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Abstract: With the growth of public camera recordings and video streams in
recent years, there is an increasing need for automatic processing with limited
human input. An important part of the process is detecting moving objects in
the video and grouping individual detections across video frames into trajecto-
ries. This thesis presents a set of algorithms for creating trajectories from object
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Introduction
In recent years, there has been considerable growth in the number of security
cameras and video records/streams, while it is desirable to process such data
automatically. If detections of objects are available, it is possible to track their
movement into trajectories, which is a more semantic (behavioural) feature than
a simple detection of an object’s appearance in a single video frame. Practi-
cal applications of trajectories can be found in various fields including activity
analysis [21][11][17], traffic monitoring [36][10], autonomous driving [7][20][24], or
medicine [25].

In this thesis, we are going to introduce our pipeline, called Traged, on gen-
erating trajectories of humans in outdoor videos for large public spaces such as
squares or promenades. Object tracking is a topic that has been addressed by
many authors and an overview of some methods can be found in chapter 1. The
input for our algorithm consists of a video, generated detections of humans in
the given video and a configuration file. Each detection contains information
such as timestamps, bounding rectangles in the video frames, and image crops
defined by the rectangle. Our goal is to generate trajectories from the input. As
a trajectory, we would like to have a set of detections representing the trajectory
of a moving person. From this set, we can extract other information, such as
the motion curve of the object (see Figure 1). In the end, we will implement the
described algorithm as an extension of the system Videolytics[32] and evaluate
the results.

(a) Trajectory as a set of detections (b) Motion curve

Figure 1: Illustration of generated trajectories

The motivation for generating trajectories is to describe objects throughout
time and space. Trajectories can be used for various analyses, including tracking
the movement of people in public spaces for security or marketing purposes. Also,
obtaining trajectories opens up a whole new world of possibilities for improving
existing systems as well as adding new features to detections.

We encountered a problem with generated detections by the detector. Com-
monly, objects are not detected by detectors in every single frame of the video,
even though the object is visible in the video. It can be seen as glitching bound-
ing boxes in video playthroughs. Thus, one planned use of generated trajectories
will be to generate missing detections by interpolating their position based on
given trajectories. Even though it is not essential, it certainly gives a solid foun-
dation for future detection experiments. Trajectories can also be used for the
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behaviour/action analysis of objects. We start from the assumption that sim-
ilar actions share similar patterns. These patterns can be described, and the
description can be used for looking up similar actions in different videos.

Thesis structure

The thesis is organized into the following chapters. In the beginning, in chapter 1,
we have created an overview of related works and systems. Chapter 2 is an overall
description of our Traged pipeline with idea description and input and output
data. Later than in chapters 3,4,5 are in detail described parts of Traged. The
implementation of our approach is described in chapter 6. Finally, the evaluation
of implementation is described in chapter 7.

Thesis contributions

The thesis presents a complex flow, processing detections of objects from a video
into complete trajectories, with added missing detections and semantically de-
scribed and prepared for further analysis. The algorithms of the thesis can be
divided into four parts:

• Overview of identified features, usable to detections clustering
- Overview and proposal of features that can be used to cluster detections
of an object into trajectory.

• The algorithm clustering detections into complex trajectories
- We propose a complex algorithm that clusters detections into a trajectory
of one object.

• Generating of missing detections for objects
- Algorithm designed to interpolate generated trajectory and generate miss-
ing/undetected detections.

• Semantic description of generated trajectories
- Creating a foundation for semantic description and analysis of trajectories.
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1. Related work
In this chapter, we would like to overview related methods to our approach in
section 1.1 and briefly introduce related systems where our approach could be
implemented in section 1.2.

1.1 Related methods
Since the early beginnings of automatic video analysis, a solution to object track-
ing and trajectory creation in videos has been needed due to its valuable potential
usage. Many research projects have been carried out on the topic at the time of
writing, using many different methods. The most common approach to generat-
ing trajectories is computer vision algorithms. The movement of tracked objects
can be represented using Kalman filter [37], network flows [13], or deep neural
networks, to name a few.

1.1.1 Neural networks, transformers
Sun et al. [34] proposed a Deep Affinity Network (DAN) network. Like other deep
network solutions for multiple object tracking, DAN works in two essential steps.
First, it detects objects within individual frames and harnesses their features
with multiple levels of abstraction using a convolutional network. Next, the
extracted metadata is used to group detections within pairs of frames. Exhaustive
pairing permutations of these features are trying to find the most feasible affinities
between these detections. Another noteworthy feature of DAN is the ability to
account for new and disappearing objects thanks to its ability to look forward
and backwards in time, recognizing ”unaffiliated” objects.

Shuai et al. [31] introduced a region-based Siamese Multi-Object Tracking
network called SiamMOT, inspired by the Siamese-based single-object tracking
approach. Their approach takes advantage of region-based features and template
matching to estimate the motion of an object between two frames.

Sun et al. [33] tried to solve the task using transformer architecture. The
inspiration came from the query-key mechanism previously used for single object
tracking. To extend it to multiple object tracking, they had to consider newly
created objects without features. To do that, they used two sets of keys with
object queries. One takes care of newly introduced objects, while the other bears
information about objects in the previous frame. Therefore, they generate two
sets of bounding boxes and use IoU matching to generate the final ordered object
set.

TrackFormer by Meinhardt et al. [26] is a multi-object tracking approach
based on encoder-decoder transformer architecture. It uses queries for the track-
by-attention paradigm. These queries are used to detect new and existing objects
throughout the track. Static queries are used for new detections, whereas track
queries are used to hold attention to existing objects. These track queries consist
of identity features of objects in previous frames while also adapting to a potential
change in the next. Another notable feature of this approach is the attention span
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during which track queries are kept in memory and, therefore, can be used for
re-introducing an object, should it reappear in the video.

1.1.2 Methods in OpenCV
This section provides an overview of related methods implemented in
the OpenCV1 library.

Real-time tracking via online boosting.

Grabner et al. [12] proposed a method capable of online training, which is ben-
eficial when an object changes appearance, including the change of illumination.
The method is based on an online version of the AdaBoost algorithm. The algo-
rithm uses only grey value information and utilises fast computable features such
as Haar-like wavelets to stabilize tracking results.

Visual tracking with online multiple instance learning.

Babenko et al. [2] addressed the problem with traditional supervised learning
methods - slight inaccuracies in the tracker that can lead to incorrectly labelled
training examples. They presented a Multiple Instance Learning algorithm, re-
sulting in a more robust tracker with fewer parameter tweaks.

Forward-backward error: Automatic detection of tracking failures.

Kalal et al. [15] proposed an object tracker called Median Flow. They define the
Forward-Backward error of feature point trajectories, meaning that the tracking is
performed forward and backwards in time. As follows, the discrepancies between
the two trajectories are measured. This approach makes it possible to detect
tracking failures and select reliable trajectories.

Visual object tracking using adaptive correlation filters.

Bolme et al. [3] tried to solve the problem with correlation filters. They presented
a new type of correlation filter. Firstly, adaptive correlation filters are used to
model the target’s appearance, and then the tracking is performed via convolu-
tion. A tracker based on this filter is invariant to changes in the appearance of
objects, such as lighting, scale, pose, and non-rigid deformations.

Tracking-learning-detection.

Kalal et al. [16] proposed a framework that consists of 3 notable parts: a detector,
a tracker and a learner. The detector looks for detections, the tracker looks for
trajectories, and the learner is used for computing errors, which are then used to
minimize similar errors in the future. Their method uses P-N learning with two
”experts” - The p-expert estimates missed detections, and N-expert estimates
false alarms. The system works in real-time.

1https://opencv.org/
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Discriminative Correlation Filter with Channel and Spatial Reliability.

Lukezič et al. [23] based their tracker on the discriminative correlation filter
method. They called it CSR-DCF, the Discriminative Correlation Filter with
Channel and Spatial Reliability. The filter support is adjusted to the portion
of the object that is acceptable for tracking using the spatial reliability map.
This enhances the tracking of non-rectangular objects and enables a larger search
region. Reliability ratings serve as feature weighting coefficients in localization
and indicate the channel-wise quality of the trained filters.

1.2 Related systems
This section provides a short overview of systems focusing on video analysis,
especially object tracking, where we could use our approach or where similar
functionality is implemented. The larger overview of other systems or older sys-
tems can be found in articles[32][28][29]. We focused on newer and still active
systems or tools.

1.2.1 Commercial systems
Almost all relevant systems with active support and working pages are commer-
cial. Thus, we are just providing brief information and links to official pages.
Unfortunately, the non-commercial systems from articles are often abandoned or
inactive.

Senstar

Senstar company provides commercial software, a video analytical tool2, that
processes IP video into business intelligence. The provided software collects video
records and analyzes them with machine learning algorithms. The system is
used for license plates recognition, face recognition, crowd detection and people
tracking3,

Google Cloud Video Intelligence API

Google Cloud Video Intelligence API4 is a video analysis tool that uses machine
learning to recognize and analyze objects, places and actions in stored and stream-
ing videos. The API is split on Vertex AI for AutoML5 and
Video Intelligence API6, where both provides object tracking.

2https://senstar.com/products/video-
analytics/

3https://senstar.com/products/video-
analytics/indoor-people-tracking/

4https://cloud.google.com/video-
intelligence

5https://cloud.google.com/vertex-
ai/docs/training-overview

6https://cloud.google.com/video-
intelligence/docs/annotate-video-command-
line
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Cyberlink - people tracker

CyberLink’s People Tracker7 is a surveillance video analytics system using
cutting-edge AI technology to track people’s movements. It can be used for
security reasons as well as for people searching.

Visio ai

Visio AI8 is a computer vision platform for building real-time computer vision
and deep learning applications. Visio AI platform provides tools for ergonomic
risk analysis, object counting, automatic number plate recognition, and object
tracking.

1.2.2 Videolytics
The system Videolytics, founded by Skopal et al. [32], is a non-commercial web-
based system [35] for advanced video analysis, working on data extraction and
visual analysis of extracted data.

The whole pipeline of Videolytics is based on independent modules, where the
only point of communication between the modules is a database. This means that
each module extracts data from the video while using data from the database, and
newly generated results are stored in the database. The Videolytics’s architecture
is present in Dobranský and Skopal[9].

Videolytics, by its architecture, combines the ”best” of deep learning and
hand-designed analytical models to use the advantages of both methods. Cur-
rently, Videolytics provides modules for detection extraction, detection and tra-
jectory visualization and visual data searching.

Figure 1.1: Videolytics web application
7https://www.cyberlink.com/faceme

/solution/people-tracker/overview
8https://viso.ai/
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Traged extension

Based on the system parameters, we have decided to implement the approach
designed in the thesis as a new module of Videolytics. Since all communication
is handled through the database, the potentially implemented module will be
independent and transferable simply by changing the database connector. And
we could fully use the implemented modules of Videolytics.
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2. Traged
In the current situation, almost all problems related to video analysis and object
tracking are solved by deep learning [34], [31], [33], [26]. However, this approach
needs a lot of annotated data, which we do not have and would like to avoid
needing large sets. Also, during the research on detection generators, we encoun-
tered that the generated detections are not ideal, and objects are not detected
correctly in all frames. Thus, we have taken this fact into account.

To satisfy those restrictions, we have tried a different approach and designed
an algorithm that generates trajectories by grouping (or clustering) detections.
We have decided to create a fully configurable analytical model and test differ-
ent grouping methods. The designed algorithm, as a data input, accepts raw
video, detections of objects, and a configuration with information on how to per-
form clustering. We called this approach Traged (TRAjectories GEnerated from
Detections).

2.1 Definitions
Before we start with the algorithm itself, we will unify our terminology and define
terms that will stay with us throughout the thesis and are crucial to understand.
Definition 1. Detection represents an object of interest in a single frame.

Each detection contains information such as

• timestamp - Absolute time of frame capture with this detection.1

• bounding box - Rectangle in the video frame, bounding the object.
−→ width of the object detection
−→ height of the object detection
−→ center x of the object detection
−→ center y of the object detection

• image crop - Image cropped from frame defined by the bounding box.

Definition 2. Detections represent all detections of one video.
Definition 3. DFrame represents a set of detections detected in a single frame
of video.

DFrame(x) = {d|d ∈ Detections ∧ d.timestamp = x}

Definition 4. A trajectory is a set of detections representing the movement of
one object.

Trajectory = {d|d ∈ Detections}

∀d1, d2 ∈ Trajectory, d1.timestamp = d2.timestamp =⇒ d1 = d2
On each trajectory, we can define properties such as:

1Can be video time, but has to be in the same way for all detections.
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• start time - The start time of the trajectory is the earliest timestamp of
trajectory detections.
T.start time⇔ ∀d ∈ T ; start time <= d.timestamp

• end time - The end time of the trajectory is the latest timestamp of trajec-
tory detection.
T.end time⇔ ∀d ∈ T ; end time >= d.timestamp

and operations such as:

• detection is addable - The detection is to trajectory addable if in trajectory
is no detection with the same timestamp.
d is addable T ⇔ ∀o ∈ T ; d.timestamp ̸= o.timestamp

• trajectories are mergeable - Trajectories T1 and T2 are mergeable if detec-
tions of trajectories have no common timestamp.

T1 is mergeable with T2
⇔

∀d1 ∈ T1,∀d2 ∈ T1; d1.timestamp ̸= d2.timestamp

Definition 5. We define DetectionsToTrajectories as a set operation that trans-
forms a set of detections into multiple trajectories and sets of unused detections.

In our case, the DetectionsToTrajectories operation is implemented as an al-
gorithm for clustering detections into Trajectories and is introduced in subsection
3.1.1.
Definition 6. We will define TrajectoriesToTrajectories as a set operation that
transforms a set of trajectories into a set where the produced trajectories are the
same or in conjunction. In our case, the TrajectoriesToTrajectories operation is
implemented as an algorithm for clustering trajectories into trajectories and is
introduced in subsection 3.1.2.

2.2 Traged - pipeline
The pipeline aims to transform the detections into trajectories and use them to
generate new data, such as trajectory description or find undetected detections,
as shown in the picture 2.1. Since we use a configurable analytic model, a user-
defined configuration file drives the whole pipeline. Thus, we will use plenty of
variables to explain algorithms, where all variables and configurable properties
are meant to be passed to algorithms through the configuration file.
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DetectionsToTrajectories

detections

simple trajectories

Generating missing detections

TrajectoriesToTrajectories

complete trajectories

Semantic desription
of Trajectories

complete trajectories

trajectories

interpolated
detections

detections

Figure 2.1: Traged - designed pipeline

2.2.1 Generating trajectories
Initially, we have a set of detections, which we want to cluster into trajectories
based on the detection features. However, for detections, we can, for example,
compare only their position or histograms. With the operation DetectionsToTra-
jectories, the algorithm clusters detections into trajectories. For trajectories, we
can extract more features, such as the speed or direction of trajectories and use
them for clustering with the TrajectoriesToTrajectories.

As shown in the picture 2.2, the second phase of clustering, which represents
the operation TrajectoriesToTrajectories and clusters trajectories into longer tra-
jectories, can be repeated multiple times to aggregate the full trajectories of the
objects. Details on this clustering are described in chapter 3.
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Figure 2.2: Traged - clustering trajectories

Complexity reduction The problem with this approach is time complexity.
In general, we could take all detections for one video and let described algorithm
compare detections with each other and build the trajectories, but this would be
highly impractical. Instead, we have decided to support only a restricted amount
of detections and final conjunction run on generated trajectories, where we can
easily reduce the number of comparisons. This approach also corresponds with
the database-oriented source and is great for processing large streams. Detail
descriptions with many optimizations can be found in chapter 3.

2.2.2 Usage of trajectories
Once we have generated trajectories, we will use them to improve existing data
and create a semantic representation of trajectories for work.

Data improvement As mentioned, the detections we are using as input do
not have to be ideal and usually are missing in some parts of the video. Thus,
we would like to use generated trajectories and extract from the original video
missing detections. This part of the pipeline is described in section 5.1.

Semantic representation The other use of trajectories is to create a semantic
representation. This representation should describe on various low-level features
of trajectories such as the type of movement - (standing, walking or running)
or directional - (turning right, straight, turning left) and so on. These data are
prepared for our colleges and will be used to describe activities and search for
activities with a common pattern. More about representation generation can be
found in section 5.2.

14



3. Clustering into trajectories
In this chapter, we will describe the designed algorithms for clustering and pro-
vide pseudo-codes. We will also explain all our core decisions during the algo-
rithm design and present a variant we suggested to solve/minimize discovered
problems. To present the algorithm properly, We will describe it in a bottom-
up approach. First of all, in section 3.1, we will present algorithms designed to
generate trajectories from a limited number of detections, subsection 3.1.1, and
later, in subsection 3.1.2, algorithms merging trajectories into larger ones. Once
we know sub-algorithms, how to create basic trajectories and merge them, in
section 3.2, we will describe the algorithm connecting all sub-algorithms together
and, from detections, generate complete trajectories in subsection 3.2.1. Finally,
in subsection 3.2.2 will be described the main loop that processes detections for
the whole video stored in the database into trajectories.

3.1 Clustering detections into trajectories
In this section, we will describe how the clustering itself is done. As men-
tioned, we can distinguish two cases: clustering detections into trajectories −→
DetectionsToTrajectories and clustering trajectories into longer trajectories−→
TrajectoriesToTrajectories. In the original proposal, we planned to create a
universal algorithm. Still, as shown in this chapter, we can achieve better results
and performance thanks to clustering detections and trajectories in different ways.

Classification Both variants use user-defined rules specifying which features of
detections or trajectories should be compared and how to measure the connectiv-
ity based on the compared features. The techniques for extracting features and
measuring connectivity are defined in chapter 4. For simplicity, in this chapter,
we use the term classifier, which represents a block of code based on user-
defined rules, taking two detections or trajectories as input and returning the
connectivity ∈ ⟨0, 1⟩ representing how well are input data connectable.

∀d1, d2 ∈ detections; classifier.compare(d1, d2) −→ ⟨0, 1⟩
∧classifier.compare(d1, d2) = classifier.compare(d2, d1)
∀t1, t2 ∈ trajectories; classifier.compare(t1, t2) −→ ⟨0, 1⟩
∧classifier.compare(t1, t2) = classifier.compare(t2, t1)

3.1.1 Transforming detections into trajectories
The main purpose of this algorithm, as shown in the picture 3.1, is to group
detections into trajectories. These trajectories do not have to be long but have
to be correct. As the input, the algorithm receives detections and user-defined
rules used to construct classifier.
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Figure 3.1: Clustering detections into trajectories example

The algorithm

The core of the algorithm is quite simple. First, the algorithm by classifier
compares all detection pairs, without repetitions, where detections belong to dif-
ferent frames −→ compared. Then the algorithm sorts all comparisons by their
connectivity in descending order −→ sorted and starts building the trajectories.
The algorithm from sorted take out the most connectable pair and processes it
according to the state of the detections:

• Neither of the detections is in an existing trajectory.
−→ Create a new trajectory with these detections.

• Only one detection is in an existing trajectory.
−→ If the detection is addable to that trajectory, add it.

• Both detections are in existing trajectories.
−→ If trajectories are mergeable, merge them.

In other cases, we can forget this pair and continue with the next one.
In this way the algorithm processes pairs until all of them are processed1. For

better visualisation, we can see the algorithm in pseudocode 1.
1We can use some of the optimization

strategies, such as process pairs until each de-
tection is in trajectory, define a threshold for
connectivity or use only a limited number of
top connectable pairs, such as n∗#detections.
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Algorithm 1: DetectionsToTrajectories
Input: detections, classifier
Output: trajectories
trajectories = {}
compared = []
for d1,d2 in combinations(detections) do

if d1.timestamp ̸= d1.timestamp then
connectability = classifier.compare(d1, d2)
compared.add(connectability, d1, d2)

sorted = Sort in descending order compared by connectability.
while sorted is not empty do

detectionA, detectionB = sorted.pop()
if Neither detectinA or detectionB belong to trajectory then

trajectory =Create new trajectory with detectionA and detectionB
Add trajectory into all trajectories

else
if Both detectionA and detectionB belongs to trajectories then

trajectoryA = From trajectories load trajectory with detectionA
trajectoryB = From trajectories load trajectory with detectionB
if trajectoryA and trajectoryB are mergeable then

Remove trajectoryB from trajectories
Add all detections from trajectoryB into trajectory trajectoryA

else
#Only one detection is in some trajectory
detection = detection without trajectory
trajectory = Get trajectory for detection with trajectory
if detection is addable into trajectory then

Add detection into trajectory

Complexity reduction

The problem with this algorithm is that the time complexity is growing quadrati-
cally because we are comparing all detections with each other, and the comparison
of two detections is computationally complex. To avoid quadratic complexity, we
propose two easy solutions that reduce the number of compared detections and
one optimization based on the position of detections.

Sliding window

The first solution is to use a sliding window for generated comparisons. This
means comparing each detection only with detections from N previous frames
and N following frames, where N is a reasonably small number. This approach
highly corresponds with the algorithm 1, and the only change is done while pairs
comparison.

Fixed length blocks

Another solution is to split detections into blocks of fixed length, and on each
block of detections, run an algorithm 1. By this approach, we generate a lot of
short trajectories, which we can later merge with TrajectoriesToTrajectories, or
we can use real-life knowledge to merge trajectories by common detection.

First, we organize detections into lists of DFrames. Since each detection has
to be at most in one trajectory, we can split the list of DFrames into blocks with
one2 DFrame overlap, as shown in the pictures 3.2, process each block with the

2During tests, we have tried to use more
than one DFrame as overlap, but the results

did not improve, only time complexity gets big-
ger.
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Figure 3.2: Detections splitted into blocks of DFrames with overlap
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Figure 3.3: Trajectories processed and merged by common detection

algorithm 1 and after those merge trajectories with common detections, as shown
in the pictures 3.3. For illustration, this approach is written in pseudocode 2.

Algorithm 2: Processing of detections blocks
Input: detections,classifier
Output: trajectories
DF rames = {}
for detection in detections do

DF rames[detection.timestamp].add(detection)
blocks with overlap = Split DF rames into blocks of defined length with one DFrame overlap.
for block in blocks with overlap do

block detections = detections from block
trajectories+ = DetectionsT oT rajectories(block detections, classifier)

#Merge trajectories with a common detection.
for detection in detections do

sharers = Get trajectories with detection
if size(sharers) > 1 then

Merge trajectories from sharers in one.

Position optimization

To optimize the number of comparisons even more, we can split the video im-
age into a grid, sort all detections into cells, and compare only detections with
detections from the nearest cells −→ surrounding, as shown in a picture 3.4.
The disadvantage of this approach is that the number of grid cells has to be
specified in correlation with the sliding window or fixed length blocks technique.
With a large interval - large block of DFrames, we have to enlarge the size of grid
cells. Otherwise, there is a possibility that the object detections are out of the
surrounding.
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Figure 3.4: Example of detection comparison with detections in grid

Observation and used methods

During the implementation and testing of the proposed algorithms, we have im-
plemented all of these optimizations. We achieved the best results with a com-
bination of fixed length blocks and position optimization. More about our imple-
mentation can be found in chapter 6.

Unmatched detections

According to configuration, in some cases, the algorithm ends up with detections
that are not connectable enough and do not end up in any trajectory. So a
question arises what shall we do with the leftover detections? The best solution
is to do nothing, and detections do not insert in any trajectories by any strategy
at the current moment. Later in section 5.1, we provide a method to assign the
unmatched detections into trajectories with a different approach. If there is a need
to insert all detections to trajectories at any cost, the best way is not to specify
a threshold for connections in configuration. In that case, usually, all detections
are in trajectories and in the worst-case scenario, the leftover detections form
trajectories together.

3.1.2 Transforming trajectories into trajectories
The TrajectoriesToTrajectories algorithm is designed to merge trajectories and, in
some aspects, is quite similar to the DetectionsToTrajectories algorithm. As the
input, the algorithm receives trajectories and user-defined rules used to construct
classifier.

The algorithm

First, the algorithm by classifier compares all trajectories with each other and
filters out trajectory pairs that are not connectable by provided configuration
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−→ compared. To reduce the number of comparisons, we can also directly skip
pairs where trajectories are not mergeable because of having detections at least in
the same frame. Then the algorithm sorts all comparisons by their connectivity in
descending order −→ sorted and starts building the trajectories. The algorithm
takes out the most connectable pair and processes it according to the state of the
trajectories:

• Trajectories are mergeable.
−→ Merge trajectories in one.

• Trajectories are not mergeable.
−→ Forget this pair and continue with the next one.

Once the algorithm merges two trajectories, it has to take it into account, and
once one of those merged trajectories appears in the pair again, it has to use the
merged one instead. In this way algorithm processes pairs until all of them are
processed3.

Algorithm 3: TrajectoriesToTrajectories
Input: trajectories,classifier
Output: trajectories
merged = {}
compared = []
for t1, t2 in combinations(trajectories) do

if t1 is mergeable with t2 then
connectability = classifier.compare(t1, t2)
compared.add(connectability, t1, t2)

sorted = Sort descending compared by connectability.
while sorted is not empty do

trajectoryA, trajectoryB = sorted.pop()
if trajectoryA is mergeable with trajectoryB then

trajectoryNew = merge trajectoryA with trajectoryB
merged.removeIfExist(trajectoryA)
merged.removeIfExist(trajectoryB)
merged.add(trajectoryNew)
#Since now, in pairs, where appear trajectoryA or trajectoryB
# algorithm use trajectoryNew

trajectories = merged

Complexity reduction

The algorithm has the problem of time complexity growing quadratically, mainly
because of the number of trajectory comparisons. To reduce quadratic complexity,
we propose a solution that reduces the number of compared detections and one
optimization based on the position and location in time of trajectories.

Blocks of fixed length

We can use a similar approach for trajectories as for detections, splitting all the
trajectories into blocks of restricted length −→ block size, but we have to do it
with the account to time location. To illustrate the problem, we have prepared a
few input trajectories, as we see in the picture 3.5.

3In this case, we did not use any technique
to reduce the number of processed pairs, and
we focused on complexity reduction in subsec-
tion 3.1.2
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Figure 3.5: Example input trajectories

Now we divide trajectories into two blocks by their start time, as seen in the
image 3.6. This is a failure because for multiple continuous trajectories, blocks
contain trajectories with detections in the same frames. Then the algorithm
cannot merge any trajectories because they all have detections in the same frames
−→ overlapping.
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Figure 3.6: Trajectories divided into blocks by trajectories time

To avoid this failure, where all trajectories in one block have detections in one
frame and are unmergeable, we have designed the following procedure. The algo-
rithm creates two sorted lists, where one is sorted by the trajectory’s start time
−→ start list and the second list is sorted by its end time −→ end list, as shown
in picture 3.7.
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Figure 3.7: Trajectories divided into blocks by trajectories starts

After that, we can create half −→ first list of the block by taking the
first block size

2 trajectories out from end list and remove these trajectories from
start list. To create a second half−→ second list of the block, we will take
the lowest end time of trajectories from first list and from start list take out
block size

2 the nearest later trajectories. The final block is created by the union of
first list and second list.
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Figure 3.8: Blocks created by new method

Extension In some cases, the end time of the latest trajectory from first list
is higher than the latest start of second list. These trajectories can be directly
removed because they cannot be merged and can be inserted back into start list
and end list.

Algorithm 4: Trajectories blocks
Input: trajectories, block size,classifier
Output: new trajectories
new trajectories = []
blocks = []
start list = Sort trajectories by their start time.
end list = Sort trajectories by their end time.
while start list is not empty do

first list = From end list take out top block size
2 trajectories

start list = start list − first list
lowest endtime = From first list get the lowest end time of all trajectories.
second list = From start list get top block size

2 trajectories, where
start time >= lowest endtime.

end list = end list − second list
if use Extension then

latest starttime = From second list get the latest start time of all
unmergable = From first list remove trajectories, where end time> latest starttime
end list = end list + unmergable
start list = start list + unmergable

new trajectories+ = T rajectoriesT oT rajectories([start list + second list], classifier)
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Position optimization

To optimize the number of comparisons, we can split all trajectories into a grid
and compare only trajectories with trajectories from the nearest cells, as we did
for the detections. However, the trajectories are a bit more complicated because
they usually start at one cell and end at another. Thus the alghorithm is altered.

The algorithm splits a frame into a grid and, for each cell, creates two lists of
trajectories.

• start list - List of all trajectories starting in this cell.

• end list - List of all trajectories ending in this cell.

Once we have all trajectories prepared in the grid’s lists, we can finally gen-
erate comparisons. For each trajectory −→ compared, the algorithm selects a
starting cell and takes trajectories ending there and in the nearest cells, as well
as ending before start time of compared. For selected trajectories then generates
a comparison with compared.

The detail, that the algorithm is finding trajectories endings in the surround-
ing is crucial, because for the algorithm is more efficient to select from already
generated and ended trajectories −→ searching in the history than in the future.
In the opposite direction, the correct trajectory, can be still not generated.

Figure 3.9: Grid comparison for one trajectory

Observation and used methods

During the implementation and testing of the proposed algorithms, we imple-
mented all of these optimizations, but in the end, we are using only the position
optimization. More about our implementation and code can be found in chapter
6.

3.2 The algorithm flow
In this section, we present the architecture of the whole clustering flow. The
processing of all detections from video into complete trajectories.
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3.2.1 Clustering tree
When we have already defined basic algorithms, it is time to put them together
and create a flow that generates complete trajectories. To generate complete tra-
jectories, using algorithms defined in section 3.1 exist a lot of possible approaches.
Each approach has different advantages and disadvantages, and we want to cover
as many approaches as possible. Thus, we first designed a few possible approaches
and, based on them, designed an algorithm capable of covering them all.

Possible approaches

The approaches are based on the quality of detections and the quality of the
classifiers. To illustrate at least some of them, we came up with the following
approaches:

Gradual clustering Gradual clustering is the approach where small trajecto-
ries are created in short intervals, and the interval is doubled in each round of clus-
tering. The advantage of this approach is that compared trajectories/detections
are close in time and space. The disadvantage of this approach is a need for
multiple clustering layers, as shown in the picture 3.10, which worsens the time
complexity.

clustering-4

clustering-3clustering-3

clustering-2clustering-2 clustering-2 clustering-2

clustering-1clustering-1clustering-1clustering-1clustering-1clustering-1clustering-1

MISSING
DETECTIONS

Figure 3.10: All possible sub-trajectories created by Gradual clustering

Bearing strategy The second approach is based on bearing trajectory, where
the algorithm creates trajectories across the large part of the video and small
trajectories locally. Later the algorithm just merges the large trajectories with
the local ones. The expected advantage of this approach is the reduction of
used layers, and the disadvantage is the need for accurate classifiers, working
precisely on detections in a large interval, as we can see in the illustration picture
3.11.
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Figure 3.11: Sub-trajectories created by Bearing strategy

Tree structure

To support both approaches and even more, we are defining clustering as a tree
structure. The tree structure is user-defined in the configuration, and each node
contains parameters for evaluation(for classifier). In our structure, are only two
types of nodes:

• DetectionsToTrajectorie −→ leaves
−→ input detections
−→ output trajectories

• TrajectoriesToTrajectories—
−→ input trajectories
−→ output trajectories

The processing of the tree is done by evaluation from root, represented as a
function TreeEvaluation(detections, tree), as shown in the pseudocode 5.

First, each node evaluated all children and generated trajectories inserted into
children trajectories. In the end, evaluates itself, whereas input uses
children trajectories. The leaf directly evaluates itself with provided detections
as input.

Algorithm 5: TreeEvaluation(detections,tree)
Input: detections, tree
Output: trajectories
if tree is Leaf then

classifier = tree.classifier
trajectories = With classifier run DetectionsT oT rajectorie over detections

else
children trajectories = []
for child in tree.children do

children trajectories+ = T reeEvaluation(detections, child)
classifier = tree.classifier
trajectories = With classifier run T rajectorieT oT rajectorie over children trajectories

return trajectores
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The node implementation In our implementation, we have implemented a
few cases of nodes. The key ones, as described in this chapter and the developer-
oriented ones.

• Key nodes:

– DetectionsToTrajectorie as defined in subsection 3.1.2
– TrajectoriesToTrajectories as defined in subsection 3.1.1
– TrajectoryGetter - node responsible for merging of trajectories, with

shared detections as mentioned in subsection 3.1.1.

• The developer nodes:

– TrajectoryLoader - Loading already generated trajectories from the
database, to avoid re-running of the whole sub-tree.

– TrajectoryTransformer - The place where can developers directly test
a new methods and develop new ways how to cluster detections and
trajectories.

3.2.2 The database stream
In the end, we have to consider variants, where the detections are loaded from the
database, and final trajectories are stored in the database as well. This is usually
used in cases of large videos or streams where we cannot have all detections for
a single video in local memory. Thus, we have to load only a restricted amount
of consecutive DFrames and process them into partial trajectories.

Load

The algorithm loads the first block size of DFrames from the database. Where
the block size is a user-defined value defining the maximal number of DFrames
that can be loaded from the database at once. Once DFrames are loaded, the
program can transform their detections with TreeEvaluation(detections, tree),
where the tree is loaded from configuration, into trajectories. These generated
trajectories are not finished yet, because they overlap with the following DFrames.
Thus, program stores these trajectories in local memory −→ dose, marks them
with the order number and repeats the whole process.

Merge and store

Once there are at least two4 dose of trajectories in local memory, generated
by previous step, the program can merge those two dose trajectories with the
algorithm TrajectoriesToTrajectories. After this step, we can distinguish two
types of newly generated trajectories:

• overlapping trajectories - Trajectories that are partially constructed from
trajectories from the latest dose.

4In fact, the algorithm can be easily altered
to wait and process more than two generations.
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• complete trajectories - Trajectories not constructed from the latest dose.

After this, the algorithm can store all the complete trajectories in a database,
and the overlapping trajectories keep in the latest dose.

Algorithm 6: processing a video stream
Input: conf
latestDose = []
while exist following block of DFrames do

latestDF rames = Load DFrames from the database.
detections =Get detections from latestDF rames
dose = T reeEvaluation(detections, conf.tree)
if latestDose is not empty then

allT rajectories = latestDose + dose
newT rajectories = T rajectoriesT oT rajectories(allT rajectories, conf.classifier)
overlapping = trajectories from newT rajectories at least partially from dose
complete =newT rajectories \ overlapping
Store complete into the database.
latestDose = overlapping

else
latestDose = dose

Store latestDose into the database.
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4. Features extraction and
connectivity
In this chapter, we will focus on how to evaluate if two detections or trajecto-
ries belong to the same object. To achieve that, we will, for both detections
and trajectories, define procedures of feature extraction, methods to measure the
feature-connectivity based on extracted features, and methods to measure the
connectivity based on the feature-connectivity of multiple features, as can be
seen in the illustration picture 4.1. The output of this chapter is used for sort-
ing pairs of detections or trajectories and can be seen in the previous chapter in
section 3.1.

First of all, in section 4.1, we will define basic terminology, introduce methods
for extracting features of detections and trajectories, and determine if they be-
long to the same object. For simplicity, the unit1 responsible for extracting and
comparing single features, we will call comparator.

In section 4.2, we describe the algorithm to evaluate all features and introduce
methods for reducing the vector of features-connectivity generated by multiple
comparators into a single connectivity value. We will call the unit responsible
for this classifier.

4.1 Features extraction & feature-connectivity
The purpose of measuring the detections and trajectories feature-connectivity is
to define if or how well two detections or two trajectories are addable/mergeable,
ergo, if they are two detections or two trajectories of the same object. Be aware
that the feature-connectivity is not the same as similarity, even though, in some
cases, they are measured similarly. This section will introduce features we iden-
tified as usable for this purpose and used methods.

4.1.1 Basic terminology and expectations
First, we will define the terminology used in this chapter and describe the generic
procedure of extracting features.
Definition 7. Detectionfeature represents the detection’s feature/property, such
as the object’s size, histogram or position in the video. Feature extraction for
detection is a projection from a single detection into a vector of real values.
df(d) −→ Rn; d ∈ detections

Definition 8. Trajectoryfeature represents trajectory feature/property, such as
the direction or speed of an object. Feature extraction for a trajectory is a
projection from a single trajectory (set of detections) into a vector of real values.
tf(t) −→ Rn; t ∈ trajectories

Definition 9. feature-connectivity, or shortly fconnectivity, is a single value
representing the possibility that two detections or trajectories represent the same

1In our code, is this unit represented by a class.
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Figure 4.1: Illustrated flow of measuring pair connectivity

object based on one feature. The evaluation of feature-connectivity is then trans-
formation of two detection/trajectory features into a single value in the range
⟨0, 1⟩. For detections:
dfc(df(d1), df(d2)) −→ ⟨0, 1⟩; d1, d2 ∈ detections
For trajectories:
tfc(tf(t1), tf(t2)) −→ ⟨0, 1⟩; t1, t2 ∈ trajectories
Where the boundaries identify:

• fconnectivity = 1 - Highly probable2 that, based on feature, belongs to the
same object.

• fconnectivity = 0 - detections/trajectories do not belong to the same ob-
ject.

Mapping When transforming features into feature-connectivity, we often need
to map the feature-connectivity value from one range to another. To describe it,
we will use the notation

fconnectivity = map(original range, new range, value)

where value is from original range, that we want to transform into new range.

Structure

The structure of the following subsections describes a single comparator, which
means identifying features, determining how to extract features from data and
using the extracted feature to measure feature-connectivity. From a programmer’s
point of view, we can look at the following sections as on a function, accepting
pair of detections or trajectories and returning a feature-connectivity value.

To help with orientation, we can divide comparators on multiple levels:
2Even though the feature-connectivity is

1, it does not mean that the detec-
tions/trajectories belong to the same object.

For example, by the histogram, there can ex-
ist detections of identical cars, which doesn’t
mean, there are not two of them.
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Input Not all the features can be measured on detections. Thus some of the
features are defined and compared only for trajectories, but all the compared
features for detections can also be used for trajectories. A typical example is
speed or direction.

Output feature-connectivity The feature-connectivity can be divided into a
few groups by returned values.

• Binary decision - objects are connectable or not, nothing between.

• The list of fixed values - detections or trajectories can be only in limited
states.

• The whole range ⟨0, 1⟩

Parameters

During the evaluation of the feature-connectivity, the algorithm uses user-defined
parameters provided in the configuration. The parameters usually contain the
following values depending on the context, such as:

• tolerance - The difference between compared features that can be ignored

• max difference - The maximal difference between compared features to
be connectable (return value > 0)

• min connectivity - The minimal value of feature-connectivity that can be
returned3

• treshold - The minimally acceptable feature-connectivity. Once feature-
connectivity is generated below, the comparator returns 0

But in general, we are not restricting parameters for comparators, and the user
creating the configuration can provide whatever they need.

4.1.2 Shape
We can identify the shape for pairs of detections, especially height and width. In
our scope, the width and height are included in the information for each detection.
The idea of this comparator is that the objects are not changing their real size
during the movement, even though the object is changing its detected size, for
example, because of moving toward the camera.

Width and height for trajectories

The comparator uses the direct detected width and height for detections, whereas
for trajectories, we have to decide how to obtain width and height. We focused
on two possibilities:

• Compare the nearest detections of trajectories in time.
3In some cases, where we are not sure about

used feature-connectivity, it is handy to be able
to set a non-zero value as a minimal feature-
connectivity to avoid a pair exclusion.
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• Compare the nearest detections of trajectories in space.

Where each method has a different advantage.

Time distance Getting the nearest detections in time can be easily achieved
because there can be only two cases. In cases where trajectories do not overlap
the comparator can use the end of the earlier trajectory and the start of the
later trajectory. In cases where trajectories overlap the comparator can use two
detections from overlapped detections.

Space distance For space, the comparator has to find the nearest tuple of
detections, which can be time-consuming. As an advantage, the comparison is
more precise because the objects are in the nearest possible position relative to
the camera.

Average dimensions Average width and height usage is a bad idea. Imagine
a scenario where the object is walking from the camera. Thus, in the beginning,
the object detection is n times bigger than at the end of the trajectory. The
average shape of the trajectory would be the same as the centre of the trajectory.

Width and height into feature-connectivity

Our approach to comparing the shapes is once the comparator has two dimen-
sions to compare, the comparator will compare dimensions and multiply the ra-
tios. compared width = min(width 1, width 2)/max(width 1, width 2) ∈ ⟨0, 1⟩
compared heights = min(height 1, height 2)/max(height 1, height 2) ∈ ⟨0, 1⟩
compared ration = compared width ∗ compared heights ∈ ⟨0, 1⟩

The compared ration we can directly use as feature-connectivity, or we can
define a minimal minimal ration −→ the minimal possible value to use and then
fconnectivity = map([minimal ration, 1], ⟨0, 1⟩, compared ration).

4.1.3 Direction
For trajectories, we can determine the direction of the tracked object, compare the
directions of two trajectories, and check if they are aiming in the same direction.

Direction measurement

We must remember that the object of trajectory is freely moving and changing
direction. Thus, we cannot simply measure the trajectory as a whole. Our
approach determines for each trajectory multiple directions. Mainly measures
the direction of a whole trajectory −→ main direction and of the starting−→
start direction and ending −→ end direction detections as we can see in the
picture 4.2 and as proposed in the pseudocode 7.
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Algorithm 7: directions of trajectory
Input: trajectory,subtraj size
Output: main vector,start vector,end vector
sorted detections =sort detections from trajectory by timestamp
first detection = sorted detections[0]]
last detection = sorted detections[−1]]
main vector = [
last detection.center x − first detection.center x,
last detection.center y − first detection.center y
]
if sorted detections >= subtraj size then

start detection = sorted detections[subtraj size]]
end detection = sorted detections[−subtraj size]]
start vector = [
start detection.center x − first detection.center x,
start detection.center y − first detection.center y
]
end vector = [
last detection.center x − end detection.center x,
last detection.center y − end detection.center y
]

else
start vector = main vector
end vector = main vector

return main vector, start vector, end vector
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Figure 4.2: Example of trajectories with directions

Directions to feature-connectivity

Once we have identified directions for trajectories, we can compare two trajecto-
ries. Where can we use to compare from early starting trajectory
[main direction, end direction] with [main direction, start direction] for later
trajectory. As a result, we take the smallest difference.

To transform the difference into a feature-connectivity, algorithm use the user-
defined boundaries:

• difference ∈ [0, tolerance] −→ fconnectivity = 1
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• difference ∈ [tolerance, max difference] −→ fconnectivity =
map([tolerance, max difference], [1, min connectivity], difference).

• difference ∈ [max difference, inf ] −→
fconnectivity = min connectivity

In this comparator, we used min connectivity value to avoid assigning 0 because,
in observations, we noticed that some object trajectories movement were mean-
ingless, for example, a man waiting on a tram walking in a spiral. Still, in general,
this comparator is quite handy for cases where multiple trajectories are crossing
over.

4.1.4 Category
Some of the detectors provide for each detection classification into categories such
as [PERSON, CAR, TRUCK, TRAM, BICY CLE, ...]. These categories can be
used to measure feature-connectivity as well.

Category extraction

This comparator is designed for datasets with a category for each detection.
Thus, for detection, we know the category and for trajectories, we use the most
occurred category in trajectory.

Categories into feature-connectivity

The comparator extracts a category for both detections/trajectories
−→ category A, category B. Then the approach to generate feature-connectivity
differs in detector-provided categories.

Simple categories In cases where the detector classifies detections only on
basic categories with no risk of category mismatch such as
[PERSON, V EHICLE, TRAIN, ...], the feature-connectivity is split into two
cases:

• category A ̸= category B −→ fconnectivity = 0

• category A = category B −→ fconnectivity = 1

Structured categories In cases where the detector classifies detections into
somehow structured categories, where is a risk of category mismatch, such as
[PERSON, CAR, TRUCK, TRACTOR, TRAIN, TRAM, ...],
the feature-connectivity has to be adapted to a classification error. For ex-
ample, on tested data, it was common for small trucks to receive a category
CAR or TRUCK. Thus, we identified a set of classes that are often mis-
taken−→ mistaken categories and tuples from mistaken categories has feature-
connectivity lowered by penalization in(0, 1⟩.

• category A = category B −→ fconnectivity = 0

• category A, category B ∈ mistaken −→ fconnectivity = 1− penalization

• category A ̸= category B −→ fconnectivity = 0
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4.1.5 Timestamps
We can define a binary comparator for trajectories that verifies that trajectories
are mergeable −→ have no detection with the same timestamps.

Timestamps into feature-connectivity

Each detection has a timestamp. Thus, to obtain timestamps of trajectory,
the comparator simply extracts a set of its timestamps. To evaluate feature-
connectivity, the comparator then, by definition 4, verifies that trajectories have
an empty intersection.

• trajectories have an empty intersection −→ fconnectivity = 1

• otherwise −→ fconnectivity = 0

4.1.6 Speed
For trajectories, we can measure the speed of the tracked object and later compare
the speed of two trajectories and check if the speed of both objects was similar
or, as described below, use the measured speed for distance comparison.

Speed measurement

There are multiple ways how to measure the speed of trajectory, but we have to
avoid distortion caused by object randomness. First of all, we have to keep in
mind that the object of trajectory is freely moving. Thus, we cannot measure the
trajectory as a whole, but, to eliminate the distortion, we have to divide the tra-
jectory into parts. On the other hand, we do not need the speed to be absolutely
precise. Thus we can divide a trajectory into blocks and measure the speed by
blocks. The measuring:

For each block of detections, the comparator chooses the first −→ first d and
the last−→ last d detection and, using them, computes the speed of the block.
time difference = last d.timestamp− first d.timestamp
To measure the distance compactor, use the Euclidean distance.
distance pixels =

√︂
(last d.x− first d.x)2 + (last d.y − first d.y)2

speed pxs = distance pixels/time difference
The disadvantage of this approach is that the object’s speed depends on the

position relative to the camera. Thus, instead of distance in pixels, we have used
distance relative to the object size, where distance in pixels is divided by a bigger
dimension of the average dimension of the block.

The average width of measured block −→ avg width and average height of
measured block −→ avg height.
distance object size = distance pixels/max(avg width, avg height))
speed object size = distance object size/time difference

Speed to feature-connectivity

Once the comparator measures the speed of each block, there is a need to choose
the type of speed to compare, such as an average speed, median speed, maximal
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speed and so on. Our comparator selects the fastest one because, from obser-
vations, most of the objects during their movement were moving at a constant
speed, their maximal speed that reaches or slows down to stand.

The feature-connectivity is determined as the ratio of the fastest speeds of
two trajectories −→ fastest speed A, fastest speed B
compared ration = min(fastest speed A,fastest speed B)

max(fastest speed A,fastest speed B)
The compared ration then comparator directly use as fconnectivity, or use value
map([min speed ratio, 1], [min connectivity, 1], compared ration).

Speed observation

During the testing of this comparators, we observed that this comparator is use-
ful for moving objects and surrounding where objects are moving most of the time
but quite useless for not moving objects. Thus, we are not using this comparator.
However, based on this comparator, we based the following approach in subsec-
tion 4.1.7 using a distance of two objects.

4.1.7 Position
Each detection has a determined space position in a video, and we can use it to
measure the distance.

Distance

For every two positions, we can measure the distance in pixels with
Euclidean distance −→ d(p, q) =

√︂
(p− q)2 =

√︂
[∑︁n

i=1(pi − qi)2]

To obtain a distance for two detections the algorithm takes their positions
and calculates distance, but for trajectories, the algorithm has to use a different
approach. In simple cases, where trajectories are consecutive, we can measure
the distance between the end of the first trajectory and the start of the second
trajectory. But as mentioned before, the algorithm must be capable of covering
cases where trajectories overlap in time.

To measure the distance of overlapping trajectories, we can use some of the
existing algorithms, but the problem with those algorithms is time complexity.
In our case, we need only the distance of two points of trajectories because of the
feature-connectivity of space overlapping and complex situations we are measur-
ing in subsection 4.1.8. Thus, we can measure, for example, the distance from the
start of the second trajectory to the end of the first one or any other significant
points in the overlapping parts.

Distance to feature-connectivity

Once we have a distance, the next step is to transform the distance into a feature-
connectivity.

The basic approach is to create a mapping of the distance into ⟨0, 1⟩. For
example:

• distance ∈ [0, min distance] −→ fconnectivity = 1
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• distance ∈ [min distance, max distance] −→
fconnectivity = map([min distance, max distance], [1, 0], distance)

• distance ∈ [max distance, inf ] −→ fconnectivity = 0

The disadvantage of this approach is that we have to define distance limits,
and it does not consider time. Thus, in case of missing detections, the feature-
connectivity can be distorted. To take the time into account, we have extended
this approach in the following method in subsection 4.1.7.

Distance and speed to feature-connectivity

To measure the feature-connectivity, taking into account the time, we altered
the previous method, and instead of measuring the distance, we measured the
required speed to move the object from one position in a second using the shortest
possible way −→ required speed, where the speed measurement can be seen in
the previous comparator in subsection 4.1.6.

To transform the needed speed into feature-connectivity for trajectories, we
can measure the speed of both compared trajectories and use the faster one as a
limit trajectory speed = max(trajectory1 speed, trajectory2 speed).

Then transform the needed speed into ⟨0, 1⟩ in a similar way as for distance.
By user-defined values, we will set boundaries such as
tolerated = trajectory speed ∗ tolerance, where tolerance defines a tolerance
ratio, and max limit = trajectory speed ∗max ratio.

• required speed ∈ [0, tolerated] −→ fconnectivity = 1

• required speed ∈ [tolerated, max limit]
−→ fconnectivity = map([tolerated, max limit], [1, 0], distance)

• required speed ∈ [max limit, inf ] −→ fconnectivity = 0

Detections Since the detections have nothing like speed, we must determine a
value representing a possible speed to use a similar approach for detection feature-
connectivity. In our implementation, we measured the speed for a few trajectories
and used it as an expected speed.

4.1.8 Trajectory position
Once we have generated larger and more complex trajectories, we can more ex-
haustively compare their time and space positions. This comparator is quite
complex and uses generated features like direction and speed. Thus, it is better
to use it on higher clustering levels after reducing the number of trajectories.

The result of this comparator is binary:

• trajectories are connectable by space conditions −→ fconnectivity = 1

• otherwise −→ fconnectivity = 0
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Figure 4.3: Trajectories compared by overlapped space

Trajectory curve

As the trajectory is defined - a set of detections, it represents a 3D curve with
axis time, position x, position y, where each detection represents a single point.
We can use it and, based on position, measure the trajectory feature-connectivity.

Time overlapped trajectories

In cases where trajectories are overlapped in time, the comparator verifies if the
trajectories are also space overlapped. This means that all detections of one
trajectory, in shared time, are present in the buffered area of the other trajectory,
as shown in the picture 4.3.

To implement this measurement, we use a first trajectory to create a
tolerated area - area where the overlapped detections have to belong. Then
the comparator extracts the overlapped detections −→ overlapped from the
second trajectory. To mark these two trajectories as connectable, each of the
overlapped detections has to be in tolerated area. There are several approaches
to evaluating if overlapped detections are in the area. In our case, we have used
an existing library for space arithmetic, and around tolerated area created a
buffered area−→ buffered area. Then used, a library method that verifies that
the overlapped detections belongs to buffered area.

• all overlapped detections belongs to buffered area −→ fconnectivity = 1

• otherwise −→ fconnectivity = 0

Time consecutive trajectories

In cases where trajectories are not overlapped in time, one trajectory ends before
the second starts. The comparator verifies if the key point of one trajectory
belongs to the expected area of the second one.

To achieve this measurement, we differ first trajectory - earlier trajectory
and second trajectory - later trajectory. The comparator then for
first trajectory creates space area −→ end cone, where expects the beginning of
the second trajectory, its first detection−→ start detection. Comparator then
verifies if start detection is spatially present in end cone. The same approach is
applied in the opposite direction, as shown in the picture 4.4. If at least one of
the conditions is fulfilled, trajectories are connectable. Otherwise, not.

To evaluate this comparator , we have once again used an existing library for
space arithmetic.
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• start detection ∈ end cone ∨ end detection ∈ start cone
−→ fconnectivity = 1

• otherwise −→ fconnectivity = 0

Extension for missing detections Thanks to missing detections, this method
can exclude trajectories with sharp turns. Thus, in cases where trajectories are
marked as unconnectable, to avoid problems with missing detections, we can
measure the intersection of the end cones and, as feature-connectivity, return the
intersection or some minimal value.

4.1.9 Image crop
The cropped image is one of the most useful features because it gives us visual
information about detections or trajectories. A human being could probably
create trajectories just based on the cropped images. We use cropped images to
compare the colour similarity of two detections or trajectories.

Histogram

The best approach we came up with is to extract a histogram for cropped im-
ages. There are many ways to extract histograms, precisely analysed in other
works[1][6][30][19]. Thus, we will rather focus on methods for getting histograms
for trajectory, where are multiple images and we have to select which compare.

There are many possible ways to choose, which detections of trajectory to
use, and all of them are valid, but bring different advantages and disadvantages.
Thus we will describe a chain of decision that we use to define our approach.
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All detections Theoretically, we could compare all detections, but it would be
too slow. Thus, we have to reduce to use of only a subset of detections. One of
the approaches could be to construct a single histogram from all detections of a
trajectory, but this approach has a problem because it reduces the uniqueness of
the object too much and creates histograms similar for many objects.

The nearest detections The next approach is similar, as we used for other
features, it is to pick from trajectories the nearest detections in time or space. The
great advantage is the similarity of the method and the fact that we are comparing
only two detections. The disadvantage is that in cases where trajectories are on
the point of light change. For example, when someone walks out of the shade or
behind another object. Thus, our approach to reducing the impact of this is to,
together with the nearest detections, always use a second pair of detections, for
example, from the middle of the trajectory or a random one.

Extension of histograms

With generated cropped images, there is a problem in that images contain objects
and the surroundings. Thus, the histogram is distorted and we could end up in a
situation where the histogram represents the surroundings more than the object.
To minimize this problem, there are several solutions with different complexity.

• Instead of the full image crop, use only the central part.
−→ for example cut off 15% from each side of the image crop

• weighted histogram, where the most valuable information is in the centre.

• Use a method to obtain an object silhouette and use only the object.4

Histogram to feature-connectivity

To compare histograms, it pairs of images, we used a method implementing
Pearson correlation coefficient. For a pair of detections, the comparator di-
rectly compares the detection’s histograms −→ compared similarity. For pairs
of trajectories, the comparator compares the defined pairs of histograms. In our
case, compares histograms of the nearest detections −→ nearest similarity and
of the middle detections−→ middle similarity. Then as compared similarity is
used max(nearest similarity, middle similarity) or alternatively

max(nearest similarity, avg(nearest similarity, middle similarity))

to take into account position. Where as feature-connectivity is then used, a result
of a comparison −→ compared similarity or the mapping
fconnectivity = map(⟨minimal similarity, 1⟩, ⟨0, 1⟩, compared similarity).

4This approach makes sense when the pre-
computed silhouettes are in detection informa-
tion.
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4.1.10 Comparators in context
Be aware that the used comparators have to be compatible with used optimiza-
tions. For example, in cases where the number of comparisons is reduced with
position optimization, as described in subsection 3.1.1, it is necessary to consider
it while using position features.

Cached features

During this section, we have introduced many features, some of which need a
not trivial time to be computed. To reduce time complexity, all the computed
features should be cached. Thus, each feature is computed at most once.

4.2 Connectivity based on feature-connectivity
Once we have feature-connectivity for all features we are interested in, we need
to classify the vector of feature-connectivity into a single number, as can be seen
in the picture 4.5.
Definition 10. Classification is mapping the feature-connectivities of multiple
features into a single value. classification(⟨0, 1⟩n) −→ ⟨0, 1⟩ where

v ∈ ⟨0, 1⟩nclassification(v) =
{︄

0, ∃x ∈ v; x = 0
c ∈ ⟨0, 1⟩, otherwise

}︄

FEATURES
CONNECTIVITY

DIRECTION
~0,79

HISTOGRAM
~0,85

SHAPE
~0.97

POSITION
~0,84

CLASSIFICATION CONNECTIVITY

~0,83

Figure 4.5: Transformation of feature-connectivity into connectivity

4.2.1 Classification methods
There exist a lot of approaches on how to implement a classifier. During our
work, we have implemented and tested a few of them, and here we would like
to describe their connection with features. For all the methods below, apply the
rules. Thus, If any feature-connectivity equals zero, the connectivity is zero.

The average value

One of the basic approaches is to classify the vectors using an average value.
Classification(v) =

∑︁n
i=1(vi)

n
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The minimal value

To classify the vector, we can use the minimal value. Which gives us minimal
feature-connectivity in vector.
Classification(v) = min(v)

The maximal value

To classify the vector, we can use the maximal value. Which gives us maximal
feature-connectivity in vector.
Classification(v) = max(v)
This approach is quite useless while using binary comparators because
the classifier would end up every time with the connectivity = 1.

The product value

One of the approaches is to use the product of the vector.
Classification(v) =

n∏︂
i=1

(vi)

This approach is great when we are sure about the feature-connectivity methods,
but in some cases, the low feature-connectivity of one feature eliminates the
potentially good result.

The weighted arithmetic mean value

To classify the vector, we can use the weighted arithmetic mean value.

Classification(v) =
⌜⃓⃓⎷[

n∑︂
i=1

(vi)]

The problem with this approach is how to determine the weights.

Observation

In our implementation, we have tested all the methods above, and the average
value is the most practical for our use.

4.2.2 Connectivity evaluation
Once we have defined methods for the whole chain, we can propose an algorithm
to generate a feature-connectivity for a pair of detections or trajectories. The
algorithm is universal for detections and trajectories. For simplicity, we will de-
scribe the algorithm for detections, but the algorithm also works for trajectories.

Evaluation of classifier

The algorithm as an input accepts a pair of detections to generate connectivity
for −→ pair, list of comparators −→ comparators list, and one of the classi-
fication methods −→ connectivity method. In a straight form algorithm, for a
pair with each comparator from comparators list generates feature-connectivity
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−→ features connectivity vector, and then with connectivity method transform
generated features connectivity vector in connectivity.

Optimisation To optimise evaluation, we use the fact that none of the feature-
connectivity can equal zero. Thus, once the algorithm, for the pair, receives
feature-connectivity = 0, the rest of the features is irrelevant and
the connectivity = 0.

User-side optimisation The user defining the configuration can sort
the comparators in a way where the most eliminative comparators are on the
front positions and prevent evaluation of the following comparators. For example,
the class comparator is quite useful as a first comparator because it directly
eliminates interclass comparing.

Algorithm 8: classifier.compare(args)
Input: pair,comparators list,connectivity method
Output: connectivity
features connectivity vector = []
for comparator in comparators list do

feature-connectivity = With comparator evaluate connectivity of pair.
if feature-connectivity == 0 then

return 0
features connectivity vector+ = feature-connectivity

total connectivity =With connectivity method evaluate connectivity of list connectivity.
return total connectivity
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5. Interdetections and Trajectory
descriptors
In this chapter, we will describe the usage of generated trajectories. The first
usage is generating of missing detections by interpolating trajectories. The second
one is to generate a semantic description of trajectories.

5.1 Interpolated detections
As described in the introduction, the detections we use for trajectory generat-
ing are incomplete. It is common that object in video is not detected in each
frame and has missing detections. Thus, we have decided to use the generated
trajectories and, based on them, generate the missing detections. To generate a
missing detection, we will use interpolation. Thus, the detections generated by
this method will be called interdetections. Each interdetection contains the same
information as detection, plus the information about the trajectory it was based
on. Interdetections can be used to retrain the original model or to smooth the
trajectories. The disadvantage of this approach is, that the quality of generated
interdetections is directly tied up with the quality of trajectories.

5.1.1 Interdetection generating
As input, the algorithm will use the original video, all detected detections and the
generated trajectories for the video. The output of this process is interdetections,
representing missing detections of objects in the video.

As we know, the object tracked by trajectory must always exist and cannot
disappear. Thus, we know that the object is in the video but not detected. The
reasons, which we can see in the picture 5.1, why the object is not detected can
be the following:

• Object is, for a moment, out of the camera.

• Object is behind another object.

• Error of the detector.
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Figure 5.1: Undetected objects

In this scope, we will not target finding out the reason why the object is not
detected and we will focus only on generating detections of the object in each
frame −→ interdetections.

5.1.2 Interpolating trajectories
The algorithm to generate interdetections starts with extracting timestamps for
each frame −→ all timestamps from the video. Then we can determine, for each
trajectory, timestamps of missing detections between trajectory start time and
end time.

For each trajectory T , we can distinguish two lists of time stamps

• present timestamps = {d.timestamp|d ∈ T}

• missing timestamps = {t|t ∈ all timestamps \ present timestamps
∧ T.strat time < t ∧ t < T.end time}

And create a mapping for each attribute that algorithm needs to interpolate:

• trajectory center x = {(t.timestamp, t.center x)|t ∈ T}

• trajectory center y = {(t.timestamp, t.center y)|t ∈ T}

• trajectory width = {(t.timestamp, t.width)|t ∈ T}

• trajectory height = {(t.timestamp, t.height)|t ∈ T}

Now the algorithm, thanks to this data, generates for each attribute an inter-
polation function and over missing timestamp interpolates all attributes. For
each foursome of interpolated attributes, we create interdetection, and once we
have all trajectories processed, the algorithm can playthrough the video and gen-
erate image crops of interdetections as shown in the algorithm 9.

44



Algorithm 9: Interdetections from trajectories
Input: video, trajectories, detections
Output: interdetections
interdetections = []
all timestamps = Get all timestamps from the video.
for T in trajectories do

present timestamps = {t.timestamp|t ∈ T }
missing timestamps = {t.timestamp|t ∈ all timestamps \ present timestamps

∧ T.strat time < t ∧ t < T.end time}

interpolation center x = Create interpolation of {(t.timestamp, t.center x)|t ∈ T }

interpolation center y = Create interpolation of {(t.timestamp, t.center y)|t ∈ T }

interpolation width = Create interpolation of {(t.timestamp, t.width)|t ∈ T }

interpolation height = Create interpolation of {(t.timestamp, t.height)|t ∈ T }

for f in missing timestamps do
new interdetection =Create a new interdetection where:

center x = interpolation center x(f)
center y = interpolation center yt(f)
width = interpolation width(f)
height = interpolation height(f)
trajectory = T
timestamp = f
image crop = UNDEF INED

Add new interdetection into interdetections

for frame in video do
for interdetection in interdetections;
where interdetection.timestamp == frame.timestap do

interdetection.image crop = From frame crop(center x, center y, width, height) image

5.1.3 Interdetections to detections
As mentioned during the clustering of detections into trajectories, in the sub-
section 3.1.1, sometimes there are some leftover detections that are un-addable
into any trajectory with the clustering algorithm and we mentioned that the best
approach is not to assign them anywhere yet. The reason why they are not con-
nectable can be various, but thanks to the interdetections, we can fix it and try
to assign them into trajectories.

Matching detections with interdetections

To assign unmatched detections into trajectories, the algorithm will use all un-
matched detections −→ unmatched and generated
interdetections−→ all interdetections for a single video.

To optimise the time complexity, the algorithm focuses only on frames with
unmatched detections, frames = {u.timestamp|u ∈ unmatched}. Thus, the
algorithm will sort all interdetections into
interdetections = {r|r ∈ all interdetections; r.timestamp ∈ frames}

Then the algorithm will, in each frame, compare the areas of unmatched with
interdetections and if the best overlaying interdetection meets the conditions, for
example, overlay between unmatched and interdetection is >= 90% of area −→
overlay boundary, the algorithm marks them as identical. Then we can delete
newly created interdetection and the original detection insert into a trajectory.
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Algorithm 10: Matching unmatched detections
Input: all interdetections, unmatched, overlay boundary
frames = {u.timestamp|u ∈ unmatched}
interdetections = {r|r ∈ all interdetections; r.timestamp ∈ frames}
for f in frames do

current interdetections = {r|r ∈ interdetections; r.timestamp = f}
current unmatched = {u|u ∈ unmatched; u.timestamp = f}
for unmatched in current unmatched do

interdetection = From current interdetections get with best overlay with unmatcheded.
if interdetection overlay unmatch >= overlay boundary then

Remove interdetection from current interdetections
Insert unmatched into interdetection.T rajectory
Delete interdetection.

5.1.4 Future work on this field
The interdetections give us a new space to research and develop. Thus, we have
come up with a few ideas on how to interdetections extend and use in future
work.

Visibility of interdetections Firstly, we would like to extend interdetections
with flag information why the object wasn’t detected in the first place.

Trajectory exterpolation Some of the trajectories end up in the middle of
nowhere. It can be caused by a lack of detection and the trajectory is incomplete,
or the object left the view, for example, entering the building. For the first cause,
we would like to create an algorithm for trajectory extrapolation.

5.2 Trajectory descriptors
To make generated trajectories searchable, we have decided to generate, for each
trajectory, a simple semantic description presenting its movement. However, the
description analysis and the searching in trajectories are not a topic of this work.
This section presents only a foundation for future descriptions.

5.2.1 Describing steps
First, we must realize that we cannot describe a whole trajectory by a single
value. Thus, the algorithm will split the trajectory into sub-trajectories of the
consecutive detections, generate its attributes, and classify them as a type of
movement.

Once we have classified each sub-trajectory, we can merge them into longer
sub-trajectories and create by them the description. As a result, we would like to
receive for each trajectory a sequence of its actions, for example, as we can see in
the picture 5.2, speed classification = [run, walk]; direction classification =
[straight, left, straight, right, straight].
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Figure 5.2: Trajectory described by speed and direction

Sub-trajectories

There are a lot of methods for splitting a complete trajectory into sub-trajectories,
and those methods influence the result. We have designed three methods to use
and described their pros and cons. One of the key features of generated trajec-
tories is that the algorithm can use the detections or uses detections and inter-
detections, which change the generated results. An example of input trajectory
with interdetections and without interdetections can be seen in figure 5.3.

MISSING
DETECTIONS

MISSING
DETECTIONS

(a) trajectory (b) trajectory with interdetections

Figure 5.3: Example of trajectory

Sub-trajectories of fixed time The first idea is to split trajectories into sub-
trajectories of fixed duration. This method is easy to implement, but missing
detections cause the problem because holes can occur in the trajectory without
detections. Therefore, it is better to use detections and interdetections, as we can
see in the picture 5.4.

MISSING
DETECTIONS

MISSING
DETECTIONS

(a) trajectory (b) trajectory with interdetections

Figure 5.4: Sub-trajectories of fixed time

Sub-trajectories of fixed length The next idea is to split trajectories into
sub-trajectories of a fixed number of detections. This method is also easy to
implement and is resistant to missing detections, as seen in the picture 5.5, but
can distort the real trajectory. Therefore, it is better to use detections and
interdetections.
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MISSING
DETECTIONS

MISSING
DETECTIONS

(a) trajectory (b) trajectory with interdetections

Figure 5.5: Sub-trajectories of fixed length

Sub-trajectories based on simplified curve The last designed approach is
based on trajectory key points. The algorithm reduces the number of detections
with some compressing algorithm, such as the Ramer–Douglas–Peucker algo-
rithm, and uses compressed points such as boundaries for sub-trajectories. This
approach works equally well for both variants, as seen in the picture 5.6, but the
disadvantage is that sub-trajectories created this way do not consider the speed
information, which can be by this approach distorted.

MISSING
DETECTIONS

MISSING
DETECTIONS

(a) trajectory (b) trajectory with interdetections

Figure 5.6: Sub-trajectories by key points

Bisection extension In some cases, for the methods above can be useful using
bisecting of the intervals where each sub-trajectory is measured as a whole and
as bisected. If the bisected parts are not similar, the sub-trajectory is split and
measured again until the bisected parts are similar. The disadvantage of this
approach is the need to define similarity and only one key measurement. Thus,
we rather created small sub-trajectories and later merged them only on one of
their classifications, as will be described in subsection 5.2.1.

Measured attributes

For trajectory, there can be a lot of measured attributes, but to meaningfully
describe the trajectory, we are now reduced only to speed and angle of sub-
trajectory. With attributes such as angle and speed, we can later classify if the
object was slowly walking in a straight line or was zigzag running.

Speed attribute Measuring sub-trajectories’ speed is done the same way as
already described in the section 4.1.7. During the design of the speed attribute,
we found that it is not easy to determine the unit. The basic approaches, such
as using pixels, are impractical because the object’s speed would depend on the
camera’s distance to objects and the camera’s angle. Thus, we are measuring and
storing the object’s speed due to object size.
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Angle attribute To determine the angle of the sub-trajectory, there is a need
to set a basic axis and determine the angle of the sub-trajectory relative to this
axis. Once the axis is set, in our case, it is vector v(0, 1). We can count the
angle in a clockwise direction. The measured angle determines the angle of the
sub-trajectory in the frame as well as gives us information on the direction within
the trajectory.

Sub-trajectories classification

Once we have the speed and angle for each sub-trajectory, we can compare sub-
trajectories of trajectory with each other and classify the type of movement.

The boundaries, presented in the following classification, are determined by
observing test data but are present only as an illustration.

Speed classification To classify sub-trajectory −→ sub traj into a category
based on speed, we use simple categories with observed boundaries. For example,
for humans −→ speed type = [stand, walk, run].

Classification, for sub-trajectory, is then assigned based on speed −→
speed classification(sub traj) −→ speed type

• sub traj.speed ∈ ⟨0, min walk limit)
−→ speed classification(sub traj) = (standing)

• sub traj.speed ∈ ⟨min walk limit, max walk limit⟩
−→ speed classification(sub traj) = (walk)

• sub traj.speed ∈ (max walk limit, inf⟩
−→ speed classification(sub traj) = (run)

For speed-related attributes, we can as well classify the acceleration, but to
achieve this, we have to compare each sub-trajectory speed with the previous one.

Direction classification To classify the type of direction of the
sub-trajectory, we decided to compare each sub-trajectory −→ subtraj with the
previous −→ previous subtraj and the next one −→ next subtraj. Then the
algorithm counts the

total difference = (next subtraj.angle− previous subtraj.angle)

and, based on the angle algorithm, classifies the type of the direction for subtraj.
direction classification(subtraj) −→ direction type where

direction type =

[sharp left turn, left turn, straight, right turn, sharp right turn, standing]
In cases where the sub-trajectory is not moving - speed is classified as standing,

the algorithm marks it as standing,direction classification(subtraj) = (stand),
otherwise:

• total difference ∈ (−180◦,−90◦⟩
−→ direction classification(subtraj) = (sharp left turn)
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• total difference ∈ (−90◦,−15◦)
−→ direction classification(subtraj) = (left turn)

• total difference ∈ ⟨−15◦, 15◦

⟩ −→ direction classification(subtraj) = (straight)

• total difference ∈ (15◦, 90◦⟩
−→ direction classification(subtraj) = (right turn)

• total difference ∈ (90◦, 180◦⟩
−→ direction classification(subtraj) = (sharp right turn)

The presented angles are only for illustration.

Merging over classification

As mentioned before, once sub-trajectories are classified, the algorithm merges
them into longer sub-trajectories based on each classification. For example, the
man whose trajectory is processed was running slalom - still running, but zigzag.
Thus, we cannot, on the level we are targeting, mark the whole trajectory as
”slalom”, but we can mark the whole trajectory on speed classification as run
and on direction classification as sequence [straight, left turn, straight,
right turn, straight, left turn, ...]. Determining the specific meaning of the tra-
jectory is out of our scope, but this foundation of semantic description could be
used for it.

Merging by classification Merging by classification is then implemented by
grouping the consecutive sub-trajectories with the same classification. Grouping
is run over each classifier and union the sub-trajectories with the same classi-
fication. As a result, we obtain a mapping of classification on multiple sub-
trajectories.

5.2.2 Description structure
While creating descriptions of the trajectories, information becomes more and
more abstract. To create an effective way of storing trajectory descriptions and
keeping the link to all core information, we have designed a structure that keeps
all the information accessible through a tree structure.

On the bottom level are the detections of trajectory. The middle section is
represented by sub-trajectories with measured attributes and classified informa-
tion at the top layer, as illustrated in the picture 5.7. The structure is designed
to enable adding other layers with more abstract information in the future.
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Figure 5.7: Tree structure of a semantic description

5.2.3 Generating descriptions
In the previous subsections, we have prepared all the needed components, and now
the algorithm can create descriptions of the trajectories. The algorithm accepts,
as input, trajectories, a method for splitting trajectories into sub-trajectories −→
subtraj generator, and a list of attributes −→ descriptor list and classifications
−→ classification list to generate. For each trajectory, the algorithm first splits
the trajectory into sub-trajectories.

For each sub-trajectory generates its attributes and once all sub-trajectories
are enriched with attributes, the algorithm classifies sub-trajectories.

In the end, the algorithm clusters consecutive sub-trajectories with the same
classification and stores the information in the proposed structure, as seen in
pseudocode 11.

Algorithm 11: Alghorithm describing trajectories
Input: trajectories,subtraj generator,descriptor list,classification list
for trajectory in trajectories do

sub trajectories = Split trajectory into sub-trajectories with subtraj generator.
for sub trajectory in sub trajectories do

# In described approach attribute list = [speed, angle]
for attribute in attribute list do

sub trajectory[attribute.name] = attribute(sub trajectory)

Store sub-trajectories into the database.
for classification in classification list do

for sub trajectory in sub trajectories do
sub trajectory.[classification.name] = classification(sub trajectory)

merged = Merge consecutive sub-trajectories with the same classification.
Store merged blocks into the database.
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6. Implementation into
Videolytics
To prove our concept and create an evaluation of trajectories generated by pro-
posed algorithms, we have implemented a Traged pipeline into a system called
Videolytics introduced in section 1.2.2.

6.1 The provided data
In the Videolytics are created detections by previous modules and we use them
for trajectories generating, as shown in the picture 6.1. The prepared detections
are in line with our requirements on detections properties, defined in definition
1. Thus, we can directly use them without any further preparation.

Figure 6.1: Detections in the Videolytics video

6.1.1 The missing scenarios and scenography
During the work on the Traged, we noticed that the Videolytics dataset is miss-
ing interesting scenarios and camera views for us. Thus, we have recorded and
added a set of videos1 containing the needed scenarios and scenography for fu-
ture projects. Each video was shot from 3 points and contained the needed action
multiple times.

– The fight scene
– The robbery scene
– The meeting of pairs or groups
– The stalkers

1Not all of them were added into videolytics
because of the memory limits. The server is

currently migrating to a new server.
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6.2 The database
Since the main common point for all modules in Videolytics is a database, we
looked at it and considered its form in our work to avoid duplicating or remaking
already implemented parts. As we can see in the picture 6.2 of database hierarchy,
the database in the current state already contains prepared tables for trajectory
storing because there is already implemented visualization in web application2.
The tables in videolytics, that we used:

• camera - information about the video (camera)

• detection - detection record

• frame - record for each frame

• traj - record for each trajectory

• traj model - a record for each configuration, used to generate trajectories

• traj detection - mapping detections to the trajectory, representing that
detection is a member of the trajectory

After analysis, we have decided that the provided structures fulfill all our re-
quirements and we can use them without any changes. The only need was to
extend a database with a new structure for interdetections, annotated data and
trajectory descriptions, as shown in the picture 6.3. The newly generated tables
in videolytics:

• annotated trajectory - a record for each annotated trajectory

• annotated detection - mapping detections to the annotated trajectory, rep-
resenting that detection is a member of the annotated trajectory

• interdetection generation - record, keeping information about interdetec-
tions origin - trajectory model it was based on and for multiple runs, the
generation distinguishing each run

• interdetection - interpolated detection record

• descriptor generation - record, keeping information about descriptors ori-
gin - trajectory model it was based on and for multiple runs, the generation
distinguishing each run

• descriptor - a set of sub-trajectories with the same classification over one
feature

• block descriptor - mapping of sub-trajectories to the descriptor, represent-
ing that sub-trajectory is a member of the descriptor

• block - sub-trajectory of trajectory with measured features
2Web application can be seen on

http://videolytics.ms.mff.cuni.cz/stream.html
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• block detection - mapping detections to the sub-trajectory, representing
that detection is a member of the sub-trajectory

Figure 6.2: Data structures in Videolytics database
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VIDEOLYTICS
TABLES

camera traj_model trajdetection

annotated_trajectory

- id : INTEGER
- comment : TEXT
- camera : INTEGER

annotated_detection

- detection : INTEGER
- trajectory : INTEGER

block

- id : INTEGER
- trajectory : INTEGER
- block_order: INTEGER
- generation : INTEGER
- angle : FLOAT
- speed : FLOAT

block_detection

- block : INTEGER
- detection : INTEGER
- source_table : TEXT

descriptor

- id : INTEGER
- trajectory : INTEGER
- block_order: INTEGER
- generation : INTEGER
- property : TEXT
- value : TEXT

block_descriptor

- descriptor : INTEGER
- block : INTEGER

interdetection

- id : INTEGER
- frame : INTEGER
- class : TEXT
- left : INTEGER
- top : INTEGER
- right : INTEGER
- bottom : INTEGER
- crop : BLOB
- origin : TEXT
- generation : INTEGER
- trajectory: INTEGER

+id

detection

+id

generation

+id

trajectory

+id

model

+id

model

+id

camera

+id

camera

frame

+id

frame

+id

generation

+id

trajectory

+id

block

+id

descriptor

+id

+id

detection

+id

detection

+id

camera

+id trajectory

interdetection_generation

- model : INTEGER
- camera : INTEGER
- generation : INTEGER

description_generation

- model : INTEGER
- camera : INTEGER
- generation : INTEGER

Figure 6.3: Extended structures in Videolytics database

6.3 Configurations
As mentioned in the algorithm description, the algorithm process uses a user-
defined configuration, determining methods to compare a pair of trajectories or
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detections, strategies and how to build a clustering tree. Our configuration is
written in JSON format and gives the developer freedom of form. Thus, devel-
opers can define in a structure any properties they need. The main blocks in the
structure of configuration, as can be seen in the diagram picture 6.4 are:

• metadata - The information about the configuration itself, such as com-
ments on used strategy and so on.

• loadFrame - The information on how to load data from the database and
how to merge.

– loadAndMerge - The description on how to merge trajectories, infor-
mation such as overlap, and strategies to use.

• ”generator”- Representation of tree nodes as presented in section 3.2.1.

– comparator - List of comparators to get feature-connectivities.
– classifier - The method how to merge feature-connectivities into con-

nectivity.
– nodes - The descendant generators for the clustering.

Configuration

metadata

loadFrames

"generator"

metadata

description

generator

options

loadFrames

frames

perSecond

skip

classes

loadAndMerge

"generator"

"properties"

classifier

comparators

nodes

1

1

1

loadAndMerge

maxLoad

overlap

concatSize

connector

0..n
1

0..1

Figure 6.4: Configuration structure in JSON

6.4 The code base
To introduce the whole implementation, we will briefly provide the code structure,
the class hierarchy, and the Traged algorithms mapping to implemented code. For
the implementation details and the full code structure, please refer to the attached
code repository/directory with all the code, user and technical documentation.
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6.4.1 The structure
The main code is divided into three parts. Each of them is independently runnable
and data are shared (loaded and stored) throughout the database to align with
the videolytics approach. The additional data, such as the configuration file or
video id, can be passed with command line arguments. The parts are ordered as
presented and as they should be run:

• Traged - Clustering detections into trajectories

• Interdetections - Trajectory interpolation into interdetections

• Descriptions - Semantic description of trajectories

6.4.2 Traged
The first part is responsible for clustering detections into trajectories and basically
implements chapters 3 and 4 The code is runnable through the file traged.py,
which manages the database communication, runs the clustering operations for
the sub-parts and corresponds to algorithms introduced in subsection 3.2.2. In
the folder Generators, can be found elements of tree and the tree evaluation al-
gorithm as described in subsection 3.2.1, where elements implement the clustering
operations as proposed in section 3.1.

In the folder Comparators is implemented chapter 4. The descendants of class
IComparator implement comparator’s as described in section 4.1 and are respon-
sible for feature extraction and feature-connectivity evaluation. The descendants
of class IClassification implement classifier’s as described in section 4.2.

6.4.3 Interdetections
The second part generates interdetections as proposed in section 5.1. The code
is runnable through the file interdetection_generator.py and the code is in
folder Interdetections.

6.4.4 Descriptions
The third part generates descriptions of trajectories as proposed in section 5.2.
The code is runnable through the file descriptor_generator.py and the code
is in folder Descriptors.

6.4.5 Technologies
To implement our module, we were not restricted to any language. Thus, we had
to decide on a programming language and we decided on Python. Even though
Python is not the fastest possible option, Python has a great advantage over
the others and it is that Python has great library support and is easily writable.
Thus, we were able to test a large number of different approaches and methods
in a short time. Also, during the implementation, we used Python support for
runtime class and object modification, which helped us with data caching a lot
and dynamic detection to trajectory mapping.
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6.5 Annotations and data search
During the work, we lacked annotated data for basic evaluation and any simple
way to display the data from the dataset to research corner cases. Thus, we
have created a simple application, shown in the picture 6.5, for basic detection
and trajectory visualization with functions to create trajectory annotation and
annotate some videos with a few trajectories.

Figure 6.5: Simple app for data search and annotations

6.5.1 Annotation process
To describe the process and basic operation, that user ←− annotator does to
annotate the video trajectories, we write it as a simplified chain of steps.

1. Annotator runs the application with an id of the annotated video in the
database.

2. If needed, annotator specifies the number of frames, and where to start
−→ current DFrame. Otherwise, current DFrame is the first frame with
detections.

3. Aplications display detection from current current DFrame.

4. Annottator can with a key or button browse detections from
current DFrame or jump on next/previous Dframe.

5. Once annottator chooses the object to track, confirm with a Ctrl key.

6. Aplication set next DFrame as current DFrame and display the nearest
detection to chosen one from current current DFrame.

7. Annottator can GOTO step 4, or enter the description of the trajectory
and with Enter store the trajectory into Annotated.

8. Repeat step 3.
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7. Evaluation
In this chapter, we would like to evaluate the proposed algorithms and methods
overall as implemented in the Videolytics. First of all, in section 7.1 is a review
of the videolytics dataset that we used for evaluation. Then in the following
section 7.2 is described the process of configuration of the Traged and in section
7.3 are evaluated the generated trajectories and described observation. Finally,
in section 7.4 are presented outputs of interdetections and semantic descriptors.

7.1 Dataset
To get to know the Videolytics and prepare the ground for our experiments,
we will first investigate the dataset and its videos. The Videolytics dataset, in
its current state, is primarily focused on the videos of squares and promenades.
Thus, the videos contain plenty of human detection but lack detection of different
objects, such as cars, which is not a problem since we are focused on trajectories
for humans and will use only human detection. The problem was the lack of
videos, but it was solved by creating new materials, as described in section 6.1.1,
and using the videolytics pipeline to generate detections.

7.1.1 Detections
Detections in the dataset are present for all videos and are of satisfying quality
but are not perfect. The two most common problems with provided detections,
as shown in the picture, are longer missing detections, where the object is not
detected for a few consecutive seconds and false positive detections, where in
data-set are present detections even though there is no object at all. Both cases
can be seen in the picture 7.1. As mentioned, we aimed to develop a robust system
immune to missing detections. Thus we have not altered detections anyhow and
straight-use generated detections.

(a) False detection

MISSING
DETECTION

(b) Missing detection

Figure 7.1: Detection failures

7.1.2 The videos
The recording suitable for our needs can be distinguished in two cases:
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Videolitics dataset
id name view SIM problematic ref img time
40 duke close ∅ ∅ 7.2(a) 60s
43 001 Cannon FHD wide ∅ tree crown 7.2(b) 300s
48 002 Cannon FHD wide ∅ tree crown 7.2(b) 120s
469 tram 1 wide 470 tree shadow 7.3(b) 1079s
470 tram 2 wide 469 tree shadow 7.3(a) 1035
920 rvacka pravo wide 922 ∅ 7.4(b) 577s
921 kradez stred close 928 ∅ 7.4(a) 329s
922 rvacka stred close 920 ∅ 7.4(a) 437s
928 kradez pravo wide 921 ∅ 7.4(b) 344s

Table 7.1: Videolitics dataset summarization

• close-view recording - recording, where objects all over the view are similarly
sized, as shown in the picture 7.2(a)

• wide-view recording - recording of a large area, where objects are diametri-
cally different sized, as shown in the picture 7.2(b)

To summarize the dataset recording, we have created a table 7.1.2 with all the
needed information, where columns represent:

• id - The id of recording in the database

• name - The name of the recording in videolytics as presented on the web

• view - The type of view as described above
- [close-view recording −→ close,wide-view recording −→ wide]

• problematic - Problematic parts of the video, if any

• simultaneous - SIM - Ids of videos that capture the same place simultane-
ously

• ref img - The picture representing the recording view 1

• time - Approximate video length in second

To make presented data in a table understandable, there is a text description
of row with id = 469. The video with id = 469, can be accessed on videolytics
web, under the name tram 1. The video is a wide-view, where objects are in
the distance and as well relatively close to the camera, and the recording is a
simultaneous with the video with id = 470. The video, for trajectory-generating
purposes, contains a problematic area with a tree shadow, as can be seen in
reference picture 7.3(b).

1Some recordings have the same view.
Thus, we will not attach reference frames for

each of them and will use the most similar
ones.
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(a) close-view recording (b) wide-view recording

Figure 7.2: Videos of squares with a different view properties

(a) wide-view recording - right (b) wide-view recording - left

Figure 7.3: Videos of the square during a sunny day

(a) close recorded - fight (b) wide-view recording - fight

Figure 7.4: Videos of the promenade, with staged fight scenes

7.2 Trajectories
In this section, we evaluate the flow for generating trajectories as well as the
generated trajectories themselves. First of all, in section 7.2.1, we will describe
how we designed the configuration for the Traged, the metric we used during the
process and our observations. Later, in section 7.3, is presented a comparison of
Traged against the OpenCV tracker.

7.2.1 Configuration design
As mentioned in chapter 3, our analytic approach runs based on the user-defined
configuration specifying the tree of clustering operations. Thus, the key task
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during the algorithm evaluation was to define the configuration and find the
optimal mapping configurations ←→ videos because, during the development,
we had a question about how good and reusable configurations will be. If there is
a need to create a configuration directly for each video, or if exists one universal
configuration covering all of the videos, this question is for used data answered
in this section.

Internal evaluation metric

First, we needed to evaluate the results of the designed configurations. The first
evaluation method was observing, which means for each run with a different
configuration, we observed the generated trajectories and used the observation
to adjust the configuration. Observation is a slow process, and there is a great
risk of missing some errors. Thus, we have prepared annotated2 trajectories and
based on observation, we identify the possible states of annotated and generated
trajectories, prepared a few annotated trajectories in each video and proposed
metrics for configuration evaluation.

The possible states of annotated− generated trajectories:

• One− Zero3 - Annotated trajectory does not have generated trajectory at
all.

• One − One - Annotated trajectory has exactly one generated trajectory.
The goal.

• One−Many - Annotated trajectory has many generated trajectories.

• Many − One - Many annotated trajectories have one shared generated
trajectory.

• Many−Many - Many annotated trajectories have many generated trajec-
tories.

Each state represents a different problem of the configuration, and each has
a different severity and resolution. In the order of seriousness:

• One−One - Our goal. Nothing to do.

• One−Many - Generated trajectories are under-clustered. There is a need
to add another layer of clustering or lower the feature-boundaries for clus-
tering.

• Many − One - Trajectories are over-clustered. There is a need to increase
the feature-boundaries for clustering.

• Many − Many - Trajectories are wrongly clustered. There is a need to
adjust multiple feature-boundaries.

2We did not annotate all trajectories in each
video, because it would be extremely time-
consuming. Instead of it, we annotated an in-
teresting situation, corner cases and so on.

3There is also a possibility, Zero − One,

where exist generated trajectory, but there is
no annotated trajectory, which we ignore be-
cause we are unable to annotate all the real
trajectories.
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• One−Zero - There is no generated trajectory for annotated, which means,
the algorithm probably did not process part of the video at all.

As a result of the clustering by a configuration, a developer can directly use
the generated numbers of each category and, by proposed resolution strategies,
adjust the values of configuration or can use a merged value.

merged= #(One−One)∗4+#(One−Many)∗3+#(Many−One)∗2+#(Many−Many)∗1
#annotated∗4

The configuration development

We started with a plan to create one universal configuration for all of the videos
in the dataset, as presented in table 7.1.2. As a learning video, a video we used
to define configuration parameters, we chose the close-view recorded video duke
with id = 40. As the test video, a video where we test the configuration, we chose
wide-view recording 001 Cannon FHD with id = 43.

In the beginning, we had reached quite good results with a single configura-
tion, and for some time, the results were getting better, but over time and many
tests, we ended up in a situation where whatever we tried, the generated trajec-
tories were not improving on a learning video. At that moment, we swapped the
learning and the test video and did the same procedure. With this approach, we
were able to receive ”good” results on the learning video and ”bad” results on
the test video or a ”bit better than bad” results on both of them.

Thus, we have decided that we cannot process all the videos with a single
configuration and have to separate them into two or multiple categories. We
then lowered the expected limits, and the learning and test videos were used
for the videos with a same view. One configuration was created for close-view
recording videos and one for wide-view recordings. Once we were satisfied with
the results on the learning video, we generated trajectories on the test videos.

To present the results we have generated trajectories with the configuration
- in the web are marked as model model = 2198 for close-view recordings and
model = 2259 for wide-view recordings. The generated trajectories can be seen
in the pictures 7.5, 7.6, 7.7, or directly in the videos on the web4.

(a) close-view recording (b) wide-view recording

Figure 7.5: Trajectories in squares with a different view properties
4Videolytics web -

http://videolytics.ms.mff.cuni.cz/stream.html
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(a) wide-view recording (b) wide-view recording

Figure 7.6: Trajectories in the square during a sunny day

(a) wide-view recording - fight (b) close-view recording - fight

Figure 7.7: Trajectories in the promenade, with staged fight scenes

Results: As can be seen in the tables −→ table 7.2.1 for close-view recordings
and table 7.2.1 for wide-view recordings, with the most recent configurations
of all evaluated videos, we did not reach for learning videos the optimal state,
where each object has exactly one trajectory. After the data investigation, we
discovered that, for example, for learning video with id = 40, the problematic
parts, with trajectories in state Many−Many, are caused by objects overlaying
over each other and missing detections caused by detector errors, as illustrated in
the picture 7.8 presenting the generated output. In the picture, there is a couple,
detected while walking next to each other. After some time, the woman is not
detected at all, because she is walking behind the man. When woman walks out
of the man, she is detected, but in the same time the detector stops detecting the
man. Thus, the trajectory is from man passed to the woman.
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TB

Two trajectories next
to each other One object undetected

- behind other object

One object undetected
- behind another object

One object undetected
- detector error

Figure 7.8: Objects overlaying each other

Also, for the videos with trajectories generated based on the configuration for
close-view recording, we have a lot of trajectories in the Many−Many state, as
can be seen in the picture 7.9. In the video there is a lot of objects standing next
to each other, where trajectories are jumping from one to another due to the lack
of detection.

Figure 7.9: Standing people, undetected
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Internal results for close recording
id One-One One-Many Many-One Many-Many One-Zero merged
40 0.75 0.0 0.0 0.25 0.0 0.8125
921 0.31 0.19 0.0 0.5 0.0 0.58
922 0.3 0.5 0.0 0.2 0.0 0.725

Table 7.2: Results for the close-view recordings - model 2198

Internal results for wide recording
id One-One One-Many Many-One Many-Many One-Zero merged
43 0.55 0.16 0.0 0.29 0.0 0.74
48 0.71 0.1 0.0 0.19 0.0 0.83
469 0.36 0.5 0.0 0.14 0.0 0.77
470 0.64 0.36 0.0 0.0 0.0 0.91
920 0.53 0.29 0.0 0.18 0.0 0.79
928 0.77 0.08 0.0 0.15 0.0 0.87

Table 7.3: Results for the wide-view recordings - model 2259

Next improvements: In the future, we would like to improve the existing
configurations to maximize trajectories in state One − One, as well as create
new configurations for different types of videos. To achieve that, we would like
to try an automatic process to adjust and alter the parameters to improve the
results. At this moment, it seems the best approach is to use evolution algorithms.
Furthermore, we would like to prepare a process, deciding which configuration to
use, base on video properties to automatize the whole process.

7.3 Evaluation of generated trajectories
In this section, we would like to evaluate the results of our approach and compare
our generated trajectories to the trajectories generated with a different tool or
approaches. First of all, in section 7.3.1, we will choose a method to compare
results with. Later in section 7.3.2, we will propose the used metrics, and finally,
in section 7.3.3, we will evaluate the measured data.

7.3.1 The reference approach
The first idea was to use any well-known benchmark for trajectory-oriented algo-
rithms, such as MOTChallenge[27][18], but we have faced the problem of being
too narrowly focused on specified camera views, and MOTChallenge videos are
not working for us. Thus, we have decided to change the strategy and compare
our results against a well-known tool also used in some benchmarks.

We have decided to compare the Traged with OpenCV[4]. OpenCV is one
of the most used libraries in the computer vision field and for OpenCV, there
are already works [8], [38], [14], [5] that use OpenCV as a reference method and
benchmarks using OpenCV methods against each other as well as against different
works. In our measurement we will use trajectories generated by code from the
benchmark [8].
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7.3.2 Metrics
We are using a set of different metrics from different sources to measure the
quality of generated trajectories on multiple levels. Some of our metrics are
based on metrics proposed in papers [22] and [38], and some of the used metrics
are based on metrics described in the previous section 7.2.1.

Data and terminology

To unify the algorithms used for evaluation, we will first describe data and used
terminology.

As metrics input, we use our annotated trajectories as a ground truth −→ GT
and generated trajectories −→ GEN . Since our approach is designed to over-
come incompleteness in the input detections, our annotated data are incomplete
because they contain only a subset of all detections belonging to a real trajec-
tory. The annotated trajectories can not be complete because the detections are
incomplete and miss detections in multiple frames, as well as we did not an-
notate all trajectories with all the possible detection because it was too much
time-consuming and, in some cases, it was not even humanly possible. Thus, we
have slightly altered the used metric.

Area coverage In some evaluation cases, the area coverage is measured, but
since the Traged trajectories are based on the same detections as GT , we will
not highlight measuring the area coverage.

Latency During evaluations of trajectories, the latency metrics are measured,
but in our evaluation, we give the first detection to the OpenCV of each annotated
trajectory to unify tracked objects. Thus, we are not going to measure the latency.

Performance evaluation of object tracking algorithms

The first set of metrics is based on the article[38]. The article describes the basic
trajectory metrics and we use three of them. Other metrics from the article
are covered by other proposed metrics, or their result are irrelevant to us5. For
example, as mentioned before, the latency. Unlike the article, we have altered
the threshold values and used a more strict value, threshold = 30% Also, we are
evaluating trajectories only in frames with annotated detections.

• True Positive −→ TP : Percentage of GT trajectories that are correctly
tracked −→ the GEN trajectories has been correctly assigned more than
30% of detections and more than 30% space overlap.

• False Positive −→ FP : Percentage of GEN trajectories that do not corre-
spond to GT trajectories −→ GEN trajectories has been correctly assigned
less than 30% of detections or less than 30% of space overlap.

• FN (False Negative): Percentage of GT trajectories not matched GEN
trajectories −→ the GT trajectories has assigned less than 30% of detections
or less than 30% space overlap.

5Even though we are not presenting the re-
sult of the unused metrics, we have in most

cases implemented them.
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HOTA - Higher Order Tracking Accuracy

To evaluate trajectories with newer metrics, we have decided to implement HOTA
- Higher Order Tracking Accuracy metrics. As mentioned, we could not provide
the same type of GT data described in the article. Thus, we must alter a described
HOTA[22] algorithms and all its parts needed to evaluate our results. To highlight
that the metric was altered, we use the prefix P−.

• DetA - Detection Accuracy over whole dataset, counted simply as
T P

T P +F P +F N
as described in [22] over the whole dataset

• AssA - Association measures how well are detections assigned to a object.
Association Accuracy is computed as the average of alignment between two
trajectories over all pairs of matching predicted and ground-truth detections
in the whole dataset.

• P − HOTA - Higher Order Tracking Accuracy. A single value represents
how well the tracker performs overall.

Our internal metrics

To compare the generated trajectories, while using a subset of our original metrics
presented in section 7.2.1, we have focused on the two most crucial variants for
us.

• Fragmentation −→ FRAG - when multiple GEN trajectories partially cor-
respond to one GT trajectory (state One−Many)

• Swap of ids−→ SWAP - when one GEN trajectory corresponds to multiple
GT trajectories(state Many −One, and Many −Many).

– SWAP −A: GEN trajectory swap to a different GT trajectory after
its end. Generated trajectory wrongly detects the end and is tracking
another object.

– SWAP −B: GEN trajectory swap to a different GT trajectory before
its end. GEN trajectory mismatch a tracked object.

Fragmentation represents the problem where we are not able to create a con-
tinuous trajectory for an object and we are creating multiple short ones. To
evaluate a FRAG, metric count a number of GT trajectories with assigned more
than one GEN −→ overAssigned, where the assigned trajectory is longer than
one common detection.

FRAG = overAssigned

#GT

Swap represents the problem where trajectory mismatches the object. To
evaluate SWAP , we must count a number of GEN trajectories with assigned
more than one GT trajectory −→ overTracked.

SWAP = overTracked

#GEN
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The variant SWAP −A measures the problem of the algorithm that doesn’t
know when to end the trajectory, and variant SWAP −B measures the problem
of approaches that do not keep tracking trajectory correctly on one object and
swap to another. To evaluate SWAP − A, we must count a number of GEN
trajectories that are covering multiple GT trajectories −→ overflowing and for
SWAP − B, we must count a number of GEN trajectories swapping from one
GT trajectory to another before end−→ skipping.

SWAP − A = overflowing

#GEN
; SWAP −B = skipping

#GEN

Illustration of fragmentation and swap of trajectories can be seen in the picture
7.10.

FRAG

GEN-2

GT-1
GEN-1

SWAP-A

GT-2

GEN-1
GT-1

SWAP-B

GT-2

GEN-1
GT-1

Figure 7.10: Fragmentation and swap of GT

7.3.3 Trajectory evaluation
Finally, in this subsection, we will compare the Traged trajectories against the
OpenCV trajectories created by the benchmark[8]. We will use the described
metrics on generated trajectories and based on that, make a comparison. Firstly,
since the benchmark provides multiple options to generate trajectories, we will
choose the best ones and then compare the best OpenCV trajectories against
Traged trajectories.

Colored To make tables easily readable, we have marked the best result with
a green colour and the worst one with a red colour.

OpenCv on videolytics

First, we must decide which method from the OpenCV should be used for the
comparison. Thus, we ran the benchmark over the subset of the videolytics
dataset and for each option generated trajectories. The results of video duke, id =
40 can be seen in the table 7.4 and aggregated result for multiple videos can be
seen in the table 7.5. Based on the result, we came up to the same conclusion
as the author of the benchmark[8], that overall metrics, the best results provide
the CSRT . Thus, we have generated trajectories with OpenCV-CSRT for the
whole dataset, as can be seen in the table 7.6.
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KCF As can be seen in the tables, the KCF method received the best results
over our FRAG and SWAP metric −→ measuring that trajectory is in one piece
and not jumping between objects, but in a same time the worst result over TP
and FP −→ how good were objects tracked over all. Thus, the explanation is
simple. Since KCF trajectories are not relevant and hardly exist, they are not
making problems with FRAG and SWAP .

Metric
Method csrt boosting kcf tld mosse medianflow mil

TP 0.938 0.75 0.25 0.375 0.062 0.562 0.75
FP 0.25 0.312 0.75 0.812 0.938 0.562 0.5

TDF 0.125 0.25 0.75 0.562 0.938 0.438 0.25
FRAG 0.0 0.312 0.0 0.5 0.562 0.625 0.188
SWAP 0.125 0.562 0.0 0.438 0.375 0.625 0.312

SWAP-B 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SWAP-A 0.125 0.562 0.0 0.438 0.375 0.625 0.312
P-AssA 0.814 0.63 0.216 0.343 0.165 0.464 0.681
P-DetA 0.589 0.507 0.105 0.273 0.114 0.407 0.609

P-HOTA 0.692 0.565 0.151 0.307 0.137 0.435 0.644

Table 7.4: Evaluation of all OpenCV methods on single video - duke

Metric
Method csrt boosting kcf tld mosse medianflow mil

TP 0.955 0.716 0.107 0.328 0.348 0.345 0.771
FP 0.116 0.234 0.893 0.791 0.735 0.714 0.33

TDF 0.098 0.293 0.893 0.642 0.652 0.795 0.246
FRAG 0.048 0.202 0.024 0.284 0.303 0.35 0.237
SWAP 0.098 0.341 0.024 0.383 0.29 0.424 0.278

SWAP-B 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SWAP-A 0.098 0.341 0.024 0.383 0.29 0.424 0.278
P-AssA 0.824 0.672 0.15 0.288 0.342 0.305 0.622
P-DetA 0.746 0.46 0.102 0.188 0.207 0.228 0.536

P-HOTA 0.782 0.555 0.119 0.231 0.265 0.263 0.576

Table 7.5: Average results of evaluation of all OpenCV methods on multiple
videos

Metric
ID 43 48 40 928 921 920 922 469 470

TP 1.0 0.714 0.938 1.0 0.875 0.824 1.0 0.857 0.929
FP 0.026 0.333 0.25 0.077 0.188 0.235 0.0 0.143 0.071

TDF 0.026 0.286 0.125 0.0 0.125 0.235 0.0 0.286 0.143
FRAG 0.0 0.0 0.0 0.077 0.188 0.176 0.0 0.0 0.143
SWAP 0.026 0.048 0.125 0.154 0.125 0.235 0.0 0.0 0.143

SWAP-B 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SWAP-A 0.026 0.048 0.125 0.154 0.125 0.235 0.0 0.0 0.143
P-AssA 0.866 0.912 0.814 0.797 0.727 0.597 0.842 0.846 0.793
P-DetA 0.819 0.778 0.589 0.745 0.64 0.49 0.603 0.737 0.831

P-HOTA 0.842 0.842 0.692 0.771 0.682 0.541 0.713 0.79 0.811

Table 7.6: OpenCV - CSRT over the whole dataset

Vizualization To investigate the trajectories generated by the benchmark we
have drawn them directly into videos. For illustration, the visualization can be
seen in the pictures 7.11
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(a) wide-view recording (b) close-view recording

Figure 7.11: Trajectories generated by OpenCV-CSRT

OpenCV - CSRT versus TRAGED

To create a comparison of OpenCV -CSRT and Traged, we have generated trajec-
tories for each video in the dataset with both −→ OpenCV -CSRT and Traged.
For Traged, we used configuration for a close-view recording with id = 2198 and
for a wide-view recording with id = 2259.

Results can be seen for a wide-view recording in the table 7.7, for a close-view
recording in the table 7.8 and aggregated results for all recordings for both types
of view in table 7.11. As can be seen in the tables, the results reached are not
very different. To evaluate the differences, we will take a look at the metrics and
explain what they are telling us about generated trajectories.

001 Cannon 002 Cannon kradez pravo rvacka pravo tram 2
METHODS 2259 csrt 2259 csrt 2259 csrt 2259 csrt 2259 csrt

TP 1.0 1.0 1.0 0.714 1.0 1.0 1.0 0.824 1.0 0.929
FP 0.189 0.026 0.16 0.333 0.188 0.077 0.4 0.235 0.263 0.071

TDF 0.0 0.026 0.0 0.286 0.0 0.0 0.0 0.235 0.0 0.143
FRAG 0.289 0.0 0.095 0.0 0.231 0.077 0.353 0.176 0.286 0.143
SWAP 0.075 0.026 0.04 0.048 0.062 0.154 0.12 0.235 0.0 0.143

SWAP-B 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SWAP-A 0.075 0.026 0.04 0.048 0.062 0.154 0.12 0.235 0.0 0.143
P-AssA 0.846 0.866 0.962 0.912 0.929 0.797 0.854 0.597 0.948 0.793
P-DetA 0.994 0.819 0.999 0.778 1.0 0.745 1.0 0.49 1.0 0.831

P-HOTA 0.917 0.842 0.98 0.842 0.964 0.771 0.924 0.541 0.973 0.811

Table 7.7: Evaluation Traged X OpenCV - wide-view

duke kradez stred rvacka stred
METHODS 2198 csrt 2198 csrt 2198 csrt

TP 1.0 0.938 0.812 .875 1.0 1.0
FP 0.0 0.25 0.667 0.188 0.48 0.0

TDF 0.0 0.125 0.188 0.125 0.0 0.0
FRAG 0.125 0.0 0.5 0.188 0.4 0.0
SWAP 0.188 0.125 0.167 0.125 0.04 0.0

SWAP-B 0.0 0.0 0.0 0.0 0.0 0.0
SWAP-A 0.188 0.125 0.167 0.125 0.04 0.0
P-AssA 0.944 0.814 0.659 0.727 0.842 0.842
P-DetA 0.994 0.589 0.962 0.64 0.918 0.603

P-HOTA 0.968 0.692 0.796 0.682 0.879 0.713

Table 7.8: Evaluation Traged X OpenCV - close-view
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Metric
Method 2198 csrt

TP 0.938 0.938
FP 0.382 0.146

TDF 0.062 0.083
FRAG 0.342 0.062
SWAP 0.131 0.083

SWAP-B 0.0 0.0
SWAP-A 0.131 0.083
P-AssA 0.815 0.794
P-DetA 0.958 0.611

P-HOTA 0.881 0.696

Table 7.9: close-view video

Metric
Method 2259 csrt

TP 1.0 0.893
FP 0.24 0.149

TDF 0.0 0.138
FRAG 0.251 0.079
SWAP 0.06 0.121

SWAP-B 0.0 0.0
SWAP-A 0.06 0.121
P-AssA 0.908 0.793
P-DetA 0.999 0.733

P-HOTA 0.952 0.762

Table 7.10: wide-view video
Table 7.11: Aggregated comparison Traged X OpenCV-CSRT

TP,FP,TDF Metrics TP and TDF , tell us how good were objects tracked
into trajectories - how good is GT covered by GEN and FP a occurences of
GEN with no corresponding object −→ exist generated trajectory for not existing
object. As can be seen Traged is better at covering the object’s trajectories, but
it seems, that sometimes generates trajectory for not existing object. After the
data investigation, we have found out, that this is caused by the incompleteness
of annotated trajectories. Due to the complexity, we did not annotat all objects
with trajectories in the videos and covered only a subset - the problematic one and
trajectories, where human annotator was sure of the correctness6. For example,
we have succesfully annotated all the trajectories for the video duke and as can
be seen in the table 7.7, Traged had no problems with FP .

FRAG and SWAP The metrics - FRAG representing GT split on multiple
GEN and SWAP representing GT merged into one by GEN as defined in section
7.3.2. First of all, on the measured data can be seen that, we had no occurrence
of SWAP − B, which signalizes, that approaches were not mixing up different
objects, while were present in the screen. On the other hand, Traged was in
all videos worse on the FRAG metric, which is telling us that the configuration
should allow more merging by lowering some boundaries. After data investigation,
we came to the conclusion that FRAG and SWAP − A is caused for Traged in
edge situations, where objects pass each othere near the edge of the videos.

HOTA Finally, as can be seen the Traged reached better results on all HOTA
metrics, telling us that it seems that Traged has better detection accuracy and
mainly that has better alignment between GT and GEN.

Disclaimer After exploring the results, it seems that the Traged is better
and provides in some aspects a better results, but we have to keep in mind
that Traged is highly specialized on the specific types of videos, where on the
other hand, OpenCV-CSRT is universal. To show the Traged problem, we have
generated variants with swapped configurations, as can be seen in the table 7.14
and is obvious that even if the camera views (close-view and wide-view) are quite
similar, the results are drastically worse.

6In some cases, the objects were moving in
groups too far from the camera and it was not

humanly distinguishable.
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002 Cannon F HD

Metric
Method 2198 2259 csrt

TP 1.0 1.0 0.714
FP 0.697 0.16 0.333

TDF 0.0 0.0 0.286
FRAG 0.381 0.095 0.0
SWAP 0.061 0.04 0.048

SWAP-B 0.0 0.0 0.0
SWAP-A 0.061 0.04 0.048
P-AssA 0.868 0.962 0.912
P-DetA 0.997 0.999 0.778

P-HOTA 0.93 0.98 0.842

Table 7.12: 48 - wide-view recording

duke

Metric
Method 2259 2198 csrt

TP 1.0 1.0 0.938
FP 0.062 0.0 0.25

TDF 0.0 0.0 0.125
FRAG 0.25 0.125 0.0
SWAP 0.312 0.188 0.125

SWAP-B 0.0 0.0 0.0
SWAP-A 0.312 0.188 0.125
P-AssA 0.885 0.944 0.814
P-DetA 1.0 0.994 0.589

P-HOTA 0.941 0.968 0.692

Table 7.13: 40 - close-view recording

Table 7.14: Results with swapped configuration

MOTChallenge in future

As mentioned in the introduction of this section, in the current state of the Traged
and Videolytics we are not able to join the MOTChallenge and be able to be a
balanced opponent on a given dataset. Still, we would like to, in the future, try
it. Thus, the presented evaluation was run on the same data format as is used
in MOTChallenge. Also, we have prepared modules to download our data in the
MOTChallenge format and once the Videolytics transfer to a bigger server, we
would like to have the option to use MOTChallenge dataset in Videoliytics.

7.4 Interdetections and semantic description
This section will present examples of generated interdetections and semantic de-
scriptions for trajectories. As mentioned, the results are directly affected by the
quality of the trajectories. Thus, we are not evaluating the quality of generated
data by any metric and we will only observe the generated data.

7.4.1 Interdetection
To observe the generated interdetections in valuable situations, we have watched
the videos and identified the trajectories with a large gaps of detections, as shown
in the pictures 7.12. The screenshots are taken directly from the Videolytics web
for videos duke, model = 2198 and 001 Cannon FHD, model = 2259.

Gap in detections

(a) 40 - duke

Gap
 in

de
te
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ns

(b) 43 - 001 Cannon FHD

Figure 7.12: Trajectories with large detections gaps
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Cases description

To illustrate the results and added data value of interdetections, we have gener-
ated two images, shown in the picture 7.13, with inserted:

• detections - all detections for a trajectory (left side)

• interdetections - all interdetections for a trajectory (right side)

As can be seen on the left side of the image 7.13, a large continuous gap in the
trajectory detections is present, approximately 4 seconds ≈ 100 frames. This gap
is caused by detector error7 and the object is undetected in these frames.

On the right side of the image 7.13, are displayed all interdetections of the
object. As can be seen, the interdetections are along the whole trajectory because
the detector undetected the object, but it is in a single-frame amount. On the
other hand, in the highlighted area are interdetections for each frame.

MISSING
DETECTIONS

GENERATED
INTERDETECTIONS

Figure 7.13: Generated interdetections for duke

The same results can be seen in different videos, with different camera posi-
tions, as shown in the picture 7.14.

MISSING
DETECTIONS

GENERATED
INTERDETECTIONS

Figure 7.14: Generated interdetections for 001 Cannon FHD

7.4.2 Semantic description
To evaluate the implemented algorithm for semantic description, we have gener-
ated descriptions for a few videos and then chose a few trajectories to demonstrate

7We have verified that the trajectory con-
tains all possible detections.
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the results. In the current state, descriptions are not used for searching yet. Thus,
results are evaluated by observing and case studying.

Examples of descriptions

To present the generated descriptions of trajectories, we have chosen two trajec-
tories with not-simple progress because most of the trajectories are the object’s
moving in straight lines.

In the presented images, trajectories are described only by their direction8

within the trajectory. Also directions are merged [left, sharpLeft] −→ left,
[right, sharpRight] −→ right for simplicity.

The descriptors are implemented as designed in section 5.2, and individual
parts can be seen in the pictures 7.15 and 7.17. Each trajectory is split into mul-
tiple sub-trajectories, where, in the presented illustration is, each sub-trajectory
marked by its order number. Then, for each sub-trajectory, is measured speed
and angle and, based on the context of the whole trajectory, the sub-trajectory is
classified into categories of speed and direction. The direct output of the program
is presented in the pictures 7.16 7.18.

Turn left 

Turn right

Turn left 

Straight

Turn right

Straight

Figure 7.15: Semantic description of trajectory A
8We generated speed as well, but all of the

presented objects were just walking.
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Figure 7.16: Semantic description of trajectory A

In the picture 7.15, we can see an illustration of generated description for the
trajectory. This description enriches the trajectory by its semantic value. It tells
us that the object was walking [left, right, straight, left, right, straight], which
can be used in future steps for object behaviour analysis.

Straight

Straight
Turn left 

Straight

Turn
left 

Figure 7.17: Semantic description of trajectory B

In the picture 7.17, we can see an illustration of generated description for
another trajectory.

Figure 7.18: Semantic description of trajectory B

As shown, the proposed description enriches the trajectories with abstract
information about its movement as was planned.
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7.5 Summarization
In this chapter, we have evaluated the proposed algorithms from previous chap-
ters. First of all, we have presented the Videolytics dataset and described video
recordings in it.

While using Videolytics data, we created a configuration for our proposed flow
of algorithms −→ Traged and, based on the configuration, generated trajectories
for videos in Videolytics. To evaluate the trajectories’ quality, we proposed a few
simple metrics, and later, we used well-known metrics to create a comparison
with OpenCV. We showed that with the correct configuration, on a restricted
area, Traged is usable for trajectory generating and, at the very least, provides
as good results as OpenCV.

In the end, we evaluated the trajectory usage by presenting the results of
interdetections and trajectory semantic description of objects. We have presented
generated interdetections, showing the quality improvement of detections and
enriching the detections with new detections of objects. With the presented
semantic description, we have laid the groundwork for further research on object
behaviour analysis and trajectory search.

Based on the evaluation, the proposed pipeline works and is a good fit in the
Videolytics system as a new module. As for the algorithms themselves, it means
that they are working as expected.
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Conclusion
In this thesis, we have designed a complex flow for video detection processing
while using analytic methods.

As a first step, we have proposed algorithms for detection clustering into tra-
jectories based on connectivity and user configuration in chapter 3. To measure
the connectivity of detections/trajectories, we have proposed a set of algorithms,
in chapter 4 extracting features and defining how possible it is that two detec-
tions/trajectories represent the same object.

To improve the detections, we have proposed an algorithm interpolating gen-
erated trajectories to fill errors in detections by interdetections in section 5.1.
Finally, to enable trajectory search and future analysis work, we have designed
an algorithm describing trajectories with semantic description in section 5.2.

To prove the validity of the proposed algorithms, we have implemented a new
module, in chapter 6, with the implementation of all proposed algorithms. With
implementation, we have generated trajectories, interdetections and semantic de-
scriptions for Videolytics videos, created visual material for result observations
and evaluated the approach, for trajectory generation, against the OpenCV in
chapter 7. By measured results, we have concluded that the proposed approach
can generate great trajectories on the restricted video domains based on the pro-
vided configuration.

In the thesis, we have fulfilled our goals and verified that the proposed ana-
lytical model can generate complex trajectories based only on the provided con-
figuration file and that the trajectories are a valuable source of data and a great
foundation for further work in videos analysis field.

7.6 Future work
We have reached multiple problematic areas with potential for future research
or Videolytics improvement and further system extensions during the work. To
present at least some of them and propose a solution, we would suggest to:

Configuration and challenges In the current state of Videolitycs, limited
types of videos restrict the possible testing and configuration development. Thus
in the future would be useful to extend the dataset by new video types or use a
different source of detections for configuration development.

Once the set of configurations covers a large pallet of video types, comparing
generated trajectories in any well-known challenge or benchmark will be desirable.

Auto configuration Currently, the user-programmer has to choose the con-
figuration for the processed video. But from the observations, as mentioned in
section 7.2, the configuration is selected based on the camera view. Thus, in fu-
ture steps, this configuration selection could be automatized and selected directly
by the module based on the camera and detections.

Self evolving configuration As described in section 7.2, in the current state
are configuration files created by the user-programmer. Thus, in the future, work
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would be useful to train a model or prepare any automatic way to create a new
configuration file for new types of videos.

Detection silhouettes In the current state of the videolytics, a bounding box
containing a background is used for detections. During the connectivity mea-
surement, we found that it would be useful to have cropped objects without a
background. Thus, as a part of future work would be great to extend detections
with image variant without background or update a current one and remove it.

Video to perspective With the capability to identify objects throughout the
whole image, we can use this knowledge to identify the image distortion and
transform a video into a perspective view. While using the perspective view, we
can better understand the object movement and use the knowledge to determine
the mutual position of multiple overlaying videos.

Object behaviour Based on the generated trajectories and their semantic de-
scription, there is a great opportunity to focus on object behaviour and analyse
the most crucial types of movement. Furthermore, based on trajectories, there is
potential to detect suspicious behavior such as stealing, stalking or street fights.
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A. Attachments
To this thesis are attached source codes and examples of input data.

A.1 Traged
The main attachment to this thesis is folder Traged.zip, representing a module
described in this thesis and implemented in the Videolytics system1. The module
is also accessible on university GitLab https://gitlab.mff.cuni.cz/hrbacem/
construction-of-time-space-trajectories-from-multimodal-data.
The content is almost identical, whereas GitLab provides extra video materials.

Content The content is described directly in README.md and in this thesis in
the section 6.4. In the sections below are pointed out the subfolders and their
purpose.

A.1.1 DOCUMENTATION
In the folder, DOCUMENTATION is the documentation for the whole module.

• full_documentation.pdf

• user_documentation.pdf

• technical_documentation.pdf

• thesis.pdf

and other files, for example, the CookBook.md with information on how to create
docker for the Traged module.

A.1.2 SQL
In the folder, SQL are contained *.sql files to create newly designed tables in the
thesis.

A.1.3 Evaluation
In the folder, Evaluation are codes for evaluation, measured data in
MEASURED\_DATA and the benchmark used for the evaluation.

A.1.4 TESTS
In the folder, TESTS are unit tests for comparators.

1The module is also part of the Videolyt-
ics code base and can be accessed through the
official project.
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A.1.5 configuration files
In the folder, configuration_files are JSON files with used configurations.

A.1.6 The rest of data
The rest of the folders are data, code and scripts for Traged, interdetections and
semantics description as described in the thesis and the documentation. The
code is commented, and if needed, the sub-folder contains README.md file with
information.
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