

As the task is binary classification, model performance can be measured with
the commonly used binary classification metrics, such as accuracy, precision,
recall, F1-score, etc. The main metric chosen in this competition, used for
leaderboard evaluation, is IoU (Intersection over Union), also referred to as
Jaccard similarity, Jaccard index, or CSI (Critical Success Index):

IoU(Y, Ŷ) =
♣Y ∩ Ŷ ♣ + ϵ

♣Y ∪ Ŷ ♣ + ϵ
,

where Y are ground truth positive pixels, Ŷ are the predicted positive pixels,
and ϵ is the smoothing parameter, preventing division by zero, ϵ = 1×10−6 in
this competition. This metric is appropriate for such an imbalanced dataset,
as it only considers the positive pixels. For the leaderboard evaluation, IoU is
computed independently for each region and year, then averaged.

28

3.3. Starter kit

3.3 Starter kit

Along with the dataset, organisers also provided a starter kit14, which contains
all the necessary code to train and evaluate a baseline 3D U-Net model out of
the box:

• a PyTorch [57] data loader implementation,

• a PyTorch implementation of a 3D U-Net baseline model,

• training code using PyTorch-Lightning [58] library,

• implementation of several loss functions and metrics,

• and scripts to generate submissions from a trained model.

The dataset is provided out of the box split into train, validation, test,
and heldout (final submission) parts, each in a separate file. The starter kit
also contains a CSV file with timestamps of all data, which the provided data
loader uses to correctly generate sequences. Training sequences are generated
using a sliding window over the training split, yielding a total of 228 928
samples (for Stage 2 training data). Validation, test and heldout split are
made of predefined non-overlapping sequences instead of a sliding window.

The provided data loader also does basic data preprocessing by default. Radar
frames are converted to a binary mask for binary classification. Satellite data
are standardized,

x′ =
x − x̄

σ
,

where x̄ and σ are the mean and standard deviation precomputed indepen-
dently for each channel.

3.4 Solutions of other competitors

A submission to this competition also required publishing an extended sci-
entific abstract. This section highlights the presented approaches of other
participating teams in this competition, also summarized in [32]. These could
also belong to Chapter 2, but as these solutions are specific to this competi-
tion, it is more appropriate here. Keep in mind that they were published after
the competition, so they did not influence our solution.

Comparisons and results are presented later in Section 4.4.

14https://github.com/iarai/weather4cast-2022

29

https://github.com/iarai/weather4cast-2022

3. Weather4cast 2022 competition

3.4.1 Model Ensemble for Probabilistic Rain Prediction

Team meteoai present a solution [59] for probabilistic rain prediction using
a model ensemble method from the baseline 3D U-Net and a space-time trans-
former, EarthFormer [60]. Instead of modifying model structure, the team
focused on data preprocessing (cropping the input in half), training strategy
(advanced loss functions), and post-processing (region-wise threshold opti-
mization) to maximize the performance of the baseline models.

3.4.2 Vision Transformers for Weather4cast

The approach of team team-name [61] is based on Vision Transformers [62].
The team also introduces a set of configurations that can be applied to enhance
results for various models as well as baseline-specific improvements.

The authors report that optimizing for Binary Cross Entropy is superior to
other loss functions, and that a multiple model ensemble (a majority voting
algorithm combining their top models) yields the most competitive results.

3.4.3 SIANet

Team SI-Analytics proposed SIANet (SImple baseline for weather forecasting
using spatiotemporal context Aggregation Network) [63]. SIANet is an end-
to-end model composed only of CNNs, similar to U-Net. In addition, SIANet
has a different strategy from the general training strategies used by existing
weather forecasting frameworks.

For the Transfer challenge, the team introduces a data augmentation strategy
that considers wind direction, a smoother loss that considers spatio-temporal
correlation, and a test-time geometric augmentation ensemble that performs
inverse augmentation again during inference. [64]

3.4.4 RainUnet

Team KAIST-CILAB [65] presents a hierarchical U-shaped network,
RainUnet, that utilizes a Temporal-wise Separable block. This block helps
capture interframe correlations by decomposing the standard 3D convolu-
tion into spatial and temporal components, increasing the receptive field
and enabling the network to learn long-range spatio-temporal dependencies.

The authors also experimented with various preprocessing strategies; filtering
non-rainy sequences from the dataset, discarding some of the satellite channels,
and cropping the input images.

30

3.4. Solutions of other competitors

3.4.5 Region-Conditioned Orthogonal 3D U-Net

Team KAIST AI [66] proposes a modified 3D U-Net architecture using region-
conditioned layers, which take a one-hot encoded categorical input to generate
a region-conditioned context that is added to the feature maps in the en-
coder block. The authors demonstrate that this module helps to ensure that
the model is able to better distinguish between different regions in the input
images and capture regional differences in the predictions.

Additionally, the authors make use of 1x1x1 orthogonal convolutions [67]
and residual connections. To further improve the performance, the authors
also apply several training strategies, including mixup, self-distillation,
and feature-wise linear modulation (FiLM) [68].

31

Chapter 4

WeatherFusionNet

This chapter describes a novel approach we developed and submitted to
the Weather4cast 2022 competition. We tackled the competition as part of
an ongoing research project at the Data Science Laboratory (DataLab)15

at FIT CTU. Although it was a team effort, the work presented in this thesis
is my own contribution.

We decided to apply our good experience with PhyDNet and U-Net and com-
bine them into a more complex architecture. We call the resulting model
WeatherFusionNet as it fuses several different ways to process the satellite
data. We briefly present the model in [69].

4.1 Architecture

This section describes the architecture of our model. We start from a baseline
model, then we gradually add each of the components and improvements,
explaining them one by one. The overall model is demonstrated at the end.

First, we need to select an appropriate baseline as the core of our model.
Convolutional RNNs, such as PhyDNet, are commonly used for extrapolat-
ing spatio-temporal sequences. In this case however, the input and output
sequences are very different. It is not only an extrapolation task, but also
a domain translation and super-resolution task at the same time. RNNs can-
not be applied here in a straightforward way, as it is unclear what to use as
input during prediction steps. If we simply used the output from the previous
time steps as per usual, the network would receive completely different inputs
during the encoding steps and the prediction steps.

15http://datalab.fit.cvut.cz/

33

http://datalab.fit.cvut.cz/

4. WeatherFusionNet

Furthermore, in this task the output sequence has a relatively large length of
32 frames, which makes it difficult to fit any large recurrent networks (such as
PhyDNet) into memory, during training, with a sufficient batch size, on our
available hardware.

4.1.1 U-Net

The starter kit features a 3D U-Net model as a baseline. This is an appropri-
ate choice for this task, it does not have the limitations as RNNs. However,
it makes it difficult to include additional input features, because of 3D con-
volutions. If we wanted to concatenate any extra images, they would need to
have a temporal dimension, equivalent to the input sequence. We decided to
try the regular U-Net as a baseline instead, as it does not have this problem.

input satellite sequence (4 x 11) rainfall prediction (32 x 1) target (32 x 1)

U-Net

Figure 4.1: Illustration of the baseline U-Net training architecture. The num-
bers in parentheses denote the temporal and channel dimensions, respectively.

Interestingly, U-Net performed better than the provided 3D U-Net. It is also
a less complex model and takes less time to train. For all of the U-Net modules
in our architecture, we use the following version:

• hidden channel dimensions of 32, 64, 128, 256, 512 respectively,

• each 3×3 convolution is followed by a BatchNorm [11] layer and a ReLU,

• downscaling is realized by 2 × 2 max pooling with stride 2,

• and upscaling is realized by bilinear interpolation with scale factor of 2.

This U-Net has 44 input channels (flattened 4 input frames of 11 channels)
and 32 output channels (the output sequence length). Note that the output
length is a hyperparameter, which can be considered as a limitation.

Another limitation of U-Net is that it only works with spatial dimensions
divisible by 32. This is because the contracting path of U-Net halves the res-
olution 5 times, 25 = 32. To get around this, we pad the input images by 2
pixels on each side to increase the size to 256 × 256. The padding mode is
set to replicate (repeating the outermost pixels), as this roughly extrapolates
the images spatially. Then we crop the output of U-Net back to 252 × 252.

34

4.1. Architecture

4.1.2 Crop & Upscale

Although this simple U-Net approach technically works, because the input
and output has the same spatial dimensions, it ignores the fact that the output
corresponds to a 6 times smaller geographical area. This goes for the provided
3D U-Net baseline as well.

We solve this with the Crop & Upscale method shown in Figure 4.2. We crop
the center 42 × 42 pixels of all the 32 output frames of U-Net, corresponding
to the region of interest. Then we upscale them to the target resolution.

input satellite sequence (4 x 11) rainfall prediction (32 x 1) rainfall prediction (32 x 1)

upscale

target (32 x 1)

U-Net

Figure 4.2: Illustration of the U-Net Crop & Upscale training architecture.

It can be tempting to think that this is the same concept as the contracting
and expanding mechanisms in U-Net. However, that is not the case. Although
the hidden channels in U-Net have a smaller resolution, they still spatially cor-
respond to the entire input. The residual connections in U-Net make this even
more apparent. While the contracting and expanding mechanisms can prop-
agate information across large distances, it has to be propagated in the same
way spatially everywhere, because of the spatial invariance property of con-
volutions. With our approach, U-Net can make use of the entire surrounding
satellite context, while everything still being spatially aligned. A similar for-
ward pass cropping approach is also used in [33, 63].

The upscale operation is realized by bilinear interpolation, as in the expanding
path of U-Net, with scale factor of 6. We experimented with more sophisti-
cated approaches during Stage 1 of the competition, but we did not observe
any improvement. Likely due to the fact that it is already very difficult to
forecast accurately up to 8 hours in the satellite resolution, increasing the reso-
lution hardly makes it any more accurate. But there is room for more research
in this part.

As visible in Figure 4.2, the cropping causes U-Net to compute excess output
outside of the region of interest. However this output does not participate in
backpropagation, so the excess computation is minimal. It should be possi-
ble to modify U-Net to only compute the target region, but it is not worth
the implementation effort.

35

4. WeatherFusionNet

Satellite
PhyDNet

input satellite sequence (4 x 11)

input rainfall estimate (4 x 1)

satellite prediction (10 x 11)

rainfall prediction (32 x 1)

sat2rad U-Net

rainfall prediction (32 x 1)

upscale

target (32 x 1)

U-Net

Figure 4.3: Illustration of the WeatherFusionNet training architecture.

4.1.3 Satellite PhyDNet

As explained previously, RNNs cannot be easily used to predict radar in
this task, because we do not have the input radar sequence during infer-
ence. However, we can use them on the satellite data. Future satellite frames
are obviously not available during inference, but they are actually present in
the training data, and not used at all by the previously described end-to-end
approaches.

We decided to train PhyDNet to essentially extend the input satellite sequence.
This will be referred to as the Satellite PhyDNet. The predicted frames are
then used as additional input features later. We limit the output sequence
length to 10 frames, based on our memory limitations and past experience
with PhyDNet.

4.1.4 Sat2Rad U-Net

In a similar fashion, we want to make use of the “input” radar sequence present
in the training dataset. We train a module that we call Sat2Rad (satellite to
radar). This network is trained to estimate the rainfall at the current time
step of a single satellite frame. By training it this way, we believe it can
efficiently extract information about the current rain situation in the input
sequence, without having to predict the future. This module is realized by
a U-Net with 11 input channels and 1 output channel. Notice that this is
essentially a synthetic radar model, similar to [2].

During training, this module uses the same cropping and upscaling method de-
scribed previously, because we only have the target data for the center region.

36

4.2. Training and results

However, this time the excess output is actually useful. We take advantage of
the spatial invariance property, to estimate the rainfall for the entire satellite
area, even though it is only trained on the 6 times smaller area. The entire
output is then used as another input feature.

4.1.5 WeatherFusionNet

Finally, as shown in Figure 4.3, the outputs from the two previously described
modules are combined, along with the input sequence, and fused by a U-Net.
The Sat2Rad module is applied to all 4 input satellite input frames indepen-
dently, generating 4 channels in total. These channels, along with the input
sequence and the Satellite PhyDNet output, are flattened and concatenated,
yielding a total of 44 + 110 + 4 = 158 channels. The fusion U-Net takes
these as input. Other than that, it functions exactly the same as the U-Net
Crop & Upscale model.

4.2 Training and results

This section describes the training procedures and hyperparameters of
the trained networks, and presents the empirical results.

Like in the starter kit, models are implemented with PyTorch [57], trained
and evaluated with PyTorch-Lightning [58]. Experiments were tracked using
Weights and Biases [70], also used to plot the training charts. Matplotlib [71]
is used to plot other charts and prediction visualizations.

The three parts of WeatherFusionNet are trained separately. Training it end-
to-end would require too much memory, and also likely defeat the purpose of
the extra two modules, as the extra data described previously would not be
used.

All training procedures use early stopping and model checkpointing, restoring
the best model after training is terminated by early stopping. No learning
rate scheduling was used. All of the models have been trained using a single
NVIDIA A100-40GB GPU.

4.2.1 Sat2Rad U-Net

As described previously, the Sat2Rad module was not trained on sequences,
but on individual frames. To achieve this, we set the input and output se-
quence length to 1 in the data loader parameters. We also subtract 1 from
the output samples indexes, making them temporally aligned with the input.
No further modifications were required.

37

4. WeatherFusionNet

This U-Net was trained with a batch size of 32. This is more than for the other
modules, to balance out the fact that in this case one sample is only one frame,
not a sequence. Other hyperparameters (except the batch size) are listed in
Table 4.2 and explained later in Section 4.2.3. Training metrics are shown in
Figure 4.4, example predictions in Figure 4.5.

Figure 4.4: Sat2Rad U-Net evolution of validation metrics during training; loss
(BCE), binary classification metrics (IoU, F1-score, CSI, accuracy, precision,
recall) and positive ratio (how much percent of the output pixels are positive).

4.2.2 Satellite PhyDNet

The Satellite PhyDNet module is trained only using satellite data. We set
the satellite sequence length to 14 in the data loader parameters and then
split it into 4 input and 10 output frames.

Because the provided validation set was not designed for longer sequences,
we used part of the training set as a validation split. Specifically, the first
150 000 samples were used for training, and the rest was used to generate
non-overlapping validation sequences, using a sliding window with a stride of
32 samples.

Based on our past experience with PhyDNet, it was trained with a loss function
L1L2 = L1+L2 = MAE+MSE, as well as the moment loss regularization. We
used teacher forcing (using ground truth samples as input during prediction
steps), starting with probability of 1, decreased by 5×10−5 every step. This is
shown in Figure 4.6 along with other training metrics. Hyperparameters are
listed in Table 4.1. We used a PyTorch-Lightning implementation of PhyDNet,

38

4.2. Training and results

input (VIS008) input (IR_134) input (WV_073) prob. prediction target

Figure 4.5: Sat2Rad U-Net example predictions. Each row is a different sam-
ple. First three columns are selected input channels. Red squares highlight
the target area. Fourth column shows the raw probability output of Sat2Rad,
before applying a threshold. Final column is the binary target, where yellow
highlights rain, purple means no rain (0.2 mm/h threshold).

originally developed in [29]. As PhyDNet takes a relatively long time to train,
we did not have time to experiment with different hyperparameters during
the competition, we mostly used the default hyperparameters proposed in [25],
except for the loss function. Figure 4.7 shows an example prediction.

Figure 4.6: Satellite PhyDNet evolution of validation metrics during training;
loss function and its components, and the teacher forcing probability.

39

4. WeatherFusionNet

Table 4.1: PhyDNet training hyperparameters

ConvLSTMCell

Input dimension 64
Hidden dimensions [128, 128, 64]
Kernel size (3, 3)

PhyCell

Input dimension 64
Hidden dimensions [49]
Kernel size (7, 7)

Batch size 16
Optimizer Adam [72]

Learning rate 1 × 10−3

Loss function L1L2

VI
S0

08
IR

_1
34

input (t - 30m)

W
V_

07
3

input (t + 0m) prediction (t + 30m) prediction (t + 60m) prediction (t + 90m) prediction (t + 120m) prediction (t + 150m)

lead time

ch
an

ne
l

Figure 4.7: Satellite PhyDNet example prediction. Rows are three selected
channels of both the input and prediction sequence, with a stride of 30 minutes.

4.2.3 WeatherFusionNet

The final U-Net model requires outputs from the previous two modules, but
during training, they are frozen (their weights are not updated). Other than
that, it is trained in the same way as all the other described U-Nets.

We experimented with different batch sizes, learning rates and loss functions
(DiceLoss [73], FocalLoss [74], implemented in the starter kit) during Stage 1.
Other hyperparameters were left as default from the starter kit. The best
and final hyperparameters are listed in Table 4.2. Training charts are in
Figure 4.9, example predictions in Figure 4.10, validation metrics in Table 4.3.
IoU metric for each lead time is shown in Figure 4.8.

The positive weight hyperparameter in BCE (pixels with positive target are
multiplied by this weight) helps to mitigate the dataset imbalance. The weight

40

4.2. Training and results

Table 4.2: U-Net training hyperparameters

Hidden dimensions [32, 64, 128, 256, 512]

Batch size 16

Optimizer AdamW [75]

Learning rate 1 × 10−3

Weight decay 1 × 10−2

Loss function Binary Cross Entropy

Positive weight 2.58

we used was provided in the starter kit, different for each competition stage.
Another way to balance the network outputs is to change the binary output
threshold. The default is 0 (or 0.5 after sigmoid). During Stage 1 we optimized
the threshold on the validation set (model does not need to be trained again),
which produced better IoU results. During Stage 2, the optimal threshold
turned out to be the default one. This suggests the positive weight hyperpa-
rameter is also close to optimal.

Table 4.3: Validation metrics of the different models. Computed for each
region and year, then averaged.

Model IoU F1 Accuracy Precision Recall

U-Net 0.2650 0.4153 0.9036 0.3834 0.4667
U-Net Crop & Upscale 0.2989 0.4553 0.9146 0.4309 0.4933
WeatherFusionNet 0.3212 0.4828 0.9128 0.4298 0.5617

1h 2h 3h 4h 5h 6h 7h 8h
lead time

0.20

0.25

0.30

0.35

0.40

0.45

Io
U

U-Net
U-Net Crop & Upscale
WeatherFusionNet

Figure 4.8: Comparison of models on the IoU metric, computed for each lead
time. Interestingly, U-Net without cropping produces worse results for initial
lead times. This is most likely caused by the spatially unaligned convolutions
explained in Section 4.1.2.

41

4. WeatherFusionNet

Figure 4.9: WeatherFusionNet (compared to the other described models) evo-
lution of validation metrics during training; loss (BCE), binary classification
metrics (IoU, F1-score, CSI, accuracy, precision, recall) and positive ratio (how
much percent of the output pixels are positive). Computed on every batch
and then averaged. The final value of each model (highlighted by a dot) is
computed after restoring the best model checkpoint after early stopping.

ta
rg

et
pr

ed
. p

ro
b.

+1h

pr
ed

ict
io

n

+2h +3h +4h +5h +6h +7h +8h

ta
rg

et
pr

ed
. p

ro
b.

+1h

pr
ed

ict
io

n

+2h +3h +4h +5h +6h +7h +8h

Figure 4.10: WeatherFusionNet two example predictions, lead time up to 8
hours, stride 1 hour. The rows represent; the binary target (0.2 mm/h thresh-
old), the raw probability prediction of WeatherFusionNet, and the prediction
after a 0.5 threshold.

42

4.3. Ablation study

4.3 Ablation study

In this section, we study the contributions of the sat2rad U-Net and Satellite
PhyDNet modules. We experiment with two new models, each excluding one
of the two modules. This does require retraining the fusion U-Net. Results
are shown in Table 4.4 and Figure 4.11.

Interestingly, using only Satellite PhyDNet without Sat2Rad leads to worse
results in terms of IoU. Sat2Rad contributes the most, especially for short lead
times, which is to be expected. Adding Satellite PhyDNet seems to increase
the performance on longer lead times (5 hours and more). This suggests that
if one is only interested in short-term predictions, the Satellite PhyDNet can
be excluded, and the model can be essentially reduced to only two U-Nets.

Table 4.4: Ablation study validation metrics. Computed for each region
and year, then averaged. The first two columns denote whether Sat2rad U-Net
or Satellite PhyDNet are used.

Sat2Rad PhyDNet IoU F1 Accuracy Precision Recall

0.2989 0.4553 0.9146 0.4309 0.4933
✓ 0.2955 0.4524 0.9147 0.4401 0.4782

✓ 0.3149 0.4728 0.9140 0.4281 0.5354
✓ ✓ 0.3212 0.4828 0.9128 0.4298 0.5617

1h 2h 3h 4h 5h 6h 7h 8h
lead time

0.20

0.25

0.30

0.35

0.40

0.45

Io
U

U-Net Crop & Upscale
WeatherFusionNet
WFN (without Sat2rad)
WFN (without Sat. PhyDNet)

Figure 4.11: Comparison of ablation study models on the IoU metric, com-
puted for each lead time.

43

4. WeatherFusionNet

4.4 Competition results

Table 4.5 presents the IoU metric of our models on the heldout sets. Only
two models are shown because we were limited to three submissions, and one
of them was used for another model, not presented in this thesis.

Table 4.5: IoU metric of our models on the heldout set from the final compe-
tition leaderboard. Computed for each region and year, then averaged.

Model Core Heldout IoU Transfer Heldout IoU

U-Net Crop & Upscale 0.2950 0.2567

WeatherFusionNet 0.3162 0.2488

WeatherFusionNet achieved better results on the Core heldout set, but per-
formed worse than U-Net Crop & Upscale on the Transfer heldout set. We
cannot analyze why is that the case, because the Transfer dataset targets
are not public. But we can speculate that the more complex model could
be slightly overfitted in terms of regions, leading to worse performance on
the Transfer regions.

Table 4.6: Top ranked teams on the Stage 2 Core challenge and key features of
their approaches (whether they are preprocessing inputs, employ an ensemble,
use physics-based methods, or a transformer model). *ex-aequo [32]

Rank Team avg IoU Preprocess Ensemble Physics-based Transformer

1 FIT-CTU 0.316 ✓ × ✓ ×

2 meteoai 0.307 ✓ ✓ × ✓

3* SI Analytics 0.305 ✓ × ✓ ×

3* TEAM-NAME 0.300 × ✓ × ✓

4 KAIST-CILAB 0.287 ✓ × × ×

5 KAIST-AI 0.274 ✓ × × ×

- 3D U-Net Baseline 0.254 × × × ×

As shown in Table 4.6, WeatherFusionNet achieved first place on the Core
challenge. We also placed third in the Transfer challenge, both with Weath-
erFusionNet and U-Net Crop & Upscale.

We focused our efforts on the Core challenge, and submitted the same models
for Transfer. The only team who developed a unique model for Transfer was
SI Analytics, and they won the Transfer challenge. This shows the spatio-
temporal shifts need special care, such as data augmentations, to achieve
competitive results.

44

Chapter 5

More experiments

In this chapter, we present various additional experiments which were not part
of our competition submission.

5.1 Static data

As mentioned in Section 3.1.4, the dataset also contains static data (lati-
tude, longitude, topological height) for each region. We did not use it during
the competition, because it was provided fairly late and there was no function-
ality in the provided data loader to handle the static data. We implemented it
ourselves after the competition, modified WeatherFusionNet to use the static
data, and show the results in this section.

Satellite
PhyDNet

input satellite sequence (4 x 11)

input rainfall estimate (4 x 1)

satellite prediction (10 x 11)

rainfall prediction (32 x 1)

sat2rad U-Net

rainfall prediction (32 x 1)

upscale

target (32 x 1)

U-Net

static data (1 x 3)

Figure 5.1: Illustration of the WeatherFusionNet training architecture, includ-
ing static data (latitude, longitude, topological height).

We preprocess the static data to be usable by a neural network, by normaliza-
tion and filling missing values (topological height values over bodies of water

45

5. More experiments

in this case) with zeros. As shown in Figure 5.1, we include the static data in
the two U-Nets in our architecture. The only modification needed is adding
3 more input channels to both U-Nets, however the networks have to be re-
trained. Inluding the static data to a recurrent network like PhyDNet is not
a straightforward task, we leave this as subject for potential future research.

Table 5.1: Validation metrics of WeatherFusionNet with and without using
static data. Computed for each region and year, then averaged.

Model IoU F1 Accuracy Precision Recall

WFN 0.3212 0.4828 0.9128 0.4298 0.5617
WFN (with static data) 0.3272 0.4903 0.9134 0.4370 0.5653

As shown in Table 5.1, including static data yields slightly better results.
This is not surprising, it is reasonable to say local properties such as elevation
and local climate influence precipitation. Some of this information can likely
be inferred from the satellite frames, but providing this directly should help
the network focus on the more important task — prediction.

5.2 Optical flow

Given the Sat2Rad U-Net module, we essentially have our own synthetic radar
model. With this, we can test traditional radar nowcasting methods, such as
optical flow extrapolation, and compare them with our deep learning model.
This is similar to the approach developed in [2].

rainfall prediction (32 x 1) rainfall prediction (32 x 1) target (32 x 1)

upscale

input satellite sequence (4 x 11)

(last frame)

input rainfall estimate (4 x 1)

sat2rad U-Net

Lucas-Kanade

Extrapolate

motion field (1 x 2)

Figure 5.2: Illustration of the Sat2Rad Optical Flow method.

46

5.2. Optical flow

First, we introduce Sat2Rad Optical Flow, shown in Figure 5.2. Sat2Rad
U-Net is applied on all 4 input satellite frames, generating 4 frames of synthetic
radar. We use the pySTEPS [9] implementation of the Lucas-Kanade [5] method
to estimate the optical flow of these frames, and then we use pySTEPS to
extrapolate the last synthetic radar frame using the estimated motion field.
This prediction is then cropped and upscaled as in the other models. Because
the generated synthetic radar covers the entire satellite area, we can predict
coming storms even if they are not within the target area initially.

Another common approach is the so called persistence. This simply repeats
the last input frame for the entire prediction. This is obviously not a model
suitable for real-world use, but it serves as a good baseline, testing if other
prediction methods are not causing more harm than good. The Sat2Rad
Persistence method applies Sat2Rad on the last satellite input frame and uses
that for the entire prediction.

Results are shown in Table 5.2 and Figure 5.3. Optical flow and persistence
method show comparable results for the initial lead times, but WeatherFu-
sionNet significantly outperforms them in the long term.

Table 5.2: Validation metrics of the different models. Computed for each
region and year, then averaged.

Model IoU F1 Accuracy Precision Recall

WeatherFusionNet 0.3212 0.4828 0.9128 0.4298 0.5617

Sat2Rad Optical Flow 0.2591 0.4045 0.9033 0.3701 0.4576
Sat2Rad Persistence 0.2200 0.3563 0.8939 0.3318 0.4012

1h 2h 3h 4h 5h 6h 7h 8h
lead time

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Io
U

WeatherFusionNet
Sat2Rad Optical Flow
Sat2Rad Persistence

Figure 5.3: Comparison of several methods using Sat2Rad on the IoU metric,
computed for each lead time.

47

5. More experiments

ta
rg

et
pr

ed
. p

ro
b.

+1h

pr
ed

ict
io

n

+2h +3h +4h +5h +6h +7h +8h

Figure 5.4: Sat2Rad Optical Flow example prediction, lead time up to 8 hours,
stride 1 hour. The rows represent; the binary target (0.2 mm/h threshold),
the raw probability prediction, and the prediction after a 0.5 threshold.

5.3 Radar to radar

When predicting radar from satellite, a question that may arise is; how much
is the prediction worse than if we actually had input radar data? This exper-
iment aims to answer that question, to some degree.

Fortunately, as explored in the previous chapter and used in the Sat2Rad
module, the dataset actually does contain input radar data for train and val-
idation sets. We can train a model to predict the target radar sequence from
this input sequence. The important limitation is that this input corresponds
to the same small area as the target, not the larger satellite area, missing
the surrounding context. That is why this comparison is not completely fair.
However, it does in a way reflect the real world, because radars have a limited
range, compared to satellites.

target (32 x 1)

U-Net

input radar sequence (4 x 1) rainfall prediction (32 x 1)

Figure 5.5: Illustration of the Radar2Radar U-Net training architecture.

Although we could now use more advanced models such as RNNs, to provide
a more fair comparison we use a U-Net once again. As the input corresponds
to the same area as the output, cropping and upscaling the prediction is no
longer needed. We only need a U-Net with 4 input channels and 32 output
channels. Other than that, it uses the same hyperparameters and training
methods as the previous U-Nets. We refer to this model as Radar2Radar
U-Net, illustrated in Figure 5.5.

48

5.3. Radar to radar

The result is shown in Figure 5.6. As expected, the radar-to-radar model
achieves substantially better performance for short lead times. However, it
degrades quickly over time, and the satellite model convincingly outperforms
it in the long run. This shows that the surrounding context is very important,
and WeatherFusionNet is able to utilize it well.

1h 2h 3h 4h 5h 6h 7h 8h
lead time

0.1

0.2

0.3

0.4

0.5

0.6

Io
U

WeatherFusionNet
Radar2Radar U-Net

Figure 5.6: Radar2Radar U-Net in comparison with WeatherFusionNet on
the IoU metric, computed for each lead time.

ta
rg

et
pr

ed
. p

ro
b.

+1h

pr
ed

ict
io

n

+2h +3h +4h +5h +6h +7h +8h

Figure 5.7: Radar2Radar U-Net example prediction, lead time up to 8 hours,
stride 1 hour. The rows represent; the binary target (0.2 mm/h threshold),
the raw probability prediction, and the prediction after a 0.5 threshold.

49

Conclusion

In this thesis, we researched existing methods for predicting rainfall from
satellite data. We participated in the NeurIPS Weather4cast 2022 compe-
tition, where the challenge was to predict up to 8 hours of high resolution
precipitation radar images from 1 hour of larger context but lower resolution
multi-spectral satellite images.

We developed a novel deep learning model for this task, utilizing the U-Net
and PhyDNet neural networks. We named it WeatherFusionNet, as it fuses
three different ways to process the satellite data; predicting future satellite im-
ages, extracting rain information from the current frames, and using the input
sequence directly. We also compared and demonstrated its performance over
less complex baseline techniques. WeatherFusionNet proved its effectiveness
by achieving first place in the Core challenge of the competition.

We further experimented with including static data (elevation, coordinates) in
the input, leading to slightly better results. We showed that WeatherFusion-
Net outperforms a traditional optical flow extrapolation technique applied on
a synthetic radar input. We also compared our satellite-to-radar model with
a direct radar-to-radar model.

The last experiment shows that for longer-term predictions the large spatial
context is more important than accurate local observations. This makes geo-
stationary satellite data a reasonable source for forecasting in areas with little
or no precipitation radar coverage. However, the numerical results are far
from ideal, because forecasting up to 8 hours is already a very hard task to
begin with, given the chaotic nature of weather.

51

Conclusion

Outline of future work

Weather forecasting remains a difficult challenge in general. As for our model
specifically, enhancing the upscaling operation could improve performance,
especially for short lead times. Another already mentioned potential improve-
ment is modifying Satellite PhyDNet to use static data.

Many improvements could draw inspiration from the other solutions in
the Weather4cast 2022 competition. Every team had a vastly different
approach, yet managed to significantly improve upon the 3D U-Net baseline.
Many of these ideas can be combined with ours. For example, the final
U-Net in WeatherFusionNet can be replaced with more complex networks
introduced by other teams. Various proposed training or data preprocessing
techniques could also be utilized for our model.

More effort could also be put into the Transfer challenge, which is especially
important for using these models in areas without radar coverage. Methods
proposed by [64], specifically data geometric augmentation (flips, rotations),
and a test-time augmentation ensemble, could be utilized to reduce overfitting.
Region-wise cross-validation (using one or several regions only as a validation
set) should be used to measure the performance on spatial shifts.

Another potential challenge is changing the task from classification to regres-
sion, where the target would be the exact rain rate instead of a binary class.
The dimensions of the target are the same, so modifications to model archi-
tecture are not necessary. A regression loss function, such as MSE or MAE,
needs to be used instead of BCE. However, the target data are still signifi-
cantly imbalanced, as most of the time there is no rain at all. We can no longer
use balancing techniques such as the positive weight paremeter in BCE. We
could use data balancing methods such as under-sampling or over-sampling,
or conduct more research for imbalanced regression techniques.

52

Bibliography

1. SØNDERBY, Casper Kaae et al. MetNet: A Neural Weather Model for
Precipitation Forecasting. arXiv preprint arXiv:2003.12140. 2020.

2. LEBEDEV, Vadim et al. Precipitation nowcasting with satellite imagery.
In: Proceedings of the 25th ACM SIGKDD international conference on
knowledge discovery & data mining. 2019, pp. 2680–2688.

3. BAUER, Peter; THORPE, Alan; BRUNET, Gilbert. The quiet revolu-
tion of numerical weather prediction. Nature. 2015, vol. 525, no. 7567,
pp. 47–55.

4. KALNAY, Eugenia. Atmospheric modeling, data assimilation and pre-
dictability. Cambridge university press, 2003.

5. LUCAS, Bruce D; KANADE, Takeo. An iterative image registration
technique with an application to stereo vision. In: IJCAI’81: 7th inter-
national joint conference on Artificial intelligence. 1981, vol. 2, pp. 674–
679.

6. GUO, Shiqing; SUN, Nengli; PEI, Yanle; LI, Qian. 3D-UNet-LSTM: A
Deep Learning-Based Radar Echo Extrapolation Model for Convective
Nowcasting. Remote Sensing. 2023, vol. 15, no. 6, p. 1529.

7. AGRAWAL, Shreya et al. Machine learning for precipitation nowcasting
from radar images. arXiv preprint arXiv:1912.12132. 2019.

8. AYZEL, Georgy; HEISTERMANN, Maik; WINTERRATH, Tanja. Op-
tical flow models as an open benchmark for radar-based precipitation
nowcasting (rainymotion v0. 1). Geoscientific Model Development. 2019,
vol. 12, no. 4, pp. 1387–1402.

9. PULKKINEN, Seppo et al. Pysteps: an open-source Python library for
probabilistic precipitation nowcasting (v1. 0). Geoscientific Model Devel-
opment. 2019, vol. 12, no. 10, pp. 4185–4219.

53

Bibliography

10. RONNEBERGER, Olaf; FISCHER, Philipp; BROX, Thomas. U-Net:
Convolutional networks for biomedical image segmentation. In: Inter-
national Conference on Medical image computing and computer-assisted
intervention. Springer, 2015, pp. 234–241.

11. IOFFE, Sergey; SZEGEDY, Christian. Batch normalization: Accelerat-
ing deep network training by reducing internal covariate shift. In: Inter-
national conference on machine learning. PMLR, 2015, pp. 448–456.

12. TREBING, Kevin; STACZYK, Tomasz; MEHRKANOON, Siamak.
SmaAt-UNet: Precipitation nowcasting using a small attention-UNet
architecture. Pattern Recognition Letters. 2021, vol. 145, pp. 178–186.

13. ZHOU, Zongwei; RAHMAN SIDDIQUEE, Md Mahfuzur; TAJBAKHSH,
Nima; LIANG, Jianming. UNet++: A nested U-Net architecture for
medical image segmentation. In: Deep Learning in Medical Image
Analysis and Multimodal Learning for Clinical Decision Support: 4th
International Workshop, DLMIA 2018, and 8th International Workshop,
ML-CDS 2018, Held in Conjunction with MICCAI 2018, Granada,
Spain, September 20, 2018, Proceedings 4. Springer, 2018, pp. 3–11.

14. ÇIÇEK, Özgün; ABDULKADIR, Ahmed; LIENKAMP, Soeren S;
BROX, Thomas; RONNEBERGER, Olaf. 3D U-Net: learning dense
volumetric segmentation from sparse annotation. In: Medical Im-
age Computing and Computer-Assisted Intervention–MICCAI 2016:
19th International Conference, Athens, Greece, October 17-21, 2016,
Proceedings, Part II 19. Springer, 2016, pp. 424–432.

15. HO, Jonathan; JAIN, Ajay; ABBEEL, Pieter. Denoising diffusion prob-
abilistic models. Advances in Neural Information Processing Systems.
2020, vol. 33, pp. 6840–6851.

16. HU, Xiaodan; NAIEL, Mohamed A; WONG, Alexander; LAMM, Mark;
FIEGUTH, Paul. RUNet: A robust UNet architecture for image super-
resolution. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops. 2019, pp. 0–0.

17. HU, Yuan; CHEN, Lei; WANG, Zhibin; PAN, Xiang; LI, Hao. Towards a
more realistic and detailed deep-learning-based radar echo extrapolation
method. Remote Sensing. 2021, vol. 14, no. 1, p. 24.

18. AYZEL, Georgy; SCHEFFER, Tobias; HEISTERMANN, Maik. RainNet
v1. 0: a convolutional neural network for radar-based precipitation now-
casting. Geoscientific Model Development. 2020, vol. 13, no. 6, pp. 2631–
2644.

19. WEYN, Jonathan A; DURRAN, Dale R; CARUANA, Rich. Improving
data-driven global weather prediction using deep convolutional neural
networks on a cubed sphere. Journal of Advances in Modeling Earth
Systems. 2020, vol. 12, no. 9, e2020MS002109.

54

Bibliography

20. ZHOU, Kanghui; ZHENG, Yongguang; DONG, Wansheng; WANG,
Tingbo. A deep learning network for cloud-to-ground lightning now-
casting with multisource data. Journal of Atmospheric and Oceanic
Technology. 2020, vol. 37, no. 5, pp. 927–942.

21. SUN, Nengli; ZHOU, Zeming; LI, Qian; ZHOU, Xuan. Spatiotemporal
Prediction of Monthly Sea Subsurface Temperature Fields Using a 3D
U-Net-Based Model. Remote Sensing. 2022, vol. 14, no. 19, p. 4890.

22. HOCHREITER, Sepp; SCHMIDHUBER, Jürgen. Long short-term mem-
ory. Neural computation. 1997, vol. 9, no. 8, pp. 1735–1780.

23. SHI, Xingjian et al. Convolutional LSTM network: A machine learning
approach for precipitation nowcasting. arXiv preprint arXiv:1506.04214.
2015.

24. OLAH, Christopher. Understanding LSTM Networks [online]. 2015-08.
[visited on 2023-04-10]. Available from: https://colah.github.io/

posts/2015-08-Understanding-LSTMs/.

25. GUEN, Vincent Le; THOME, Nicolas. Disentangling physical dynamics
from unknown factors for unsupervised video prediction. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition. 2020, pp. 11474–11484.

26. PIHRT, Jǐŕı. Spatio-temporal prediction using artificial neural networks.
2021. Bachelor’s Thesis. Czech Technical University in Prague, Faculty
of Information Technology.

27. KALMAN, Rudolph Emil. A new approach to linear filtering and pre-
diction problems. 1960.

28. LONG, Zichao; LU, Yiping; DONG, Bin. PDE-Net 2.0: Learning PDEs
from data with a numeric-symbolic hybrid deep network. Journal of
Computational Physics. 2019, vol. 399, p. 108925.

29. CHOMA, Matej. Improving Deep Learning Precipitation Nowcasting by
Using Prior Knowledge. 2022. Master’s Thesis. Czech Technical Univer-
sity in Prague, Faculty of Information Technology.

30. RAVURI, Suman et al. Skilful precipitation nowcasting using deep gen-
erative models of radar. Nature. 2021, vol. 597, no. 7878, pp. 672–677.

31. HO, Jonathan; KALCHBRENNER, Nal; WEISSENBORN, Dirk; SAL-
IMANS, Tim. Axial attention in multidimensional transformers. arXiv
preprint arXiv:1912.12180. 2019.

32. GRUCA, Aleksandra et. al. Weather4cast at NeurIPS 2022: Super-
Resolution Rain Movie Prediction under Spatio-temporal Shifts. 2023.
Submitted for publication.

55

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Bibliography

33. ESPEHOLT, Lasse et al. Skillful Twelve Hour Precipitation Forecasts
using Large Context Neural Networks. arXiv preprint arXiv:2111.07470.
2021.

34. YU, Fisher; KOLTUN, Vladlen. Multi-scale context aggregation by di-
lated convolutions. arXiv preprint arXiv:1511.07122. 2015.

35. VEILLETTE, Mark; SAMSI, Siddharth; MATTIOLI, Chris. SEVIR: A
storm event imagery dataset for deep learning applications in radar and
satellite meteorology. Advances in Neural Information Processing Sys-
tems. 2020, vol. 33, pp. 22009–22019.

36. GOODFELLOW, Ian et al. Generative adversarial networks. Communi-
cations of the ACM. 2020, vol. 63, no. 11, pp. 139–144.

37. SAMSI, Siddharth; JONES, Michael; VEILLETTE, Mark M. Compute,
time and energy characterization of encoder-decoder networks with au-
tomatic mixed precision training. In: 2020 IEEE High Performance Ex-
treme Computing Conference (HPEC). IEEE, 2020, pp. 1–6.

38. MICIKEVICIUS, Paulius et al. Mixed precision training. arXiv preprint
arXiv:1710.03740. 2017.

39. VEILLETTE, Mark S; HASSEY, Eric P; MATTIOLI, Christopher J;
ISKENDERIAN, Haig; LAMEY, Patrick M. Creating synthetic radar
imagery using convolutional neural networks. Journal of Atmospheric
and Oceanic Technology. 2018, vol. 35, no. 12, pp. 2323–2338.

40. HEINEMANN, Thomas; LATANZIO, A; ROVEDA, Fausto. The Eumet-
sat multi-sensor precipitation estimate (MPE). In: Second International
Precipitation Working group (IPWG) Meeting. 2002, pp. 23–27.

41. ROEBELING, RA; HOLLEMAN, I. SEVIRI rainfall retrieval and valida-
tion using weather radar observations. Journal of Geophysical Research:
Atmospheres. 2009, vol. 114, no. D21.

42. HSU, Kuo-lin; GUPTA, Hoshin V; GAO, Xiaogang; SOROOSHIAN,
Soroosh. Estimation of physical variables from multichannel remotely
sensed imagery using a neural network: Application to rainfall estima-
tion. Water Resources Research. 1999, vol. 35, no. 5, pp. 1605–1618.

43. BEHRANGI, Ali; HSU, Kuo-lin; IMAM, Bisher; SOROOSHIAN,
Soroosh; KULIGOWSKI, Robert J. Evaluating the utility of multispec-
tral information in delineating the areal extent of precipitation. Journal
of Hydrometeorology. 2009, vol. 10, no. 3, pp. 684–700.

44. MEYER, Hanna; KÜHNLEIN, Meike; APPELHANS, Tim; NAUSS,
Thomas. Comparison of four machine learning algorithms for their
applicability in satellite-based optical rainfall retrievals. Atmospheric
research. 2016, vol. 169, pp. 424–433.

56

Bibliography

45. TAO, Yumeng; GAO, Xiaogang; IHLER, Alexander; SOROOSHIAN,
Soroosh; HSU, Kuolin. Precipitation identification with bispectral satel-
lite information using deep learning approaches. Journal of Hydromete-
orology. 2017, vol. 18, no. 5, pp. 1271–1283.

46. VINCENT, Pascal et al. Stacked denoising autoencoders: Learning use-
ful representations in a deep network with a local denoising criterion.
Journal of machine learning research. 2010, vol. 11, no. 12.

47. SMITH, Eric A et al. International global precipitation measurement
(GPM) program and mission: An overview. Measuring precipitation from
space: EURAINSAT and the future. 2007, pp. 611–653.

48. HUFFMAN, George J et al. NASA global precipitation measurement
(GPM) integrated multi-satellite retrievals for GPM (IMERG). Algo-
rithm theoretical basis document (ATBD) version. 2015, vol. 4, no. 26.

49. NASA. Global Precipitation Measurement [online]. [visited on 2023-03-
15]. Available from: https://gpm.nasa.gov/.

50. GAMBOA-VILLAFRUELA, Carlos Javier; FERNÁNDEZ-ALVAREZ,
José Carlos; MÁRQUEZ-MIJARES, Maykel; PÉREZ-ALARCÓN, Al-
benis; BATISTA-LEYVA, Alfo José. Convolutional lstm architecture for
precipitation nowcasting using satellite data. Environmental Sciences
Proceedings. 2021, vol. 8, no. 1, p. 33.

51. EHSANI, Mohammad Reza; ZAREI, Ariyan; GUPTA, Hoshin V;
BARNARD, Kobus; BEHRANGI, Ali. Nowcasting-Nets: Deep neural
network structures for precipitation nowcasting using IMERG. arXiv
preprint arXiv:2108.06868. 2021.

52. HERRUZO, Pedro et al. High-resolution multi-channel weather
forecasting–First insights on transfer learning from the Weather4cast
Competitions 2021. In: 2021 IEEE International Conference on Big
Data (Big Data). IEEE, 2021, pp. 5750–5757.

53. SCHMETZ, Johannes et al. An introduction to Meteosat second gen-
eration (MSG). Bulletin of the American Meteorological Society. 2002,
vol. 83, no. 7, pp. 977–992.

54. SOKOL, Zbyněk et al. The role of weather radar in rainfall estimation
and its application in meteorological and hydrological modelling—A re-
view. Remote Sensing. 2021, vol. 13, no. 3, p. 351.

55. HUUSKONEN, Asko; SALTIKOFF, Elena; HOLLEMAN, Iwan. The op-
erational weather radar network in Europe. Bulletin of the American
Meteorological Society. 2014, vol. 95, no. 6, pp. 897–907.

56. SALTIKOFF, Elena et al. OPERA the radar project. Atmosphere. 2019,
vol. 10, no. 6, p. 320.

57

https://gpm.nasa.gov/

Bibliography

57. PASZKE, Adam et al. PyTorch: An Imperative Style, High-Performance
Deep Learning Library. In: WALLACH, H. et al. (eds.). Advances in Neu-
ral Information Processing Systems 32. Curran Associates, Inc., 2019,
pp. 8024–8035.

58. FALCON, William et al. PyTorch Lightning. 2019. Available also from:
https://www.pytorchlightning.ai.

59. LI, Yang; DONG, Haiyu; FANG, Zuliang; WEYN, Jonathan; LUFER-
ENKO, Pete. Super-resolution Probabilistic Rain Prediction from
Satellite Data Using 3D U-Nets and EarthFormers. arXiv preprint
arXiv:2212.02998. 2022.

60. GAO, Zhihan et al. Earthformer: Exploring space-time transformers for
earth system forecasting. Advances in Neural Information Processing
Systems. 2022, vol. 35, pp. 25390–25403.

61. BELOUSOV, Yury; POLEZHAEV, Sergey; PULFER, Brian. Solving the
Weather4cast Challenge via Visual Transformers for 3D Images. arXiv
preprint arXiv:2212.02456. 2022.

62. DOSOVITSKIY, Alexey et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. arXiv preprint arXiv:2010.11929.
2020.

63. SEO, Minseok et al. Simple Baseline for Weather Forecasting Us-
ing Spatiotemporal Context Aggregation Network. arXiv preprint
arXiv:2212.02952. 2022.

64. SEO, Minseok et al. Domain Generalization Strategy to Train Classi-
fiers Robust to Spatial-Temporal Shift. arXiv preprint arXiv:2212.02968.
2022.

65. PARK, Jinyoung; SON, Minseok; CHO, Seungju; LEE, Inyoung; KIM,
Changick. RainUNet for Super-Resolution Rain Movie Prediction under
Spatio-temporal Shifts. arXiv preprint arXiv:2212.04005. 2022.

66. KIM, Taehyeon et al. Region-Conditioned Orthogonal 3D U-Net for
Weather4Cast Competition. arXiv preprint arXiv:2212.02059. 2022.

67. WANG, Jiayun; CHEN, Yubei; CHAKRABORTY, Rudrasis; YU,
Stella X. Orthogonal convolutional neural networks. In: Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition.
2020, pp. 11505–11515.

68. PEREZ, Ethan; STRUB, Florian; DE VRIES, Harm; DUMOULIN, Vin-
cent; COURVILLE, Aaron. FiLM: Visual Reasoning with a General Con-
ditioning Layer. In: Proceedings of the AAAI Conference on Artificial
Intelligence. 2018, vol. 32. No. 1.

58

https://www.pytorchlightning.ai

Bibliography

69. PIHRT, Jǐŕı; RAEVSKIY, Rudolf; ŠIMÁNEK, Petr; CHOMA, Matej.
WeatherFusionNet: Predicting Precipitation from Satellite Data. arXiv
preprint arXiv:2211.16824. 2022.

70. BIEWALD, Lukas. Experiment Tracking with Weights and Biases. 2020.
Available also from: https://www.wandb.com/.

71. HUNTER, J. D. Matplotlib: A 2D graphics environment. Computing in
Science & Engineering. 2007, vol. 9, no. 3, pp. 90–95.

72. KINGMA, Diederik P; BA, Jimmy. Adam: A method for stochastic op-
timization. arXiv preprint arXiv:1412.6980. 2014.

73. SUDRE, Carole H; LI, Wenqi; VERCAUTEREN, Tom; OURSELIN, Se-
bastien; JORGE CARDOSO, M. Generalised dice overlap as a deep
learning loss function for highly unbalanced segmentations. In: Deep
Learning in Medical Image Analysis and Multimodal Learning for Clini-
cal Decision Support: Third International Workshop, DLMIA 2017, and
7th International Workshop, ML-CDS 2017, Held in Conjunction with
MICCAI 2017, Québec City, QC, Canada, September 14, Proceedings 3.
Springer, 2017, pp. 240–248.

74. LIN, Tsung-Yi; GOYAL, Priya; GIRSHICK, Ross; HE, Kaiming;
DOLLÁR, Piotr. Focal loss for dense object detection. In: Proceedings of
the IEEE international conference on computer vision. 2017, pp. 2980–
2988.

75. LOSHCHILOV, Ilya; HUTTER, Frank. Decoupled weight decay regular-
ization. arXiv preprint arXiv:1711.05101. 2017.

59

https://www.wandb.com/

Appendix A

Acronyms

BCE Binary Cross Entropy

CNN Convolutional Neural Network

CSI Critical Success Index

GPU Graphics Processing Unit

IoU Intersection over Union

LSTM Long Short-Term Memory

MAE Mean Absolute Error

MSE Mean Squared Error

NWP Numerical Weather Prediction

PDE Partial Differential Equation

ReLU Rectified Linear Unit

RNN Recurrent Neural Network

TPU Tensor Processing Unit

WFN WeatherFusionNet

61

Appendix B

Contents of enclosed medium

models...model implementations
thesis..the thesis text directory

thesis.pdf...........................the thesis text in PDF format
src the directory of LATEX source codes of the thesis

utils.........................data loader and metrics implementations
weights............................saved parameters of trained models
environment.yml...............................conda environment file
predict-submission.py......script to generate competition submission
README.md...............instructions and description of the source code
train*.py...training scripts
visualize*.ipynb.............................visualization notebooks

63

	Introduction
	Theoretical background
	Weather forecasting
	Numerical weather prediction
	Radar nowcasting

	Deep learning model architectures
	U-Net
	ConvLSTM
	PhyDNet
	PhyCell

	Related work
	MetNet
	MetNet-2
	SEVIR dataset
	Synthetic radar
	Physics-based approaches
	Machine learning approaches
	U-Net

	Global Precipitation Measurement
	IMERG

	Weather4cast 2022 competition
	Data
	Satellite
	Radar
	Competition-specific details
	Static data

	Task
	Starter kit
	Solutions of other competitors
	Model Ensemble for Probabilistic Rain Prediction
	Vision Transformers for Weather4cast
	SIANet
	RainUnet
	Region-Conditioned Orthogonal 3D U-Net

	WeatherFusionNet
	Architecture
	U-Net
	Crop & Upscale
	Satellite PhyDNet
	Sat2Rad U-Net
	WeatherFusionNet

	Training and results
	Sat2Rad U-Net
	Satellite PhyDNet
	WeatherFusionNet

	Ablation study
	Competition results

	More experiments
	Static data
	Optical flow
	Radar to radar

	Conclusion
	Outline of future work

	Bibliography
	Acronyms
	Contents of enclosed medium

