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Abstrakt

Tato diplomová práce nejdříve čtenáře uvede do historie a ideologie formalizovaného testování

inteligence, než se pustí do principů testu Algoritmického IQ (AIQ). Jelikož má AIQ mnoho

podobného s frameworkem Posilovaného Učení, je následující kapitola dedikovaná principům

tohoto frameworku. Součástí této kapitoly je i představení některých populárních agentů

uživateli, po něm následuje hlubší analýza agentů vybraných pro tuto diplomovou práci:

Vanilla Policy Gradient a Proximal Policy Optimization.

Praktická část diplomové práce nejprve představí historii prototypové implementace testu

Algoritmického IQ včetně popisu kódu. To je následováno popisem mé práce na oživení

kódu testu z Python 2 na Python 3, opravami pro Operační Systém Windows, Implementací

systému pro logování chyb agenta a pár dalšími menšími úpravami.

Další část této diplomové práce se soustředí na problémy při implementaci agentů založených

na moderních architekturách Posilovaného Učení do testu AIQ. Jelikož AIQ test pracuje

s prostředími inverzně vůči moderním standardům OpenAI Gym a jejich variacemi, bylo

potřebné kód agentů transformovat do stavu schopného spolupracovat s AIQ testem.

Nakonec byly implementovány agenty testování pro nalezení vhodných výchozích hodnot

nového parametru a získané hodnoty byly využity pro další testy. Skrze statistické metody

byly mezi sebou porovnány výsledky nově implementovaných agentů. Jejich výsledky, díky

podobnosti s dalšími testy, podporují použitelnost AIQ jako nástroje pro testování inteligence.

Následné porovnání nových agentů s těmi původně implementovanými dává zajímavé infor-

mace o jejich inteligenci.

Klíčová slova

Test Algoritmického IQ, Posilované učení, Agenti typu Policy Gradient, Hodnocení Inteligence

Agentů, Vanilla Policy Gradient, Proximal Policy Optimization
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Abstract

This thesis briefly introduces the history and ideology behind the formalised evaluation of

intelligence before focusing on the workings of Algorithmic Intelligence Quotient test. As AIQ

is closely related to the Reinforcement Learning framework, the following chapter is dedicated

to the principles of this framework and introduces some of the popular agents before focusing

more in-depth on the agents I have chosen for implementation: Vanilla Policy Gradient and

Proximal Policy Optimization.

The practical part of this thesis first introduces the history of the prototypical implementation

of the Algorithmic Intelligence Quotient and a description of how its code work. This is closely

followed by my update of the code base from Python 2 to Python 3, fixes for the code on

the Windows operating system, the introduction of a system for logging a failure of an agent

and a few other minor tweaks.

Next, the thesis focuses on the complexities in introducing agents based on modern Rein-

forcement Learning architectures into the AIQ test. As AIQ works with environments inverse

to the modern standards of OpenAI Gym and its variations, it was necessary to transform

them into a state compatible with the AIQ test.

The agents are tested to find good default values of a newly introduced parameter before

using various statistical methods to compare the new agents against each other and then

against originally implemented agents by using the acquired data. Due to its similarity to

other existing benchmarks of implemented agents, the results of the comparison between

newly implemented agents support the viability of AIQ as an evaluation tool. The results

of the comparison to the initially implemented agents give interesting insight into various

agents’ intelligence.

Keywords

Artifficial Intelligence Quotient test, Reinforcement Learning, Policy Gradient agents, Agent

Intelligence Evaluation, Vanilla Policy Gradient, Proximal Policy Optimization
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Introduction

“A fundamental problem in artificial intelligence is that nobody really knows what intelligence

is.”(Legg; Hutter, 2007) With this notion, Legg and Hutter enter into the overlooked area

of definition and evaluation of intelligence. With a need to find an interpretation specific

to matters of artificial intelligence, Leggs and Hutter analysed a great number of various

formal and informal definitions to create a new one. This definition was named Universal

Intelligence.

Along with the definition, a way to achieve a way to evaluate artificial agents is necessary.

“A fundamental problem in strong artificial intelligence is the lack of a clear and precise

definition of intelligence itself.” (Legg; Veness, 2011b) By expanding the idea of his previous

work Leggs joined with doctor Veness and focused on the creation of a new exam that would

allow quantifying the Universal Intelligence of tested agents. Through abstracting the original

idea of Universal Intelligence, a metric called Algorithmic Intelligence Quotient was created

with an acronym of AIQ. Along with this metric, an exam that automatically measures the

values of AIQ was created and successfully tested on a couple of basic agents. To further

test the applicability of this evaluation, this work will focus on implementing more complex

artificial agents based on Policy and Policy Gradient Optimization into the AIQ test and

compare the achieved results to the original results.

The goal of this work can be therefore defined in these steps:

• Introduce Reinforcement Learning framework and Policy Optimization agents.

• Review the principles of general intelligence tests for artificial agents with focus on

Algorithmic Intelligence Quotient test.

• Implement the chosen Policy Optimization agents (Vanilla Policy Gradient, Proximal

Policy Optimization) into the AIQ test.

• Evaluate the implemented agents using the AIQ test and compare them to the original

agents.

The first two steps are fulfilled through extended research that begins by presenting the

principles of both formal and informal evaluation of intelligence in chapter 1 with a greater

focus on formal definitions, especially Universal Intelligence and Algorithmic Intelligence

Quotient. Reinforcement Learning is introduced in chapter 2 that introduces the basics

behind this category of AI agents before introducing various existing agents with their basic

ideas, before diving more in-depth to agents chosen for implementation in this thesis: Vanilla

Policy Gradient and Proximal Policy Optimisation.

Before focusing on the implementation of new agents into the AIQ test a small update of

base code is required as the original AIQ test is still running on Python 2. As this version of

Python has long since been deprecated, chapter 3 describes the original version of AIQ and

the process done to upgrade it to newer versions of Python 3, along with the introduction of
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further improvements to this evaluation program. After achieving a more modern compatible

version of the AIQ test, chapter 4 focuses on the complexities of implementation of chosen

Policy Optimisation agents Vanilla Policy Gradient and Proximal Policy Optimisation into

the AIQ test. This chapter introduces various Python packages that implement chosen agents

before looking into why it is very difficult to use these packages without any modification.

This is followed by a description of the architecture of a package chosen for modification

before introducing the new agents’ architecture using parts of the code from the package

described.

The final chapter 5 focuses on the last goal of the thesis in the evaluation of the implemented

agents using the AIQ test. As the AIQ test is very computationally expensive, the focus of

this thesis was on tests over a default configuration of agents. This was further complicated

by the existence of a new hyperparameter in our agents lacking a default parameter value.

Instead, an experiment was created that searched for good configurations of this parameter

on default configurations of other existing hyperparameters using an interpolation of acquired

data. Data acquired this way was then utilised to first statistically compare Vanilla Policy

Gradient and Proximal Policy Optimisation against each other for confirmation that the

results acquired are similar to existing benchmarks for further support of the correct imple-

mentation of agents and AIQ test’s validity in evaluating intelligence. After this comparison

the final analysis utilised this data to compare newly implemented agents to the original.
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1. Evaluation of Intelligence

Evaluating intelligence is a difficult task. What is intelligence? “Perhaps the ability to

learn quickly is central to intelligence? Or perhaps the total sum of one’s knowledge is more

important? Perhaps communication and the ability to use language play a central role? What

about “thinking” or the ability to perform abstract reasoning? How about the ability to be

creative and solve problems? Intelligence involves a perplexing mixture of concepts, many of

which are equally difficult to define.”(Legg; Hutter, 2007)

Because intelligence is such a complex concept, one cannot evaluate it directly. First, one has

to define what exactly it is that one wishes to assess. This definition can take the form of

either a formal or informal definition. Informal definition purely defines into words a specific

part of intelligence that is the focus of the evaluation. The formal definition further expands

on the informal definition by transforming such a definition into a quantifiable variant, usually

in the form of an equation.

This chapter begins with an introduction to the different categories of artificial intelligence.

After this section, the historically important tests for general intelligence will be separated

into those using informal definitions and those using formal ones. While a brief overview of

the first group of definitions and their history will be done in section 1.2, this thesis focuses

on the second group. Formalisation of a definition brings significant advantages that span

beyond the academic sphere. It allows to transfer same information better no matter the

current context. Why this is important is briefly introduced at the beginning of section 1.3.

After explaining the advantages of formalised definitions, some relevant histories of formal

definitions of intelligence are introduced. The final section of this chapter is dedicated to the

theory behind Algorithmic Intelligence Quotient that is utilised by this thesis

1.1 Categorization of Artificial Intelligence

Artificial intelligence has many different views on how it should be categorised. and some

definitions do not have one specific interpretation. To better understand this thesis’s focus,

let us briefly examine the different views on AI.

1.1.1 Strong and Weak AI

One of the main categorizations of AI is between “strong” and “weak” AI introduced in the

Chinese Room thought experiment (Searle, 1980). “According to weak AI the principal value

in the study of the mind is that it gives us powerful tool”(Searle, 1980) As can be seen, the

goal of weak AI is not understanding thinking but on the applicability of AI for work. On

the other hand, in the strong AI “the computer is not merely a tool in the study of the mind;
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rather, the appropriately programmed computer really is a mind”(Searle, 1980). The focus

is on explaining how cognition, both human and artificial, works and to one day create a

machine as capable of reasoning as a human.

1.1.2 Narrow and General AI

A modern understanding of AI is in many ways similar to some interpretations of strong

and weak AI. While what is called “narrow” and “general” AI does not have any specific

definition and any understanding is still being actively researched, (Goertzel, 2015) utilised

some previous works to explain the difference between these two types of AI. “For a narrow

AI system, if one changes the context or the behaviour specification even a little bit, some

level of human reprogramming or reconfiguration is generally necessary to enable the system to

retain its level of intelligence. Qualitatively, this seems quite different from natural generally

intelligent systems like humans, which have a broad capability to self-adapt to changes in their

goals or circumstances, performing ”transfer learning” to generalise knowledge from one goal

or context to others.” A possible interpretation of this sentence can be that narrow AI focuses

on achieving high ability of a very specific or “narrow” types of tasks but is lost if applied to

anything else. General AI, on the other hand, tries to achieve more universal intelligence that

is not only capable of working in various fields but is also capable of transferring experiences

achieved from solving problems in one field to another. This transfer of information between

various fields is otherwise known as “learning” and is the desired goal of general AI.

As previously stated, AGI has no specific definition and many different approaches to its

understanding. To dive deeper into this rabbit hole would mean explaining many different

concepts of intelligence, which is different from the focus of this thesis. This thesis utilises the

“Mathematical Approach” of understanding General Intelligence typified by (Legg; Hutter,

2007). This understanding believes that “Truly, absolutely general intelligence would only be

achievable given infinite computational ability. For any computable system, there will be some

contexts and goals for which it is not very intelligent. However, some finite computational

systems will be more generally intelligent than others, and it is possible to quantify this

extent”(Goertzel, 2015). One possible way of quantification is further explained in 1.3.3.

For other approaches, refer to the introduction to AGI in (Goertzel, 2015).

1.2 Tests Utilising Informal Definitions

Informal definitions of general intelligence mostly try to compare machine intelligence to

aspects of humans, focusing on specific parts of intelligence any such evaluation is assessing.

Informal definitions are the original way of defining intelligence. It could be said that one of

the first pioneers into the idea of general intelligence was René Descartes in the 17th century.

In the 5th part of his work (DESCARTES, 1637), Descartes raises a question of what is

unique to humans compared to animals. Two inherent abilities were defined. The ability to
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be universal in thinking and the ability to speak comprehensively. He postulated that while

machines or animals may be able to make sounds similar to words or even sentences, the

ability to flexibly use those sentences to create fully coherent and meaningful sentences other

than the ones they learned is unique to human intelligence. This postulation is centuries later

used as a basis for one of the most important tests of general intelligence - the Turing test.

1.2.1 Turing Test based tests

(Alan M Turing et al., 1950) raises the idea of machines being capable of thinking and a

question asking if an average human can differentiate between a human and a machine. This

question is formed into a test for machines based on an “imitation game”. In this test, a human

and a machine pass sentences to a human interrogator in another room. This interrogator

then has to decide if the passed sentence was written by a human or a machine. Machine is

defined as intelligent when a difference between the results of a human and a machine cannot

be found. While a novel and very popular idea, this test still had many problems that were

noticed during the following decades.

• (Searle, 1980) proposes that the Turing test focuses too little on the idea of under-

standing and that it is possible to create machines capable of behaving humanely just

by imitating specific actions and not truly understanding what they are doing. This is

explained in his theory of Chinese room.

• (Harnad, 1991) raises the problem of sidelining other types of communication than

language. To amend this problem, the Total Turing Test is proposed. In this test, the

robot interacts with its surroundings directly. This makes the target of the test not

only the language capabilities of the robot but also all other intelligent behaviour.

• (Schweizer, 2012) thinks that the focus of the test should be on species instead of

individuals. Language is a social construct that varies significantly between different

species. To know if machines or other cognitive types can genuinely think, it is not

enough to see them parasite upon intelligent behaviour and existing language but to

see if they can create their own behaviour and language. Consequently, the target of

The Truly Total Turing Test is to find out if the evaluated cognitive type can create its

own intelligent behaviour and language.

To achieve an ideal informal definition was the goal of last centuries. However, talking about

those centuries in depth is not the goal of this thesis, and for more in-depth information,

refer to the overview in work (Vadinský, 2019).

1.3 Tests Utilising Formal Definitions

Heylinghen explores the advantages and disadvantages of formal expressions. (Heylighen,

1999) states that three major advantages are:
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• Long-term knowledge storage - Formal expressions allow for knowledge to be un-

derstood even if context changes

• Capacity for universal communication - Through formalised expression, meaning

can be understood without the need for specification of the context. This allows for

sharing messages across a wider variety of people.

• Testability of formalised knowledge - Unless the test is formulated to be context-

independent, the results may have little to do with the original proposition. Formali-

sation allows for this context-independence.

Of the three advantages, the most important advantage for testing general intelligence is the

advantage of testability. Utilising formalised definitions of intelligence increases the precision

and objectivity of intelligence evaluations and enables automatic evaluation of intelligence.

1.3.1 Early History of Formal Definitions of Intelligence

Historically, there was a tendency in the AI community to contrast artificial intelligence

with human intelligence, an action that merely passed the buck to psychologists. Then John

McCarthy released his article What is artificial Intelligence (McCarthy, 1998) in 1998 (later

revised in 2003, 2004 and 2007), where the following question was asked:

“Q. Isn’t there a solid definition of intelligence that doesn’t depend on relating it to human

intelligence?

A. Not yet. The problem is that we cannot yet characterise in general what kinds of com-

putational procedures we want to call intelligent. We understand some of the mechanisms of

intelligence and not others.”

While this difficulty redirected much research effort from artificial general intelligence to

artificial narrow intelligence, a new research direction was formed.

Some of the earliest attempts to formalise intelligence were focused on a similar set of ideas as

Turing’s test and its derivatives - language. Some notable proposed ways to test intelligence

through language were, for example, compression tests (Mahoney, 1999) proposing to use

compression ratio of text compression for evaluation of AI and Linguistic complexity proposed

by HAL project (Treister-Goren et al., 2000) to evaluate intelligence through metrics like

vocabulary size, degree of syntactic complexity and many others.

Another branch of research focused on the idea that intelligence is “The ability to deal with

complexity” (Gottfredson, 1997) and that the most important questions in testing intelligence

are the most complex ones. While this idea is difficult to implement in practice, it was chosen

as a base behind two important paths of formalisation intelligence. C-Tests (Hernandez-

Orallo, 1999) and Universal Intelligence (Legg; Hutter, 2007). These two paths were later

expanded in the Anytime Intelligence Test, which combined ideas of C-tests and Universal

Intelligence along with inspirations from other sources to create a formal intelligence test.

Ideas from all of these then crystallised in Algorithmic Intelligence Quotient (AIQ) test (Legg;
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Veness, 2011b) that created both an approximation of Universal Intelligence and a prototype

of a test to compute this approximation.

As this text focuses on Universal Intelligence, the following chapters will focus mainly on the

second research branch. We will first look into C-tests and Universal Intelligence. Afterward,

the Anytime intelligence test will be briefly introduced before leaving the theory behind AIQ

for an entirely new section in 1.4.

1.3.2 C-Tests

In 1999, Hernandez-Orallo proposed the definition of intelligence as the “ability to compre-

hend” and formalises this ability with the help of constructs based on descriptional complexity.

According to (Hernandez-Orallo, 1999), a scientific measure of intelligence must comply with

five requirements.

• Non-boolean - Intelligence is not an absolute attribute and cannot be defined with

simple true or false evaluation.

• Factorial - As intelligence is multidimensional, it is necessary to account for as many

dimensions or factors as possible and not measure a single intelligence factor.

• Non-anthropomorphic - All references to intelligent behaviour so far were dependent

on human intelligence. It is necessary to create a measure of intelligence that does not

depend on relation to human intelligence.

• Computationally based - It is necessary to be able “to give the specification of the

problem in computational terms, in order to solve the problem with AI means, which

are exclusively machines and programs”. (Hernandez-Orallo, 1999)

• Meaningful - Intelligence must not be defined as that what is measured by intelligence

tests. All measures of intelligence need to be expressed from their original definition -

the ability to comprehend.

(Hernandez-Orallo, 1999) focuses on the notion that the Turing Test is merely a test of

humanity instead of intelligence and compares it to Comprehensive tests. Comprehensive

tests or C-tests were created to assess the language proficiency of non-native speakers, and

Hernandez-Orallo proposes that these tests can also be employed for analysing the compre-

hensive ability of machines. These tests work by taking a text that has parts removed. The

tested agent is then made to choose from a list of choices to fill in missing parts. This list

contains not only correct choices but also some additional choices as distractors. The result is

then measured through an equation that computes a weighted sum of the number of correct

answers for each test case, where the weight is proportional to the difficulty of the test case (as

measured by exponent e). The resulting value provides a measure of the overall performance

of the intelligent system on the test set. While C-tests measure only one factor defined here

as fluid intelligence (Hernandez-Orallo, 1999) also proposes that other independent factors

can be measured through certain extensions like Knowledge Applicability, Contextualisation

or Knowledge Construction.
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1.3.3 Universal Intelligence

In their article, Legg and Hutter begin with a basic question - what is intelligence:

“Perhaps the ability to learn quickly is central to intelligence? Or perhaps the total sum of

one’s knowledge is more important? Perhaps communication and the ability to use language

play a central role? What about “thinking” or the ability to perform abstract reasoning? How

about the ability to be creative and solve problems? Intelligence involves a perplexing mixture

of concepts, many of which are equally difficult to define.” (Legg; Hutter, 2007)

To fix the problem of needing more concrete and precise definitions of intelligence, Shane

Legg and Marcus Hutter dive into various sources to create a new formal definition for in-

telligence. Through scrutinising dozens of informal definitions of intelligence, researching

possible categories of agents and environments, and acquiring inspiration from few existing

formal definitions (Legg; Hutter, 2007) creates first an informal definition that is then math-

ematically formalised into an equation that should define a general measure of intelligence

for arbitrary machines and other agents.

The new informal definition is defined in the following sentence:

Informal Definition:. Intelligence measures an agent’s ability to achieve goals in a wide

range of environments. (Legg; Hutter, 2007)

To formalise this definition, we must first specify this sentence’s main parts. They are agent

π, environment µ, and goals expressed for an agent by reward value from reward space R.

The interaction of these parts makes it possible to approximate the agent’s ability. The

interaction behaves followingly: The agent has a set of symbols that he can send to the

environment. This set is called action space and denoted as A. The environment has a

similar set of symbols from a finite set called the perception space denoted as P that he uses

to transfer information back to the agent. The last set is called reward space. The agent and

environment take turns sending information to each other through symbols. Environment

sends both perception symbol and reward for the last action simultaneously. In response, the

agent’s acting function π takes the current history as input and chooses his next action symbol

to pass to the environment. The agent here can be practically anything. The environment can

be defined as the probability that specific observation and reward happen given the current

interaction history between agent and environment.(Legg; Hutter, 2007).

So far, aside from some differences in naming, this framework is identical to Reinforcement

Learning used in Artificial Intelligence. This relevancy will be important later in the thesis,

and for more information about Reinforcement Learning, refer to 2. Nevertheless, a frame-

work is only the base template, and some problems must be fixed to create a measurable

definition of intelligence.

Measure of success - how to formalise the idea of “success” for an agent in both the

short and long term. Usually, this is achieved by discounting rewards so that they decay

geometrically into the future. Unfortunately, this is complicated to implement sufficiently.

However, by requiring environments never to exceed the reward value of 1, the sum of all
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rewards becomes definitely finite. These reward summable environments µ then already

contain temporal factor, and discount is no longer required. and so the reward sum V π
µ is

always bounded (Legg; Hutter, 2007). However, for a truly perfect expected value of an

agent, it would be necessary to sum infinite rewards of agents in environments which makes

this incomputable

Space of environments - how to sufficiently achieve and test on “wide range of environ-

ments” If environments have no restrictions, they cannot be described finitely. Environments

that cannot be described finitely are incomputable, and testing agents on an incomputable

environment with a computer is impossible. As such, one of the requirements for environ-

ments is that it has to be computable. Computability is achieved by generating environments

through instructions in a prefix universal Turing machine U called reference machine. An-

other thing to test agents on is how well they can both approach the principle of Occam’s

Razor 1 and how the agent can deal with complexity. As such, a wide variety of complexity

is required for a set of environments used for testing agents, along with a weighted reward

model for each environment based on how complex such an environment is. Implementing

this requires an ability to measure the complexity of any environment. (Legg; Hutter, 2007)

proposes a Kolmogorov complexity 2 due to its near independence on a reference machine.

To approximate Kolmogorov complexity, a simple encoding method of expressing indexes as

binary string < i > is utilised. With this complexity of environment µ can be defined as

K(µ) := K(< i >) . In order to formalise Occam’s razor, it is also necessary to assign a

probability to environments to make complex environments more likely and simple ones less

likely. Thanks to the previous definition of each environment being defined by a binary string,

“it is possible to reduce the environment’s probability by one half for each bit of program,

reflecting the fact that each bit has two possible states. This gives us what is known as the

algorithmic probability distribution over the space of environments defined 2−K(µ))

After applying these solutions, we achieve the following mathematical formalisation:

Formal Definition:. Let E be the space of all computable reward summable environmental

measures with respect to the reference machine U and let K be the Kolmogorov complexity

function. The expected performance of agent π with respect to the universal distribution

2−K(µ) over the space of all environments E is given by:

Υ(π) :=
∑

µ∈E

2−K(µ)V π
µ

We call this the universal intelligence of agent π (Legg; Hutter, 2007)

In this equation, Υ(π) defines the Universal Intelligence measure of agent pi that is computed

1
Occam’s Razor: “Given multiple hypotheses that are consistent with the data, the simplest should be

preferred.”
2Kolmogorov complexity defined in (Kolmogorov, 1965) is a theoretical measure of the amount of infor-

mation in an object. An object’s K complexity is the length of the shortest possible program or algorithm

that can generate that object. However, no algorithm exists that could calculate this length finitely, so this

complexity is uncomputable.
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from the sum of algorithmic probability distribution over space of environments 2−K(µ) and

capability of what is an agent capable of achieving in Value function V π
µ

This definition still has many problems. Utilising Kolmogorov’s complexity which is uncom-

putable, means that even the value of Υ is uncomputable. Additionally, the test itself works

with infinitely many environments, which creates problems when trying to create a practical

test. Even through these problems, Universal Intelligence created a fundamental building

block upon which future formal tests of machine intelligence were built thanks to the many

positives Universal Intelligence has. (Legg; Hutter, 2007) also defined the desirable properties

of intelligence measure and how Universal Intelligence these measures fulfills in chapters 3.5

and 4.3. The following list is created from the information contained in those chapters.

• Valid - “. A test/measure of intelligence should be just that, it should capture intel-

ligence and not some related quantity or only a part of intelligence” (Legg; Hutter,

2007)

– This was achieved through step-by-step formalising mainstream informal defini-

tions so as long as the informal definition defined by Universal Intelligence holds,

the result can be defined as formal definition of intelligence.

• Informative - “The result should be a scalar value, or perhaps a vector, depending

on our view of intelligence. We would like an absolute measure of intelligence so that

comparisons across many agents can easily be made.” (Legg; Hutter, 2007)

– Universal intelligence has a real value to be used to compare different agents

• Wide range - “A test/definition should cover very low levels of intelligence right up

to super human intelligence” (Legg; Hutter, 2007)

– Universal intelligent is able to test order agents from the most basic to the theo-

retical super intelligent agent AIXI3

• General - “Ideally we would like to have a very general test/definition that could be

applied to everything from a fly to a machine learning algorithm”(Legg; Hutter, 2007)

– Universal intelligence factors agent’s performance on all well defined environments

into its value of Universal Intelligence measure

• Dynamic - “A test/definition should directly take into account the ability to learn and

adapt over time as this is an important aspect of intelligence” (Legg; Hutter, 2007)

– Universal intelligence achieves this through its implementation of reward summable

environment µ;

• Unbiased - “ A test/definition should not be biased towards any particular culture,

3One of the contributors behind the genesis of definition of Universal Inteligence is the theoretical optimal

agent AIXI as defined in (Hutter, 2004). Part of AIXI was even used to derive Universal Intelligence - more

specifically the Ingelligence Order relation. Explained simply, the intelligence order relation in AIXI is a

partial ordering of agents based on their relative abilities to achieve their goals in different environments.

AIXI is defined as the most intelligent agent, with it being universally optimal. With AIXI being theoretically

universally optimal, an upper limit of Universal intelligence can therefore be defined as the intelligence of

AIXI. Sadly, AIXI is only theoretical and cannot be practically implemented due to the uncomputability of

Kolmogorov’s complexity. Additionally, the notion of universal optimality of AIXI was argumented against in

(Leike et al., 2015). This paper brought forward multiple arguments for the power of AIXI being extremely

relative to the choice of the prefix Universal Turing Machine.
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species, etc” (Legg; Hutter, 2007)

– Universal Intelligence measures tries to achieve this property through something

very general and principled - Universal Turing Computation - because concept of

computation appears to be a fundamental theoretical property instead of being

a product of any specific culture. By weighing different environments depending

on their Kolmogorov complexity and space of all computable environments, the

Universal Intelligence measure mostly avoids the definition of intelligence without

respect to any particular culture, species, etc. However, it has not entirely removed

the problem because environmental distribution depends on the reference machine.

A partial fix is proposed by using the simplest possible reference machine.

• Fundamental - “We do not want a test/definition that needs to be changed from time

to time due to changing technology and knowledge” (Legg; Hutter, 2007)

– Universal Intelligence measure is based on computation, information, and com-

plexity.

• Formal -“The test/definition should be specified with the highest degree of precision

possible, allowing no room for misinterpretation. Ideally, it should be described using

formal mathematics” (Legg; Hutter, 2007)

– Universal Intelligence has a formal definition in the form of an equation.

• Objective - “The test/definition should not appeal to subjective assessments such as

the opinions of human judges.” (Legg; Hutter, 2007)

– “Universal Intelligence does not depend on any subjective criteria” (Legg; Hutter,

2007)

• Fully Defined - “Has the test/definition been fully defined, or are parts still unspeci-

fied?” (Legg; Hutter, 2007)

– The Universal Intelligence has been derived and fully defined in (Legg; Hutter,

2007)

• Universal - “Is the test/definition universal, or is it anthropocentric?”(Legg; Hutter,

2007)

– “Universal Intelligence is in no way anthropocentric” (Legg; Hutter, 2007)

• Practical - “A test should be able to be performed quickly and automatically, while

from a definition it should be possible to create an efficient test” (Legg; Hutter, 2007)

– Universal Intelligence measure in the original definition cannot be turned into a

test of intelligence due to the uncomputability of Kolmogorov complexity.
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These principles are then applied to some existing tests with the following results:

Figure 1.1: Universal Intelligence - Intelligence test principles (Legg; Hutter, 2007)

From this comparison, it can be seen that Universal Intelligence has many positives and is

worth further analysis. That UI is worth further analysis is also proven by, for example, the

work of (Hibbard, 2009). This work dissects the theory of Universal Intelligence to prove

that certain choices of prefix Universal Turing Machine can bring extreme bias to the formal

measure of intelligence and that even a simple constraint on programs defining environments

like minimum length limit can help fix this. Additionally, Hibbard refers to the current

understanding of physics and No Free Lunch Theorem4 to prove that it is not unreasonable

to have purely finite environments and that there is a necessity to have unequal weighting of

environments such as the Kolmogorov complexity.

As the Universal Intelligence measure is still only a definition of intelligence and cannot be

used as a test, it is necessary to create one. Creating one is impossible for the original

definition of the UI measure due to the incomputability of K and V π
µ . Instead, (Legg; Veness,

2011b) creates an approximation of UI they call AIQ, allowing them to create a practical test

prototype that measures this approximation. We will return to AIQ 1.4. Before that, it is

necessary to look at the Anytime Intelligence test.

4(Hibbard, 2009) refers to No Free Lunch Theorem as specified by (Wolpert et al., 1997). This theorem

says “that all optimisation algorithms have equal performance when averaged over all finite problems.”
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1.3.4 Anytime Intelligence test

Another formal test of intelligence is the Anytime Intelligence test proposed in (Hernández-

Orallo et al., 2010). This test is based upon their previous work in revisiting C-Tests, ex-

tending knowledge from Universal Intelligence (Legg; Hutter, 2007) and ideas from proposed

Inductive Learning extension to Turing test (Dowe et al., 1998)

(Hernández-Orallo et al., 2010) named this test Anytime Intelligence because it must be able

to stop anytime and successfully give an approximation of the tested agent’s Universal Intel-

ligence. Any further testing beyond the point of stopping would only serve to achieve a more

precise approximation of Universal Intelligence. Aside from this, the test proposes ways to

fix other problems of the Universal Intelligence measure.

The proposed solution of (Hernandez-Orallo, 1999) for problems causing uncomputability of

Universal Intelligence measure:

• Total reward of UI environments is uncomputable due to testing over infinite environ-

ments - Uncomputable amount of both interactions and environments

– Replacing an infinite amount of environments for a sample of environments that

are very sensitive to the agent’s actions. “More precisely, we want an agent to be

able to influence rewards at any point in any subenvironment”(Hernández-Orallo

et al., 2010) This allows to both approximate the infinite set of environments and

also to filter the environments where agent’s actions would have minimal or not

even any influence of its surroundings.

– Utilising a limited amount of interactions between agents and environments while

averaging reward by the number of interactions for the final score. “Interactions

are not infinite. Rewards are averaged by the number of actions instead of accu-

mulated. This makes the score expectation less dependent on the available test

time.” (Hernández-Orallo et al., 2010)

• Complexity of Environment is uncomputable due to Kolmogorov’s complexity being

uncomputable

– (Hernández-Orallo et al., 2010) proposes replacing uncomputable Kolmogorov’s

complexity with their own variation of Levin’s Kt complexity function. This

variation is limited through both time and the number of interactions with the

environment.

(Hernández-Orallo et al., 2010) also proposed additional improvements upon the original

definition of UI measure:

• Time is ignored in the original definition of UI measure. This test includes a fixed time

of interacting for a single agent, which grows progressively over time to achieve the

"anytime" capability of the test.

– It is necessary to avoid random but fast agents testing better than truly thinking

agents - to fix this, rewards and penalties are included in environments by changing

the reward range to go from -1 to 1. Additionally, requiring balanced environments
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allows for agents behaving randomly to score 0.

• It is possible to use some very slow environments for testing UI measure

– Additional constraint is given to a sample of environments. To avoid slow envi-

ronments, a sample is required to contain mainly reward-sensitive environments.

Through these proposals, (Hernández-Orallo et al., 2010) proposed a few different tests for

different capabilities of agents. Sadly, none of these tests were practically implemented. A

simplified prototype was created by (Insa-Cabrera et al., 2011), but as noted by (Vadinský,

2018a), it lacks both time scale which is a crucial aspect of the AnyTime test and environments

are not generated by Turing complete program, and are wholly observable by agent leading

to only a subset of environments considered by UI definition being testable. Therefore, while

the AnyTime test has a more robust definition than the UI measure, it still lacks practical

tests that fully incorporate their full potential. On the other hand, the Universal Intelligence

measure has a practical implementation in the Algorithmic Intelligence Quotient test.
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1.4 Algorithmic Intelligence Quotient

So far, we have analysed some of the main predecessors of the Algorithmic Intelligence Quo-

tient(AIQ) mainly the Universal Intelligence in section 1.3.3. Now the time has come to look

into the test this work is based on - the prototype implementation of AIQ evaluation. AIQ

test focuses on creating a practical approximation of UI measure that is practically testable.

The subsection 1.4.1 will look into the principles behind AIQ and the steps done to achieve

an approximation of Universal Intelligence that is computable, along with the introduction

of improvements done by Vadinský in his works (Ondřej, 2018), (Ondřej, 2018), (Vadinský,

2019). Basic principles of AIQ approximation will be followed by description of chosen Ref-

erence machine BF-Code in subsection 1.4.2 Along with this approximation, a prototypical

implementation was created and will be analysed in later chapter 3, specifically in section 3.1

followed by a description of steps taken to improve the prototypical code in section 3.3

1.4.1 Principles of AIQ test

“The aim of the Universal Intelligence Measure was to define intelligence in the most general,

precise and succinct way possible. While these goals were achieved, this came at the price of

asymptotic computability”(Legg; Veness, 2011b). To allow for any practical use of the Uni-

versal Intelligence an approximation had to be be made. The original Universal Intelligence

is approximated through the following changes:

• Environment sampling - Occam’s razor

– Problem: While generating samples of environments, it is necessary to both in-

clude the idea of Occam’s razor and to avoid the incomputability of Kolmogorov’s

complexity K.

– Solution: By utilising Solomonoff’s Universal distribution’s (Solomonoff, 1964)

definition of machine M5 as an approximation of Kolmogorov’s complexity, the

difficulty of sampling is majorly eased, even if it allows for multiple programs

defining the same environment.

• Environment simulation - Halting problem

– Problem: Every sampled program must be run on a defined reference Machine.

Some programs will never halt and due to the halting problem proven by (Alan M.

Turing, 1936) there is no process that can always determine specific cases. This

results in the process getting stuck.

– Solution: Practically there is no difference if program never halts or halts af-

5Solomonoff’s Universal distribution assigns a probability to bit sequences that begin with the final sequence

of x calculated by program p on reference Turing Machine U using the following equation

MU (x) :=
∑

p:U(p)=x∗

2−l(p)

(Solomonoff, 1964)
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ter way too many steps. This problem is reduced through choosing a reference

machine where non-halting programs are relatively unlikely or easier to detect.

Any leftover problematic programs can be detected through implementing a limit

of computational steps. Any programs that pass this limit in any cycle will be

discarded

• Temporal Preference - Undiscounted bounded trials over fixed length trials

– Problem: There is no practical way of knowing if a program will respect given

reward bounds of Universal Intelligence. Universal Intelligence also asks for infinite

interaction sequence for the testing.

– Solution: While implementation of geometric discounting that would fix out of

bound rewards is proposed, it is computationally inefficient over longer programs.

In the end an alternative was chosen through focusing on undiscounted, bounded

rewards over fixed length trials along with replacing the sum of rewards with an

arithmetic mean. Inclusion of fixed length also creates an approximation of infinite

interaction sequence fixing the second problem.

• Reference Machines selection

– Problem: While more complex reference machines would allow better simulation

of real world, they are far more difficult to develop.

– Solution: For the AIQ test prototype the focus is on a very simple reference

machine, ideally one where all programs are syntactically valid and there is unique

end of program symbol. The BF language was chosen and modified for this case.

More about this reference machine can be found in subsection 1.4.2

Aside from creating a computable approximation of UI, some steps were also made to

improve the computing efficiency and lower the variance of AIQ test.

• Variance reduction

– Problem: AIQ test uses Monte-Carlo sampling for obtaining accurate estimates of

agent’s AIQ score. This leads to estimation being very time consuming.

– Solution: There are multiple techniques utilised to lower the complexity of Monte-

Carlo sampling.

∗ Exploiting the parallel nature of Monte Carlo to run the test on multiple cores

∗ Utilisation of stratified sampling to group together similar types of environ-

ment prior to the AIQ score calculation to ensure testing across all kinds

of environments while also focusing on those environments that have bigger

variance of results leading to more interesting results.

∗ Instead of estimating the AIQ score of two agents from independent samples,

an estimation of difference from single set of program samples is done. This

is called common random numbers technique.

∗ The final variance reduction technique used was antithetic varieties. Instead

of using one samples, two samples are used in a way that directly oppose each

other. In AIQ test implementation this is done through running program

twice, once with positive and once with negative rewards.
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After applying these improvements the new approximation can be defined in the following

equation

Algorithmic Intelligence Quotient.

Υ̂(π) :=
1

N

N
∑

i=1

V̂
π

pi
, where V̂

π

pi
:=

1

k

k
∑

i=1

ri

Where Υ̂ is the AIQ approximation of universal intelligence, π is the tested agent tested

over number of programs N belonging into finite set of samples S based on environments p

created by generation of bits until the end of program. V̂
π

pi
here defines the measure of success

in environment program. This measure is calculated as average reward achieved by agent π

during a single run of program averaged by number of total interactions k

All of these variance reduction changes led to a significant performance improvement and

massively lowered computational requirements compared to the original single-thread Monte

Carlo implementation.

Further Improvements

AIQ test was further improved upon through the work of (Ondřej, 2018). Through repro-

ducing the AIQ test results Vadinský realised that AIQ still contains some weaknesses and

proposed some ways to ameliorate then:

• Reducing Dependence on Reference Machine

– Introduced option to define minimal program length to the program sampler

• Decreasing high computational requirements

– Introduced option to save AIQ score after every thousand interactions

• Testing agents with large configuration space

In his later works like (Vadinský, 2018a) some additional improvements were introduced.

• Improvements upon sanitising of programs from nonsensical, ineffective or

non-discriminatory programs. Programs that do not assist in measuring agent’s AIQ

score.

These improvements were focused to improve upon three areas. Increasing discriminatory

power in samples, achieving more effective testing practices and allowing to setup minimal

length of programs for lowering dependence on reference machine.

Aside from these some other changes have been made like improving wrapper for MC-AIXI

or testing Multi-Round EL Convergence Optimization on AIQ test, however these do not

bring anything for the base workings of AIQ testing and will not be focused on in this work.
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1.4.2 BF Reference Machine

“One important property of a reference machine is that it should be easy to sample from. The

easiest languages are ones where all programs are syntactically valid and there is a unique

end of program symbol” (Legg; Veness, 2011b)

The reference machine chosen was Urban Muller’s BF language (Müller, 1993). As a simple

low-level language with only 8 instructions and very small compiler (240 bytes) it already

almost simulated Turing’s machine instructions themselves. The instructions specify how

reference machine interacts with input and output tape that is used for interactions between

agent and an environment and with work tape that is used to translate data from input to

output tape. “The agent’s action information is placed on input tape cells, then the program

is run, and the reward and observation information is collected from the output tape. Reward

is the first symbol on the output tape and is normalised to the range −100 to +100. The

following symbol is the observation. All symbols on the input, output and work tapes are

integers, with a modulo applied to deal with under/overflow conditions.”(Legg; Veness, 2011b)

These are the 8 instructions and their interactions inside of AIQ test (Ondřej, 2018):

• + - Incrementation of symbol on work tape

• - - Decrementation of symbol on work tape

• , - Reads currently selected symbol from input tape, writes it on work tape and moves

input tape by a cell

• . - Writes currently selected symbol from work tape on currently selected cell of output

tape and moves output tape by a cell

• < - Moves work tape to a cell on left side of currently selected cell

• > - Moves work tape to a cell on right side of currently selected cell

• [ - Begins a loop if currently selected cell of work tape is not zero

• ] - Defines an end of a loop

Some changes had to be made to not have environments always deterministic. This was

achieved by adding a new symbol “%” that writes a random symbol into currently selected

position of input tape

Final change of the BF code instruction set was a specific instruction “#” that signifies the

end of the program. This instruction allows us to know when to stop sampling on MU .

The original reference machine was further improved by defining a step limit and having

history of previous agent actions placed on the input cell to make it easier for environment

to compute functions of the agent’s past actions. Finally the code is sanitised by removing

some pointless code combinations for more compact programs almost without infinite loops.

Additionally all programs lacking any instructions to read from input or write to output were

also removed
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2. Reinforcement Learning

One of the most basic and main goals of AI development is to achieve a state where a

developed agent can expand its own knowledge and capabilities. In other words, to allow

Artificial Intelligence agent to “learn” like a human. But what does it mean to learn like a

human?

“When an infant plays, waves its arms, or looks about, it has no explicit teacher, but it does

have a direct sensorimotor connection to its environment. Exercising this connection produces

a wealth of information about cause and effect, about the consequences of actions, and about

what to do in order to achieve goals. Throughout our lives, such interactions are undoubtedly

a major source of knowledge about our environment and ourselves.”(R. S. Sutton et al., 2018)

2.1 Introduction

As described in (R. S. Sutton et al., 2018), Reinforcement learning is based on trial-and-

error learning. The first investigation into a computational approach to this type of learning

dates back to 1954, when two separate groups, Minsky and the duo of Farley and Clark,

proposed neural networks designed to achieve this type of learning. Later in the 1960s,

the term “Reinforcement Learning” was first utilised in the engineering literature. During

the following sixty years, this area of Artificial Intelligence achieved significant progress and

became one of the strongest players in AGI. To learn more about the advances during this

time frame, the (R. S. Sutton et al., 2018) is highly recommended.

Reinforcement Learning introduced a computational approach to learning from the agent’s

interactions with its surroundings. An agent is never told what he is supposed to do, but its

every action is either rewarded or punished. Through trial-and-error agent must find out and

remember which actions are best not only immediately, but even during longer time frame.

This is achieved through constant modification of policies that define how agent behaves.

Figure 2.1: Spinning up - Reinforcement Learning Schema
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One possible example is a popular learning environment called Pole Balancing, sometimes

abbreviated as Cart-Pole. Introduced in (Barto et al., 1983), “this environment has a cart to

which a rigid pole is hinged. The cart is free to move within the bounds of a one-dimensional

track. The pole is free to move only in the vertical plane of the cart and track” The goal of

the agent is to learn to move in such a way that the pole is balanced upright.

Figure 2.2: Cart-Pole problem (Barto et al., 1983)

Let us use this problem to better describe reinforcement learning

• Agent - In this problem, an agent decides how to move the cart left and right.

• List of Actions - In this problem Agent has only two possible actions

– Move to the left

– Move to the right

• Environment - Description of a state of the environment and task to be achieved in

that environment - Balancing the pole upright on the cart.

• State - Defines the current state of the environment to the agent.

– Cart Position - At what place in the

– Cart Velocity

– Pole Angle

– Pole Angular Velocity

• Reward - How many steps can an agent keep the pole at an acceptable upright angle.

By recording the states that follow each action, the agent can determine which actions lead

to which states. This enables the agent to learn how to maximise the rewards it receives.
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2.2 Elements of Reinforcement Learning

After explaining what is the basis of Reinforcement Learning. It is time to identify four main

subelements of the Reinforcement Learning system according to (R. S. Sutton et al., 2018).

These elements are a policy, a reward signal, a value function and optionally, a model of an

environment.

Policy defines how an agent chooses its actions. It is what defines what action should be

done in what state. For this reason, a function representing policy is often defined as a

state-action pair function.

Reward signal defines how well an agent achieves the current problem’s goal. On each step,

an agent receives a reward for its last action. Through maximising this reward agent learns

what are good and bad events for the agent and learns how to behave in an immediate sense.

Value function specifies what is good in the long run. “the value of a state is the total

amount of reward an agent can expect to accumulate over the future, starting from that

state”(R. S. Sutton et al., 2018). Rewards are given by an environment immediately. Values,

on the other hand, must be estimated and re-estimated from observations achieved over the

lifetime of an agent.

Model exists only in part of agents. It is an inference of how an environment behaves and

will behave. Knowing this model allows any agent to plan for the future. This ability is very

powerful, and the existence of a model in an agent is the most basic categorisation of agents.

2.3 Types of Reinforcement Learning Agents

As noted, the main branching point for an RL agent is whether it starts with given or learned

rules about how an environment assigns rewards to state transitions. Those agents that do

have access to these rules are called model-based agents, and these rules allow such agents

to predict multiple steps ahead, which results in better sample efficiency. However, agents

rarely have access to the model from the beginning, and most model-based agents have to

learn the world model from their own experience, which brings bias into a model. This bias

may cause such a model to not work nearly as well in real environment compared to training.

Other than agents with access to an environmental model, there are also so called model-free

RL agents. “While model-free methods forego the potential gains in sample efficiency from

using a model, they tend to be easier to implement and tune.”(Achiam, 2018)

See 2.3 for a simple schema of categories of popular agents.
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2.3.1 Model-Based Agents

As already stated, model-based agents have a model of state value function that can be either

given right away or learned during early episodes.

A famous example of an agent with an already given model is AlphaZero (Silver et al., 2017),

an algorithm created to play chess and managed to achieve superhuman levels of play

Then there are most of the other agents that have to learn the environmental model by

themselves. Among some of the better known are these agents:

• World Models (Ha et al., 2018)

– Focuses on the possibility of training model-free agents only in simulated latent

space worlds created by an environmental model.

• Model-Based Value Estimation - MBVE (Feinberg et al., 2018)

– Like World Models, MBVE proposes using an environmental model to train model-

free agent

– Unlike World Models, MBVE wants to augment real experiences with fictitious

ones instead of only using fictitious ones like World Models

• Imagination-Augmented Agents - I2A (Weber et al., 2017)

– Complete plans gained from an environmental model are given to model-free agent

as subroutine - side information.

– Policy can learn to choose when and if to use plan - makes model bias less of a

problem

• Neural Network Dynamics for Model-Based Deep Reinforcement Learning with Model-

Free Fine-Tuning also known as MBMF (Nagabandi et al., 2017)

– Each time the agent observes the environment, it computes every step of an optimal

plan, with respect to the environmental model

– Agent executes the first action of the plan and starts computing a new plan.

2.3.2 Model-free Agents

While model-based agents start with or create an environmental model of how the world

itself works to either plan far ahead or to augment data for training. Model-free agents focus

on finding the most optimised ways to behave by trial and error. This is achieved either

by optimising policies directly, deriving them utilising Q-learning, or using a combination of

these methods.

The first method, optimising policies directly, is called Policy Optimisation. Policy optimisa-

tion agents explicitly define their policy as πθ (a♣s). This equation consists of action a, state

s, policy π and parameter θ. “This policy is optimised by changing the parameters θ, either

by gradient ascent on the performance objective J(πθ), or indirectly by maximising local

approximations of J(πθ)”(Achiam, 2018) Thanks to the ability of directly optimising what

is needed, Policy Optimisation Methods tend to be way more stable and reliable. However,

these methods have their negatives.
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In Policy Optimisation, most agents utilise on-policy optimisations. This means that dur-

ing each policy update, only data from the last policy iteration can be used. This leads to

an inability to recycle data from old iterations of policies, which translates to low sample

efficiency compared to off-policy algorithms like Q-learning. In simpler terms: Policy Opti-

misation algorithms try to find the best policy (state-action pair) that maximises

the expected cumulative reward over time.

The second method is called Q-Learning. These methods work by trying to approximate

optimal action-value function Q∗(s, a) through approximator Qθ(s, a). An objective function

based on Bellman equation is typically used. These equations are based on the simple idea

of“The value of your starting point is the reward you expect to get from being there, plus

the value of wherever you land next.”(Achiam, 2018). This optimisation is almost always

performed off-policy. This means that contrary to on-policy optimisations where only the

last iteration of data can be used, any data collected during training can be used regardless

of the agent’s decision-making process. The actions taken by the Q-Learning agent are then

given by a(s) = arg maxa Qθ(s, a). To once again try to explain this simpler: Q-Learning

agents try to find the best value function (action-value pair) to find which action

has the highest expected cumulative reward in each state.

The combination of these methods is very often categorised as Policy Optimisation agents

because the one that acts is policy. This policy is then criticised through values brought

forward by value functions. You could therefore say that these methods could be called

Actor-Critic methods. “The term “Actor-Critic” is best thought of as a framework or a class

of algorithms satisfying the criteria that there exists parameterised actors and critics. The

Actor is the policy πθ(a ♣ s) with parameters θ, which conducts actions in an environment.

The Critic computes value functions to help assist the actor in learning. These are usually

the state value, state-action value, or advantage value, denoted as V(s), Q(s,a), and A(s,a),

respectively.” (Seita, 2018). As the citation shows, state-action value (Q-learning) can be

used in actor-critic methods. But other critics exist too.

Some of the popular agents, along with their basic premise, is described on the next page:
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• Q-Learning Agents

– Deep Q-Network - DQN (Mnih; Kavukcuoglu, et al., 2013)

∗ Q-Value function of this agent is represented by Deep neural network

– Double DQN - DDQN (Hasselt et al., 2015)

∗ This agent focuses on the overestimation problem of DQN by dividing the

selection of actions and evaluation of action-values between two separate net-

works

– Categorical DQN - C51 (Bellemare et al., 2017)

∗ Value of state-action (policy) pair is not estimated as a single value, but an

approximation of a categorical distribution over a set of discrete values

– Quantile Regression DQN - QR-DQN (Richter et al., 2019)

∗ Quantile regression is used in this agent instead of a neural network to estimate

Q-Value function

– Hindsight Experience Replay - HER (Andrychowicz et al., 2017)

∗ HER focuses on improving the learning of agents in sparse reward environ-

ments.

∗ A modified version of the experience replay mechanism is utilised

· This allows agents to learn from experiences that were not directly re-

warded but gained that reward later on.

• Policy Optimisation Agents

– Vanilla Policy Gradient - VPG (R. Sutton et al., 2000)

∗ Improved implementation of basic gradient algorithm - One of the most basic

Actor-Critic algorithms beyond the tabular case.

∗ Chosen for implementation and further described in 2.5

– Advantage Actor-Critic

∗ Actor-critic method that executes a set of environments in parallel to increase

the diversity of training data

∗ Two different implementations

· Asynchronous - A3C (Mnih; Badia, et al., 2016)

· Synchronous - A2C (Wu et al., 2017)

– Trust Region Policy Optimisation - TRPO (Schulman; Levine, et al., 2015)

∗ A variation upon basic Policy gradient that allows for greater learning steps

by implementing a KL-Divergence constraint

∗ Implementation of constraint very computationally complex

– Proximal Policy Optimisation (Schulman; Wolski, et al., 2017)

∗ Different implementations of the original idea behind TRPO

· Penalty - Making the original constraint defined in TRPO a penalisation

instead of a hard constraint

· Clipping - Two different policies are run one after another. If the new

policy gets too far from the old one, it gets clipped. This discourages

large policy changes.
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∗ This algorithm was chosen for implementation and will be further described

in 2.6

• Hybrid Agents - Combines ideas of Policy Optimisation and Q-Value

– Deep Deterministic Policy Gradient - DDPG (Lillicrap et al., 2015)

∗ Learns both Deterministic state-action policy and Q-Value function to evalu-

ate policy

∗ Uses a combination of experience replay and target networks to stabilise learn-

ing

– Twin Delayed DDPG - TD3 (Fujimoto et al., 2018)

∗ Addresses some stability issues that can arise during training

∗ Utilises two Q-Value functions and a more conservative update rule for policy

∗ Addresses over-estimation problem by target policy smoothing

– Soft Actor-Critic - SAC (Haarnoja et al., 2018)

∗ Optimisation of trade-off between expected reward and entropy of policy -

encourages exploration

∗ Utilisation of temperature parameter to control degree of stochasticity - adapts

to changing environments
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2.4 Policy Gradient Agents

Policy Gradient Agents are a type of Policy Optimisation agents that update their policy

by using the gradient of expected cumulative reward with respect to the policy parameters.

Gradients help to locate a local maximum or minimum of a function.“Computing the gradient

is tricky because it depends on both the action selection and the stationary distribution of states

following the target selection behavior. Given that the environment is generally unknown, it

is difficult to estimate the effect on the state distribution by a policy update.”, Instead a

derivative defined by Policy Gradient Theorem (R. S. Sutton et al., 2018) is used. This

derivative allows for majorly simplified computations. After estimating gradient, the next

step is to use it to update the parameters of the agent’s policy. A standard Gradient Ascent

or something more complex like ADAM (Adaptive moment estimation) can be used for this.

Standard Gradient Ascent is based on a simple iterative change of parameters in the same

direction as an estimated gradient of the loss function to maximise the expected return.

ADAM, originally defined by (Kingma et al., 2014) is currently a very popular stochastic

gradient descent optimisation algorithm used for RL. Unlike standard Gradient Ascent that

just moves in the same direction as the gradient, ADAM estimates the first and second

moment of the gradient by using moving averages of gradient and squared gradient. Using

both gradient and squared gradient allows for correcting bias in the gradient estimate and

adjusting the scale of the update based on the variance of the gradient. Thanks to this

ADAM is more robust and efficient than standard stochastic Gradient Ascent.

For this thesis, Vanilla Policy Gradient (VPG) and Proximal Policy Optimisation (PPO) were

chosen. PPO is one of the more popular choices in Reinforcement Learning and improvement

of Vanilla Policy Gradient. I have not been able to find the original use of the term Vanilla

Policy Gradient, but for this thesis, the term will be used in the context of its utilisation in

(Achiam, 2018). In this work, VPG is a variation of an extremely basic REINFORCE agent

introduced in (RJ, 1992). By choosing VPG and PPO, we have both basic and more advanced

on-policy agents optimising their policies through Policy Gradient methods to compare.

2.5 Vanilla Policy Gradient

Vanilla Policy Gradient was chosen as an example of one of the more basic implementations

of Policy Optimisation agents. This work will utilise the implementation defined in (Achiam,

2018). As already stated, Vanilla Policy Gradient is a more advanced and robust variant of

REINFORCE agent. This agent got improved with ideas taken from (R. Sutton et al., 2000).

The definition this implementation is based on comes from (Schulman, 2016), which brings

forward a comprehensive and lucid introduction to the theory of policy gradient algorithms

along with pseudocode. Spinning Up implementation of the agent is further enhanced by

utilising Generalised Advantage Estimation defined in (Schulman; Moritz, et al., 2015) to

better compute the required policy gradient.

Among the most notable differences is how REINFORCE and VPG work with gradient ascent.
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While REINFORCE performs gradient ascent once for each action taken for each episode,

VPG performs gradient ascent once over multiple estimates. VPG also utilises a baseline

such as a value function. The baseline is subtracted from the return in the Policy Gradi-

ent Theorem, which reduces the variance of the gradient estimate and helps the algorithm

converge faster and more efficiently.

To further explain the principles behind Vanilla Policy Gradient, a pseudocode defined in

(Achiam, 2018) will be first introduced in its entirety before explained step by step.

2.5.1 Vanilla Policy Gradient - Pseudocode

Algorithm 1 - Vanilla Policy Gradient Algorithm

1. Input: initial policy parameters θ0, initial value function parameters ϕ0

2. for k = 0,1,2, . . . do

3. Collect set of trajectories Dk = ¶τi♢ by running policy πk = π (θk) in the environment.

4. Compute rewards-to-go R̂t.

5. Compute advantage estimates, Ât (using any method of advantage estimation) based

on the current Value Function Vφk

6. Estimate policy gradient as

ĝk =
1

♣Dk♣

∑

τ∈Dk

T
∑

t=0

∇θ log πθ (at ♣ st) ♣θk
Ât.

7. Compute policy update, either using standard gradient ascent,

θk+1 = θk + αkĝk

or via another gradient ascent algorithm like ADAM.

8. Fit value function by regression on mean-squared error:

ϕk+1 = arg min
φ

1

♣Dk♣ T

∑

τ∈Dk

T
∑

t=0

(

Vφ (st) − R̂t

)2
,

typically via some gradient descent algorithm.

9. end for

Before explaining the first step, we must first explain how Policy and Value functions work

together in Vanilla Policy Gradient. For explaining policy and value functions, theory from

(R. S. Sutton et al., 2018) is used and simplified for easier understanding.

Vanilla Policy Gradient utilises two neural networks. First is the Policy network - The policy

network defines probabilities of every possible action taken from the current state based on

its current state bringing the highest reward. This is the part of the agent responsible for

acting - it is the Actor in the Actor-Critic definition of the VPG agent, and by updating this

network, the agent works towards maximising the rewards received by actions done by this

network.
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The second network is called the Value network - A network specifying state-value function

Vφk
that estimates the expected return to be received, starting from that state. This network

behaves as the Critic in the Actor-Critic definition, telling the Actor how well it did. This

network is trained to minimise the mean squared error between the estimated value to be

received in a state and actual value received.

Together these two networks work to improve the performance of the agent. The Policy

network selects actions with the highest probability of maximising reward based on the current

state, and the Value network informs about the quality of selected action to allow further

improvement of the agent’s Policy network. By optimising both Policy and Value networks,

the agent can achieve an optimal policy that maximises the expected total reward over time.

Before an agent can begin training these networks, they require initial values. This is done

in step one of the pseudocode.

The second pseudocode step starts the agent’s main loop. Each run of this loop defines a

single training timestep of the agent.

The third step handles the collection of information. By allowing the agent to run its current

Policy in an environment for a specific amount of steps or until it dies a set of trajectories

are collected to be used in further training.

In the fourth step Rewards to go are calculated. “Agents should really only reinforce actions

on the basis of their consequences. Rewards obtained before taking an action have no bearing

on how good that action was: only rewards that come after.” (Achiam, 2018). Implementa-

tion of this principle is called “Rewards to go” and utilised in this step to calculate expected

return at each timestep.

The fifth step calculates advantage estimates - Unlike value estimates that calculate the ex-

pected sum of rewards given a specific state, advantage estimates guess how much better or

worse an action is compared to an average action. VPG calculates the advantage function by

subtracting the state value from the action value at each timestep. By utilising advantage

estimates, this agent can focus on actions that are better than average and avoid those worse

than average. Usually, this is achieved through GAE - a Generalised Advantage Estimate.

GAE combines multiple estimates and is very popular for Reinforcement Learning. Adding

a bias term to estimate a scaled version of the previous estimate reduces the high variance

usually returned in estimating the advantage function. As this work focuses on agents and

not their underlying techniques for further information about this principle, please consult

the original article (Schulman; Moritz, et al., 2015).

The sixth step focuses on estimating the actual Policy Gradient. Gradients are useful as they

allow us to find the steepest increase of returned rewards for a given input. The majority of

logic behind Gradients can be found in Policy Gradient Theorem, which is also explained in
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(R. S. Sutton et al., 2018). VPG specifically uses one of the derivatives achieved from Policy

Gradient Theorem that (Achiam, 2018) calls “Expected Grad-Log-Prob Lemma” or EGLP in

short. This Derivation of Policy Gradient Theorem allows us to very efficiently compute the

expected gradient of the log-probability of an action, with respect to the Policy, and can be

found in the equation as
∑T

t=0 ∇θ log πθ (at ♣ st). This part of the equation is the part that

computes the gradient of the log-prob of a trajectory. To EGLP, a baseline is added in the

form of Advantage function Ât to reduce the variance of gradient and allow the Policy to

converge faster and more efficiently. So far, this part of the equation has created an expecta-

tion of gradient. It can then be estimated with a sample mean represented in this equation

as a mean of a set of trajectories Dk. The derivation process to achieve this equation can be

found in chapter nine of (Achiam, 2018).

The next step, the seventh, applies the estimated policy gradient to our policy network, either

through standard gradient ascent or ADAM. I already talked about the theory behind this

part at the beginning of 2.4.

The final technical step, the eighth one, updates the existing value function by utilising re-

gression on mean squared error. This equation calculates this error by subtracting the actual

reward return from the expected return defined by the value function. This error is then

mean-squared across multiple samples of trajectories. This is then applied to the existing

value function, similarly to step seven. However, unlike Policy where we want to maximise

probability, in the Value function we want to minimise error, so a gradient descent is used

instead. Once again, either standard gradient descent or something more complex like ADAM.

The final Actual step in pseudocode purely closes the main loop.

In summary, Vanilla Policy Gradient utilises a combination of two neural networks, Actor

and a Critic. Based on his current knowledge, the Actor chooses actions in a set of steps

with the highest probability of maximising reward. Critic criticises his actions while taking

notice of the difference between his expected reward from actions taken and the actual reward

gained from these actions. After every set of steps, both of them improve themselves. The

Actor uses the Policy Gradient Ascent with an Advantage estimate for better stability and

efficiency to maximise the probabilities of an action achieving the highest reward and Critic

uses the Policy Gradient Descent to minimise his eror in predicting the value gained from an

action.
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2.6 Proximal Policy Optimisation

Before we can start explaining the theory behind Proximal Policy Optimisation, we must

look into the source of the root ideas that PPO implements through different means. This

agent is called Trust Region Policy Optimisation, first proposed in (Schulman; Levine, et al.,

2015).

2.6.1 Trust Region Policy Optimisation

With Trust Region Policy Optimisation, a way is proposed to improve performance by al-

lowing larger steps in policy optimisation. Originally this was very problematic as a single

bad step could have collapsed the policy performance. This problem was fixed by proposing

a special constraint that defines how close the new and old policies can be. KL-divergence,

also known as relative entropy, is introduced to enable this constraint. The full name of this

constraint is Kullback-Leibler Divergence, and it is a type of statistical distance that measures

the difference between two probability distributions. More specifically, how much information

is lost when one is used to approximate another. This allows for measuring the differences

between probability distributions, limiting steps that differ too much from the original policy.

However, the theory of TRPO requires complex calculations that are quickened by approxi-

mations. Through this, however, a problem in optimisation of the approximate is raised, and

many steps have to be taken to solve and sidestep this problem. This leads to the agent being

fairly slow and processing intensive. Yet, the original idea of TRPO had a lot of merits, and

from its metaphorical ashes, PPO was born.

2.6.2 PPO - basic theory

First mentioned in identically named article by (Schulman; Wolski, et al., 2017), Proximal

Policy Optimisation utilises simple tricks to fix the same problems as Trust Region Policy

Optimisation - problems that do not allow taking larger steps in policy updating. Compared

to TRPO, this agent offers a similar ability for larger steps at way lower computational costs

by avoiding a complex secondary function present in TRPO.

Two different variants of Proximal Policy Optimisation exist: Clipped Surrogate Objective,

further referred to as PPO-CLIP and Adaptive KL Penalty Coefficient, further referred to as

PPO-Penalty.
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2.6.3 PPO-Penalty

In this variant, a KL-constrained update is approximated through several iterations. But

instead of making this constraint a hard one, blocking any divergent steps, the KL-divergence

is penalised in objective function instead.

An adaptive KL penalty coefficient is used and adjusted during training based on the KL-

divergence specifying the distance between new and old policy. If KL-Divergence increases

by more than the pre-specified threshold the penalty is made stronger by increasing the

coefficient. Similarly, if KL-Divergence is decreased too much, the penalty coefficient is

decreased to lower the strength of the penalty.

It is a powerful technique. However, along with this technique, another variation appeared:

Clipped surrogate objective. And as is said in the original article: “In our experiments, we

found that the KL penalty performed worse than the clipped surrogate objective” (Schulman;

Wolski, et al., 2017)

As such focus of this work will be on PPO-Clip, and PPO-Penalty will not be used or

explained more in-depth in this work.

2.6.4 PPO-Clip

The better and more commonly used alternative to PPO-Penalty is PPO-Clip. “PPO-Clip

doesn’t have a KL-divergence term in the objective and doesn’t have a constraint at all. Instead

relies on specialised clipping in the objective function to remove incentives for the new policy

to get far from the old policy.” (Achiam, 2018)

As explained in article RL — Proximal Policy Optimisation (PPO) Explained (Hui, 2018)

This is achieved through maintaining two policy networks. One is current, which you want

to refine, and another, which you last used to collect samples. Thanks to this, it is possible

to evaluate new policies with samples collected from older policy.

To prevent inaccuracies, it’s necessary to synchronise the old policy every few iterations. This

is done by comparing the new policy to the old policy and calculating the difference. If the

new policy is significantly different from the old policy (outside of the range of (1 − ϵ, 1 + ϵ)),

a new objective function is created to limit large policy changes and ensure more accuracy.

This thesis uses the Spinning Up implementation of PPO-Clip that utilises a simplified deriva-

tion of the original expression is used. Original PPO-CLIP defined by (Schulman; Wolski,

et al., 2017) is calculated as follows:

PPO-clip updates policies via

θk+1 = arg max
θ

E
s,a∼πθk

[L (s, a, θk, θ)] ,

(Achiam, 2018)
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Typically taking multiple steps of (usually minibatch) Stochastic Gradient Descent to max-

imise the objective. In this equation, symbol E stands for the expected value operator. It is

used to denote the expected value of the surrogate objective function L, with respect to the

current policy distribution pithetak, which is defined by the current set of policy parameters

thetak. The expectation is taken over all possible state-action pairs (s, a) that can be sampled

from the policy distribution pithetak. The surrogate objective function is used as a proxy for

the expected reward as this value is difficult to directly optimise in Policy Gradient Methods.

Here L is given by

LCLIP
θk

(θ)
.
= E

s,a∼θk

[

min

(

πθ(a ♣ s)

πθk
(a ♣ s)

Aθk(s, a), clip

(

πθ(a ♣ s)

πθk
(a ♣ s)

, 1 − ϵ, 1 + ϵ

)

Aθk(s, a)

)]

In this equation, the Expectation E is taken over states and actions encountered by the

previous policy. πθ(a|s)
πθk

(a|s) checks how different is the new policy πθ and the old policy πθk

and how much more likely would the new policy select action a in state s over the old

policy. Aθk(s, a) defines the Advantage function, which estimates how much better action a

is than the average action in state s, according to the previous policy πθk
. And ϵ is a (small)

hyperparameter that roughly says how far away the new policy can go from the old.

All of these parts of the clipped surrogate objective L come together in expectation over

smaller from two terms. The Unclipped Surrogate Objective that measure how much the

new policy improves over the old one scaled by the Advantage, and the clipped version of the

first term that limits the size of an update to be no more than (1 − ϵ, 1 + ϵ). This ensures

that any policy update is not too large.

This original expression got derived by (Achiam, 2018) into the following equation:

L(s,a,θk,θ) = min

(

πθ(a♣s)

πθk
(a♣s)

Aπθk (s,a), g(ϵ, Aπθk (s,a))

)

,

where

g(ϵ, A) =

{

(1 + ϵ)A A ≥ 0

(1 − ϵ)A A < 0.

While the main part of the equation is quite similar to the original, the clipped part of the

term was replaced by a clipping function g that modifies the Advantage estimate A. More

specifically, if A is positive, g scales A up by a factor of 1 + ϵ, and if A is negative, then it is

scaled by a factor of 1 − ϵ. Through this, a clipped advantage estimate g(ϵ,A is used instead

of the original Advantage estimate A in the update rule for the policy parameters.
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After explaining the theory behind PPO-Clip, pseudocode comes next:

2.6.5 Proximal Policy Optimisation - Clipped Surrogate Objective - Pseudocode

1. Input: initial policy parameters θ0, initial value function parameters ϕ0

2. for k = 0,1,2, . . . do

3. Collect set of trajectories Dk = ¶τi♢ by running policy πk = π (θk) in the environment.

4. Compute rewards-to-go R̂t.

5. Compute advantage estimates, Ât (using any method of advantage estimation) based

on the current value function V ϕk.

6. Update the policy by maximising the PPO-Clip objective:

θk+1 = arg max
θ

1

♣Dk♣ T

∑

τ∈Dk

T
∑

t=0

min

(

πθ (at ♣ st)

πθk
(at ♣ st)

Aπθk (st, at) , g (ϵ, Aπθk (st, at))

)

,

typically via stochastic gradient ascent with ADAM.

7. Fit value function by regression on mean-squared error:

ϕk+1 = arg min ϕ
1

♣Dk♣ T

∑

τ ∈ Dk
∑

t = 0T
(

V ϕ (st) − R̂t

)2

typically via some gradient descent algorithm.

8. end for

As you can probably see, pseudocode for PPO is almost identical to the one for VPG except

for step six being merged with step 7. The original estimation of Policy gradient got replaced

by updating the policy through the mean of the PPO-Clip objective over a set of samples of

trajectories, through some gradient ascent or more complex gradient functions like ADAM.

As the only new equation already got explained in the basic theory behind the PPO agent,

it will not be repeated here.

With this, we have introduced the theory behind Policy Optimisation agents, their subcat-

egory Policy Gradient Agents and the specific agents chosen for implementation. The next

chapter will give a deeper dive into the theory behind AIQ.
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3. Upgrading AIQ test to Python 3

As many years have passed since AIQ was originally implemented, technology has changed.

This work was initially created using Python 2, which is now outdated. Python 3 was

released in 2008 to address design errors present in Python 2 and included many changes

that were not backwards compatible. As of 2020, development support for Python 2 has

been discontinued. Even Pip, a package manager that assisted in acquiring, installing and

maintaining packages required for your projects, is no longer available, and any possible

packages have to be painstakingly managed manually. Due to these reasons, it was necessary

to port this algorithm from Python 2 to Python 3.

This chapter will begin with a description of the original prototypical implementation of AIQ

using Python 2 in section 3.1 followed by section 3.2 defining what steps were taken to enable

AIQ to work on Python 3.8. Section 3.3 will introduce improvements to the AIQ prototype

other than updating to newer versions of Python. Finally, section 3.4 will describe basic tests

taken to ensure that both old and new versions of AIQ have comparable results.

3.1 Original Implementation

The implementation (Legg; Veness, 2011a) of the Algorithmic Intelligence Quotient consists

of four main parts: agent package, reference machine package, the algorithm for computing

AIQ from logs and the main AIQ algorithm. Each of these parts will be explained in the

following subsections.

3.1.1 The Agents Package

The “agents” package contains all implementations and wrappers of agents implemented for

requirements of the original conference paper (Legg; Veness, 2011b).

All of these agents inherit from an abstract class Agent.py which defines the required at-

tributes and methods for all agents, along with a couple of helpful methods that agents can

use. From the required parts, the most important ones are information about the observation

and action space of the reference machine and methods for resetting the agent and acting in

an environment based on observation and reward of the last action.

In the original implementation, the agents implemented were the following:

• Manual - Simple interface enabling human users to pass actions to AIQ like an agent.

• Freq - Simple agent alternating between a random action and an action with the best

mean reward.

• Random - Trivial agent passing random actions to AIQ.
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• Q_l - a table based Q-learning with eligibility traces as written in (R. Sutton et al.,

2000), can also run Q_0 by defining Lambda=0 as originally introduced in (Watkins,

1989).

• HLQ_l - A similar agent to Q_l with the addition of automatic optimisation of its

learning rate created by Legg and Hutter (Hutter; Legg, 2008).

• MC-AIXI - A wrapper for a more advanced agent utilising an approximation of Hutters

AIXI defined in (Veness et al., 2010).

3.1.2 The Reference Machine Package

Next package, “refmachines” contains classes for interaction with defined reference machine.

Currently, the only reference machine defined is BF in class “BF.py”. This class has two main

uses:

• Processing of given BF programs and passing information about the environment to the

main algorithm. Specifically through computing the reward and observation (output)

tape from instructions given by the program.

• Generation of a random program. This includes sanitisation of some pointless code like

empty loops and reward-insensitive code like “heaven”(always full reward) and "hell"

(always no reward) in samples. This random program is later classified into various

strata in another class, “BF_Sampler.py” and saved as a sample to be utilised.

The BF code interpreter and all future interpreters have to inherit from a parent class “Refer-

enceMachine.py” to allow interaction with the main AIQ code described in subsection 3.1.3.

This package also contains the folder “samples” where AIQ code expects to find generated

samples for testing.

BF.py can also negate all rewards if required through a parameter. This allows for the

application of antithetic variance reduction defined in 1.4.1.

3.1.3 The AIQ Algorithm

The main algorithm “AIQ.py” works as a bridge between a reference machine, a user and

an agent. Through this algorithm, the defined sample is loaded and given to an estimator.

While both a simple and a stratified estimator are implemented, a simple estimator doesn’t

support logging, which is required for computing the AIQ. It is useful for debugging, but a

stratified estimator is the one for actual practical use.

The stratified estimator takes loaded program samples and differentiates them according to

different strata to ensure each stratum is present in the final set of programs. After preparing

the set of programs, data is passed to various threads of computational devices where agents

are asynchronously engaged with the same program twice. Once with positive and once with

negative rewards to ensure that random decisions of agents result in a cumulative AIQ of 0.
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Before being passed to the agent, a reference machine interprets the program, and an agent

only receives information about new observations and rewards from the last step. If logging

is enabled, the results are logged into a file along with time, stratum and rewards of a positive

and negative run.

3.1.4 The Compute_from_Log Algorithm

The last algorithm, “ComputeFromLog.py” loads and processes referenced log file and, through

data contained within, calculates the final AIQ score.

3.2 Python 3 Update

Thanks to a relatively small volume of code present in the AIQ project, it was possible to

implement the update to Python 3 through a manual check of the entire code. By taking

inspiration from (Brett Cannon, 2013), I have created a list of changes causing the most

problems:

• Print is no longer a Statement but a function.

• Different commands used in command line manipulation:

– Instead of raw_input, input is used in Python 3.

• Division operator / had its behaviour changed when working with Integers:

– In Python 2, operator / worked as Integer division when variables were Integers

and returned a value rounded to the nearest integer. This is no longer the case in

Python 3, where this operation now returns a float approximation of the result.

To fix this, the rounding division operator // was used in places where integer

division is utilised.

• Changes when working with Strings:

– New String formatting, many functions originally in separate packages imple-

mented as a base part of Python.

• Many functions of the Scipy package transferred into its successor package Numpy.

I have successfully fixed these problems and created a new working version of AIQ.

3.3 Additional Improvements

I began working on the AIQ test but encountered some additional issues that required at-

tention. One of those problems was a difference between handling Global variables in multi-

threading across various Operation Systems. On Windows, for example, global variables have

not been passed to new threads, which resulted in the inability to log or read any defined

options. To fix this problem, I have switched from using global variables to creating a dictio-
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nary (associative array) containing all necessary information originally saved globally. This

dictionary was then passed as a parameter of classes running across different threads.

Next, I added a debugging option that outputs every unique observation and action symbol

passed to an agent during an episode.

I have also encountered agents failing in specific situations during testing, causing the whole

AIQ test to halt and “crash”. A parameter defining whether an agent is still alive has been

added to deal with failing agents. If an exception is raised, an agent is defined as no longer

alive and logged in the log for further analysis. After this, the agent is reset to begin learning

from the beginning. There are many ways to handle these problems differently: Penalising

an agent to always return “−100” after dying, making an agent neutral after dying by always

returning a reward “0”, but doing that could affect AIQ score too much.

3.4 Evaluating the New Version

After implementing fixes for these problems, tests have been made to ensure no major result

difference due to incorrect code.

3.4.1 Basic Functionality Test

First, a basic “function” test has been done to check if all program functions work as intended.

Through running commands that checked:

• AIQ test and all of its parameters.

• ComputeFromLog.py both basic and full.

• Generation of BF samples and all its parameters

I have confirmed that all of the functionalities of the original AIQ test in Python 3 have been

kept. Additionally, I have run the AIQ test on the original sample for all original agents

at thousand episode length five times at same configurations as provided by (Legg; Veness,

2011a) file “Conf Paper Settings.ods”.

While these extremely basic tests returned similar distribution of results to the original

conference papers, the newly acquired results were about 1 AIQ score higher on average for

all agents. As there were some differences, it was required to perform a more advanced test

to check that the update was performed correctly.
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3.4.2 Statistical Test of Difference

With the assistance of (Vadinský, Unreleased), I have gained access to data of original agents

on the same samples in both the original AIQ test implementation in Python 2 and my new

implementation of the AIQ test in Python 3. With these results, it is possible to perform a

statistical test to find whether there is a significant difference between data from the original

implementation of agents compared to my implementation. The Paired T-test is commonly

used to compare two groups before and after an intervention, making it ideal for our purposes.

Hypothesis

The first thing to define while performing a statistical analysis is the hypothesis. As we need

to check whether the AIQ values of agents in Python 3 are different compared to the AIQ

values of agents in Python 2 we can define the following hypothesis:

• H0: There is no significant difference between the final AIQ score at 100 000 steps of

tested agents at the Python 2 version of the AIQ test and the Python 3 version of the

AIQ test

• H1: A significant difference exists between the final AIQ score at 100 000 steps of tested

agents in the Python 2 version of the AIQ test and the Python 3 version of the AIQ

test

Data

For comparing the agents we utilise all configurations of the original agents of HLQ_l, Q_l,

Q_0, and Freq provided by (Vadinský, Unreleased). We are mainly interested in the AIQ

score at 100 000 steps. The data we used can be found in 3.1. The columns “Pyt_2” and

“Pyt_3” contain values of various agents configurations at 100 000 steps, column “Difference”

contains the calculated difference between acquired AIQ scores and “Pyt_2_MOE” contain

the margin of error calculated by the original version of the AIQ test

Analysis

Already from the data, it can be seen that the difference in AIQ score between the different

versions is smaller than provided margin of error, which already supports our null hypothesis

of there being no significant difference between the different versions of the AIQ test. But

for additional support, a paired T-test will be performed.
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Agents Pyt_2 Pyt_3 Difference Pyt_2_MOE

(Freq,0.03) 56,4 56,6 -0,2 0.5

(Freq,0.05) 57 56,5 0,5 0.5

(Freq,0.07) 57 56,8 0,2 0.5

(Freq,0.09) 56,5 56 0,5 0.4

(Freq,0.11) 55,5 55,4 0,1 0.4

(H_l,0.0,0.0,0.95,0.04,0.7) 61,8 61,6 0,2 0.4

(H_l,0.0,0.0,0.99,0.02,0.7) 64,8 64,8 0 0.4

(H_l,0.0,0.0,0.99,0.04,0.6) 63,2 63,3 -0,1 0.4

(H_l,0.0,0.0,0.995,0.005,0.9) 65,3 65,1 0,2 0.5

(H_l,0.0,0.0,0.995,0.01,0.8) 65,6 65,6 0 0.5

(Q_l,0.0,0.0,0.5,0.005,0.95) 62,9 63 -0,1 0.5

(Q_l,0.0,0.0,0.5,0.01,0.9) 62,7 62,3 0,4 0.5

(Q_l,0.0,0.0,0.5,0.02,0.8) 60,3 60,3 0 0.4

(Q_l,0.0,0.0,0.5,0.03,0.7) 57,8 58 -0,2 0.4

(Q_l,0.0,0.0,0.5,0.04,0.6) 55,5 55,4 0,1 0.4

(Q_l,0.0,0.5,0.5,0.005,0.95) 63,3 63,4 -0,1 0.5

(Q_l,0.0,0.5,0.5,0.01,0.9) 63,3 63,2 0,1 0.4

(Q_l,0.0,0.5,0.5,0.02,0.8) 62 61,7 0,3 0.4

(Q_l,0.0,0.5,0.5,0.03,0.6) 59,1 59,2 -0,1 0.4

(Q_l,0.0,0.5,0.5,0.04,0.6) 58 58,1 -0,1 0.4

Table 3.1: AIQ score at 100 000 steps across different Python versions
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To utilise this test, we need to check for assumptions of a paired T-test:

• Independence

• Normality

• Equal Variance

Independence: Is fulfilled as there is no influence between acquired values.

Normality: Requires a normal distribution of data. To check for this assumption, a Shapiro-

Wilk test is performed on acquired AIQ scores of Python 2 and Python 3 versions separately.

This test was performed using the Python package “scipy.stats” method “shapiro”. This

method checks the null hypothesis that the data was drawn from a normal distribution.

Thanks to this test, I have acquired the following P-values:

• P-value of Python 2 version: 0,06

• P-value of Python 3 version: 0,08

As both of the calculated P-values of the Shapiro-Wilk test are above significance level α =

0.05, the null hypothesis of normality is not rejected.

Equal Variance: Requires the variance of differences between the data pairs to be equal. I

have checked this using the Levene test for equality of variances. Using the “levene” Python

method from the package “scipy.stats” I have checked the null hypothesis that all input

samples are from populations with equal variances. Using this method with the acquired

data of both Python 2 and Python 3 versions, I have acquired the following P-Value:

• P-value of Levene’s test: 0,99

As the calculated P-value from Levene’s test is above significance level α = 0.05, the null

hypothesis of equal variances is not rejected.

With this, we have checked all the assumptions of a paired T-test.

Paired T-test: Can be tested using the method “ttest_rel” from Python package “scipy.stats”.

We can use the Levene’s test to test our null hypothesis by using the AIQ score of agents

from different versions of Python as parameters. This will help us obtain the P-value. The

returned P-value from this method is:

• T-statistic of paired T-test: 1,76

• P-value of paired T-test: 0,09

As the calculated P-value of the paired T-test is above significance level α = 0.05, the null

hypothesis of no significant difference between the results of the final AIQ score at 100 000

steps is not rejected.

55



Discussion

During our analysis of data acquired from running the original implementation of agents

on Python 2 and the new implementation of agents on Python 3 on the same samples, no

support has been found for significant differences between data.

The difference between acquired values belongs to the limits defined by the margin of error.

Performing a paired T-test also returned a P-value higher than significance level α = 0,05,

which further supports the null hypothesis of there being no significant difference between

acquired data.
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4. Implementing Policy Optimisation

Agents into AIQ Test

After reviving the AIQ test into its new form that is no longer running on a deprecated Python

version, it is finally time to begin what was the original purpose of this thesis. Enabling

AIQ test to work with chosen policy gradient agents Vanilla Policy Gradient introduced in

subsection 2.5 and Proximal Policy Optimisation in subsection 2.6.

Since I have little experience with implementing Reinforcement Learning agents, my objective

was to locate and utilise a well-known package to ensure the accuracy of the implementation.

Unfortunately, I had to slightly alter this plan as I encountered various problems making

this original plan difficult. These problems forced me to heavily modify an existing Python

package to allow compatibility with the AIQ test.

This chapter will first focus on introducing packages I have considered as candidates for im-

plementation, along with an introduction of a standardised framework for environments.

I will then present problems that stopped me from using the packages in their unmodified

state. The chapter’s final two sections will focus on agents’ implementations. First a de-

scription of the architecture behind the Spinning Up package, then the new architecture

introduced to allow for compatibility with AIQ.

4.1 Brief introduction of used RL agent packages and OpenAI

Gym

There are two main frameworks upon which Reinforcement Learning agents can be built:

Tensorflow (Martín Abadi et al., 2015) and Pytorch (Paszke et al., 2019). As openAI recently

moved to Pytorch as its standard framework (OpenAI, 2020) I have decided to also base my

code on Pytorch.

After deciding what framework to use, I searched for popular Python packages providing

code of RL agents. I have looked into three widely known packages: Spinning Up (Achiam,

2018), Garage (contributors, 2019) and Stable Baselines 3 (Raffin et al., 2021) and later on got

inspired by minimalistic implementation from “minimalistic implementation of Vanilla Policy

Gradient” by(Barazza, 2019). Finally, this chapter will introduce OpenAIGym (Brockman

et al., 2016), a standardised framework for RL environments.
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4.1.1 Spinning Up

Spinning up (Achiam, 2018) is widely recommended as an introductory step for programmers

interested in Reinforcement learning. Their documentation contains understandable expla-

nations of principles behind many basic Reinforcement Learning principles. Code in this

library focuses on simplicity and ease of use, making it accessible to both researchers and

practitioners.

Aside from the basic principles of RL, Spinning Up also contains simple implementations

and explanations of the theory behind some popular RL agents. The code of these agents

was initially based on the currently deprecated Tensorflow 1, but many were modified to be

compatible with Pytorch later on.

Unfortunately, this package was not maintained for the last three years, so any problems found

during these years were not fixed. During my testing, I ran across one such problem that

made any testing of the AIQ environment through the OpenAI Gym environment impossible.

4.1.2 Stable Baselines 3

Stable Baselines 3 (Raffin et al., 2021) is the newest iteration of the RL agent package based

on the original baselines (Dhariwal et al., 2017) package released by OpenAI. OpenAI did this

to literally create a research“baseline” that would allow for easier replication, identification

and refining of new ideas. This package was later on forked into new and improved “stable-

baseline”(Hill et al., 2018) and later rewritten from Tensorflow to Pytorch in Stable Baselines

3 (Raffin et al., 2021).

Stable Baselines 3 is a highly popular and actively maintained package that provides reli-

able and high-quality implementations of classic and state-of-the-art reinforcement learning

algorithms. Stable Baselines 3 contain in-depth documentation and have almost full test

coverage, and their results are compared to benchmarks of previous versions.

4.1.3 Garage

Garage (contributors, 2019) is a toolkit initially based on package rllab (Duan et al., 2016).

After the end of maintenance for rllab, a team of researchers from several universities created

garage as its successor.

The garage is still actively maintained and provides a flexible and modular framework for

developing, testing and evaluating RL algorithms. Garage aims to empower researchers

and practitioners by offering a range of tools and algorithms to facilitate RL research and

development.
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4.1.4 Minimalistic Vanilla Policy Gradient

Minimalistic Vanilla Policy Gradient implementation by (Barazza, 2019) Is not a package,

merely an extremely minimalistic implementation of a simple policy gradient agent in a single

file. I am unsure if I would even call this implementation Vanilla Policy Gradient as it lacks an

actual advantage function calculated from the value function and purely uses rewards-to-go

for its advantage calculation.

While not a package, the extreme simplicity of this implementation provided me with a key

for understanding and unlocking the meaning behind much of the code of the other packages.

For this reason alone, I have included a reference to this work as an honourable mention.

4.1.5 OpenAI Gym

As you might remember from chapter 2 Reinforcement learning consists of interactions be-

tween agents, provided by packages and toolkits, and environment. I found that all the pack-

ages and toolkits utilise a standardised framework and toolkit for RL environments called

OpenAI Gym (Brockman et al., 2016).

OpenAI Gym provides an abstraction of interaction with an environment. Thanks to this

abstraction, it became possible to focus on developing purely one side of the interaction

between an agent and an environment at once. Additionally, any environment created could

be used in any RL agent that used the common interface from provided toolkit.

This toolkit also included a growing collection of environments to be used as benchmarks. All

of these environments share a common central interface. Thanks to this, there was no need

to create an environment for every agent, and researchers could focus purely on developing

RL agents. This interface became a standard that was either used or made compatible with

the majority of publically available RL agent toolkits.

Unfortunately, the reliance on this framework for all mentioned packages led to a significant

problem that made it impossible to utilise the packages for the AIQ test without major

alterations. Specifics of this problem will be described in section 4.2

In October 2022 all further development on OpenAI Gym has been moved to a new library

called Gymnasium (Foundation, 2022).

4.2 Problems in implementation

While I analysed and experimented with implementing packages mentioned in section 4.1

into the AIQ test, I ran across many problems. One of those forced me to explore multiple

dead-end paths of code experimentation before I was forced to acknowledge that I could not
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implement these packages unmodified.

I will first introduce the architecture problem that made me work on modifying the package

purely for AIQ purposes. Next, I will introduce some other roadblocks I had to overcome

during the mentioned package modification.

4.2.1 Interaction with Environment

At the core of every program lies architecture. While some programs are a mess of entangled

processes, programmers usually strive towards an effective and clean code structure. Well

defined architecture can ease any future work in an algorithm and allow for cooperation

between different authors. OpenAI Gym introduced one such architecture for interactions

between agents and environments.

Gym is designed to allow agents to simply accept a Gym environment and use it to learn

through thousands of epochs and hundreds of episodes at once by itself. Unlike Gym based

architecture that handles interactions with agents on hundreds and thousands of interactions

at once, AIQ has to simulate every step of the environment after every action of an agent.

This architecture of AIQ is entirely inverse to the one Gym is based on and required me to

devise a way to fix it. For a better understanding of the architectural differences please refer

to image 4.1.

Some of the experiments I have tried contained an additional AIQ refmachine compatible

with OpenAI Gym interface or a Custom Dummy environment with a method that would

allow the environment to accept information about itself from outside every step. Yet, none of

these experiments managed to achieve an imitation of OpenAI Gym environment interface to

a level that would allow direct connection with agents imported from packages. I believe that

it is possible to rewrite AIQ into OpenAI Gym compatible environment or create a custom

Wrapper that implements compatibility with this environment. Unfortunately, to my under-

standing, such a task would require a complete rewrite of the AIQ implementation, which

is outside this thesis’s scope. However, It is a fascinating concept that would deserve future

research as compatibility with AIQ gym would allow for massively easier implementation of

widely used agents for evaluation.

In the end, I was forced to create a manual implementation of VPG and PPO agents with

the complete removal of the OpenAI Gym interface. For this, I have chosen the package

that focuses on simplicity and ease of use: Spinning Up (Achiam, 2018). The simplicity

of the code allowed me to understand and implement agents into AIQ without needing to

completely rewrite massive parts of code libraries.
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Figure 4.1: Environmental Interaction - OpenAI Gym and AIQ
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4.2.2 Representation of Environment

Once I decided on the package to use, it was time to remove the interface of OpenAI Gym

from the package completely. During this removal I encountered another problem. The

OpenAI Gym interface has its own classes that define how all the data (Observation, Action,

Reward) an agent needs is stored. These classes have to support various dimensions (Discrete,

Continuous, Box and other), so they are fairly complex. While AIQ only needs support for

the Discrete representation of both Action and Observation, I did not know the format an

agent, its neural network, and its experience buffer require from its data. Integer? Float?

Numpy Array? Pytorch tensor? As there are complex mathematical steps requiring very

specific data formats, it took me months of research and experimentation to find an answer.

My attempts were hindered by the unpredictable behavior of the AIQ reference machine that

sometimes sent data in different formats. To address this issue, I used one-hot encoding to

transform the incoming data into a binary format that could be more easily processed by

the neural network. This involved assigning a unique binary value to each possible category

within the data, creating a matrix where each row represented an observation and each

column corresponded to a category. By representing the data in a more structured and

uniform way, one-hot encoding allowed for more accurate analysis and better results. The

agent then returned the action as an integer within an array, which, along with the reward

passed from outside as an integer and one-hot encoding, was saved in an inner buffer for later

use in training and updating the gradient.

4.2.3 Logging

Spinning Up utility packages logged most of the information to a standard output, which

is unacceptable for use in AIQ, where such information would clog the standard output of

AIQ containing important data. The data passed by the inner working of data nonetheless

contain some very interesting information about the process of the agent’s learning. This led

to altering the Spinning Up logging libraries to move from direct command line output to

creating an inner database of agent’s learning data. This inner database contained methods

allowing this data to be exported to a file once a specific parameter was passed with a call

to AIQ.

4.2.4 Agent Failures

In specific situations, an agent can fail. For example, there are some environments where

the advantages between policy changes are incredibly close to 0. With machine precision

problems, this sometimes leads to inner algorithms dividing by zero and returning NaN.

With NaN in place, where a number is expected, Agent rapidly fails and, unless caught,

manages to destroy the entire run. This can happen for many reasons: too low learning rate,

too high learning rate, too small experience buffer and many others.
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However, even if this problem is caught, a question arises. If an agent fails, how should

the rest of the run be calculated for the resulting AIQ? Should it always return 0 to define

random behaviour? Should the agent be penalised and always return 100?

After multiple consultations, the solution we have come up with is to reset an agent to its

initial state in case of failure and save a piece of information that the agent failed in this

specific environment. Further research on these faults, possible ways to fix them and how to

handle them if they cannot be fixed might be an interesting path for future experimentation.

4.3 Spinning Up Package Architecture

To better understand the code’s changes, I will describe the code behind the Pytorch imple-

mentation of VPG and PPO agents from Spinning Up package.

Spinning up contains a utility folder in their algorithm file directory that contains helpful

methods for logging, multiprocessing, plotting and better search over hyperparameters. All

agent code is first separated by their reliant package (Tensorflow and Pytorch) before having

a folder for each agent. After being separated, each agent has their own folder consisting

of two files. Core.py contains everything necessary to initialise Actor (and Critic) neural

networks and the other file that is always named after the agent. The file named after an

agent consists of an experience buffer class and function that handles the main agent’s loop.

4.3.1 Auxiliary Classes and Functions

The focus of this thesis is on VPG and PPO, and as the only difference is in how they handle

updating their policies, I will describe the architecture of both of these agents together.

In Spinning Up, main loop of an agent is a function with the same name as an agent. This

function accepts the following groups of parameters:

• OpenAI Gym Environment

• Actor Critic and its parameters

• Hyperparameter values of anagent

• Logging and its parameters

To better understand the agent function, I will briefly explain what each of these groups of

parameters handles before mentioning the existence of multiprocessing support. Once all of

these are sufficiently explained, I will explain the main agent loop.

OpenAI Gym Environment

Open AI Gym provides a massive library of existing environments to be used for research

and testing. The agent function requires the following from this environment:
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• Shape of action and observation space

– Defines what an agent sees and how it can act. Through these pieces of informa-

tion, the size and the dimensions of experience buffer and neural networks can be

defined.

• Method for a single step in the environment

– A method that simulates a single step in an environment with given data when

called

• Method for a reset of an environment

– Method that resets environment to its initial state when called

Actor Critic and its parameters

Actor and Critics are the main parts of the VPG and PPO agents. In Spinning up imple-

mentation, their initialisation is defined in the core.py.

This file contains a class MLPActorCritic that, depending on the shape of environment,

decides between a Gaussian actor in the case of a Box (two-dimensional) environment and

a Categorical actor in the case of a Discrete (one-dimensional) environment. Once the type

of environment is decided, neural networks for both Actor and Critic are created along with

methods allowing for learning and, in the case of the Actor network, a step method that

returns the next action of an agent according to observation data and current state of Actor

(policy) network.

Hyperparameter Values

Each agent has the parameters required to define how they should be learning. For more

information refer to subsections 2.5 and 2.6

Logging and its Parameters

Spinning Up utilises its own Logging class located in the utility folder, specifically in logx.py

file. This class is made for logging massive amounts of information about an agent in each

epoch. Almost any interesting information, like the loss value of both policy and value

functions, the deltas between previous and current loss values and many other pieces of infor-

mation, get saved before being exported to a standard output and output log file. Another

information saved is the entire state of the agent¨’s model. Parameter save_freq defines after

how many updates the entire model is saved. the logx.py file also contains a method for

saving models of both Pytorch and Tensorflow agents.

Multiprocessing

Utilising multiple processors is necessary to improve the efficiency of workstations, clusters,

and supercomputers due to the high processing power required by AI. This is where the

Message Passing Interface (Message Passing Interface Forum, 2021) standard is used. This

standard defines how to correctly communicate information between different processors dur-

ing multiprocessing. Spinning Up utilises a MPI4PY package that allows for utilisation of this
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standard and the entire multiprocessing principle in Python. Spinning Up further has mul-

tiple additional files that support additional operations across multiple processes, including

patches that improve compatibility between MPI and other utilised packages like Pytorch.

Buffer class

Aside from the main loop, the agent file also contains a Buffer class. This class gets initialised

with environment sizes and epoch lengths and contains methods for saving and accessing

data. This class also contains a method for calculating advantages through GAE-Lambda

advantage calculation and rewards-to-go at the end of every epoch to return along with saved

experiences.

4.3.2 Primary Execution Loop

By “Primary Execution Loop” or “main loop” I mean the central part of agent that handles

initialisation, acting and learning. While the subsection 4.3.1 looks into the “separate cogs

of the machine” this subsection will look at the basic use case of Spinning Up based agent as

a whole.

The main loop of the VPG and the PPO agent utilises provided parameter to initialise the

required data:

• Initialisation of Logger and model saving

• Definition of Seed for reproducibility of randomness

• Instantiation of environment

• Synchronisation of parameters across environments

• Setup of Experience Buffer

• Definition of methods for computation of policy and value loss

• Initialisation of ADAM optimisers for policy and value functions

• Definition of a method for updating neural networks as specified in subsections 2.5 and

2.6

• Saving of current time

• Preparation of environment through reset method

After initialisation, the main loop begins. In a given number of epochs of a specified size,

an agent interacts with the environment and saves experience accrued into the experience

buffer. Once an agent fails or an epoch reaches its maximum size, an update is performed

over the model. This repeats until all the epochs have finished. Refer to figure 4.1 for visual

reference of the main loop. Update utilises principles defined in subsection 2.5 for VPG and

subsection 2.6 for PPO agents.

Through the cooperation of all these parts Spinning Up agent internalises a representation of

an environment and tends to group up all interactions with environments in one big epoch

that anything outside of the agent can’t interact with. This architectury goes contrary to the
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idea of AIQ that requires an agent to know almost nothing of the environment and to accept

only a single interaction from outside of the agent

4.4 Architecture of new AIQ agents

To create an implementation that would allow an agent to interact with an environment

arriving from outside of itself step by step instead of learning in batches, I have designed the

following architecture for Agents:

4.4.1 Utility folder

I have extracted the necessary files from the Spinning Up utility folder into a new folder

called SpinUtils inside the agent folder. I have modified these utility files to better fit the

purposes and environments of our experiment. I have removed all Tensorflow dependencies

to remove this deprecated library from my tech stack and modified logging to better fit our

needs through the removal of stdout output and creation of internalised log database that

gets outputted to a file only on request from an agent (that contains a method that allows

AIQ to request this log).

I have compared the core files of VPG and PPO and found them identical. I have extracted

these classes into the utility folder for less clutter and named the new files Spincore. These

files contained core methods defining neural networks behind the agents, the so called Actors

(Policy networks) and Critics (Value networks). I have modified these Actor Critic meth-

ods to utilise information passed from AIQ refmachine instead of OpenAI Gym. Next, I

have removed the support for Gaussian environment as the BF machine is Discrete in both

observation and action and thus always utilises Categorical actor.

I have also found out that VPG and PPO share not only core file but also their Buffer

classes. As they are identical, I have extracted and merged these classes from the agent files

and created a new utility file inside the SpinUtils folder called PolicyEnvBuffer. The code of

this new file is identical to the code of the class in agents, except for its name.

4.4.2 Core Agent Class

A class with the same name as its implemented agent (VPG.py, PPO.py is a child class from

the original abstract class Agent. As a child class, any implement agents inherit basic infor-

mation about a reference machine, such as the number of observations and actions possible

and discount rate. To enable the change into class from function, all passed hyperparameters

of an agent are also stored as class attributes to allow access from all parts of the class.
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But parameters are not the only thing a child class inherits. Agent defines abstract classes

they require from their successors. These methods are __str__ that returns the full name

of an agent, perceive that accepts observation and reward as data and returns an action of

the agent and method reset that reinitialises the agent and provides a clean instance of the

agent. Reset not only reinitialises information about agent, but also logging information. As

mentioned in 4.2.4 we require the ability to reset purely agent without restarting run logs. For

this reason, all agent initialisation processes were moved to a separate method setup_agent

that can be called from other places, thus allowing for the reinitialisation of an agent without

touching any logging data. This setup specifically resets all inner counters of an agent and

generates and saves a new instance of Actor-Critic module, buffer class and Policy and Value

ADAM optimisers to their class attribute.

In this new implementation, the main loop of an agent is moved to the perceive method. This

method accepts observation and reward from AIQ, and transforms it into necessary format

that is a one-hot encoded tensor for observation and float for reward. Passes this information

to the step method of the agent’s instance of the Actor-Critic module. This method returns

the predicted action with the best possible future return, along with the expected value and

logarithm of the policy. These pieces of information, along with observation and reward, get

saved to the experience buffer.

As the environment doesn’t give any information about how many interactions have already

happened, these new agents have to keep their own counter. I have implemented this counter

through a new integer attribute of agent’s class called epoch_step. After a step, the interac-

tion counter is checked against the steps_per_epoch parameter to check if the policy should

be updated. Either not enough experiences were collected, the interaction counter is incre-

mented, and the action generated from the agent gets returned to AIQ to wait for another

interaction, or it is time for training. To allow training of an agent, methods for acquiring

information from acquired data, methods compute_loss_pi and compute_loss_v were trans-

planted in their entirety from the original Spinning Up implementation along with Update

method. As these are the methods that define how the agent behaves, the only changes

modified from the original implementation were replacing variables with class attributes and

small change in logging data. With the core of an agent practically identical to the core of

a tested and acknowledged AI package, there should be little doubt about the reliability of

the implementation of these agents. Once networks are trained, the increment counter gets

reset back to zero, and the action gets returned to AIQ.

As PPO is only a more advanced version of VPG, the code of both agents is mostly iden-

tical. The only difference between these two agents rests in the parameters passed to the

agent class and the methods handling training of the networks. For PPO training methods

compute_loss_pi, compute_loss_v, and update I have once again used the code of Spinning

Up to ensure the correct behaviour of the agents.
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5. Evaluation of implemented agents

In chapter 4, a description of how I implemented new agents can be found. With the agents

implemented, it is time to evaluate their capabilities using the AIQ test.

Like many others, new agents have numerous hyperparameters that must be tuned to achieve

the best results, which takes significant time and computational power. Thankfully the source

code of (Achiam, 2018) that was used to implement new agents contains default values that

can be used to achieve preliminary testing. Some parameters had to be modified, and a

new parameter Steps_per_Epoch (SPE) was added as a replacement. As this is a new or,

more specifically, modified hyperparameter, it lacks a default value, so finding one will be the

primary goal of this chapter.

While searching for a great and acceptable range of values for this parameter in subsection

5.4.1, a range of data will be acquired, which will be used for additional analyses in this thesis

to develop a preliminary understanding of how VPG and PPO compare in subsection 5.4.2

and how new agents compare to original ones in subsection 5.4.3 . Further analysis is beyond

the scope of this thesis and will be continued as part of the AGIEva research.

5.1 Experiment Preparation

Before one can begin any experiment, there are things that one always has to specify: The

goal of the experiment, the configuration of machines and programs and any additional tools

needed.

Agent parameters: For this experiment, we are interested in testing agents PPO and VPG

with multiple different values of Steps_per_Epoch ranging from extremely small value of ten

to extremely large value of five thousand. The range of values chosen is:

[10, 50, 100, 500, 1000, 5000]

This range covers a wide range of possible agent behaviours. The other parameters visible

in 5.1 correspond to default values defined in the (Achiam, 2018) implementation of agents.

For each parameter’s specific meaning, please refer to subsections 2.5 and 2.6.

Agent t_pi_iters t_v_iters gamma pi_lr vf_lr clip_ratio target_kl

VPG (1)1 80 0.99 0.0003 0.001

PPO 80 80 0.99 0.0003 0.001 0.2 0.01

Table 5.1: Default values of parameters of implemented agents
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Set of Environment Programs: After defining the hyperparameters of agents we wish to

test, we need to define the environment programs the AIQ test will run on. For this, a new

set of environment programs was generated using the updated internal generator of samples

with the following command:

BF_sampler .py -s 200000 -r BF ,5 \

\-\- improved_optimization \-\- improved_discriminativeness

By using this command, the generated set of samples has these settings:

• Number of samples: 200 000

• Number of symbols: 5

• Optimisation: Uses additional patterns for recognising pointless code in environmen-

tal programs

• Discriminativeness: Removes environment programs without discriminative power

For generation of these samples, settings used in (Vadinský, 2018b) are utilised.

Hardware & Software: The next step is preparing computers on which these tests will run.

The MetaCentrum grid computing service provided by the e-INFRA CZ project (ID:90140)

was utilised for calculation purposes. In provided hardware, a conda (Anaconda, Inc., 2021)

environment was prepared to be used for testing. File in the format Yaml describing this

environment can be found in provided files. For the specific location of the Yaml file, refer

to the structure in appendix A.

Initialisation scripts: To ease my interaction with Metacentrum, I have created a Bash

Script template of values for each agent parameter. When this script is filled in and exe-

cuted, it generates a batch processing request based on a qsub configuration script file for

each combination of values from provided lists of parameters. The preparation of various

configurations becomes much more manageable through these two scripts. Details of the

provided script template files and their usage will be provided in B

Configuration of AIQ: The final step was defining parameters to use when running AIQ.

The code to start AIQ in the batch processing template file:

python AIQ.py --log --verbose_log_el --save_samples

-- log_agent_failures -t "${ threads }" -r "${ _machine }"

-a "${ _agent }" -l "${ _episode }" -s " ${ _sample }"

This code does the following:

• python AIQ.py - Start of program AIQ through python.

• log - Basic logging of sample interaction.

• verbose_log_el - Intermediary logging for every thousand steps over all samples.

• save_samples - Saves used programs to file, superseded by log_agents_failures.

• log_agents_failures - Information, if an agent failed during sample interaction, is

added to a basic log and exports the internal log of an agent in case of agent failure.
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• -t - Number of threads to run the program on - Passed from batch processing.

• -r - Reference machine that AIQ will be run on - BF - set in the template file.

• -a - Agent that will be run on AIQ - generated in batch generator and passed to

configuration template as a parameter.

• -l - Number of interactions on every sample - 100 000 - set in the template file.

• -s - Total number of samples run - 10 000 - set in the template file.

5.2 Hypotheses

Before starting any experiment, there is a need to define hypotheses to test. Here we have

three questions. How to configure new parameter of our agents, support AIQ as a valid

evaluation by comparing VPG and PPO relation to their benchmark values and to compare

newly implemented agents against the originally implemented ones.

5.2.1 Analysis of parameter steps_per_epoch

As noted at the beginning of chapter 5, due to changes made during the implementation of

agents in the AIQ test, we lack default configuration for the parameter steps_per_epoch

defining how many steps the agent takes between each update of policies. VPG and PPO

are on-policy agents, meaning they can only learn from experiences gained during an epoch

utilising current policy. This can lead to agents being unable to find any pattern in environ-

ments that return rewards based on actions done in distant history when the value of tested

parameter Steps_per_Epoch is too small. Additionally, in environments with a limited num-

ber of steps, like AIQ test, this parameter defines how many training iterations are done over

each policy. Too large of a training step can lead to insufficient training steps over policy.

With not enough training steps, the policy will not converge before the end of testing and

will return a much lower AIQ value. Based on these properties, I formulate the following

hypothesis:

• By investigating the relationship between the learning speed, as determined by the

parameter Steps_per_epoch, and the corresponding AIQ scores obtained from the

AIQ test with an episode length of 100 000 steps, intriguing groups can be identified

for further exploration. Particularly, focusing on the top 5%, 10%, and 20% of the

best achieved AIQ scores might help in uncovering noteworthy patterns and insights in

future research.
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5.2.2 Comparison of VPG and PPO over default configuration

We can compare the AIQ score of newly implemented VPG and PPO agents by further

analysing the data acquired. Through this analysis, we compare these agents against each

other to find out if their results are similar to scores achieved in other experiments done

in (Schulman; Wolski, et al., 2017) or benchmarks over Mujoco and ATARI environments

in (Achiam, 2018). In these results, PPO performed better in all tested environments. By

checking if the data acquired is similar to mentioned benchmarks we can further prove the

validity of the AIQ test as an evaluation mechanism. For this analysis, we can formulate the

following hypotheses.

• H0a: In comparing pairs of agents with the same parameter configuration SPE, there

will be no significant difference between achieved AIQ scores of agents VPG and PPO.

• H1a: In comparing pairs of agents with the same parameter configuration SPE, the

VPG agent will achieve significantly Lower AIQ scores than the PPO agent.

• H0b: In comparing pairs of agents with the same parameter configuration SPE, there

will be no significant difference between the learning speed of agents VPG and PPO.

• H1b: In comparing pairs of agents with the same parameter configuration SPE, The

VPG agent will learn significantly slower than the PPO agent.

5.2.3 Comparison of newly implemented agents with original over default con-

figuration

Finally, we can compare how VPG and PPO compare against originally implemented agents

of Q_0, Q_l, HLQ_l and freq. Comparing new agents with original agents should be an

essential part of implementing new agents. However, to thoroughly compare multiple agents,

it would be necessary to do a complete grid search of the new agent’s parameters, which is far

beyond the scope of this thesis. Instead, this section will briefly compare the tested agent’s

configurations that achieved the best total AIQ values in our testing. A simple hypothesis

will suffice for this comparison.

• H0: There is no difference in the final AIQ scores among the different agents.

• H1: The final AIQ score of at least one agent is significantly higher than the mean final

AIQ scores of the other agents.
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5.3 Results

After all experiments are run, we are left with the data. After processing this data with

the help of Python scripts, we acquire AIQ values after every thousand interactions with

environments calculated from all samples. The entire table has been added to an appendix,

but a brief look at AIQ values at 1000th, 3000th, 10 000th, 30 000th and 100 000th interaction

can be found in 5.2 for VPG and in 5.3 for PPO.

VPG Average AIQ at given interaction step

Step Size 1000 3000 10000 30000 100 000

10 8.1 25.6 47.3 55.5 58.6

50 4.0 11.3 30.9 50.9 62.2

100 2.1 6.6 22.0 45.6 60.2

500 -0.3 0.6 4.2 15.3 44.0

1000 -0.1 0.4 2.3 7.7 28.5

5000 -0.4 -0.4 -0.1 1.1 4.8

Table 5.2: AIQ values for agent VPG on default parameter values

Values for PPO agent on step size ten have taken too long to calculate and had to be

terminated before completion after eight days. Another run has been tried, but even after

an extended time limit of 2 weeks the run didn’t finish, and all the data acquired somehow

disappeared from the computation servers. It was not further retested due to many agent

failures, as seen in the graph 5.1 and significant processing time and power required.

PPO Average AIQ at given interaction step

Step Size 1000 3000 10000 30000 100 000

10

50 28.3 49.1 57.0 61.7 64.6

100 21.4 45.5 55.0 60.5 63.9

500 3.4 23.5 45.3 59.4 64.5

1000 -0.3 11.1 30.9 54.1 63.6

5000 1.4 1.3 5.5 21.0 49.6

Table 5.3: AIQ values for agent PPO on default parameter values

During their testing, agents have managed to stumble on NaNs and fail. These failures have

been logged, and their number can be seen in Figure 5.1.

When reading this graph, it is necessary to remember that each sample is run first with

normal and then inverted parameters, so the number of failed runs is not out of ten thousand

runs but out of twenty thousand runs. We can use percentages in bar graph 5.2 to visualise

better how often an agent failed.
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(a) VPG - Total failed sample runs (b) PPO - Total failed sample runs

Figure 5.1: Graphs with total amount of failed sample runs

Figure 5.2: Graphs with percentage amount of failed and successful sample runs
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It can be seen that lower the SPE parameter, the higher amount of failures an agent has,

probably due to SPE influencing the size of the experience buffer and how many actions an

agent can see. While deeper exploration of specific reasons for failure and ways to mitigate

these failures is beyond the scope of this thesis and one of possible further research paths,

it is important information to notice as too many failures lead to lower AIQ results and an

unstable graph curve.

5.4 Analyses

With data acquired, it is time to analyse it. In section 5.4, three groups of hypotheses were

formed. In this section, a subsection with an in-depth analysis will be created for each of the

groups. In subsection 5.4.1, data will be evaluated to allow finding a good range of values

for configuration of the parameter steps_per_epoch. In subsection 5.4.2 acquired data will

be used to evaluate if newly implemented agents VPG and PPO have similar results against

each other in AIQ test as they do in their benchmarks. Finally subsection 5.4.3 will look into

how VPG and PPO compare against originally implemented agents Q_0, Q_l, HLQ_l and

freq.

5.4.1 Comparison of VPG and PPO over default configuration

As can be seen from proposed hypothesis, we are interested in values of SPE that have the

following:

• Final AIQ achieved: Highest final AIQ score achieved in the given number of inter-

actions.

• Speed of learning: Highest rate of achieving AIQ score in short time.

Other attributes could be analysed, like time taken or calculation resources used, but we are

currently interested mainly in AIQ values.

Final AIQ score achieved With this metric, we are interested in finding ranges of pa-

rameter SPE that contains the highest achieved values of AIQ score at 100 000 interactions.

By using the current highest achieved AIQ as a maximum, I look for the range of SPE that

should return the top 5%, 10% and 20% AIQ score of highest scoring configuration with

default parameters to define ranges for the best, great and testable configurations. As this is

the first rough exploration of this parameter, I believe that if we utilised lower percentages,

we would miss a lot of possible interesting configurations. We are interested in finding these

ranges to assist in choosing interesting parameter values for future testing.
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To find a rough estimate of these “interesting” ranges, an interpolation of data has been done

over the acquired data. While preparing interpolation, I have found that there is not enough

data to create sensible quadratic or cubic interpolation, so the first analysis of this parameter

will be done with linear interpolation. With the help of Python, I have interpolated the

graphs 5.3a and 5.3b. From these interpolations I have found interesting ranges that can be

found in table 5.4.

(a) VPG - Linear interpolation of AIQ results over SPE

configurations

(b) PPO - Linear interpolation of AIQ results over SPE

configurations

Figure 5.3: Graphs visualising linear interpolation calculated from acquired AIQ on tested

SPE configurations

Top percentage 5% 10% 20%

PPO <40,1840> <26,48) ; (1840,2707> <10,26) ; (2707,4441>

VPG <16,127> <10,16) ; (127,204> (204,357>

Table 5.4: Acquired ranges of SPE parameter in specific percentages of best AIQ achieved

Speed of learning can be found by analysing the verticality of a graph describing AIQ

acquired per environment interactions. The more vertical the curve of AIQ is, the faster the

agent learns.

The first agent to analyse is the VPG in 5.4. As it runs only a single training step over

policy every update, it learns slowly. It needs as many updates as possible, which means

that for performance, the lower parameter value of Steps_per_Epoch are ideal. However,

as seen in 5.1a, too low of a value for this parameter can lead to instability. So even if the

parameter value of ten has the highest initial training speed, its instability starts projecting

to the AIQ value curve from twenty thousand interactions. Too high of a value might have no

instability but does not achieve enough training steps necessary to bring acceptable training

speed. Both values of fifty and hundred have similar training speeds, with fifty having higher

training speed but also higher instability, and hundred SPE being slower but more stable.
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Figure 5.4: VPG - Graph of AIQ per thousands of interactions

Next to analyse is the PPO agent in 5.5. Like with VPG, it can be seen that too short of a

SPE parameter leads to training instability. With PPO utilising multiple training steps every

update, it projects to graph already in the first few updates. With multiple training steps

per update, PPO can also achieve enough training iterations over policy for acceptable AIQ

values even for larger SPE like five hundred or a thousand. Nevertheless, even if these larger

parameter values manage to converge to high AIQ amounts in the total timesteps given, they

are still way slower in training than smaller values like fifty or hundred. SPE of fifty is slightly

unstable but already achieves AIQ of over thirty at first thousand steps while one hundred

starts around 20 it continues learning at a similar speed as fifty. SPE of five thousand is too

slow in learning, even if it is quite interesting that at this size, it achieves a speed of training

comparable to VPG of five hundred steps per epoch.

Figure 5.5: PPO - Graph of AIQ per thousands of interactions

To not only use visual analysis, we can also use the Area Under Curve to check learning

speed of an agent. To acquire these values I have used the Simpson’s rule “scipy.integrate”

package.
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SPE 10 50 100 500 1000 5000

VPG 5441.08 5131.48 4714.94 2470.08 1374.39 212.70

PPO 5318.38 6102.47 5977.23 5756.87 5307.15 3006.89

Table 5.5: Area Under Curve of VPG and PPO AIQ scores acquired through Simpson’s rule

To once again use the 5%, 10% and 20% grouping we need to find the highest value of each

agent. In this case, it is the value at SPE parameter of 10 for VPG and 50 for PPO. We will

calculate the edge value for each group which will be used to divide the various configurations

into groups according to learning speed.

Best 5% 10% 20%

VPG 5441,08 5169,03 4896,97 4352,864

PPO 6102,47 5797,35 5492,22 4881,976

Table 5.6: Edge values for top groups of SPE configuration of various agents

SPE 10 50 100 500 1000 5000

VPG Best Top 10% Top 20% Below 20% Below 20% Below 20%

PPO Top 20% Best Top 5% Top 10% Top 20% Below 20%

Table 5.7: Grouping of SPE configurations of VPG and PPO according to top AUC percent-

ages

With this, a rough approximation of interesting ranges of SPE parameter values according

to the final achieved AIQ across various SPE configurations for each agent has been defined.

To further improve the analysis, an analysis over learning speed is done. With this analysis

we created another grouping of SPE configurations according to their achieved Area Under

Curve.

5.4.2 Comparison of VPG and PPO over default configuration

After providing a rough estimate for suitable configurations of SPE parameter, the acquired

data can be used for comparison of the new agents between each other. Thanks to having

access to existing benchmarks across many various environments, we can compare acquired

results against expectations from benchmarks to further prove that the implementation of

new agents is correct and that AIQ is a valid test for RL agents.

This subsection will compare the following parts of the VPG and PPO:

A comparison of agent’s results over the whole run: To achieve this comparison, every

tested configuration of SPE parameter of PPO will be paired against the results of VPG with

the same SPE configurations. Next through utilisation of statistical methods on the acquired

AIQ results of every thousand steps up to a hundred thousand steps, the assumption that

PPO is significantly better than VPG will be checked.
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Comparison of the learning speed of two agents: A set of graphs plotting the learning

speed of agents of the same configuration will be created, and their curves will be compared

against each other. Next the Area Under Curve value will be computed and utilised for

comparison.

Full run comparisons

Our hypothesis assumes that PPO will be better than VPG. To check if this assumption is

correct, we need to use statistical methods. One type of these methods that are often used

to compare two groups of values are the T-tests, more specifically, either a paired T-test or

a two-sample T-test.

T-Test: A paired T-test is usually used to compare one group of individuals in two different

sets of circumstances, for example, before and after an intervention. A two-sample T-test is

used when you have two independent groups that you need to compare against each other.

Out of these two, the two-sample T-test fits our data sets better, so it should be the one

that we would go for. Before one can utilise T-tests, some prerequisites are required to be

checked. A T-test expects:

• Independent observation

• Normally distributed data

• Homogenity of Variances

Independent Observation expects that one group’s values do not affect others’ values.

This is fulfilled in our data as final AIQ values across different tests do not affect each other.

Normally Distributed Data expects that the values in each group should follow a normal

distribution. To check for this, we can utilise a statistical test. A Shapiro-Wilk test is one

of the tests that can be used to check for the normality of a distribution. After running

this test with the help of the scipy package, I have found that the p-value is lower than the

significance value α of 0.05, so our assumption of normality is rejected

Homogenity of Variances expects that two groups being compared should have an ap-

proximately equal variance of values. A Levine’s test can be utilised to check whether data

has an equal variance. After acquiring the p-values through the help of the scipy package,

we learn that, once again, the p-value is lower than the significance level α = 0,05, and our

assumption of equal variance is rejected.

By not fulfilling two out of three prerequisites of a T-test we have to look for a different more

robust test that allows for comparison of two different groups of agents.
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Mann-Whitney U test One of those tests is the Mann-Whitney U (MW-U) test. Non-

parametric test of null hypothesis, usually used to determine if there is a difference in distri-

butions, can also be used to determine if one distribution is greater than another. Compared

to the T-tests, MW-U test assumptions only require that the sample drawn from the popula-

tion is random, independent between each group and that measurements are at least ordinal.

All of these assumptions are fulfilled, and the MW-U test can be used to compare our agents.

I have once again utilised the “Scipy.Stats” python package to utilise the Mann-Whitney U

test. This test has been run through the command

statistic , p_value = mannwhitneyu (

agent1_scores , agent2_scores , alternative =’less ’

)

Where agent1_scores are the VPG AIQ values every thousand steps, and agent2_scores are

the PPO AIQ values every thousand steps. The parameter alternative defines what kind of

assumption the test should check in the hypothesis. By specifying the value less, the test

checks for the hypothesis that VPG has significantly lower overall AIQ values than PPO.

By running data of our agents at the same SPE configurations through the MW-U test, we

have found that our assumption may be correct. The Acquired P-Values are lower than the

significance level α = 0,05 at all tested configurations of SPE, which means we can reject the

null hypothesis of the VPG and PPO agents having no significant difference in their achieved

AIQ values at tested configurations of hyperparameters. For specific P-Values check the table

5.8

SPE 50 100 500 1000 5000

P_Value 1.61e-20 3.69e-23 2.38e-29 3.56e-29 7.65e-30

U-Statistic 1230.0 971.5 421.5 436.0 380.5

Table 5.8: Results of Mann-Whitney U test on AIQ acquired every thousand steps through

SPE configurations of VPG and PPO agent

The SPE configuration of 10 was skipped due to the lack of finished full data of ten thousand

samples from the PPO agent and a large number of agents’ failures. Other than that, these

findings support the alternative hypothesis that agent VPG has significantly lower AIQ values

than agent PPO.
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Learning speed

To look further into how VPG achieves a lower AIQ score than PPO, we first visually com-

pared a plotted graph to guess how agents compare before calculating the Area Under Curve

value for each graph and comparing these values.

(a) VPG-PPO(50) (b) VPG-PPO(50) (c) VPG-PPO(100)

(d) VPG-PPO(500) (e) VPG-PPO(1000) (f) VPG-PPO(5000)

Figure 5.6: Graphs comparing VPG and PPO training speeds at various configurations of

parameter Steps_per_Epoch

From 5.6 it can be seen that PPO has a steeper training curve than VPG in all configurations.

What is also interesting is that the curve of VPG is almost flattening with higher values of

parameter SPE, contrary to the parameter PPO which is still capable of handling higher SPE

values with a fairly high training curve. There is also the graph of AIQ at SPE configuration

of 10, but with that one, we must remember that the PPO didn’t finish the full test of 10

000 samples, and many of their samples had at least one agent failure during their run. This

massively impacted its performance and allowed VPG to catch up to it.

To quantify these values, the use of the Area Under Curve (AUC) of the agents is once again

required. For better readability, the table from 5.4.1 has been re-inserted

SPE 10 50 100 500 1000 5000

VPG_Simp 5441.08 5131.48 4714.94 2470.08 1374.39 212.70

PPO_Simp 5318.38 6102.47 5977.23 5756.87 5307.15 3006.89

Table 5.9: Area Under Curve of VPG and PPO AIQ scores acquired through Simpson’s rule
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As could be seen from the Figure 5.6, AUC value of SPE parameter 10 are an extreme

exception due to high amount of agent failures. All the other VPG AUC values are massively

lower than the AUC values of the PPO agent. To check for significant differences, I ran

a Mann-Whitney U test where I compared acquired AUC values to check if VPG learns

significantly slower than PPO.

P_Value_Simpson Statistic_Simpson

0.02 5.00

Table 5.10: Results of Mann_Whitney U test over acquired AUC values (Simpson’s rule,

Composite Trapezoidal rule)

As seen in table 5.10 The P-Value acquired from comparing the AUC of both agents is lower

than significance α = 0,05. This means we can reject the null hypothesis of agents in tested

configurations not having significant differences in their learning speed. These results also

support our alternative hypothesis of VPG being significantly slower than PPO in given

configurations.

5.4.3 Comparison of newly implemented agents with original over default con-

figuration

The last analysis focuses on comparing newly implemented agents against the original agents.

For this analysis, I will first visually compare the learning curves of all agents before running

a one-sided two-sample t-test for permutations of all agents to find out which agents have

significantly greater final AIQ score than others.

Data for comparison

Results were required to be over the same sample set to compare original and new agents.

Data from VPG and PPO was acquired from the experiment in 5.4.1. For original agents,

(Vadinský, Unreleased) supplied results of chosen agents (Freq, Q_l, Q_0, HLQ_l) configu-

rations over the same sample set as utilised in 5.4.1. The configurations with the best final

AIQ results of original and new agents were compared at the 1000th, 3000th, 10 000th, 30

000th and 100 000th step. Simple agents like random or manual that return either always 0 or

whatever user behind manual would achieve were left out as they do not provide interesting

data for our purposes.
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The chosen configurations with their parameters are the following:

Agent Parameters

Freq (0,07)

HLQ_l (0; 0; 0,995; 0,01; 0,8)

Q_l (Q_0) (0; 0; 0,5; 0,005; 0,95)

Q_l (0; 0,5; 0,5; 0,005; 0,95)

VPG (50; 80; 0.99; 0.0003; 0.001)

PPO (50; 80; 80; 0.99; 0.0003; 0.001; 0.2; 0.01)

Table 5.11: Parameters configuration of chosen agents with best final AIQ results

For an explanation of these parameters, refer to the original implementation of AIQ (Legg;

Veness, 2011a) for original agents and to subsubsections 2.5 and 2.6 for new agents imple-

mentation. As all agents are off-policy agents and can use any data collected at any point in

training, they are more sample efficient than newly implemented on-policy agents VPG and

PPO, which can only use data gained from the latest policy state. As such, it can be expected

that new agents VPG and PPO will need more training steps than original off-policy agents

and will be slower, however after converging, their results might be similar or better than

original Q-learning agents and a lot better than Freq agents that always chooses the most

rewarding action with exceptions for random exploratory choices.

These configurations have the following AIQ values in chosen interaction steps:

Steps Freq HLQ_l Q_0 Q_l VPG PPO

1000 46,4 49,7 43,3 46,0 4,0 28,3

3000 49,5 57,6 45,9 48,1 11,3 45,2

10000 52,6 62,7 52,8 54,5 30,9 57,0

30000 55,0 64,7 59,4 60,6 50,9 61,7

100000 56,8 65,6 63,0 63,4 62,2 64,6

Table 5.12: AIQ values of agent configurations chosen for comparison

Comparison of agents

The training speed of VPG can be seen from 5.7 to be indeed the slowest of all agents at

a single training step on the policy every training. PPO also learns slowly in the first few

thousand steps. However, thanks to its capability to partly learn from more experiences than

VPG due to its clipping and through performing eighty training steps in this configuration

every update of policy, it starts to achieve similar AIQ values as rest of the original agents

with the exception of HLQ_l between 3000 and 10 000 steps of interaction.

Through this simple observation, it could be proposed that the new intelligence order relation

of agents would be as can be found in 5.13 with theoretically optimal AIXI above HLQ_l

and random agent below Freq.

83



(a) AIQ graph of best configurations of tested agents (b) Final AIQ of best configurations of tested agents

Figure 5.7: Graphs of all tested agents at best acquired configuration

Agent HLQ_l PPO Q_l Q_l (Q_0) VPG Freq

Position 1th 2nd 3rd 4th 5th 6th

Table 5.13: Intelligence Order Relation of original and new agents

To further check this assumption, a one-sided (greater than hypothesis) two-sample t-test

on all agent permutations can be run to check which agent is significantly better than other

agents. The test is performed on every agent’s final 100 000th AIQ test results. AIQ score is

a weighted mean, and AIQ test also gives us a weighted standard deviation. As all agents’

mean and standard deviation look comparable, we can assume equal variances for the t-test.

We can use the following equation to calculate the twosample ttest.

Equations of weighted two_sample ttest:.

tvalue =
weighted mean1 − weighted mean2

√

weighted standard deviation12

n1
+ weighted standard deviation22

n2

For acquiring T_Value where n is the number of samples 10 000 for both n1 and n2 and

p = 1 − cdf(t_value, df)

For acquiring P_value where cdf is the cumulative distributive function calculated using

python scipy function “stats.t.cdf ” and df is the degree of freedom calculated by number of

samples minus 1 (10000 − 1)

By running these tests and saving the acquired P_values into a matrix, we can check which

agents are significantly greater than other agents by going through the row (and aren’t

significantly greater by going through the column). The resulting table 5.14 has coloured

cells with values lower than significance level α = 0,05. Due to extremely small values of

some P_values, the calculation is not precise enough to return specific values and is counted

as if it was almost 0.
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Freq H_l Q_l Q_0 PPO VPG

Freq 1 1 1 1 1

H_l 0 3,33E-11 1,89E-15 0,001156 0

Q_l 0 1 0,116899 0,999837 0,000115298

Q_0 0 1 0,883101 0,999999 0,006092517

PPO 0 0,998844 0,000163 5,20E-07 1,98E-14

VPG 0 1 0,999885 0,993907 1

Table 5.14: P_Values from weighted two-sample t-test from all agent permutations

As can be seen, our assumption for intelligence order relation is supported by results of two-

sample t-test with H_l being significantly greater than all other agents followed by PPO

being significantly greater by all other than Hłand so on for Qł, Q_0, VPG and finished by

Freq that has no other agent it is significantly better than. From this t-test, we can reject the

null hypothesis of there being no significant difference between agents and, for now, accept

the alternative hypothesis to be further confirmed in future research

5.5 Discussion

The goal of the analyses in this thesis was threefold. Find missing default parameters and use

data acquired from the search for those parameters to make a preliminary rough comparison

of VPG and PPO to prove similar behaviour to benchmarks and to find how new agents score

compared to original agents.

During testing, some other interesting information appeared in the form of agent failures.

One thing that could be noted is that the lower the value of SPE parameter became, the

higher the number of player failures rose. This could be due to either having too small

an experience buffer leading to the inability to notice larger behavioural patterns, or over-

training and failing when advantage values lower too close to zero leading towards precision

problems returning NaN. Performing any exploration beyond the surface overview of why

such problems happen and how to fix them is out of this thesis’s scope and possible future

research.

5.5.1 Analysis of parameter Steps_per_Epoch

The first exploratory hypothesis focused on exploring a good range of values for a new pa-

rameter that did not contain default values in the original implementation of agents. The hy-

pothesis proposed that a relationship between new parameter Steps_per_Epoch and achieved

AIQ agent scores can be used to find intriguing groups of various success.

As the testing was done only on a relatively small set of SPE parameter values, a focus was

on parameters that achieved the top 5, 10 and 20 percent of the best scoring configuration

85



across all tested agent configurations. By allowing higher percentage values, we achieve

wider acceptable ranges to be used in future exploration, leading to more precise relationship

prediction through interpolation (Ideally cubic or geometric) or curve fitting and perhaps

even finding association rules with other hyperparameters.

While σ is usually used for such matters, the question of which standard deviation to use was

hard to solve as, in our data, most of our standard deviations were fairly high, which would

have led to too large groups of data and margins of error were too small which would have

the opposite problem of too small groups of data.

While searching for acceptable ranges, I have decided not to focus on just tested configurations

but to try to predict possible SPE parameter values that could belong to defined groups. For

this, I have used linear interpolation, which allowed me to find more specific predictions

towards interesting parameter configurations that can be found in table 5.4 with best values

predicted to rest between SPE of 40 to 1840 for the PPO agent and 16 to 127 for the VPG

agent.

Additionally I have looked into learning speeds of various configurations of SPE parameters

between VPG and PPO and through calculation of Area Under Curve and calculating per-

centages of best achieved AUC of every agent I have created additional grouping for specific

SPE parameter configurations. I have found that the best possible learning speed is SPE

parameter of 10 for the VPG agent and 50 for the PPO agent. Next I have also found that

while PPO only has one tested configuration of SPE that has learning speed below 20% of

the highest achieved AUC value, half of the tested configurations of VPG belong to that

grouping. For the rest of grouping please refer to table 5.7.

5.5.2 Comparison of VPG and PPO over default configuration

In the second analysis, we have utilised data acquired while searching for suitable values of

Steps_per_Epoch to compare Vanilla Policy Gradient to Proximal Policy Optimisation. As

PPO is a direct improvement to VPG, it can be expected that its performance will be better.

Benchmarks agree with this as all tests in (Schulman; Wolski, et al., 2017) and (Achiam,

2018) tests over Mujoco and ATARI environments show PPO performs much better than

VPG. Achieving similar results in the AIQ test could further prove that AIQ is a valid test

for Various agents, including Policy Gradient type of agents.

The hypotheses created focused on two main aspects of an agent that interests us: achieved

AIQ score and learning speed. By comparing all logged AIQ scores of every thousand steps

between pairs of agents with the same SPE configurations using statistical methods, further

support towards our first alternative hypothesis that VPG performs significantly worse than

PPO could be provided. During testing assumptions of t-tests, I learned that normality and

variance requirements are not fulfilled, so I had to use a more robust statistical test in the

form of the Mann-Whitney U test. By performing this test on the hypothesis that VPG has

a lesser AIQ score than PPO, we have achieved the p_value with extremely small amounts
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below 1×e−20 for all configurations, which are all massively below significance level α = 0.05.

These findings can allow us to reject the null hypothesis of no significant difference between

the two agents and support our alternative hypothesis of VPG achieving significantly lower

AIQ than PPO.

The second hypothesis focused on Learning speed. Through first visually analysing graphs,

we have found that PPO can handle changes in SPE way better than VPG, especially on very

high parameter values. However, due to its learning iterations over policy, the lower the SPE

value, the more time and processing power it takes for PPO to run. VPG, on the other hand,

almost flattens out in the graph once SPE reaches values beyond one thousand. Across all

graphs, it can be seen that the curve of the PPO agent is way steeper than the curve of the

VPG agent. Sadly, just visual comparison cannot tell us anything about the significance in

relations between agents. For this, I have calculated the Area Under Curve value to represent

its learning speed instead through the utilisation of the Simpson’s rule. Acquired AUC values

were then compared using a Mann-Whitney U test across all configurations simultaneously.

The resulting P_Value of 0,02 leads us to reject null hypothesis of both agents having no

significant difference in learning speed and provides support for the alternative hypothesis

H1b of agent VPG having significantly worse learning speed than agent PPO.

5.5.3 Comparison of newly implemented agents with original over default con-

figuration

The final analysis focused on comparing new agents with the initially implemented ones. As

PPO and VPG are on-policy agents, they can only learn from data acquired during the last

run of the policy. This means that they are way less efficient with data and learn slower. Yet,

they can be more stable than other off-policy agents and, in the end, should achieve a similar

score to the original agents. In this comparison, we will only focus on the most important

information - the Final achieved AIQ score, and learning speed will only be briefly examined

over a simple graph.

From the graph 5.7a, it can be seen that both PPO and VPG start at lower AIQ values com-

pared to the original agents. PPO, contrary to our expectations, achieves a higher learning

curve than the Q, VPG and especially Freq agents. VPG, as assumed, learns slower than

all but the simple Freq agent, barely catching up to other agents at the final step of 100

000thousand steps. From the shape of the graph, it might be possible to say that VPG did

not fully converge at 100 000 steps yet and might achieve an even higher AIQ score if the

test continued.

For the final AIQ score, all agents except the most simple Freq achieved between 60 and 65

AIQ scores. By utilising purely AIQ score, a preliminary Intelligence Order Relation can

be constructed. Margins of error make some of these agent’s possible AIQ scores overlap.

To provide better support for creating a sequence of agents according to their intelligence, I

perform a one-sided two-sample t-test on permutations of all agents, testing the hypothesis of
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one agent having higher final AIQ than the second compared agent, utilising their AIQ score

as weighted mean and their standard deviation value as their weighted variance (weighted

standard deviation). By providing this set of tests, I created a table 5.14. Going by a row of

this table for each agent allows us to see for which agents given agent has p_value < α = 0.05.

Cells with such values are coloured green in the table, showing that the agent the row label

shows are significantly greater than the agent labeled in that column. The null hypothesis of

no significant difference between various agents can be rejected thanks to this. Our analyses

support that HLQ_l is significantly better than all other agents. A sequence of achieved

AIQ scores for all other agents could be created along with support for each agent being

significantly better than all other agents below their position.

88



Conclusion

The goal of this thesis was to assess Policy optimisation agents using AIQ. This was fulfilled

by choosing and implementing pure policy optimisation agents: Vanilla Policy Gradient and

Proximal Policy Optimization, and implementing them into AIQ. This goal focused on testing

different categories of agents than currently implemented. During implementation, this goal

extended to bringing AIQ further in time to a more modern code foundation.

Summary of thesis’s results

Through intensive research, the main history behind AIQ and Universal intelligence was intro-

duced along with their main principles in chapter 1. Chapter 2 introduced the Reinforcement

learning framework along with how agents using this framework are categorised. This intro-

duction includes a small overview of some of the newer RL agents with basic explanations of

their principles.

As both the original (Legg; Veness, 2011b) and improved (Vadinský, 2019) implementation of

AIQ agent was programmed in deprecated Python 2, a significant part of the thesis became

updating the code of AIQ to a more modern version of Python in chapter 3 along with

implementing compatibility for running AIQ on Windows. During the implementation of new

agents in section 4, it was found that some parameters had to be replaced to be compatible

with AIQ and finding valid configurations for this parameter over the default settings of the

remaining parameters became one of the main focuses of the thesis in chapter 5.

With the data gained during the search for valid configurations of missing default parameter

values, the new agents were compared, and the hypothesis that in the current configuration

of AIQ and default configuration of agents, PPO is better than VPG was proven. Finally,

the new agents were briefly compared to the originally implemented agents over default

configurations of new agents. A grid search over the parameters of new agents is required to

accurately compare new agents with the initially implemented ones. Due to this being both

computationally expensive and time intensive, it was deemed above this thesis’s scope.

Contributions to the field

As the main contribution of this work, I would define the update of the AIQ algorithm to a

newer code base. This allows for more research over AIQ and is already actively utilised in

research project AGIEVA and several other in-progress works.

The following significant contribution is the implementation of new agents into the AIQ test.

As these agents are of different categories and principles than initially implemented, it allows
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for more research to be done and many new hypotheses to be formed and analysed in future

testing. Additionally, the steps taken in this work can be used as inspiration for implementing

additional agents into AIQ.

Another important contribution is defining new good and interesting values of parameters

that were changed during implementation. Finding a good range of values allows for better

specification of parameters during future research. It was also proven that the relation be-

tween VPG and PPO is similar to the ATARI and MUJOCO benchmarks in (Achiam, 2018),

further demonstrating the validity of AIQ testing.

While a brief comparison between the initially implemented and new agents was made, much

more research is required. My work in this comparison is purely a small contribution to be

extended in future.

Usable results of this work

The main practical results of this work are:

• The update of AIQ code to Python 3.8 was released as open-source code, allowing for

more research into AIQ on the newer code base.

• Additional improvements in AIQ for use in research project AGIEVA

• Implementation of new agents VPG and PPO for further research in project AGIEVA

• Results of tests done over the default parameter configuration of implemented agents

as defined in (Achiam, 2018) for further analysis in research project AGIEVA

• Helpful scripts for batch-processing in Metacentrum for easier further testing in research

project AGIEVA

Aside from practical results, this work also brings an overview of the theory behind the

evaluation of Universal Intelligence and its approximation, along with an introduction to Re-

inforcement Learning, categorization of its agents and a brief overview of the main principles

behind some of the newer agents. Finally, a valid range of possible values for parameter

steps_per_epoch of newly implemented agents is defined for further testing.
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Possible future research

This thesis has many possible avenues for future expansion. One of the possible categories

in future expansion is further research into agents implemented in this thesis. Research such

as:

• Comparison with originally implemented agents over the same values of shared param-

eters.

• Full grid search of possible parameters in AIQ agent.

• Improvements on the stability of newly implemented agents.

Next, there is the possibility of further research into the implementation of AIQ itself:

• Changing the behaviour of AIQ testing in case of agent failure.

• Implementation of additional agents for future testing.

• Implementing compatibility with modern environment frameworks like OpenAI Gym

(Brockman et al., 2016) for easier implementation of new agents.

• Further refactoring of the AIQ code to achieve a cleaner and faster code base.

Possibilities proposed here are only a small sample of possible research that could continue

from this work.
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A. Folder structure

This part of the appendix will describe the structure of additional files provided along with

the text.

• scripts - Folder for all assistive scripts

– batch_script_template.sh - Template script for creation of batch processes.

– qsub_generator_template(PPO).sh - Template script for grid search of pa-

rameters.

• AIQ-2023_PPO-VPG_def.csv - CSV file with results acquired by running AIQ

test over various configurations of parameter Steps_per_Epoch.

• zemp02_DP.pdf - A copy of the text of the thesis.

The contents of the “AIQ-2023_PPO-VPG_def.csv” file headers are based on triplets of

agent results of the format: agent_name(SPE configuration value) denoting from what con-

figuration the results of that column are, with suffixes “+-” describing column with margin

of error of that configuration and “SD” standard deviation of that configuration.

The final state of the AIQ test code based on Python 3, containing new improvements

and agents can be found in the https://github.com/zemp02/AIQ/tree/AIQ-2023-Thesis

branch and repository.

101

https://github.com/zemp02/AIQ/tree/AIQ-2023-Thesis


102



B. Metacentrum Scripts User Guide

This appendix will contain guides explaining how to work with templates for generating

combinations of parameters for agents and creating a batch processing request for each of the

generated combinations. There are two scripts that together allow for the mass creation of

grid search batch processing requests. A censored template will be provided along with steps

defining how to fill this template.

B.1 batch_script_template

This script is based on a script originally provided by Ing. Vadinsky, PhD. It specifies

steps that will be taken by every batch processing request to prepare parameters, set up the

environment, run the experiment and export data.

1. Replace text #ReplaceWithPathToHome with the full path to the top folder of your

experiment (Data Directory).

2. Replace text #PathToAIQFromDatadir with the path to your AIQ folder from Data

Directory.

3. Replace text #PathToYourAIQEnvironment with the path to your conda environment

for AIQ.

4. Set up parameters for AIQ inside their lists.

• machines - reference machines to be used in AIQ.

• episodes - episode length to be used in AIQ.

• samples - number of samples to be used in AIQ.

B.2 qsub_generator_template(PPO)

The second script generates commands based on lists defining each value to be tested for

each parameter. Provided template is based on the PPO agent and allows for the dynamic

generation of configurations that are then passed to the qsub command template script. The

provided template contains ten parameters defined in the list of parameters. Due to the

code used, it is required that provided parameters are in backward order to the way they are

normally provided to the agent. To prepare the template, the following must be done:

1. Define the agent to be tested in list agents.

2. Create a list of possible values for each of the defined parameters

3. Define all list names for parameters of the agent in backward order in list parameters

with the list for the agent on the bottommost row.

4. Configure -N and -l parameters of the qsub command on line 93 as you need.

5. Start the generation of qsub commands with "bash Path to qsub_generator script"
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The main part of the code generating string with combinations of agent parameters looks

like this:

# Generate the command

cmd =" printf ’,%s\n’ \${${ parameters [0]}[@]} | "

for i in "$\{ parameters [@]:1:${# parameters [@]} -2\}"; do

cmd +=" xargs -I{} printf ’,%s{}\n’ \${${i}[@]} | "

done

cmd +=" xargs -I{} printf ’%s{}\n’ \${${ parameters [ -1]}[@]}"

# Execute the command and save each line as a separate value in an array

readarray -t array <<< "$(eval "$cmd ")"

The generated string is then passed to a batch processing request as extra parameter AGENTS.

Each batch processing request utilises a generic configuration template file defined in section

B.1. This configuration file defines the entire process during batch processing. This file also

accepts the AGENT value as a separate parameter passed to the initialisation of the AIQ

process.
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