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Abstract
Image stitching is an essential technique for reconstructing volumes of biological samples
from overlapping tiles of electron microscopy (EM) images. Current volume EM stitching
methods generally rely on handcrafted features, such as those produced by SIFT. How-
ever, recent developments indicate that convolutional neural networks (CNNs) can improve
stitching accuracy by learning discriminative features directly from training images. Tak-
ing into account the potential of CNNs, this thesis proposes DEMIS, a novel EM image
stitching tool based on LoFTR, an attention-based feature matching network. The thesis
also proposes a novel dataset generated by splitting high-resolution EM images into grids
of overlapping image tiles. The dataset is used to fine-tune LoFTR and to evaluate the
DEMIS tool. Experiments on the synthetic dataset reveal higher feature matching accuracy
compared to SIFT. Moreover, experiments on challenging images with small overlap regions
and high resolution demonstrate significantly higher stitching robustness than SIFT. Over-
all, the results suggest that deep learning methods could be beneficial for EM imaging, for
example, by allowing the use of smaller tile overlaps.

Abstrakt
Sešívání obrázků je klíčovou technikou pro rekonstrukci objemů biologických vzorků z překrý-
vajících se snímků z elektronové mikroskopie (EM). Současné metody zpracování snímků
z EM k sešívání zpravidla využívají ručně definované příznaky, produkované například tech-
nikou SIFT. Nedávný vývoj však ukazuje, že konvoluční neuronové sítě dokáží zlepšit přes-
nost sešívání tím, že se naučí diskriminativní příznaky přímo z trénovacích obrázků. S ohle-
dem na potenciál konvolučních neuronových sítí tato práce navrhuje sešívací nástroj DEMIS,
který staví na pozornostní síti LoFTR pro hledání shodných příznaků mezi páry obrázků.
Dále práce navrhuje novou datovou sadu generovanou dělením obrázků z EM s vysokým roz-
lišením na pole překrývajících se dlaždic. Výsledná datová sada je použita pro dotrénování
sítě LoFTR a k vyhodnocení nástroje DEMIS. Experimenty na dané datové sadě ukazují, že
nástroj je schopen nalézt přesnější shody mezi příznaky než SIFT. Navazující experimenty
na obrázcích s vysokým rozlišením a malými překryvy mezi dlaždicemi dále poukazují
na výrazně vyšší robustnost oproti metodě SIFT. Dosažené výsledky celkově naznačují,
že hluboké učení může vést k prospěšným změnám v oblasti EM, například k umožnění
menších překryvů mezi snímanými obrázky.
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Rozšířený abstrakt
Sešívání obrázků je metoda pro spojování několika překrývajících se obrázků do jednoho
většího obrázku s širším zorným polem (FOV). Jedná se o klíčovou technikou pro rekon-
strukci objemů biologických vzorků v elektronové mikroskopii (EM). V EM je totiž běžné, že
se snímané vzorky nevejdou do FOV jediného mikroskopu. Často jsou proto vytvářena velká
pole překrývajících se obrázků, která je následně nutné sešít dohromady. Současné metody
pro zpracování snímků z EM k sešívání nadále využívají čistě tradičních postupů, jako
jsou korelace obrázků nebo hledání ručně definovaných příznaků, produkovaných například
technikou SIFT. V důsledku vazby na tradiční přístupy se však aktuální metody mohou
potýkat s problémy při zpracování obrázků s opakujícími se vzory, špatnou texturou či
vysokým rozlišením. Takové obrázky jsou ovšem v EM zcela běžné. Přesné sešívání tedy
zpravidla vyžaduje velké překryvy mezi sousedními obrázky, což snižuje efektivní rychlost
snímání a zvyšuje objem nasnímaných dat. Nedávný vývoj však ukazuje, že konvoluční
neuronové sítě dokáží zlepšit přesnost sešívání tím, že se naučí diskriminativní příznaky
přímo z trénovacích obrázků.

S ohledem na potenciál konvolučních neuronových sítí tato práce navrhuje DEMIS, nový
nástroj pro sešívání obrázků z EM založený na konvoluční neuronové síti LoFTR. LoFTR je
neuronová síť, která využívá konvolučních vrstev k extrakci příznaků z dvojic překrývajících
se obrázků. Mezi extrahovanými příznaky pak LoFTR detekuje shody pomocí pozornosti.
Na klasických fotografiích přitom shody detekované sítí LoFTR zpravidla dosahují vyšší
kvality než shody generované tradičními přístupy, hlavně pak v případě obrázků s opaku-
jícími se vzory či špatnou texturou. Využitím sítě LoFTR se tedy nástroj DEMIS snaží
zvýšit přesnost detekovaných shod a celkovou robustnost sešívání v porovnání s aktuálními
metodami používanými v EM.

Nástroj DEMIS na vstupu očekává pole překrývajících se snímků z EM a postupuje
následovně. Nejprve znormalizuje jas a kontrast všech snímků, aby zjednodušil následné
zpracování a co nejlépe zamaskoval přechody mezi dílčími snímky ve finálním sešitém
obrázku. Následně nástroj mezi každou dvojicí překrývajících se obrázků detekuje shodující
se příznaky pomocí sítě LoFTR. Podle nalezených shod jsou poté odhadnuty transformace,
které popisují vztahy mezi souřadnými systémy příslušných obrázků. Dále je sestaven
graf pro optimalizační metodu SLAM, který reprezentuje snímky sešívaného pole (vrcholy)
a odhadnuté transformace mezi nimi (hrany). Počáteční pozice vrcholů jsou nastaveny
s ohledem na očekávanou strukturu sešívaného pole. Transformace v grafu jsou následně
globálně optimalizovány. Nakonec je celé vstupní pole sešito postupným aplikováním opti-
malizovaných transformací na odpovídající dílčí snímky.

Dále práce navrhuje novou datovou sadu DEMIS, vytvořenou z ručně vybraných snímků
z EM s vysokou kvalitou a vysokým rozlišením. Sada je generována dělením vybraných
obrázků do polí překrývajících se dlaždic o velikosti 1024×1024 pixelů. V rámci generování
jsou rovněž na každou dlaždici aplikovány následující transformace: náhodné změny jasu
a kontrastu, náhodné posunutí vůči předcházející dlaždici, náhodná rotace kolem středu
dlaždice, přidání Gaussova šumu. Výsledná syntetická datová sada obsahuje celkem 10 883
jednotlivých dlaždic, přičemž 8339 z nich bylo generováno z obrázků získaných z veřejně
dostupných zdrojů.

Nástroj DEMIS byl experimentálně vyhodnocen na 1306 evaluačních obrázcích z da-
tové sady DEMIS a na dvou datových sadách reálných obrázků z EM s vysokým rozli-
šením a malými překryvy poskytnutých firmou TESCAN 3DIM. V experimentech byla
porovnávána tři různá řešení pro sešívání snímků z EM: (1) varianta nástroje DEMIS, která
místo sítě LoFTR využívá tradiční přístupy založené na metodě SIFT, (2) nástroj DEMIS,



jenž využívá síť LoFTR s oficiálními předtrénovanými vahami, a (3) nástroj DEMIS, který
používá síť LoFTR dotrénovanou na datové sadě DEMIS. Experimenty se sadou DEMIS
ukazují, že dotrénovaná varianta nástroje DEMIS generuje přesnější shody mezi příznaky
než varianta používající SIFT. Experimenty na datech poskytnutých firmou TESCAN 3DIM
pak poukazují na výrazně vyšší robustnost řešení využívajících k detekci shod mezi obrázky
síť LoFTR. Dosažené výsledky celkově naznačují, že hluboké učení a neuronové sítě mohou
vést k prospěšným změnám v oblasti EM, například k umožnění menších překryvů mezi
snímanými obrázky a odpovídajícímu zvýšení rychlosti snímání.

Práce byla vypracována ve spolupráci s firmou TESCAN 3DIM a prezentována na stu-
dentské konferenci Excel@FIT 2023, pořádané Fakultou informačních technologií Vysokého
učení technického v Brně. Výsledné zdrojové kódy jsou veřejně dostupné online prostřed-
nictvím repozitáře PSilling/demis na platformě GitHub.
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Chapter 1

Introduction

Image stitching is the process of combining multiple overlapping images to create a compos-
ite image with a wider field of view (FOV). It is an essential technique for 3D reconstruction
in volume electron microscopy (EM), where large arrays of overlapping images are produced
to capture samples that do not fit under the FOV of a single microscope. Current volume
EM stitching methods are based purely on traditional approaches and handcrafted fea-
tures, such as those produced by SIFT. Consequently, they may struggle with repetitive
patterns, poor texture, and high-resolution images – all of which are common in volume
EM. Hence, accurate stitching often requires large image overlaps, which slows down the
speed of imaging and increases data storage requirements.

Motivated by the above issues and recent advances in feature detection and matching
using convolutional neural networks (CNNs), this thesis proposes DEMIS, a novel EM
image stitching tool based on LoFTR, an attention-based feature detection and matching
network. Using LoFTR, the DEMIS tool aims to increase the accuracy of detected feature
matches and the overall robustness of EM image stitching.

The DEMIS tool works as follows. First, the brightness and contrast of raw image tiles
in the stitched image grids are normalised. Second, for each pair of adjacent images, features
are detected and matched by LoFTR. Subsequently, a SLAM graph is constructed based
on the expected grid structure and transformations estimated from the detected feature
matches. The transformations in the graph are then optimised globally. Finally, the grid
is stitched by gradually applying the optimised transformations to individual image tiles.

Furthermore, this thesis proposes a novel synthetic dataset created from manually se-
lected high-quality EM images with high resolution. The dataset is generated by splitting
the selected images into grids of overlapping image tiles 1024×1024 pixels in size. Addition-
ally, random brightness and contrast adjustments, random rotation and translation, and
Gaussian noise are applied to each tile. The synthetic dataset is used to fine-tune LoFTR
on EM images and to evaluate the DEMIS tool.

The experiments on the synthetic dataset show that the DEMIS tool generates more
accurate feature matches than a comparable method based on SIFT. Moreover, experiments
with the DEMIS tool on challenging images with small overlap regions and high resolution
demonstrate significantly higher stitching robustness than SIFT. Overall, the results suggest
that deep learning methods could be beneficial for EM imaging, for example, by allowing
the use of smaller tile overlaps and, consequently, increasing imaging speeds.

This thesis was developed in collaboration with TESCAN 3DIM and presented at
Excel@FIT 2023, a student conference held by the Faculty of Information Technology, Brno
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University of Technology. The resulting source codes are publicly available through the
DEMIS GitHub repository1.

The rest of this thesis is organised as follows. First, volume electron microscopy and
its relationship to image stitching are described in Chapter 2. Second, traditional image
stitching methods are introduced in Chapter 3. Then, existing deep learning approaches
to image stitching are discussed in Chapter 4. Chapter 5 follows by presenting the novel
synthetic dataset of EM images. Next, the DEMIS image stitching tool is proposed in
Chapter 6. Furthermore, the implementation of the DEMIS tool is described in Chapter 7.
The results of the experimental evaluation are discussed in Chapter 8. Finally, Chapter 9
summarises the thesis and suggests potential future work.

1DEMIS GitHub repository – https://github.com/PSilling/demis.
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Chapter 2

Volume Electron Microscopy

Visualisation and a deep understanding of the fine three-dimensional ultrastructure of bi-
ological samples, ranging from cells and their organelles to organ tissue, have long been
desired by many scientists. Due to the extremely small (nanometre) scale of biological
samples, achieving this objective became feasible only in the twentieth century with the
advent of electron microscopy (EM) [59]. However, early EM techniques required extensive
manual labour to prepare samples and reconstruct 3D structures after imaging. Conse-
quently, complex volumetric imaging could not have been realised until the development
of highly automated computer-assisted processes in the twenty-first century, such as the
stitching of partial EM images into composite ones, which is the main topic of this thesis.
Collectively, these novel methods established volume electron microscopy (volume EM), a
research field focused on high-resolution 3D tissue reconstruction [29].

Today, there are five main volume EM techniques, each with its own advantages and
disadvantages.1 For example, some destroy analysed samples during image acquisition,
while others do not. A brief overview of these methods, based on [29, 59], is provided
below. Furthermore, a visualisation of the underlying principles is presented in Figure 2.1.

• Serial section transmission electron microscopy (ssTEM) – sections of examined sam-
ples are placed on support grids and imaged with transmission electron microscopy.

• Electron tomography (ET) – reconstructs the volume of comparatively thick sample
sections by recording at multiple tilt angles.

• Serial block-face scanning electron microscopy (SBF-SEM) – thin layers of the studied
sample are repeatedly cut with a diamond knife and scanned in a highly automated
manner.

• Focused ion beam scanning electron microscopy (FIB-SEM) – functions similarly to
SBF-SEM, iteratively removing and imaging thin sample layers. However, FIB-SEM
removes material using a focused ion beam instead of cutting it with a diamond knife.

• Array tomography (AT) – images ribbons of sample sections positioned on a solid
surface with scanning electron microscopy.

Regardless of the chosen procedure, the general volume EM workflow remains the
same [29]. First, the target sample has to be prepared for imaging. Usually, this involves

1As a result of increasing demands for imaging speed, more techniques and enhancements, such as parallel
multi-beam scanning, are emerging as well [29]. However, these are not yet fully mature.
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Figure 2.1: Visualisation of the five main volume electron microscopy techniques: serial
section transmission electron microscopy (ssTEM), electron tomography, serial block-face
scanning electron microscopy (SBF-SEM), focused ion beam scanning electron microscopy
(FIB-SEM), and array tomography. The image was retrieved from [59].

fixation in aldehydes, staining with heavy metals (e.g., osmium), dehydration, and embed-
ding in resin. Depending on the microscopy technique, sectioning may also be required.
Second, the imaging itself is performed. Since samples often cannot fit in the field of view
(FOV) of a single microscope, this step generally produces a grid of slightly overlapping2

image tiles. An example set of overlapping image tiles can be seen in Figure 2.2. Moreover,
to capture volume information, imaging must be repeated at each position in the depth
dimension. Finally, the resulting stack of image grids needs to be combined to form a 3D
reconstruction of the studied sample.

To reconstruct the 3D structure, multiple steps are necessary [29]. The steps are illus-
trated in Figure 2.2. Because sample processing may frequently take several months, there
might be considerable differences in brightness and contrast between the retrieved images.
Consequently, the first step is typically some form of intensity normalisation. Second, un-
less the entire region of interest (ROI) of the sample fits in the microscope FOV, image tiles
at the same depth position have to be connected together. A common way to stitch the
image tiles is by identifying point correspondences between adjacent tiles. Subsequently,
alignment in the depth dimension is performed using similar methods. At this point, the
3D structure is fully reconstructed. Finally, image segmentation is applied to the recovered
volume to allow efficient extraction of biological information from the data. Segmentation is
often at least semi-automated (for example, with the help of machine learning). Therefore,
it may be followed by manual inspection and correction.

Overall, recent advances in microscopy technology have brought more automation to the
field, enabling more sophisticated volumetric imaging. However, while these developments
allowed large volumes to be analysed, they also introduced several new challenges to data
acquisition and processing [29]. For example, they increased the demand for high-capacity
data storage options since EM datasets regularly measure hundreds of terabytes in size.
Several such challenges are also related to image stitching, the third step of the volume
reconstruction workflow outlined in Figure 2.2 and the main focus of this thesis. These,
along with a more detailed description of image stitching itself, are presented in Section 2.1.

2While theoretically redundant under ideal conditions, overlaps are essential to guide further 3D recon-
struction. This is because current microscopes cannot yet guarantee perfect image alignment [59].
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Figure 2.2: Standard volume electron microscopy workflow. First, raw overlapping image
tiles are collected by an electron microscope. Second, the tiles are normalised to minimise
brightness and contrast differences. Next, tiles at the same position in the depth dimension
are stitched into single images, generally using point-to-point correspondences. Similarly,
the resulting images are then aligned in the depth dimension to form a valid volume. Finally,
data segmentation is performed. Further correction might be necessary as segmentation is
often automated. The image was acquired from [29].

2.1 Image Stitching in Volume Electron Microscopy

Image stitching is the process of combining multiple overlapping images to generate a new
image with a larger field of view (and higher resolution) [6]. Although its most well-known
applications are panorama imaging, digital mapping, and satellite imaging, image stitching
is also crucial for volume EM, as illustrated in Figure 2.2. This is because the size of the EM
image arrays created when imaging large biological samples can become rather extensive.
Hence, it would be extremely impractical to combine the produced image tiles manually.
Instead, image stitching is required to provide an ideally fully automated way to merge the
overlapping tiles together. However, even though image stitching is essential for volume
EM and many stitching tools are already available, such as ImageJ [58] and TrackEM2 [10],
several challenges remain. Since this thesis aims to overcome these challenges with the
help of novel deep learning methods, the remainder of this section briefly describes the
most common challenges in EM image stitching. The challenges are listed below. The
descriptions are inspired by the information provided by TESCAN 3DIM.

• The first challenge in EM image stitching arises directly from the nature of EM
imagery since, in volume EM, it is relatively common for images to have low-quality
texture. In more extreme cases, where the imaged samples cover only a tiny fraction
of the imaged area, the images may also be filled almost entirely with noise. Since
current image stitching methods generally rely on detecting key points of interest in
the stitched images [10, 43], both low-quality texture and noise can have a detrimental
effect on stitching quality. Examples of EM images with low-quality texture and high
amounts of noise are presented in Figures 2.3a and 2.3b, respectively.

• Second, differences in brightness and contrast between individual image tiles (de-
picted, for example, in Figure 2.3c) can also reduce the accuracy of current stitching

8



methods. While, as shown in Figure 2.2, this issue is largely mitigated by prior in-
tensity normalisation, it is improbable for brightness and contrast differences to be
completely eliminated. Therefore, EM stitching methods must be robust enough to
deal with such differences effectively.

• Finally, current image stitching tools require considerable image tile overlaps to en-
sure high-quality stitching results. Unfortunately, this further increases the generally
already large size of volume EM datasets and slows down the speed of image acquisi-
tion. Therefore, a compromise between stitching quality and imaging speed is usually
necessary. An example of an image pair with overlaps that are too small for current
stitching techniques to provide satisfactory results is displayed in Figure 2.3d.

In summary, current EM image stitching methods face challenges caused by low-quality
texture, noise, brightness and contrast differences, and small image tile overlaps. More
details on image stitching and how to potentially overcome these challenges are presented
in Chapters 3 and 4.
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(a) EM image depicting a poorly tex-
tured sample. The image was gener-
ated from [33].

(b) Sample EM image filled mostly
with noise. The image was obtained
from [11].

(c) A pair of overlapping EM image tiles with substantial brightness and
contrast differences. The tiles were generated from [8].

(d) A pair of EM image tiles with an extremely small 5% overlap. The
overlapping regions are separated by red lines. The images were provided
by TESCAN 3DIM.

Figure 2.3: Examples of challenging images that current EM image stitching methods may
struggle with.
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Chapter 3

Traditional Approaches to Image
Stitching

As described in Chapter 2, image stitching is a crucial technique for processing large arrays
of electron microscopy (EM) images. However, regardless of the application, traditional
image stitching follows the same general steps for processing individual pairs of overlapping
images: feature detection and description, feature matching, estimation of homography (or
of other less generic transformations), and image alignment and stitching. This chapter
explains these steps in detail and defines the current state-of-the-art of traditional im-
age stitching. In particular, the image stitching steps, along with various enhancement
techniques, are described in Section 3.1. Section 3.2 then reviews the state-of-the-art of
traditional feature-based image stitching. Finally, Section 3.3 analyses traditional image
stitching methods designed for EM imagery.

3.1 Fundamental Steps of Traditional Image Stitching

Image stitching can be defined as the process of constructing a new image I12 by register-
ing1 a source image I1 and a template image I2 into a shared coordinate system, aligning
their overlapping regions [63]. Doing so is only possible when a one-to-one mapping exists
between the coordinates of I1 and the coordinates of I2. In particular, this happens when
the capturing camera was (a) simply rotating around its optical centre, or (b) viewing a
planar surface from different positions [6]. Conventional image stitching methods try to
find the parameters of this mapping and use the solution to register the stitched images.

Since image stitching algorithms are among the oldest in computer vision [45], several
models of the relationship between stitched images exist nowadays. These include, but
are not limited to, direct pixel-to-pixel estimation methods based on gradient descent2,
approaches based on feature-matching, complete 3D motion modelling, and techniques util-
ising cylindrical or spherical coordinates [64]. Because this thesis focuses primarily on
image stitching aided by deep learning, this section does not try to provide an exhaustive
review of these diverse methods. Instead, the remainder of this section only briefly explains
the widely adopted (even in the context of deep learning) feature-based image stitching,

1Image registration – a technique for combining different images of the same area from different times,
views and camera sensors [68].

2Gradient descent – a method for minimising an objective function by moving in the direction opposite
of its gradient [5].
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Figure 3.1: Two overlapping EM images being stitched together. Since no post-processing
was applied, the resulting image has a non-rectangular boundary and visible brightness and
contrast differences, which form a seam between the two images. Both of these attributes
are characteristic features of stitched images. The image tiles were generated from [30].

which, generally, consists of four steps: feature detection and description, feature match-
ing, homography estimation, and image alignment and stitching [64]. Optionally, several
enhancement techniques, such as seam removal and image blending, might be applied as
well. A more complete overview of image stitching algorithms can be found, e.g., in [64]
or [68]. An example of the stitching of two EM images without any form of post-processing
or image enhancement is presented in Figure 3.1.

Feature Detection and Description

Local features are localised geometric entities that represent the containing image [1]. In
particular, individual points, corners, lines, and edges are all typical features. Since features
directly describe image content, they can be used to establish correspondences between
images, making them incredibly valuable in the context of image stitching. As a result,
the first step of most current image stitching algorithms is feature detection, which tries
to identify distinctive features of stitched images [64]. However, detecting features might
not be sufficiently robust by itself due to view variances between the stitched images.
Therefore, the image regions around the detected features need to be converted into feature
descriptors – a more stable format designed for matching against descriptors from different
images (i.e., for finding correspondences between them) [64].

One of the most well-established local feature detection and description methods is the
scale-invariant feature transform (SIFT) [41]. SIFT begins by identifying candidate features
of the analysed image (also referred to as keypoints). It convolves the image with Gaussian
functions with gradually increasing scales and down-sampling rates, creating a pyramid
of blurred images. Adjacent Gaussian images are then subtracted to form a difference-of-
Gaussian (DoG) pyramid. Local extrema in the DoG pyramid (scale-space) are selected as
potential features. Next, location and scale are assigned to each candidate feature according
to its neighbourhood. Furthermore, extrema along edges or with low contrast are rejected to
ensure stability against noise. Subsequently, orientations are calculated for each feature by
analysing Gaussian-weighted gradients in their vicinity. Finally, the features are described
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Image gradients Keypoint descriptor

Figure 3.2: A visual representation of SIFT feature description. First, gradient magnitudes
and orientations are computed around the feature location (left) and weighted by a Gaussian
window (blue circle). Afterwards, the gradient samples are accumulated into eight-bin
orientation histograms summarising the contents of 4 × 4 subregions (right). The image
was obtained from [41].

by an eight-bin orientation histogram which accumulates gradients in 4 × 4 subregions
around their locations, as shown in Figure 3.2.

Overall, the above process makes SIFT features quite robust as they end up being
translation, scale, and rotation invariant [41]. However, detecting SIFT features is compu-
tationally expensive compared to other methods, which are summarised in Section 3.2 [68].
Moreover, as a traditional feature detection method, SIFT may fail to detect a sufficient
number of features when used under the challenging conditions described in Section 2.1.
The potential ways to overcome this limitation with the help of deep learning are presented
in Chapter 4. SIFT features of the two EM images from Figure 3.1 are highlighted in
Figure 3.3.

Feature Matching

After identifying features of the stitched images, it is necessary to match them, i.e., de-
termine which features of I1 are also located in I2 and where. The most straightforward
strategy would be to compare the feature descriptors of I1 against all feature descriptors
of I2 using a suitable distance metric3 and obtain the nearest neighbours in feature space.
However, while this method is easy to implement, it scales quadratically with the expected
number of features, making it too computationally expensive for some applications [63].
Therefore, more efficient matching algorithms utilising indexing structures, such as multi-
dimensional search trees and hash tables, can be devised to decrease the number of required
feature comparisons [64].

Moreover, since many feature matches are expected to be false positive, i.e., incorrectly
established (generally due to background noise), it might be essential to discard as many
invalid matches as possible [41]. A common heuristic for false positive detection is the
nearest neighbour distance ratio (NNDR) [44], which compares the distance between the

3For SIFT features, Euclidean distance measurement should be used [41].
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(a) Left image features (b) Right image features

Figure 3.3: SIFT features [41] (represented by green circles) detected in the two stitched
images from Figure 3.1. To preserve visual clarity, only 500 features are displayed in each
image (features in the overlapping region were preferred). Most features were discovered
near corners and edges.

nearest and second nearest neighbours of each feature. Formally, the NNDR can be defined
as

NNDR =
‖DA −DB‖

‖DA −DC‖
, (3.1)

where DB is the first and DC the second nearest neighbour of descriptor DA. If the NNDR
for DA is below a specified threshold, the corresponding feature match can be discarded.
This process is commonly known as ratio testing. With adequate threshold levels (for SIFT
generally around 0.8), the majority of false positives are removed, while valid matches
remain mostly unaffected [41].

The result can be seen in Figure 3.4. While several invalid feature matches are still
present even after applying the ratio test (some are not even in the overlapping regions),
the number of false positives decreased substantially. In fact, without ratio testing, the
number of incorrect matches would be several times higher than currently visible.

Homography Estimation

After constructing a set of feature matches, the mathematical relationship between the
stitched images needs to be modelled. Assuming the capturing cameras are rectilinear4, the
coordinates of I1 and I2 can be related by a perspective transform, which can be described
by a homography matrix H ∈ R

3×3 (often shortened as homography) [6, 63].
Let us consider a pair of matching points (e.g., features) in homogeneous coordinates

p̂1 = [x1 y1 1]T, p̂2 = [x2 y2 1]T, from I1 and I2, respectively. The homographic relation-

4Rectilinear camera – a camera with a lens that renders straight lines as straight without any apparent
curvature and distortion. [52].
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Figure 3.4: Matches established between SIFT [41] features of the stitched images from
Figure 3.1. Matching features (green circles) are connected by green lines. The nearest
neighbour distance ratio [44] heuristic was applied with the threshold set to 0.75 to eliminate
as many incorrect matches as possible. Despite that, several false positives remain.

ship between p̂1 and p̂2 can be represented as

p̂1 ∼ Hp̂2 =





h1 h2 h3
h4 h5 h6
h7 h8 1



 p̂2, (3.2)

where ∼ denotes equality up to scale [37, 68]. The inhomogeneous coordinates of p̂1, i.e.,
x1 and y1, can then be obtained using the following equations [68]:

x1 =
h1x2 + h2y2 + h3
h7x2 + h8y2 + 1

, (3.3a)

y1 =
h4x2 + h5y2 + h6
h7x2 + h8y2 + 1

. (3.3b)

Provided at least 4 match pairs are known (the homography matrix has 8 degrees of
freedom), the parameters of H can be estimated by the least squares method, that is, by
minimising the sum of squared residual errors, or by its more robust iterative variants [63].
However, while this approach is the most straightforward, issues might arise with excessive
amounts of incorrect matches [64]. Because false positives are generally quite common
during image stitching (as demonstrated in Figure 3.4), it is often better to first further
reduce the number of mismatches.

The most widely adopted technique for false positive elimination after ratio testing is
the random sample consensus (RANSAC) [19]. RANSAC is an iterative non-deterministic
algorithm that starts by selecting a random subset of n feature matches (for homography
estimation, n ≥ 4), which is used to instantiate the initial estimate of H. Using this esti-
mate, RANSAC determines the expected locations of the features of I2 in the coordinate
space of I1 (with the help of Equation 3.2) and calculates the number of feature correspon-
dences within a specified error margin (so-called inliers [64]). Subsequently, the random
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Figure 3.5: The feature matches from Figure 3.4 filtered by RANSAC [19]. All false positive
matches from Figure 3.4 are removed, while valid (inlier) matches remain present.

selection process is repeated N times, and the result is chosen as the subset of matches
with the largest number of inliers. The result is then used to generate the final estimate of
H (e.g., with the help of least squares) [64].

The effectiveness of RANSAC is illustrated in Figure 3.5, which shows the inliers de-
tected by RANSAC when used on the matches from Figure 3.4. As opposed to Figure 3.4,
no false positive matches are visible. Consequently, the estimation of the parameters of H
should remain stable.

Image Alignment and Stitching

After computing the homography matrix H, the coordinate systems of images I1 and I2
can be aligned with each other by applying (3.2) on all points in I2. The stitching itself can
then be performed simply by positioning the registered images on a new image with a wider
view5, and by giving precedence to either I1 or I2 for shared pixels from the overlapping
area. Assuming the images from Figure 3.5 and render priority given to the left image
(i.e., image I1), the stitching result would be identical to the one presented in Figure 3.1.
However, as demonstrated in Figure 3.1, this approach may lead to visible seams between
the stitched images due to illumination differences (even if the stitching was otherwise
correct). Considering that humans are highly sensitive to discernible image seams, it might
be preferable to also apply seam removal methods [68].

The simplest seam removal techniques are based on pixel weighting, which calculates
the pixel values I12(x, y) from the overlapping area of I12 as

I12(x, y) = αΩ1(x, y) + (1− α)Ω2(x, y), (3.4)

where α ∈ 〈0, 1〉 is a weight coefficient, and Ω1(x, y), Ω2(x, y) are the pixel values of
registered images I1, I2 at coordinates [x, y]T in the overlapping region Ω, respectively [68].

5In the worst case scenario, the dimensions of the final image, i.e. image I12, are constrained by the sums
of the dimensions of I1 and I2 (assuming the transformation induced by H is correct).
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(a) Stitching without seam removal (b) Stitching with adaptive pixel weighting

Figure 3.6: Comparison of the stitching of the images from Figure 3.1 without any form of
seam removal and with adaptive pixel weighting. While brightness and contrast differences
can be observed in both images, the stitching seam is much less noticeable when pixel
weighting is applied.

Since fixed values of α, such as 0.5 (i.e., averaging), are not very effective, α is generally
adaptive, with pixels being weighted more heavily the closer to image centres they are [64,
68]. Figure 3.6 presents a comparison between the original stitching result and the result
with adaptive pixel weighting.

Additionally, it might be necessary to stitch more than just two images. However, the
general steps needed for multi-image stitching remain the same. The only difference is
the application of global optimisation methods, which minimise misalignments between all
pairs of stitched images [64]. Doing so is necessary to reduce the accumulation of image
registration errors during the stitching process, which could otherwise become too large.
For conventional images, bundle adjustment, a global optimisation technique that relies on
3D geometry, is generally used [64]. However, bundle adjustment is unnecessarily complex
for the stitching of standard arrays of EM images. Therefore, EM image stitching tools tend
to use simpler methods. A common approach is to construct a minimum spanning tree (for
example, using the Prim–Jarník algorithm [54]) from a graph in which nodes correspond to
image tiles and edges represent tile adjacency [12, 47]. The edges need to be weighted by
the quality of the estimated transformations that relate the corresponding nodes (i.e., image
tiles) together. However, other techniques, which once again optimise all transformations,
can be employed in EM image stitching as well [43]. With that in mind, this thesis proposes
to optimise the transformation parameters using graph-based simultaneous localisation and
mapping (SLAM) [21]. The proposed solution is described in Chapter 6.

3.2 Current State of Feature-Based Image Stitching

This section provides a brief overview of the current state-of-the-art in conventional feature-
based image stitching. The review was inspired by [25, 42, 68].

Feature-based image stitching methods generate a sparse set of features to establish
correspondences between the stitched images. Lowe et al. [41] introduced the most widely
used feature detection and description method to date, the Scale-invariant feature transform
(SIFT), described in detail in Section 3.1. PCA-SIFT [28] tries to improve the efficiency of
SIFT at a cost to robustness to scale by PCA dimensionality reduction [26]. Alternatively,
Speeded-up robust features (SURF) [3] presents a Hessian matrix-based technique to obtain
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faster evaluation time at the expense of accuracy. Additionally, KAZE [2] detects two-
dimensional multi-scale features in nonlinear scale spaces. Corner detectors, such as the
Harris operator [22] or the Features from accelerated segment test (FAST) detector [55],
can also be employed.

With these feature descriptors, image stitching can be performed by estimating homo-
graphy-based transformation models. The simplest but least robust approach is to evaluate
a single global homography [7]. To better handle more complicated scenes, it might be
beneficial to split the processed images into multiple separate planes. For example, Gao et
al. [20] proposed a dual-homography method, which divided input images into two dominant
planes (the ground plane and the distant plane). Furthermore, Lin et al. [40] utilised a pre-
calculated affine transform to generate a smooth affine stitching field. Unfortunately, these
methods may still fail in particularly complex scenes.

To further improve image stitching precision, local transformation algorithms have been
developed. In particular, As-projective-as-possible (APAP) [70] divided the images into
uniform meshes and estimated homographies for each mesh separately. Chang et al. [13]
then attempted to align the stitched images using a combination of projective and simi-
larity transformations. Building on this approach, Lin et al. [37] created a smooth stitch-
ing field to linearise the underlying homography and minimise perspective distortion. A
quasi-homography warping technique, which balanced the perspective distortion against
projective distortion in non-overlapping regions, was proposed in [35].

Furthermore, some methods optimise seams or mesh-based alignment between stitched
images. Zhang et al. [71] presented a seam-finding technique that considered both geometric
alignment and image content to better address parallax6 distortion. Lin et al. [38] enhanced
the previous method by weighting features according to their distance from the predicted
seam. To reduce distortion in the non-overlapping area, Chen et al. [14] formulated image
alignment as a constrained optimisation problem with a global similarity prior. Zhang et
al. [72] improved on [14] by adopting additional prior constraints. Hermann et al. [23]
attempted stitching with multiple registrations, each for a different image segment. Lee
et al. [32] then partitioned the input images into superpixels and warped each superpixel
adaptively using an optimal homography, alleviating parallax artefacts.

Additionally, other methods try to detect higher-level features, such as whole lines.
For example, Xiang et al. [69] guided warping using line features and a global similarity
constraint. Liao et al. [36] employed point and line features and emphasised alignment, dis-
tortion, and saliency of single-perspective warps. Finally, Jia et al. [25] divided the stitched
images into coplanar regions, resulting in more consistent line and point correspondences
in wide parallax images.

In general, traditional feature-based image stitching methods continue to suffer from
inconsistencies in more challenging situations, often caused by large amounts of stitched
images, parallax, or low-quality texture. Consequently, their performance in some practical
applications remains inadequate. Recent methods seek to alleviate this issue with deep
learning techniques, such as feature extraction using convolutional neural networks. Deep
learning approaches to image stitching are discussed in Chapter 4.

6Parallax – the displacement between the projected positions of a point on an image plane viewed from
different perspectives [57].
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3.3 Traditional Stitching of Electron Microscopy Images

This section reviews image stitching methods designed for EM data. Since the vast majority
of image stitching algorithms focus on generic panorama stitching, this is a comparatively
much less explored area of research [61, 68]. Nevertheless, several tools for stitching tiles of
EM images, and often also for constructing 3D volumes from the stitched images, exist.

One of the first and most commonly used such tools is ImageJ [58], a powerful image
processing tool tailored to scientific images. Specifically, for EM images, various ImageJ
plugins provide comprehensive stitching, registration, and visualisation utilities. The most
notable of the plugins is TrakEM2 [10], which incorporates a SIFT-based image stitching
algorithm. In contrast to that, the Microscopy Image Stitching Tool (MIST) [12], which
is also available as an ImageJ plugin, employed phase correlation [31] to compute image
registrations. Additionally, MIST estimated the mechanical stage model parameters (e.g.,
actuator backlash and camera angle) to minimise stitching errors.

More recently, standalone methods, often completely separate from ImageJ, were de-
veloped as well. For example, Ding et al. [34] proposed a novel image stitching technique
based on SURF feature detection [3] and PCA dimensionality reduction [26]. Evaluation on
ceramic EM images displayed slightly better performance than traditional SIFT stitching.
Moreover, Singla et al. [61] presented NanoStitcher, an EM image stitching tool combin-
ing the approaches from ImageJ and MIST. In doing so, Singla et al. minimised feature
detection issues in low-resolution images and phase correlation inconsistencies caused by im-
age intensity variations. However, these enhancements resulted in longer execution times.
Vescovi et al. [67] then introduced an end-to-end pipeline for stitching (performed with
TrackEM2), volume assembly, and segmentation of EM images. Furthermore, Mahalingam
et al. [43] proposed ASAP, the Assembly Stitching and Alignment Pipeline. ASAP targeted
high-resolution petascale datasets, processing them at rates that match microscope imag-
ing speeds. For stitching, ASAP employed SIFT feature detection aided by lens distortion
estimation. Finally, Alignment by Simultaneous Harmonization of Layer/Adjacency Regis-
tration (ASHLAR), a tool for stitching and registration of highly multiplexed images, was
presented in [47]. ASHLAR represented image tiles with an adjacency graph and utilised
phase correlation and minimum spanning tree construction to stitch the tiles together.

Overall, all of the above methods continue to rely on handcrafted features or similar
approaches. Consequently, they may have difficulty adequately addressing the challenges
of volume EM stitching described in Section 2.1. With that in mind, this thesis proposes
a novel EM image stitching tool, which attempts to improve stitching performance using
deep learning. The proposed solution is presented in Chapter 6.
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Chapter 4

Deep Learning Methods for Image
Stitching

Chapter 3 presented several conventional techniques for combining overlapping images into
a single composite image. However, these traditional image stitching methods have a sub-
stantial number of shortcomings. For example, stitching of images captured at significantly
different camera angles might result in noticeable parallax-induced blurring and ghost-
ing [42, 63]. Furthermore, feature-based approaches may fail to identify sufficient amounts
of interest points in areas with low-quality texture, repetitive patterns, or high intensity
variance [42, 62]. This could prove detrimental to applications where noisy and poorly tex-
tured images are common, such as volume electron microscopy (volume EM), introduced
in Chapter 2.

As outlined in Section 3.3, volume EM stitching methods may try to overcome feature
detection issues by using other stitching strategies, e.g., variants of phase correlation [31].
Unfortunately, while correlation approaches are generally faster and do not rely on fea-
tures, they are limited in terms of supported transformations [29, 47]. In particular, phase
correlation can adequately align only images that are translated relative to each other.
Rotation, scaling, and general affine transformations are much more difficult to process ap-
propriately. Moreover, intensity variations, another common phenomenon in volume EM,
might influence the stitching result to even greater extents [61].

As a consequence of the above issues, researchers have recently started turning towards
deep learning and convolutional neural networks (CNNs) in an effort to develop more robust
image stitching techniques [49]. Specifically, some works replace parts of the traditional
stitching pipeline from Section 3.1, namely feature detection and matching or the entire
homography estimation stage (including the initial feature analysis). These are described
in Sections 4.1 and 4.2, respectively. Section 4.3 then reviews a different class of deep
learning stitching approaches: complete end-to-end networks that directly generate the
final combined image. It should be emphasised that, compared to Chapter 3, we do not
discuss deep learning-based methods designed specifically for EM images. This is because,
to the best of our knowledge, no other published works have yet attempted to use deep
learning for EM image stitching.
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4.1 Learning-Based Feature Detection and Matching

The simplest approach to deep image stitching is to replace handcrafted feature detection
and matching with deep learning-based alternatives. In this scenario, the last two stages of
the traditional stitching pipeline from Section 3.1, i.e., homography estimation and image
alignment and stitching, remain unchanged. As proven by recent developments in image
processing, CNNs are prime candidates for such a task since they allow highly robust fea-
ture extraction [17]. For example, Shi et al. [60] propose a classical CNN-based architecture
for image stitching and achieve slightly better results than traditional approaches, such as
SIFT [41]. However, this architecture employs deep learning for feature detection only
and leaves feature matching to ordinary methods, which could significantly limit its per-
formance [56]. Additionally, it appears to be unnecessary to design a specialised CNN for
image stitching, since, in principle, any network capable of detecting features in pairs of
images can be used. Hoang et al. [24] reinforce this idea by successfully stitching images
while relying purely on a pre-trained feature extraction model.

In light of the above, it might be preferable to utilise well-established deep learning
frameworks for both feature extraction and matching. The pioneering works in this area
are SuperPoint [17] and SuperGlue [56] for feature detection and matching, respectively.
SuperPoint presents a fully convolutional feature extraction network that significantly out-
performs conventional techniques, especially on noisy images and under large illumination
changes. SuperGlue then builds on the output of SuperPoint, calculating feature matches
using an attentional graph neural network. Attention (introduced later in this section) was
chosen because of its ability to focus on both local and global relationships. Again, this
results in significant improvements over traditional methods (nearest neighbour distance ra-
tio testing [44] and RANSAC [19]), further demonstrating the advantages of learning-based
approaches. However, the fact that SuperPoint and SuperGlue are two completely sepa-
rate networks can have a negative impact on overall accuracy, especially in areas with less
texture or repetitive patterns [62]. To mitigate this issue, Sun et al. [62] propose LoFTR,
a unified network for the direct detection of feature matches between pairs of images. To

(a) SIFT: 85 matches (b) SuperGlue: no matches (c) LoFTR: 624 matches

Figure 4.1: Comparison of feature matching results between SIFT [41], SuperPoint [17]
with SuperGlue [56], and LoFTR [62] on an EM image with low-quality texture (sourced
from [33]). Matches are shown after outlier elimination using RANSAC [19]. LoFTR
managed to detect over seven times more inlier matches than SIFT, while SuperPoint with
SuperGlue found no matches at all.
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Figure 4.2: The architecture of LoFTR. LoFTR has four sequential components. First, a
local feature CNN extracts coarse-level feature maps F̃A, F̃B and fine-level feature maps
F̂A, F̂B from the input images IA, IB, respectively. Second, the coarse-level feature maps
are flattened to 1D vectors and positionally encoded. The encoded features are processed
by the main Local Feature Transformer module (LoFTR module), which contains several
self-attention and cross-attention layers. Next, a differentiable matching layer matches the
transformed features, generating the confidence matrix Pc. Coarse-level matches Mc are
selected using a confidence threshold and the mutual nearest neighbour criterion. Finally, a
local window is cropped from fine-level feature maps for each course-level match prediction,
and the final prediction set Mf is calculated. The image was retrieved from [62].

illustrate its effectiveness on images with poor texture, a comparison between SIFT [41],
SuperPoint and SuperGlue, and LoFTR is presented in Figure 4.1.

The remainder of this section provides a more detailed overview of LoFTR since LoFTR
is the backbone of the stitching solution proposed in Chapter 6. A complete description of
LoFTR can be found in [62].

Local Feature Transformer (LoFTR)

The Local Feature Transformer (LoFTR) [62] operates directly on pairs of input images,
extracting feature matches without the need for a separate feature detector. To this end,
LoFTR employs a convolutional backbone, a Transformer [66] with a combination of self-
attention and cross-attention layers, a differentiable matching layer, and a coarse-to-fine
refinement module. The architecture, illustrated in Figure 4.2, is described in detail in the
following.

Local feature extractor LoFTR follows the notion of using an established feature ex-
traction network as the backbone. In particular, given a pair of images IA and IB, the
images first pass through a standard feature pyramid network (FPN) [39], denoted as the
local feature CNN in Figure 4.2. The FPN extracts two types of features from the respective
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(a) Single encoder layer (b) Dot product attention (c) Linear attention

Figure 4.3: Computational graphs of a Transformer encoder layer, dot product attention,
and linear attention. The encoder layer features multi-head attention with h heads. Due
to kernel function alterations, the computational complexity is quadratic for dot product
attention, while being linear for linear attention. The images were obtained from [62].

input images: coarse-level features F̃A and F̃B, and fine-level features F̂A and F̂B. The
coarse-level features are extracted at 1/8 of the original image resolution, while the fine-level
features are extracted at 1/2 of the original resolution.

Local Feature Transformer module After feature extraction, the coarse-level features
F̃A and F̃B are flattened and processed by the Local Feature Transformer module (LoFTR
module), which makes the features dependent on position and context. The transformed
features are denoted as F̃A

tr and F̃B
tr in Figure 4.2. To achieve the transformation, each

element of F̃A and F̃B is first positionally encoded, receiving unique position information
in the sinusoidal domain. The acquired positional dependency allows LoFTR to operate on
mutually indistinguishable regions (e.g., walls) of the input images with higher accuracy.
The positionally encoded features are passed to a Transformer [66] encoder, which consists
of several sequential encoder layers. The architecture of a single encoder layer is shown in
Figure 4.3a.

Transformer encoder and attention The fundamental part of an encoder layer is the
attention layer. Its input vectors, generally known as the query, key, and value vectors,
function similarly to information retrieval from a database. In particular, the query vec-
tor Q retrieves information from the value vector V based on attributes given by the key
vector K. In its most well-known form, illustrated in Figure 4.3b, this process can be
formally described as the dot product attention [62]:

attention(Q,K, V ) = softmax(QKT)V. (4.1)
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Linear Transformer Let us denote the length of Q and K as N . Then, the compu-
tational complexity of the original dot product attention is O(N2). This is impractical
since even at the coarse-level resolution the length of the input features can be rather large.
Therefore, LoFTR employs linear attention [27], which replaces the original softmax kernel
with the similarity function sim(Q,K) = φ(Q) · φ(K)T, where φ(·) = elu(·) + 1 [62]. As
a result of this change, linear attention reduces the computational complexity of attention
to O(N), achieving up to several thousand times faster speeds on long input sequences at
negligible costs to network performance [27]. Figure 4.3c displays the computational graph
of linear attention.

Self-attention and cross-attention To complete the transformation module, Nc pairs
of so-called self-attention and cross-attention layers are sequentially stacked. These linear
attention layers differ only in the type of input features fi and fj they process: self-attention
layers use features from the same image (either IA or IB) for both fi and fj , while cross-
attention layers use features from both images.

Coarse-level matching After obtaining the transformed features F̃A
tr and F̃B

tr , LoFTR
attempts to extract high-confidence matches. First, a score matrix S, representing all
possible feature matches, is calculated between the transformed features. If we denote the
number of features in F̃A

tr and F̃B
tr as NA and NB, respectively, then the score matrix

S ∈ R
NA

×NB
can be obtained as

Si,j =
1

τ
· 〈F̃A

tri
, F̃B

trj
〉, ∀1 ≤ i ≤ NA, ∀1 ≤ j ≤ NB, (4.2)

where 〈·, ·〉 is the inner product and τ is a coefficient.
Second, LoFTR uses a dual-softmax operator1 to calculate the matching probability

matrix Pc ∈ R
NA

×NB
:

Pci,j = softmax(Si,·)j · softmax(S·,j)i, ∀1 ≤ i ≤ NA, ∀1 ≤ j ≤ NB. (4.3)

Intuitively, LoFTR obtains the probability of a pair of features being mutual nearest
neighbours in the score space by applying softmax in both dimensions of S separately.

Finally, coarse-level matches Mc are selected as matches that satisfy the mutual nearest
neighbour criterion and have a confidence score higher than a specified threshold.

Coarse-to-fine refinement After identifying matches at the coarse level, they need to
be refined to the original input image resolution to achieve higher precision. To this end,
LoFTR crops windows of size w × w from the fine-level feature maps F̂A and F̂B for
each coarse match. In particular, windows around the estimated fine-level position (̂i, ĵ)
of each coarse match (̃i, j̃) ∈ Mc are cropped. The feature windows are then transformed
by a secondary LoFTR module (smaller, with only Nf < Nc pairs of self-attention and
cross-attention layers). For each (̂i, ĵ), this yields two transformed feature maps: F̂A

tr
î

and

F̂B
tr

ĵ
, centred around pixels î and ĵ, respectively. Subsequently, the central vector of F̂A

tr
î

is

correlated with the vectors in F̂B
tr

ĵ
, producing a distribution of match probability between

1Additionally to dual-softmax, LoFTR supports matching with an optimal transport layer as in [56].
However, the performance differences between the two are generally negligible [62].
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the pixels in the neighbourhood of ĵ and the pixel î. The final fine-level matching pixel
ĵ′ from IB can be obtained by computing the expectation over the resulting distribution.
Finally, all refined matches are combined to form the fine-level set of matches Mf , which
represents the final output of LoFTR.

Supervision LoFTR is trained in a fully supervised manner, with losses for both the
coarse and fine resolutions. The coarse-level loss calculates the negative log-likelihood
over the matching probability matrix Pc. The ground truth labels for Pc are generated
automatically from camera poses and depth maps attached to the training images. The
fine-level loss is based on the standard `2 loss.

In general, LoFTR and other learning-based feature detection and matching techniques
provide a robust, yet relatively simple approach to deep image stitching. Hence, compared
to the methods introduced in Sections 4.2 and 4.3, methods that only replace the traditional
feature detection and matching stages are extremely versatile. Consequently, they can also
be used for many other computer vision tasks in addition to image stitching, such as pose
estimation [56, 62].

4.2 Methods Using Deep Homography Estimation

The second approach to deep image stitching is deep homography estimation. In principle,
deep homography estimation is rather similar to the learning-based feature detection and
matching methods introduced in Section 4.1. However, instead of replacing only the initial
two feature processing stages of the traditional stitching pipeline, deep homography esti-
mation techniques go one step further and try to directly compute a homography relating
a pair of input images together. As described in Section 3.1, the resulting homography can
then be used to perform image alignment and stitching of the input images.

The idea of deep homography estimation was first proposed by DeTone et al. [16] and
their HomographyNet (shown in Figure 4.4). HomographyNet starts by stacking two input
images channel by channel. Then, the stacked images pass through eight convolutional
layers. Finally, two fully connected layers regress the eight parameters of the estimated
homography.

Although the above architecture is relatively straightforward and suitable only for small
images, experiments in [16] already suggest slightly better performance than traditional

Figure 4.4: HomographyNet [16], a CNN for direct estimation of a homography relating
two input images together. The estimation is done by standard regression of the eight
parameters of the homography. The image was acquired from [16].
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methods. However, these performance improvements do not necessarily translate to im-
age stitching, because simple channel-wise image stacking might be insufficient for images
with small overlaps [74]. Therefore, Zhao et al. [74] instead propose correlating the fea-
tures extracted from the input images. Moreover, they suggest a coarse-to-fine homography
estimation strategy, in which they first retrieve a rough estimate of the required homog-
raphy. The rough estimate is then iteratively refined at progressively higher resolutions.
These modifications enable the network to handle most image stitching tasks better than
SIFT [41] with RANSAC [19]. This is especially true for images with poor texture or repet-
itive patterns [74]. The effectiveness of the coarse-to-fine correlation approach is further
evidenced by Nie et al. [50], who adopt a similar strategy and also obtain higher accuracy
compared to SIFT with RANSAC.

Overall, deep homography methods can achieve superior performance with increased
robustness compared to traditional approaches. However, since these networks directly
estimate homography parameters, they may learn to expect more complex image transfor-
mations than those generally found in applications such as volume EM. Therefore, these
methods could be unnecessarily difficult to adapt to EM images, as even rigid transforma-
tions tend to be more than sufficient for EM images [47].

4.3 End-to-End Deep Image Stitching Networks

The last and currently least explored deep image stitching approach is stitching via end-
to-end neural networks. This is a particularly challenging task since it integrates feature
detection and matching, homography estimation, and image alignment and stitching di-
rectly into CNNs [48]. Therefore, multistage networks are adopted to perform end-to-end
stitching in an attempt to decompose the problem into smaller parts.

The first completely end-to-end stitching network was proposed in [48]. However, this
network contains fully connected layers. Consequently, it cannot handle images with arbi-
trary resolutions. To mitigate this issue and improve the overall performance of the original
network, Nie et al. presented UDIS [49]. The architecture of UDIS is shown in Figure 4.5.

Figure 4.5: The architecture of UDIS [49]. First, a homography that relates two input
images together is estimated using the homography estimation network from [50]. Second,
the images are separately aligned according to the estimated homography. Then, a low-
resolution hourglass network calculates the deformation needed to complete the stitching at
a coarse level (top right). Finally, the coarse deformation is refined to the original resolution
by a fully convolutional network (bottom right). The image was retrieved from [49].
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(a) Traditional pipeline (b) UDIS

Figure 4.6: Comparison of stitching using the traditional pipeline from Section 3.1 and the
end-to-end UDIS [49] network. Black spot artefacts (highlighted by the red rectangle) can
be seen in the image stitched by UDIS. The stitched images were generated from [18].

UDIS is divided into two primary stages. The first stage, unsupervised coarse image
alignment, utilises the coarse-to-fine correlation network from [50] to compute a homography
that relates a pair of input images together. The homography is then used to coarsely align
the input images. This produces two images with a shared coordinate system, which are
fed into the unsupervised image reconstruction stage. The reconstruction stage generates
the final stitched image in a coarse-to-fine manner. In particular, an hourglass network
first learns the deformation required to stitch the images at a lower resolution. The coarse
stitching estimate is then refined to the original resolution by a high-resolution refinement
branch composed entirely of convolutional layers. In doing so, the reconstruction stage
attempts to correct any misalignments caused by the initial coarse alignment stage. Such
corrections are crucial for many real-life applications and are the main potential benefit of
end-to-end stitching networks. This is because a single homography can only accurately
describe a transformation between images at the same depth [49].

Unfortunately, while UDIS demonstrates promising results compared to both traditional
and other deep learning methods, it has one major downside that limits its applicability.
Due to its generative nature, it may produce visible artefacts, such as black spots, in the
stitched images (especially at higher resolutions). An example of such artefacts can be seen
in Figure 4.6. This shows that more research is needed before end-to-end stitching networks
can be employed in areas where image precision is essential, such as volume EM. Hence,
other learning-based approaches should be preferred in such scenarios.
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Chapter 5

Proposed Synthetic Electron
Microscopy Stitching Dataset

Data are a crucial part of any machine learning task. Unfortunately, when it comes to
electron microscopy (EM), it is difficult to find a suitable and publicly available dataset
tailored towards image stitching (described in detail in Chapter 3). In general, EM datasets
are intended for biological research [65] or other image processing tasks, such as pre-training
for image segmentation models [15]. These datasets are composed of already stitched images
or individual image tiles that did not require stitching in the first place. Hence, they lack
the training metadata required for image stitching. To the best of our knowledge, the only
stitching-focused EM dataset is proposed in [12] for evaluating MIST. However, this dataset
is not intended for machine learning tasks and only contains images related to stem colony
growth, making it rather domain-specific.

With respect to the above, this chapter proposes a novel synthetic dataset, the Deep
Electron Microscopy Image Stitching (DEMIS) dataset, designed specifically with EM image
stitching in mind. The dataset is generated programmatically from a manually selected set
of publicly1 available high-resolution EM images. The image selection process is described
in Section 5.1. Each of the selected images is divided into a grid of overlapping tiles, and
randomised image transformations are applied to each tile. The tile generation procedure
is presented in Section 5.2.

5.1 Selecting Images for the Synthetic Dataset

To support further research in the area of EM image stitching, images for DEMIS were
selected primarily from public sources of EM images. In particular, two online databases
of EM images were used: the Electron Microscopy Public Image Archive (EMPIAR)2 and
The Cell Image Library (CIL)3. Examples of selected images are shown in Figure 5.1.

Both EMPIAR and CIL provide a place for researchers to share their volume EM images
with other researchers and the general public (EMPIAR is focused specifically on volume
EM imagery, while CIL allows images captured by other methods as well). However, while
EMPIAR and CIL both provide an extensive collection of EM images, it is important

1Some images were provided by TESCAN 3DIM. However, these were used only for training purposes
and will not be a direct part of this thesis.

2EMPIAR – https://www.ebi.ac.uk/empiar/.
3CIL – http://cellimagelibrary.org/.
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(a) Example image selected from EMPIAR [33]. (b) Example image selected from CIL [9].

Figure 5.1: Sample images from EMPIAR and CIL selected for the DEMIS dataset. These
images were further divided into grids of overlapping images as explained in Section 5.2.

to respect the variety of different acquisition methods used in volume EM (summarised
in Chapter 2). Additionally, imaging defects and noise can also complicate the selection
process. Consequently, all images for the DEMIS dataset were selected manually. During
the selection, several rules were followed:

• Only images with a resolution of at least 2048 × 2048 pixels were considered. This
guarantees that high-resolution images can be generated during the subsequent split-
ting into grids of overlapping image tiles, which is crucial to mimic the high-resolution
imagery typical of volume EM.

• For an image to be selected, it had to contain its imaged sample in the vast majority
of its area (ideally all of its area, as demonstrated, for example, in Figure 5.1b). This
ensures that the DEMIS dataset will be rich in relevant EM image content.

• Although similar images were allowed to a certain degree (especially when the overall
image quality was high), variety in types of imaged samples and imaging techniques
was strongly preferred. Some differences in image content are illustrated in Figure 5.1.

Using the rules presented above, a total of 424 individual EM images (259 from EM-
PIAR, 165 from CIL) from 36 different public EM imaging projects were selected as the
basis for the DEMIS dataset. Additionally, 172 high-quality and high-resolution EM im-
ages were kindly provided by TESCAN 3DIM, making the total number of source images
available for the DEMIS dataset 596. However, the images provided by TESCAN 3DIM
will not be publicly available as part of this thesis. Hence, they were not used for evaluation
purposes to facilitate better reproducibility of the solution proposed in Chapter 6.

Each of the selected images discussed above was then further split into overlapping
image tiles. The image splitting process is outlined in Section 5.2.

5.2 Generating the Synthetic Dataset

This section provides details about the splitting of images selected for the DEMIS dataset
according to Section 5.1. Each of the 596 source images was split into as many overlapping
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Figure 5.2: The image from Figure 5.1b split into a grid of four overlapping image tiles of
size 1024 × 1024 pixels. The number of generated tiles depends on the resolution of the
source image.

image tiles of size 1024× 1024 pixels as the original image resolution allowed. An example
of the splitting can be seen in Figure 5.2. Each image tile was generated as follows. The
process is illustrated in Figure 5.3.

1. First, the initial pixel position of the tile in the original image is determined. The
position is decided primarily based on the resolution of the tile, the position of ad-
jacent tiles, and the base overlap between neighbouring tiles (set to 20% of the tile
resolution). Additionally, the starting position is shifted slightly in a deterministic
way to avoid the boundaries of the original image and to give space for further trans-
formations (described below). This shifting prevents the creation of black bars in the
generated tiles.

2. Second, the starting position is shifted on both axes by a uniformly generated random
translation. The maximum translation shift was set to 3% of the tile resolution.

3. Furthermore, the original image is rotated around the translated tile position in either
direction. To achieve this, a random rotation angle is generated using a uniform
distribution. The largest obtainable angle and the largest possible rotation relative
to the original orientation were both set to 5 degrees. The rotation angle of the first
tile is always 0.

4. Then, the image tile is cropped around the translated tile position from the rotated
source image.

5. Finally, the tile has Gaussian noise and randomised brightness and contrast changes
applied to it. The values corresponding to these transformations were generated
using Gaussian distributions with zero means and variances of 25, 75, and 0.0033,
respectively.

In total, the above method resulted in a total of 10 883 generated image tiles (8339
without images from TESCAN 3DIM), all of which were labelled by the respective tile
positions in the original image to allow use in deep learning-based image stitching. Of the
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1. Base 20% tile overlap 2. Random tranlation

3. Random rotation4. Random brightness, contrast, and noise

Figure 5.3: The splitting of a new tile (green) taken from the image presented in Figure 5.1a.
First, the starting position of the new tile is determined according to the base 20% overlap.
Then, random translation and random rotation are applied. Finally, the brightness and
contrast of the tile are randomly adjusted, and a small amount of Gaussian noise is added.

10 883 image tiles, corresponding to the complete set of 595 source images from Section 5.1,
8826 were selected for training (6282 without TESCAN 3DIM images), 751 for validation,
and 1306 for evaluation purposes.
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Chapter 6

Proposed Electron Microscopy
Image Stitching Tool

As discussed in Section 3.3, existing stitching tools for volume electron microscopy (EM)
images, such as ImageJ [58] and TrackEM2 [10], MIST [12], and ASHLAR [47], continue to
rely purely on variants of the traditional image stitching pipeline, presented in Section 3.1.
However, as described in Chapter 4, current deep learning methods promise improvements
in stitching performance and robustness compared to traditional approaches, which often
employ SIFT [41] features. Therefore, this chapter proposes a novel tool – the Deep Electron
Microscopy Image Stitching (DEMIS) tool – for stitching EM images using deep neural
networks that have shown satisfactory results on conventional images. To the best of our
knowledge, there have not yet been any published research works that try to apply deep
learning to stitch EM images. The stitching pipeline used by the DEMIS tool is displayed
in Figure 6.1, and the top-level algorithm that formalises the pipeline is briefly introduced
below and described in detail in Section 6.1.

First, DEMIS loads a set of raw EM images that form a grid of overlapping tiles. As
outlined in Section 2.1, the raw EM image tiles in the grid may suffer from brightness and
contrast inconsistencies, which could affect both the stitching accuracy and the quality of
the final result. Hence, DEMIS attempts to normalise both the brightness and contrast of
the loaded images to a predefined range.

Subsequently, DEMIS goes over all pairs of adjacent tiles (which should have a large
enough overlap to allow stitching) and detects and matches features between them. DEMIS
utilises these feature matches to estimate transformations that relate each of the image
pairs together. In this step, explained in Section 6.2, feature detection and matching are
performed by LoFTR [62] (described in Section 4.1), and transformation estimation is done
using OpenCV1. LoFTR is proposed as the deep learning technique of choice since, as
discussed in Sections 4.2 and 4.3, other deep learning stitching methods might introduce
unnecessarily complex image transformations or produce visible artefacts in the final image.
Since LoFTR was originally trained only on conventional image pairs, it is also suggested to
fine-tune LoFTR directly on EM images (specifically, on images from the DEMIS dataset
proposed in Chapter 5). The fine-tuning process is presented in Section 6.5.

Finally, the pairwise transformations are optimised globally using graph-based simulta-
neous localisation and mapping (SLAM) [21]. In particular, a graph of the stitched grid is
constructed, in which vertices represent images in the grid and edges the estimated pairwise

1OpenCV – https://opencv.org/.
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1. Raw image tiles 2. Intensity normalisation

3. Pairwise matching

4. Pairwise transformation

5. SLAM optimisation6. Grid stitching

Figure 6.1: The stitching pipeline of the proposed DEMIS tool. First, the brightness and
contrast of raw input images are normalised. Second, for each pair of adjacent images,
features are detected and matched by LoFTR [62]. The matches are then used to estimate
the initial transformations relating the adjacent images together. Subsequently, a SLAM
graph is constructed based on the expected grid structure and the estimated transforma-
tions. The transformations in the graph are then optimised globally. Finally, the grid is
stitched by gradually applying the optimised transformations to individual image tiles. The
image tiles were generated from [8].

transformations between them. The transformations in the graph are then optimised, and
the final composite image is created by gradually applying the transformations to images
in the grid. The SLAM optimisation and the construction of the composite image are
explained in Sections 6.3 and 6.4, respectively.

6.1 Top-Level Grid Stitching Algorithm

This section describes the top-level grid stitching algorithm used by the DEMIS tool. The
top-level algorithm is the entry point of the grid stitching process and, as such, directs the
execution of all the steps outlined by the pipeline in Figure 6.1. The top-level algorithm,
presented in Algorithm 6.1, expects to receive information about the grid of EM images to
stitch. This is represented by the mapping G, which maps 2D grid positions (that is, pairs
of row and column indices) to the corresponding images in the grid. The grid is assumed
to have gr rows and gc columns and to contain images w × h pixels in size. The complete
algorithm is explained below.
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Algorithm 6.1: Top-level EM image grid stitching
Input: Mapping G of 2D grid positions to stitched EM image tiles forming the grid

Width w and height h of images in G
Number of rows gr and columns gc in G
Expected tile overlap ratio o
Scaling factor s for feature detection and matching

Result: Images in G stitched into a single composite image

// Normalise brightness and contrast of all tiles
1: foreach (p, I) ∈ G do

2: I := normalise(I)

// Estimate transformations between adjacent tiles
3: T := map()
4: foreach (p1, I1) ∈ G do

// Let p1 = (r1, c1)
// Find positions of adjacent tiles in top-to-bottom, left-to-right order

5: A := ∅
6: if r1 < gr then

7: A := A ∪ {(r1 + 1, c1)}
8: if c1 < gc then

9: A := A ∪ {(r1, c1 + 1)}

// Estimate transformations to adjacent tiles
10: foreach p2 ∈ A do

11: I2 := G(p2)
12: T (p1, p2) := get_tile_transform(I1, I2, p1, p2, o, s)

// Optimise transformation estimates using SLAM
13: Topt := optimise_transforms(T,w, h, o)

// Stitch the grid using the optimised transformations
14: return stitch_grid(G, Topt)

First, Algorithm 6.1 iterates over all images in G and normalises their brightness and
contrast to a predefined range (Lines 1–2). Doing so ensures that brightness and contrast
inconsistencies, which are typical for EM images, do not negatively affect feature detection
and matching or the visual aspects of the final stitched image (e.g., by creating evident
image tile boundaries). To perform normalisation, contrast-limited adaptive histogram
equalisation (CLAHE) [53], implemented, e.g., by OpenCV, is proposed. Adaptive his-
togram normalisation is important, since, as shown in Figure 5.1, the content in different
parts of individual EM images can vary considerably.

Second, Algorithm 6.1 creates the mapping T of pairs (ps, pt) to pairwise tile transfor-
mations, where ps and pt represent the 2D grid positions of the source and target image tiles
of the transformations, respectively (Lines 3–12). In other words, T (ps, pt) is the transfor-
mation that relates the coordinate space of the image at position ps to the coordinate space
of the image at position pt. Initially, the mapping T is empty, which is symbolised by map()
on Line 3. T is then progressively built by iterating over each grid position p1 = (r1, c1)
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and its corresponding image I1 in G. For each (p1, I1) ∈ G, the following operations are
performed.

1. First, the positions of adjacent tiles in top-to-bottom, left-to-right order are found and
placed in the set A (Lines 5–9). For the top-to-bottom and left-to-right directions,
these are tiles at positions (r1 + 1, c1) and (r1, c1 + 1), respectively. Positions outside
the dimensions of the grid (given by gr and gc) are ignored.

2. For each position p2 ∈ A of an adjacent tile, the corresponding image I2 is then
located in the grid G. The image at position p2 is denoted by G(p2) on Line 11.

3. Finally, the transformation from I1 to I2 is estimated by get_tile_transform,
a function for estimating translational and rotational transformations using feature
matches produced by LoFTR [62] (Line 12). get_tile_transform is explained in
Section 6.2 and, apart from I1 and I2, requires two additional arguments: the ex-
pected overlap between neighbouring tiles o ∈ (0, 1〉, and the scaling factor s ∈ (0, 1〉
for feature detection and matching. These are configurable parameters of the grid
stitching process as a whole.

Subsequently, Algorithm 6.1 optimises the initial pairwise transformations from T glob-
ally to minimise transformation errors across the entire grid G, producing the optimised
mapping Topt (Line 13). It achieves this by constructing and optimising a SLAM graph
using the function optimise_transforms, introduced in Section 6.3.

Finally, with the help of the optimised transformations in Topt, Algorithm 6.1 stitches
all images in the grid G into a single composite image (Line 14). This is done by the func-
tion stitch_grid, described in Section 6.4, which gradually applies the transformations
from Topt to the corresponding images from G. The composite image is the final result of
Algorithm 6.1 and is the output of the DEMIS stitching tool.

6.2 Estimating Transformations Between Pairs of Images

This section follows the explanation of the top-level stitching algorithm discussed in Sec-
tion 6.1. In particular, it describes the function get_tile_transform (used on Line 12 of
Algorithm 6.1), which estimates the translational and rotational transformation from the
source image I1 to the target image I2. By applying the transformation, the coordinate
space of I1 can be shifted to that of I2 using the approach presented in Section 3.1. This is
because a transformation composed of translation and rotation is a special case of homog-
raphy. Translation and rotation are proposed as sufficient since, based on methods used
by other EM stitching tools [12, 47] and our discussions with TESCAN 3DIM, the general
perspective transformation is not necessary due to the nature and precision of EM imag-
ing. In fact, estimating the general homography could potentially introduce undesirable
perspective deformations instead.

The implementation of the function get_tile_transform is defined in Algorithm 6.2.
Since feature detection and matching – which are the core of the transformation estimation
itself – can require significant amounts of computation time and memory, the algorithm
first modifies the input images according to their expected overlap ratio o ∈ (0, 1〉, and the
resolution scaling factor s ∈ (0, 1〉. In particular, it first crops the input images according
to o, producing cropped images I ′

1
and I ′

2
that contain the expected overlapping regions of

I1 and I2, respectively (Lines 1–2). Then, Algorithm 6.2 rescales the resolutions of both
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Algorithm 6.2: Estimate transformation relating two overlapping image tiles
Input: Source image to I1 and target image I2 of the transformation

Positions p1 and p2 of I1 and I2 in the encompassing grid, respectively
Expected tile overlap ratio o
Scaling factor s for feature detection and matching

Result: Transformation from I1 to I2 composed of translation and rotation

get_tile_transform(I1, I2, p1, p2, o, s):

// Crop and rescale the overlapping regions
1: I ′

1
:= crop(I1, o, p1, p2)

2: I ′
2
:= crop(I2, o, p1, p2)

3: I ′
1
:= resize(I ′

1
, s)

4: I ′
2
:= resize(I ′

2
, s)

// Compute feature matches using the scaled overlapping regions
5: M := LoFTR(I ′

1
, I ′

2
)

6: correct matches in M to fit the original images

7: use M to estimate the translational and rotational transformation T12

8: return T12

I ′
1

and I ′
2

based on s (Lines 3–4). The cropping and scaling operations are denoted by
the functions crop and resize, respectively. The direction from which to crop the input
images can be determined from the relative positions p1 and p2 of I1 and I2 in the stitched
grid. For example, let us assume that I1 and I2 have a resolution of w × h pixels and that
I1 is on the left of I2. Then, I1 would be cropped from the right and I2 from the left, and
the final resolution of I ′

1
and I ′

2
would be (w · o · s)× (h · s) pixels.

Subsequently, Algorithm 6.2 employs LoFTR [62] to compute a set of matches M be-
tween I ′

1
and I ′

2
(Line 5). It also corrects the positions of the detected matches to fit the

original images I1 and I2 by reversing the cropping and resizing operations (Line 6). The
feature detection and matching technique used by LoFTR is described in Section 4.1. Since
the original LoFTR is trained on conventional images only, we propose to utilise a ver-
sion of LoFTR that is fine-tuned on EM images. The fine-tuning process is presented in
Section 6.5.

Finally, the corrected matches can be used to directly estimate the translational and
rotational transformation matrix T12 ∈ R

3×3 from I1 to I2 (Line 7). To handle this step, we
propose to utilise the RANSAC [19]-based affine transformation estimation implemented by
OpenCV (with the scaling factor removed since only translation and rotation are required).
Denoting the estimated translation shift on the horizontal and vertical axes as tx and ty,
respectively, and the estimated rotation angle by α, T12 can be constructed as

T12 =





1 0 tx
0 1 ty
0 0 1









cosα − sinα 0
sinα cosα 0
0 0 1



 =





cosα − sinα tx
sinα cosα ty
0 0 1



 . (6.1)

The matrix T12 provides the initial estimate of the transformation between I1 and I2
and serves as the final result of Algorithm 6.2. As outlined in Section 6.1, these estimates are
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Algorithm 6.3: Optimise pairwise transformations between grid tiles
Input: Mapping T of pairs of tile positions to transformations between them

Width w and height h of images in the grid corresponding to T
Expected tile overlap ratio o

Result: Mapping Topt of tile positions to globally optimised transformations

optimise_transforms(T,w, h, o):

1: w′ = w
2
, h′ = h

2

2: o′ = (1− o)

// Use the transformations in T to construct a SLAM graph
3: V := ∅, E := ∅ // Vertices and edges of graph (V,E)
4: foreach ((p1, p2),T12) ∈ T do

// Let p1 = (r1, c1), p2 = (r2, c2)
// Vertices represent tile position and angle (2D pose); initial angle is 0

5: vp1 := (w′ + (c1 − 1) · w · o′, h′ + (r1 − 1) · h · o′, 0)
6: vp2 := (w′ + (c2 − 1) · w · o′, h′ + (r2 − 1) · h · o′, 0)
7: V := V ∪ {vp1 , vp2}

// Edges represent changes in pose between vertices
8: transform T12 to the equivalent 2D pose e12
9: E := E ∪ {e12}

// Optimise the SLAM graph and compute the global transformations
10: optimise poses of vertices in (V,E)
11: pref := (1, 1) // Reference position
12: Topt := map()
13: foreach vp ∈ V do

14: (tx, ty, α)p := vp − vpref // Element-wise pose subtraction

15: convert (tx, ty, α)p to the equivalent transformation matrix Tp

16: Topt(p) := Tp

17: return Topt

further optimised globally by graph-based SLAM using the entire grid of stitched images.
The SLAM optimisation is presented in Section 6.3.

6.3 Global Optimisation Based on SLAM

Section 6.2 introduced the algorithm for estimating translational and rotational transfor-
mations between pairs of EM images in a two-dimensional grid. In principle, these trans-
formations could be used to stitch all images in the grid directly, e.g., by constructing a
minimum spanning tree (MST), as described in Section 3.1. However, while doing so might
be the most straightforward approach, grids of volume EM images may become rather large
(as explained in Chapter 2). Since the errors caused by the pairwise transformations can
accumulate during stitching (which could negatively impact the final image), it is crucial to
minimise the global error caused by all pairwise transformations combined. Therefore, this
section presents the function optimise_transforms (used on Line 13 of Algorithm 6.1),
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1. Base overlap-based graph 2. Globally optimised graph

3. Leveraging the graph to perform stitching

Figure 6.2: A SLAM graph corresponding to an image grid of size 3 × 3. In the graph,
vertices denote individual image tiles, and edges represent the estimated transformations
between them. Initially, the vertices are placed at positions determined based on tile
resolution and the expected overlaps. This is indicated by the regular shape of the base
graph (left). Afterwards, the vertex poses are optimised globally according to the estimated
pairwise tile transformations. The image grid corresponding to the transformations is shown
on the right. The image tiles were sourced from [4].

which optimises the pairwise transformations using graph-based SLAM. The transforma-
tions are represented by the mapping T of pairs of grid positions to the corresponding
transformations. Additionally, the function expects to receive the width w, height h, and
expected overlap ratio o of image tiles in the stitched grid. These variables are introduced
in Section 6.1. The function is described by Algorithm 6.3 and the SLAM optimisation is
illustrated in Figure 6.2.

Algorithm 6.3 starts by constructing a SLAM graph (V,E) that mirrors the expected
structure of the entire stitched grid (Lines 3–9). V and E denote the sets of vertices and
edges in the graph, respectively. Both V and E are built gradually by iterating over all
pairs of grid positions (p1, p2) and the corresponding transformation matrices T12 in T . In
each iteration, the following steps are conducted.

1. Vertices vp1 and vp2 , which represent the image tiles at positions p1 = (r1, c1) and
p2 = (r2, c2), respectively, are constructed and added to V (Lines 5–7). Each vertex is
characterised by its 2D pose – the estimated 2D position of the centre pixel and the ro-
tation angle of the corresponding image tile. For example, the vertex v = (100, 200, 3)
describes an image tile that (1) has its centre located at 100 pixels horizontally and
200 pixels vertically, and (2) is rotated 3 degrees to the right along its centre. Initially,
the centre positions for vp1 and vp2 are determined based on the tile resolution (w×h
pixels) and the expected overlap ratio o. The angles are assumed to be 0. In essence,
the initial poses correspond to the ideal case scenario, in which no misalignments
between tiles exist and the expected overlaps are precise. Formally, vp1 and vp2 can
be constructed as

vp1 = (w′ + (c1 − 1) · w · o′, h′ + (r1 − 1) · h · o′, 0), (6.2a)
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vp2 = (w′ + (c2 − 1) · w · o′, h′ + (r2 − 1) · h · o′, 0), (6.2b)

where w′ = w
2

, h′ = h
2
, and o′ = (1− o).

2. The edge e12, connecting vp1 to vp2 , is created from the transformation matrix T12

and added to E (Lines 8–9). The edge describes the estimated change in pose between
vp1 and vp2 . Hence, it can be constructed by extracting from T12 the horizontal and
vertical translation shifts tx and ty, respectively, and the rotation angle α (introduced
in Section 6.2). In particular, e12 is defined by the tuple (tx, ty, α)

2.

Then, after the graph (V,E) is constructed, the initial vertex poses are optimised with
respect to the pose change estimates of the edges connecting them (Line 10). For opti-
misation, we propose to use the graphslam3 library. During the optimisation, the vertex
corresponding to the tile at position pref = (1, 1), that is, the reference tile, has its pose pa-
rameters locked to the initial values from Equation 6.2. This ensures that the final stitched
image has a predictable structure (with the reference tile being parallel to both the horizon-
tal and vertical axes). Further details of the optimisation process used by graphslam are
beyond the scope of this thesis and are thus omitted for brevity. More details can be found,
for example, in [21]. As can be seen in Figure 6.2, after the optimisation, the graph loses
its idealistic regular structure (left). Instead, it begins to conform to the actual estimated
structure of the stitched grid, which is generally slightly deformed (middle).

Subsequently, the mapping Topt of the grid positions to optimised transformations is
generated from the optimised vertex poses (Lines 11–16). It should be noted that this
mapping has a different structure compared to the original mapping T since it is indexed
by individual tile positions, not pairs of tile positions. This is because it describes the global
transformations needed to directly convert the coordinate spaces of tiles in the stitched grid
to the coordinate space of the reference tile at position pref (as opposed to T , which instead
contains the local transformations between adjacent tiles). Topt, which is initially empty, is
constructed by iterating over each vertex vp (representing the tile at position p) in V and
performing the following steps.

1. The element-wise difference between the poses of vp and vpref is calculated (Line 14).
This yields the pose change estimate (tx, ty, α)p = vp − vpref , which defines the trans-
lation shifts tx and ty and the rotation angle α necessary to transform the coordinate
space of the tile at position p to that of the reference tile.

2. (tx, ty, α)p is then converted to the corresponding transformation matrix Tp using
Equation 6.1 (Line 14).

3. Tp is saved to Topt at position p, denoted as Topt(p) on Line 16.

Finally, the mapping Topt is returned as the final result of Algorithm 6.3. Afterwards,
the optimised transformations in Topt can be used to stitch all images in the grid into one,
as explained in Section 6.4.

2In addition to the estimated change in 2D pose, Gaussian prior distributions are associated with the edge
parameters. The variances of these distributions are configurable hyperparameters and should be selected
based on the quality and resolution of the stitched images. For the DEMIS dataset, the recommended
variances are 4 pixels for tx and ty, and 1 degree for α.

3graphslam – https://github.com/JeffLIrion/python-graphslam/.
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Algorithm 6.4: Stitch images in a grid into a single composite image
Input: Mapping G of 2D grid positions to stitched EM image tiles forming the grid

Mapping Topt of tile positions to globally optimised transformations
Result: Image IG composed of all images in G stitched together

stitch_grid(G, Topt):

// Create a blank target image
1: C := ∅
2: foreach (p,Tp) ∈ Topt do

// Let Cp be the set of all corners of image G(p)
3: transform all corners in Cp using Tp

4: C := C ∪ Cp

5: create a blank image IG large enough to fit all corners in C

// Stitch the tiles together
6: foreach (p,Tp) ∈ Topt do

7: Ip := G(p)
8: transform Ip using Tp

9: draw Ip on IG
10: return IG

6.4 Constructing the Final Composite Image

This section completes the description of the pipeline from Figure 6.1. It presents the
function stitch_grid from Line 14 of Algorithm 6.1, which constructs the final stitched
image. For that, the function requires the mappings G and Topt of grid positions to images
in the stitched grid and their globally optimised transformations, respectively. The function
is defined by Algorithm 6.4, which is described below.

First, Algorithm 6.4 generates a blank image IG that is large enough to fit all the images
in G after the transformations from Topt are applied (Lines 1–5). It starts by transforming
the corners of each image tile. In particular, it builds the set C of warped corner pixels
of all tiles. The set is initially empty. To fill the set, Algorithm 6.4 iterates over the tile
positions p and the corresponding transformation matrices Tp in Topt. In each iteration, it
creates the set Cp of all four corners of the image tile G(p) at position p and transforms
the coordinates of the corners in Cp using Tp (Line 3). The transformed corners are then
placed in C (Line 4). With the complete set of transformed corners, the required size of IG
can be determined by searching for the lowest and highest coordinate values in both the
horizontal and vertical directions (Line 5).

Afterwards, the initially blank target image IG is gradually filled with the stitched grid
(Lines 6–9). This is done by once again going over all the positions p and the corresponding
transformation matrices Tp in Topt. However, this time, the transformation matrix Tp is
applied to the entire image Ip = G(p) at the grid position p, not just to its corners (Lines 7–
8). Then – that is, when the coordinate space of Ip is converted to that of the reference
tile, as described in Section 6.3 – the transformed image Ip is drawn on IG (Line 9). When
drawing Ip on IG, any pixels already filled by previously drawn image tiles are simply
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(a) Pixel replacement (b) Pixel averaging (c) Adaptive pixel weighting

Figure 6.3: Comparison of different methods for processing pixels from overlapping regions
of adjacent tiles. The methods are described in Section 3.1. Noticeable blurring can be
seen when pixel averaging or adaptive pixel weighting is used. Hence, pixel replacement,
where pixels are selected from one of the overlapping tiles with priority, is proposed for EM
images. The source images were provided by TESCAN 3DIM.

replaced. This is because methods based on pixel weighting can cause significant blurring
due to the structure of EM images, as illustrated in Figure 6.3.

Finally, the complete image IG is returned (Line 10). This image, which contains the
entire stitched grid, is the result of the stitching process proposed by the DEMIS tool.

6.5 Fine-Tuning LoFTR on Electron Microscopy Images

The previous sections of this chapter described the stitching technique used by the proposed
DEMIS tool. As explained in Section 6.2, the core of the solution is the deep learning-based
feature detection and matching performed by LoFTR [62], introduced in Section 4.1. How-
ever, the original LofTR is trained only on conventional images (either indoor or outdoor
photographs). Although it is possible to use the original model directly on EM images due
to its high robustness, the performance might be limited as a result of differences in the
type of processed data. Therefore, in an attempt to improve feature-matching accuracy,
this section proposes to fine-tune LoFTR on EM images. Specifically, it proposes to lever-
age the training and validation images from the DEMIS dataset, presented in Chapter 5.
The rest of this section describes the process of converting the labels of images from the
DEMIS dataset to a format that is expected by LoFTR.

As outlined in Section 4.1, LoFTR requires the relative camera poses between pairs
of overlapping images – defined by the intrinsic and extrinsic camera matrices4 – and the

4The intrinsic matrix describes the transformation from the 3D camera space to the space of 2D pixel
coordinates, while the extrinsic matrix defines the position and orientation of the camera in the original 3D
space [64].
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corresponding depth maps to construct its internal ground truth labels. This approach is
not directly compatible with the DEMIS dataset, which contains only the positions and
rotation angles of the tiles generated from each source EM image. Therefore, the following
steps are performed to obtain the labels expected by LoFTR.

First, since no depth information is provided for the images in the DEMIS dataset, the
training depth maps are filled with a constant value. In other words, all segments of the
images are assumed to be imaged at exactly the same depth. This approach is acceptable
because of the inherent nature of electron microscopy imaging.

Second, the extrinsic matrices are created based on differences in translation and ro-
tation between all pairs of adjacent tiles in the DEMIS dataset. Since, as presented in
Section 5.2, the first image tile in each grid has no rotation applied to it, it can be used as
a reference point for all other tiles. In particular, let us assume that the first image tile in a
grid, denoted as I0, is translated by tx0

pixels horizontally and ty0 vertically. Furthermore,
let us assume that the tile I1 from the same grid is translated similarly by tx1

and ty1 pixels,
respectively, and rotated by α1 degrees along its centre. Let us also denote the width and
height of the tiles as w and h, respectively. Then, the transformation matrix T10 from the
coordinate space of I1 to the coordinate space of I0 can be calculated as

T10 =





a b (1− a) · cx − b · cy
−b a b · cx + (1− a) · cy
0 0 1









1 0 ∆x
0 1 ∆y
0 0 1



 , (6.3)

where ∆x = tx1
− tx0

, ∆y = ty1 − ty0 , a = cos(−α1), b = sin(−α1), cx = w
2
+ ∆x, and

cy = h
2
+∆y [51]. In other words, I1 is first translated by ∆x and ∆y to its position relative

to I0. Afterwards, it is rotated by −α1 degrees along its centre (cx, cy) at that position.
Subsequently, the transformation matrix T12 from I1 to the image tile I2 from the

same grid can be created as follows. First, the transformation matrices T10 and T20 to the
reference tile are computed for both I1 and I2, respectively (using Equation 6.3). Then,
T12 is obtained by applying T10 followed by the inverse of T20: T12 = T20

−1T10. The
desired extrinsic matrix E12 relating I1 to I2 can be created by extending T12 by the depth
dimension. In particular, if we denote the elements of T12 as

T12 =





t11 t12 t13
t21 t22 t23
0 0 1



 , (6.4)

then E12 can be obtained as

E12 =









t11 t12 0 t13
t21 t22 0 t23
0 0 1 0
0 0 0 1









. (6.5)

Finally, since the transformations between pairs of overlapping image tiles can be in-
ferred directly from the constructed extrinsic matrices, the intrinsic matrices are set to the
identity matrix.

In summary, the translational and rotational parameters inside the DEMIS dataset are
used to compute suitable extrinsic matrices that define the exact relationship between pairs
of overlapping image tiles. The intrinsic camera parameters and the depth maps are kept
in their most elementary forms because the specifics of capturing the source images of the
DEMIS dataset are unknown. Nevertheless, the extrinsic matrices are sufficient to train
LoFTR on pairs of overlapping image tiles from the DEMIS dataset.
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Chapter 7

Implementation

This chapter describes the most important implementation details of the DEMIS electron
microscopy (EM) stitching tool, proposed in Chapter 6. The DEMIS tool is written entirely
in the Python programming language. As such, it requires no compilation to run. However,
it does require access to a CUDA-enabled GPU and packages from its specific Anaconda1

environment, the most important being the PyTorch framework2, which is used as the
backbone of the LoFTR [62] module. With the environment, the DEMIS tool can be utilised
to stitch grids of overlapping EM images, as outlined in Chapter 6. The specification of
the environment is included in the implementation. The complete source code is publicly
available through the DEMIS GitHub repository3 under the standard MIT licence.

The rest of this chapter is organised as follows. First, Section 7.1 presents the essen-
tial components of the DEMIS tool, which directly implement the algorithms described
in Chapter 6. Then, Section 7.2 introduces the remaining modules of the DEMIS tool,
which generally provide more supportive functions, such as generating the DEMIS dataset
proposed in Chapter 5.

7.1 Primary Modules of the DEMIS Tool

This section describes the primary modules of the DEMIS tool, which are implemented
based on the algorithms proposed in Chapter 6. The descriptions (provided below) are
directly inspired by the source files of the DEMIS tool, which are available publicly in its
GitHub repository. The primary modules and the dependencies between them are shown
in Figure 7.1.

Config Contains the default configuration of the DEMIS tool. This includes parameters
such as the path to the processed dataset, expected tile overlaps, and the resolution scaling
factor for feature detection and matching. Additionally, the methods used by the DEMIS
tool can also be configured. For example, it is possible to select image compositing based
on adaptive pixel weighting instead of the default pixel replacement recommended in Sec-
tion 6.4. The default settings can be overridden by configuration files written in the YAML
language.

1Anaconda – a Python and R distribution tailored primarily towards data science and machine learning –
https://www.anaconda.com/.

2PyTorch – an open source framework for tensor operations and deep learning – https://pytorch.org/.
3DEMIS GitHub repository – https://github.com/PSilling/demis.
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Figure 7.1: The primary modules of the DEMIS tool. The primary modules implement the
EM image stitching algorithms proposed in Chapter 6.

Dataset loader Loads metadata about an input dataset, which should contain an ar-
bitrary number of grids of overlapping EM images. The metadata are composed of the
expected grid size and the paths to image tiles in each grid in the dataset. The expected
grid size is derived from the name of the directory that contains the target dataset. The
name of the containing directory should be formatted as <rows>x<cols>, where <rows> and
<cols> represent the numbers of rows and columns, respectively. The image paths (and
their association with the corresponding image grids) are parsed from image tile filenames.
The filenames should be formatted as <name>_g<grid_idx>_t<tile_idx>_s<slice_idx>,
where <name> is the name of the dataset, <grid_idx> is the index of the grid containing
the image, <tile_idx> is the index of the image tile within the grid, and <slice_idx> is
the index of the corresponding slice (i.e., of the imaging depth). The formats were inferred
from the standard EM dataset structure used by TESCAN 3DIM.

Image loader Reads EM images based on the paths provided by the Dataset loader mod-
ule. The input images are expected to be in the standard TIFF file format. Additionally,
normalises the contrast and brightness of the loaded images using contrast-limited adaptive
histogram equalisation (CLAHE) [53] provided by OpenCV.

LoFTR As described in Chapter 6, the DEMIS tool relies on LoFTR [62] to perform
feature detection and matching between adjacent image tiles. Hence, LoFTR (using its
default architecture) is included as a module of the DEMIS tool. However, compared
to the original implementation of LoFTR, the LoFTR module used by the DEMIS tool
contains additional data loading and data manipulation classes that allow training on the
DEMIS dataset.
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Grid stitcher The main component of the DEMIS tool. Controls the entire grid stitching
process. In other words, it implements the top-level grid stitching algorithm presented
in Section 6.1. In particular, it receives a grid of overlapping EM images that should be
stitched into a single composite image. Then, it goes over the stitched images and estimates
transformations between adjacent image tiles with the help of the Tile stitcher module.
Subsequently, it builds a SLAM [21] graph to obtain globally optimised transformations.
Finally, it stitches all tiles in the grid using the Tile node module.

Tile stitcher Performs pairwise feature detection and matching. In particular, it expects
to receive a pair of adjacent image tiles, and (after cropping and resizing, as described in
Section 6.2) detects feature matches between them using the LoFTR module. Moreover,
the Tile stitcher module handles the drawing of individual tiles in the grid on the final
composite image (using pixel replacement by default).

Tile node Represents a tree node that contains a single image tile and its estimated
transformation. If connected to a parent node, the transformation from the parent node is
automatically applied as well. This enables the DEMIS tool to represent grids of stitched
images using a tree, which can then guide the stitching process (i.e., select which tile should
be stitched in the next step). To implement the grid stitching presented in Algorithm 6.4,
only a simple tree needs to be constructed, in which a single reference tile node serves as
the root, and the nodes of other tiles are connected directly to the root. However, it is
possible to use the Tile node module for other stitching methods, such as those that rely
on building a minimum spanning tree (as discussed in Section 3.1).

Together, the primary modules of the DEMIS tool can be used to stitch grids of EM
images based on the methods described in Chapter 6. However, since the modules function,
in essence, as a standalone library, additional supportive modules are required for ease of
use (as well as to handle the DEMIS dataset, proposed in Chapter 5). These secondary
modules are introduced in Section 7.2.

7.2 Secondary Modules of the DEMIS Tool

This section follows the description of the primary modules of the DEMIS tool in Section 7.1
by providing an overview of its secondary modules, such as the modules for evaluation
or generating the DEMIS dataset proposed in Chapter 5. The secondary modules are
introduced below. The descriptions are once again directly inspired by the source files of
the DEMIS tool.

DEMIS loader A specialised variant of the Dataset loader module, which is adjusted to
work well with the DEMIS dataset. In addition to providing the same functionality as the
standard Dataset loader module, the DEMIS loader module is also able to parse the labels
of images from the DEMIS dataset.

DEMIS stitcher A specialised variant of the Grid stitcher module. Similarly to the
DEMIS loader module, the DEMIS stitcher module is also adapted for use with the DEMIS
dataset. Compared to the default Grid stitcher module, the DEMIS stitcher module has the
additional capability to stitch grids of images from the DEMIS dataset according to their
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ground truth labels. To perform label-based stitching, the module employs the principles
presented in Section 6.5 to construct ground truth transformations between pairs of tiles in
the stitched grids.

Stitch Provides a command-line interface (CLI) for interacting with the DEMIS tool. In
particular, it handles configuration loading and the execution of the Grid stitcher module
for each grid in the configured input dataset. Additionally, after each input grid is stitched,
it saves the resulting image locally in the TIFF format. The arguments available through
the CLI are listed below.

• cfg_path – Path to the YAML configuration file that specifies method parameters
and data paths.

• -d, --use-demis-labels – Flag indicating that if the input dataset is the DEMIS
dataset, it should be stitched using its labels.

• -g <grid_idx>, --grid-index <grid_idx> – Specifies that only grids with the index
<grid_idx> should be stitched. Can be applied multiple times to select multiple grid
indices.

• -s <slice_idx>, --slice-index <slice_idx> – Signals that only image tiles with
their slice index equal to <slice_idx> should be stitched. Can be applied multiple
times to select multiple slice indices.

DEMIS synthesiser Synthesises the DEMIS dataset from its source images using the
method described in Section 5.2. In particular, it splits each source image into overlapping
tiles 1024× 1024 pixels in size. Then, it applies random translation and rotation, random
brightness and contrast adjustments, and a limited amount of Gaussian noise to each gen-
erated tile. The images are saved in the TIFF format and named according to the filename
format expected by the Dataset loader module.

DEMIS splits generator Divides the DEMIS dataset (generated by the DEMIS syn-
thesiser module) into training, validation, and testing splits, as explained in Section 5.2.
When creating the splits, the module also generates the corresponding LoFTR training
labels using the technique presented in Section 6.5.

DEMIS evaluator Provides evaluation methods for the DEMIS tool. When evaluating,
the default DEMIS tool is compared against its variant in which LoFTR is replaced by the
traditional feature detection and matching based on SIFT [41] (introduced in Section 3.1).
Further details on experimental evaluation are provided in Chapter 8.

In summary, the secondary modules extend the DEMIS tool with a command-line inter-
face, evaluation methods, and modules for creating and manipulating the DEMIS dataset.
Combined with the primary modules from Section 7.1, they create a complete set of tools
prepared for stitching grids of EM images.
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Chapter 8

Experimental Evaluation

The previous chapters described the fundamental aspects and components of the proposed
DEMIS tool for stitching grids of electron microscopy (EM) images. This chapter follows
by presenting a series of experiments, which were conducted to assess the quality of the
images produced by the DEMIS tool. The experiments are summarised below.

• Experiments that evaluate the accuracy of feature detection, feature matching, and
transformation estimation. These experiments are described in Section 8.1.

• Experiments quantifying the quality of stitched images using common image quality
estimation metrics, such as PSNR. These are discussed in Section 8.2.

• Experiments focusing on the impact of deep learning (represented in the DEMIS
tool by the LoFTR [62] module) on stitching robustness. The robustness analysis is
presented in Section 8.3.

In all of the above experiments, feature detection and matching were performed at half
the original image resolution, and the following three stitching solutions were compared
against each other.

• Baseline – a modified variant of the DEMIS tool, in which the LoFTR module was
replaced by a module that performs feature detection and matching using SIFT [41].
Serves as a representative of the traditional stitching pipeline presented in Section 3.1,
which is the core of several current state-of-the-art EM stitching solutions [10, 43].
The SIFT processing module was implemented using the OpenCV library.

• Pre-trained – a variant of the DEMIS tool that uses the original LoFTR model (trained
on conventional images only) for feature detection and matching.

• Fine-tuned – the DEMIS tool proposed in Chapter 6 (including the fine-tuning of
LoFTR on the DEMIS dataset). The fine-tuning was carried out on a machine with
eight 16 core, 2.30 GHz Intel Xeon Gold 5218 CPUs, two NVIDIA Tesla T4 GPUs
with 16 GB of memory each, and 32 GB of RAM. The computational resources
were provided by the e-INFRA CZ project (ID:90140), supported by the Ministry of
Education, Youth and Sports of the Czech Republic. The training configuration was
based on the original training configurations of LoFTR and is included in the official
implementation of the DEMIS tool, described in Chapter 7.
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Table 8.1: Comparison of feature processing and transformation estimation performance.
The best results are highlighted in bold. The SIFT baseline achieved the fastest speed
of feature matching, although the differences are negligible. The fine-tuned DEMIS tool
demonstrated the best accuracy.

Metric Baseline Pre-trained Fine-tuned

Feature matching time 80.44 ms 83.52 ms 83.18 ms
Feature matches found 694 770 778

Outlier feature matches 5 3 2

Inlier reprojection error 2.86 px 2.90 px 2.82 px

Corner error AUC at 3 px 7.22 % 6.20 % 11.51 %

Corner error AUC at 5 px 42.70 % 40.99 % 46.02 %

Corner error AUC at 10 px 71.35 % 70.48 % 73.01 %

The experiments can be reproduced using the DEMIS evaluator module (introduced in
Section 7.2), which is available on the attached medium as part of the DEMIS tool. The
contents of the attached medium are described in Appendix A.

8.1 Evaluating Feature and Transformation Processing

The feature detection, feature matching, and transformation estimation of the DEMIS tool
were evaluated experimentally on the 1306 evaluation images of the DEMIS dataset. A
machine with a 6 core, 2.80 GHz Intel Core i5-8400 CPU, an NVIDIA GeForce GTX 1070
GPU with 8 GB of memory, and 16 GB of RAM was used for the experiments.

The experiments were carried out on pairs of adjacent image tiles in the evaluation split
of the DEMIS dataset. In particular, feature matches were detected between each pair
of images. Then, the transformations that relate the images in each pair together were
estimated. Using the feature matches and the estimated transformations, the following
metrics were calculated.

• Feature matching time – the mean amount of time needed to compute feature matches
between a pair of images. Measured as the average of five independent runs.

• Feature matches found – the mean number of unfiltered feature matches detected be-
tween a pair of images.

• Outlier feature matches – the mean number of feature matches between a pair of im-
ages that were identified as outliers by RANSAC [19].

• Inlier reprojection error – the mean distance between a pair of matching features af-
ter being projected to the same coordinate space by the corresponding ground truth
transformation (calculated using DEMIS dataset labels). Only feature matches con-
sidered as inliers by RANSAC were evaluated.

• Corner error AUC – the area under the cumulative error curve (AUC) of the reprojec-
tion error of image tile corners at specified pixel (px) thresholds, as presented in [56].
Displayed as a percentage. Can be understood as the probability that a random image
tile corner will be within the specified threshold distance of its ground truth position
after getting transformed by the estimated transformation.
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Table 8.2: Comparison of pairwise image stitching quality. The best results are displayed
in bold. The fine-tuned DEMIS tool achieved the best image quality by a small margin.

Metric Baseline Pre-trained Fine-tuned

PSNR 22.07 21.88 22.33

SSIM 0.68 0.67 0.69

FSIM 0.95 0.94 0.95

BRISQUE 32.07 32.09 32.09

Table 8.3: Comparison of grid stitching quality. The best results are highlighted in bold.
The SIFT baseline and the pre-trained DEMIS tool both demonstrated similar performance,
which was slightly superior to that of the fine-tuned DEMIS tool.

Metric Baseline Pre-trained Fine-tuned

PSNR 15.22 15.23 15.04
SSIM 0.22 0.22 0.21
FSIM 0.87 0.87 0.86
BRISQUE 33.64 33.60 33.59

The results, displayed in Table 8.1, show that the SIFT baseline runs the fastest of
the three stitching solutions. However, the differences in the speed of feature matching are
relatively small. Therefore, they can be considered negligible and should not lead to any
issues in practice.

Furthermore, the results reveal that the fine-tuned DEMIS tool finds, on average, a
little over 12 % more feature matches than the SIFT baseline. The increase in match count
suggests a greater overall robustness of the solution. The feature matches were also more
accurate in terms of mean reprojection errors and corner error AUCs. This is especially
apparent in the corner error AUC at the lowest threshold of 3 pixels. A decrease in the
number of outliers can be observed as well, which further supports the claim that the fine-
tuned DEMIS tool can, on average, generate feature matches of higher quality than the
SIFT baseline.

Finally, the results suggest that the fine-tuning of LoFTR had a positive impact on
the overall accuracy. This is because the pre-trained DEMIS tool demonstrated an overall
performance that is slightly inferior even to that of the SIFT baseline. Combined with
the findings presented above, it can be concluded that by properly training a deep learning
model, feature detection and matching accuracy (and consequently, the quality of estimated
transformations) can be improved compared to traditional approaches.

8.2 Evaluation of Image Stitching Quality

Although the metrics introduced in Section 8.1 are generally rather reliable due to their
focus on fully quantifiable aspects of the stitching process (e.g., errors associated with
feature matches), they do not directly assess the quality of the images stitched by the
DEMIS tool. Therefore, it is important to also compare the produced images to the expected
results stitched using ground truth transformations. This was done in the following set of
experiments, which attempted to evaluate the quality of (1) stitched pairs of adjacent tiles,
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(a) Baseline: 465 matches (b) Pre-trained: 3872 matches (c) Fine-tuned: 4044 matches

Figure 8.1: Comparison of feature matching results on an image pair from a relatively
challenging dataset with tiles of size 4096× 3072 pixels and a 15% tile overlap. The SIFT
baseline is able to generate a sufficient amount of feature matches. However, the amount
is much lower compared to the other solutions. The fine-tuned DEMIS tool achieves the
best performance by a small margin. For clarity, only 5% of the detected matches are
displayed. Outlying matches were removed by RANSAC. The dataset images were provided
by TESCAN 3DIM.

and (2) entire stitched image grids. To evaluate the quality, three full-reference1 metrics –
PSNR, SSIM [75], and FSIM [73] – and a single no-reference metric, BRISQUE [46], were
used. Higher values measured by these metrics correspond to higher perceived image quality.
Similarly to Section 4.1, the evaluation images of the DEMIS dataset were selected for the
experiments.

The results for pairwise stitching and complete grid stitching are shown in Tables 8.2
and 8.3, respectively. The results show that all three evaluated solutions achieve similar
image quality for both pairwise and grid stitching. In particular, the fine-tuned DEMIS
tool achieves slightly better image quality on pairwise stitching compared to the other two
solutions. However, it also demonstrates the worst performance of the three solutions on
complete grid stitching. This result is surprising, since it does not correspond to any of the
previously observed behaviour. One possible cause could be brightness and contrast differ-
ences between image tiles, which might affect grid stitching results in possibly undesirable
ways. Further work could focus on validating the outcome.

1In contrast to no-reference metrics, full-reference metrics require information about a reference (ground
truth) image [46].
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(a) Baseline: 25 matches (b) Pre-trained: 1321 matches (c) Fine-tuned: 1329 matches

Figure 8.2: Comparison of feature matching results on an image pair from a highly challeng-
ing dataset with tiles of size 4096×4096 pixels and only a 5% tile overlap. The SIFT baseline
nearly fails to detect a sufficient number of feature matches for the following transformation
estimation. The fine-tuned DEMIS tool demonstrates performance that is similar to the
pre-trained DEMIS tool, but significantly superior to that of the SIFT baseline. Only 20%
of all matches are shown to increase visual clarity. The matches were filtered by RANSAC.
The dataset images were provided by TESCAN 3DIM.

Despite the differences in results described above, the performance of all three solutions
is extremely close to each other in both pairwise and grid stitching. Therefore, it is safe to
assume that the increase in the accuracy of feature detection, feature matching, and trans-
formation estimation discussed in Section 4.1 does not come at the cost of any substantial
decrease in overall stitching quality.

8.3 Analysing Stitching Robustness

A common advantage of deep learning methods is their higher robustness compared to
traditional approaches. For that reason, this section presents a series of experiments that
analyse the impact of LoFTR-based feature detection and matching on image stitching
robustness. In contrast to the previous experiments, discussed in Sections 8.1 and 8.2,
the robustness experiments were conducted on two challenging EM datasets with high
resolution and small tile overlaps. The datasets were provided by TESCAN 3DIM (for
evaluation purposes only). The goal of the experiments was to compare the number of
detected feature matches between the three evaluated stitching solutions. The resulting
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matches (after RANSAC [19]) are displayed in Figures 8.1 and 8.2 on sample images that
are representative of the overall performance of the evaluated solutions on the two datasets.

The result in Figure 8.1 corresponds to a dataset with high tile resolution and a 15%
overlap between adjacent image tiles. This makes the dataset quite challenging for tradi-
tional approaches, as evidenced by the fine-tuned DEMIS tool finding over 8 times more
matches than the SIFT baseline on the sample image pair from Figure 8.1. A similar
(although slightly inferior) outcome was achieved by the pre-trained DEMIS tool. Never-
theless, despite the reduced number of feature matches, the SIFT baseline was able to detect
a sufficient number of feature matches to perform the subsequent stitching accurately.

However, the results changed considerably on the second dataset, which featured an
even higher tile resolution and only a 5% overlap between adjacent image tiles. The results
on a sample image pair from the second dataset can be seen in Figure 8.2. In particular, it
can be observed that the SIFT baseline detected a very small amount of feature matches
(over 50 times less than the fine-tuned DEMIS tool), which may not be sufficient to create
a robust estimate of the transformation that relates the two adjacent image tiles together.
In fact, for some pairs of adjacent tiles from the dataset, the SIFT baseline was unable to
produce any valid matches. This was not the case for the other two evaluated solutions,
which displayed sufficient performance on all pairs of image tiles.

In summary, the above results demonstrate that the DEMIS tools have much higher
robustness compared to the SIFT baseline on real-life datasets. This is especially apparent
as the resolution increases and the overlap between adjacent image tiles decreases. In these
scenarios, the SIFT baseline may even completely fail to generate an adequate number of
feature matches.
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Chapter 9

Conclusion

This thesis presented the problem of stitching grids of overlapping electron microscopy (EM)
images into larger composite images. Furthermore, it described the issues of traditional
stitching approaches, which may fail on images with low-quality texture, small image tile
overlaps, or high resolution, all of which are common in EM imagery.

To address the issues of traditional methods, the thesis proposed the DEMIS tool, a
novel EM image stitching tool based on SLAM-based global optimisation and LoFTR,
an attentional neural network for detecting feature matches between pairs of overlapping
images. Moreover, the thesis proposed the DEMIS dataset, a novel synthetic dataset gen-
erated by splitting high-quality and high-resolution EM images into grids of overlapping
image tiles. Finally, the thesis proposed to use the DEMIS dataset to fine-tune LoFTR in
an attempt to increase the accuracy of feature matches detected between EM images.

The proposed DEMIS tool was evaluated experimentally on the evaluation images of
the DEMIS dataset and two challenging datasets provided by TESCAN 3DIM. The results
showed that the fine-tuning of LoFTR helped the DEMIS tool achieve better performance
in feature detection, feature matching, and transformation estimation when compared to a
baseline solution based on SIFT. Compared to the SIFT baseline, the results also revealed
significantly higher robustness of feature matching on EM images with high resolution
and small overlaps. Finally, the results demonstrated that the increase in accuracy and
robustness does not come with any significant decrease in the overall quality of the images
produced by the tool.

Despite the promising results presented above, future work could improve the DEMIS
tool and the DEMIS dataset in several ways. For instance, smaller-sized architectures of
the LoFTR module could be examined, since the original architecture may be unnecessarily
large for EM image stitching. Moreover, support for more input dataset formats and image
file types could be added to the DEMIS tool. Furthermore, memory requirements of the tool
could be lowered, for example, by constructing the final stitched image in chunks instead
of all at once. Finally, the DEMIS dataset could be increased in size and enhanced by
additional data augmentation (e.g., radial distortions) to enable more robust evaluation
and fine-tuning of the DEMIS tool.
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Appendix A

Contents of the Attached Medium

The most notable directories and files on the attached memory medium are as follows.

• /demis/

– /configs/ – Configuration files for executing the DEMIS tool.

– /datasets/DEMIS/ – Sample data from the DEMIS dataset.

– /datasets/DEMIS Source/ – Sample source images of the DEMIS dataset.

– /LoFTR/ – Source codes of the included LoFTR module.

– /scripts/ – Scripts for image stitching and DEMIS dataset generation.

– /src/ – Source codes of the DEMIS tool.

– /docs/demis_references.md – References for images in the DEMIS dataset.

– /notebooks/stitch.ipynb – Jupyter notebook for manual image stitching.

– /environment.yml – Anaconda environment specification.

– /README.md – Manual for setting up the environment and code execution.

• /tex/ – LATEX source codes of this thesis.

• /poster.pdf – Poster presenting the goals and results of this thesis.

• /README.md – Manual for working with the attached medium.

• /thesis.pdf – This thesis in PDF.
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Appendix B

Depiction of the Created Poster

Deep Learning for Image Stitching
Bc. Petr Šilling, xsilli01@stud.fit.vutbr.cz

Supervisor: Ing. Michal Španěl, Ph.D. Consultant: Ing. Oldřich Kodym, Ph.D., TESCAN 3DIM s.r.o. 

Motivation
• Grids of overlapping EM images 

need to be stitched together

• Current methods tend to use SIFT

• Issues with low-texture regions

• Could CNNs increase robustness?

SIFT: 85 matches LoFTR: 624 matches

Proposed Solution – DEMIS
• Standard feature-based stitching pipeline with SLAM 

global optimisation and feature matching by LoFTR.

1. Raw image tiles 2. Intensity normalisation

3. Pairwise matching

5. SLAM optimisation

4. Pairwise transform

6. Grid stitching

Synthetic Dataset
• 424 images from EMPIAR and CIL 

split into grids of image tiles

• Random brightness, contrast, 
translation, rotation, and Gaussian 
noise applied to each tile

Results on Evaluation Images
Metric (average on 1306 images) SIFT baseline Pre-trained Fine-tuned

Feature matching time 80.44 ms 83.52 ms 83.18 ms

Feature matches found 694 770 778

Outlier feature matches 5 3 2

Inlier reprojection error 2.86 px 2.90 px 2.82 px

Corner error AUC at 5 px 42.70 % 40.99% 46.02 %

PSNR of image pairs 22.07 21.88 22.33

PSNR of complete grids 15.22 15.23 15.04

SSIM of image pairs 0.68 0.67 0.69

SSIM of complete grids 0.22 0.22 0.21

Local Feature Transformer (LoFTR)
• Fine-tuned on EM images from the synthetic dataset.

SIFT baseline
465 + 25 matches

Pre-trained DEMIS
3872 + 1321 matches

Fine-tuned DEMIS
4044 + 1329 matches

Figure B.1: Illustration of the poster that presents the goals and results of this thesis.
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