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Abstrakt: Texturní analýza obrazů je oblastí s četnými možnostmi využití, např.
při analýze 3D snímků v medicíně. Většina autorů se ovšem dosud primárně za-
bývala pouze texturní analýzou 2D obrazů. Texturní analýza zaměřená specificky
na 3D obrazy je, díky četným možnostem využítí, nyní velmi aktuálním a rychle
se rozvíjejícím odvětvím. V první části této diplomové práce jsou představeny teor-
etické koncepty přístupu k texturní analýze, zaměřené již od počátku speciálně na
3D obrazy. Nejprve je diskutováno téma rychlé digitální filtrace obrazu, které je
následně rozvedeno a využito k výpočtu rotačně invariatních, globálních vlastností
textur 3D obrazů, založených na Fourierově transformaci Zernikeho polynomů. Na
teoretickou část navazuje implementace v prostředí MATLAB, která umožní vy-
počtené vlastnosti obrazů využít ke klasifikaci SPECT snímků mozků pacientů s
Alzheimerovou chorobou. Pomocí tohoto přístupu je možné dosáhnout vysoké přes-
nosti klasifikace pacientů, což tuto metodu činí vhodnou k využití při diagnostice v
medicíně.
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Abstract: Texture-based image analysis is a field with numerous applications, e.g., in
the analysis of 3D medical images. In the past, however, most authors were primarily
concerned with the texture-based analysis of 2D images. Texture analysis specifically
focused on 3D images is, thanks to its numerous applications, now a state-of-the-art,
rapidly developing discipline. In the first part of this master’s thesis, theoretical
concepts of an approach to texture analysis specifically tailored to 3D images are
presented. First, the topic of fast digital image filtering is discussed, which is then
developed and used to compute rotationally invariant global texture characteristics
of 3D images based on the Fourier transform of Zernike polynomials. The theoretical
part is followed by a MATLAB implementation that allows the computed image
features to be used for the classification of SPECT images of the brains of patients
suffering from Alzheimer’s disease. Using this approach, it is possible to achieve
high accuracy in patient classification, which makes this method suitable for use in
medical diagnostics.
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Introduction

Image processing is a varied and rapidly developing field with many practical uses,
ranging from medical imaging and self-driving vehicles to processing data from space
telescopes. We conceive of this work as an investigation into mid-level image pro-
cessing methods, namely texture-based analysis and image classification. We con-
sider the main contribution of this work to be the fact that we primarily make
inquiries into texture-based analysis and classification of three-dimensional images,
a modern but still relatively unexplored discipline. In this work, we introduce fast
methods of producing rotationally invariant characteristics of three-dimensional im-
ages through the usage of Zernike polynomials and a fast Fourier transform (FFT).
In the experimental part, we will show that even with the employment of not par-
ticularly complex global statistical characteristics, we are able to produce good im-
age classification results for single-photon emission computed tomography (SPECT)
brain imaging data of cognitively normal (CN) patients and patients suffering from
Alzheimer’s disease (AD), which makes our method and results potentially of in-
terest in the field of medical diagnosis.

In Chapter 1, we introduce and briefly describe the most important aspects of
three-dimensional image processing. We start the chapter with a definition of an n-
dimensional greyscale image. We mention the various levels of image processing,
elementary image operations, and define image noise and some of its types. We con-
tinue this chapter by defining the meaning of low-pass and high-pass image filtering
and introducing the basics of global filtering in the frequency domain utilizing a fast
Fourier transform (FFT). We then move onto higher-level image processing - texture-
based image analysis. In this section, we introduce several popular approaches to
image texture analysis. Finally, we discuss the topic of image classification. Some
concepts mentioned in this introductory chapter will be elaborated on in the later
chapters of this work.

Chapter 2 is concerned with descriptions of fast global filtering methods in the
frequency domain. We discuss the construction of several types of low-pass filter-
ing kernels including the binary, Gaussian, Butterworth, and α-stable kernels. We
also define a simple manner in which we may utilize low-pass filtering kernels for
high-pass filtering. We end this chapter with definitions of several nonlinear data
transformations, which we may use as an intermediary step while filtering images in
the frequency domain.
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In Chapter 3, we move onto the higher-level image processing technique of texture
analysis. In this chapter, we introduce a manner of constructing three-dimensional
rotational invariants through the usage of FFT of Zernike polynomials. We will also
define the global statistical characteristics that will act as textural image features
and input data for classifiers in the experimental part of this work.

Chapter 4 describes the process of image classification. In the beginning of this
chapter, we will describe a way to test the data by using the Mann-Whitney U test,
the Liliefors test, and the Welch’s t-test to determine which, if any, features exhibit
the largest potential for dataset separation. In the rest of the chapter, we will be
primarily concerned with transforming and whitening the data to serve as inputs for
several types of binary classifiers, which will be used to decide whether a SPECT
brain image belongs to a patient suffering from Alzheimer’s disease or to a healthy,
cognitively normal patient. To this end, we will use the linear discriminant analysis
(LDA), quadratic discriminant analysis (QDA), k-nearest neighbours (KNN), as well
as the support vector machines (SVMs) of the polynomial and Gaussian variety, and
the artificial neural networks (ANNs).

Chapter 5 is concerned primarily with the explanation of certain crucial details of
our image processing library, which will be implemented in MATLAB. We make
comments on defined classes and explain the purpose of functions used in our imple-
mentation. We also describe the incorporation of already prepared software, such as
the MATLAB Statistics and Machine Learning Toolbox™ implementation of ANNs
and SVMs, as well as the incorporation of community-created functions for easier
saving of MATLAB plots containing obtained results.

Chapter 6 presents results of image processing experiments obtained on a data-
set containing SPECT images of patients suffering from Alzheimer’s disease and
patients with cognitively normal brains. We first discuss the results of statistical
testing for data separation. The second and largest part of this chapter is dedicated
to a discussion and analysis of image classification results. We will show that even
while using relatively non-complex statistical characteristics, we are able to obtain
good binary classification results while using all mentioned types of classifiers, which
makes our method potentially of interest in the field of medical diagnosis.

We conclude this work with a brief summary of the theoretical approaches we decided
to employ, a recapitulation of the obtained results, and a discussion of suggested fu-
ture improvements, and extensions, as well as possible follow-up projects.
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Chapter 1

Image Processing

In this introductory chapter, we present and briefly examine some of the principal
elements and concepts of image processing, which include basic image operations in
spatial and frequency domains, image filtering, texture-based image analysis, and
image classification. These theoretical concepts are indispensable as they become
the foundation upon which lie the practical implementation and applications found
in chapters 5 and 6 of this work. Most of the concepts related to fast global image
filtering, texture-based image analysis, and image classification, and hence to the
main topic of this work, are also described in more depth in chapters 2, 3 and 4.

1.1 n-Dimensional Greyscale Image

Let n ∈ N be the image dimension and r ∈ N
n be the image range vector. A set

S = ¶i ♣ i ∈ Z
n, 0 ≤ i < r♢ of coordinate vectors is called the image support set. An

n-dimensional greyscale image is a function f: S → R. The elements of the set S are
called pixels (picture elements) in the case of a two-dimensional image and voxels
(volume elements) in the case of a three-dimensional image. When not specifically
concerned with the number of dimensions n, we will also refer to the coordinate
vector i as image element. We define the signal intensity of an image element as
f(i) = f[(i1, . . . , in)] or f(i) = f(i1, . . . , in) using a simplified notation.

1.2 Image Processing and Enhancement

Image processing may be defined as the bulk of various procedures that take an
image as their input and, by performing certain predefined operations, arrive at a
result. We can classify these procedures as low-, mid- and high-level processes. Low-
level processes take an image as their input and arrive at a result that is itself also an
image. Popular low-level processes frequently include use of the image Ąltering, i.e.
algorithms aimed at reducing the level of noise present within the image. Mid-level
processes include image texture analysis, segmentation/partitioning and image re-
cognition/classification. Mid-level processes therefore take an image as an input and
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generally give a result that is itself not an image but rather a bundle of extracted
features. Finally, high-level processes perform tasks otherwise generally reserved for
the human vision, such as depth analysis and making sense of the groups of recog-
nized objects within the image [1].

The term image enhancement describes an act of processing an image that facilitates
using said image for a problem specific application. It should therefore be obvious
that image enhancement is always a goal specific process [1]. It can, for example, be
inferred that enhancing a single-photon emission computed tomography (SPECT)
image is a task vastly different from enhancing a result of aerial/satellite imaging.

1.3 Spatial and Frequency Domains

In 1.1, we have defined an n-dimensional image as a function, which represents the
image in the spatial domain. It is, however, also possible to represent the image in the
frequency domain. Calculating the discrete Fourier transform (usually a fast Fourier
transform) of the image, we obtain its frequency-domain representation. This can
be used for global image Ąltering and even texture-based analysis, as we will see in
chapters 2 and 3.

1.4 Elementary Image Operations

As we mentioned in the previous section, image processing consists of performing
various procedures on an image. In terms of low-level processing in the spatial do-
main, these procedures or algorithms can oftentimes be decomposed into several
elementary image operations. Remembering the fact that images are represented
by a function, we define the element-wise sum of two images f(·) and g(·) as the
operation ⊕:

f(·) ⊕ g(·) = f(i) + g(i), ∀i ∈ S (1.1)

We define the product of two images f(·) and g(·) as the operation ⊗:

f(·) ⊗ g(·) = f(i) · g(i), ∀i ∈ S (1.2)

In the scope of this work, we will generally use element-wise operations (especially
when concerned with fast global image filtering) unless stated otherwise.
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1.5 Noise

Provided that we could transfer a perfect captured image of a scene, we would obtain
a noiseless ideal image. Unfortunately, due to limitations in equipment quality and
extraneous environmental influences this is not possible and any captured image will
therefore feature some level of noise, i.e. elements that are not present in the original
scene itself and that negatively impact the quality of the image by random variation
of intensity levels. Assuming simple element-wise additive noise, the corrupted image
g(·) is the result of combining the ideal noiseless image f(·) and noise η(·) [1]:

g(·) = f(·) ⊕ η(·),

where we assume that ρη,η = I, µ(η) = 0, i.e. the correlation matrix of η is the
identity matrix and the mean of η is equal to zero. The behaviour and features of
each type of noise are defined by its probability distribution function (PDF).

1.5.1 Gaussian Noise

Gaussian noise is a frequently employed noise model because of its easiness of use in
both the spatial and frequency domains. It is defined by the well-known Gaussian
PDF:

p(u) =
1√
2πσ

exp



−(u− µ)2

2σ2



− ∞ < u < ∞, (1.3)

where u represents the intensity, µ the mean value and σ the standard deviation.
The tractability of Gaussian noise is, however, often balanced out by its low level of
applicability for a large portion of real-life problems [1].

1.5.2 Salt-and-Pepper Noise

The salt-and-pepper or impulse noise receives its name after the salt-and-pepper
granules or specks of generally maximum or minimum possible intensity it distrib-
utes within the corrupted image. Assuming that the original image contains integer
intensity values u in the range u ∈ ¶0, 1, . . . , 2m − 1♢ where m ∈ N, this type of
noise is defined by the PDF [1]:

p(u) =















Phigh foru = 2m − 1

Plow foru = 0

1 − (Phigh + Plow) foru ∈ ¶1, 2, . . . , 2m − 2♢
(1.4)
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We can image the situation as following: the ideal image f(·) is corrupted by the
impulse noise by observing the corresponding random noise image η(·) of a same
size and assigning the value f(i) = 2m − 1,∀i: η(i) = 2m − 1. This process is done
analogously for the value zero. Values within the range ¶1, 2, . . . , 2m − 2♢ remain
unchanged. Thus, we can see that the resulting corrupted image will feature specks
of maximum or minimum intensity distributed according to the salt-and-pepper
PDF.

1.6 Image Filtering

In this section, we will introduce two approaches to image filtering, which is itself
a low-level procedure aimed at reducing the noise level within an image. These two
paradigms are the local filtering, which utilizes the spatial representation of images,
and the global filtering, which works with the frequency representation.

It is also important to note that we can differentiate between several types of fil-
tering depending on what is our final goal with the image. If we wish to reduce
sharp transitions within the image, we employ so called low-pass Ąltering (LP). This
approach is most useful when dealing with the noise within images, as it tends to
manifest as sharp transitions in intensity. For this reason, the low-pass image fil-
tering, also called smoothing, will become one of the topics discussed in the later
chapters of this work. If, however, we wish to highlight sharp transitions (changes in
texture) within the image, we use the high-pass Ąltering (HP) approach. Combining
these two approaches we can create either band-pass or band-reject filters, i.e. filters
that either accentuate or understate intensities within a certain range.

Using the information from 1.4, we can also say that we are dealing with either linear
or nonlinear image filtering methods. Spatial linear image filtering such as computing
the (weighted) arithmetic average is perhaps the simplest way of implementing a low-
pass filter. To add more variability to our library of image processing functions, we
will also add an option to transform the image using a nonlinear transformation (see
Chapter 2).

1.6.1 Local Filtering

Local filtering exploits the spatial representation of an image. Remembering the
definition in 1.1, it follows naturally that local filtering constructs for each element
of the image a element neighbourhood of predefined size and shape, whereupon a
certain mask also known as a kernel can be used to modify the intensity f(i) using
the intensities of its neighbours. The process of moving the centre of a kernel across
an image is called a convolution. This process can, however, be rather time-inefficient
for large two-dimensional and most three-dimensional images. In this section, we will
thus provide only definitions that are also useful for defining the fast global filtering.
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Discrete Convolution and Correlation

Convolution and correlation are the names of fundamentally similar operations that
describe the movement of a mask across an image. Let f(·) be an n-dimensional
function (not necessarily an image) and h(·) be an n-dimensional kernel function.
We define the n-dimensional convolution ∗ as:

(h ∗ f)(i) =
∑

k∈Zn

h(k)f(i − k) (1.5)

We define the n-dimensional correlation ⊛ as:

(h⊛ f)(i) =
∑

k∈Zn

h(k)f(i + k) (1.6)

The convolution is commutative, associative, and distributive, while correlation up-
holds only the property of distributivity. From both of these definitions, where the
sum indices are technically infinite, we can see that for convolving images with ker-
nels we first have to restrict indices’ values to be appropriately bounded and finite. It
is also obvious that without a special preparation, it would be impossible to convolve
the mask with the elements close to the rim of the image. We call this preparation
padding.

Padding

As defined in the previous sections, padding is a preprocessing operation that enables
full movement of the centre of a mask across all elements of an image. We will define
three kinds of padding - the zero, copy and periodic padding. The zero padding is the
most basic of the padding methods, as it consists of appending rows and columns of
zeros to all sides of the image. The copy padding appends values equal to values of
the nearest image element. The periodic padding appends values obtained by mirror
reflecting the image across its border. Illustrating the concept on a matrix M :

M =







m1,1 m1,2 m1,3

m2,1 m2,2 m2,3

m3,1 m3,2 m3,3







Assuming a kernel of size 3 × 3, the results of zero, copy and periodic padding
methods respectively would then be matrices of size 5 × 5:

Mzero =

















0 0 0 0 0
0 m1,1 m1,2 m1,3 0
0 m2,1 m2,2 m2,3 0
0 m3,1 m3,2 m3,3 0
0 0 0 0 0
















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Mcopy =

















m1,1 m1,1 m1,2 m1,3 m1,3

m1,1 m1,1 m1,2 m1,3 m1,3

m2,1 m2,1 m2,2 m2,3 m2,3

m3,1 m3,1 m3,2 m3,3 m3,3

m3,1 m3,1 m3,2 m3,3 m3,3

















Mper =

















m3,3 m3,1 m3,2 m3,3 m3,1

m1,3 m1,1 m1,2 m1,3 m1,1

m2,3 m2,1 m2,2 m2,3 m2,1

m3,3 m3,1 m3,2 m3,3 m3,1

m3,3 m1,1 m1,2 m1,3 m1,1

















1.6.2 Global Filtering

Global image filtering techniques utilize the Fourier transform (FT) and the asso-
ciated computationally efficient algorithms such as a fast Fourier transform (FFT)
that enable us to work with the frequency representation of the image. Apart from
an introduction and a brief exploration, a rigorous definition of Fourier transform
and proofs of its properties remain beyond the scope of this work and can be found
in [2] or [1], where its direct applications in the image filtering field are also discussed
in some detail. For the same reasons, we will also generally discuss only the case of
one-dimensional Fourier transform and outline the n-dimensional extensions where
necessary for applications in image processing.

Fourier Series and Transform

For our purposes and level of detail, we can say that it is possible to represent
any periodic function satisfying some mild conditions as a sum of sines and cosines
weighted with calculable coefficients. We call this sum a Fourier series. Functions
that are not periodic but whose area under a curve is finite can be similarly represen-
ted using integrals of weighted sines and cosines. We call this integral representation
a Fourier transform of a function. Most importantly, both representations offer in-
verse operations that enable us to fully reconstruct the original function from either
its series or transform [1][2].

Using the Euler’s identity formula, we define the Fourier series of a periodic one-di-
mensional function f(t) with a period T as [1][2]:

f(t) =
∞
∑

n=−∞

Cn · exp
(

2πint

T

)

, (1.7)

where
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Cn =
1

T

∫ T/2

−T/2
f(t) · exp

(

−2πint

T

)

dt forn = 0,±1,±2, . . . (1.8)

are the series coefficients and i denotes the imaginary unit.

We define the Fourier transform F of a continuous one-dimensional function f(t)
of a continuous variable t as [1][2]:

F (f(t)) =
∫ ∞

−∞
f(t) · exp(−2πiµt)dt, (1.9)

where µ is also a continuous variable. Because the variable t is annihilated during
integration, we may write (1.9) as [1]:

F(µ) =
∫ ∞

−∞
f(t) · exp(−2πiµt)dt (1.10)

Using the above-mentioned invertibility property or f(t) = F −1(F(µ)), we use the
inverse Fourier transform to obtain the function f(t) as [1][2]:

f(t) =
∫ ∞

−∞
F(µ) · exp(2πiµt)dµ (1.11)

Continuous Convolution and Correlation

Remembering the convolution, which describes the movement of a mask across an
image, we may take interest in expressing this operation for continuous functions.
Similarly to (1.5), we define the convolution of two continuous functions f(t) and
k(t) as [1][2]:

(f ∗ k)(t) =
∫ ∞

−∞
f(τ)k(t− τ)dτ, (1.12)

where τ represents a dummy variable annihilated during integration.

We define the continuous correlation of two continuous functions f(t) and k(t) as:

(f ⊛ k)(t) =
∫ ∞

−∞
f(τ)k(t+ τ)dτ, (1.13)

The Fourier transform of (f ∗ k)(t) is then:

F ((f ∗ k)(t)) =
∫ ∞

−∞



∫ ∞

−∞
f(τ)k(t− τ)dτ

]

exp(−2πiµt)dt (1.14)

Switching the order of integration and using the result F (k(t−τ)) = K(µ) exp(−i2πµt)
from [1], we may simplify (1.14) as:
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F ((f ∗ k)(t)) =
∫ ∞

−∞
f(τ)[K(µ) exp(−2πiµt)]dτ (1.15)

Seeing that K(µ) does not depend on τ and from the definition of Fourier transform
of a function f(τ), we may observe the convolutional theorem [1]:

F ((f ∗ k)(t)) = F(µ)K(µ) = (F ⊗ K)(µ) (1.16)

Because the convolution is commutative, so is also the multiplication of these re-
spective transforms. We now see that the convolution of two continuous functions
of a continuous variable is equal to the multiplication of Fourier transforms of said
functions.

The correlation equivalent to the convolutional theorem is:

F ((f ⊛ k)(t)) = F(µ)K(µ) = (F ⊗ K)(µ), (1.17)

Correlation, however, is only commutative when both functions are hermitian, i.e. they
uphold the property f(t) = f(−t).

Discretization, Sampling and Aliasing

To employ the theory established for continuous functions in practical use, we must
first discretize the continuous functions in question. To do so, we sample the function
at a certain sampling rate according to the Nyquist-Shannon Sampling theorem [1]
to prevent over- or under-sampling of the function as well as related problems such
as aliasing. The sampling theorem dictates that a function is fully recoverable from
its discrete samples provided that the sampling rate exceeds double of the highest
frequency of the function [1]. Such sampling rate prevents aliasing, which is the situ-
ation when it is impossible to recover the original function purely from its discrete
samples. We may see such situation in the fig. 1.1.

Supposing that we are sampling a function f(t) every ∆T units apart, the sampled
function f̃(t) is defined as [1][2]:

f̃(t) =
∞
∑

n=−∞

f(t)δ(t− n∆T ), (1.18)

where δ(t) is an unit impulse defined as [1] [2]:

δ(t) = 0 if t ̸= 0 (1.19)

that satisfies [1][2]:
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Figure 1.1: Two signals whose sampling exhibits aliasing. Retrieved from [1].

∫ ∞

−∞
δ(t)dt = 1 (1.20)

Following the sampling, we are then able to obtain the continuous Fourier transform
F̃(µ) of the function f̃(t) [1][2]:

F̃(µ) =
∫ ∞

−∞

∞
∑

n=−∞

f(t)δ(t− n∆T ) exp(−2πiµt)dt, (1.21)

where the order of summation and integration can be switched and using certain
properties of the impulse described in [1] or [2] we obtain from (1.21) [1]:

F̃(µ) =
∞
∑

n=−∞

fn exp(−2πiµn∆T ), (1.22)

where fn is a discrete function. The transform F̃(µ), however, is a continuous periodic
function, which enables us to describe it by only one of its periods. Assuming that
we choose the period interval µ = [0, 1/∆T ] and want to obtain N equally spaced
samples of the transform, we obtain the discrete Fourier transform (DFT) Fm of the
function f(t) [1][2]:

Fm =
N−1
∑

n=0

fn exp
(

−2πimn

N

)

form = 0, 1, 2, . . . , N − 1 (1.23)

We may also return from Fm to the original sample set by using the inverse discrete
Fourier transform (IDFT) [1][2]:

fn =
1

N

N−1
∑

m=0

Fm exp
(

2πimn

N

)

forn = 0, 1, 2, . . . , N − 1 (1.24)
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It is simple to see that by substituting Fm and fn into their respective equations,
they form a transform pair. It is also interesting to observe that this pair exists for
any set of finitely valued uniformly spaced samples [1].

We will finish this section by noting it is customary to write f(x) and F(u) instead
of fn and Fm, as this manner of notation is better suited to convey the spatial- and
frequency-domain variables when extended to the case of n-dimensional images.
Therefore, while dealing with a one-dimensional case, we write:

F(u) =
N−1
∑

n=0

f(x) exp
(

−2πiux

N

)

foru = 0, 1, 2, . . . , N − 1 (1.25)

and

f(x) =
1

N

N−1
∑

m=0

F(u) exp
(

2πiux

N

)

forx = 0, 1, 2, . . . , N − 1, (1.26)

where x and u denote the spatial or frequency variables.

n-Dimensional Image Fourier Transform

The theory introduced in previous sections can be naturally extended to functions
in more than one dimension. If extended to n dimensions, it can be used for our
purposes of Fourier transform and global image filtering of n-dimensional images.
As the Fourier transform assumes periodicity of the given function, it is customary
to first pad the image using one of the techniques introduced in 1.6.1. In the case of
global filtering, we use the padding to enlarge the original n-dimensional image f(·)
to a 2n times larger padded image fp(·). This padded image is then used to compute
the DFT F(·) of the image. After constructing the kernel K(·) (see Chapter 2) and
multiplying F(·) ⊗ K(·), based on the convolutional theorem, we obtain the filtered
image G(·) in the frequency domain:

G(·) = K(·) ⊗ F(·), (1.27)

We obtain the spatial representation of the filtered padded image as:

gp(·) = F
−1(G(·)),

We then obtain the final filtered result g(·) by cropping the upper left region of gp(·)
of size corresponding to the size of the original image.
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Fast Fourier Transform (FFT)

Fast Fourier transform is a computationally efficient method that simplifies and
speeds up otherwise cumbersome calculation of the DFT. It uses primarily the separ-
ability of DFT - the three-dimensional transform of a function image f(k) can be
computed by first computing one-dimensional transform of f(k) for each row and
column along the grid depth of the obtained result [1]. Computing the Fourier trans-
form of any three-dimensional image is therefore reduced to sequential computation
of one-dimensional transforms.

The second simplification used in FFT is that it is in fact possible to compute
the IDFT using the forward DFT algorithm. Analogously to (1.25), we define the
n-dimensional DFT as [1]:

F(u) =
∑

k∈S

f(k) exp
(

−2πi
n
∑

j=1

ujkj

rj

)

(1.28)

and assuming N =
∏n

j=1 rj the IDFT as [1]:

f(k) = F
−1
n (F(u)) =

1

N

∑

u∈S

F(u) exp
(

2πi
n
∑

j=1

ujkj

rj

)

(1.29)

Taking the complex conjugate of both sides of IDFT multiplied by N we get from
(1.29) [1]:

N · f(k) = Fn(F(u)) =
∑

u∈S

F(u) exp
(

−2πi
n
∑

j=1

ujkj

rj

)

(1.30)

We are now able to see that to obtain the complex conjugate of f(k) multiplied by
N , we can simply calculate the DFT of the complex conjugate F(u). Taking the
complex conjugate of this result divided by

∏n
j=1 rj then gives us the function f(k).

Thus, we are able to obtain the IDFT using the DFT algorithm. In the case of
f : S → R, this computation is further simplified, as f(k) = f(k).

There are many FFT algorithms, most of which reduce the computation complexity
from O(N2) of the DFT to O(N · log(N)), assuming we compute a one-dimensional

transform. This simplification gives us computational advantage of
N

log2(N)
when

compared to classical DFT algorithm [1]. For example, if the DFT requires N2

operations, and we know that N = 1024 = 210, we may assume computational

advantage of
210

log2 210
=

210

10
≈ 100. Therefore, we may expect that a FFT will arrive

at a result approximately a hundred times faster than the classical DFT algorithm.
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1.7 Texture-Based Image Analysis

In this section, we will briefly discuss the notion of image texture and several ap-
proaches to its analysis. These will include statistical approaches, which aim to
quantify certain perceived local qualities such as smoothness, directionality and reg-
ularity [1][3][4][5]. Popular statistical approaches include grey-level co-occurrence
matrix (GLCM) (utilizing some or all of features proposed by Haralick et al. in [4])
and features proposed by Tamura et al. in [5]. Transform-based approaches aim to
represent the image through a coordinate system that might be closely related to
perceived image textures. These approaches include techniques based on the FT,
Gabor decomposition and the wavelet transform.

1.7.1 Image Texture

Even though it is generally easy to distinguish between different textures for the
human eye, the notion of image texture is not rigorously defined [1][3]. Using stat-
istical approaches we may define texture as being described by certain local qual-
ities such as smoothness (or coarseness), directionality, regularity, line-likeness or
contrast [3][4][5]. No matter which approach we choose, the core of texture-based
analysis is the extraction of quantifiable qualities, which is only possible through
devising mathematical definitions of texture descriptors.

1.7.2 Statistical Approaches

Statistical approaches attempt to come up with mathematical approximations of
qualities perceived by the human eye. As already mentioned, these include smooth-
ness (or coarseness), directionality, regularity, line-likeness or contrast [3][4][5]. The
disadvantage of these methods is that they are generally not well-defined in three-di-
mensional images and their use of local spatial approach to texture, which, especially
in three-dimensional images, results in a large number of calculations and time in-
efficiency (see 1.6.1).

Grey-Level Co-Occurrence Matrix (GLCM)

Grey-Level Co-Occurrence Matrix considers second order statistics, i.e. it studies
the pairs of pixels, which have predefined spatial relation to each other. We utilize
co-occurrence matrices P (i, j♣d, θ) [3]. By this notation, we understand that the mat-
rix element on position (i, j) represents the number of occurrences of a situation, in
which one pixel has the grey-level intensity i and is separated by the distance d and
the angle θ from another pixel having intensity j. We may utilize a symmetric ver-
sion (counting if pairs are separated by ±d) or a nonsymmetric version considering
only positive distances. After computing the co-occurrence matrices, we calculate
various of the 14 features proposed by Haralick et al. in [4]. Conners and Harlow
have however shown that only five of these original features are necessary to obtain
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satisfactory results [6]. These are energy, entropy, correlation, local homogeneity and
contrast (see [3, p. 3] or [4, pp. 10–11] for definitions). This inherently local (based
on neighbourhood distance and angle) approach may be time-consuming for even
larger two-dimensional images, and is especially limited by the choice of investig-
ated of directions θ in the three-dimensional case. Because of these limitations, we
consider this approach not suitable to analysis of three-dimensional images (with
some exceptions, such as [7]).

Tamura Features

In 1978 Tamura et al. [5] proposed six textural features designed to correspond
to human visual perception [3]. These are coarseness, contrast, directionality, line-
likeness, regularity and roughness. For precise definitions, see [3, p. 6] or [5, pp. 6–9].
These features (particularly coarseness or line-likeness) again require extension into
three-dimensions (see for example [8]) and their usage in three-dimensions can be
mired by complex and time-consuming computations.

1.7.3 Transform-Based Approaches

Transform-based approaches convert an image into a new form, such as the frequency-
domain representation, whose coordinate system can be interpreted as relevant to
the features of the image texture [3][9].

Fourier Transform-Based Approaches

Fourier transform-based approaches decompose the original image into its frequency
components using DFT (see 1.6.2). Spatial edges of the original image exhibit low
frequency in one direction, whereas there are multiple frequencies in the orthogonal
direction. This fact is represented by a straight line in the frequency domain. The fur-
ther we are from the centre of the image spectrum, the higher the frequency. Smooth
texture will, therefore, show high values about the spectrum centrer, whereas coarse
texture will show values spread over the spectrum [3].

The Fourier transform-based approaches are also useful for when we want to compute
rotationally invariant features. Fourier transform cannot meaningfully describe local
variations in image texture. This is, however, not a grave hindrance for our usage
of FT-based approach, as our final aim is the image classification based on feature
extraction. We will use an approach somewhat similar to the one used by Maani et
al. [10], who utilized a neighbouring function with circular radius leading to rotation
invariant texture features.
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Gabor Decomposition-Based Approaches

Gabor decomposition-based approaches perform space-frequency decomposition. A
Gabor filter is a Gaussian kernel function modulated by a sinusoidal plane wave (see
[3, p. 11]), which can be seen as a tunable bandpass filter. The general principle is
to decompose the original image into several filtered images using Gabor filter with
differently set parameters. Each of these images then possesses information limited
to a certain part of the spectrum. We are able to extract textural features from the
Gabor-filtered images. These features, however, have the disadvantage of being non-
orthogonal, which may lead to calculation of redundant (not scale invariant) features
when considering more than one filter scale [3]. Calculation of Gabor features is
thus hindered by high storage requirements and computational demands [11] when
compared to other methods.

Wavelet Transform-Based Approaches

Similar to Gabor analysis, the Wavelet transform-based approaches also consider
the textural content in both frequency and spatial domains. The wavelet transform
approximates the image by tuned local wavelets based on the mother wavelet (see
[3, p. 11]). During each stage of analysis, the transform decomposes the original
input into several sub-images containing different information about the texture.
Each of these sub-images is then treated as a separate image and analysed in the
next iteration. This leads to feature extraction, which is not scale invariant. As the
wavelet transform uses a dataset-independent basis/mother function wavelet, which
may be considered a type of fixed dictionary, it is less flexible than various other
methods. While wavelet has the better ability to represent textures at different scales
when compared to Gabor-based approaches, it is not translationally nor rotationally
invariant [3].

1.8 Image Classification

In the scope of this work, we will understand image classification mainly as a task
of utilizing calculated image textural features as inputs of various classifiers to de-
cide whether the image data (dataset of SPECT images of brains of CN and AD
patients) belongs to a patient suffering from Alzheimer’s disease (binary classifica-
tion). This process may first include preprocessing of the extracted features, con-
sisting of data transformation and whitening. Resulting data will be used as inputs
of binary classifiers - the linear discriminant analysis (LDA), quadratic discriminant
analysis (QDA), k-nearest neighbours (KNN), the support vector machines (SVMs)
of the polynomial and Gaussian variety, and the artificial neural networks (ANNs)
with one hidden layer. All of these classifiers will be cross-validated using primarily
the leave-one-out method. We will also try the statistical testing approach of utiliz-
ing the Mann-Whitney U test to determine which, if any, features have the largest
potential for dataset separation.
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Chapter 2

Fast Global Filtering

In this chapter, we introduce and describe some of the techniques of global filter-
ing in the frequency domain, which will make use of the already introduced FFT.
MATLAB implementation of all the methods described in this chapter is one of the
topics discussed in Chapter 5. Obtained results are then discussed and analysed in
Chapter 6.

We begin this chapter by introducing several types of frequency-domain low-pass
(LP) kernels - binary, Gaussian, Butterworth, and α-stable. We will also mention a
manner in which we can utilise these types of kernels for high-pass (HP) filtering.
Apart from ‘inverting’ the low-pass filters, we also define the high-boost frequency
filters. Finally, we describe several nonlinear input and output data transformations
that can be used as an intermediary step during frequency-domain image filtering.

2.1 Low-Pass Filtering (LP)

We will begin this chapter by defining several kernels that result in image smoothing
in the frequency domain. We will start with a simple cut-off binary low-pass filter,
then define filters based on Gaussian and Butterworth functions, and finish this
section with filters based on the α-stable characteristic function. As we will observe
in the next section, it will be easy to invert the low-pass filters and define sharpening
high-pass filters using smoothers as a basis.

2.1.1 Binary Kernel

We define the binary low-pass Ąlter as a filter with kernel that passes all frequencies
within a predefined radius d0 without change and cuts off all frequencies outside
said circular radius. Extending the definition found [1] to n dimensions, we write:

KLP(u) = Id(u)≤d0
(u), (2.1)
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where I is the indicator function and by d(·) we understand the Euclidean dis-
tance from the centre of the centred and padded frequency representation of an
n-dimensional image:

d(u) =



n
∑

j=1

(

uj

rj

)2


1

2

(2.2)

where the original image f(·) is bounded by the range vector r and d0 > 0 is a
tunable critical frequency threshold.

2.1.2 Gaussian Kernel

Extending the definition found in [1], we define the Gaussian low-pass filter kernel
by utilizing the n dimensional transfer function:

KLP(u) = exp
(

− d2(u)

2σ2

)

, (2.3)

where d(u) is the Euclidean distance from the centre of the frequency representation
of the original image, which was defined in (2.2). The standard deviation σ controls
the spread around the centre of the kernel.

2.1.3 Butterworth Kernel

Extending the definition found in [1], we define the n-dimensional Butterworth low-
pass filter kernel using a transfer function [1]:

KLP(u) =
1

√

1 +
(

d(u)

d0

)2m
, (2.4)

where m ∈ N is the order of the transfer function and d0 the frequency threshold.

2.1.4 α-Stable Kernel

The one-dimensional α-stable filter kernel arises from the α-stable characteristic
function [13]:

ϕ(ω) = exp(−γ♣ω♣α), (2.5)

where γ ∈ R
+ is called the dispersion and α ∈ (0, 2) the characteristic exponent

that determines the tail heaviness of the distribution [14]. In the case of α = 2, the
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distribution becomes a Gaussian distribution with a mean of zero and a variance
of 2γ. The case α = 1 coincides with a Cauchy distribution centred at zero with a
PDF [12][13]:

f(x) =
γ

π

1

γ2 + x2
(2.6)

For cases α /∈ ¶1, 2♢, there is no analytical expression of the corresponding density
functions [15]. These densities are, however, smooth, unimodal, symmetric about
the mode and bell shaped [12]. The α-stable characteristic function can be extended
to a n-dimensional joint characteristic function [16]:

ϕ(ω1, ω2, . . . , ωn) = exp


−γ♣ω2
1 + ω2

2 + . . .+ ωn♣α
2

)

, (2.7)

where γ ∈ R
+ and α ∈ (0, 2).

Utilizing the concept of distance within the frequency representation of the image
and cut-off distance, we may use (2.7) and define the n-dimensional α-stable kernel
as:

KLP(u) = exp



−
(

d(u)

d0

)α


(2.8)

2.2 High-Pass Filtering (HP)

2.2.1 Kernel Transformation

There are many ways how to define the high-pass filters. We utilise the already
defined low-pass filters and transform the general low-pass kernel KLP(u), into a
n-dimensional high-pass kernel KHP(u) by ‘inverting’ the filter and subtracting the
value of the low-pass kernel from one:

KHP(u) = 1 −KLP(u) (2.9)

2.2.2 Unsharp Masking, High-boost Filtering

The high-boost filtering and its special case, the unsharp masking, use a simple idea.
In the process of sharpening the image f(·), we first blur the image using a low-pass
filter then subtract the blurred result from the original and finally add the difference
to the original image, thus sharpening it. The sharpened image g(·) is therefore equal
to [1]:

g(·) = f(·) + c · (f(·) − fblur(·)), (2.10)
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where c ∈ R+
0 is a filtering constant. If c = 1, we speak of the unsharp masking.

When c > 1, we describe the method as high-boost filtering.

Using fast global filtering, we obtain the blurred image fblur(·) as [1]:

fblur(·) = F
−1[KLP(·)F (·)], (2.11)

where KLP(·) is the chosen low-pass kernel.

We obtain the result g(·) from the frequency domain [1]:

g(·) = F
−1[(1 + c · (1 −KLP(·)))F (·)]

(2.12)

= F
−1[(1 + c ·KHP(·))F (·)],

where we use the previously defined relation KHP(·) = 1 −KLP(·).

2.3 Nonlinear Transformations

In the last section of this chapter, we introduce several nonlinear data transforma-
tions and their corresponding inverse functions, which, although not frequently used
in this context [18], can be naturally extended to digital images. These transform-
ations will be the power transformation (PT), the log transformation (LT) and the
Box-Cox transformation (BCT), all of which transform intensity values of the digital
image and can lead to image quality enhancement [1] [18]. Another use of transform-
ation can be found in the field of image segmentation and feature extraction [19],
which means that these transformations may prove useful for our purposes.

2.3.1 Power Transformation (PT)

Let f: S → R
+
0 be an n-dimensional image. We transform this image to an image

ftran(·) by changing its intensity element-wise, which we achieve by using the power
transformation (PT) [1]:

ftran(i) = c · f(i)γ, (2.13)

where we assume c, γ ∈ R
+. The operation f(i)γ signifies element-wise exponenti-

ation of the image intensity in a location described by the coordinate vector i.

We define the inverse of the (2.13) as:
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ftran(i) =
(

f(i)

c

)
1

γ

(2.14)

2.3.2 Log Transformation (LT)

Let f: S → R
+
0 be an n-dimensional image. We transform this image to an image

ftran(·) by changing its gamma intensity element-wise by using a log transformation
(LT) [1]:

ftran(i) = c · log(f(i) + λ), (2.15)

where we assume c ∈ R
+, λ > − mini∈S¶f(i)♢.

We define the inverse of (2.15) as:

ftran(i) = exp
(

f(i)

c

)

− λ (2.16)

2.3.3 Box-Cox Transformation (BCT)

Let f: S → R
+
0 be an n-dimensional image f(·). We transform this image to an

image ftran(·) by changing its gamma intensity element-wise by using a Box-Cox
transformation defined in [17]. We must, however, remember the fact that we assume
the image to only possess non-negative intensity values. These values can therefore
be from the interval [0, 1), which could result in a transformed image having negative
intensity values. Consequently, when values smaller than one occur, we substitute
them with ϵ > 0 by using the max¶f(i), ϵ♢ :

ftran(i) =











max¶f(i), ϵ♢λ − 1

λ
forλ ̸= 0

log(max¶f(i), ϵ♢) forλ = 0,
(2.17)

where λ ∈ R, ϵ > 0 are tunable parameters.

We define the inverse of (2.17):

ftran(i) =







(λ · f(i) + 1)
1

λ forλ ̸= 0

exp[f(i)] forλ = 0
(2.18)
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Chapter 3

Texture-Based Image Analysis

In this chapter, we introduce the concepts underlying our approach to the texture-
based analysis of three-dimensional images. We first define and discuss Zernike poly-
nomials, whose FT will be later used for the calculation of rotationally invariant
image features. We then describe several global invariant characteristics, which will
serve as our features and inputs for binary classifiers in the later chapters of this
work. The MATLAB implementation of the theoretical concepts located in this
chapter is the topic of Chapter 5 and Appendix A.

3.1 Zernike Polynomials

Let B be a unit ball in L2, B = ¶x ∈ R
3: ∥x∥2 ≤ 1♢. Let P = [0, 1] × [0, π] × (−π, π]

be the representation of B in spherical coordinates. Let B0 be a unit sphere in L2,
B0 = ¶x ∈ R

3: ∥x∥2 = 1♢. Let r = 1 and let P0 = [0, π] × (−π, π] be the represent-
ation of B0 in spherical coordinates.

3.1.1 Definition of Zernike Polynomial

Let r = (r, θ, ϕ) be a vector of three-dimensional spherical coordinates, r ∈ [0, 1],
ϕ ∈ (−π, π], θ ∈ [0, π]. Let l, n ∈ N0 and m ∈ Z, −l ≤ m ≤ l. The complex-valued
three-dimensional Zernike polynomial Zm

l,n: P → C is defined [20]:

Zm
l,n(r, θ, ϕ) = Rl,n(r)Y m

l (θ, ϕ) (3.1)

The Zernike polynomial Zm
l,n(r, θ, ϕ) thus consists of a real-valued radial polynomial

Rl,n: [0, 1] → R and a complex-valued spherical harmonic function Y m
l : P0 → C. The

radial polynomial Rl,n(x) is defined [20]:

Rl,n(x) =
√

4n+ 2l + 3(−1)nxlP
[l+ 1

2
,0]

n (1 − 2x2) (3.2)

Let α, β ∈ R. A Jacobi polynomial P [α,β]
n : [−1, 1] → R is defined by the formula [20]:

37



P [α,β]
n (x) =

(−1)n

2nn!
(1 − x)−α(1 + x)−β dn

dxn
[(1 − x)α(1 + x)β(1 − x2)n] (3.3)

The polynomials Rl,n(x) are orthonormal in the natural inner product on the unit
ball B [20].

The complex-valued spherical harmonic function Y m
l (θ, ϕ) is defined by the formula

[20]:

Y m
l (θ, ϕ) =

√

√

√

√

2l + 1

4π

(l −m)!

(l +m)!
Pm

l (cos θ) exp(imϕ) (3.4)

where Pm
l : [−1, 1] → R is a Legendre Associated polynomial [20]:

Pm
l (x) =

(−1)m

2ll!
(1 − x2)

m
2

dl+m

dxl+m
(x2 − 1)l (3.5)

The spherical harmonics form a complete orthonormal basis of the surface of the
unit sphere B0 [20]. We thus see that Zernike polynomials Zm

l,n(r) form a complete
orthonormal basis of a function inside the unit ball B with respect to the l2 = ∥x∥2

norm on the unit ball [20].

3.1.2 Fourier Transform of Zernike Polynomial

Let l, n ∈ N0, m ∈ Z, −l ≤ m ≤ l. The Fourier transform of the complex-valued
three-dimensional Zernike polynomial Zm

l,n(r) is given by the formula [20]:

F (Zm
l,n(r)) =

(−1)n

il2πl+ 1

2

Y m
l

(

k

k

)J2n+l+ 3

2

(k)

k
, (3.6)

where r = (r, θ, ϕ) is the coordinate vector of a point in the three-dimensional
spatial domain and k = (k, ψ, µ) is the coordinate vector of a point in
the three-dimensional frequency domain, where k is the magnitude of k,
k = ∥k∥2=

√

(k sinψ cosµ)2 + (k sinψ sinµ)2 + (k cosψ)2. Jα: R → R is a Bessel
function of the first kind and order α ∈ R

+
0 [21]:

Jα(x) =
∞
∑

j=0

(−1)j

j! Γ(j + α+ 1)

x

2

)

2j+α (3.7)

and Γ(z) is a gamma function:

Γ(z) =
∫ ∞

0
tz−1 exp(−t)dt (3.8)
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3.2 Rotational Invariants

3.2.1 Rotational Invariants Inside Unit Ball

Let f : P → C be a general complex-valued function. The linear expansion of the
function f(r) ∈ B is defined by the formula [20][22]:

f(r) =
∞
∑

l=0

∞
∑

n=0

l
∑

m=−l

al,n,mZ
m
l,n(r), (3.9)

where al,n,m ∈ C are coefficients of the linear expansion and Zm
l,n : P → C are three-

dimensional Zernike polynomials. The linear combination (3.9) is SO(3) rotationally
invariant [20]. The linear coefficients al,n,m are given by the formula stemming from
the orthonormality of Zernike polynomials [22][23][24]:

al,n,m =
∫ 1

0

∫ π

0

∫ π

−π
f(r)Zm

l,n(r)dr, (3.10)

where dr = r2 sin(θ)drdθdϕ.

Let f: S → C be a complex-valued three-dimensional image with a support set S and
a range vector r. Let Al,n,m : S → C be a three-dimensional image, where the element
intensities correspond to spatial representation of coefficients an,l,m. Remembering
the convolutional theorem (1.16) and applying it to three-dimensional images, we
may see that:

Al,n,m(·) = F
−1(Qm

l,n(·) ⊗ F(·)), (3.11)

where Qm
l,n(·) is a three-dimensional image consisting of sampled values of the Fourier

transform Qm
l,n(k) of the Zernike polynomial Zm

l,n(r) and F(·) is the three-dimensional
image consisting of values of the Fourier transform of the original image f(·).

We define the l, n-th invariant bl,n as a sum of squared linear coefficients al,n,m:

bl,n =
l
∑

m=−l

♣al,n,m♣2, (3.12)

and understand that bl,n ∈ R is a SO(3) rotationally invariant [25]. We thus see
that Bl,n: S → R consisting of values bl,n is a three-dimensional real-valued image,
whose intensities correspond to a discrete sampling of the rotational invariant. We
will use this image to calculate several textural characteristics of the original image
f(·).
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3.2.2 Scaled Rotational Invariants

As shown above, the rotational invariants are defined inside a three-dimensional L2

unit ball, where orthonormality holds. However, as this is too restrictive a definition
for our purposes of describing three-dimensional images, we also find it useful to
generalize the expansion (3.9) to a ball described by a three-dimensional coordinate
vector s with an arbitrary maximum radius ρ > 1 and calculate the generalized
coefficients a∗

l,n,m and thus also the invariants b∗
l,n more flexibly for this broader case.

This may be done by scaling the coordinate vector r of the unit ball to the general
ball case [23]. The radius ρ is thus also a scaling parameter, which converts the model
to the general ball case (or, in fact, transforms the general cases to the known case of
the unit ball). We transform the original vector to the general case by substituting
s = ρ · r, where r = ♣r♣ ≤ 1, as noted in previous sections. The expression (3.9) thus
becomes:

f(s) =
∞
∑

l=0

∞
∑

n=0

l
∑

m=−l

a∗
l,n,mZ

m
l,n

(

s

ρ

)

(3.13)

We also rewrite the formula (3.10) as:

a∗
l,n,m =

∫ ρ

0

∫ π

0

∫ π

−π
f
(

s

ρ

)

Zm
l,n

(

s

ρ

)

ds, (3.14)

where a∗
l,n,m signifies the generalized expansion coefficient. We define the generalized

invariants b∗
l,n in the same manner as above, while keeping in mind the declared

substitution.

3.3 Image Characteristics

In this section, we define the statistical characteristics calculated on image invariants,
which will serve as image textural characteristics. These simple properties such as
the mean, the median, etc. will be utilised as input data (in both reduced, whitened
and non-whitened versions) for image classification. As we can perceive the invariant
as an n-dimensional image (see above), we will define these characteristics for images.

Let f: S → C be an n-dimensional image with a support set S. We define the image
maximum max[f(·)]:

max[f(·)] = max
i∈S

[f(i)] (3.15)

We define the image minimum min[f(·)]:
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min[f(·)] = min
i∈S

[f(i)] (3.16)

We define the image range range[f(·)]:

range[f(·)] = max[f(·)] − min[f(·)] (3.17)

Let r be the range vector of the image f(·). Let N =
∏n

i=1 ri be the number of image
elements. We define the image mean mean[f(·)]:

mean[f(·)] =
1

N

∑

i∈S

f(i) (3.18)

We define the image median med[f(·)]:

med[f(·)] =























f(i(N+1)/2) if N is odd

f(i(N/2)) + f(i(N/2))

2
if N is even,

(3.19)

where f(i(N/2)) signifies the N
2

-th element of the ordering of image element intensities
from smallest to largest.

Let g(·) be an n-dimensional image, g(i) = f(i) − med[f(·)], ∀i ∈ S. We define the
image median absolute deviation (MAD) mad[f(·)]:

mad[f(·)] = med[g(·)] (3.20)

Let k ∈ N0, k ≤ 100. We define the k-th percentile of the image f(·) as perc[f(·)](k):

perc[f(·)](k) = f(i(⌈ k·N
100

⌉)) (3.21)

We define the first quartile of the image f(·) as Q1[f(·)]:

Q1[f(·)] = perc[f(·)](25) (3.22)
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We define the third quartile of the image f(·) as Q3[f(·)]:

Q3[f(·)] = perc[f(·)](75) (3.23)

We define the inter-quartile range of the image f(·) as IQR[f(·)]:

IQR[f(·)] = Q3[f(·)] − Q1[f(·)] (3.24)

We define the variance of the image f(·) as var[f(·)]:

var[f(·)] =
1

N

∑

i∈S

[f(i) − mean[f(·)]]2 (3.25)

We define the skewness of the image f(·) as skew[f(·)]:

skew[f(·)] =

1

N

∑

i∈S

[f(i) − mean[f(·)]]3

var[f(·)] 3

2

(3.26)

We define the kurtosis of the image f(·) as kurt[f(·)]:

kurt[f(·)] =

1

N

∑

i∈S

[f(i) − mean[f(·)]]4

var[f(·)]2 (3.27)
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Chapter 4

Image Classification

In this chapter, we describe our approach to image classification. This approach is
tailored to the binary classification of medical SPECT images of healthy, cognit-
ively normal (CN) brains as well as the brains of patients suffering from Alzheimer’s
disease (AD). We first introduce the approach of statistically testing the data for
separability. We then introduce the data transformations, resulting in three ap-
proaches to image classification - classification using one-dimensional (based on one
calculated feature) inputs, classification using the full data inputs (calculated using
the theory described in Chapter 3) and classification using data inputs, which were
first whitened using the principal component analysis (PCA). We continue by de-
scribing the types of classifiers we will be using, viz. the linear discriminant analysis
(LDA), quadratic discriminant analysis (QDA), k-nearest neighbours (KNN), the
support vector machines (SVMs), and the artificial neural networks (ANNs). Lastly,
we describe the cross-validation (CV) process - the metrics we will use to measure
the quality of classification, and the leave-one-out and stratified-k-fold approaches to
cross-validation. The MATLAB implementation of the theoretical concepts located
in this chapter is the topic of Chapter 5 and Appendix A. The results are shown
and discussed in detail in Chapter 6.

4.1 Data Separability Testing

We will first approach image classification in terms of testing the statistical separ-
ability of the two classes, represented in our case by the invariant characteristics
calculated on data from AD and CN patients. First, we will try to discern whether
the two populations have equal or different medians by using the non-parametric
Mann-Whitney U test. If we find a characteristic, where the medians of the two
populations differ, we may argue it is possible to separate the data by using this
characteristic. We will also try to test whether the data come from normally distrib-
uted populations. In the case that they do, we will be able to use the Welch’s t-test
to discern whether the populations have the same mean. Using the same logic as
with the Mann-Whitney U test, we will also try to find characteristics, which would
allow for data separation.
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4.1.1 Mann-Whitney U Test

Let X1, X2, . . . , Xn be an i.i.d. sample from X and Y1, Y2, . . . , Ym an i.i.d. sample
from Y and let both samples be independent of each other and at least ordinal, i.e.
possible to be ordered with respect to size. We test for the null hypothesis H0: the
distributions of both populations are identical, against the alternative hypothesis
Ha: the distributions of the two populations are not identical. The Mann-Whitney
U statistic is defined as U = min(UX , UY ) with UX and UY being defined by the
formulas [26]:

UX = RX − n(n+ 1)

2
(4.1)

UY = RY − m(m+ 1)

2
,

where RX and RY are the sums of the ranks in samples X and Y respectively:

RX =
n
∑

i=1

r(Xi)

(4.2)

RY =
m
∑

j=1

r(Yj),

where r(·) is the rank of the data from X or Y assuming that the data (both samples
put together) are ordered from the smallest value to the largest. In the case of tied
ranks, we assign a rank value equal to the midpoint of unadjusted rankings, e.g. the
adjusted ranks of a sample (1, 2, 2, 2, 3) are (1, 3, 3, 3, 5), where the unadjusted ranks
would be (1, 2, 3, 4, 5).

The statistic U tends to be tabulated for sample sizes n ≤ 20. For larger samples,
the statistic U is approximately normally distributed. The standardized value z, an
approximation of the standard normal deviate, whose significance can be checked
against tables of normal distribution, is given by the formula [27][28]:

z =
U − µU

σU

, (4.3)

where µU and σU are the mean and the standard deviation of U given by the formulas
[27][28]:

µU =
nm

2
(4.4)
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and

σU =

√

√

√

√

nm

12

(

(N + 1) −
∑K

k=1(t
3
k − tk)

N(N − 1)

)

, (4.5)

where N = n + m, K ≤ N is the total number of unique ranks with ties and tk is
the number of ties for the k-th rank.

4.1.2 Liliefors Test

The Liliefors test is a normality test based on the goodness of fit one sample
Kolmogorov-Smirnov test. The Kolmogorov-Smirnov test statistic Dn is given by
the formula [29]:

Dn = sup
x

♣Fn(x) − F (x)♣, (4.6)

where F (x) is a given cumulative distribution function (CDF) (e.g. normal CDF)
and Fn(x) is an empirical distribution function of an i.i.d. sample X1, X2, . . . , Xn

from X [29]:

Fn(x) =
1

n

n
∑

i=1

I(−∞,x](Xi), (4.7)

The Liliefors test tests for the null hypothesis H0: the data come from a normally
distributed population, against the alternative hypothesis Ha: the data do not come
from a normally distributed population. The Liliefors statistic Dn is similar to the
Kolmogorov-Smirnov statistic [30]:

Dn = sup
x

♣Fn(x) − F ∗(x)♣, (4.8)

where F ∗(x) is now the CDF of the normal distribution with µ = µX , where µX is the
sample mean, and σ2 = s2, where s2 is the sample variance with a denominator n−1
to eliminate bias. Since the normal CDF has been moved closer to the data (because
of the estimation based on sample mean and variance), the value of the statistic Dn

has been made smaller than it would have been if simply testing using the classical
Kolmogorov-Smirnov test (standardised sample against standard normal CDF). The
null distribution of the test statistic, the Liliefors distribution, is thus stochastically
smaller than the Kolmogorov-Smirnov distribution. Tables for Liliefors distribution
have been computed using Monte Carlo methods [31].

4.1.3 Welch’s t-Test

Let X1, X2, . . . , Xn be an i.i.d. sample from X and Y1, Y2, . . . , Ym an i.i.d. sample
from Y . Let us assume that the two populations come from a normal distribution,
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and let us not assume that the populations have equal variances. We test the null
hypothesis (assuming two-tailed test) H0: the means of both populations are equal,
against the alternative hypothesis Ha: the means of the two populations are not
equal. The t statistic of the two-sample Welch’s test is given by the formula [32]:

t =
µX − µY
√

s2
X

n
+
s2

Y

m

, (4.9)

The µX and µY are population means. The sX and sY are the sample standard
deviations corrected by the denominator n− 1.

We can see that Welch’s test is a version of Student’s t-test for samples assumed
not to have equal variances. The degrees of freedom ν are approximated using the
Welch-Satterthwaite equation [33]:

ν ≈

(

s2
X

n
+
s2

Y

m

)

2

s4
X

n2(n− 1)
+

s4
Y

m2(m− 1)

, (4.10)

where n − 1 is the degrees of freedom associated with the variance estimate of the
sample X.

The statistics t and ν can be used with the t-distribution to test the hypotheses.
Welch’s t-test is more robust than Student’s t-test [32][34] and its power comes
close to that of Student’s t-test even when the populations have equal variances
and similar sample sizes are chosen [32]. It has also been suggested that Welch’s
t-test performs as well as Mann-Whitney U test when sample variances are equal
and better when variances are unequal [32]. Assuming normal distribution of the
data samples, it is thus considered good practice to prefer the Welch’s t-test to
Mann-Whitney U test.

4.1.4 Controlling False Discovery Rate (FDR)

The false discovery rate (FDR), first conceptualized by Benjamini and Hochberg
in [35], signifies the rate of Type I errors - false positives (FP) - in null hypothesis
testing [35]:

FDR =
FP

FP + TP
, (4.11)

assuming a multiple testing problem, where TP signifies true positive cases (see
4.4). The FDR was invented as a more powerful alternative to family-wise error
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rate (FWER) [35] to identify the important few from the unimportant many hy-
potheses tested. The FDR-controlling procedure were then designed to provide less
stringent control of Type I errors when compared to previously predominant FWER
procedures.

Benjamini-Yekutieli Controlling Procedure

Let H1, H2, . . . , Hm be null hypotheses and P1, P2, . . . , Pm their corresponding p-val-
ues. The Benjamini-Yekutieli procedure controls the FDR under arbitrary depend-
ence assumptions and defines the acceptance threshold refinement by finding the
largest index k ∈ N such that [36]:

P(k) ≤ k

m · c(m)
α, (4.12)

where P (k) is the k-th p-value, assuming an ordering from smallest to largest, α is
the chosen level of significance (most commonly we choose α = 0.05), and c(m) is
(in the case of arbitrary dependence) the harmonic number:

c(m) =
m
∑

i=1

1

i
, (4.13)

which can be approximated using the Taylor series expansion and the Euler-Mascheroni
constant γ = 0.57721 . . . [37]:

m
∑

i=1

1

i
≈ ln(m) + γ +

1

2m
(4.14)

After finding the threshold k0, the largest k for which (4.12) holds, the null hypo-
theses with p-values P(1), P(2), . . . , P(k0) are rejected, while the null hypotheses with
p-values P(k0+1), P(k0+2), . . . , P(m) are accepted.

4.2 Data Transformations

Before we begin using binary classifiers, we must first appropriately transform the
results of calculating characteristics of image invariants. We will test three distinct
approaches. First, the full table of all global characteristics (see 3.3) of all calculated
invariants (see 3.2) will be used as inputs of our binary classifiers. We will also
test the one-dimensional approach - using each feature of each invariant as the
single input. We expect lower classification accuracy when using these trivial inputs,
however, they will be interesting to compare with the results of statistical testing
from 4.1. The last approach will be to use principal component analysis (PCA) data
whitening procedure on the full data table and then using the whitened data with
reduced dimension as inputs of binary classifiers.
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4.2.1 Input Image Normalization

Before we proceed with any operations on the input images, we must first perform
several transforming operations. First, we will normalize the SPECT image f: S → R

by dividing it by the maximum intensity found in the image:

fnorm(i) =
f(i)

max[f(·)] , ∀i ∈ S, (4.15)

where fnorm: S → [0, 1] is the normalized SPECT image.

Following the normalization, we will use a binary cut-off mask based on an input
threshold θ ∈ [0, 1], cutting off any normalized image values smaller than θ. Such
normalized and reduced images will serve as the basis of invariant characteristic
calculation (see Chapter 3).

4.2.2 Full Characteristics

The calculated invariant global characteristics will be initially saved into an array
with several dimensions based on configuration parameters such as the number of
input images, values of binary mask cut-off threshold θ, the radius of Zernike poly-
nomial ρ, and the utilised fast global filters (see Chapter 5 and Appendix A for more
details). This higher dimensional array will be transformed into a two-dimensional
array using the MATLAB function reshape. We can now image the array as a
matrix of size nimg × nchars signifying the number of images times the number of
global characteristics, where each element indexed (i, j) will be the j-th global in-
variant characteristic of the i-th input image. As we will be calculating the features
of CN and AD images separately, we will then combine these two transformed two-
dimensional arrays for both classes into a two-dimensional array of size nimg ×nchars,
where now nimg = (nAD +nCN) with nAD, nCN being the number of AD and CN im-
ages. Such two-dimensional array will serve as the input for binary classifiers using
the full transformed data approach.

4.2.3 One-Dimensional Characteristics

To use this trivial one-dimensional approach, we will utilise the prepared two-
dimensional full data array from 4.2.2. For the one-feature classification, we will
iterate through the columns (as each column is a vector of values of a one global
characteristic for all AD and CN images) of the calculated two-dimensional array.
We expect this approach to yield lower classification accuracy than utilizing the
approaches from 4.2.2 and 4.2.4. However, it will be useful when comparing the true
classification accuracy of classifiers trained on single characteristic with the results
obtained by statistically testing the data separation based on individual character-
istics (see 4.1). In other words, we may see whether the characteristics judged to
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be good for data separability (if indeed there are any) also act as particularly good
inputs of binary classifiers.

4.2.4 Principal Component Analysis (PCA)

We will start the data-whitening approach with a two-dimensional array of all fea-
tures prepared according to 4.2.2. To escape the potential curse of dimensionality
(depending on number of invariants, number of features, binary mask cut-offs, etc.
we may be dealing with an array featuring hundreds or even thousands of distinct
characteristics for each image, see also 6.1) we will reduce the dimensionality by
deriving a significantly smaller number of variables (principal components) with a
hope of maximizing variance and preserving most of the information present in the
original data [38][39].

Let X0 be a n×p matrix, whose each row corresponds to all p ∈ N characteristics of
one image and each column corresponds to all values of one particular characteristic
of all n ∈ N images. Let X = X0 − Jn,1µ

T, where µ ∈ R
p is the centre of mass

of X0, be the matrix of deviations from the mean along each column. The p × p
covariance matrix S of X can be expressed as [39]:

S =
1

n− 1
XTX (4.16)

Let S = V DV −1 be the eigendecomposition of the matrix S, where V is a p × p
matrix, whose each column corresponds to one of the mutually orthonormal unit
eigenvectors of S that can be interpreted as the principal axes of a p-dimensional
ellipsoid fitted to the original data [39], and D is the p × p diagonal matrix of
eigenvalues of S. Let k, l ∈ N, k, l ≤ p. Following from the above, the elements of
the diagonal matrix D are formally expressed:

dkl =







λ(k) if k = l

0 otherwise,
(4.17)

where λ(k) is the k-th largest eigenvalue of the covariance matrix S.

The k-th principal component of X is now the k-th column of the matrix V , i.e. the
eigenvector corresponding to the k-th largest eigenvalue λ(k) [39]. Let us consider
the first K principal components, K ∈ N, K ≤ rank(X0), thus creating the p × K
matrix W from the matrix V . The new data matrix Y , consisting of the original
data projected onto a subspace of the first K principal components, is [39]:

Y = XW (4.18)
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We will compute several iterations of the matrix Y based on differing numbers of
principal components K and utilise each of these matrices Y as an input for a binary
classifier, which will allow us to compare classification accuracy with other data
inputs (especially the full data) as well as find the optimal number of components
Kopt.

4.3 Classifiers

In this section, we provide a brief and by no means exhaustive overview of the sev-
eral types of classifiers we will be using for the task of binary image classification,
assuming supervised learning. We will first describe the two discriminant analysis
methods - the linear discriminant analysis (LDA) and quadratic discriminant ana-
lysis (QDA). We will continue with the k-nearest neighbours (KNN), the support
vector machines (SVMs) of the polynomial and Gaussian variety, and finish the
chapter with the artificial neural networks (ANNs).

4.3.1 Discriminant Analysis

The discriminant analysis assumes that the data are perfectly separable by linear
hyperplanes (or affine sets) called decision boundaries, which divide the space into
regions of constant classification. Let us assume that the PDF of the k-th class in
the i.i.d. sample, k ∈ N, k ∈ ¶1, 2, . . . , K♢, where K ∈ N is the total number of
classes, is a multivariate Gaussian [40][41]:

fk(x) =
1

(2π)
p

2 det(Σk)
1

2

exp
(

−1

2
(x − µk)TΣ−1

k (x − µk)
)

, (4.19)

where x ∈ R
p is the classification data matrix n ∈ N data inputs of p ∈ N features

coming from a normally distributed population, (x − µk)TΣ−1
k (x − µk) is the Ma-

halanobis distance [40][41], µk is the mean vector of k-th class and Σk the covariance
matrix of the k-th class.

It is possible to show [40] that we may minimize the risk (expected loss) related to
classifying the data from normal distribution by using a rule of choosing such a class
prediction ŷ ∈ N, ŷ ∈ ¶1, 2, . . . , K♢ that [40]:

fŷ(x)πŷ = max
1≤k≤K

fk(x)πk, (4.20)

where πk is the unconditional prior probability of observing data coming from the
class k. The discriminant score for the k-th class, is defined by the formula [40]:

dk(x) = (x − µk)TΣ−1
k (x − µk) + ln det(Σk), (4.21)
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Using (4.21) results in the quadratic discriminant analysis (QDA). Using an ad-
ditional assumption that all covariance matrices are equal, Σk = Σ, 1 ≤ k ≤ K,
results in the LDA [40][41]. Substituting (4.19) into (4.20) leads to the overall clas-
sification rule [40]:

ŷ = min
1≤k≤K

dk(x) (4.22)

In practical uses, we may often deal with a sample size that is smaller than the
number of characteristics of each data vector. In such cases, it is not possible to
invert the covariance matrix, and we resort to calculating a pseudo-inverse (such
as the Moore-Penrose pseudo-inverse [42]). To achieve a better numerical stability,
we may first consider replacing all the class samples’ covariance matrices Sk by a
pooled covariance matrix S [43]:

S =

∑K
k=1 nkSk
∑K

k=1 nk

, (4.23)

where nk is the number of data coming from the k-th class. The regularized sample
covariance matrix is then defined Sreg(λ) [43][44]:

Sreg(λ) = S + λI, (4.24)

where λ ∈ R
+ is the regularization (bias) parameter. The (4.21) thus becomes:

dk(x) = (x − µk)TSreg(λ)−1(x − µk) + ln det(Sreg(λ)), (4.25)

4.3.2 k-Nearest Neighbours (KNN)

Let T be the classification training set. Let x ∈ R
p, p ∈ N be a classification data

vector, ŷ ∈ N, ŷ ∈ ¶1, 2, . . . , K♢ its predicted class and y∗ ∈ N, ≤ y∗ ∈ ¶1, 2, . . . , K♢
its true class out of K ∈ N total classes. Let Nk(x) be the k-neighbourhood of k ∈ N

vectors xi, i ∈ N, i ∈ ¶1, 2, . . . , k♢, from T , closest to the input x according to a
chosen metric function (for continuous variables commonly the Euclidean distance).
We define the input class prediction ŷ as [41]:

ŷ =
⌊

1

k

∑

xi∈Nk(x)

y∗
i

⌉

, (4.26)

and thus understand that the predicted class ŷ of input x is the average of the true
class values of its k closest neighbours rounded to the closest integer. We may also
reformulate the average to an equivalent histogram criterion - we assign the input
to the class most frequently represented in the neighbourhood of the input x.
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4.3.3 Support Vector Machines (SVM)

The support vector machines allow for constructing an optimal hard margin affine
set in the case of perfectly linearly separable data, as well as considering the more
general, soft margin case, when the classification data are not linearly separable. Let
xi ∈ R

p, i ∈ N, i ∈ ¶1, 2, . . . , n♢, p ∈ N be vectors of n ∈ N data inputs consisting
of p features each. Let y∗ be a vector of true classes, where y∗

i ∈ ¶−1, 1♢, 1 ≤ i ≤ n.
We will first discuss the case of hard margin, i.e. we will assume that for the training
set T there exist an affine set defined by a vector w ∈ R

p, ∥w∥ = 1 and a bias scalar
b ∈ R that perfectly separates the data. In other words, such weights and a bias can
be found that the following holds [41][45]:

(⟨w,xi⟩ + b)y∗
i > 0 i = 1, 2, . . . , n, (4.27)

We are now trying to find the largest margin M between the two classification sets.
Hence, we may also call this problem the max-margin and optimize [41]:

max
b, w, ∥w∥=1

M

subject to (⟨w,xi⟩ + b)y∗
i ≥ M, i = 1, 2, . . . , n

(4.28)

It is also possible to convert this problem into a minimization form [41]:

min
b, w

∥w∥

subject to (⟨w,xi⟩ + b)y∗
i ≥ 1, i = 1, 2, . . . , n,

(4.29)

as M = 1
∥w∥

. Before we discuss the solution, let us also define the soft mar-
gin case, where we cannot assume that the classes are separable in the feature
space. In [46] Cortes and Vapnik propose to introduce a slack variable vector
ξ ∈ R

n, ξi ≥ 0, i = 1, 2, . . . , n, which ensures that we still maximize the margin while
taking into account the fact that due to the class overlap some data might end up
on the incorrect side of the margin. Therefore, we rephrase (4.29) as: [41][45][46]:

min
b, w

∥w∥

subject to















(⟨w,xi⟩ + b)y∗
i ≥ 1 − ξi, i = 1, 2, . . . , n

ξi ≥ 0, i = 1, 2, . . . , n
∑n

i=1 ξi ≤ C

(4.30)

where C > 0 is a fixed bounding constant that prevents the relaxed constraints
from being trivially satisfied. The formulation (4.30) is a quadratic and convex
optimization problem, which can be solved using Lagrange multipliers [41]. This
problem is better reformulated as [45][47]:
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min
b,w

1

2
∥w∥2 + C

n
∑

i=1

ξi

subject to







(⟨w,xi⟩ + b)y∗
i ≥ 1 − ξi, i = 1, 2, . . . , n

ξi ≥ 0, i = 1, 2, . . . , n

(4.31)

where C = ∞, in the case of perfect class separability. This formulation allows us
to finally arrive at the Lagrangian objective function LP [41][47]:

LP =
1

2
∥w∥2 + C

n
∑

i=1

ξi −
n
∑

i=1

αi[(⟨w,xi⟩ + b)y∗
i − (1 − ξi)] −

n
∑

i=1

µiξi, (4.32)

which we minimize with respect to b, w and ξi. By setting the derivatives equal to
zero, we obtain [41][47]:

n
∑

i=1

αiy
∗
i xi = w,

n
∑

i=1

αiy
∗
i = 0,

C − µi = αi, i = 1, 2, . . . , n,

(4.33)

under constraints αi, µi, ξi ≥ 0, i = 1, 2, . . . , n. By substituting (4.33) back into
(4.32), we obtain the dual objective function LD [41][47]:

LD =
n
∑

i=1

αi − 1

2

n
∑

i=1

n
∑

j=1

αiαjy
∗
i y

∗
j ⟨xi,xj⟩, (4.34)

which signifies the lower bound of the original objective function. We maximize the
dual function under constraints 0 ≤ αi ≤ C and

∑n
i=1 αiy

∗
i = 0 as well as the

Karush-Kuhn-Tucker constraints [41][47]:

αi[(⟨w,xi⟩ + b)y∗
i − (1 − ξi)] = 0,

(⟨w,xi⟩ + b)y∗
i − (1 − ξi) ≥ 0,

µiξi = 0,

(4.35)

Furthermore, we observe from (4.33) that the sought solution has a form:

ŵ =
n
∑

i=1

α̂iy
∗
i xi, (4.36)

where (coming from the first condition in 4.35) the Lagrangian coefficients α̂i are
non-zero only when the second condition in (4.35) becomes equality. As the obser-
vations corresponding to such indices describe the solution ŵ, they are called the
support vectors.
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SVM Kernels

Using the definitions above, the SVM is still only a linear classifier. We might trans-
form it to a nonlinear classifier by using a nonlinear kernel, which allows us to map
the original input space onto a high-dimensional feature space (allowing for bet-
ter class separation), where we again construct the margin as a linear affine set.
This new affine set, however, may be nonlinear in the original input space, thus
creating a nonlinear classifier. It is obvious that it is necessary to transform the
data xi ∈ R

p by utilizing some basis functions hm(x), m = 1, 2, . . . r, r ∈ N, where
h(xi) = (h1(xi), h2(xi), . . . , hm(xi)). This converts the initial formulation (4.27) of
the problem into [41]:

(⟨w, h(xi)⟩ + b)y∗
i > 0 i = 1, 2, . . . , n (4.37)

The corresponding dual objective function (4.34) is now [41]:

LD =
n
∑

i=1

αi − 1

2

n
∑

i=1

n
∑

j=1

αiαjy
∗
i y

∗
j ⟨h(xi), h(xj)⟩, (4.38)

The kernel trick is that we do not need to specify or even know the transformation
function h(x), because we may utilise the kernel formulation of the inner product
⟨h(xi), h(xj)⟩ [41]:

K(xi,xj) = ⟨h(xi), h(xj)⟩, (4.39)

where, in general, the K(x,y) is a symmetric positive definite (PD) kernel function.
We will utilise kernels in the form of d-th degree (inhomogeneous) polynomials and
the Gaussian radial basis function [41]:

K(x,y) =











(⟨x,y⟩ + 1)d

exp
(∥x − y∥2

2σ2

) (4.40)

4.3.4 Artificial Neural Networks (ANN)

In our work, we will be utilizing a simple and commonly used single hidden layer
neural network. This model can be described as a two-step classification model
governed by a chosen nonlinear, differentiable activation function σ(·). Let x ∈
R

p, p ∈ N be the input vector and y∗, y∗
i ∈ ¶1, 2, . . . , K♢, i = 1, 2, . . . , n, where

K ∈ N is the number of classes, be the vector of target true classes. The model first
takes the linear combination of the input vector x with added bias [41][47]:

aj =
p
∑

i=1

w
(1)
ij xi + w

(1)
0j , j = 1, 2, . . .m, (4.41)
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where m ∈ N is the number of parameters or neurons in the input layer of the
network, superscript (1) indicates that the weight parameters belong to the first
(input) layer, and w

(1)
ij , w

(1)
0j are thus the weight and bias parameters of this layer.

Each of these derived features aj are then transformed using the activation function
σ(·) in the hidden (as these values are not directly observed by the user) layer
and again linearly combined using the weight parameters of the output layer of the
network [41][47]:

bk =
m
∑

j=1

w
(2)
jk σ(aj) + w

(2)
0k , k = 1, 2, . . . , K, (4.42)

where K now signifies the K neurons of the output layer corresponding to the K true
classes. Common choices for the activation function include the hyperbolic tangent,
or the logistic sigmoid function [47]:

σ(x) =
1

1 + exp(−x)
(4.43)

In the case of K-classification, we also use the softmax function si(bk) [41]:

si(bk) =
exp(bk)

∑K
l=1 exp(bl)

(4.44)

to convert the output values for the i-th input xi into K-class softmax probability
distribution with values yik = si(bk), where we seek the maximum likelihood,
i.e. the class prediction ŷi of the i-th input data xi is the maximum likeli-
hood out of all likelihoods yik that the i-th input belongs to the k-th class,
ŷi = arg maxk yik = arg maxk si(bk).

We fit the model by optimizing the weight vector w values, which we achieve by
minimizing the cross-entropy error function E(w) [41]:

E(w) = −
n
∑

i=1

K
∑

k=1

y∗
ik log(yik(w)), (4.45)

where we now write yik(w), because we may observe that the probability values
yik are dependent on weight values from the vector w, as is evident from (4.44).
This problem is solved by employing the gradient descent approach, which may be
summarised as [47]:

w(t+1) = w(t) − η(t)∇E(w(t)), (4.46)

where w(t) signifies the value of the weight vector w in the t-th step and η(t) > 0 is
the descent step size or learning rate in the t-th step.
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4.4 Cross-Validation (CV)

In this section, we will discuss two topics related to measuring the performance of
binary classifiers. First, we will give an overview of various classification statistics
used for performance evaluation. Second, we will comment on two common CV
methods - the leave-one-out and the stratified-k-fold methods, which we will use to
assess the performance of our classifiers on an ‘independent’ data set.

4.4.1 Classification Statistics

Let P, N ∈ N be the true number of images corresponding to AD positive and
negative (CN) patients. Coming from the definition of the confusion matrix, the
true positive (TP) is defined as a result of classification that correctly indicates the
presence of AD in the AD patient [48]. Similarly, we define as true negative (TN)
the result that correctly indicates the absence of AD in the CN patient. We define
as false positive (FP) the result that falsely indicates the presence of AD in a CN
patient. The FP results correspond to the Type I error. We define as false negative
(FN) the result that falsely indicates the absence of AD in an AD diagnosed patient.
The FN results correspond to the Type II error. We will also be taking the TP, TN,
FP, FN as signifying the number of results, which belong to each corresponding
category. In this manner and based on [48], we will be able to define classification
statistics, which will enable us to evaluate the binary classifier performance.

Sensitivity or True Positive Rate (TPR)

The sensitivity, also known as the true positive rate (TPR), is defined by the formula:

TPR =
TP

P
(4.47)

The TPR is bounded by the interval [0, 1]. The ideal classification has a value of
TPR equal to one.

Specificity or True Negative Rate (TNR)

The specificity, also known as the true negative rate (TNR), is defined by the for-
mula:

TNR =
TN

N
(4.48)

The TNR is bounded by the interval [0, 1]. The ideal classification has a value of
TNR equal to one.
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False Positive Rate (FPR)

The false positive rate (FPR) is defined by the formula:

FPR =
FP

N
= 1 − TNR (4.49)

The FPR is bounded by the interval [0, 1]. The ideal classification has a value of
FPR equal to zero.

False Negative Rate (FNR)

The false negative rate (FNR) is defined by the formula:

FNR =
FN

P
= 1 − TPR (4.50)

The FNR is bounded by the interval [0, 1]. The ideal classification has a value of
FNR equal to zero.

Critical sensitivity se∗

We define the critical sensitivity se∗ as the minimum of TPR and TNR [49]:

se∗ = min¶TPR,TNR♢ (4.51)

The se∗ is bounded by the interval [0, 1]. The ideal classification has a value of se∗

equal to one.

Precision or Positive Predictive Value (PPV)

The precision, also known as the positive predictive value (PPV), is defined by the
formula:

PPV =
TP

TP + FP
= 1 − FDR, (4.52)

where FDR is the false discovery rate defined in (4.11). The PPV is bounded by the
interval [0, 1]. The ideal classification has a value of PPV equal to one.

Negative Predictive Value (NPV)

The negative predictive value (NPV) is defined by the formula:
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NPV =
TN

TN + FN
= 1 − FOR (4.53)

The NPV is bounded by the interval [0, 1]. The ideal classification has a value of
NPV equal to one.

False Omission Rate (FOR)

The false omission rate (FOR) is defined by the formula:

NPV =
FN

TN + FN
= 1 − NPV (4.54)

The FOR is bounded by the interval [0, 1]. The ideal classification has a value of
FOR equal to zero.

Positive Likelihood Ratio (LR+)

The positive likelihood ratio (LR+) is defined by the formula:

LR+ =
TPR

FPR
(4.55)

The LR+ is bounded by the interval [0,∞). The ideal classification has a value of
LR+ approaching infinity.

Negative Likelihood ratio (LR−)

The negative likelihood ratio (LR−) is defined by the formula:

LR− =
FNR

TNR
(4.56)

The LR− is bounded by the interval [0,∞). The ideal classification has a value of
LR− equal to zero.

Prevalence Threshold (PRT)

The prevalence threshold (PRT) is defined by the formula [50]:

PT =

√
FPR√

TPR +
√

FPR
(4.57)

The PRT is bounded by the interval [0, 1]. The ideal classification has a value of
PRT equal to zero.
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Threat Score (TS)

The threat score (TS), also known as the Jaccard index, is defined by the formula
[51]:

TS =
TP

TP + FN + FP
(4.58)

The TS is bounded by the interval [0, 1]. The ideal classification has a value of TS
equal to one.

Accuracy (ACC)

The accuracy (ACC) is defined by the formula:

ACC =
TP + TN

P +N
(4.59)

The ACC is bounded by the interval [0, 1]. The ideal classification has a value of
ACC equal to one.

Balanced Accuracy (BACC)

The balanced accuracy (BACC) is defined by the formula:

BACC =
TPR + TNR

2
(4.60)

The BACC is bounded by the interval [0, 1]. The ideal classification has a value of
BACC equal to one.

F1 Score

The F1 score is defined by the formula:

F1 =
2 · PPV · TPR

PPV + TPR
=

2TP

2TP + FP + FN
(4.61)

The F1 is bounded by the interval [0, 1]. The ideal classification has a value of F1

equal to one.

Matthews Correlation Coefficient (MCC)

The Matthews correlation coefficient (MCC) is defined by the formula:
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MCC =
TP · TN − FP · FN

√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(4.62)

The MCC is bounded by the interval [−1, 1]. The ideal classification has a value of
MCC equal to one.

Fowlkes-Mallows Index (FM)

The Fowlkes-Mallows index (FM) is defined by the formula [52]:

FM =
√

PPV · TPR (4.63)

The FM is bounded by the interval [0, 1]. The ideal classification has a value of FM
equal to one.

Diagnostic Odds Ratio (DOR)

The diagnostic odds ratio (DOR) is defined by the formula:

DOR =
LR+

LR− (4.64)

The DOR is bounded by the interval [0,∞). The ideal classification has a value of
DOR approaching infinity.

4.4.2 Leave-One-Out Technique

Leave-one-out cross-validation is the special case of the k-fold cross-validation, which
divides the n ∈ N data inputs into k ∈ N, k ≤ n approximately equal sized parts
(folds) [41]. In each iteration of the cross-validation method, k − 1 folds are used
to train the chosen classifier while the remaining one fold is used for prediction
[41], i.e. the data are treated as being from an unknown, independent set, which
we try to classify using the trained classifier. In the case of leave-one-out, we set
k = n and thus treat every classification input as a separate fold. In every iteration,
we therefore use n − 1 data inputs to train the classifier, which we use to predict
the class of the one remaining input. The leave-one-out cross-validation estimator
is approximately unbiased for the true prediction error, but may suffer from high
variance because we might use a large number of similar folds [41].

4.4.3 Stratified-k-Fold Technique

The stratified-k-fold cross-validation is akin to the k-fold method with the added
condition that we try to construct the folds in a manner that every fold contains
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roughly the same number of data inputs from both classes. To illustrate, if we have a
hundred classification inputs and choose one of the commonly recommended k-fold
values, e.g. k = 5 [41], we will divide the data into five folds of twenty values each.
We will thus try to construct the folds so that each of the folds contains ten AD
patients and ten CN patients. By adding this condition, we ensure that each fold is
representative of the whole dataset and prevent situations when we could train the
classifier on unbalanced data folds.
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Chapter 5

Implementation

In this chapter, we provide a non-exhaustive overview of the MATLAB [53] imple-
mentation of our function library. The library can be chiefly divided into seven more
or less independent components, which are: reading inputs, global filtering, invariant
calculation, data separability testing, data transformations, image classification, and
saving results. In the following chapter, we will go over all of these parts of our lib-
rary and describe some of the implemented functions. We will not directly describe
any code excerpts in this chapter. A brief commentary on the most interesting parts
of the code is instead the topic of Appendix A.

5.1 Inputs, Configurations, Results

In this section, we provide an overview of the functions necessary to read the inputs,
as well as the two classes defined for the purposes of our library. We may see such
general overview of in the tabs. 5.1 and 5.2.

Table 5.1: Functions used in the data reading part of the library.

Function Description

testDriver Sequentially calls functions from the library
loadImage Loads a 3D SPECT image
normSpectImage Normalizes a 3D SPECT image
calcBinMask Calculates a binary mask of a 3D SPECT image

As we can see, the functions we consider to be related to reading of inputs cover
loading and normalizing a SPECT image, calculating a binary mask, which is used
to filter out non-essential values based on an input threshold and a driver function,
which is used to run the whole (all seven parts of the) library.
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Table 5.2: Configuration and result classes. See also A.1.

Class Description

configurationClass Predefined configurations used to run the library
resultClass Results of invariant calculation and image classification

We define two classes specifically for purposes of our library - the configuration-

Class containing predefined testing configurations (number of invariants to be cal-
culated, classifier parameters’ settings, etc.), and the resultClass used to store
results, which will be shown and discussed in Chapter 6. We chose to predefine
several configurations as it would otherwise be rather cumbersome to enter a new
configuration in every run (configurations are composed of many settings related to
feature calculation as well as image classification) and the fact that we assumed there
would be only a handful of truly interesting configurations, which would achieve
good classification results. Still, these configurations are easily ready for editing in
the corresponding configurationClass file.

testDriver

Table 5.3: testDriver sequentially calls functions from the library.

Function Calling

testDriver results = testDriver(conf_number)

Input/Output Data Type Description

conf_num integer Runs the testDriver using the configuration conf_number

results resultClass Instance of the resultClass class

The testDriver function documented in the tab. 5.3 is the primary driver function
of the library. Based on user input, it loads one of the predefined configurations from
the configurationClass and then sequentially runs all seven (unless user specifies
otherwise in configuration) principal components of the library mentioned above.
Finally, the function returns an instance of the resultClass containing results cal-
culated during the run of the used configuration.

loadImage

The function loadImage documented in the tab. 5.4 is used to load one image based
on the input filename. This function is thus used in a cycle to load all input images.
As we can see, we also return a boolean showing whether the image we have loaded
is a SPECT image (recognized by reading a .img file). This is used later to decide
whether we will also normalize the image (see below). The part of the code relevant
to loading a 3D SPECT image can be found in A.1.
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Table 5.4: The loadImage function loads one SPECT image based on input filename.

Function Calling

loadImage [input_image, spect_bool] = loadImage(image_filename)

Input/Output Data Type Description

image_filename string Image filename

input_image 3D array of double Loaded input image
spect_bool boolean Shows whether the image is a SPECT image

normSpectImage

Table 5.5: normSpectImage normalizes a 3D SPECT image according to (4.15).

Function Calling

normSpectImage input_image = normSpectImage(input_image, norm)

Input/Output Data Type Description

input_image 3D array of double Unnormalized input image
norm integer ∈ ¶1, 2♢ Normalization type

input_image 3D array of double ∈ [0, 1] Normalized image

If norm = 1, the function normSpectImage documented in the tab. 5.5 normalizes
a 3D SPECT image according to the definition (4.15). The image is thus divided by
its maximum intensity value and all its values transformed to the interval [0, 1]. An
alternative is provided by norm = 2, when the image is divided by the sum of all of
its intensities.

calcBinMask

Table 5.6: calcBinMask calculates a binary image mask based on an input threshold
theta (see 4.2.1).

Function Calling

calcBinMask bin_mask = calcBinMask(X, theta)

Input/Output Data Type Description

X 3D array of double ∈ [0, 1] Normalized input image
theta double ∈ [0, 1] Binary mask threshold

bin_mask 1D array of boolean Binary mask

The function calcBinMask documented in the tab. 5.6 calculates a binary mask
based on input threshold theta (see 4.2.1). We may notice that the mask is a
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one-dimensional array calculated based on values of the normalized image. We will
use this array of booleans for logical indexing of the eventually calculated invari-
ants, i.e. we will eventually only use those values of the calculated invariant, which
correspond to true values in the binary mask. It should be also obvious that we
eventually transform the calculated invariant into a one-dimensional array, which is
frequently easier to utilise for some of the operations (such as calculating invariant’s
global features).

5.2 Global Filtering

In this section, we provide an overview of the functions necessary to filter a three-
dimensional image in the frequency domain. These functions are used for both global
invariant filtering (see 2, used as a pre-processing for invariant feature calculation)
and invariant creation (see 3) because in our approach both are calculated filtering
the image/invariant in the frequency domain. We may see such general overview in
the tab. 5.7.

Table 5.7: Functions used to filter the image in the frequency domain.

Function Description

calcFilterKernel Calculates frequency-domain kernel of the selected type
calcNonLinTran Calculates nonlinear transformation of a 3D image
filterFunctionFFT Filters a 3D image in the frequency domain
getPaddingFFT Pads a 3D image as a preparation for filtering
imageProcessingDriver Runs functions related to image filtering

calcFilterKernel

Table 5.8: calcFilterKernel calculates the frequency-domain filtering kernel.

Function Calling

calcFilterKernel K = calcFilterKernel(X, filter_name, kernel_style, varargin)

Input/Output Data Type Description

X 3D array of double Input image
filter_name string Type of filter
kernel_style string Type of kernel
varargin double Kernel settings

K 3D array of double Filtering kernel

The function calcFilterKernel documented in the tab. 5.8 calculates the frequency-
domain filtering kernel. We have seen the definitions pertaining to these kernels in
2.1 and 2.2. We thus see that we create a three-dimensional array of doubles used for
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element-wise multiplication with the original image (convolution in the frequency
domain).

calcNonLinTran

Table 5.9: calcNonLinTran calculates a nonlinear transformation of the 3D image.

Function Calling

calcNonLinTran X = calcNonLinTran(X, tran_name, direction, varargin)

Input/Output Data Type Description

X 3D array of double Input image
tran_name string Type of nonlinear transformation
direction string ∈ ¶dir, rev♢ Direct or reverse transformation
varargin double Transformation settings

X Transformed 3D image

The function calcNonLinTran documented in the tab. 5.9 calculates a nonlinear
transformation of the spatial representation of the 3D image. This is used as both
pre- and post-processing of the frequency-domain filtering, depending on the selected
‘direction’ of the transformation. Definitions related to nonlinear transformations
can be seen in 2.3.

filterFunctionFFT

Table 5.10: filterFunctionFFT filters a 3D image in the frequency domain. See
also A.2.

Function Calling

filterFunctionFFT Y = filterFunctionFFT(X, K, frame_style)

Input/Output Data Type Description

X 3D array of double Input image
K 3D array of double Filtering kernel
frame_style integer ∈ ¶0, 1, 2♢ Type of padding

Y 3D array of complex numbers Filtered image in the spat. domain

The filterFunctionFFT documented in the tab. 5.10 is one of the core functions
of our library, as it filters a 3D image in the frequency domain using the selected
kernel. As such, we show the implementation of this function in A.2, where we also
provide more comments on its workings.
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Table 5.11: getPaddingFFT pads a 3D image in the spatial domain.

Function Calling

getPaddingFFT X = getPaddingFFT(X, style)

Input/Output Data Type Description

X 3D array of double Input image
style integer ∈ ¶0, 1, 2♢ Type of padding

X 3D array of double Padded image

getPaddingFFT

The function getPaddingFFT documented in the tab. 5.11 is used by filterFunc-

tionFFT (see also A.2) to pad the input image in the spatial domain (FT assumes
periodicity) using a selected padding method (see 1.6.1) here symbolized by the
variable style. When style is equal to 0 we use zero padding. When it is equal to
1 we use copy padding. Finally, 2 means usage of mirror padding.

imageProcessingDriver

Table 5.12: imageProcessingDriver runs functions calcFilterKernel, calcNon-

LinTran, filterFunctionFFT.

Function Calling

imageProcessingDriver Y = imageProcessingDriver(X, frame_style, ...

kernel_style, filter_name, nonlin_trans, varargin)

Input/Output Data Type Description

X 3D array of double Input image
frame_style integer ∈ ¶0, 1, 2♢ Type of padding
kernel_style string Type of kernel
filter_name string Type of filter
nonlin_trans string Type of non-lin. trans.
varargin double Kernel and non-lin. trans. params.

Y 3D array of double Filtered image

The function imageProcessingDriver documented in the tab. 5.12 is the principal
driver function of the global filtering part of the library, as it runs functions cal-

cFilterKernel, calcNonLinTran, and filterFunctionFFT. These functions are
used as a pre-processing for invariant global feature calculation, i.e. the calculated
invariant is first filtered before the feature calculation.
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5.3 Invariant Calculation

In this section, we provide an overview of the functions used to calculate rotational
invariants and their global features. We may see such general overview in the tab.
5.13.

Table 5.13: Functions used to calculate rotational invariants and their global fea-
tures.

Function Description

calcFreqCoords Calculates 3D spherical coordinates
calcImageFeatures Calculates all features pertaining to one invariant (see 3.3)
calcInvarFeature Calculates one global feature
calcInvarFunc Calculates FFT of a Zernike Polynomial (see 3.1.2)
calcInvars Calculates rotational invariants by summing (see 3.2)
calcSpherHarmFunc Calculates value of a spherical harmonic function (see 3.1.1)
featureCalculationDriver Runs functions related to invariant feature calculation

This part of the library thus deals with calculating spherical coordinates and calcu-
lating all the invariants and their features.

calcFreqCoords

Table 5.14: calcFreqCoords calculates 3D spherical coordinates for a Zernike poly-
nomial.

Function Calling

calcFreqCoords [k, mu, psi] = calcFreqCoords(M, N, P)

Input/Output Data Type Description

M integer ≥ 0 Image height
N integer ≥ 0 Image width
P integer ≥ 0 Image depth

k 3D array of double ≥ 0 Vector modulus
mu 3D array of double ∈ (−π, π] Azimuth angle
psi 3D array of double ∈ [0, π] Polar angle

The function calcFreqCoords documented in the tab. 5.14 calculates 3D spherical
coordinates for the Zernike polynomial sampling. These coordinates are later used
to calculate the FFT of the Zernike polynomial (through spherical harmonic and
Bessel functions) needed to create rotational invariants.
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Table 5.15: calcImageFeatures calculates global features pertaining to one rota-
tional invariant.

Function Calling

calcImageFeatures image_features = calcImageFeatures(invars, bin_mask, ...

bin_theta, func_name, l_max, n_max, rho, frame_style, ...

kernel_style, filter_name, nonlin_trans, features)

Input/Output Data Type Description

invars 4D array of double All calculated invariants
bin_mask 1D array of boolean Image binary mask
bin_theta double ∈ [0, 1] Binary mask threshold
func_name string Function used to calculate invariants
l_max integer ≥ 0 Maximum l of invariant (see 3.2)
n_max integer ≥ 0 Maximum n of invariant (see 3.2)
rho double > 1 Radius of Zernike polynomial
frame_style integer ∈ ¶0, 1, 2♢ Padding style
kernel_style string Filtering kernel style
filter_name string Type of filter
nonlin_trans string Type of nonlinear transformation
features 1D array of strings Features to be calculated

image_features 2D array of double Calculated invariant features

calcImageFeatures

The function calcImageFeatures documented in the tab. 5.15 uses a cycle to pre-
process calculated invariants (see 5.2) and calculate global selected global features
(see 3.3). In our case, the values of calculated invariants tend to be small (< 10−4)
and we thus also use invariant normalization and a natural logarithm as a pre-
processing to increase invariant size and improve classification results.

calcInvarFeature

Table 5.16: calcInvarFeature calculates one global invariant feature.

Function Calling

calcInvarFeature invar_feature = calcInvarFeature(invar, feature_name, varargin)

Input/Output Data Type Description

invar 3D array of double Rotational invariant
feature_name string Feature to be calculated
varargin integer Add. params. related to perc. and MAD

invar_feature double Calculated invariant feature

The function calcInvarFeature documented in the tab. 5.16 is used to define and
calculate the invariant features/characteristics (see 3.3). It is used in a cycle (see
above) to calculate all selected features of all invariants. The varargin signifies the
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additional parameters, such as the k-th percentile and MATLAB implementation
mad of MAD related calculation specification (to median).

calcInvarFunc

Table 5.17: calcInvarFunc calculates a FFT of a Zernike polynomial.

Function Calling

calcInvarFunc invar_func = calcInvarFunc(func_name, l, m, n, rho, M, N, P)

Input/Output Data Type Description

func_name string Function used to calculate invariant
l integer ≥ 0 See 3.1.1
m integer ∈ ¶−l,−l + 1, . . . , l − 1, l♢ See 3.1.1
n integer ≥ 0 See 3.1.1
rho double > 1 Zernike polynomial radius
M integer ≥ 0 Image height
N integer ≥ 0 Image width
P integer ≥ 0 Image depth

invar_func 3D array of complex numbers Sampled FFT of Zernike polynomial

The function calcInvarFunc documented in the tab. 5.17 calculates a FFT of a
chosen function func_name (in our case only a Zernike polynomial) (see 3.1.2) and
thus enables us to calculate the rotational invariants by filtering the image in the
frequency domain with the calculated, sampled FFT of the Zernike polynomial.

calcInvars

Table 5.18: calcInvars calculates a rotational invariant by summing (see 3.2). See
also A.3.

Function Calling

calcInvars invars_nl = calcInvars(input_image, func_name, ...

frame_style, l_max, n_max, rho)

Input/Output Data Type Description

input_image 3D array of double Input image
func_name string Function used to calculate invariant
frame_style integer ∈ ¶0, 1, 2♢ Padding style
l_max integer ≥ 0 Maximum l. See 3.1.1
n_max integer ≥ 0 Maximum n. See 3.1.1
rho double > 1 Zernike polynomial radius

invars_nl 4D array of double Calculated invariants
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The function calcInvars documented in the tab. 5.18 is the key function of this part
of the library, as it calculates the rotational invariants by summing the expansion
coefficients (see 3.2). As such, we show the relevant code and provide more comments
in A.3.

calcSpherHarmFunc

Table 5.19: calcSpherHarmFunc calculates a spherical harmonic function (see 3.1.1).

Function Calling

calcSpherHarmFunc Y_lm = calcSpherHarmFunc(l, m, phi, theta)

Input/Output Data Type Description

l integer ≥ 0 See 3.1.1
m integer ∈ ¶−l,−l + 1, . . . , l − 1, l♢ See 3.1.1
phi 3D array of double ∈ (−π, π] Azimuth angle
theta 3D array of double ∈ [0, π] Polar angle

Y_lm 3D array of complex numbers Spherical harmonic function

The function calcSpherHarmFunc documented in the tab. 5.19 is used to calculate
the spherical harmonic function, which forms a part of the FFT of a Zernike poly-
nomials. This function incorporates the MATLAB function legendre, which is used
to calculate Legendre associated polynomials.

featureCalculationDriver

Table 5.20: featureCalculationDriver runs functions pertaining to invariant cal-
culation.

Function Calling

featureCalculationDriver imgs_features = featureCalculationDriver(img_datastore, num_imgs, ...

bin_theta, norm, func_name, l_max, n_max, rho, frame_style, kernel_style, ...

filter_name, nonlin_trans, features)

Input/Output Data Type Description

img_datastore MATLAB Datastore Filenames of images to be loaded
num_imgs integer ≥ 0 Number of images to be loaded
bin_theta 1D array of double ∈ [0, 1] Binary mask threshold
norm integer ∈ ¶1, 2♢ SPECT normalization type
func_name 1D array of string Functions used to calculate invariants
l_max integer ≥ 0 See 3.1.1
n_max integer ≥ 0 See 3.1.1
rho 1D array of double > 1 Function radius
frame_style integer ∈ ¶0, 1, 2♢ Padding style
kernel_style 1D array of string Kernel style names
filter_name 1D array of string Filter style names
nonlin_trans 1D array of string nonlinear transformation names
features 1D array of string Features to be calculated

imgs_features 9D array of double Features of all invariants
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The function featureCalculationDriver documented in the tab. 5.20 is the driver
function of the part of our library that deals with calculating rotational invariants
and their global features. It is used to calculate the features of a one kind of input
data (AD or CN images). We thus run this driver twice for both AD and CN images
to obtain invariant features for both classes.

5.4 Data Separability Testing

In this section, we provide an overview of the functions used for data separability
testing (see 4.1). We may see such general overview of in the tab. 5.21.

Table 5.21: Functions used to calculate the data separability.

Function Description

calcStatImportance Calculates the number of accepted hypotheses
statTestingDriver Runs functions needed for data separability testing

calcStatImportance

Table 5.22: calcStatImportance counts the number of accepted hypotheses, creates
tables, etc.

Function Calling

calcStatImportance [stat_importance_func, stat_importance_theta, stat_importance_rho, stat_importance_filt, ...

stat_importance_ker, stat_importance_tran, stat_importance_invar, stat_importance_feature, ...

stat_importance_all] = calcStatImportance(test_h, func_name, bin_theta, rho, filter_name, ...

kernel_style, nonlin_trans, n_max, l_max, features)

Input/Output Data Type Description

test_h 8D array of boolean Booleans whether null hypotheses were accepted
func_name 1D array of string Functions used for invariant calculation
bin_theta 1D array of double ∈ [0, 1] Binary mask thresholds
rho 1D array of double > 1 Invariant function radius
filter_name 1D array of string Filters used for image filtering
kernel_style 1D array of string Kernels used for image filtering
nonlin_trans 1D array of string nonlinear transformations used during image filtering
n_max integer ≥ 0 Maximum n. See 3.1.1
l_max integer ≥ 0 Maximum l. See 3.1.1
features 1D array of string Names of calculated features

stat_importance_func MATLAB table Functions sorted according to relative number of accepted hypotheses
stat_importance_theta MATLAB table Binary thresholds sorted acc. to rel. number of accepted hypotheses
stat_importance_rho MATLAB table Function radii sorted acc. to rel. number of accepted hypotheses
stat_importance_filt MATLAB table Filters sorted acc. to rel. number of accepted hypotheses
stat_importance_ker MATLAB table Kernels sorted acc. to rel. number of accepted hypotheses
stat_importance_tran MATLAB table Non-lin. transformations sorted acc. to rel. number of accepted hypotheses
stat_importance_invar MATLAB table Invariants sorted acc. to rel. number of accepted hypotheses
stat_importance_feature MATLAB table Features sorted acc. to rel. number of accepted hypotheses
stat_importance_all MATLAB table Configurations sorted acc. to rel. number of accepted hypotheses

The function calcStatImportance documented in the tab. 5.22 calculates the stat-
istical ‘importance’ of the used invariants, features, configurations, etc. It does
so by summing the respective number of accepted null hypotheses (see 4.1) in
Mann-Whitney U test implemented in MATLAB through function ranksum [54] and
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Welch’s t-test implemented in MATLAB through function ttest2 [54], calculating
the relative number of accepted hypotheses, putting them in a table and sorting this
table from the highest relative number of accepted hypotheses to smallest. We may
understand this process as trying to find the best configuration, which enables us to
calculate features that make it possible to separate the AD and CN data into two
distinct classes.

statTestingDiver

Table 5.23: statTestingDriver tests the data for separability (see 4.1).

Function Calling

statTestingDriver [pos_imgs_feats_signif, neg_imgs_feats_signif, stat_importance_all_rank, ...

stat_importance_all_t, select_num_hyps_false_corr] = statTestingDriver(func_name, ...

bin_theta, rho, filter_name, kernel_style, nonlin_trans, n_max, l_max, features, ...

pos_imgs_feats, neg_imgs_feats, alpha, fdr_refine)

Input/Output Data Type Description

func_name 1D array of string Functions used for invariant calculation
bin_theta 1D array of double ∈ [0, 1] Binary mask thresholds
rho 1D array of double > 1 Invariant function radius
filter_name 1D array of string Filters used for image filtering
kernel_style 1D array of string Kernels used for image filtering
nonlin_trans 1D array of string Non-lin. trans. used during image filtering
n_max integer ≥ 0 Maximum n. See 3.1.1
l_max integer ≥ 0 Maximum l. See 3.1.1
features 1D array of string Names of calculated features
pos_imgs_feats 9D array of double Features of AD images
neg_imgs_feats 9D array of double Features of CN images
alpha double ∈ [0, 1] Test significance level
fdr_refine boolean Decide whether to use FDR refinement procedure

pos_imgs_feat_signif MATLAB table Statistically significant features of AD images
neg_imgs_feat_signif MATLAB table Statistically significant features of CN images
stat_importance_all_rank MATLAB table Sorted configurations when using Mann-Whitney U test
stat_importance_all_t MATLAB table Sorted configurations when using Welch’s t-test
select_num_hyps_false_corr integer ≥ 0 Number of accepted null hypotheses

The function statTestingDriver documented in the tab. 5.23 is the principal driver
function of the part of our library that deals with testing the data separability. It
tests the null hypotheses (see 4.1), uses a FDR refinement procedure and finally
sorts the calculation configurations (see above) from best to worst.

5.5 Data Transformation

In this section, we provide an overview of the functions used for data transforma-
tions and whitening (see 4.2). We may see such general overview of in the tab. 5.24.

Table 5.24: Functions used to transform and whiten data.

Function Description

dataWhiteningDriver Runs functions related to data transformations and whitening.
whitenDataPCA Whitens data using PCA
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The trivial transformations (such as creating a two-dimensional array of full features)
are done as a part of the dataWhiteningDriver, which also iteratively calls the data
whitening function whitenDataPCA.

dataWhiteningDriver

Table 5.25: dataWhiteningDriver transforms the data to a form that can be used
as classifier inputs.

Function Calling

dataWhiteningDriver [X_train, X_train_whit] = dataWhiteningDriver(pos_imgs_features, ...

neg_imgs_features, func_name, bin_theta, rho, filter_name, kernel_style, ...

nonlin_trans, n_max, l_max, features, num_whit_features)

Input/Output Data Type Description

pos_imgs_feats 9D array of double Features of AD images
neg_imgs_feats 9D array of double Features of CN images
func_name 1D array of string Functions used for invariant calculation
bin_theta 1D array of double ∈ [0, 1] Binary mask thresholds
rho 1D array of double > 1 Invariant function radius
filter_name 1D array of string Filters used for image filtering
kernel_style 1D array of string Kernels used for image filtering
nonlin_trans 1D array of string Non-lin. trans. used during image filtering
n_max integer ≥ 0 Maximum n. See 3.1.1
l_max integer ≥ 0 Maximum l. See 3.1.1
features 1D array of string Names of calculated features
num_whit_features 1D array of integer ≥ 2 Number of principal components

X_train 2D array of double All features of all images (see 4.2.2)
X_train_whit 3D array of double Features after PCA (see 4.2.4)

The function dataWhiteningDriver documented in the tab. 5.25 is the principal
driver function of the part of our library that deals with transforming data, which
will go on to serve as inputs of binary classifiers. This function first transforms the
original nine-dimensional invariant features into two-dimensional arrays (where each
row corresponds to all calculated features of one image). Afterwards, it iteratively
calls the function whitenDataPCA to transform the full data into a selected num-
ber of principal components (we generally want to try to find the best number of
components and thus whiten the full two-dimensional data into a different number
of principal components, which means we run whitenDataPCA more than once in a
cycle using a different number of components each time).

whitenDataPCA

The function whitenDataPCA documented in the tab. 5.26 perform the PCA data
whitening (see 4.2.4) on input data, which are transformed into num_dims principal
components.
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Table 5.26: whitenDataPCA whitens data using PCA.

Function Calling

whitenDataPCA [mean_X, lambda, W, Y] = whitenDataPCA(X, num_dims)

Input/Output Data Type Description

X 2D array of double Full image features transformed into 2D array
num_dims integer ≥ 2 Number of principal components

mean_X 1D array of double Mean of each features
lambda 1D array of double Principal component percentage
W 2D array of double Chosen eigenvectors
Y 2D array of double Principal components

5.6 Image Classification

In this section, we provide an overview of the functions used for binary image clas-
sification. We may see such general overview of in the tab. 5.24.

Table 5.27: Functions used for data transformation and whitening.

Function Description

classANN Classifies images using trained ANN MATLAB model [54]
classificationDriver Runs functions related to image classification
classImages Runs functions related to cross-validation
classKNN Classifies images using KNN
classLDA Classifies images using LDA
classQDA Classifies images using QDA
classSVM Classifies images using SVM MATLAB model [54]
createClassStatsTable Creates table of classification statistics
trainANN Trains ANN MATLAB model [54]
trainKNN Trains KNN
trainLDA Trains LDA
trainQDA Trains QDA
trainSVM Trains SVM MATLAB model [54]

As we can see, the bulk of this part of the library is formed by functions responsible
for training and using classifiers (see 4.3), which is done through training and cross-
validation function classImages.

classANN

The function classANN documented in the tab. 5.28 uses trained ANN model for
binary image classification based on invariant global features. This model is created
by using the MATLAB Statistics and Machine Learning Toolbox™ [54] and features
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Table 5.28: classANN classifies images using trained MATLAB ANN model [54].

Function Calling

classANN y = classANN(x, res_train)

Input/Output Data Type Description

x 1D array of double Classification input
res_train 1D cell array Trained ANN model

y integer ∈ ¶0, 1♢ Predicted class

a classification neural network with one hidden layer. We will use the activation
function and the number of neurons in the one hidden layer later in Chapter 6 as
a basis for accuracy plots. We see that we use this classification function iteratively
to always classify precisely one input image, and the output is thus an integer (in
our binary case also a boolean) classifying the image into one of the two classes.

classificationDriver

Table 5.29: classificationDriver runs functions related to image classification.

Function Calling

classificationDriver [class_stats_leave1, class_stats_stratkfold, class_acc_leave1_lda, ...

class_acc_leave1_qda, class_acc_leave1_knn, knn_opt, class_acc_leave1_svm, ...

class_acc_leave1_sigmoid, class_acc_leave1_tanh] = ...

classificationDriver(X_train, num_whit_features, classifier_train_name, ...

classifier_class_name, k_fold, train_params, num_pos_imgs, num_neg_imgs)

Input/Output Data Type Description

X_train 2D or 3D array of double Classification data
num_whit_features 1D array of integer Data inputs dimensions
classifier_train_name string Training function name
classifier_class_name string Classification function name
k_fold integer > 0 Size of each k-fold
train_params 2D cell array Classifier parameters
num_pos_imgs integer ≥ 0 Number of AD images
num_neg_imgs integer ≥ 0 Number of CN images

class_stats_leave1 MATLAB table Cross-val. stats. using leave-one-out
class_stats_kfold MATLAB table Cross-val. stats. using stratified-k-fold
class_acc_leave1_lda MATLAB figure Plot of the best LDA classifier’s accuracy
class_acc_leave1_qda MATLAB figure Plot of the best QDA classifier’s accuracy
class_acc_leave1_knn MATLAB figure Plot of the best KNN classifier’s accuracy
knn_opt integer Optimum number of KNN neighbours
class_acc_leave1_svm MATLAB figure Plot of the best SVM classifier’s accuracy
class_acc_leave1_sigmoid MATLAB figure Plot of the best ACC of a ANN with sigmoid act. func.
class_acc_leave1_tanh MATLAB figure Plot of the best ACC of a ANN with tanh act. func.

The function classificationDriver documented in the tab. 5.29 is the principal
driver function of the part of our library that deals with binary image classification. It
runs the cross-validation function classImages, creates sorted tables of classification
statistics and also makes plots of the best classifier results based on classification
critical sensitivity se∗ and accuracy (ACC). It also returns the variable knn_opt,
which signifies the number of neighbours, for which the best classification results
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of full data were achieved. This number of neighbours is then used a basis of using
KNN for testing the one-dimensional data inputs as described in 4.2.

classImages

Table 5.30: classImages runs functions related to cross-validation and computes
classification statistics.

Function Calling

classImages [class_stats_leave1, class_stats_stratkfold] =...

classImages(X_train, y_star_train, num_pos_imgs_train,...

num_neg_imgs_train, classifier_train_name,...

classifier_class_name, k_fold, train_params)

Input/Output Data Type Description

X_train 2D or 3D array of double Classification data
y_stat_train 1D array of integer ∈ ¶0, 1♢ Array of true classes
num_pos_imgs_train integer ≥ 0 Number of AD images
num_neg_imgs_train integer ≥ 0 Number of CN images
classifier_train_name string Training function name
classifier_class_name string Classification function name
k_fold integer > 0 Size of each k-fold
train_params 2D cell array Classifier parameters

class_stats_leave1 MATLAB table Cross-val. stats. using leave-one-out
class_stats_kfold MATLAB table Cross-val. stats. using strat.-k-fold

The function classImages documented in the tab. 5.30 is the classifier training and
cross-validation function. It tests the selected classifier on the input data using leave-
one-out and stratified-k-fold techniques (here we note that we use a non-standard
definition for the k - it signifies the number of samples taken from the dataset rather
than the total number of folds) and computes classification statistics (see 4.4).

classKNN

Table 5.31: classKNN classifies images using KNN.

Function Calling

classKNN y = classKNN(x, res_train)

Input/Output Data Type Description

x 1D array of double Classification input
res_train 1D cell array Classification data and KNN parameters

y integer ∈ ¶0, 1♢ Predicted class
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The function classKNN documented in the tab. 5.31 classifies the input data using
a k-nearest neighbours (KNN). We use our own implementation of KNN and define
the closest neighbours in the sense of the Euclidean l2 = ∥x∥2 distance.

classLDA

Table 5.32: classLDA classifies images using LDA.

Function Calling

classLDA y = classLDA(x, res_train)

Input/Output Data Type Description

x 1D array of double Classification input
res_train 1D cell array Classification data and LDA parameters

y integer ∈ ¶0, 1♢ Predicted class

The function classLDA documented in the tab. 5.32 classifies the input data using
the linear discriminant analysis (LDA). We use our own implementation of LDA
with regularization defined in 4.3.1.

classQDA

Table 5.33: classQDA classifies images using QDA.

Function Calling

classQDA y = classQDA(x, res_train)

Input/Output Data Type Description

x 1D array of double Classification input
res_train 1D cell array Classification data and QDA parameters

y integer ∈ ¶0, 1♢ Predicted class

The function classQDA documented in the tab. 5.33 classifies the input data using
the quadratic discriminant analysis (QDA). We use our own implementation of QDA
with regularization defined in 4.3.1.

classSVM

The function classSVM documented in the tab. 5.34 uses trained SVM model for
binary image classification based on invariant global features. This model is created
by using the MATLAB Statistics and Machine Learning Toolbox™ [54] and features
a SVM with a linear, quadratic or Gaussian kernel (see 4.3.3). We will use the scale
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Table 5.34: classSVM classifies images using trained MATLAB SVM model [54].

Function Calling

classSVM y = classSVM(x, res_train)

Input/Output Data Type Description

x 1D array of double Classification input
res_train 1D cell array Trained SVM model

y integer ∈ ¶0, 1♢ Predicted class

of the Gaussian SVMs as a basis for accuracy plots in Chapter 6. We see that we use
this classification function iteratively to always classify precisely one input image,
and the output is thus an integer (in this case also a boolean) classifying the image
into one of the two classes.

createClassStatsTable

Table 5.35: createClassStatsTable creates a sorted MATLAB table of classifica-
tion statistics.

Function Calling

createClassStatsTable class_stats_table = createClassStatsTable(class_stats_arr, var_names)

Input/Output Data Type Description

class_stat_array 2D array of double Classification statistics
var_names 1D array of string Used classifiers

class_stats_table MATLAB table Sorted table with class. stats.

The function createClassStatsTable documented in the tab. 5.35 is used to create
a sorted MATLAB table featuring all used classifiers as variable names (each table
column is a one-dimensional array of classification statistics for one binary classifier
in some specific configuration). The classifiers are sorted primarily according to
critical sensitivity se∗ and then according to ACC to break ties.

trainANN

The function trainANN documented in the tab. 5.36 incorporates the functions pre-
defined in [54] to create and train a classification ANN with one hidden layer. This
layer features either sigmoid or hyperbolic tangent activation function and differing
number of neurons. The trained model is then wrapped in a cell array res_train

and passed back. The function type and number of neurons will later serve as a basis
of plots shown in Chapter 6.

80



Table 5.36: trainANN trains MATLAB ANN model [54].

Function Calling

trainANN res_train = trainANN(X, y_star, train_params)

Input/Output Data Type Description

X 2D array of double Training inputs
y_star 1D array of integer ∈ ¶0, 1♢ True classes
train_params 1D cell array Training parameters

res_train 1D cell array Trained ANN model

trainKNN

Table 5.37: trainKNN trains KNN classifier.

Function Calling

trainKNN res_train = trainANN(X, y_star, train_params)

Input/Output Data Type Description

X 2D array of double Training inputs
y_star 1D array of integer ∈ ¶0, 1♢ True classes
train_params 1D cell array Training parameters

res_train 1D cell array X, y_star and KNN params.

The function trainKNN documented in the tab. 5.37 only passes the necessary argu-
ments to function classKNN in form of a cell array res_train as there is no need
to train the KNN.

trainLDA

Table 5.38: trainLDA trains an LDA classifier.

Function Calling

trainLDA res_train = trainLDA(X, y_star, lambda)

Input/Output Data Type Description

X 2D array of double Training inputs
y_star 1D array of integer ∈ ¶0, 1♢ True classes
lambda double > 0 Regularization param.

res_train 1D cell array Params. of trained LDA

81



The function trainLDA documented in the tab. 5.38 trains an LDA classifier using
the theory from 4.3.1. It also performs regularization established in the same section.
The trained LDA classifier is then passed back wrapped in a cell array res_train.

trainQDA

Table 5.39: trainQDA trains QDA classifier.

Function Calling

trainQDA res_train = trainQDA(X, y_star, lambda)

Input/Output Data Type Description

X 2D array of double Training inputs
y_star 1D array of integer ∈ ¶0, 1♢ True classes
lambda double > 0 Regularization param.

res_train 1D cell array Params. of trained QDA

The function trainQDA documented in the tab. 5.39 trains an QDA classifier using
the theory from 4.3.1. It also performs regularization established in the same section.
The trained QDA classifier is then passed back wrapped in a cell array res_train.

trainSVM

Table 5.40: trainSVM trains MATLAB SVM model [54].

Function Calling

trainSVM res_train = trainSVM(X, y_star, train_params)

Input/Output Data Type Description

X 2D array of double Training inputs
y_star 1D array of integer ∈ ¶0, 1♢ True classes
train_params 1D cell array Training parameters

res_train 1D cell array Trained SVM model

The function trainSVM documented in the tab. 5.40 incorporates the functions pre-
defined in [54] to create and train a classification support vector machine (SVM)
featuring a linear, quadratic or Gaussian kernels (see 4.3.3). This trained model is
then wrapped in cell array res_train and passed back. The scale of Gaussian
kernels will later serve as a basis of plots shown in Chapter 6.
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5.7 Saving Results

In this section, we provide an overview of the single function used for saving results.
We may see this overview of in the tab. 5.41.

Table 5.41: Function used to save results. See also A.6.

Function Description

saveResults Saves results stored in an instance of resultClass

saveResults

Table 5.42: saveResults saves results with appropriate filenames. See also A.6.

Function Calling

saveResults saveResults(configuration, results)

Input/Output Data Type Description

configuration configurationClass Instance of configurationClass (to create filenames)
results resultClass Instance of resultClass with full results to save

The function saveResults is the only function with a separate file used to save
results. As such, we may see that one of its parameters is an instance of configur-

ationClass, which is used to create a filename (using the configuration parameters)
for the results stored in an instance of resultClass. We may see a short part of the
code related to saving the data files in A.6, where we also provide more comments.
This part of the library incorporates functions [55] and [56], which is also shown and
described in the appendix.
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Chapter 6

Experimental Part

In this chapter, we will present a compendium of the most interesting results for the
several branches of our inquiry. In the whole chapter, we will conduct our experi-
ment on a AD/CN dataset [57] containing 55 AD and 56 CN SPECT 99mTc-HMPAO
images of size 79 × 95 × 69 resulting in 517 845 total voxels, where the voxel size is
1×1×1 mm. All results will be obtained by randomly selecting fifty images from both
of these classes (one hundred in total, a balanced dataset) and using them as data
inputs. First, in 6.1, we describe the results obtained while testing the calculated
invariant features for data separability, which will enable us to decide whether the
data is statistically separable as well as to choose promising configurations (using all
configurations would be too time-consuming and would also precipitate the curse of
dimensionality, as we would be using hundreds or even thousands of calculated fea-
tures for each image) to calculate data inputs of binary classifiers. We will continue
by discussing the results of image classification, a section divided into three parts
based on utilised data inputs - full data, one-dimensional data and whitened data
(see 4.2). In the section on one-dimensional data, we provide only tables showing
the ten best results obtained using a KNN with the optimum number of neighbours
determined while classifying the full data. In this manner, we will find out whether
it is possible to successfully classify the data using only the individual, statistically
significant characteristics. In the sections discussing the full data and the whitened
data, we present and comment on tables of various classification configurations (clas-
sifiers and their parameters) ranked by their resulting critical sensitivity se∗ and
accuracy (ACC). We also present graphs of ACC of the best overall classifier from
each category, viz. linear discriminant analysis (LDA), quadratic discriminant ana-
lysis (QDA), k-nearest neighbours (KNN), support vector machine (SVM), artificial
neural network (ANN), based on selected input parameter, e.g. the regularization
parameter λ in the case of discriminant analysis classifiers. We used a HP Pavilion
Gaming 15 (15-cx0015nc) laptop with Intel®Core™i5-8300H CPU clocked at 2.30
GHz for obtaining all results shown in this chapter.
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6.1 Data Separability Testing

We first tested the data for statistical separability, i.e. the difference of medians or
means. We did this using a maximalist configuration featuring several combinations
of input parameters to find the potentially best constellation of parameters. Specific-
ally, we tried θ ∈ ¶0.05, 0.1, 0.2, 0.3♢ for binary mask threshold, ρ ∈ ¶3, 5, 7.5, 10♢
for function radii with maximum lmax = 2 and nmax = 2 (setting larger maximum
l and n would be too time costly). We tried simple invariant calculation with no
filter (thus also no filtering kernel) and no nonlinear transformation, as well as with
low-pass (LP) and high-pass (HP) filters with Gaussian, α-stable and Butterworth
kernels used without nonlinear transformation as well as together with log trans-
formation (LT). We also utilised all twelve image characteristics introduced in 3.3.
Using the combinations of all these parameters as well as choosing a total of one
hundred three-dimensional images, these calculations lasted approximately 47 hours
to complete and resulted in more than 22 000 calculated features.

It was first necessary to decide whether we will focus on using Welch’s t-test or use
the non-parametric Mann-Whitney U test. Therefore, we first tested the data for
normality with the Liliefors test and found that only in 0.0452 or 1016 hypotheses
out of 22 464 could the normality of the data be accepted. Seeing that the data
mostly could not be accepted as normally distributed, we resorted to using the
non-parametric Mann-Whitney U test.

6.1.1 Mann-Whitney U Test

As the normality of tested data could not generally be accepted, we only present the
results of testing the data for separability with the non-parametric Mann-Whitney
U test. Even though we initially obtained the best separability results with configur-
ations featuring predominantly high-pass filters, this situation changed after using
the FDR refinement procedure described in 4.1.4. The five best overall configura-
tions in terms of relative number of accepted hypotheses of differing medians can be
seen in the tab. 6.1.

Table 6.1: Five best configurations rated according to relative number of differing
medians.

Configuration Acc. Hyps. [%]

θ = 0.3, ρ = 10, LP, Gauss., LT 14.8
θ = 0.3, ρ = 10, LP, Gauss., no trans. 13.9
θ = 0.3, ρ = 10, LP, α-st., no trans. 13.9
θ = 0.3, ρ = 10, LP, Butt., no trans. 13.9
θ = 0.3, ρ = 10, no filt., no ker., no trans. 13.0

We thus see that we achieved best results with largest tested θ and ρ values coupled
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with LP filters, where it generally did not matter, which kernel we used. The best
overall result was achieved using a log transformation, but we were also able to
achieve similar results without nonlinear transformations. Hence, to save comput-
ing time, we decided to continue using configurations that do not feature nonlinear
transformations.

In the tab. 6.2, we may see similar rating of image characteristics (we use the nota-
tion est. in 3.3) based on number of relative accepted hypotheses of differing medians.

Table 6.2: Rating of image characteristics according to accepted hypotheses.

Characteristic Acc. Hyps. [%]

skew 10.5
med 8.5
kurt 6.8
mad 6.2
Q3 5.8
Q1 4.9
IQR 4.6
var 4.3
range 3.4
mean 3.3
min 2.5
max 1.9

Unsurprisingly, we are able to see that worst results are achieved with simplest non-
robust characteristics such as the maximum, minimum, and mean. On the other
hand, moments such as skewness and kurtosis, as well as the robust image median
(compare to non-robust mean) achieve the best results.

From above, we surmise that the potential for clean data separation using only the
statistical testing is quite low, and we will thus continue by also presenting the results
of attempting to classify the images with binary classifiers. We will further utilise
the results of this section as a basis when attempting to find the best configurations
to calculate classification data inputs.

6.2 Image Classification

In this section, we present the results of attempting to classify the three-dimensional
images into two classes - AD or CN patients. While we initially tried the configura-
tions, which achieved the best data separability (see above), with θ = 0.3 and ρ = 10,
we quickly found out that we achieve the best classification results while using con-
figurations with θ = 0.2 and ρ ≈ 7 together with no filter or with a LP Gaussian
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kernel with σ ∈ [0.1, 0.5] or a Butterworth LP kernel filter with d0 ∈ [0.15, 0.25]
and m = 1 (see 2.1) and no nonlinear transformations. While the configurations
featuring a Gaussian kernel also achieved very good classification results, they were
narrowly edged out by the configurations featuring a Butterworth kernel. Therefore,
in the next section, we present the results obtained using a configuration featuring
invariants calculated using no filter and invariants filtered with a Butterworth LP
kernel with parameters set to d0 = 0.25 and m = 1. Due to computational costli-
ness of utilizing invariants with n, l > 2, we again set nmax = lmax = 2. Using such
reduced configurations (no filter and one low-pass filter, number of characteristics
p ≈ 200, computation time c. 2 hours) we were able to achieve much better results
than when using maximalist configurations, presumably because we were able to
escape the curse of dimensionality. We divide this section into three parts - first we
try to use the full data (see 4.2, number of characteristics p ≈ 200) with discrim-
inant analysis and k-nearest neighbours (in this section we do not use SVMs and
ANNs because of computational costliness of using these classifiers on such high-
dimensional data). Using the full data, we also determine the optimum number of
neighbours in KNN (setting it as the number, for which best ACC was achieved
when classifying full data). In the next section, we use the KNN with the optimum
number of neighbours while classifying the data based on one-dimensional inputs -
we iterate through all p ≈ 200 characteristics and try to determine whether we can
achieve good classification results based on only individual characteristics as inputs.
Finally, we reduce the dimension of the full input data (see 4.2) using the PCA data
whitening and use these principal components as inputs of all mentioned classifiers,
including SVMs and ANNs. We present only the cross-validation results obtained
using the leave-one-out technique for the sake of brevity and also because the results
obtained using the stratified-k-fold technique were almost the same in the sense of
results interpretation.

6.2.1 Full Data

In this section, we present the results of classifying the full data (number of charac-
teristics p = 9·12·2 = 216, where we use nine invariants, twelve characteristics and a
configuration with no filtering as well as with Butterworth LP filter). First, we com-
pare the best classifiers ranked primarily according to the highest critical sensitivity,
se∗, which is the minimum of TPR and TNR (see (4.51)), and secondarily according
to accuracy (ACC) to break possible ties. In this section, we compare three types of
classifiers useful for higher dimensional data because of their relatively low compu-
tational costs, viz. the linear discriminant analysis (LDA), quadratic discriminant
analysis (QDA), and k-nearest neighbours (KNN). We may see such comparison for
the leave-one-out cross-validation technique in the tab. 6.3. We note that the value
of se∗ is not explicitly shown in the table because of its simple definition, making
it easy to deduce from the first two rows of the table. We also do not show results
for the balanced accuracy (BACC) because we use a balanced dataset, and thus the
value of BACC is always equal to the corresponding value of ACC.
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Table 6.3: Comparison of the best classifiers - the LDA, QDA and KNN.

LDA, λ = 0.03 QDA, λ = 0.05 KNN, k = 11

TPR 0.820 0.900 0.700
TNR 0.880 0.880 0.800
FPR 0.120 0.120 0.200
FNR 0.180 0.100 0.300
PPV 0.872 0.882 0.778
NPV 0.830 0.898 0.727
FDR 0.128 0.118 0.222
FOR 0.170 0.102 0.273
LR+ 6.833 7.500 3.500
LR− 0.205 0.114 0.375
PRT 0.277 0.267 0.348
TS 0.732 0.804 0.583
ACC 0.850 0.890 0.750
F1 0.845 0.891 0.737
MCC 0.701 0.780 0.503
FM 0.846 0.891 0.738
DOR 33.407 66 9.333

As we may see, with both the linear discriminant analysis and quadratic discrim-
inant analysis we achieve quite similar results in terms of accuracy (ACC) equal to
or greater than 0.850. The QDA, however, offers somewhat better negative predict-
ive value (NPV) and significantly better diagnostic odds ratio (DOR). The KNN
utilizing Euclidean distance (absolute distance was also tested but achieved sim-
ilar or somewhat worse results) achieved significantly poorer results with accuracy
equal to 0.750. It is also important to note that the QDAs classifiers with parameter
λ ∈ ¶0.05, 0.075, 0.1, 0.4♢ are all ranked the same according to se∗ = 0.880 and
ACC = 0.890. Therefore, we may consider these classifiers equivalent and show only
the classification results for the smallest value of regularization parameter, λ = 0.05.

Linear Discriminant Analysis

In the fig. 6.1, we may see the plot of classification accuracy of the linear discrim-
inant analysis for full data, where number of characteristics p = 216, based on the
value of the regularization parameter λ.

For small values of the regularization parameter, λ ≈ 0.01, we achieve low classific-
ation accuracy, which then rises sharply with greater values of α. We achieve the
best results, ACC = 0.850, for value of regularization parameter λ = 0.03, as we
have already mentioned above. When λ > 1 we may note a fast decline in accuracy
to values ACC ≈ 0.650.
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Figure 6.1: Accuracy of classifying full data with LDA.

Quadratic Discriminant Analysis

In the fig. 6.2, we may see the plot of classification accuracy of the quadratic dis-
criminant analysis for the full data, where number of characteristics p = 216, based
on the value of the regularization parameter λ.

For small values of the regularization parameter, λ ≈ 0.01, we achieve low clas-
sification accuracy, which then rises sharply as λ approaches 0.03 (see comment-
ary below the tab. 6.3). We achieve the best accuracy ACC = 0.890 for values
of λ ∈ ¶0.05, 0.075, 0.1, 0.4♢. When λ > 1 we may again note the fast decline in
accuracy to values ACC ≈ 0.650.

k-Nearest Neighbours

In the fig. 6.3, we may see the plot of classification accuracy of the KNN for full
data, where number of characteristics p = 216, based on the number of considered
nearest neighbours.

We may clearly see that the KNN achieves the lowest classification accuracy
out of the three used types of classifiers. We achieve the best accuracy results,
ACC ≈ 0.770, when considering fifteen neighbours of each data input. We did not
show this setting in the tables because it suffers from a lower critical sensitivity,
se∗ = 0.680, than the setting using eleven neighbours (seen in the tab. 6.3), as the
fifteen neighbour setting has values of true positive rate and true negative rate of
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Figure 6.2: Accuracy of classifying full data with QDA.

Figure 6.3: Accuracy of classifying full data with KNN.

TPR = 0.680, TNR = 0.860. However, as the se∗ when using fifteen neighbours was
quite similar to the one using eleven neighbours and achieved slightly better accur-
acy and we also see from the figure above that we tended to achieve consistently
higher accuracy when considering larger number of neighbours, we declare the larger
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number fifteen to be the optimum number of neighbours for our purposes of testing
one-dimensional input data in the following section.

6.2.2 One-Dimensional Data

In this section, we briefly discuss the possibility of classifying the data based solely
on one-dimensional data inputs. As the number of characteristics is p = 216, we
iterate through all these individual invariant characteristics, attempting to find out
whether it is possible to separate the images into two non-overlapping classes. To
this end, we use the KNN with number of neighbours set to fifteen (optimum num-
ber of neighbours from the previous section, see above) and utilizing the Euclidean
distance. We provide two tables - in tabs. 6.4 and 6.5 we may see the ten best over-
all invariant features ranked according to se∗ and ACC. Results in both tables were
(as stated above) obtained using configuration θ = 0.2, ρ = 7 and we thus do not
explicitly state this fact in the table header. We denote the usage of the low-pass
Butterworth filter with parameters set to d0 = 0.25 and m = 1 by adding LP in
the table header where necessary. The bl,n in the table header denotes the rotational
invariant (see 3.2).

Table 6.4: Comparison of the first five best invariant features.

b0,0, kurt b0,0, skew LP, b0,0, kurt LP, b0,0, med LP, b0,0, Q1

TPR 0.820 0.760 0.820 0.680 0.680
TNR 0.720 0.720 0.700 0.800 0.800
FPR 0.280 0.280 0.300 0.200 0.200
FNR 0.180 0.240 0.180 0.320 0.320
PPV 0.745 0.731 0.732 0.773 0.773
NPV 0.800 0.750 0.795 0.714 0.714
FDR 0.255 0.269 0.268 0.227 0.227
FOR 0.200 0.250 0.205 0.286 0.286
LR+ 2.929 2.714 2.733 3.400 3.400
LR− 0.250 0.333 0.257 0.400 0.400
PRT 0.369 0.378 0.377 0.352 0.352
TS 0.641 0.594 0.631 0.567 0.567
ACC 0.770 0.740 0.760 0.740 0.740
F1 0.781 0.745 0.774 0.723 0.723
MCC 0.543 0.480 0.524 0.483 0.483
FM 0.782 0.745 0.775 0.725 0.725
DOR 11.714 8.143 10.630 8.500 8.500

The first five features (all features from the tab. 6.4) and the fourth feature in the
second table were also determined as statistically significant (allowing for data sep-
aration) while testing for data separability. The fact that we also obtained the best
classification results while using these features as single data inputs further confirms
that kurtosis, skewness, and median (and perhaps the first quartile) calculated on
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Table 6.5: Comparison of the second five best invariant features.

b2,0, med b2,2, skew LP, b2,2, skew b0,0, med LP, b2,0, med

TPR 0.680 0.680 0.680 0.660 0.660
TNR 0.720 0.720 0.700 0.800 0.720
FPR 0.280 0.280 0.300 0.200 0.280
FNR 0.320 0.320 0.320 0.340 0.340
PPV 0.708 0.708 0.694 0.767 0.702
NPV 0.692 0.692 0.686 0.702 0.679
FDR 0.292 0.292 0.306 0.233 0.298
FOR 0.308 0.308 0.314 0.298 0.321
LR+ 2.429 2.429 2.267 3.300 2.357
LR− 0.444 0.444 0.457 0.425 0.472
PRT 0.391 0.391 0.399 0.355 0.394
TS 0.531 0.531 0.523 0.550 0.516
ACC 0.700 0.700 0.690 0.730 0.690
F1 0.694 0.694 0.687 0.710 0.680
MCC 0.400 0.400 0.380 0.465 0.381
FM 0.694 0.694 0.687 0.712 0.681
DOR 5.464 5.464 4.958 7.765 4.992

rotational invariants form the core characteristics that can be used for separating AD
and CN images into two distinct classes. We, however, note that it is also possible to
achieve decent results by using features that were not initially labelled as allowing
for data separability, such as the median of the invariant b2,0 or the skewness of the
invariant b2,2.

6.2.3 Whitened Data

In this section, we present the results of classification while using the reduced,
whitened data inputs. Using the PCA, we first reduce the number of dimensions
from p = 216 to p ∈ ¶2, 3, . . . , 10♢. We then attempt to find the best classifiers
(ranked again according to se∗ and ACC) as well as the optimum number of
principal components (dimensions). In the tab. 6.6, we present the results for
the three classifiers, which we also used initially for the full data - the linear
discriminant analysis, quadratic discriminant analysis and k-nearest neighbours. In
the tab. 6.7, we present the results for the newly used SVMs and ANNs.

As we may see in the tab. 6.6, the QDA maintains or slightly improves its critical
sensitivity, while the DOR increases to by more than fifty percent from the original
value DOR = 66 to DOR = 103.500. The performance is also noticeably enhanced
for the KNN - improvement of 0.040 for se∗ and of approximately 4 for DOR. The
QDA with the regularization parameter λ = 0.2 also achieves the second-best overall
performance out of all classifiers (after a Gaussian SVMs, see below). The perform-
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Table 6.6: Comparison of the best classifiers - LDA, QDA and KNN.

LDA, λ = 0.01, PCA = 10 QDA, λ = 0.2, PCA = 7 KNN, k = 16, PCA = 3

TPR 0.820 0.900 0.760
TNR 0.820 0.920 0.820
FPR 0.180 0.080 0.180
FNR 0.180 0.10 0.240
PPV 0.820 0.918 0.809
NPV 0.820 0.902 0.774
FDR 0.180 0.082 0.191
FOR 0.180 0.098 0.226
LR+ 4.556 11.250 4.222
LR− 0.220 0.109 0.293
PRT 0.319 0.230 0.327
TS 0.695 0.833 0.644
ACC 0.820 0.910 0.790
F1 0.909 0.92 0.784
MCC 0.640 0.820 0.581
FM 0.820 0.909 0.784
DOR 20.753 103.500 14.426

ance of LDA stays similar if slightly worse, worsening by 0.030 in critical sensitivity,
when compared to the one shown in 6.3.

Table 6.7: Comparison of the best classifiers - SVM and ANN.

SVM, Gauss., σ = 1, PCA = 7 ANN, Sigm., Neur. = 5, PCA = 3

TPR 0.940 0.920
TNR 0.900 0.880
FPR 0.100 0.120
FNR 0.060 0.080
PPV 0.904 0.885
NPV 0.938 0.917
FDR 0.096 0.115
FOR 0.063 0.083
LR+ 9.400 7.667
LR− 0.067 0.091
PRT 0.246 0.265
TS 0.855 0.821
ACC 0.920 0.900
F1 0.922 0.902
MCC 0.841 0.801
FM 0.922 0.902
DOR 141 84.333

In the tab. 6.6, we may observe that we were able to obtain good classification results
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for both support vector machines, particularly with a Gaussian kernel, and artificial
neural networks. As above, with a similarly well performing QDA, the best result
for the SVM was obtained while using input data composed of seven principal com-
ponents. Furthermore, the results for this Gaussian SVM are the best overall results
of all used classifiers. These were obtained using a Gaussian kernel with σ = 1 (we
may note the steep rise and decline in classification accuracy based on the value of
σ in the fig. 6.7).

We only needed five neurons and three principal components to obtain the best
result for ANN. It is important to note, however, that we also obtained exactly
the same classification results for a sigmoid activation function, seven neurons and
three principal components, as well as for three neurons, hyperbolic tangent activa-
tion function and three principal components. Apart from this, however, the ANNs
with a hyperbolic tangent activation tended to achieve slightly worse performance on
average, and we thus opt to show the best results obtained with a sigmoid activation.

From the tabs. 6.6 and 6.7, we may see that we achieved the best classification per-
formance while using either the QDA, SVMs or ANNs. Observing what we consider
to be good classification results, ACC ≈ 0.900, our proposed method of texture
analysis coupled with one of these classifiers (for example the QDA because of its
comparably low computational costs) can be considered a promising approach, which
could, if further developed and tested, find its usage as a fast consultative tool in
the field of medical diagnostics.

Linear Discriminant Analysis

We obtained the best accuracy results, ACC = 0.820 , with the linear discriminant
analysis while using the data reduced into the maximum tested value of ten prin-
cipal components. It is also interesting to note that the accuracy of the LDA used on
whitened data does not change with different values of the regularization parameter
λ, facing no rise or decline (compare the fig. 6.1), which we may see in the fig. 6.4.
The results for LDA in the tab. 6.6 are thus the same for all values of λ and six
principal components, and we merely choose the value λ = 0.01 as a placeholder for
all other tested values of the regularization parameter.

While invariant in respect to the value of the regularization parameter, the LDA
used on the whitened data also achieves a slightly worse top accuracy performance
than the LDA used on the full data (compare tabs. 6.3 and 6.6). We also observe
that this is in contrast with the QDA used on the whitened data, which achieves a
significantly better accuracy performance (second-best performance of all classifiers)
for several specific values of the regularization parameter, but also faces a decline in
performance (see the fig. 6.5).
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Figure 6.4: Accuracy of classifying whitened data with LDA.

Quadratic Discriminant Analysis

The quadratic discriminant analysis achieves the second-best top classification res-
ults in terms of classification accuracy, ACC = 0.910, of all tested classifiers (com-
pare tabs. 6.6 and 6.7). These results were obtained while using seven principal
components of the reduced data and experimentally optimal values of the regular-
ization parameter λ ≈ 0.2. However, in terms of averaged accuracy we achieved the
best results with six principal components. This setting also achieved best accuracy,
ACC = 0.900, with the regularization parameter set λ = 0.2, thus confirming its
closeness to optimum, and placed third-best overall for top performance. We may
see the accuracy plot in the fig. 6.5.

In contrast to the linear discriminant analysis (see above), the quadratic discrim-
inant analysis still exhibits a decline in performance due to the rising value of the
regularization parameter, especially for values of regularization parameter λ > 1.
This decline is, however, not as steep as while using the QDA for classification of
the full data (compare the fig. 6.2).

k-Nearest Neighbours

The k-nearest neighbours again achieved the weakest results of all tested classifiers
(compare tabs. 6.6 and 6.7). However, in the fig. 6.6, we may still highlight a notice-
able improvement in accuracy, ACC = 0.800, from the original value ACC = 0.750
while considering eighteen neighbours, on the data reduced into three principal com-
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Figure 6.5: Accuracy of classifying whitened data with QDA.

ponents. As with the full data, this result, however, suffers from lower critical sensit-
ivity, se∗ = 0.740, and we thus select the sixteen neighbours as the optimum shown
in the tab. 6.6.

Figure 6.6: Accuracy of classifying whitened data with KNN.
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While we may pose a question whether it is necessary to perform the principal com-
ponent analysis as a preprocessing for the linear discriminant analysis and quadratic
discriminant analysis, as the accuracy performance stays quite similar (or even wor-
sens) for both the full and the whitened data, it seems that the data whitening
noticeably improves the performance of the k-nearest neighbours.

Support Vector Machines with Gaussian Kernel

We may see the classification performance of a nonlinear support vector machine
with a Gaussian kernel and seven principal components as an input in the fig. 6.7.
We observe a steep rise and decline in classification accuracy based on the value of
the scaling parameter σ, whose optimum value is σ ≈ 1 (see the tab. 6.7), where
the Gaussian SVMs achieved the best classification results of all tested classifiers,
comparable with perhaps only the QDA and the best performing ANNs. For val-
ues of σ significantly differing from this experimental optimum, the Gaussian SVMs
generally achieved very poor results of ACC < 0.500.

Figure 6.7: Accuracy of classifying whitened data with SVM with a Gaussian kernel.

Apart from the Gaussian SVMs, we also tested the SVMs featuring polynomial
(linear and quadratic) kernels. In general, the top performance of these SVMs,
ACC ≥ 0.850, was similar to, if slightly worse than, the performance achieved with
Gaussian kernels. These types of kernels, however, did not exhibit the same steep
decline in performance. Even the worst polynomial kernels still maintained accuracy
ACC ≥ 0.550.
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Artificial Neural Networks with Sigmoid Activation Function

Due to the high computational cost of training the artificial neural networks, we only
utilised this type of classifiers on the preprocessed, whitened data. We may see the
results for a artificial neural network with one hidden layer with a sigmoid activation
function in the fig. 6.8, where we show the classification accuracy based on the num-
ber of neurons in the hidden layer. We may note that we needed a smaller number of
principal components - three - than with most other previously mentioned classifiers.

Figure 6.8: Accuracy of classifying whitened data with ANN with a sigmoid activa-
tion function.

We also observe the general invariance of high classification performance,
ACC ≥ 0.850, to the changing number of neurons. This is further evidenced by
the fact that we obtained exactly the same results when featuring five and seven
neurons in the hidden layer (this lower number of neurons can thus be considered an
optimum). The ANNs with a sigmoid activation function achieved slightly better per-
formance than the ANNs with a hyperbolic tangent activation function (see below)
with the best performance shown above and the worst performance, ACC ≈ 0.650,
achieved while using a large number of neurons (≥ 15) and a low number of principal
components (≤ 3).

Artificial Neural Networks with Hyperbolic Tangent Activation Function

We may see the results for a ANN with one hidden layer with a hyperbolic tangent
activation function in the fig. 6.9, where we show the classification accuracy based
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on the number of neurons in the hidden layer. We may note that we needed a smaller
number of principal components - three - than with other non-ANN classifiers but
the same number of components as while using an ANN with a sigmoid activation
function.

Figure 6.9: Accuracy of classifying whitened data with ANN with a hyperbolic tan-
gent activation function.

In contrast to ANNs with a sigmoid classification function, we observe a higher
inconsistency in classification performance, which drops off from ACC ≥ 0.850 to
ACC ≈ 0.800. The ANNs with a hyperbolic tangent activation thus performed
somewhat worse than the ANNs with a sigmoid activation function. The best per-
formance was achieved for a low number of neurons and approximately a lower
to middle (from three to five) number of principal components. The worst results,
ACC ≈ 0.600, were achieved with only two principal components and an arbitrary
number of neurons.
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Conclusions

We conceived this master’s thesis as a project developing a novel method of texture-
based image analysis, focused first and primarily on three-dimensional images. After
introducing our theoretical approach, which uses image filtering, Zernike polynomi-
als, and the Fourier transform to calculate rotationally invariant image characterist-
ics in the first part of this work and commenting on our MATLAB implementation,
we also set out to test our approach to texture-based analysis while experimenting
on the task of binary image classification of SPECT brain scans of patients suffering
from Alzheimer’s disease.

Chapters 1–4 are concerned with developing a theoretical approach to texture-based
analysis of three-dimensional images. In the first chapter, we introduce some of the
basic concepts of image processing, such as the elementary image operations or the
Fourier transform used for fast image filtering. These concepts are further developed
and elaborated on in the following chapters. Chapter 2 is concerned with introducing
both low-pass and high-pass image filters, as well as nonlinear image transforma-
tions. Together, these two concepts allow us to preprocess three-dimensional images
and achieve fast filtering in the frequency domain. The approach of filtering in the
frequency domain is also used in Chapter 3 to develop rotationally invariant image
characteristics based on the Fourier transform of Zernike polynomials. These char-
acteristics then serve as inputs of binary image classifiers - the discriminant analysis
classifiers, k-nearest neighbours, support vector machines and artificial neural net-
works - introduced in Chapter 4 together with our approach to statistically testing
data separability, whitening the data, and measuring the performance of binary clas-
sifiers.

In Chapter 5 and Appendix A, we provide some details of our MATLAB library
implementation and comment on some of the most important code excerpts. We
divide our library into several more or less overlapping parts. We first define the
two classes defined in our implementation, designed to hold the predefined config-
urations and the calculated results. Likewise, we also define the functions used to
read and normalize SPECT images. We continue by describing the functions re-
lated to image filtering in the frequency domain, some of which are also used while
calculating the rotationally invariant characteristics described in the next section
of the chapter. We then move on to describing the functions related to testing the
data separability and classifying three-dimensional images. Finally, we describe the
function concerned with saving the obtained results.
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In Chapter 6, we put our method to practical use while testing it on SPECT images
of healthy, cognitively normal patients, as well as patients suffering from Alzheimer’s
disease. In the first part of this chapter, we attempted to find statistically signific-
ant image characteristics that would enable us to separate the two classes by their
differing means, or medians. Using the Liliefors test, we generally found out that
the data could not be considered coming from a normal distribution, which preven-
ted us from using the Welch’s t-test. Instead, we used the non-parametric Mann-
Whitney U test and observed that the characteristics with the most potential for
class separation are skewness, kurtosis, and median. In the next section, we tried to
classify the images using full, non-whitened data, which resulted in good classifica-
tion results of ACC ≥ 0.850 while using the discriminant analysis classifiers. In the
next section, we tested the usefulness of each one-dimensional single characteristic
in patient classification and concluded that while some of the characteristics that
were initially labelled as statistically significant also formed good classification input
data, there were also characteristics that provided decent results despite not being
labelled statistically significant. The use of the combination of these characteristics
thus significantly improved classification results, as we could see while classifying
with full or whitened data. In the section concerned with presenting the results of
classifying the whitened data, we could observe that we achieved the best classific-
ation performance while using either the quadratic discriminant analysis, support
vector machines, or artificial neural networks. Observing what we consider to be
good classification results, ACC ≈ 0.900, our proposed method of texture analysis
coupled with one of these classifiers (for example, the QDA because of its compar-
ably low computational costs) can be considered a promising approach, which could,
if tested on a wider selection of data, find its usage as a fast consultative tool in the
field of medical diagnostics.

As a conclusion to this thesis, we attempt to provide a few thoughts on possible
further developments of this project. One manner in which we could further improve
our method is by adding and testing more image characteristics, more types of binary
classifiers, more methods of data whitening, or by attempting to develop a theoretical
approach that would enable us to efficiently choose only some of the calculated
characteristics as inputs to binary classifiers, which would reduce computation and
memory costs. We could also acquire better hardware (or perhaps adapt this project
to run on cloud computing) to slash the computation time. Another key way to
develop this project further would be to acquire more medical data, not only related
to Alzheimer’s disease but also to other diseases such as various types of cancer,
which would enable us to test our method for monitoring textural changes in cancer-
afflicted tissues. We could also try to not limit ourselves to medical data and test our
method of textural analysis on data from different fields of image analysis. Should
our method work well with a wider selection of data, we are of the opinion that it
could provide real and tangible results, not only in medical diagnostics but also as
a promising new theoretical approach to texture-based image analysis.
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Appendix A

Code Excerpts

This appendix is concerned with showing excerpts of some of the more interesting
parts of our MATLAB [53] library implementation. These briefly commented ex-
cerpts are by no means exhaustive but instead try to show some of the key parts of
our library.

A.1 Inputs, Configurations, Results

configurationClass

The class configurationClass defines configuration properties and presets several
configurations used to obtain results shown in Chapter 6. An example of one preset
is shown in the code A.1. We may see the definition of folders containing input data
(lines 2 and 3), number of images to be randomly selected from these folders (lines 4
and 5) and also the setting of properties relevant to 3D image processing as defined
in chapters 3 and 4.

1 case 11

2 conf. pos_img_datastore = imageDatastore (" data\

AD_BARTOS \"," FileExtensions ", ". img", " ReadFcn ", @

loadImage );

3 conf. neg_img_datastore = imageDatastore (" data\NOS0 \",

" FileExtensions ", ". img", " ReadFcn ", @ loadImage );

4 conf. num_pos_imgs = 50;

5 conf. num_neg_imgs = 50;

6
7 conf. bin_theta = 0.2;

8
9 conf. calc_image_features = true;

10 conf. func_name = " zerPoly ";

11 conf.l_max = 2;

12 conf.n_max = 2;
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13 conf.rho = 7;

14
15 conf. filter_name = [" noFilt" "fftLP "];

16 conf. kernel_style = [" noKer" " buttKer "];

17 conf. nonlin_trans = "noTran ";

18
19 conf. features = [" max", "min", "range", "mean", "med

", "mad", "1Q", "3Q", "IQR", "var", "skew", "kurt

"];

20
21 conf. test_stat_importance = true;

22
23 conf. whiten_data = true;

24
25 conf. class_images = true;

Code A.1: Example of a computing configuration.

resultClass

The class resultClass defines an object containing relevant results such as tables
of classification statistics (lines 25–31) and classification plots (lines 34–43), which
are featured in Chapter 6.

1 %% Result Class

2 % class defining results / outputs such as image features ,

training datasets ,

3 % classification results , etc.

4
5 classdef resultClass

6 properties

7 % Calculated image features

8 pos_imgs_features = NaN;

9 neg_imgs_features = NaN;

10
11 % Significant image features after statistical

testing , best

12 % configuration acc. to ranksum and t-test ,

number of statistically

13 % significant features after FDR refinement

14 pos_imgs_features_signif = NaN;

15 neg_imgs_features_signif = NaN;

16 ranksum_stat_importance_all = NaN;

17 t_stat_importance_all = NaN;

18 select_num_hyps_false_corr = NaN;

19
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20 % Classifier inputs

21 X_train = NaN;

22 X_train_whit = NaN;

23
24 % Tables of classification statistics

25 class_stats_leave1 = NaN;

26 class_stats_stratkfold = NaN;

27 class_stats_leave1_triv = NaN;

28 signif_feats_class_stats_leave1 = NaN;

29 class_stats_stratkfold_triv = NaN;

30 class_stats_leave1_whit = NaN;

31 class_stats_stratkfold_whit = NaN;

32
33 % Accuracy figures for best classifiers

34 class_acc_leave1_lda = [];

35 class_acc_leave1_qda = [];

36 class_acc_leave1_knn = [];

37 class_acc_leave1_lda_whit = [];

38 class_acc_leave1_qda_whit = [];

39 class_acc_leave1_knn_whit = [];

40 class_acc_leave1_svm_whit = [];

41 class_acc_leave1_sigmoid_whit = [];

42 class_acc_leave1_tanh_whit = [];

43 end

44 end

Code A.2: resultClass and its properties.

loadImage

The function loadImage reads a SPECT image as a 1D vector from a .img file spe-
cified by a .hdr header (lines 4–12) and transforms it into a 3D image (lines 20–32).

1 image_filename = image_filename (1: dot_ind -1);

2
3 % read .hdr header

4 header_file = fopen ([ image_filename '.hdr '],'r');

5 input_header = fread( header_file );

6 fclose( header_file );

7
8 % 3D .img image sizes and define image

9 m = double( input_header (43) + 256* input_header (44));

10 n = double( input_header (45) + 256* input_header (46));

11 p = double( input_header (47) + 256* input_header (48));

12 X = uint32(zeros(m, n, p));

13
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14 % read .img 1D vector

15 img_file = fopen ([ image_filename '.img '],'r');

16 input_image = fread( img_file );

17 fclose( img_file );

18
19 % create 3D image by transforming data with step size

20 step_size = length( input_image )/m/n/p;

21 cur_ind = 1;

22 for k = 1:p

23 for j = 1:n

24 for i = 1:m

25 X(i, j, k) = uint32( input_image ( cur_ind ));

26 if( step_size >= 2 && step_size <= 4)

27 X(i, j, k) = X(i, j, k) + uint32 (256* sum(

input_image ( cur_ind + step_size - 1:

cur_ind +1)));

28 end

29 cur_ind = cur_ind + step_size ;

30 end

31 end

32 end

33
34 input_image = X;

35 spect_bool = true;

Code A.3: Reading a 3D SPECT image.

A.2 Global Filtering

filterFunctionFFT

The function filterFunctionFFT pads the input image X (line 12), calculates the
FFT using the MATLAB function fftn (line 15) and filters the image in the fre-
quency domain using a kernel K. Furthermore, the function then transforms the
filtered image back into spatial domain using MATLAB function ifftn (lines 19–26).

1 %% Frequency domain filtering driver

2 % takes spatial input image X and frequency kernel K,

transforms X into

3 % frequency domain and performs frequency domain

filtering

4
5 % inputs: X - input image in spatial domain

6 % : K - filtering kernel in frequency domain

7 % : frame_style - padding style
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8 % outputs : Y - spatial domain filtered image

9
10 function Y = filterFunctionFFT (X, K, frame_style )

11 [m, n, p] = size(X);

12 X = getPaddingFFT (X, m, n, p, frame_style );

13
14 % transform input image X to frequency domain

15 X = fftshift (fftn(X));

16
17 % perform filtering as element -wise matrix

multiplication in frequency

18 % domain

19 Y = X .* K;

20
21 % transform filtered image Y back to spatial domain

22 Y = ifftn( ifftshift (Y));

23
24 % select the part of the filtered image corresponding

to the original

25 % input image

26 Y = Y(1:m, 1:n, 1:p);

27 end

Code A.4: Filtering 3D image in the frequency domain.

A.3 Invariant Calculation

calcInvars

The function calcInvars computes (scaled) rotational invariants according to 3.2
(lines 16–34). We see that this is done according to (3.12) through using three for

cycles, where the coefficients are calculated using filterFunctionFFT (see above).

1 %% Calculate Invariants

2 % calculates image invariants by summing invariant

coefficients

3
4 % inputs: input_image - normalized input image

5 % : func_name - function to be used for invariant

calculation

6 % : frame_style - frame style to be used for

invariant FFT

7 % calculation

8 % : l_max - max. spherical harmonic l

9 % : n_max - max. spherical harmonic n
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10 % : rho - function radius

11 % outputs : invars_nl - all image invariants from 0 to n

and 0 to l

12
13 function invars_nl = calcInvars (input_image , func_name ,

frame_style , l_max , n_max , rho)

14 [M, N, P] = size( input_image );

15 invars_nl = zeros (( n_max + 1) * (l_max + 1), M, N, P)

;

16 for n = 0: n_max

17 for l = 0: l_max

18 coeffs_nlm = zeros (2*l + 1, M, N, P);

19
20 ft_func_m_zero = calcInvarFunc (func_name , l,

0, n, rho , 2*N, 2*M, 2*P);

21 coeffs_nlm (l+1, :, :, :) = abs(

filterFunctionFFT (input_image ,

ft_func_m_zero , frame_style )).^2;

22
23 if(l > 0)

24 for m = 1:l

25 ft_func_m_minus = calcInvarFunc (

func_name , l, -m, n, rho , 2*N, 2*M

, 2*P);

26 ft_func_m_plus = calcInvarFunc (

func_name , l, m, n, rho , 2*N, 2*M,

2*P);

27
28 coeffs_nlm (m, :, :, :) = abs(

filterFunctionFFT (input_image ,

ft_func_m_minus , frame_style )).^2;

29 coeffs_nlm (2*l + 2 - m, :, :, :) =

abs( filterFunctionFFT (input_image ,

ft_func_m_plus , frame_style )).^2;

30 end

31 end

32 invars_nl (( n_max + 1)*n + l + 1, :, :, :) =

reshape (sum(coeffs_nlm , 1), [M N P]);

33 end

34 end

35 end

Code A.5: Calculating rotational invariants.
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A.4 Data Transformation

dataWhiteningDriver

The function dataWhiteningDriver transforms higher dimensional data into 2D
arrays containing features of AD and CN images. This is rather trivially achieved
through MATLAB function reshape and therefore we only show the part of the
code concerned with creating the whitened data. We can see that the whitened data
is a 3D array of sizes corresponding to the total number of whitening dimensions
setting (we may want to try whitening the data into e.g. 2, 3 or more principal
components, and it is thus practical to save all these results into one array), total
number of processed images, and the maximum number of whitening dimensions
(for settings with smaller number of dimensions than the maximum, the remaining
columns remain all zero). The whitening itself is done according to 4.2.4 and need
not be further discussed here.

1 X_train_whit = zeros( num_num_whit_features , num_pos_imgs

+ num_neg_imgs , max( num_whit_features ));

2 for i = 1: num_num_whit_features

3 [~, ~, ~, X_train_whit (i, :, 1: num_whit_features (i))]

= whitenDataPCA (X_train , num_whit_features (i));

4 end

Code A.6: Data whitening cycle.

A.5 Image Classification

classImages

The function classImages trains and cross-validates a selected classifier by using
techniques described in 4.4. Below, we show the excerpt concerned with the leave-
one-out cross-validation. The calculations done in the function calcClassStats are
somewhat trivial, sufficiently described in 4.4.1 and need not be discussed here.An
example of a training function (for SVM) called through feval on line 7 is shown
in a separate subsection below.

1 perm_ind_train = randperm ( num_imgs_train )';

2 X_train = X_train ( perm_ind_train , :);

3 y_star_train = y_star_train ( perm_ind_train );

4 for i = 1: num_imgs_train

5 X_train_temp = [ X_train (1:i-1, :); X_train (i+1:

num_imgs_train , :)];

6 y_star_train_temp = [ y_star_train (1:i -1);

y_star_train (i+1: num_imgs_train )];
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7 res_train_leave1 = feval( classifier_train_name ,

X_train_temp , y_star_train_temp , train_params );

8 Y_train (i, 1) = feval( classifier_class_name , X_train (

i, :) ', res_train_leave1 );

9 end

10 class_stats_leave1 = calcClassStats (Y_train , y_star_train

, num_pos_imgs_train , num_neg_imgs_train );

Code A.7: Leave-one-out cross-validation.

trainSVM

Below, we show the trainSVM function utilizing the SVM implementation from [54].
The follow-up classification is then done by calling the predict [54] function with
the trained svm_model and validation data as parameters.

1 %% Train SVM

2 % train Matlab Support Vector Machine

3
4 % inputs: X - inputs for training

5 % : y_star - class labels

6 % : train_params - classifier training parameters

7 % outputs : res_train - trained SVM model

8
9 function res_train = trainSVM (X, y_star , train_params )

10 type = train_params (1);

11 outlier_coeff = train_params (2);

12 nu = train_params (3);

13 if(size(train_params , 2) > 3)

14 sigma = train_params (4);

15 end

16 if(type > 0)

17 svm_model = fitcsvm (X, y_star ,'KernelFunction ','

polynomial ', 'KernelScale ','auto ', ...

18 'PolynomialOrder ', type , 'OutlierFraction ',

outlier_coeff , 'Nu', nu , 'Standardize ',

true);

19 elseif(type == 0)

20 svm_model = fitcsvm (X, y_star ,'KernelFunction ', '

rbf ', 'KernelScale ', 2* sigma ^2, ...

21 'OutlierFraction ', outlier_coeff , 'Nu', nu ,

'Standardize ', true);

22 end

23
24 res_train = { svm_model };
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25 end

Code A.8: Leave-one-out cross-validation.

A.6 Saving Results

saveResults

Below we may see the function writeData, which is a part of the larger saveResults.m

file. We may see that we technically save 4 types of results - MATLAB variables
.mat, which are useful when wanting to run the library without calculating image
features but instead merely using already prepared files, .csv matrices or tables
(depending on whether the result needs row and column descriptors), and .fig

MATLAB figures together with .png exported images. On lines 29 and 32 we may
see incorporation of community-created functions fullfig [55] and export_fig [56]
into our library. The fullfig function enlarges the figure to a whole screen, achiev-
ing a better resolution when saving. In our case, the export_fig is used to export
the figure into a .png image format.

1 %% Write Data

2 % write data into a file

3
4 % inputs: data - data array/table/figure

5 % : folder_name - folder , into which the result

will be saved

6 % : filename - filename of file to be saved

7 % : mode - saving either array/table/figure + png

8
9 function [] = writeData (data , folder_name , filename , mode

)

10 folder_name = " results /" + folder_name ;

11 if(~ exist(folder_name , 'dir '))

12 mkdir( folder_name );

13 end

14
15 if(mode == 0)

16 filename = folder_name + "/" + filename + ". mat ";

17 save(filename , 'data ');

18 elseif(mode == 1)

19 filename = folder_name + "/" + filename + ". csv ";

20 save(filename , 'data ');

21 writematrix (data , filename );

22 elseif(mode == 2)

23 filename = folder_name + "/" + filename + ". csv ";

117



24 writetable (data , filename , 'WriteRowNames ', true)

;

25 elseif(mode == 3)

26 filename_fig = folder_name + "/" + filename + ".

fig ";

27 filename_png = folder_name + "/" + filename + ".

png ";

28 fig = figure(data);

29 fullfig (fig);

30 data. Visible = 'off ';

31 saveas(fig , filename_fig );

32 export_fig (fig , filename_png , '-p0 .02 ');

33 close(data);

34 end

35 end

Code A.9: Saving results.
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