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ABSTRACT

RoFl s a platform of metamorphic robots — robots consisting of individual modules which each
work autonomously and have their own simple joints, but can connect to each other and com-
plete more complex tasks. A natural shape for these robots to take is a robotic arm, which can
manipulate with the surrounding objects. What separates RoFI arms from pre-built industrial
arms is the total number of joints (degrees of freedom), which rises with each module.

An essential task for robotic arms (manipulators) is the act of moving an object from one place
to the other. To successfully accomplish this task, we need to plan a trajectory the manipulator can
take to reach the object, while avoiding collisions with potential obstacles. Various algorithms for
this problem exist, but the complexity of standard methods scales exponentially with each degree
of freedom, making them unusable for RoFI arms.

This thesis aims to design and implement an algorithm for trajectory planning of robotic ma-
nipulators with a very high degree of freedom. The thesis goes through the process of designing
such an algorithm, explains the individual components, and presents the algorithm as a whole.

Finally, the results are evaluated in a simulator within the RoFI environment.

Keywords: RoFI, Metamorphic robots, Modular robots, Inverse kinematics, FABRIK, Mo-

tion planning, Path planning, Robotic manipulator
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I INTRODUCTION

In a world of automation, we would like to tell our robots a task such as “Hand me a coffee.” and
expect them to do it without giving specific instructions of how to do it.

This seemingly basic task contains many interesting subproblems, including but not limited to
the high level design of the robot, hardware design and programming, image or speech recogni-
tion, and human computer interaction. For us, the critical part will be performing the task itself;
in this case, computing the movement necessary to grab a cup and deliver it to the target location.

A natural way for us to approach the problem is to create a humanoid robot, or simply a robotic
arm on a fixed base. Even if we limit ourselves to the latter, the idea is quite fascinating; outside of
making coffee for computer scientists, it can assist engineers or surgeons in their work.

This thesis aims to create a general algorithm for controlling robotic arms. Our assumption
is that we have a robotic arm that is fixed in place and has a high number of joints. Naturally,
the joints on the arm will have limited range, as many real arms do. The task we are aiming to
accomplish is to plan movement of the arm from one place to another, while avoiding collisions
with other objects in the workspace of the arm. The performed movement should be reasonably
efficient, and the computation needs to be fast.

The presented methods will not be limited to a specific setup, but the results will be demostrated
on top of the RoFI platform[22].

As computer scientists, we can already sense that we are tackling a rather complex problem,
which is yet to be solved by the robotic community. Obstacles and joint constraints generally
make the problem of motion planning' hard to perform, and the task of finding a good solution
often goes directly against the task of finding a solution quickly. There are many existing attempts
to create an algorithm for motion planning of robotic arms, some of which have been successfully
used in practice to perform a specific task. Each method has specific advantages and disadvantages,
which will be discussed in further chapters of this thesis.

What mostly sets our goals apart from previous research is the assumption that we have a high
number of joints. This fact, at its core, makes traditional methods for related problems computa-

tionally infeasible. Being unable to use a single existing method will lead us to decomposing the

"The general problem of computing the motion of a robot. It encompasses robotic arms as well as self driving cars
and walking robots.



1 Introduction

problem into smaller parts and combining various algorithms from different areas. By the end,
we hope to build a satisfiable solution, starting with each component from the ground up.

Note that we are only planning the motion, and not actually realizing it on physical robots.
While there is only a subtle difference that a lot of researchers skim over, executing the motion
encompasses the hardware design, dealing with motor failure, and dealing with outside forces
such as gravity or wind. This thesis abstracts away from the physical aspects, and only focuses on
the algorithmic parts.

Outside of robotics, having a general algorithm with this specification is interesting for com-
puter graphics, in particular for generating character movementin videogames. With an algorithm
that can compute the motion of a constrained limb with a high number of joints at our disposal,
we can design complex kinematic models and animate movement of the respective characters in

complex environments.

1.1 OUTLINE OF THE WORK

This thesis tries to guide the reader through the process of designing an algorithm for the trajectory
planning of robotic arms. In the second chapter, preliminary knowledge is established. We give a
more formal definition of the problem and explain some of the basic concepts that we build our
algorithm on. Afterwards, the the RoFI platform is presented, which serves as motivation for the
algorithm and presents a platform the algorithm can be evaluated on.

The 3™ chapter explains the general concepts behind motion planning as a whole, and then
discusses the existing solutions for the motion planning of robotic arms.

The core of the thesis are the 4™ and 5™ chapters. The problem is decomposed into various
parts, each of which are discussed individually. Each component is accompanied by the intuition
behind it, as well as a visual representation. Finally, the algorithm is presented as a whole.

The 6™ chapter deals with the experimental evaluation in a RoFI simulator. The algorithm is
tested out in various handcrafted examples, and a visual representation for the resulting motion is
given. Then, the limitations of the current algorithm are discussed.

The final chapter draws conclusions from the design process and experimental evaluation of

the method. Takeaways and further improvements are discussed.



2 PRELIMINARIES

To start, we need to establish terminology and preliminary knowledge. Throughout this thesis,

we will be discussing robotic arms; in robotic terms, they are more commonly referred to as 74-

nipulators.

Robotic manipulators are programmable mechanical de-
vices, typically fixed in place. They are responsible for mov-
ing objects or tools and performing various tasks. They are
widely used in factories for mass production of vehicles, elec-
tronics, etc. Based on the equipment of the specific manipu-
lator, it can move objects from one assembly line to another,
cut things, or solder parts together. However, industrial ma-
nipulators are often tailored to perform one specific motion
repeatedly, thus, they will not be the focus of this work.

Manipulators consist of solid bodies, linked via movable
joints. They often resemble human arms, although the spe-
cific shapes vary wildly.

We consider 2 basic types of joints, see Figure 2.2:

Figure 2.1: Industrial robotic arm

with a gripper [33]

* Revolute' joints: the most common type. They consist of a motor rotating the next body

around an axis. Depending on the type of motors and the build of the robot, the rotation

may either be unbounded, or have a specific range of motion.

* Prismatic joints: these perform linear motion along the joint axis.

=

(a) Revolute joints perform rotation (b) Prismatic joints perform a linear motion

Figure 2.2: Basic joint types; the arrow refers to the respective range of motion

*Also referred to as rotary or rotational.
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There are joint types that can perform more complicated motion, but they can generally be
modelled as a combination of the basic two. Ball joints allow rotation in any direction; in a kine-
matic system, they can be modelled as two revolute joints in the same place. Cylindrical joints
allow for both rotation and extension, serving as a combination of revolute and prismatic joints.

The state of the robot is called its configuration. A configuration is uniquely defined by two

things:
* Thebuild of the robot: shape of the bodies, how they are connected, and the types of joints.
* The parameters of its joints.

The number of parameters that define a robotic system is referred to as degrees of freedom
(DoF). Revolute and prismatic joints each have one degree of freedom. The parameter of a revo-
lute joint is the current angle of rotation; the parameter of a prismatic joint is the current length
it’s extended at. Ball and cylindrical joints each have two degrees of freedom, respectively. The
DoF of a robotic manipulator is the sum of DoF of its flexible joints.

The end of a robotic arm is called the end effector. Typically, the end effector is different from
the rest of the manipulator; it consists of a tool specialized to the robot’s task. The end effector
is designed to interact with the robot’s environment, and there are many variatons. If the manip-
ulator is designed to move objects, the end effector can be a fingerlike gripper, claw, or even use
electromagnetic forces [36]. In handling textile materials, the end effector can be equipped with
scissors, pins or needles.

When we refer to the position of the end effector, we mean its location and rotation in cartesian
space. The parameter of a joint, such as its current rotation or extension, is sometimes called its
position as well; not to be confused with its position in space. Though generally, knowing the

joint parameters lets us compute their position in space, and vice versa.

2.1 KINEMATICS OF ROBOTIC MANIPULATORS

The science that studies the relationship between joint parameters and the positions in cartesian
space — particularly the end effector — is called kinematics. We differentiate between forward and
inverse kinematics.

Forward kinematics is the problem of finding the end effector position knowing the joint pa-
rameters. For manipulators with traditional joints, solving this problem is simple enough, and
there is always a unique solution. The specifics differ based on the build of the robot, but there is
a standard convention for it.

A method for computing forward kinematics was published by Denavit and Hartenberg in

1955 [10] and became the de-facto standard for robotics. The Denavit-Hartenberg (DH) method
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utilises 4 x 4 matrices to represent affine transformations in homogenous coordinates [29]. These
matrices allow an efficient representation of both rotation and translation in 3D space. In a kine-
matic system, such as a robot manipulator, each joint hasits accompanying transformation matrix,
and the position of the end effector is obtained by repeatedly applying the joint transformations
through matrix multiplication. The base of the arm is commonly considered the origin of the

manipulator’s coordinate system, therefore it is simply the identity matrix:

100 0
01 0 0
T: 2.1
1o o1 0 @)
00 0 1

Joint transformations are expressed as translations or rotations along the X and Z axes. Trans-

lation along the Z axis is expressed as:

1 0 0 O
01 0 O
Trans,(d) = 2.2
2(d) 00 1 4 (22)
0 0 0 1
Whereas the rotation is expressed as:
cosfd —sind 0 O
sind cosd 0 O
Rot,(6) = 2.
Z( ) 0 0 10 (23)
0 0 0 1
The transformations around the X axis are expressed analogously:
1 0 0 »
01 0 O
Transy(r) = 2.
X( ) 00 1 0 (2.4)
0 0 0 1
1 0 0
Roty(a) = (2.5)

0
0 cosa —sina O
0 sina cosa O

1

0 0 0

Alrogether, for a single joint i, we obtain the transformation matrix:
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cosd; —sinf cose; sind;sina; 7 cosd;
sind.  cos@ cosa, —cosb;sina 7 sind.
T = i i i i i i ( 6
L= ] 2.6)
0 sin a; cos &, d;
0 0 0 1

To obtain the position of the end effector (or any other link) of a manipulator, we simply need

to multiply all the joint transformations leading up to it:

[T] = ’TOTI Tn—lTn (27}

Notice that each matrix in the Denavit-Hartenberg convention is in form

where R is the 3 x 3 rotational part of the matrix, which is always orthonormal, and # represents
the displacement along the 3 axes. This allows for efficient computation of the inverse, since the
inverse of an orthonormal matrix is equal to its transpose, and the inverse of a translation is simply

its negation. By multiplying the two inversions, we get:

Knowing the transformation matrix of a specific joint allows us to easily compute the positions
of joints. Knowing the inverse of a joint’s transformation matrix allows us to easily compute po-
sitions of other objects in the workspace with respect to the joint, which will be useful later on.

Since the movements of traditional joints can easily be represented as a combination of the two
rotations and translations, we consider the forward kinematics of robotic manipulators a solved

problem.
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Inverse kinematics (IK), as the name suggests, is the inverse to the
forward kinematics problem: given a position for the end effector, we
wish to compute the corresponding joint parameters. This is a signif-

icantly harder problem. If there are exactly as many degrees of free-

dom in the manipulator as the dimension of the target”, there are ways

to obtain an exact analytical solution. However, as we are consider- Figure 2.3: 3 IK solutions
with the same

ing manipulators with a significantly higher DoF, there will generally carget [31]
31

be an infinite number of solutions (see Figure 2.3). Hence, numerical

methods have to be used.

Common methods for solving inverse kinematics view the problem as an optimization prob-
lem, and iteratively try to minimize the distance between the target and the current position of
the end effector. All the different methods for inverse kinematics are not the topic of this thesis,

and only a short summary will be provided. For a complete overview, see [3].

The methods most discussed in literature are based on approximating the inversion of a Jaco-
bian matrix. For robotic manipulators, the Jacobian matrix is a matrix of partial derivatives at
each joint. The size of the matrix is 7 x 7, where 7 corresponds to the target dimension (6 for
the 3D problem of reaching a target) and 7 corresponds to the degrees of freedom. The Jacobian
matrix provides us with a linear approximation of how the end effector is going to move when
slight changes in the joint positions are made. Hence, if we could invert this matrix, we would
get an estimation of how to move the joints in order to move the end effector closer to the target.
Then, by iteratively repeating this process, we could obtain a solution. However, the Jacobian
matrix generally does not have an inversion; the matrix is not square for manipulators with over

6 degrees of freedom, and even then, the determinant is not guaranteed to be nonzero.

There are many methods that try to approximate the inverse, most notably the Moore-Penrose
inverse, known as the matrix pseudoinverse [34]. This matrix serves as the generalisation of the
matrix inverse, and exists for any matrix. The Jacobian pseudoinverse technique for inverse kine-
matics was heavily studied, but it suffers from a few fundamental drawbacks. It is hard to in-
corporate local joint limits, and the method behaves erratically near singularities — a state where
the manipulator is straightened out and slight movement of any joint results in roughly the same
change. In addition to that, it is not very efficient, as the Jacobian matrix and its pseudoinverse
have to be computed repeatedly in each iteration. A common way to compute the pseudoinverse
is using Singular Value Decomposition; the complexity of this method is O(mn*) [46], which

scales poorly with respect to the degrees of freedom.

*Industrial manipulators commonly have exactly 6 degrees of freedom, which corresponds to a target in cartesian
space, consisting of the x-y-z dimensions and a rotation around each of the axes.
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Figure 2.4: CCD algorithm [31]: The angles are repeatedly computed for each joint until a solution is found

Some authors [51] suggest using the transpose of the Jacobian matrix, rather than the pseudoin-
verse. This method is faster but less precise, and suffers from many of the same problems. There
are many modifications and extensions of these algorithms, but since we are considering high-DoF

manipulators, they are not as interesting for us.

The other branch of inverse kinematics algorithms are heuristic techniques. These consist of
simpler computations and make decisions locally at each joint. They are faster, scale linearly with
respect to the DoF of the manipulator and can easily be extended with joint limits. However, due
to making local decisions, these methods can struggle with computing collision free positions or

providing any other guarantees about the resulting position of the arm.

The simplest of these methods is Cyclic Coordinate Descent (CCD) [49]. This algorithm it-
eratively goes through the joints of the manipulator, starting at the end effector, and turns each
of them so that the distance to the target is locally minimized. Once it reaches the base, it starts
iterating from the end again, until the end effector is close enough to the target (see Figure 2.4).
This algorithm is fast, scales well, and in an unconstrained system, it always finds a solution, if one
exists. However, the reached positions are very unnatural, which can lead to collisions with the
environment, or even the manipulator itself. If we add obstacles or joint limits, the algorithm is

also susceptible to local minima.

The state of the art method for inverse kinematics is the heuristic algorithm FABRIK: For-
ward and Backward Reaching Inverse Kinematics [2]. The algorithm consists of simple geomet-
ric computations, which are very fast. Just like the CCD method, it always finds a solution in
unconstrained systems, and scales very well. Unlike CCD, it converges significantly quicker and

computes natural poses.
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Figure 2.5: Fabrik algorithm [31]: a) the initial position of the arm and the target b) the end-effector p, is
moved to the desired position ¢) a line between p; and the new p, is found, p; is repositioned
along this line d) arm after the forward reaching stage e) the first point is moved to its initial
position; the algorithm repeats itself in the other direction f) final state; the base is in place and
the target has been reached

Rather than working with matrices or joint angles, the basic version of the algorithm calculates
with points. As the name suggests, each iteration of the algorithm consists of two stages. In the
first, forward reaching stage, the end effector is moved to the desired target. Then, for each joint,
the algorithm computes a line between the current and the next joint, which has already been
moved. The current joint is moved along this line to the original distance between the two joints.

Afterwards, the process is repeated for every joint, up until the base.

At this point, the algorithm has reached the target, but the immovable base may have been
assigned a new position. Hence the algorithm is repeated, but this time it sets the base to the
initial position and follows through with the algorithm all the way to the top. This forward and
backward reaching is repeated until the base remains in its initial position and the end-effector

reaches the target. Figure 2.5 illustrates the procedure.

The basic version of the algorithm is presented with rotational joints, but can be extended to

any of the common types [1].

The FABRIK algorithm is very powerful and will serve us further, but note that inverse kine-
matics is just a subproblem of robot manipulator control. Even if we are able to compute the

desired joint parameters for reaching a target, it remains unclear how to perform the motion from
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(a) Initial position of the manipula-(b) A valid solution where the target(c) Trying to rotate the joints would
tor, a rigid obstacle and a target is reached by the end effector cause a collision

Figure 2.6: A simple case where inverse kinematics is not enough to solve the motion planning problem.

the initial position to the computed one. If there are obstacles in the environment, simply moving

the joints to the computed positions is not possible.

10
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THE ROV
PLATFORM

Figure 2.7: Logo of the RoFI platform [22]

2.2 THE ROFI PLATFORM

As technology progresses, research in robotics has moved on from single purpose manipulators
used in factories. As of now, we are aiming towards more universal robots; robots that can be
deployed in various situations, switch between different tasks, or even change shape. One of the
interesting areas from the last few decades has been the concept of modular robots. Modular
robots are small independent units, each with their own processors, batteries and usually a few
joints. Each module can only perform basic tasks, but they have the ability to connect to each
other and build more complex robots. Such a system is not as efficient at performing a single task
as a single purpose industrial robot would be, but it has the potential to assemble different robots

based on the task at hand and fulfill various roles.

There have been many research projects concerned with modular robots, each with their own
approach to the task at hand. Some projects, such as Roombots [42], try to build solid structures
that can disassemble once their task has been fulfilled. Roombots use sphere shaped modules
along with passive blocks to assemble various pieces of furniture, which can be useful for saving
space in small apartments or aiding people with disabilities with their daily tasks. Other systems,
such as M-TRAN [26] or SMORES [9], try to build mobile robots from more universal modules.
Such modules have a joint or two and can perform simple motion; by connecting to each other,
they can build bigger robots and fulfill more complex tasks. The designs vary, and there hasn’t
been any clear winner in the field. An overview on the state of modular robotics can be found
here [6], but the field keeps evolving.

The RoFI platform [21] is an open source modular robotics project developed at Masaryk Uni-
versity. The project is driven by students and consists of algorithmic research [2s, 27, 31, 48, 5],
development of hardware [21, 24], networking [7, 8] and creating tooling for the development of

the robots [28, 43]. A robot within this platform, which we refer to as RoFIbot, is comprised of

II
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(a) Build of the universal mod- (b) Axes of rotation [23] (c) RoFI connectors 23]
ule [23]

Figure 2.8: RoFI universal module

various modules. These can connect and disconnect based on the robot’s needs, and allow it to

change its overall shape.

The basic building block of each robot within the platform is the universal module. It consists
of two symmetrical bodies, wrapped in what we call shoes (see 2.8a). The middle part of each
module contains the hardware necessary for each module to function as an independent robot
in itself. This includes rechargeable batteries to power the whole system, the main processor,
which can run user programs, as well as coprocessors that manage firmware. The two bodies are

connected to the main unit and perform motion and connection to the other modules.

Each body has a stepper motor that can turn from =90 to 90 degrees. In our models, we refer to
the joints as # and . Per DH convention, the rotation is calculated as rotation around the X axis
with respect to the module’s frame. What separates the design of RoFI modules from previous
projects such as M-TR AN is the y joint, which allows unlimited rotation around the middle part
of the robot, i.e. the Z axis (see 2.8b). The existence of this joint means that in combination with
one of the other motors, the module can perform rotation in any direction, allowing it to perform

more complex motions compared to its predecessors.

Each shoe has 3 connectors; we identify them via the shoe they are attached to, and the direction
they are facing with respect to the body (see 2.8c). The connectors are genderless, which allows
them to connect with any other connector within the plaform, and they can be retracted when not
in use. Each connector is equipped with simple Lidar [47] sensors. The sensors perodically send
out a laser that gets reflected off of nearby objects, which allows them to detect obstacles and esti-
mate their distance based on how quickly the reflection returned. As a result, the modules don’t
have a full view of their environment, but each can detect nearby obstacles, as well as recognize

whether there is another nearby module they can connect to.

Since each module has 3 degrees of freedom and the modules can be connected in various ways,

the DoF of a RoFIbot rises very quickly with each module. If we wish to compute motion for the

I2
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robot as a whole, traditional algorithms® quickly become computationally infeasible. As one of
the goals for this thesis is control of robotic arms comprised of such modules, a simulation within

the RoFI platform will be used to demostrate our results.

*Which are generally exponential with respect to the DoF, see the next chapters.

13






3 STATE OF THE ART

Before we get into the problem of motion planning for robotic manipulators, let us take a step
back and look at motion planning as a whole. This is arguably the most researched problem
in robotics; there have been thousands of research papers with the motion planning keyword
published in the recent years [17]. The motion planning problem goes beyond a specific type
of robot, or a specific problem; the term encapsulates movement of a robotic arm, legged robots,
autonomous cars and even devices for exploration of oceans and space. It often consists of mul-
tiple stages: first a path is found, then velocities necessary to realise the movement are computed,
then the movement is realized with potential error handling.

As researchers try to develop new algorithms and push the boundaries of what is computable,

there are a few concepts at the core of each method, which are worth taking a look at.

3.1 GENERAL CONCEPTS — PATH PLANNING FOR A 2D ROBOT

Figure 3.1: A moving robot (blue) in 2 dimensions, trying to reach a target (red) while avoiding obstacles

(black).

For simplicity, let us consider the case of a robot that can move in any direction, trying to find
a path to a goal in a 2-dimensional space with some obstacles. The proper term for this is path
planning; since we are only concerned with finding a path and not realising the actual movement,
itis a subproblem of motion planning. Though in some literature, the terms are incorrectly used

interchangeably.

IS



3 State of the art

We will assume that the robot has full knowledge of the environment, and the environment
remains unchanging. This is a heavy simplification, as real robots generally have limited ways of
movement, and real life environments can often change dynamically. However, this simplified
representation lets us easily visualize and understand each of the concepts before discussing their
extensions. Each of the concepts can be generalised to higher dimensions and applied to robotic
manipulators specifically.

The firstidea that comes to mind after completing a basic algorithms course is to use algorithms
for finding the shortest paths, such as the asymptotically optimal Djisktra’s algorithm. The prob-
lem is that the space we are moving in is continuous, while the shortest path graph algorithms

require discrete graphs connected with edges.

°

Figure 3.2: Path to target found by Djikstra’s algorithm on a grid.

An intuitive approach to discretizing our space is creating a grid that represents the space, treat-
ing the points on the grid as vertices, and assigning the edges that lead to an occupied square an
infinite cost. On this grid, finding the shortest path is a simple task. The main advantages to such
an approach are implementational simplicity and easy generalization to 3 dimensions. Further
constraints can be implemented using the weights on the grid; for example, when planning the
path for a car, the weight on edges can reflect the speed limit on the corresponding road. This
method has been used successfully as a base for motion planning of autonomous vehicles [14, 35].

The main problem is choosing the size and shape of the grid. If the spacing between the vertices
is too large, the resulting path diverges further from the optimal one, and the algorithm might not
find a valid solution in a space with many small obstacles. However, if the spacing is too small, the
number of vertices that need to be explored can easily become too large to compute in a reasonable
amount of time.

In an effort to reduce the size of our graph and thereby speed up the graph-based path plan-
ning methods, visibility graphs have been suggested. To construct a visibility graph, obstacles in
the workspace need to be approximated with polygons of choice. The corners of these polygons

become the vertices of our graph. Two vertices are connected with an edge if they see each other

16
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Figure 3.3: Shortest path on a visibility graph, before and after widening obstacles.

in the intuitive sense: there is no obstacle on the direct line between them. Each edge is assigned
weight corresponding to the euclidean distance of the vertices. Then, standard shortest path al-

gorithms are computed on the graph.

Aswe can see in Figure 3.3, the basic method can find impossible paths, since it does not account
for the size of the robot. The way to mitigate this problem is to extend the size of each obstacle
with respect the size and movement limitations of our robot; in the simplified problem, simply
expanding each obstacle by the robot’s radius is enough. The advantage to this approach is that
we can reduce the size of the graph and still find paths close to optimal in the 2D path planning
problem. A dynamic extension has also been suggested [13], which makes the algorithm more

flexible in changing environments.

Unfortunately, the method does not scale well to 3 dimensions, as the optimal path rarely leads
directly around obstacles. We also need to be wary of imprecisions in the robot’s movement; a path
close to the obstacles could easily lead to a collision upon a mechanical error. These disadvantages

have made the method less popular in recent years.

The opposite approach has been more successful. Rather than considering points as close to
the obstacles as possible, we can consider the furthest points from nearby obstacles, and construct
a so-called Voronoi diagram. This method provides safe and smooth paths for the robot [11] and
is still used today as a base for modern motion planning algorithms [52]. However, much like the
previous method, voronoi diagrams are hard to scale to more than 2 dimensions. Therefore, they

will not be as useful for our use case.

Regardless of the resulting shape of the graph, the choice of the shortest path algorithm can
play a significant role in the path planning problem. Rather than using the traditional Djikstra’s

algorithm, the modern approach is to use the A* algorithm.

The A* algorithm [37] can be viewed as an extension of Djikstra’s shortest path algorithms and

uses a heuristic which influences what nodes will be chosen during the graph search. Under two

17



3 State of the art

conditions, the algorithm is complete’ and asymptotically optimal. The first condition on the
heuristic is admissibility — the heuristic never overestimates the cost to reach the goal. The second
is consistency — the value estimated by the heuristic is always less than or equal to the estimated

distance from any neighbouring vertex to the goal, plus the cost of reaching that neighbour.

Since we are discussing the problem of finding a path to a target, a simple heuristic that is both
admissible and consistent is the euclidean distance of a vertex to the target. Exploring vertices
based on the distance from the target can often lead to obtaining a much faster solution, but gives

us no guarantees on actually being faster than Djikstra.

The disadvantage to using this algorithm is that a suitable heuristic can be hard to find, and the
worst case space complexity is higher than for Djikstra’s algorithm. Sdill, the algorithm is widely

used and and can be generalized to further problems.

With a precise enough representation of space, graph-based solutions can give us certain guar-
antees on the optimality of the path. However, discretizing a continuous space can take a lot of
memory and computational time. If we relax the requirement of exploring the whole space and
look for faster algorithms that provide “good enough” solutions, we can move away from graph-
based approaches. Gradient based approaches make local decisions based on some criteria, and
iteratively move towards the target. Among these, a path planning algorithm that stands out is
the Artificial Potential Field (APF) method.

Intuitively, objects in the APF algorithm act on our robot as magnets. The target attracts our
robot with a strong force, while the obstacles repulse the robot. In an ideal scenario, this results
in finding a smooth path to the target while avoiding obstacles, see 3.4. This algorithm is highly
efficient, and can be extended to various problems. Besides its low cost, one of the main advantages
is that the algorithm can quickly react to a changing environment, which makes it more flexible

in dynamic environments compared to the graph-based methods.
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Figure 3.4: APF finds smooth paths, but is susceptible to local minima.

"If a solution exists, the algorithm will find the best one.
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3.1 General concepts — path planning for a 2D robot

There are two main downsides to the algorithm. For one, it gives us no guarantees on the
optimality of the found path; but even worse than that, the basic version is susceptible to local
minima. Some authors suggest extensions that help the robot get around obstacles [5, 12], while
another common use for the algorithm is to plan a global path using a graph-based method and
use APF to make local decisions and move between the found points [38]. Since this method can

easily be generalised to more dimensions, it is quite relevant in today’s research.

The last family of algorithms is based on random sampling. Arguably the most popular method
used all throughout motion planning is the Rapidly-exploring Random Tree (RRT) algorithm [16].
In each iteration of the algorithm, a random pointin the space is sampled. Then, an edge is created
from the nearest node to the sampled point if a valid path exists between them. Each iteration is
very fast, hence the space can easily be sampled millions of times. Once a point that allows reaching

the target has been found, the algorithm finishes.

Figure 3.5: RRT expanding to reach the target.

The RRT algorithm grants no guarantees on how quickly a path will be found, nor does it find
optimal paths, but in practice, it performs very well. Countless extensions have been suggested,
most notably the RRT* method [15], which continually improves the found paths. Unlike the
basic RRT method, if RRT* could run indefinitely, it would find an optimal solution. Asa result,
we can let the algorithm run for a set amount of iterations and, depending on the task at hand,

find the right balance between how quickly we obtain a solution and how good it is.

The main advantage of the RRT methods is their versatility. There are countless variations that
place limitations on how to sample the points, how to create new edges, and when to stop. The al-
gorithms can be extended to more dimensions; not only can it trivially be applied in 3 dimensions,
we can also define our state space in different ways. If we consider the rotations of a manipulator as
our dimensions, the algorithm works just as well for finding a trajectory for a robot manipulator.
The downside to this approach is that the state space grows exponentially with each dimension;

as a result, it cannot be trivially applied to high-DoF manipulators.
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3.2 MOTION PLANNING OF MANIPULATORS

While the 2-dimensional path planning for mobile robots is an interesting problem in itself, we
are interested in how the aforementioned methods can be generalised to robotic manipulators.

Remember the initial problem we are trying to solve: given a target in cartesian coordinates, we
wish to compute movement of a robotic manipulator so that the end-effector reaches the target
position, and the robot avoids any collisions with the environment during the movement.

The key to extending graph-based methods to robotic manipulators is the redefinition of space
from cartesian coordinates to the robot’s joint parameters. The key to obtaining a target con-
figuration for the manipulator lies in inverse kinematics. First, we can use IK to compute joint
parameters of the manipulator so that the end-effector has been reached. As a result, we have a
target configuration, and the problem can be defined with respect to the joint parameters. Since
the manipulator’s parameters uniquely define the robot’s state, the problem of reaching a specific
configuration is well defined. Once we’ve discretized the space of possible joint positions, we can
use i.e. the A* algorithm to compute a path to the target position. Using forward kinematics, it’s
easy to determine which positions collide with an obstacle.

By combining the pieces, we can solve the entire problem. A successful application of this
method for a 6-DoF industrial robot manipulator can be found here [45]. The authors first com-
pute a 3D model of the surrounding environment, so that collisions can be avoided. They leverage
inverse kinematics to compute a position where the target is reached. Then, a path to reaching the

target configuration is computed in 2 stages:

* First, the spaceis discretized very roughly into 20 segments, to minimize the otherwise enor-

mous state space. A* is used to find a path to a configuration close to the target.

* Second, a finer discretization is used in a smaller subspace, and the target configuration is

reached, once again with A*.

Finally, they use a control loop that moves the joints to follow the computed path and correct
any mechanical errors.

The method leaves some unanswered questions, but works reasonably well for industrial 6-
DoF manipulators. However, we need to keep in mind that an increasing number of joints makes
the size of the state space grow exponentially. Asa result, if we tried to apply the algorithm beyond
6 dimensions, we would either have to sacrifice alot of precision by discretizing the space into even
larger segments, or not obtain a solution in reasonable time. In a similar fashion, the A* part can be
replaced with an RRT-based algorithm, but struggles due to the exponentially rising state space.

On our search for a more scalable algorithm, we can once again look into Artificial Potential

Field methods. In this case, the virtual forces don’t influence the entire robot; instead, each joint
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3.2 Motion planning of manipulators

is repulsed by the surrounding obstacles, while the end-effector is pulled in by the target. A so-
lution using this method has been proposed here [4]. The paper deals with the specifics on how
to incorporate end effector rotation into the algorithm and avoid local minima. However, the
evaluation is far from satisfying. The authors present their solution on a single use case: grabbing
an object that lies near another obstacle. The results are fine, but it remains unclear how well
the algorithm would work in an environment with many obstacles near the initial joints of the
manipulator.

Since the traditional A* and RRT methods with respect to joints do not translate well to higher
dimensions, a modern approach is to use RRT to generate a path for the end effector only, and
try to reproduce it using the other joints [40, so]. However, most of the authors do not consider
obstacles close to the base of the manipulator, which makes the results questionable.

Avery powerful method is presented in [53]. The authors usea RRT algorithm to sample points
for the end effector in a space filled with obstacles. Then, FABRIK is used to compute whether the
new sampled point is reachable from the nearest node without causing a collision, and if it is, it is
considered a valid node. This combination of planning with respect to the end effector along with
the highly efficient inverse kinematics algorithm is similar to the approach that will be presented
in this thesis. Unfortunately, the authors present the algorithm as a manipulator in space, and
as a result, make a lot of simplifications in their approach that would not translate as well to real

robots.

* No effort is made to smooth or optimize the found path, therefore, rather than moving the
joints at a constant velocity towards the target, the actual movement would be erratic and

highly inefficient.

* There is no consideration for joint limits of the manipulator. FABRIK becomes more ex-
pensive when joint limits are involved; and while still fast, computing it a million times
within RRT would take a very long time. Additionally, when choosing a target for FAB-
RIK in a constrained system, we need to take the end effector rotation into account. How

to do this within the RRT remains unanswered.

Historically, the idea of planning with respect to the end effector and repeatedly computing
inverse kinematics for the remainder of the manipulator has been frowned upon, due to the high
cost associated with computing the pseudoinverse and other optimization methods. However,
this is no longer as big of a concern: with the efficiency of FABRIK, we can afford to compute it

many times to make incremental changes along a specific path.
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As established in earlier chapters, having a good algorithm for inverse kinematics can be a helpful

tool for motion planning of robotic manipulators. It can be used in two ways:

* Finding joint parameters that allow the manipulator to reach the target, and then looking
for a way to reach the position with i.e. RRT. In this case, we don’t mind if the IK algorithm
is slow, since we are only computing it once. However, we want guarantees that a solution

is found, if one exists.

* Finding a path with respect to the end effector with a different method, and using IK to
find collision-free positions for the remaining joints. In this case, the priority is speed of

computation, since it needs to be recomputed repeatedly.

Since our aim is to be able to control manipulators with a high DoF, the latter option is more
interesting for us. The core idea behind this thesis is that we want to plan with respect to the end
effector, and use an extension of FABRIK to compute manipulator positions along the path. This
chapter discusses the two core extensions: first, we add a way for the manipulator to respect joint
limits and still find viable solutions. As a specific example, dealing with joints for RoFI manipu-
lators is explained.

Then, we present a simple extension to deal with collisions: upon colliding with an obstacle,
we set a limit on the current joint that lets the manipulator get around the obstacle instead. We
discuss a standard data structure, called AABB trees, which holds the objects in the workspace and

allows us to check for collisions efficiently.

4.1 ADDING JOINT LIMITS TO FABRIK

When considering joint limits, computing the positions of points in space, as the original algo-
rithm does (recall 2..5), is no longer sufficient; we need to consider what kind of joint we are cur-
rently dealing with, and what its orientation in space is.

Instead of points in space, we can use a complete kinematic model of our robot. This model,
per DH convention, contains information about what joints and bodies the robot consists of and

what parameters the joints are currently at. As a result, the model calculates the corresponding
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Figure 4.1: Extended FABRIK algorithm: a copy of the manipulator is created and rooted at the target.

Then, at each joint, the distance to the original joint is minimized. Finally, the same algorithm is
repeated for the original manipulator, with the copy’s joints as targets, and a solution is reached.

[

matrices of each joint with respect to the rest of the world. Whenever a joint is moved, transfor-
mation matrices of the joints affected by this change are recomputed.

Since we want the kinematic model to stay connected, we can no longer easily disconnect the
joint from the remainder of the configuration. Instead, a virtual copy of the manipulator is created
and rooted at the target position.

This way, the joints of the copy serve as points for the forward reaching stage, and the original
joints serve as points for the backward reaching stage. Rather than detaching the current joint
and moving it to the desired position, joints are moved at each step to minimize the distance to
the same joint in the copy, while respecting joint limits.

As the two iterations alter, the two kinematic models converge to each other. Since the original
model is rooted in the arm’s origin and the copy’s end effector is rooted in the target position,
we can successfully finish the algorithm if they get close enough to each other. The algorithm is
illustrated in Figure 4.1. Since the transformation matrices for the joints need to be recomputed

repeatedly, the whole process is slower than the original algorithm, but gains several advantages.

* The algorithm for forward and backward reaching is exactly the same, hence, it can be

reused and the code is less sensitive to changes in the kinematic model.

* Both stages automatically respect the joint limits, since the model itself can validate the

performed movements.

* Every movement of the original kinematic model can realistically be performed. We can
ensure that our manipulator is always in a consistent state throughout the algorithm, which
allows us to visualize the whole algorithm, generate intermediate steps for the purposes of

animation, or stop the algorithm at any moment.

In each iteration, finding the right parameters for the current joint can be done by expressing

the desired position in spherical coordinates [18].
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4.1 Adding joint limits to FABRIK

Spherical coordinates are an alternative way to describe points in space, different from the
standard cartesian x, y, 2 coordinates. In a spherical coordinate system, each point is uniquely
described as (7, 9, ¢), where 7 is the radial distance, which is any nonnegative number; ¢ is the
azimuth angle, standardly ranging 0 < ¢ < 27 and ¢ is the polar angle, standardly ranging
0 < ¢ < 7. The limits are flexible, and we can change them to better match the possible joint
rotations. For instance, the polar angle can also range —7 < ¢ < 7, in which case the same points
will be expressed slightly differently.

Using the inverse transformation matrix of our current joint, we can express the desired po-
sition in cartesian coordinates with respect to the joint. Then, the position can be converted to

polar coordinates using the following equations:

Y (41)

g = atanz(;) (4.2)

¢ = Sin(g) (43)

If the currentjoint allows for extension, we can extend or retract it to the correct radial distance.
Rotations can be adjusted according to the two angles.

The most straightforward way to enforce that the joint limits are respected is to simply clamp
the computed angles. If the algorithm computes an angle outside the range of the current joint,

the joint is instead set to the nearest feasible angle (Figure 4.2).

Figure 4.2: The computed position violates the joint limit; the actual joint is clamped [31].

While this limitation may prevent the algorithm from finishing in the current iteration, the
other joints can make up for the limitand the manipulator is readjusted in the following iterations.
In fact, as presented in [2], limitations on rotational joints can actually be helpful, in that more

natural final poses are achieved.
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4 Extending FABRIK

The biggest problem we have to deal with comes when joints with only one degree of freedom
are involved. Such joints can no longer rotate to an angle which minimizes the distance to the
target joint, which means that we have to reason about the algorithm beyond the current joint for
optimal results.

The optimal way to extend FABRIK to deal with this problem depends heavily on the build of
the robot. Hence, in this part, the specifics of RoFI manipulators will be discussed; the core ideas

may or may not translate to different manipulators.

4.2 LimiTts ofF ROFI MANIPULATORS

Think back to thejoints of the universal module (Figure 2.8b). Rotation along the module’s X axis
is accomplished by the « and 8 joints, while rotation around Z corresponds to the y joint. The
right angles are, as mentioned earlier, computed by fitting spherical coordinates to the possible
movements of the joints: the azimuth angle (in radians) is clamped to =7 < ¢ < 7 to fit the 360°
revolute Z joint, while the polar angle (in radians) is clamped to =5 < ¢ < 7 to fit the [-907, 90°]

X axis joint.

Figure 4.3: Movement of the « joint changes the next body’s position, but y doesn’t.

When adapting the FABRIK algorithm to RoFI arms, we can treat each module as two joints.
The joint between the two parts of a single module can only utilise the 2 or 8 joint, hence, it is a
simple rotational joint. As far as position of the next joint is concerned, the rotation of the y joint
makes no difference, see Figure 4.3.

On the other hand, the joint between a universal module and the next component can utilise
the y joint. As a result, the module can combine the two joints on the respective side — each of
which moves around a single axis — to work as a ball joint in order to rotate in any direction, see
Figure 4.4. Passive modules or modules connected in a different direction can simply be viewed
as a longer body between joints, and are not interesting for the algorithm.

The firstidea that comes to mind when trying to deal with joints that have limited rotation may
be to minimize the distance to the target joint position within the current limits. This is insuffi-
cient; if no special care is taken to account for joints that only have a single DoF, the manipulator

will generally not reach the target.
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4.2 Limits of RoFI manipulators
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Figure 4.4: Both 8 and y joints influence the position of the next joint.

The correct way to approach the problem is to align the one-dimensional jointin a way with the
next target, so that only having one DoF is not limiting. The extension that our implementation
of FABRIK brings is that at each joint, it no longer looks at the current target, but the joint that
supercedes it as well. Looking at the transformation created by the connection, the two DoF joint
uses its mobility to place the next joint on the same plane as the target joint that follows it. Asa
result, the single DoF joint only needs to make a transformation in one plane, and the algorithm
finds viable solutions to the constrained IK problem.

Since modules can be connected in varying ways, we need to consider how the transformation
created by the joint connection will affect the following joints, and adjust the algorithm accord-

ingly (to view the various joint types, see Figure 4.5):

(a) Joint between parts of the same module: perform rotation along the X axis with respect to

the current target.

(b) Joint with Z-Z connection: perform rotation along the X axis with respect to the current
target, rotation along the Z axis with respect to the following target. This way, the y joint of
the current module helps align the next joint with its target, so that the following one-DoF

joint is sufficient to deal with the target.

(c) Joint with Z-X connection: perform rotation along the X and Z axes with respect to the
current target. In this case, determining the plane along which the next joint will move is a

bit tricky, hence, we let the adjacent joints align the module properly.

(d) Joint with X-Z connection: perform rotation along Z with respect to the position of the
current target, rotation along the X axis with respect to the following target to align the

next joint

(e) Joint with X-X connection: perform rotation along Z with respect to the position of the

current target. Since the X axes of the current and next module are aligned, the joint on
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the X axis is not considered. It could be used to treat the two X joints as one with extended

range, but in early testing, it had no impact on the algorithm’s capability to find a solution.

(.,

(a) Joint between parts of the same

module (b) Joint with Z-Z connection  (c) Joint with Z-X connection

(=

(d) Joint with X-Z connection  (e) Joint with X-X connection

Figure 4.5: Possible joint connections
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4.3 Adding collision avoidance to FABRIK

4.3 ADDING COLLISION AVOIDANCE TO FABRIK

When discussing collision avoidance, the first question to ask is how to model the environment.
Generally, we want to approximate objects in the workspace with simple geometric shapes: either
polyhedra of choice, such as squares or pyramid shapes, or spheres. For simplicity and efficient
representation, we shall choose the latter. Each joint of the manipulator shall be represented with
a sphere’. Without losing on generality, we can assume other objects in the workspace have also
been approximated by the smallest sphere containing the entire shape.

For the moment, we will assume that the information about the workspace is complete; we
know where all the objects are at the time we start the computation, and we have a complete
model of the environment, created by a human or generated using an external camera.

One method for extending FABRIK with collision avoidance is presented in [44]. The authors
propose that whenever a joint would be put in a position that causes a collision, the joint is put
on a line between the current target and base of the arm, rather than the line between the current
position and target. Then, if there is still a collision, a series of random rotations is used to avoid
the obstacle.

If we were to compute IK only once, this method could prove useful. The method finds ways

both around and between obstacles, and produces realistic poses. However, there are a few draw-

backs:

* Since random rotations are used, there are no guarantees on the speed of convergence. As
a result, as we can see from the authors’ evaluation, the algorithm usually runs for around

0.1s. We may be willing to wait that long once, but it is unimaginable to compute repeat-

edly.

* Once again, no joint constraints are considered. When the current joint can only move in
one plane, the initial guess of putting the joint as close to the base as possible is no longer
well defined. In addition, random rotations in one direction may notlead to a solution due

to hitting the joint limit, slowing the algorithm down even further.

In this thesis, a simpler approach to the collision avoidance problem within FABRIK is pro-
posed.

During the forward reaching stage®, collisions are not checked. This allows the algorithm to
find an approximate solution, but it is prone to collisions with surrounding objects.

During the backward reaching stage, the resulting position needs to be feasible. Hence, the

new computed position for the joint is checked with the other objects in the workspace.

"'When considering RoFIbots, a single universal module can be modelled quite precisely with two adjacent spheres.
With other types of robots, which may have longer bodies, rectangles or cylinders may be more suitable
*Remember that in our extension, this moves the virtual copy of the manipulator, rooted in the target position.
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(a) Initial position and tar- (b) Solution from a back- (c) Collision is avoided by (d) Final solution after a
get ward reaching stage clamping the angle few iterations

Figure 4.6: Illustration of FABRIK with simple collision avoidance

If the computed movement would cause a collision, a local limit is set on the current joint.
A new joint rotation is computed within the limits set by nearby obstacles, and as a result, the
manipulator gets as close to the desired position as possible, while avoiding a collision. The whole

procedure is illustrated in Figure 4.6.

Note that compared to the aforementioned collision avoidance method, this one only works
locally for each joint. Asa result, it can get stuck in a local minimum, and not get over an obstacle.
This is a disadvantage if we wanted to use it to immediately find a final solution; the algorithm
could fail even though a solution exists. On the other hand, this behavior is desirable if we are
using it to repeatedly compute incremental changes; the manipulator does notjump over obstacles
when the actual movement is not possible. Additionally, the currentjoint does not need complete
knowledge of the environment which saves computational time, and we don’t need to rely on

randomness which guarantees faster convergence.

As of now, we need to compare the new joint position with each other joint and each surround-
ing object in the workspace. Since other joints and obstacles are approximated with spheres, the
collision check is very cheap: if the centers of two spheres are closer than the sum of their radii, the
two spheres collide. However, checking every object is clearly asymptotically inefficient. Analog
to doing lookup of strings or numbers in binary search trees, we would like to store our shapes in
a structure that allows lookup with a logarithmic amount of comparisons.

A common structure for holding 3-dimensional information in robotics is the Octree [19] — this
structure consists of squares, each of which is divident into 8 octants; subsquares of their parent.
This structure allows easy lookup of data, but is not great for collision checking, since objects can
span across various squares. In addition, modelling movement within an Octree can be difficult.

Hence, we opt for the data structure more commonly used in video games — Axis Aligned
Bounding Box Trees, AABB for short [s4]. An AABB is a binary tree where shapes are stored

in the leaves, and each inner node serves as the bounding box of its children. The bounding boxes
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Figure 4.7: Obstacles in space with the corresponding bounding boxes, and the inner structure of the

AABB tree holding them.
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are, as the name suggests, axis aligned — we define them with standard x, y, z dimensions and do
not consider varying rotations. Unlike octrees, nodes in the AABB are of varying size, see Fig-
ure 4.7.

The internal workings of an AABB are best explained using the actual operations. When the
first shape is inserted into an AABB, a new node is created with a bounding box containing the
shape. When inserting further shapes, the structure first chooses what leaf it shall become a sibling

to, based on specified criteria. Once a sibling has been chosen, the following operation proceeds:

1. Create a new parent node in place of the sibling leaf.

2. Make the sibling leaf a child of the new node.

3. Make the new leaf the other child of the new node.

4. Resize the parent node bounding box so that both shapes fit into it.

5. Recursively proceed to the root, increasing all the bounding boxes if necessary.

A common heuristic for choosing where to insert the new leaf is to descend the tree starting
from the root, always choosing the child in that will lead to smaller resizing of the tree, and then
appending the object to the found leaf. When we perform random insertions, the tree balances
itself out quite evenly (see Figure 4.8).

The payoff for building the data structure in this way is efficient lookup. When we need to
check if a shape would collide with any other shape already in the structure, we do not need to
compare it to every leaf. Instead, collision lookup proceeds from the root and only enters nodes
with bounding boxes that collide with our shape. If the shape does not collide with either of the

bounding boxes, we know that it does not collide with the leaves either, as the leaf shapes are
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Figure 4.8: Graph of objects created at pseudorandom positions and the resulting depth of the tree.

contained within the nodes by definition. If it does collide with a bounding box, we check for the
children, potentially getting to leaf nodes. Then, finally, collision with the actual object is checked.

In practice, the insertion heuristic performs well, and the
expected number of comparisons is significantly smaller than
when trying to compare all the objects. However, the heuristic
itself does not guarantee logarithmic depth; there is a case which

leads to a degenerate tree. This tree can come to exist if all the
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objects are aligned and added to the tree starting from one end.
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Then, if we are checking collisions of an object close to the deep-
est leaf of our tree, the amount of comparisons is equal to the

number of objects. This problem could be mitigated by adding  Figure 4.9: When  objects  are

. . . aligned and added one
balancing rotations to the tree, but in most cases, the extra work
by one, a degenerate
Is unnecessary. tree can be created.

Now, how do we apply these trees to our problem? Assuming
we already have a model of the environment, building the AABB is a simple matter of inserting
each shape into it. To represent movement within an AABB, we need to erase the corresponding
shape and then reinsert it at the new position.

Recall that in each backward iteration of FABRIK, we want to check if the current joint can
be placed at the computed position. The invariant of our algorithm is that each joint has a cor-
responding sphere in the AABB, and the kinematic model of the manipulator has a pointer to
it.

Therefore, we extend the backward FABRIK iterations by first erasing the joint leaves from
the AABB. Then, when we compute a position for the joint, we check if it causes a collision with

AABB lookup. If it does, we readjust it accordingly. When a reachable position for the joint
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is found, the joint is fixed for the remainder of the iteration, and the corresponding sphere is
reinserted into the AABB. While it may seem that we have done a lot of unnecessary work, we
can now guarantee that none of the joints will collide with other parts of the manipulator, or any
static obstacle, without exhaustively checking all of them.

The difference may not be felt when all the obstacles are spheres, but it s particularly noticeable
when we generalise obstacles to arbitrary shapes. Then, a collision check can be quite an expensive
operation, and avoiding unnecessary checks with cheap bounding box comparisons can save a lot

of computational time.
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END EFFECTOR

As of now, we have a fast inverse kinematics algorithm, which allows us to compute joint posi-
tions, given the end effector position of the manipulator. If we can find a suitable path for the
end effector to follow, we can discretize it into small steps and use our extension of FABRIK to
compute incremental changes along the path for the rest of the manipulator.

Although we have a myriad of algorithms to deal with the 3-dimensional path planning prob-
lem, the task is not as simple as our initial example of a robot that can move in any direction; we
need to find paths that can be followed with the remainder of the manipulator.

This chapter goes through the process of designing an algorithm for finding suitable end effec-
tor paths. First, we imagine a world that can be efficiently represented on a grid. On this grid,
we discuss how to find possible paths for the end effector, how to smooth out the discrete paths
using B-Splines, and how to post-process the found trajectories to minimize unnecessary move-
ment. Then, we let go of the grid and generalize the explained concepts to a new representation

of space, inspired by visibility graphs.

§.I GRID BASED APPROACH

Recall that one of the successfull ways of applying the technique of planning with respect to the
end effector only has been mentioned in [s3], where the authors expand a RRT and compute FAB-
RIK at every node. However, our extended FABRIK is too slow to compute for every pointin the
workspace; hence, we want to limit the amount of times we run the algorithm to lower hundreds.

Instead of expanding throughout the space, we want to find paths that lead to a solution with
a high probability, and only compute FABRIK on points on this path. In case FABRIK fails on
this path, for instance due to the manipulator being too short to get around an obstacle, we want
to fall back and look for a different path.

Out of the three basic approaches, our go-to are the shortest path in a graph algorithms. As
mentioned earlier, gradient based methods are not helpful due to the local minima problem and

only generating a single possible path. Similarly, one of the weaknesses of the RRT algorithm is
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that it only finds a single path, and trying to generate edges between all possible nodes to find

multiple paths would be computationally infeasible.

As a baseline for discretization of space, a grid based approach was tested out. This is not op-
timal for multiple reasons, but it is implementationally simple, allows us to analyze the proce-
dure, and explore further extensions. Note that while the original Djikstra’s algorithm works with
weighted edges, in this case, we are assigning weights to vertices. Any edge that leads to a given

vertex is treated as if it has the weight of the vertex during the shortest path algorithm.

Points on the grid were spaced out at half the size of a single joint, striking a balance between
not generating too many points and making the shortest path algorithm too slow, and still being

able to explore most viable paths’.

The advantage of this representation is that we can weigh the points on the grid to influence
which paths will be evaluated as optimal. We borrow the idea from the Artificial Potential Field

algorithms, and give more weight to areas that surround an obstacle.

Points on the grid that are occupied by an obstacle are assigned an infinite weight, clearly no
path can lead through them. In the area surrounding each obstacle, the weight will be high. Gen-
erally, we want the algorithm to choose paths further from obstacles, if possible. This follows the
reasoning that we want to accomodate for the rest of the manipulator. If the path for the end ef-
fector leads closely around obstacles, the chance that the remaining joints of the manipulator will
fitis also lowered. However, while expensive, we want the paths close to obstacles to be evaluated

as viable, since there may not be other options.

Each obstacle affects the surrounding area and raises the surrounding points on the grid based
on how far they are. The total weight of obstacles is summed up; as a result, points between
multiple obstacles are given a very high cost. A high cost between clusters of obstacles leads to the
desired effect of preferring safer paths that avoid them altogether, though the path itself may be

longer.

In effect, the algorithm works in the same fashion as APF, but does not suffer from local min-
ima. If the first path we found is evaluated as wrong, the cost of points close to the found path
is increased, and the algorithm looks for a new path in the modified graph. If, for instance, there
are two obstacles and the only viable way to reach the target leads through them, paths around
them may be evaluated as better at first. Trying to reproduce the path with FABRIK will fail due
to the manipulator being too short, the cost near the found path is raised, and eventually the path

between them is found. The idea is visualized in Figure s.1.

'Viable paths are found under the assumption that the obstacles are at least as large as the joints of the manipulator,
which is a fair assumption for now, but does not hold in the general case. Obstacles that are too small or shaped
in a way that does not fit the grid well pose a problem.



5.1 Grid based approach

" mr 1 -
.

(a) Initial position of the manip- (b) The careful path around obsta- (c) The viable path for the end ef-
ulator, a target, and the first 2 cles does not lead to a solution,  fector leads between the obsta-
paths found by the algorithm. due to the manipulator being  cles.

too short.

Figure s.1: Illustration of the extended shortest path algorithm on a weighted grid. Black boxes represent
obstacles, and the opacity of the background represents the cost of traversing over a given square.

The first obvious drawback of the algorithm is how
rugged the resulting paths are. Instead of exactly fol-
lowing the found path and making unnecessary back
and forth motion, we want to interpolate the points
in a smooth way. Generating a smooth path from a
set of points on the grid can be accomplished using B-
splines [39]. ] L

B-splines, also known as basis splines, are piecewise

Figure s.2: B-splines can generate a smooth
path from points on a grid (visu-

shapes using a simple polynomial function and a set of alized using [30]).

polynomial functions used to generate smooth lines or

control points. To construct a B-spline, we need:

* A basis polynomial function given by its order. The order of the function determines how
many nearby control points influence any the resulting points on the curve, and is always

one more than the degree of the polynomial.

* Sequence of control points. Control points determine the shape of the curve. Each point
on the curve is determined as an interpolation between the nearby control points, using

the sum of our basis functions for each of the points.

* Sequence of knots. Knots are numbers in nondecreasing order, which determine where
and how the control points affect the curve. The number of knots is always equal to the
number of control points + the order of the curve. For trajectory generation, we can imag-
ine the knot parameter as time. Then, we have a direct mapping of time to the position;
knots specify by which control points the position will be influenced at the given time, and

the ratio between the knot values specifies how much.
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Figure 5.3: B-spline of order 4 with knots (o, 0, 0, 0, 0.4, 0.5,0.6,1, 1, 1, 1)

Figure s5.4: B-spline of order 5 with knots (o, 0, 0, 0, 0, 0.45, 0.55, 1, I, I, I, 1)

In the most common generalization of B-splines, Non-rational uniform B-splines (NURBS),
each control point is also associated with a specific weight. When considering uniform points on
a grid, we can just assign the same weight to each point.

Contrary to interpolating with polynomials directly, B-splines do not generally go directly through
the control points. Going through a specific point can be achieved with a knot of a multiplic-
ity equal to the order, which are commonly at the beginning and end of the curve. Since the
curve order specifies how many control points influence each point, a lower curve order leads to
curves closer to the control points, while a higher one can produce smoother paths overall (see
Figures 5.3, 5.4).

To follow the curve with our inverse kinematics algorithm, we need to choose the size of our

steps, get the value of the curve at the next time interval, and compute FABRIK starting at the
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5.2 Optimising the manipulator trajectory

current position. The only problem is that the curve only specifies the position, and the algorithm
takes the entire transformation matrix as the input, including rotation. Hence, we need to look
for ways to interpolate rotation as well.

In cases where the end effector moves independently from the rest of the manipulator, Spherical
linear interpolation (SLERP) [41] between the initial and target rotations is a suitable solution.
The method uses quaternions to perform rotation at a constant velocity, resulting in a smooth
motion.

Our case is a little different. In the case of RoFI manipulators, the rotation of the final module
can influence how the entire manipulator needs to move, in order to accomodate for joint limits.
Hence, we want to reach the target rotation as soon as possible. On the other hand, we need to
consider that the target rotation may not be reachable immediately.

There is no single best way of choosing the angle interpolation, since the inputs and targets can
vary wildly. A method that performs reasonably well is to interpolate euler angles of the initial
end effector position and target with a quadratic function rather than a linear one. The reasoning
behind this is that early targets for FABRIK have to be close to the initial position, but the target
rotation is reached quickly and the manipulator does not make unnecessary movements.

Now that we have all the pieces, we can run the algorithm and see how it performs.

5.2 OPTIMISING THE MANIPULATOR TRAJECTORY

Let us summarize the entire computation. Our input parameters are a model of the environment
— obstacles and a single manipulator, and a target for the manipulator’s end effector to reach. The

algorithm does the following, in order:

1. The environment within which the manipulator exists is loaded, and a kinematic model of

the manipulator is created.

2. An AABB tree for collision checking is created. The obstacles and joints are approximated

via spheres and inserted into the tree.

3. A grid is created in the space the manipulator can move in. Each obstacle raises the cost on

the surrounding points of the grid.

4. The shortest path on the weighted grid between the initial position of the end effector and

the target is found.

5. The found path is smoothed out by interpolating the found points on the grid with a B-

spline.
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Figure s.5: Our algorithm in a space with no obstacles.

6. The path is sampled at discrete points, and an extension of FABRIK is used to compute

the joint parameters needed to reach each of the points.

7. If the path can be followed successfully, the movement is realised. Otherwise, if FABRIK
fails to find viable positions on this trajectory, the algorithm falls back to step 4, adjusts the

grid, and tries to find a different path.

Let us start by visualizing the most basic case, to see if the produced motion is natural: the

algorithm in a space with no obstacles.

Aswe can see in Figure 5.5, the found trajectory of the end effector is smooth, including rotation.
However, there is unnecessary motion before the manipulator adjusts itself into a straightened out
position. Looking at the joints of the second and third module, they fold up during the algorithm,
only to straighten themselves out again once the manipulator is closer to the target. We can reduce
the amount of unnecessary motion by post-processing the calculated trajectory.

Note that our found trajectory is a sequence of positions for the manipulator. The whole reason
behind creating this complex algorithm rather than simply using inverse kinematics is that we
cannot trivially interpolate between the initial and final positions, due to the obstacles in the way.
However, this does not hold for all the intermediate steps in the calculated sequence. For each
pair of positions, we can, via simple interpolation, check if the steps between them can be skipped,
and the transition can be made directly. As a result, we can avoid intermediate positions where

the manipulator folds itself up, only to readjust later on.
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5.2 Optimising the manipulator trajectory

For each position in the sequence, the post-processing algorithm checks how far in the sequence
it can get via interpolating the current and following positions directly. The farthest the algo-
rithm can get at any point becomes the next target, and the computed intermediate positions are

discarded. The shortcutting algorithm can easily be expressed via the following pseudocode 1.

input : Sequence of manipulator positions P[0..7]
output: Sequence of manipulator positions O[0..m], O < P
O = [P[0]]; // initial position of the algorithm
idx = 1;
while 7dx < n do
while idx <n & Plidx + 1] can be reached from last position in O do
L idx =idx +1;

add P[7dx] to O;

7 return O;
Algorithm 1: Algorithm for shortcutting the found trajectory.

WU o W N

[}

Checking whether the target manipulator position is reachable from the current one is achieved
by incrementally performing all the necessary rotations, and checking for collisions in the AABB.
Looking back at our example, we can see that with shortcutting, the unnecessary movement of

the manipulator’s joints has been mitigated (Figure 5.6).

Figure 5.6: Our algorithm in a space with no obstacles, extended with trajectory shortcutting.
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s Path planning with respect to the end effector

53 A MORE EFFICIENT REPRESENTATION OF SPACE

The algorithm is almost complete, but there is an issue we have not addressed yet: usage of the

gl‘ld to represent space.

The first issue with this representation is inefficiency: even if a segment is free from obstacles,
we represent it with a regularly spaced out grid, wasting memory and making our shortest path

algorithm slower and harder to scale to larger manipulators.

The second issue comes in the form of edge cases that are difficult to represent. If there are any
obstacles smaller than the spacing of the grid, the algorithm can find paths that cause a collision.
On the other hand, if there are large obstacles with small holes, the grid may not find paths through
the holes at all.

As inspiration for how to represent the space, we can think back to visibility graphs 3.3. How-

ever, as established earlier, we do not want to use the edges of objects as vertices.

Imagine a simple case of a manipulator trying to reach
atarget behind a pair of obstacles. The manipulator may
either choose to go between them, around them from
one side, or around them from the other. Therefore, for
the purposes of representing this space, a simple graph -
is sufficient, instead of a complete grid. This graph hasa ®
vertex at the current end effector position, a vertex at the
target position, and 3 vertices surrounding the obstacles;

one above, one below, and one between them. The 3 ver-
Figure s5.7: 3 relevant paths around a pair

tices need to be connected to both the initial and target
of obstacles.

positions.

In 3 dimensions, building such a graph is a bit more complex. Even so, we can define general
directions obstacles the path can lead around. For every every pair of obstacles that can see each
other, an interesting point on the graph is the point halfway between them®, which can serve as a

vertex of our graph.

Finding points between obstacles alone is not sufficient to represent all interesting paths — we
also want to look for paths that go around all the obstacles. Therefore, for the purposes of the
algorithm, virtual obstacles are added at the edges of the manipulator’s reach. Connecting these
edges with nearby obstacles returns paths that lead around them, if they are within the manipu-

lator’s reach.

*Unless the obstacles are so close to each other that the joints of the manipulator cannot fit between them. Then, it
makes no sense to consider the vertex.
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5.3 A more efficient representation of space

L
(a) Virtual obstacles are created at the edges of the L .
. , (b) Points in between the obstacles become vertices
manipulator’s reach, and all obstacles are con-

nected (dark blue lines). of the graph (light blue squares).

1
T
1

L
I
I
I

(c) Vertices that see each other are connected with
edges (light blue lines).

(d) Example paths to the target in the created graph.

Figure 5.8: Illustration of how the graph representing the space is created and used to find a path to the
target.
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Just like visibility graphs, the vertices we create between obstacles are connected with an edge
if they see each other, i.e. there are no obstacles between them. The procedure for building our

graph is visualized in Figure 5.8.

The implementation of two points being visible to each other can be done trivially with the
use of our built AABB. We define a line segment that leads from one obstacle to the other, and
if it collides with any other object, the objects are not connected. The formula for line-sphere
intersection is derived from the respective object equations; the slabs raycasting method [32] is

used for detecting line-box intersection within the AABB.

The amount of vertices in a graph created this way can be bound by O (n*) with respect to the
number of obstacles — at most there will be a vertex between each pair, and the number of vir-
tual obstacles at the edges is constant. Unlike the grid approach and sampling based approaches,
we are only paying a higher price for finding a path with an increasing number of obstacles, and
are mostly unaffected when the workspace of the manipulator increases. This representation of
the workspace within the algorithm is particularly efficient for static manipulators in mostly un-
changing environments but multiple consequent targets. Rather than building the whole graph
every time we need to find a target, it is sufficient to update the source and target vertices, while

the remainder of the graph stays the same.

Of course, there is a reason why the grid based approach has been discussed extensively: apart
from the graph we are operating on, the rest of the algorithm remains the same. The main take-
away from our grid based approach is that we want to assign a higher cost to vertices close to
obstacles; this holds for our new graph as well. Each edge between vertices is assigned a cost based
on the distance of the points to reflect the actual distance that needs to be traversed, while each ver-
tex is assigned an additional cost for traversing over it based on how far it is from the surrounding

obstacles.

When creating the vertices, we know how far apart the obstacles it was created between are.
This directly gives us a way of assigning costs, since a path that leads closely between obstacles is
higher-risk, while a path in some open space is generally safer. Therefore, we make the weights
inversely proportional to the distance between the two objects. Additionally, just like within the
grid, each vertex is assigned a separate additional cost, which is raised when a nearby path is deemed

unsuccessful.

Justlike in the grid-based approach, we want to interpolate the found positions with a B-spline.
Unlike the grid-based approach, the vertices are not spaced out evenly, and we want to use NURBS
to extend each vertex with a weight. Recall thatin a NURBS curve, each control point is associated
with an additional weight, which determines how much it will affect the curve in its vicinity: a

higher weight leads to paths closer to the point.
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5.4 The final algorithm

(a) The control point between obstacles has a high (b) The control points created in the open space be-
weight, so that the manipulator follows the path tween the edges and obstacles have a low weight
closely and fits between them. and only need to be followed loosely.

Figure s5.9: llustration of how weights of vertices affect the resulting path.

The weightassociated with a given vertex directly translates to the weight of the resulting NURBS
curve. Since each weight represents how close the surrounding obstacles are, it also represents how
close to the point we need the curve to be in order to avoid them. When the obstacles are close,
we need the weight of the NURBS control point to be high in order to fit in small passages. On
the other hand, if the point is in an open space, we only need to approach it loosely, and trying to

go to the middle of the open space could lead to unnecessary motion (see Figure 5.9).

S-4 THE FINAL ALGORITHM

Finally, we have a complete algorithm for trajectory generation of high DoF robotic arms:

1. The environment within which the manipulator exists is loaded, and a kinematic model of

the manipulator is created.

2. An AABB tree for collision checking is created. The obstacles and joints are approximated

via spheres and inserted into the tree.

3. A graph is generated by using points halfway between obstacles as vertices, and connecting

vertices with an edge if the direct line between them is unobstructed by obstacles.

4. The shortest path on the weighted graph between the initial position of the end effector and

the target is found.

5. The found path is smoothed out by interpolating the vertices with a NURBS curve.
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6. The path is sampled at discrete points, and an extension of FABRIK is used to compute
the joint parameters needed to reach each of the points. The size of the step depends on
whether there are any obstacles near the current position on the curve; smaller steps are

made when going around obstacles.

7. IFFABRIK fails to find viable positions on the path, the path is evaluated as unsuccessful.
The algorithm increases the cost of the vertices on the path, falls back to step 4 and tries to

find a different path in the modified graph.

8. If FABRIK finds viable positions on the path, use a shortcutting algorithm to post-process

the path and minimize unnecessary movement.

After finding all the intermediate positions, the motion can be realised by moving the manip-
ulator’s joints.

To analyze the complexity of our new algorithm, we need to look at the individual components
and analyze the work done in them. The two parameters that influence the complexity are the
number of joints, which we can denote with 7, and the number of obstacles, which we can denote
with 7.

The first operation that takes place is building the AABB tree. This process consists of inserting
each joint and obstacle into the AABB, meaning O(; + ) insertions. As discussed earlier, no guar-
antees on the depth of the tree are given, which leads to a linear worst-case complexity of having
to make a number of comparisons equal to the number of already inserted objects. Therefore, we
can only bound the building of the tree by O((; + n)?), although the average complexity will be
much lower.

To create the graph of vertices between obstacles, the path between each pair of obstacles is
checked, bound by O(n* (f + n)) due to the O(;j + #) collision checking within the AABB. The
upper limit on th enumber of vertices is 77, therefore the creation of edges between each pair can
be bound by O(n* (j+n)).

Finding the shortest path is done with Djikstra’s algorithm, using a priority queue implemented
with a standard binary heap. Since the complexity of Djikstra is O((|V| + |E|) log |V']), we can
bound it with respect to the number of obstacles with o(n* log 7).

Since we are discretizing the path at discrete intervals, the number of times we compute FAB-
RIK on each path depends on the path’s length. In the case of RoFI manipulators, the distance
between all the joints is constant; hence, we can get a rough estimation of the maximal length of
the path with respect to the number of joints. Since the maximal reach of the manipulator in one
direction is bound by ©(;) and it can move in 3 dimensions, the maximal length of the path, as

well as the targets on it, is O(;°).
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5.4 The final algorithm

A single FABRIK iteration is linear to the number of joints. Ateach joint, we find the right posi-
tion for the currentjoint (O(1)), check if the currentjoint collides with any obstacles (O (j+#)) and
recompute the transformation matrices of all the following joints (O(;)). FABRIK stops when the
target is reached, when it gets stuck, or a constant iteration limit is hit without reaching the target.
Therefore, the upper bound on the complexity of FABRIK for a single target is O(;>(j + 7)).

If the first path is evaluated as unsuccessful, we try different paths, but the total number of paths
we explore can be bound by a small constant. Therefore, the total complexity of the algorithm is
o(n* (j+n)+ ]'5 (j+n) = o + ]'6). Although this complexity may seem quite high, note
that we’ve used very rough estimates and each individual operation is very cheap. Multplying
4 x 4 matrices and doing simple number comparisons while collision checking are operations that
are quite trivial and heavily optimized. And since the entire algorithm is clearly polynomial with
respect to the number of joints, we achieved the goal of making it scalable; unlike the state of the

art approaches exponential to the number of joints.
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6 EVALUATION

In previous chapters, we have made fairly extensive reasoning behind each part of the algorithm.
However, we have yet to see how the algorithm will perform as a whole. In this chapter, the

algorithm is tested in various situations.

Since the quality of the approach cannot simply be measured with respect to the number of
joints or obstacles, we evaluate various aspects in different environments. First, we handcraft var-
ious situations for the manipulator, and show the performed movement. Then, we take a look at
the different components of the algorithm and analyze how much time is spent in each of them,
in order to look for possible improvements. Finally, we explore the limits in the respective types

of environments.

6.1 CASE STUDY

First part of the evaluation consists of putting the algorithm up against handcrafted sets of obsta-
cles. We can view how particular edge cases are handled, how natural the overall motion is, and if

there are any situations it cannot reasonably deal with.

We can now demostrate initial results within a RoFI simulator. As a baseline, we consider a
manipulator that consists of a chain of 4 modules, linked via the —Z connectors. Since such a
manipulator has 12 degrees of freedom, previous state of the art algorithms — which mostly only
scale up to 6 DoF — would clearly not be useful. The simulator does not consider the forces of
gravity, or physical failure of the modules; these are aspects of further research. The reasoning
behind using 4 modules as the baseline is that such a manipulator is flexible enough even though
the joints are constrained, and with the state of the art hardware, it’s feasible for the joint of a single

module to lift the weight of around 3 connected modules, but not significantly more.

The measurements take place on consumer grade hardware, equipped with 16 GB RAM and

an Intel Core i7-8750H cpu.

To evaluate the quality of the algorithm, we want to explore how differently shaped environ-

ments affect the algorithm’s runtime and ability to find successful paths.
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6 Evaluation

Figure 6.1: Target near obstacle

As asanity check, we can start with a simple case of a target near an obstacle, but reachable from
the initial position. The environment is a wall made out of 12 small spheres. Figure 6.1 shows the

performed movement.

A notable feature observable in this case is that even though there is a fairly high number of
obstacles, they do not affect the final result in a negative way unless they are in the way. The
final position looks very natural, and the performed movement is as smooth as it gets: a direct
interpolation between the initial and target position. Since the target is visible from the initial
position, the algorithm directly finds the path from it to the target. The whole computation runs

for around 0.01 second.

Figure 6.2: Target behind obstacle
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6.1 Case Study

A more interesting case is observable when we start off in a position close to the wall and try
to reach a target behind the wall. In this case, the algorithm needs to first move back to avoid
the wall, and then go to the target. The direct path can no longer be taken due to the obstacles,
and going around the wall is infeasible due to the limited length of the manipulator. A possible

motion generated by the algorithm can be seen in Figure 6.2.

Unlike the first test case, the algorithm does notimmediately find the right path. Since the paths
that lead behind the wall are physically closer, they are evaluated as shorter at first, but trying to
folow them fails due to the limited length of the manipulator. On the 3 path, a correct solution
that goes around the wall is found. Since we needed to explore multiple paths, each of which is

associated with a lot of computation, the solution was found in 0.5 seconds.

The next test case consists of trying to fit the manipulator in a small hole between obstacles and
reach a target behind it. In some cases, this problem has proven to be challenging. Any path to
the target has to go through the hole, but the direction where we come from can play a part as
well: in order to fit the joints through the hole, the manipulator needs to move in a fairly specific
direction, because there is not enough space to move around and readjust when the manipulator

goes through the hole. Usually, it does find a solution, see Figure 6.3.

Figure 6.3: Hole between obstacles

However, if the target is fairly far beyond the hole, but the only way to reach it is to go through
it, the algorithm does struggle. Since the point between the obstacles is associated with a high cost,
it often tries other paths first, exploring a much larger part of the space compared to the previous

examples.
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6 Evaluation

The example 6.3 was found in 0.04 seconds, on the first explored path. However, some targets
turther from the hole can lead to exploring a much larger number of paths; leading to a noticeable
delay of a few seconds.

Moving on, we want to see how the algorithm performs when the obstacles do not form a wall,
but instead float in space and form clusters. First up, clusters near the target. This is clearly a
practically motivated problem: if we have some objects lying around and need to pick and place a

specific one (or a few), we require a precise motion that avoids the other objects.

Figure 6.4: Getting around clusters of objects

The algorithm acts as expected, finding quick and natural looking solutions. Figure 6.4 shows
one example of getting around and between obstacles to reach a target. As designed, the algorithm
prioritizes paths that avoid the obstacles altogether and only goes between them at the end of the
path if necessary. This often leads to the first evaluated path being correct, which leads to a result
in around 0.02 seconds. When the target lies right in the middle of a cluster and is difficult to
navigate into, the algorithm explores multiple paths, but still finishes in less than a second.

Finally, we can take alook athow obstacles affect the manipulator when they are not close to the
manipulator’s end effector, but rather the lower joints of the manipulator. When the obstacles are
all around the manipulator, they do not have as great of an effect on the found paths, compared to

when they are surrounding the target. As a result, we need to rely on the quality of our extended
FABRIK to avoid them.
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6.1 Case Study

Figure 6.5: Obstacles all around

The average number of explored paths is higher in this case, and the found paths can stray
further from the optimal one. In some cases, the algorithm finds a path close to the expected
solution, but since the obstacles in the way have no effect on the resulting path, the manipulator
does notalways find suitable intermediate positions on this path. Even so, the algorithm is capable
of navigating through very complex environments, see Figure 6.5. We can see that the path of the
end effector is quite long, and was obviously not the first found solution; it was the Igth path, found
after 2 seconds.

As we can see, the algorithm performs nicely in various environments and finds successful ways
to reach the given target. The computation usually runs for less than a second, instantaneous in
eyes of a human observer. Reaching some targets takes a couple of seconds, leading to a notice-
able delay, but note that the implementation is only a proof of concept, and the given times are
referential; there are certainly more optimisations that can be added to the algorithm.

Target examples are included as a video in the thesis archive with the complete motion:
* AROUND_WALL.MP4 shows an example of reaching back to avoid a wall
* THROUGH_HOLE.MP4 shows getting through a small hole

* OBSTACLES_NEAR_TARGET.MP4 shows reaching for a target in the middle of other obsta-

cles

* OBSTACLES_AROUND.MP4 shows the manipulator navigating through a complex environ-

ment with obstacles all around
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6.2 DISSECTING THE ALGORITHM

To delve deeper into analyzing our algorithm, we can look at some of the previous examples and

evaluate which parts are the most expensive. We measure the following parameters:

* Inidalization, which includes building an AABB with all the obstacles and creating the

graph
* Djikstra, which looks for shortest paths in the created graph

* FABRIK, which serves to find manipulator positions on the found paths

* Interpolation between the positions computed by FABRIK, to see if a step is valid and

whether it can be skipped

10
0.8
0.6

0.4

B nitialization
e Djikstra
BN FABRIK
B Interpolation

0.2

1st path 3rd path 13th path

Figure 6.6: Percentage of computation times for each component

Figure 6.6 shows 3 examples: The first one is an environment with 12 obstacles, but the tar-
get is trivially reachable. The second example is a nontrivial target in the same environment, and
the third is a target far from the manipulator in a space with 20 randomly generated obstacles.
The total runtimes are 0.015s, 0.7, 2.3s respectively. In the first bar, the initialization is seemingly
expensive compared to the other parts of the computation. However, looking at the 2™* and 3™
examples, it becomes obvious that the repeated FABRIK computation is the heavy part: although
a single computation is very fast, particularly when making incremental changes, we have to com-
pute it many times. In addition, reaching a target is significantly faster than determining that a
target is not reachable, which adds a lot of extra cost to unsuccessful paths. As direction for where
the algorithm can be optimised, we can look at ways of shutting down computations for unsuc-

cessful paths early and reducing the number of unsuccessful FABRIK computations.
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On the other hand, since our representation of space is compact, finding shortest paths with
Djikstra takes barely any time, hence, trying to optimize this part with something like A* would
bring no benefit. Since this partis so cheap, a possible improvement could be adding more control
points throughout the manipulator’s workspace and finding successful ways to reach the target

sooner.

Matrix computation

Collision checking

Figure 6.7: Computation times within FABRIK

Since we extended FABRIK to compute with matrices instead of points and check for colli-
sions, it is worth analyzing which parts of FABRIK make it slow down. Figure 6.7 shows the rate
of the respective computation times when running in an environment with 20 obstacles. Collision
checking includes all the work associated with the AABB tree management, while the remaining
time deals with finding the right joint angles and computing the respective transformation matri-
ces. As we can see, the extension to various joints with limits does not slow the algorithm down

in a significant way, but avoiding collisions with nearby objects does.

6.3 EXPLORING THE L1MITS

In Section 6.1, we have shown how the algorithm deals with various handcrafted examples. In
most cases, a solution was found quickly, and a smooth motion was performed. However, since
the whole approach is heuristic, we need to analyze how it performs in various situations. We can
parametrize various types of obstacles via their defining aspects and evaluate them individually.

There are a few main aspects we can parametrize the algorithm with respect to: the number of
joints, the number of obstacles, the shapes that the obstacles form, and the distance between the
individual obstacles.

First up, we can confirm that the algorithm scales well with respect to the joints only. For this

purpose, we can test it out in an environment with very few obstacles, and generate random targets
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Figure 6.8: Increase in computation time with longer manipulators

unobstructed by any of the obstacles. Figure 6.8 shows the average computation time among
reaching 10 consequent targets. Since the expensive part of the algorithm lies in FABRIK, we get
a nice linear looking scaling. This scaling is a critical aspect of the algorithm: since each module
brings 3 extra degrees of freedom, not only does the algorithm work for 12 DoF, double the state

of the art amount, it scales reasonably well into 30.

Although we’ve estimated the asymptotical complexity of the extended FABRIK higher than
linear, the AABB operations are not significantly more expensive with the addition of a few joints.
The paths, which can be quite a bitlonger due to the manipulator’s extended reach, can make a big
difference in how many times FABRIK is computed. The difference does not show itself in this
particular case because we know we can choose the shortest one, as well as make large intermediate

steps when there are no obstacles on the chosen path.

Next up, we can analyze the behaviour of the algorithm around obstacles that form walls. As
reference for measuring distance, we will use the diameter of a single joint as 1 unit of distance;
then, a single universal module is 1 unit wide and 2 units high. Naturally, in order for the ma-
nipulator to fit between two of our obstacles, the distance between them has to be greater than
1.

Getting around a single wall, as in Figure 6.2, poses no problem regardless of where the target
lies, as long as it is within the manipulator’s reach. Since the required motion to go around any
single wall is relatively straightforward, the algorithm finds ways to go around, behind, as well as

over any wall with ease.

Getting between a pair of walls is similarly straightforward. We have already shown that our
algorithm is capable of dealing with a small hole in a wall; the problem of getting between 2 walls
is a simplified version. The algorithm only needs a bit of space to move around; as long as the

walls are spaced out at least 1.1 units apart, we find solutions quickly and reliably (see Figure 6.9).
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Figure 6.9: Reaching a target between two walls

Walls start to pose a problem when they form corridors that the manipulator needs to navigate
through. Since the algorithm is designed to avoid narrow passageways between obstacles if at all
possible, the paths that may seem natural from a human standpoint, which result in the manip-
ulator crawling between the obstacles, are evaluated as too expensive. In order to achieve motion
that passes through the corridor, as in Figure 6.10, we need to specify intermediate targets on the
path explicitly. By default, the algorithm unsuccessfully looks for ways to avoid the passageway
altogether.

Figure 6.10: Navigating through a corridor

We can parametrize corridors with respect to the number of walls that the manipulator needs to
crawl around, as well as the distance between the walls. If there are at least 3 walls spaced out at less
than 3 units apart, the algorithm does not find viable solutions even though they exist. This makes
the procedure completely unsuitable for this particular scenario. In order to adapt the algorithm

to deal with corridors and narrow passageways, we would have to tweak the graph generation and
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not assign higher weights to the points that lead through obstacles; or extend the algorithm with

a way to find intermediate targets in the corridor.

We have shown that the algorithm can pass through narrow holes (Figure 6.3), but claimed
that it can struggle with particular cases. The notion can be quantified via the size of the hole. If
the hole is at least 2 units wide, the algorithm finds solutions without any problems. If the hole
is narrower, and the target lies beyond the hole, reaching for the target is no longer as reliable.
Targets that go through the hole in a straight line are generally reachable even for smaller holes,

but the algorithm can struggle if the target requires additional movement after passing through

the hole.

In order to fully evaluate whether this is a suitable margin, we would need to specify the ex-
pected use case for the algorithm. As a general algorithm, we can consider it acceptable. For
instance, if we are using the manipulator to pick and place objects out of a box, it is fully suffi-
cient; we can assume that boxes are generally wider than manipulators and that the entrance into
them is not any thinner than the inside. However, much like in the previous case, if we expect
to encounter narrow passageways a lot, we need to extend the algorithm to generate intermediate

targets, or assign lower costs to the holes to find paths through them more reliably.

There is not much to say about the algorithm dealing with clusters near the target. Due to the

way the algorithm is designed, the manipulator consistently reaches its target without any issues.

Finally, we can take our original manipulator of 4 modules and test it out with an increasing
number of randomly placed obstacles. For reference, see Figure 6.5: obstacle positions are gener-
ated in a way that they do not form clusters, but instead occupy different parts of the manipula-
tor’s workspace. Each additional obstacle is generated so thatitis atleast 0.5 units from every other
obstacle. This way, we can evaluate the algorithm at a larger scale, as we take away an increasing
amount of space away from it. With this setup, we can simply parametrize the environments with

respect to the number of obstacles.

We generate 100 random subsequent targets for the manipulator, and see how many were reached
and how long it took to find a viable path. Since determining whether a point is reachable in itself
is a hard problem, we settle with generating targets in the manipulator’s range that do not collide
with any obstacles. The goal may not be reachable due to the rotation of the end effector or a
particular way obstacles were generated, which can lead to a false negative. Even so, it gives us a

lower bound on the success rate of our algorithm.

As we can see in Figure 6.11, the manipulator can move around very well all the way up to 25
obstacles, finding solutions with a high success rate in up to a second of time. Unfortunately, 25
obstacles seems to be the limit for RoFI manipulators of 4 modules, as a higher count no longer

gave the manipulator around space to move around and trying to reach most targets failed.
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Figure 6.12: Number of obstacles and the average time to reach a target for 15-DoF manipulator

To test out the scalability of our algorithm, we can take our randomly generated environments
and see how the algorithm performs with a higher number of joints as well as obstacles. When we
take randomly generated environments and add a few additional modules, we can observe that
the average time to reach a target is higher, but still comparable. Figure 6.12 shows the average
time to reach a target when we add an extra module to our original manipulator. Even though the
cost of individual operations is higher, the average number of explored paths is lower due to the
increased flexibility of the robot.

Clearly, we have achieved our main goal: the algorithm scales very well with respect to an in-
creasing number of joints as well as obstacles. With 15 degrees of freedom, we have successfully
more than doubled the number of DoF the algorithm is suitable for, compared to the state of the
art.

With that, we can conclude the evaluation of our algorithm. We have shown that it generates

naturally looking trajectories, the computation is fast, and has a high success rate. The algorithm
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excels at dealing with obstacles near the target position, and it can navigate through environments
with random obstacles throughout the space, as well as get around walls. One particular weak-
point of the approach is trying to get through narrow corridors: for this purpose, the algorithm

would need to be tweaked further.
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The aim of this thesis was to implement an algorithm for planning the trajectory of robotic ma-
nipulators with a high degree of freedom. To solve the problem, we decomposed it into two parts:
planning a path with respect to the end effector, and extending an inverse kinematics algorithm to
compute positions for the manipulator along the selected path.

We have added two extensions to the state of the art algorithm for inverse kinematics, FABRIK.
The first dealt with adapting the algorithm to joints with a limited range of motion, and the latter
dealt with local collision avoidance for each joint.

In order to plan a path for the end effector, we build a visibility graph of points between obsta-
cles, and use Djikstra’s algorithm to find the shortest path. Then, we try to follow this path with
the manipulator, using FABRIK to check whether the path is feasible. If following the path fails,
vertices near the path are assigned an increased cost, so that a different path is evaluated as shortest
instead. The process is repeated multiple times in order to explore different ways to get around
obstacles. Either a viable path is found, or the target is deemed unreachable.

The algorithm performs smooth motion, but the chosen trajectory is generally not optimal. It
serves as a heuristic with a high success rate, which can, however, fail in specific environments.

During experimental evaluation, we have shown that the algorithm is fast for manipulators
with 12 degrees of freedom, more than twice the usual amount. To the best of our knowledge, this
is revolutionary: traditional approaches are adapted to 6-DoF manipulators and scale exponen-
tially with each additional joint. Even with 15 DoF and a high number of obstacles, we obtain fast
solutions, which defeats any previously published results. The only publication found that suc-
cessfully dealt with more than 6 DoF is [53] with a conceptually similar FABRIK-based approach.
But even they made the problem simpler by assuming the manipulator has no joint limits, and
only showed results on 7 DoF manipulators with a few randomly floating obstacles (albeit larger).

Further improvements are due: we can reduce the overall time by shutting down unsuccessful
paths earlier, optimising some of the constants in the implementation, and more. With a more
polished implementation, the algorithm can become even faster and more successful.

In addition, we want to extend the algorithm to a physical version of our robots. This means
extending FABRIK so that it only makes movements that are feasible when gravity is involved,

as well as dealing with communication between the modules and potential failure. On the other
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hand, the distributed system of multiple modules can be used very effectively within the algo-
rithm: upon finding multiple possible paths, we can compute whether they are feasible in paral-
lel, speeding up the main bottleneck of the current version. If multiple trajectories are found this
way, we can choose the one that minimizes the amount of necessary motion.

Overall, it is safe to say we have achieved our goal with great success. Although results were
shown within the RoFI platform specifically, all the introduced techniques can be applied to an
arbitrary type of high-DoF arm, with the possible exception of how FABRIK needs to be extended

to deal with different joints.
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Theincluded videos AROUND _WALL.MP4, THROUGH_HOLE.MP4, OBSTACLES_NEAR_TARGET.MP4,
OBSTACLES_AROUND.MP4 showcase the movement of a robotic manipulator in the discussed ex-
amples. The videos were taken using the RoFI physics-free simulator.

The file ROFI.z1P contains a snapshot of the RoFI repository. If you wish to reproduce the
results of the algorithm and run your own simulation, download the necessary dependencies and
run the RoFI environment as described in our documentation [20], or refer to the Dockerfile in
the root folder.

After downloading the necessary dependencies and unpacking the RoFIL.z1p file, enter the

RoFI folder and run the script to set up the environment with the following commands:

$ source setup.sh # sets up RoFI environment
$ rcfg desktop # configure tools for desktop
$ rmake --all # compile RoFI desktop tools

Then, open up two separate terminal windows, to run the simulator window in one, and the
manipulator trajectory computation in the other.

In the first window, run:
$ rofi-simplesim path-to-world
and in the other:
$ rofi-manipulator options path-to-world

To run the discussed examples, run the manipulator program with the options -s to simulate

it, and -E followed by:
+ WaLL with the world DATA/CONFIGURATIONS/JSON/SHOULDER4_WALL.JSON,
* HoLE with the world DATA/CONFIGURATIONS/JSON/SHOULDER4_HOLE.JSON,

* CLUSTER with the world DATA/CONFIGURATIONS/JSON/SHOULDER4_CLUSTER.JSON

or
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+ AROUND with the world DATA/CONFIGURATIONS/JSON/SHOULDER4_AROUND.JSON.

To put in custom targets within a given world, run the program without the EXAMPLE option
and it will ask for a target. As mentioned, the actual implementation is merely a proof of concept;
with custom targets, you may encounter issues that were not accounted for in testing.

The implementation itself is fully written in C++ and is decomposed into several parts. The
implementation for shapes, AABB trees and visibility graphs can be found in ROFI/sOFTWARE-
COMPONENTS/GEOMETRY. Theimplementation of FABRIK has been reused from my previous
project, where we used FABRIK within a reconfiguration algorithm; therefore, it can be found in
RoFI/soFTWARECOMPONENTS/KINEMATICS/ under the name FRECONFIG. The remainder
of the algorithm can be found in the same place under the filename PLANNING. The command

line utility for running the algorithm can be found under RoFI/Toors/i1x/CoFI.cpp.
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