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Abstract

This thesis focuses on the analysis and classification of long termi-
nal repeat (LTR) sequences, which are critical components of retro-
transposons that play a significant role in genome structure and evolu-
tion. The work employs frequent pattern-mining techniques to identify
significantly co-occurring motifs in LTR sequences, with the goal of
characterizing their diversity and distribution.

For the classification task, three machine-learning models have
been trained with the goal of recognizing LTR sequences based on
extracted features and raw sequential properties. These models in-
clude the Gradient Boosting classifier, neural networks, and the BERT
transformer, which are trained and tested on a dataset of annotated
LTR sequences. The analysis and classification results demonstrate
the utility of frequent pattern mining for identifying important motifs
in LTR sequences, as well as the effectiveness of different machine-
learning models in the task of DNA sequence classification. Further
analysis of the trained models provides insight into LTR sequences’
structure and potential function.

Keywords

bioinformatics, large-scale data processing, machine learning, deep
learning, feature analysis, DNA sequence analysis, neural networks,
large language models
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1 Introduction

Long Terminal Repeats (LTRs) are identical or nearly identical se-
quences located at the ends of retrotransposons and retroviruses that
play essential roles in retrotransposon mobility and gene regulation.
Initially thought to be parasitic elements, LTR sequences are now
known to be important building blocks of the transcriptional regula-
tory collection, as the host genome has co-opted them to regulate its
gene expression. [1]

LTRs are created during reverse transcription of the original LTR-
retrotransposon when the reverse transcriptase enzyme responsible
for transposon replication reaches the end of the RNA template and
transfers to the other end of the RNA molecule, copying the LTR
sequence from the opposite end of the RNA[2]. This results in the
duplication of the LTR sequence at both ends of the element.

Internal Domain
5'LTR 5'UTR gag ap int rt-rh 3'UTR 3'LTR
Copia Family
PBS, DIS, PSI PPT
Coding Region
Internal Domain
5'LTR 5'UTR gag  ap rt-rh int 3 UTR 3 LTR
Gypsy Family
PBS, DIS, PSI . . PPT
Coding Region

Figure 1.1: LTR position with repect to the element [3]

LTRs contain sequences that can regulate the expression of the
retrotransposon, such as promoters, enhancers, and repressors.

Their sequences have been found to be present in various organ-
isms, including plants, animals, and fungi, and have been shown to
play essential roles in regulating stress-responsive genes in plants.
In animals, LTRs have been implicated in the regulation of immune
response genes.

Analysis and classification of LTR sequences are crucial for under-
standing their biological functions. However, identifying and charac-
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1. INTRODUCTION

terizing LTRs can be challenging due to their repetitive nature and
high sequence similarity with other genomic sequences. In this the-
sis, I aim to analyze and classify LTR sequences in multiple plant
species, as LIR-retrotransposons and their accompanying LTRs are
highly dominant in plants due to evolutionary processes and genetic
pathways linked to cellular stress[4]. Various computational tools and
techniques have been developed to address these challenges and to
enable the analysis of LTR sequences. Specifically, the work focuses
on building a reliable database, classifying these sequences, and an-
alyzing their internal structure using various model interpretation
techniques.

Model interpretation is currently a large area of interest, as with
the growing complexity of large machine-learning models grows the
need for their understanding. By understanding these models, we
may be able to comprehend the decisions they make, as well as the
data itself.[5]

The findings should provide insight into the diversity, distribution,
and evolution of LTR sequences in the analyzed species and their
further connection to plant transcriptional regulatory processes.



2 Database Preparation

2.1 Positive Training Database

The basis of any data analysis and machine learning task is the data

itself, as low-quality training data is bound to produce inaccurate
models.

The training database preparation was conducted in 3 steps:
1. Obtaining LTR-TEs from publicly available databases
2. Extracting LTR sequences from the TEs

3. Removing redundant elements using a clustering technique

In the first step, sequences are obtained from the following
databases:

| DBname | N.elements | Element type |
GyDB[6] 253 LTRs
Soybase|7] 31183 LTR-retrotransposons
TREP[8] 1297 LTR-retrotransposons
InpactorDB[9] 52616 LTR-retrotransposons
GrTEdb[10] 12231 LTR-retrotransposons

Table 2.1: TE Databases used

Next, the LTR sequence is extracted. This can be done in two ways:
either by aligning the opposite ends of the transposable element and
extracting the matching sequence region (as these are identical or
highly similar) or by parsing the sequences using state-of-the-art tools
for transposable element recognition and annotation. The latter op-
tion is used in my final work as it is faster and provides a way to
re-verify the downloaded sequences and remove any elements that
the database’s creators could have misclassified. The tools used for
this were LTRFinder[11] and LTRHarvest[12]. These two often com-
plement each other in TE sequences detected, where some elements

3



2. DATABASE PREPARATION

recognized by the first may not be recognized by the second, and
vice-versa. Therefore, a union of the detected sequences was taken,
where the longer version of a sequence was accepted into the final
dataset if both tools had recognized it.

This method was chosen because LTRFinder had been found to cut
the ends of LTRs, which could potentially result in a loss of information
in the training set.

Sequence clustering was run on the dataset in the last step to
detect highly similar sequences. For this, the program CDHIT[13] was
used.The tool first removes low-quality sequences, then compares each
sequence to all others by breaking them down into smaller chunks
called words and comparing these. Sequences are clustered based on
this similarity if surpassing a given threshold.

In my case, I used the threshold of 89% similarity, which proved
efficient at eliminating nearly identical sequences.

The output of CDHIT was parsed using a script by J. Healey|[14]
for parsing outputs of the program, which groups together sequence
ids, making their extraction from sequence files easier.

2.2 Negative Training Database

The negative training database was slightly more tricky to obtain, as
no clear DNA sequence candidate can be used as a counterexample
to the LTR. LTRs, essentially regulatory regions, share many similari-
ties with commonplace enhancers and promoters, which could prove
problematic when training the models.

Three approaches were implemented for generating negative se-
quences:

1. Random sequence generation
2. Genomic sequence extraction

3. Markov chain generation

2.2.1 Random sequence generation

This process includes randomly creating sequences in the form (b, ....b,)
where b; is one of the four bases (A, C, T, G), sampled from a uniform

4



2. DATABASE PREPARATION

probability distribution with p = 0.25 and n is a sequence length
sampled from the distribution of LTR sequence lengths in the positive
training set 2.2. Although this process is the simplest algorithmically
and computationally, it tends to result in falsely high accuracy mea-
sures on the training and validation sets. When tested on another set,
where non-LTR sequences were genomic sequence extracts and false
positive sequences misclassified by TE recognition tools, the model’s
precision measure (%) drastically decreased. This was because
the randomly generated sequences were far too easy to distinguish
from actual DNA sequences. The model overfitted on motifs that tend
to be fairly common in actual DNA sequences but uncommon in the
randomly generated ones, where each base had the same probability
of being chosen. This is rarely the case in genomic sequences, as even
random genomic regions tend to contain certain patterns.

Despite this fact, however, the random sequence set was initially
used for prototyping trained models, and it was later found that mod-
els trained using negative training sets consisting of roughly 25%
random sequences achieved the best results.

2.2.2 Genomic sequence extracts

The genomic sequences were introduced after random sequences
proved inadequate to be used by themselves in training. These se-
quences come from the genomes of 5 different plant species: Casua-
rina equisetifolia[15], Citrullus lanatus[16 |, Hordeum vulgare[17],
Juglans regia[ 18] and Zea mays[19].

Once again, the length of the sequences was chosen to mimic the
length distribution of the actual LTRs. It was necessary to avoid LTR
regions in the selected genomes and prevent the inclusion of an LTR se-
quence labeled as a non-LTR, as this could negatively impact the train-
ing. For this purpose, I used an annotation[20] of these five genomes,
avoiding the extraction of regions marked as LTRs and low-quality
sequencing regions (large segments containing "N"), which, as I later
found, contributed to a large part of the downloaded data, spanning
entire chromosomes. These sequences had to be resampled with a
constraint on the "N" content to avoid assembly/sequencing errors
affecting the results. Genomic sequence extracts represent around 60%
of the final negative training set.
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2.2.3 Markov chain generated sequences

In order to try to create a sequence that mimics LTRs, but is not an
actual LTR, a more complex algorithmic approach was further tested.
This was attempted in order to learn the deeper relations of sequential
motifs contained in LTRs and prevent overfitting on 2-mers and 3-mers
common in DNA. As seen before, randomly generated sequences do
not force the algorithm to learn the more intrinsic properties of LTRs.
To avoid this issue, Markov chains were used to generate artificial
sequences.

Markov chains are a mathematical tool used to model a sequence
of events, where the probability of each event depends only on the
outcome of k previous events.

These models are useful for generating artificial DNA sequences
because they can be trained to model the probability of nucleotide
transitions in a given sequence based on previously seen data[21].

The model is defined by a set of states, each representing a nu-
cleotide base (A, C, G, or T). The transition probability P;; is the prob-
ability of transitioning from a state i to a state ;.

In the simplest case, the Markov chain can be modeled as a first-
order chain, meaning that the probability of transitioning from a state
i to a state j depends only on the state i. By increasing the order, we
get sequences that increasingly resemble the ones that the model was
trained on.

Figure 2.1: Example of a Markov chain[22]
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After creating the MC, it is possible to generate a sequence of length
n by sampling a nucleotide at each position based on the learned
posterior probabilities. Using k = 2, sequences with 3-mers common
to LTRs can be generated.

An implementation of this generative Markov chain model by K.
Youens-Clark [21] was used to generate 15% of sequences in the final
set.

All of the previously mentioned sequences’ lengths were sampled
from a distribution of actual lengths of LTRs, to avoid length being a
factor, as LTRs vary highly in size. In particular, the training database
used consisted of lengths distributed in the following way:

Sequence Length Distribution

250 500 750 1000 1250 1500 1750 2000
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Figure 2.2: LTR Sequence length distribution, outlier sequences above
2000bps have been cut off



3 Transcription Factors and Information
Content

As mentioned earlier, LTRs are specific regions that contain promoters,
enhancers, and other regulatory sequences.

These specific DNA sequences serve as a recognition site for pro-
teins involved in transcription. The promoter sequence is typically
located upstream (toward the 5" end) of the transcription start site
and is crucial in initiating gene expression. Such regions are known to
contain specific DNA motifs, such as TATA and CAAT boxes.

Regulatory regions are also known to contain a plethora of so-
called transcription factor binding sites. These sites are specific to
their corresponding transcription factors, critical regulators of gene
expression, and are involved in a wide range of biological processes,
including development, differentiation, and response to environmen-
tal signals. Dysregulation of transcription factors can lead to various
diseases, including cancer and autoimmune disorders[23]. Therefore,
a large area of biological research is dedicated to analyzing the func-
tion of transcription factors and how they regulate gene expression.
One such project is the JASPAR database.

3.0.1 JASPAR

JASPAR[24] is a curated, open-access database that contains a collec-
tion of transcription factor binding sites.

It is focused on "core" DNA binding motifs, which are short, con-
served sequences recognizable by DNA-binding proteins. These motifs
are typically 6-30 base pairs in length and are present in the regulatory
regions of genes.

The database is organized into several collections, including the
"core" collection containing the most widely studied and best-character-
ized motifs. Other collections include "phylogenetically-related" mo-
tifs, which are grouped based on evolutionary relationships, and "un-
validated" motifs, which are putative motifs that have not yet been
experimentally validated.

Each motif in the JASPAR database is represented as a position-
specific scoring matrix (PSSM), which captures the probabilities of
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3. TRANSCRIPTION FACTORS AND INFORMATION CONTENT

observing each of the four nucleotides at each position within the motif.
The PSSMs are generated by aligning a set of known binding sites for a
particular transcription factor and calculating the frequencies for each
position. In addition to the PSSMs, the JASPAR database provides
further information about each motif, such as its name, accession
number, taxonomic range, and literature references.

3.1 PWDMs and information content

A position weight matrix (PWM) is a commonly used representa-
tion of the consensus sequence of a DNA or RNA sequence region
besides PSSMs. The PWMs used in this work were derived by first
downloading PSSMs from the JASPAR database, loading them us-
ing the Bio.motifs module in the biopython[25] package, and then
transforming these into corresponding PWMs.

PWDMs may be highly specific to certain DNA sequence patterns
or less specific (fit to a larger proportion of sequences). As we are
working with nucleotide sequences, the expected probability E(p) for
each base at each position is }L.

A PWM with the lowest possible specificity at a position has the
following probability distribution:

(A: }1, C: 411' T: 411' G: 411)

Whereas for a highly specific position in a PWM, it could look some-
thing like this:

.9 .07 0 .1
(A: 2, C: A T: 0, G: L)

The JASPAR collection used contains numerous TFBS motifs that
are less specific and tend to be matched to the query sequence more
often than more specific ones. When conducting feature selection,
or pattern mining, it is desirable to penalize such motifs more, as
they tend to appear more often and could introduce a bias into the
algorithm’s results.

To solve this issue, it is possible to calculate the information con-
tent of such a matrix and use this value to weigh the support scores
obtained during pattern mining or implement a weighted training
process.



3. TRaNScRIPTION FACTORS AND INFORMATION CoNTENT

The total information content of a PWM][26] is calculated in the
following way:

|PWM|

IC(PWM) = CPM (ME-1(PWM,i))

log2(|[PWM]))

I(PWM, i) = — S ST PWMIi)[b] * loga(PWMIi][b])

ME = logy(4) =2

I(PWM, i) is the information content at position i in the PW M matrix,
ME is the maximum entropy measure, and [PWM]| is the length of the
sequence that the PWM describes.

To illustrate, the following sequence logos represent motif PWMs
with the highest IC and lowest IC, respectively.

L

al 2 - Al L0 LR - et T O

1 2 3 4 5 6 7 8 8 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Figure 3.1: Highest IC motif: BPC5
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W T o T
3 4 5 B 7

Figure 3.2: Lowest IC motif: DOF1.8

1 2 8 9 10
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4 Frequent motif mining

Association rule mining is a technique for discovering significant co-
occurrence among variables in large datasets. It has seen applications
in various fields, such as marketing, bioinformatics, and web mining.

A crucial term in frequent pattern mining is support. This is the
percentage of transactions or records in a dataset containing a partic-
ular item. In other words, it measures the frequency of occurrence
of an itemset in the dataset. An itemset with high support is con-
sidered frequent, while an itemset with low support is considered
infrequent|[27].

Support(A) = %

In the context of LTR sequences, the detection of frequently co-
occurring TF motifs could provide an insight into the functionality of
LTRs, if motifs with a specific biological function were found to occur
frequently together within these regions. For this purpose, the ECLAT
algorithm was used.

4.1 ECLAT

Equivalence Class Clustering and Bottom-up Lattice Traversal or ECLAT
is an efficient and scalable algorithm for mining frequent item sets
in transactional databases. This chapter will provide an overview of
the algorithm, its advantages and limitations, and how it was used in
connection with the TFBS motifs found.

4.1.1 Introduction to ECLAT

The ECLAT algorithm was proposed by M.]. Zaki[28] as a faster and

more memory-efficient alternative to the Apriori algorithm|[27]. It uses

a vertical data representation, storing transactions as columns rather

than rows. This representation allows the algorithm to use bitwise

operations for more efficient computation of the itemset support.
The algorithm consists of two main steps:

e Equivalence class clustering

12



4. FREQUENT MOTIF MINING

e Bottom-up lattice traversal.

Equivalence Class Clustering

The first step of ECLAT is to cluster transactions into equivalence
classes based on their shared items. Equivalence classes are sets of
transactions that have the same set of items.

The algorithm then scans the database to compute the support
of each item. An item is considered frequent if its support is above a
minimum support threshold specified by the user. A tree-like struc-
ture called an itemset lattice is created, which represents all possible
itemsets. The nodes represent the sets, and the edges represent the
subset relationships between them.

{
. x |
Bread Tea Eg! [ Juice Tomato
{Tﬁ-Tﬁ}\r {T3.T6} {T1.T2T3,T5} {T2.14,T6} {T2,T4}

. Sausage . Mushroom Milk YngF
{T1.12,T6} {T1,T2.T6) {T1,T3,T4,T5} {T3}
Sausage, Mushroom Toast, Egg
{T4.T6} {T1.T4.T6) {T1,T2}
£ I
Toast, Milk Toast, Tomato Egg, Beans Egg, Juice N  EgeMilk
- {T1.T4) {T2T4) {T1.TS) {1215} (T1.T3.T5)
L[ duiee, Milk | [ Juice, Tomawo | Beans, Milk
\ {T4,T5} {T1,T5}

{T2,T4}

|
Sausage, Mushroom, Toast \ )
{T4,T6} Egg. Beans, Milk

Toast, Tomato, Milk (T4T6)

{T4,T6}

Sausage, Toast, Milk
{T4.T6}

Figure 4.1: ECLAT inner tree representation[29]

Bottom-up Lattice Traversal

After clustering transactions into equivalence classes and constructing
the itemset lattice, the ECLAT algorithm traverses the lattice in a
bottom-up manner to discover all frequent itemsets. The traversal is
performed using a depth-first search algorithm.

13



4. FREQUENT MOTIF MINING

At each node, the algorithm checks if the itemset is frequent and
adds it to the frequent list. Its immediate children are then recursively
visited. These children can be thought of as the itemsets that can be
obtained by extending the current itemset by a single item.

4.1.2 Advantages and Limitations

The ECLAT algorithm has several advantages over the Apriori algo-
rithm[30]:

e Memory Requirements: The vertical data representation is more
memory-efficient than the horizontal data representation used
by Apriori

e Number of Computations: The ECLAT algorithm does not in-
volve the repeated scanning of the data to compute the individ-
ual support values.

e Speed: The DFS approach makes the ECLAT algorithm faster
than the Apriori algorithm in the average case.

One of the algorithm’s limitations is that it requires the database to
fit into the main memory, which may be a limiting factor for large
datasets. Another limitation is that the ECLAT algorithm may produce
a large number of candidate itemsets, which can be time-consuming
to process during run time.

Both of these problems were encountered during the runs I con-
ducted using the algorithm. The frequent itemsets of size two were
reached relatively quickly (a matter of minutes), even for a large
number of motifs (initially 638 motifs and 44029 sequence entries);
however, while analyzing the itemsets of size 3, the algorithm’s time
complexity grew exponentially, and exceeded run times of over four
days, before being killed prematurely.

A smaller number of candidate motifs had to be used to reduce the
time and memory requirements. The information content criterium
was used to select 100 motifs with the highest IC value, on which the
algorithm was run.

14



4. FREQUENT MOTIF MINING

| N motifs | Size 2 time (s) | Size 3 time | Size 4 time |
635 ~23m >4d N/A
100 34s ~9m ~160m

Table 4.1: ECLAT algorithm runtimes

4.1.3 Observations

AlB
BHLH78
SGR5

Sh g
53 9
o

<

WRKY62
WRKY23
TCX6
SOL1
NAC013
NACO58
HSFAL1E
GATA2

Figure 4.2: Clustermap of TF motif pairs with highest support scores.
Clusters of motif groups are visible. These represent motifs that share
similar support values within subsets of the top co-occuring observa-
tions.
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4. FREQUENT MOTIF MINING

Top 25 most common triplets

CCAL & AGLE3 & NTLY I 0.41
CCAl & AGL63 & AGL6 I (.39
CCAL & AGLE3 & SGRS I  0.37
CCAL & WRKY23 & WRKY62 I 0,36
CCAL & AIB & BHLH78 I 0,35
AGL63 & AGL6 & NTLY I 035
CCAL & AGLE3 & AlE I 0,35
CCAL & AGL63 & WRKY23 I 0.35
CCAL & AGL63 & AGL1S I 0,35
CCA1 & SGR5 & NTL9 I .35
CCAl & AGL63 & WRKY62 I .35
CCAL & AIB & NTL9 I 0.34
AGL63 & WRKY23 & WRKY62 I .
CCAL & AGL6 & NTL9
CCAL & WRKY23 & NTL9
CCAL & NTL9 & AGL1S
AGLB3 & SGR5 & NTL9
AGLE3 & AIB & BHLH78

w
=

Motifs

Sooo
woww

W

CCAL & NTL9 & WRKYG2 I .33
AGLE3 & SGRS5 & AGLE I 0.33
AGL63 & NTL9 & AGLLS I .32
CCAL & AGLE3 & TCX2 I .32
CCAL & AGL63 & BHLH78 I 0.32
WRKY23 & NTL9 & WRKY62 IS .32
AGLB3 & AIB & NTLY I 0.31
Support

Top 25 most common quadruplets

CCAL & AGL63 & AGLE & NTLO I (.31
CCAL & AGL63 & SGR5 & NTLO NN 0,29
CCA1 & AGLB3 & WRKY23 & WRKY62 IS 029
CCAl & AGL63 & SGR5 & AGLG NN 028
CCAl & AGLE3 & NTLO & AGL15 IS 028
CCAL & AGL63 & AIB & BHLH7S I 028
CCAL & AGL63 & AIB & NTLO IENENNES 0,28
CCAL & AGL63 & NTLO & WRKY62 NN .27
CCAL & AGL63 & WRKY23 & NTLO I 027
CCAL & WRKY23 & NTL9 & WRKY62 I 027
CCAl & AGL63 & AGL6 & AGL1S I (.27
CCAL & AGL63 & NTLO & TCX2 IS 027
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Figure 4.3: Itemsets of size 3 and 4 with the highest support scores.
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4. FREQUENT MOTIF MINING

| Name | Function |
CCA1 Transcription factor involved in the circadian clock
and in the phytochrome regulation[31]
AGL63 Probable transcription factor involved in the regu-

lation of fruit growth. Contributes to integument
development [32]

NTL9 Mediates osmotic stress signaling in leaf senescence
by up-regulating senescence-associated genes [33]

AGL15 Transcription factor involved in the negative ]
regulation of flowering[34]

SGR5 Regulates lateral organ morphogenesis and gravit-

ropic responses [35]

WRKY23 | Transcription factor involved in mediating auxin
feedback on PIN Polar Localization[36 ]

AIB Transcription activator. Regulates positively abscisic
acid (ABA) response. Confers drought tolerance and
sensitivity to ABA [37]

BHLH78 | Binds to chromatin DNA of the FT gene and pro-
motes its expression, and thus triggers flowering in
response to blue light [38]

Table 4.2: Top co-occurring motifs with descriptions from UniProt[39]

Common tuples were statistically tested using g:Profiler[40]. The
g:GOSt tool of g:Profiler performs functional enrichment analysis of
the input genes, mapping them to known functional sources and
extracting statistically significant terms. This can be useful in detecting
common biological functions within the query list.

At a significance level of 0.05, the only statistically significant func-
tion detected is the negative regulation of circadian rhythm (CCA1)
and auxin polar transport (WRKY23 and SGR5).

Looking at the top motifs co-occurring in itemsets, the most rep-
resentative ones are involved in various biological processes, such as
the mentioned circadian clock rhythm, fruit growth, flowering, and
different environmental responses such as stress and gravitropism.
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These broadly include signaling pathways and could mean plants
have adapted LTRs as signaling pathway regulators.
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5 Simple Model Training

For the task of classification of LTRs, JASPAR motif occurrences are
used as training features for the models, as the variable length of
these sequences hinders their use in conventional ML models without
preceding preprocessing steps. Each sequence was parsed for each
motif, and a vector (x1, ..., xg33) was produced, where x; represents
the number of occurrences of motif 7 in that particular DNA sequence.

5.1 Feature transformation using TF-IDF

The TF-IDF algorithm has been used in all pipelines to scale and weigh
the data.

TE-IDF stands for Term Frequency-Inverse Document Frequency. It
is a numerical statistic commonly used in natural language processing
and information retrieval to evaluate the importance of a term in a
corpus of documents.[41 ]

The TF-IDF algorithm assigns a weight to each term based on how
often it appears in that particular document and how rare it is across
the entire corpus. The algorithm consists of two main components:

Term Frequency (TF): This metric measures the frequency of a
term in a document, usually by simply counting the number of times
the term appears in the document. The more often a term appears in
a document, the more important it is to that document.

where |D;| is the number of times the term t appears in document
D, and |D| is the total number of terms in document D.

Inverse Document Frequency (IDF): This component measures
the rarity of a term across the entire corpus. Rare terms that appear in
only a few documents will have a higher IDF score, while common
terms that appear in many documents will have a lower IDF score.

IDF(t,C) = logz(%)
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5. SIMPLE MODEL TRAINING

Then TF-IDF is calculated as:
TFIDE(t,D) = TF(t,D) = IDF(t, D)

This gives more weight to terms that appear in a document fre-
quently but rarely in the corpus overall, indicating that they are more
important or relevant to that document.

In the case of motifs, the most common receive lower TF-IDF values,
shifting the focus toward the less common, sequence-specific ones.
In the context of the motif feature weighing, this works similarly to
weighing by the information content measure.

5.2 Classifier
Three Classifiers were tested in this task:

e Multilayer Perceptron - robust, generalizes well, and can handle
classification tasks that are not linearly separable. These models
are, however, prone to overfitting and are hard to interpret.

e Gradient Boosting classifier - Handles outliers well, highly ac-
curate, however sensitive to hyperparameters and prone to over-
fitting on noise.

e Random Forest Classifier - built-in feature selection, generalizes
well but may struggle with high-dimensional data.

5.2.1 Pipeline

In order to chain the preprocessing and classification steps, the Pipeline
approach provided by the scikit-learn libary[42] was implemented.
Pipelines are an efficient way of condensing all the preprocessing steps
into one object, making it easier to work with. The transforms are se-
quentially applied to the input data, where each input of a transformer
object within the pipeline is the output of the previous.

This approach enables more concise code and easier deployment
of trained models.
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5.2.2 Grid Search tuning

Grid search is a hyperparameter tuning technique used in machine
learning to find the optimal values for a given model. It involves se-
lecting a set of values for each hyperparameter of a model and then
systematically evaluating the model’s performance for that combina-
tion using stratified k-fold cross-validation and a performance metric
such as accuracy or Fl-score.

The grid search results are displayed in the following parallel
coordinates, where vertical axes represent a value range for the tested
hyperparameter, and the last axis contains the k-fold cross-validation
accuracy score.

Random Forest Classifier parameter results
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Figure 5.1: RFC grid search results. Higher values of the Maximum
depth parameter and lower values of the number of estimators used yield
the best results in this case. This is likely due to better generalization
properties of the classifier when fewer trees are used to build the
ensemble model.
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MLP Classifier parameter results
Layer Size Alpha Initial Learning rate Wal, Acc
ZRE 081 8.1 a,
200 ; L Bl

5

Figure 5.2: MLPC grid search results. Layer size and initial learning
rate do not seem to play a significant role in the model performance.
Lower alpha values, on the other hand, lead to much better results in
the model.
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Figure 5.3: GBC grid search results. Here, the hyperparameters have
less influence on the model performance than in the previous two
cases. There is, however, a visible trend for the learning rate where
higher values seem to have contributed to faster convergence of the
model and estimators parameter where higher values produce a more
sensitive model.
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| Classifier | Parameter Values | Accuracy % |
RFC Max Depth: 12, N Estimators: 100 76%
MLP Layer Size: 100, a: 0.0001, Learning | 82.6%
Rate: 0.02
GBC Max Depth: 8, Min. Leaf Samples: 150, | 83%
Learning Rate: 0.1, Estimators: 400

Table 5.1: Scores of best-achieving parameters from each tested classi-
fier for JASPAR features. The best performance was achieved by the
Gradient Boosting classifier with a cross-validation accuracy of 83%.

5.3 Feature analysis and Importance

The frequent patterns seen before may indicate features commonly
occurring within data, however, do not always represent features that
contribute to classification in a significant way. In order to detect highly
influential TF motifs, the GPUTreeExplainer from the SHAP[43] pack-
age was used on the trained optimal RFC model. The GPUTreeEx-
plainer works by constructing a set of decision trees that are represen-
tative of the original model. The trees are then used to estimate the
expected Shapley values for each feature in the input dataset. Shapley
values are a measure of the average contribution of that attribute to
the model output across all possible attribute combinations.

Its advantage over the basic TreeExplainer is built-in GPU support,
making the original, computationally expensive algorithm run much
faster.
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Figure 5.4: In the summary plot above, we can see the top 20 influential
motifs. The vertical line in the center indicates the mean SHAP value
across all input features, and points on the horizontal axis represent
separate occurrences of the motif in a sequence. The TF-IDF motif count
represents the number of occurrences of a motif within a sequence
transformed by TFIDF. This allows us to see that motifs with a higher
TFIDF value (red) spanning to the left side contribute to negative
classification (non-LTR). In contrast, those spanning towards the right
side contribute to positive classification (LTR). We may conclude that
motifs such as JKD, StBRC1, and AT3G46070 can be considered more
specific to LTR sequences than, for example, the ERF069, AHL20, or
RIN, whose higher values contribute to the classification negatively.
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flx) = 2.037

0.152 = StBRC1
0.169 = ERFO69
0.037 = DOF1.5
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Figure 5.5: The waterfall plot is another way to visualize the results of
the SHAP algorithm. Each bar in the plot represents the contribution
of a single feature to the prediction. Bars are colored according to
the direction of the feature’s effect, red: positive, blue: negative. Here
we confirm the contribution of the StBRC1 and AT3G46070 motifs as
significant for LTRs, and three other significant motifs emerge: DOF1.5,
GATA10, and Zm00001d031796
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5.3.1 The biological function of influential motifs

| Name | Function |
StBRC1 May be involved in Aerial and Underground
Lateral Branching [44]
DOF1.5 Acts as a negative regulator in the
phytochrome-mediated light responses
[45]
GATA10 May be involved in the regulation of some

light-responsive genes
Zm00001d031796 | participates in the plant hormone transduc-
tion pathway [46]

AT3G46070 Response to chitin stimuli, and regulation of
DNA-templated transcription[47 ]
JKD Controls position-dependent signals that reg-

ulate epidermal-cell-type patterning [48]

Table 5.2: SHAP detected influential motifs

From the results of g:Profiler, the JKD motif is significantly represented
in epidermal development and cell differentiation and could, therefore,
also be involved in leaf and flower growth.

The biological function of the DOF1.5 and GATA10 motifs is linked
to light responses. In the case of Zm00001d031796, the connection to
ethylene-activated pathways may indicate the TF’s relation to stress
responses, as ethylene has been linked to stress-induced processes in
plants and flowering pathways[49].
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6 Neural Network classification

The TF motif preprocessing approach offers a relatively fast and simple
way to preprocess variable length sequences into fixed-size feature vec-
tors but fails to capture positional relationships within the observed
sequence. This could impact the recognition of LTRs, as the function-
ality of regulatory regions can depend not only on the presence of
sequential motifs but also on their positional context.

This chapter describes a classification training workflow using
Convolutional Neural Networks (CNNs) and Long Short-Term Mem-
ory (LSTM), which have recently seen a wide range of uses in the
area of DNA sequences classification tasks such as metagenomics
analysis[50] and viral sequence detection [51].

6.1 Sequence Encoding

A simple one-hot encoding approach was used to represent the input
sequences, where the bases were represented in the following way:

Z0O0 3>
r-etTrr—rm———roe
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OO\»—\OO
O —L O OO
| IS [y ISy IS S S—

Table 6.1: Sequence encoding

In this encoding scheme, each nucleotide is represented by a binary
vector of length 4, where the position of 1 in the vector signifies the
presence of the corresponding base.

6.2 Sequence Padding

When training models, it is generally easier to work with fixed-length
inputs, as this allows the use of matrix operations and efficient paral-
lelization techniques. Padding and truncation are two major ways to
ensure a sequence fits a predetermined length.
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6. NEURAL NETWORK CLASSIFICATION

Since sequence truncation could potentially lead to loss of infor-
mation if an important region is cut off, padding was chosen as the
go-to technique for handling this problem. Truncation is only used to
shorten outlier sequences above 2000bps.

Three groups of sequence lengths were created: [0-350), [350-700),
and [700-2000). Within each group, sequences shorter than the maxi-
mum length are padded by appending additional values (the vector
[0,0,0,0] in this case) to their end until they fit the predetermined size.

These groups were chosen in a way that maintained a sensible
length distribution between the set of sequences and contained enough
instances for each of the three models to be trained on.

6.3 Network Architecture

6.3.1 Convolutional neural network (CNN)

CNN s use filters to detect local patterns in the input sequence to pool
together neighboring segments. In the case of DNA sequence classifi-
cation, this can be used to effectively capture important patterns and
features with a significant biological function, such as domains[52],
codons, protein binding sites[53] or nucleosome positioning[54].
CNN filters can identify these patterns in the input sequence, re-
gardless of their exact location, making them particularly effective at
recognizing these in large and complex DNA sequences.
Additionally, CNN layers can automatically learn and adapt to
different features in the data, making them highly effective at gen-
eralizing to new and unseen inputs. This is an important property
in classification tasks. The goal is often to accurately classify new
sequences not used in the training set, which may be highly divergent.
The CNN filter size is considered to be directly related to the size
of the recognizable motif that the network can detect [55], as it marks
the width of the region of the input sequence that the filter scans at
a time. If the filter size is smaller than the motif size, the filter may
detect only parts of the motif and could miss the entire pattern. On
the other hand, if the filter size is much larger than the motif size, the
filter may pool the motif with other, unrelated patterns.
Therefore, choosing the appropriate filter size is important based
on the size of the motifs being searched for. Generally, the filter size is
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chosen to be slightly larger than the motif size to ensure the filter can
capture the entire segment.

For example, if the expected motif size is 10, a filter size of 12
or 14 nucleotides may be appropriate. The exact filter size is often
empirically determined through experimentation and optimization or
from domain-specific knowledge.

6.3.2 Long Short term memory (LSTM) nodes

An LSTM is a recurrent neural network layer commonly used in deep
learning models to process sequential data such as speech, text, or
time series.

The purpose of an LSTM layer is to allow a neural network to re-
member important information from previous time steps or sequences
and to selectively forget less important information. This is achieved
through the use of a series of gates that control the flow of information
through the layer.

An LSTM layer typically consists of three gates:

e Forget gate: Determines which information from the previous
hidden state and the new data point in the sequence should be
discarded. It helps the network discard irrelevant information.

e Input gate: Determines which new information from the current
time step should be added to long-term memory.

e Output gate: Determines which information from the current
hidden cell state should be used to generate the output for the
current time step.[56].

LSTM layers may be suitable for DNA classification in combination
with other layer types thanks to their ability to capture long-term
dependencies. This enables the network to connect motifs of the input
sequence located at different regions along its length.

Besides this, LSTMs can handle noise within the input (using the
forget gate). This property comes in handy; as it is possible that large
regions of LTR sequences could hold little to no regulatory value
and should therefore have less impact on the classification of these
sequences.
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J

Figure 6.1: An LSTM node[57]

By combining CNN and LSTM layers, the network can take ad-
vantage of the strengths of both types of layers. The CNN layers can
extract useful features using its fixed-size filters from the input data,
which the LSTM layers can then use to draw predictions from.

In practice, the combination has shown promise in text classifi-
cation tasks, being able to capture both significant areas and their
long-term context[58].

6.4 Comparing architecture setups

Four tests were conducted for each of the three length categories in
order to detect the most viable combination of the mentioned NN
node types.

The dataset was split into 60% training sequences, 20% validation
sequences, and 20% testing sequences.

The four tested architectures were the following:

e 3 Convolutional layers connected by max-pooling (LARGE)
e 3 Convolutional layers connected by max-pooling (SMALL)

e 3 Convolutional layers connected by max pooling and 1 LSTM
layer
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e 2 Convolutional layers connected by max pooling and 1 LSTM
layer

Each was trained using the Adam optimizer, with binary cross entropy
as a loss function, for 25 epochs, using the early stopping callback to
prevent overfitting the model.

Training Accuracy
— 2CNN+1LSTM = 3CNN+1LSTM = 3CNN small

. /__‘-""'—-__ -
B o N\,
0.6
0.4
0.2
Epoch
0 p
0 5 10 15 20

Validation Accuracy
= 2CNN+1LSTM = 3CNN+1LSTM = 3CNN small

=
[ra]
(28]

U Accuracy

Epoch

Figure 6.2: [0,350) group training and validation accuracies. The
2CNN+1LSTM architecture is used in the final hyper-tuned model
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Figure 6.3: [350,700) group training and validation accuracies. The
2CNN+1LSTM architecture is used in the final hyper-tuned model
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Figure 6.4: [700, o0) group training and validation accuracies. The
3CNN+1LSTM architecture is used in the final hyper-tuned model.

6.5 Hyperparameter tuning using Keras tuner

Keras Tuner[59] is a Python module that provides an easy and efficient
way to tune hyperparameters for deep learning models built with
Keras[60].

Analogous to the GridSearch method in scikit-learn, Keras Tuner

can be used to search the hyperparameter space for optimal settings
by training and evaluating a series of models with different config-
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urations. The library supports several search algorithms, including
random search, grid search, and bayesian optimization.

The hyperparameter tuning is done by first defining the model
architecture and then creating a list of hyperparameters (filter size,
kernel size, or number of LSTM nodes) to be tested.

Besides architectural hyperparameters, multiple training argu-
ments may be tested, such as learning rate, optimizer to be used,
as well as the search algorithm that the tuner should implement.

The tuning process was linked to the Weights & Biases runtime
interface [61], which provides easy experiment tracking, callbacks,
and system resource monitoring.

6.5.1 Fine-Tuning observations

As seen in the following parameter importance scheme, the kernel size
in the third convolutional layer is the most correlated with validation
accuracy. Another observation is that the validation grows with a
higher number of filters in the first layer and a lower number of dense
units.

Config parameter Importance @ ¥ Correlation
kernel_size3 | I
filters L |
units - G
pool_size2 - [ |
pool_size3 - G
[stm_units a -

filters3 « G
kernel_size L (

filters2 ¢ G
kernel_size2 ] -

Figure 6.5: Observed correlation of hyperparameters and validation
accuracy
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7 Bidirectional Encoder Representations from
Transformers (BERT)

BERT [62] is a deep neural network model based on the Transformer
architecture. The Transformer is a self-attention mechanism that pro-
cesses input data in parallel, allowing it to handle long sequences of
text efficiently. BERT consists of a multi-layer bidirectional Transformer
encoder, where each layer contains multiple self-attention heads and
fully connected feed-forward networks.

7.1 Advantages and disadvantages of BERT

BERT is a bidirectional model, which means it can comprehend text
from both directions. This allows it to capture the meaning of a word
based on the words that come before and after it in a sentence, as
well as the overall context. Other than that, it can handle long-term
dependencies within the input text.

Popular pre-trained versions of the model, such as BERT-Base[62]
(pre-trained on a large corpus of text from Wikipedia), and BioBERT[63 ]
(pre-trained on a corpus of biomedical texts), exist, which set a base-
line for more specific fine-tuning tasks. The pre-training is an unsu-
pervised process and involves two main steps:

e Masked language modeling - this involves randomly masking
out words in a sentence and training the model to predict the
missing words based on the context of the sentence.

e Next sentence prediction - this involves training the model to
predict whether two sentences are likely to appear next to each
other in a given text sequence.

Once the model has been pre-trained, it can be fine-tuned on a
particular NLP task, such as sentiment analysis or question answering
in a specific domain. The pre-trained property means the model can
fit faster and requires less training data.

A few downsides include the high computational complexity and
strong dependence on the quality of the fine-tuning data[64].
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7.2 DNA_BERT

In the context of DNA sequence classification tasks, BERT can be
used to create embeddings of DNA sequences that can capture their
inner structure. Like natural language, DNA sequences are composed
of units arranged in a specific order to create meaning (encoding a
particular protein, TFBS motifs). It has been found that approaches
applicable in NLP can also be applied in DNA sequence classification
[65].

The advantage of using BERT for DNA sequence classification tasks
is that it can learn complex features of the data without requiring hand-
engineered features or domain-specific knowledge. This is particularly
useful, for example, in genomics, where there is a vast amount of
data but a limited understanding of the biological mechanisms that
underlie it. BERT can learn from the patterns in the data to create
useful representations that can be used for downstream tasks, such
as predicting the effects of genetic variants or classifying sequences
based on their function.

DNA_BERT([66] is a pre-trained model based on the BERT archi-
tecture specifically trained on DNA sequences, using kmer of size 6 as
input tokens.

In this work, two versions of DNA_BERT were fine-tuned on LTR
sequences. Each group consisted of a range of sequence lengths. One
was trained on sequences within the length range [0, 350)bps and
the other on sequences [350, 512)bps, 512 being the maximum input
sequence size of traditional BERT models. Target site duplications were
removed from the training sequences, as these are common among
LTRs and could contribute to overfitting.

The models were then fine-tuned using the Adam optimizer, with
an initial learning rate value of 1e~>, for 4 epochs. Both reach their peak
validation accuracy around epoch 3 (88,5% and 86% respectively).
This is rather fast for a model of this scale and is one of the advantages
mentioned earlier in this chapter.
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Figure 7.1: BERT model training performance
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7.2.1 Large sequence classification

For sequences longer than 350 and 512, a max pooling technique
was used to pool the embeddings of the DNA_BERT encoder and
parse large sequences using a sliding window. The window size corre-
sponds to the input size of the encoder (350 model used in this case).
It is shifted by 1/3 of the model’s max input size, meaning that with
each movement along the sequence, 2/3 of the previous segment are
maintained in the input, and the last 1/3 that is appended belongs
to the next part of the sequence. In practice, this means that the win-
dow of size 350 is moved by 116 bases each time. The outputs of the
BERT model on each such segment are then pooled by a convolutional
network layer with a filter of size 3, meaning that three consecutive
segments are being pooled together to avoid losing information from
neighboring regions.
The following pseudocode shows how this approach works:

Algorithm 1: BERT-CNN pooling

sequence < InputSequence

inp_size < 350

model < TrainedBertModel

index < 0

embeddings <+ ||

while [sequence| > index — inp_size do
segment < sequencelindex : index + inp_size]
embedding < model.predict(segment)
embeddings.append(embedding)
index < index + inp_size/3

: end while

: CNN < TrainedNetwork

: class <~ CNN.predict(embeddings)

=
WD N = O
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BERT window of size 350

Convolutional pooling layer
| | | | | |

Figure 7.2: BERT-CNN sequence processing

7.3 Interpreting BERT results

7.3.1 Attention scores

Attention scores in BERT refer to the weight importance assigned to
each token in a sequence by the attention mechanism of the trans-
former architecture. The attention mechanism is a key component of
the transformer model used in BERT, allowing the model to focus on
different parts of the input sequence while processing it.

During the attention process, BERT computes a set of attention
scores for each token in the input sequence by comparing it to all the
other tokens. These attention scores have been used to weigh each
token’s contribution to the sequence’s final representation.

Here, I have taken a sample of 1000 LTR sequences under 350bps,
averaged their attention scores using a window of size 20 for neighbor-
ing positions, and clustered them using an Agglomerative Clustering
algorithm into five groups in order to group sequences with simi-
lar important positions together and visually enhance the important
attention regions.
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BERT attention heatmap
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Figure 7.3: BERT attention scores for sequences <350bps clustered
into similar groups, using 0 padding at the end of the sequence to fit
into 350bps

Generally, the most distinct attention scores are located at the
beginning and toward the end of LTR sequences. This is apparent for
four of the five groups that emerge from the clustering and signifies
that 6-mers highly specific to LTRs are located in these regions. The
tiftth group differs in that its highest attention scores are scattered
around the beginning of the sequences. These could include LTRs
whose influential regions are located at the 5" of their sequence and
could signify that these sequences contain regulatory motifs further
upstream.

7.3.2 SHAP

The SHAP[43] has already been mentioned in this work in connection
with the TreeExplainer 5.4.
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7. BIDIRECTIONAL ENCODER REPRESENTATIONS FROM TRANSFORMERS (BERT)

Similar to the TreeExplainer, the SHAP method applicable for
BERT works by generating a set of explanations for each prediction
made by the model. Here, the SHAP algorithm generates a modified
input sequence by replacing tokens with a special [MASK] token. The
model is then run on each modified input, and the difference in output
prediction is used to calculate the SHAP value.

Single sequence analysis

The Python SHAP package provides tools for the interactive visual-
ization of values calculated by this algorithm.

One such tool is the Text plot[67] which can be used to view parts
of the input text that contribute to the classification the most.

+ o B g Qs
° shap.plots.textishap values[3]}

)))))))))))))))))))))))))))))))))))))))):(((((((((((((((((((((((((((({(((((

nputs :

AAGTAG AGTAGE GTAGGA TAGGAA AGGAAG GGAAGA GAAGAA AAGAAAIBGERES GAAAGT AAAGTA AAGTAG AGTAGG
GTAGGA TAGGAG AGGAGA GGAGAA GAGAAA AGAALA GAAAAT AAAATG AAATGE AATGCT ATGCTC TGCTCA GCTCAA
CTCAAA TCAAAC CAAACC AAACCC AACCCA ACCCAA CCCAAC CCAACA CAACAT AACATA ACATAG CATAGC ATAGCA
TAGCAT AGCATA GCATAA CATAACETAACE TAACKT AACATA ACATAC CATACC ATACCC TACCCC ACCCCA CCCCAA
CCCAAG CCAAGA CAAGATIBAGETT AGATTT GATTTC ATTTCG TTTCGG TTCGGA TCGGAC CGGACT GGACTG GACTGG
ACTGGT CTGGTA TGGTAA GGTAAC GTAACA TAACAG AACAGT ACAGTC CAGTCA AGTCAG GTCAGE TCAGCT CAGCTC
AGCTCA GCTCAA CTCAAT TCAATT CAATTC AATTCA ATTCAC TTCACA TCACAT CACATA ACATAA CATAAA ATAAAC TAAACC
AAACCC AACCCAACCCAA CCCAAA CCAAAT CAAATC AAATCA AATCAT ATCATA TCATAG CATAGG ATAGGG TAGGGC
AGGGCA GGGCAA GGCAAC GCAACC CAACCG AACCGATACEGAR CCGAAC CGAACT GAACTT AACTTT ACTTTT CTTTTA
TI'ITAA TTTAAA 'I'I'AAAA TAAAAT ARAATT AAATTA AATTAA A'I'I'AAA TTAAAC TAAACA AAACAA AACAAM ACAAAR

C»

=
=EE

- AARACTAAACTA AACTAA ACTARA CTAAAA TAAAAGEBARGE ARAGCC AAGCCC- GCCCGA CCCGAA
CCGAAA CGAAAA GARAAC AAAACA AAACACTENEATA ACACAT CACATA ACATAT CATATA ATATAA TATAAA ATAAAA
TAAAAT AAAATCTABETEE AATCCG ATCCGT TCCGTA CCGTAA CGTAAA GTAAAA TAAAAT AAAATA AAATAT AATATA ATATAT
TATATT ATATTT TATTTA ATTTAC TTTACG TTACGA TACGAA ACGAAT CGAATG GAATGA AATGAT ATGATC TGATCA GATCAG
ATCAGG TCAGGG CAGGGT/AGGGTA GGGTAT GGTATT

Figure 7.4: BERT SHAP text plot

This plot can be interacted with, and each "word", in this case a
DNA sequence k-mer, can be viewed separately to analyze its con-
tribution, with red color meaning positive contribution, i.e., towards
classifying the element as an LTR, and blue meaning negative contri-
bution or classifying the element as a non-LTR.

An interactive notebook has been created for this task, where the
fine-tuned DNA_BERT model is loaded from the HuggingFace[68 ]
repository, and the user may load their custom set of LTR-sequences
to analyze.
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Clustered analysis

The model fine-tuned on sequences under 350bps was analyzed by ap-
plying the SHAP algorithm to a sample of 300 LTR sequences. For this
larger-scale analysis of the important sequence segments, an approach
similar to that of visualizing BERT attention scores was taken, where
sequences were clustered into five similarity groups using the pre-
viously mentioned agglomerative clustering algorithm, and clusters
were plotted together on the following heatmap.

BERT SHAP values heatmap
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Figure 7.5: Sequences shorter than 350 bps were padded with high
negative values to clearly distinguish them

The positional analysis using SHAP does not distinguish a clear
pattern, as was the case when analyzing the BERT attention scores.

I tried to analyze specific kmer SHAP values to see whether any
6-mer stands out as being highly specific to LTRs.
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SHAP values per k-mer

TAGCGG .|
CGGTCG
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AGCCCG
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AGTCGT
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GCCGGG
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ACCCGA

CCTATA
GGCCCA
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ACGGAC
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CGAGTG
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CGCCAT
GCGTAC
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GGCGCT
GCGCCA
GCGTAA
GCGATT
TGCCCT
CAGACC
GCGTGC
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ATCGCC
GCGTCC
TTGGCA
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GCGCAT
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TGGCAC
GCGGAT
CGACAA |

-0.2 0.0 0.2 0.4 0.6
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Figure 7.6: Top 50 k-mers, 25 with highest and 25 with lowest SHAP
values

No typical promoter or LTR sequences such as CAAT-boxes or
polyadenylation signals emerge here, however, the CCTATA, 6-mer
could be of interest as it contains a sequence similar to the TATA-box
(TATAWAW). Many of the top 6-mers form parts of known TF binding
sites observed in a study of the architecture of promoters[69]: the
AGCGG section of TAGCGG forms the initial part of TF motifs such
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as ERF, a pathogenesis and stress-related promoter[70] and MYB3R1,
a transcriptional repressor regulating organ growth[71]. The GCCGT
sequence of GCCGTC can be mapped to zinc-finger and GCC-box like
motifs.

Despite not being explicitly trained on TF binding site sequences,
the trained BERT model seems to have implicitly fitted on 6-mers
belonging to such motifs, further underlining their significance in LTR
sequences.
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8 Results

8.1 Testing model performance

In order to test the performance and versatility of the trained model,
a special dataset was constructed, consisting of sequences from com-
pletely different plant species than the dataset on which the models
have been trained. This dataset consisted of 5506 LTR sequences and
5506 non-LTR sequences, of which 25% were randomly generated se-
quences and 75% were genomic extracts mapped to non-LTR regions.

| Species LTR sequence count |
Lemna Minor 1511
Arabidopsis Lyrata 2854
Carica Papaya 1141

Table 8.1: LTR sequences obtained from the different plant species,
based on annotations from S. Zhou et al. [20] used for final testing

Once the database was created, the three model types (GB Classi-
fier, NN, BERT) were used to draw predictions from the raw sequences.
A python Class was created for each of the three model types, which, in
the case of the latter two models, contains all three types of classifiers
for different length sizes. Within the object, the different sequences are
split into buckets (<350, 350-700, >700) to enable batch processing
on GPUs. This provides users with an interface, omitting the need
to split their dataset or preprocess it in any way, and speeds up the
classification.

After drawing predictions, the models were evaluated using the
accuracy, precision, and recall metrics. The dataset is balanced by
design, so accuracy was a sufficient measure in this case. Precision
and recall were examined to define the model’s performance in real-
life scenarios. One such scenario is the verification of annotations by
TE recognition tools like the TE-greedy-nester[72]. In that case, the
models should be able to detect falsely positive non-LTR sequences
reliably.
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Figure 8.1: Accuracy of the three models on different length groups.
The horizontal dotted line depicts mean accuracy across all three
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Figure 8.2: Precision of the three models on different length groups.
The horizontal dotted line depicts mean precision across all three

models
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Figure 8.3: Recall of the three models on different length groups. The
horizontal dotted line depicts mean recall across all three models
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Figure 8.4: Confusion matrices of the three models

In general, the BERT classifier achieves the best results with an
average accuracy of ~ 84%; however, the RFC did better in terms of
precision, achieving 0.94 precision score. The lowest performing is
the neural network model, which trained and performed reasonably
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well on a specific species dataset but struggled to generalize to previ-
ously unseen species’ sequences. The NN model can detect non-LTR
sequences even better than the other two classifiers as seen in 8.4, how-
ever, it misclassifies LTR sequences as non-LTRs in ~ 50% of cases. In
the binary classification scenario, this is equivalent to an untrained
model.

8.1.1 Model performance on family and lineage subgroups

To verify if any models do not prioritize a certain family or lineage of
TEs, I looked at the amount of correctly classified elements per each
category by each of the three models. This test was done to see if LTRs
belonging to a particular family or lineage significantly differ from
others in a way that could impact classification using one of the three
approaches.
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Figure 8.5: Log-normalized counts by LTR-TE family
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Figure 8.6: Log-normalized counts by LTR-TE lineage

Visually, lineage and family do not seem to impact model perfor-
mance significantly. To statistically verify this, I conducted an ANOVA
test, which returned a p-value of 0.713 for lineage and 0.971 for family.
At a significance level of 0.05, the test fails to reject the null hypothesis
that the means among the three groups are the same.

8.1.2 Tool comparison

In order to give an idea of the model’s performance, I compared it to
existing similar tools. As there is no tool for sole LTR classification,
results were compared to existing promoter classification models,
namely iProm-Zea[73], a CNN-based classifier specifically built for
plant promoter recognition, iPromoter-2L[74] a Random Forest-based
promoter recognition tool and iPTT(2L)-CNNJ[75], another CNN-
based plant-promoter recognition tool. o

50



8. ResuLTs

| Model Acc(%) Sn(%) Sp(%) MCC Inp.Length |
LTR_BERT 84.16 81.63 86.65 0.6839 < 5000
[Promoter-2LL 81.7 79.2 84.2 0.637 81
iProm-Zea 96.06 97.95 87.65 0.8606 251
iPTT(2L)-CNN  94.70 87.81 87.81 0.8207 251

Table 8.2: Model comparison table. Acc: Accuracy, Sn: Sensitivity, Sp:
Specificity, MCC: Matthew’s correlation coefficient

The LTR_BERT model that I developed scores slightly better than
[Promoter-2L and worse than iProm-Zea and iPTT(2L)-CNN, however,
is applicable to an arbitrary input length sequence under 5000bps,
whereas the other three models take fixed size inputs. This is a required
property, as LTR sequences are more variable in length than promoters.
Furthermore, both the iProm-Zea and iPTT(2L)-CNN models focus
on a narrow range of species, namely Zea Mays, and in the case of
iPTT(2L)-CNN, also Arabidopsis Thaliana and Mus Musculus, whereas
LTR_BERT has been shown to achieve good results among various
species.
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9 Conclusion

The goal of this work was the development of a reliable training
database, the analysis of LTR sequences and their function, and the
classification of these elements based on their DNA sequence.

Based on frequent pattern mining of transcription factor motifs in
LTR sequences, I concluded that common pairs, triplets, and quadru-
plets often share functionalities that can be linked to stress-induced
processes and signaling pathways in plants.

Similar motifs emerged when conducting the SHAP model inter-
pretation, further confirming this hypothesis.

I tested three classification approaches in order to select the best
one to be used in practice. These included: a model trained on transcrip-
tion factor binding site occurrences, a neural network model trained
on one-hot encoded sequences, and a BERT transformer model.

Out of these classifiers, the BERT approach achieves the best scores
overall.

Further analysis of the trained BERT model uncovered areas of
significant attention values in the initial region and towards the ends
of LTR, meaning these areas may be specific to these sequences. One
sequence group proved to be different from the others in terms of
high-attention locations, indicating that a smaller portion of LTRs may
have a different distribution of important sequence motifs.

In comparison to similar tools the classifier developed in this thesis
achieves slightly worse results overall, however, is more versatile than
the other tools mentioned.
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10 Deployment and Future work

The work is available at the LTR_BERT GitLab repository with instruc-
tions for its installation.

The separate trained BERT models are available from the Hugging-
Face website at:
xhorvat9/LTR _BERT 0 350 noISD
xhorvat9/LTR_BERT 512 noI'SD

The interface created currently supports discrete class predictions,
except for the GBC pipeline, which comes with the predict_proba func-
tion by default.

I aim to extend the BERT _predictor class with logit returning func-
tionality so that it may be used to evaluate the probability of sequences
being LTRs in common LTR-TE detection tools. Tools such as the men-
tioned TE-Greedy-Nester program use inner scoring to rank detected
TEs. This approach could utilize the LTR probability as a secondary
weighing value to rerank the candidate elements.
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