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Abstract

The thesis improves the technique for representing short motions
called motion words. We present a new quantization technique called
composite motion word by dividing the skeleton into non-overlapping
body parts. The problems of inefficient indexing of motion word se-
quences and action repetitions are addressed by employing edit dis-
tance and its adaptation. These advancements achieve a classification
accuracy of 81.75% evaluated on the HDM05 dataset. Based on the
outcome of the action classification task, we design a two-stage classi-
fication framework that supplements the global classifier with special-
ized classifiers. The specialization employs two strategies intended
to mitigate misclassifications that occur at the global level. The first
method learns body parts based on which we can better discriminate
between categories. The second method finds the most significant
moment in the motion and compares the actions based on the neigh-
borhood around the extrema. Our solution achieves an accuracy of
90.02% evaluated on the modified HDM05 dataset. Finally, for the
PKU-MMD dataset, we introduce an extension of the composite mo-
tion word called joint relation, which models the mutual interaction
between a set of joints.

Keywords

motion capture, MoCap, human motion data, motion words, action
classification, body parts
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1 Introduction

Advances in pose estimation software from ordinary videos enable
even faster adoption of human motion applications. These range from
protecting cars in the parking lots by classifying humanmotion against
a database of standard and suspicious behavior to detecting falls in
nursing homes so that appropriate action can be taken. As the amount
of data increases, efficient processing becomes an issue, as these high-
dimensional data incur non-trivial storage and processing costs.

In [1], the authors introduced a compact feature called motion
word (MW), representing a short motion. Three quantization tech-
niques were presented, with the main effort put into addressing a
border problem. A sequence of MWs can be used in various tasks like
searching for similar motions in a database or assigning a motion to
an existing category. The properties of the initially proposed distance
restrict the indexability of such sequences.

This thesis aims to follow up on the issues and directions yet to
be considered. We discuss and address the problematics of MW se-
quence indexing in conjunctionwith a proposal for a new quantization
technique envisioning the MW as a collection of body parts. In this
thesis, we propose a solution to the MW indexing problem. We in-
troduce a new MW quantization technique with an extension called
joint relations and a distance function addressing action repetitions.
Our contribution to the classification task is a two-stage classification
framework with two classification methods. The MW and the frame-
work are evaluated on two datasets with an implementation written
in Java using MESSIF [2].

The processing of motion data, its representation, and especially
the definition, creation, and application evaluation of MWs are dis-
cussed in Chapter 2. This is followed by a proposal for a new MW
and sections on indexability and action repetition. The next chapter
describes a classification framework, the design, the algorithms, and
a commentary. The evaluation of the introduced MW and the frame-
work is the topic of Chapter 5. The last chapter then concludes this
thesis with possible future research directions.
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2 Human Motion Data Processing

The first part of this chapter, based on a survey paper [3], briefly de-
scribes motion-capturing techniques, the representation of motion,
and its applications. Subsequently, a compact representation is de-
scribed in detail. Improvements suggested in other works are also
present.

Human motion data is a particular type of data called spatio-
temporal, where a human body is captured throughout time and
space. The motion is captured in discrete timestamps, which goes
in hand with how specialized devices operate. Vicon1 can capture
movement in hundreds of frames per second, it uses tens of optical
sensors, and it can somewhat resist occlusion [4]. Kinnect v22 captures
standard 30 frames per second, uses RGB and infrared radiation depth
sensors and provides no occlusion resistance. Estimating a human
body position from a general video is also possible thanks to recent
advances in pose estimation software [5, 6].

As for the spatial side of the motion representation, the human
body is not captured as a whole. Instead, each device simplifies the
body by restricting the tracking to predefined body joints. The selec-
tion and the joint count are specific to each device. A collection of 3D
coordinates of the tracked joints is called a pose. In order to visualize
a single pose, a skeleton, a stick-man-like figure, is used. It adds con-
nections between joints, similar to bones as in the human counterpart;
see Figure 2.1.

The devices produce a sequence of poses with a given sampling
frequency. We, therefore, talk about skeleton sequences. Formally, a
skeleton sequence S = (P1, P2, . . . , Pn) is a sequence of poses, where
Pi ∈ R

j·3 represents the 3D skeleton configuration estimated at the
time instant 1 ≤ i ≤ n consisting of the xyz-coordinates of j tracked
joints. The skeleton sequencesmay be finite or infinite, but for purposes
of this thesis, we restrict ourselves exclusively to the finite case. Finally,
a short semantically defined sequence is called an action, e.g., waving

1. https://www.vicon.com

2. https://learn.microsoft.com/en-us/windows/apps/design/devices/

kinect-for-windows
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2. Human Motion Data Processing

Figure 2.1: A skeleton. Adapted from [7].

with the right hand or sitting down. Visualization and exploration of
motion sequences are discussed in [8].

When dealing with such data, its applications are particularly in-
teresting. Each application task expects a certain type of input and
imposes the type of the answer. Action classification, also called action
recognition [9, 10], is dominated by machine learning techniques, espe-
cially neural networks, for their high accuracy. It focuses on assigning
a previously unseen action to a semantically defined category. Action
detection and the associated action prediction [11, 12] detect and possi-
bly predict occurrences of a particular action in a sequence. Search task
in a database of actions searches for the most similar ones based on a
user query. Lastly, the sub-sequence search task takes a user query and
searches for a similar sub-sequence motion occurrence in a database
of sequences.

2.1 Motion Words

This thesis focuses on and extends the technique of motion words [1]
(MWs). This section describes the steps necessary to convert a skele-
ton sequence into a sequence of MWs. We describe the original MW
quantization techniques and note improvements made in other works.

The motivation for defining a MW stems from the need for more
efficient processing of skeleton sequence data. The data is usually rep-
resented by high-dimensional vectors describing the 3D coordinates

3



2. Human Motion Data Processing

Figure 2.2: Skeleton normalization. Adapted from [13].

of each skeleton joint. It would be beneficial to represent this sequence
more compactly.

The idea of MWs is to partition a skeleton sequence into fixed-size
segments and replace each segment with an identifier of its canon-
ical representation. This process produces a new representation, a
sequence of one-dimensional identifiers we can think of as a text doc-
ument. Each identifier, called a motion word, is conceptualized as a
descriptor of a short motion sequence on which standard text retrieval
techniques can be applied. Therefore, by using vector quantization,
we can drastically reduce the storage requirements for each sequence
and potentially improve performance in application tasks.

We describe the entire conversion process in detail in the follow-
ing subsections. The skeleton sequence transformation into MWs is
adapted from [1]. The process can be considered a multi-step pipeline
invoked when a user enters a new sequence. The pipeline covers input
data processing, normalization, frame rate reduction, segmentation,
quantization, and translation to MWs.

2.1.1 Skeleton Normalization

The input skeleton sequence must be normalized to process a diverse
range of people, mainly accounting for differences in height and length
of legs and arms. We utilize a specific variant of the normalization
tactics presented in [13]: all-poses position normalization, all-poses ori-

4



2. Human Motion Data Processing

Figure 2.3: Illustration of sequence segmentation. The segment shift is
illustrative. The shift size is typically about 20% [1] to 25% [14] of the
segment length.

entation normalization, and normalized skeleton. We now describe the
process in more detail.

We normalize the position, orientation, and size of the skeleton.
The normalization of position is done by taking the root joint (the black
joint in Figure 2.1) and shifting it together with the rest of the skeleton
joints into position with coordinates [0, 0, 0]. The transformation is
applied to all skeletons in all sequences. The orientation normalization
is based on the left and right hip (the left and right joints under and
connected to the root joint in Figure 2.1). Based on the position of the
hips, an angle is computed for each skeleton. Every skeleton is then
rotated by this angle such that during thewholemotion, every skeleton
faces the same fixed direction. Finally, we normalize the size of each
skeleton based on average bone lengths across the whole population
to obtain the same skeleton size for an adult as we would for a baby.
The normalized skeleton is depicted in Figure 2.2. Note that each pose
is normalized independently from the others.

2.1.2 Skeleton Sequence Segmentation

In this step,we cut the normalized skeleton sequences into overlapping
fixed-sized segments. We specify two parameters: the number of poses
per single segment and the number of overlapping poses between two
consecutive segments. The first segment is taken from the start of the
sequence. Every next segment is created by shifting the segment’s start
by the number of shift poses. A set of all segments forms a segment

5



2. Human Motion Data Processing

space. It contains all short-sized motions extracted from all motion
sequences.

Some skeleton motions are captured with a high sampling fre-
quency [3]. To also normalize the sampling frequency, we downsam-
ple it to values around ten frames per second. If the segmentation
and downsampling parameters are set appropriately, we should see
reduced computational cost without any significant loss of informa-
tion [14]. Typically, a segment represents about 0.66 seconds of motion
with a shift of 25% of the segment size.

2.1.3 Similarity of Segments

To assess the similarity between the two segments, we must consider
the differences in performing the same motion. While normalization
is primarily concerned with the size, orientation, and position of the
skeleton, here we must focus on the execution of the entire motion.
The motion can be performed at different speeds by different or the
same person. To tackle the issue of temporal differences, the original
paper used DTW algorithm [15], which we denote as dDTW . It can
exploit the speed variance between consecutive poses, but one must
remember that the distance produced by DTW does not satisfy a
triangle inequality3. Therefore, we cannot utilize numerous metric
indexing structures.

The algorithm employs dynamic programming to determine the
optimal sequence alignment based on the distance of the sequence
elements. The internal distance, in our case, is computed based on a
pair of poses. We quantify the distance by summing the Euclidean
distances between the 3D coordinates of the corresponding joins.

2.1.4 Quantization into Motion Words

Near regions of the segment space represent similar motions. The goal
of quantization is to exploit this property and partition the segment
space into non-overlapping clusters. Each cluster contains similar

3. Proof by counterexample. Suppose three integer sequences x = (0), y = (1),
z = (1, 1) such that the distance between two integers is their absolute difference.
Then dDTW(x, z) > dDTW(x, y) + dDTW(y, z) as dDTW(x, z) = 2, dDTW(x, y) = 1,
and dDTW(y, z) = 0.

6



2. Human Motion Data Processing

segments that can all be treated as one representative segment. In
other words, the cluster can be represented by a canonical segment.
To minimize the spatial requirements for the representation of the
canonical segment, we can assign a unique identifier to each such
segment. It dramatically decreases the amount of data required for its
representation. Note that we have to store the canonical segments to
quantize new data.

Thus, the quantization mainly comprises the pivot selection by a
clustering algorithm and the subsequent assignment of pivot iden-
tifiers to segments. For this purpose, we utilize the k-medoids algo-
rithm [16]. It differs from the k-means algorithm [17] by producing
pivots that are elements of the clustered space. Thus, we can define an
MW vocabulary as a set of pivot identifiers selected by the clustering
algorithm, called motion words, together with a Boolean-valued MW
matching function matchMW : MW ×MW → {0, 1}. When two MWs
match, the function returns one, otherwise zero.

Three techniques for translating skeleton sequences to MW se-
quences were originally introduced in [1]: hard, soft, and multi-overlay.
Each segment is transformed into the corresponding MW representa-
tion and then placed back into the original skeleton sequences, replac-
ing the segment.

Hard quantization produces a single identifier for each segment
but does not address a border problem. The border problem is a situation
where two segments are close but fall into different clusters, thus
making them different in the eyes of the MWmatching function.

Soft quantization tackles this issue by extending a single identifier
into a vector of identifiers. It contains the first base identifier and
extended identifiers. The extended identifiers correspond to identifiers
of close clusters to the base cluster. We say the two soft MWs match if
there is at least one base element in the intersection of their vectors.

Multi-overlay quantization handles the border problem by per-
forming the clustering multiple times. Two MWs then match if the
corresponding identifiers match in at least m cases of the n clusterings.

Finally, to quantify the distance between twoMW sequences, DTW
is used. Within DTW, the matching function decides the distance
between two MWs. The distance function returns zero in case of a
match and a distance of one in case of a mismatch. For two MWs

7



2. Human Motion Data Processing

A, B ∈ MW, we formalize the distance between them as:

dMW(A, B) =

{
0 if matchMW(A, B) = 1
1 otherwise

2.1.5 Application Evaluation

The following process culminates into two different applications. The
first is the action search, where the user searches for similar actions.
The second application is action classification, where the user receives
information about which of the existing action categories the query
action belongs to. In this thesis, we focus mainly on the second appli-
cation.

Search

The search is evaluated using kNN queries [18, p. 16]. The k is dynam-
ically adjusted for each action based on the number of actions in the
same category as the query action. The k is reduced by one because
the query action is not considered, i.e., the leave-one-out approach.
Recall is a ratio of the number of actions from the same category in
the answer divided by the number of retrieved actions. The search
effectiveness is then measured as an average recall over all actions.

Classification

In the classification task, the goal is to classify a new, previously unseen
action into one of the categories. The straightforward yet effective
approach utilizes the 1NN classifier [19, 13]. It searches for the nearest
neighbor, excluding the query action, if present in the database, and
returns the neighbor’s category as the answer.

In this thesis, we employ the Weighted-Distance kNN Classifier as
presented in [20], the same classifier used in [1]. It is a general proba-
bilistic classifier formally defined as

classi f y : S × T ×N → C,

which assigns to a general sequence q ∈ S a category C ∈ C. The
sequence q may belong to either a set of skeleton sequences or a set

8



2. Human Motion Data Processing

of MW sequences, both of which we denote S as the input domain of
the sequences. T denotes the input domain of the training sequences
where each sequence is assigned to some category in C. The third
argument k ∈ N corresponds to the number of neighbors taken into
account during the classification decision.

The Weighted-Distance kNN Classifier [20] is designed to deal
with the drawbacks of a 1NNclassifier. Specifically, it aims to tackle the
situation where multiple objects are at almost the same distance from
the query object, each belonging to a different category. It becomes
more of a prominent phenomenon in the case of MW sequences, as
their distance is integral as opposed to the skeleton sequences, which
produce real-valued distances. It works by considering a combination
of a majority vote of the nearest neighbors and their similarity to
the query object. First, the kNN query is defined to obtain k nearest
neighbors to a query skeleton sequence or MW sequence q from the
training set of sequences T ∈ T :

kNN(q, T, k) = {n ∈ N | N ⊂ T, |N| = k,

∀n ∈ N, ∀s ∈ T \ N :

d(q, n) ≤ d(q, s)}

The kNN function is extended by an additional category parameter C,
which filters the results by keeping only those neighbors belonging to
the category C:

kNN(q, T, k, C) = {n ∈ kNN(q, T, k) | n ∈ C}

The relevance of each neighbor is computed by the function compRel :
T → [0, 1]:

compRel(s) = 1−
d(q, s)

dist · weight
,

dist = max{d(q, s) | s ∈ kNN(q, T, k)},

where dist is the distance to the kth neighbor and weight is set to
1.1. The weight puts considerable significance on the distances while
decreasing the relevance of the k-th neighbor [20]. The relevance of

9



2. Human Motion Data Processing

each category is then computed as:

compRels(q, T, k) = {(Ci, ri) | Ci ∈ C,

ri = ∑
n∈kNN(q,T,k,Ci)

comRel(n)}

The relevance is normalized to obtain a probability and further ascer-
tain they sum to one:

normRels({(C1, r1), . . . , (Cm, rm)}) =

{(Ci, pi) | i ∈ [1, m], pi =
ri

∑
m
j=1 rj

}

Finally, the Weighted-Distance kNN classifier is defined as:

classi f y(q, T, k) = Cmax,

(Cmax, pmax) = argmax
(Ci,pi)∈normRels(compRels(q,T,k))

pi

The normalization result is a set of categories and their probabili-
ties, indicating the probability that the query should be assigned to the
corresponding category. While in the original paper [20], the result
is defined as the above set, in this thesis, we consider the result to be
only the category from the tuple with the highest probability.

In the following chapters, we distinguish between two classification
methods, which differ in their internal decision process. To simplify
the notation of the classi f y function, we use the following functions
instead: G : S → C and SSC : S → C. S and C correspond to the same
parameters as in the classi f y function. The values of T and k are set
during the evaluation.

2.1.6 Improvements

The authors of [21] studied a different approach to the quantization
phase. They employed complex density-based algorithms such as
DBSCAN [22], HDBSCAN [23], or Jarvis-Patrick [24], but could not
improve the application performance. While the evaluated algorithms
produced high-quality clustering, the clustering quality was not a

10



2. Human Motion Data Processing

reliable predictor of the application performance. The best-performing
clustering algorithm to date is the k-medoids.

How performing motion at different speeds can affect the search
performance was studied in [25]. The first experiment featured a
stretching of skeleton sequences by some fixed factor before their
conversion intoMWs. In the second experiment, all skeleton sequences
were adjusted to have the same length. Either of these two experiments
did not yield improved search performance. A different approach
was then taken by producing multiple segmentations with different
segment lengths. The segment shift was kept at 20% of each segment’s
length. The search was then issued multiple times, once for each
segmentation. The results formed a candidate set, which was then
used to refine the final answer. This approach yielded improved search
performance.

There are several unresolved issues, such as indexing remains
inefficient due to DTW. In the next chapter, we offer a solution to this
problem and introduce a new quantization technique.

11



3 Composite Motion Word

This chapter features a novel approach to a definition of MW, using a
principle that existingmethods have yet not considered. Our definition
is subsequently extended by relaxing the requirements for the type of
MWelements used. The indexability ofMWs is improved by analyzing
the characteristics of MW sequences, and the MW sequence distance
function is replaced with a suitable alternative. Finally, we propose
an extension of this distance function to target specific settings where
the distinction between categories with varying number of action
repetitions is used.

3.1 Definition

The three previously presented MW approaches share the same min-
imal building block, a skeleton. In there, the whole skeleton is used
to compare the similarity between two segments during clustering.
We envision a different approach where we decompose the skeleton
into natural body parts. We carefully design this new approach while
preserving the favorable properties ofMWs, namely comparable space
requirements to the MWs created by the soft quantization.

WedefineCompositeMotionWord (CMW) as a tuple (p1, p2, . . . , pn),
where pi for 1 ≤ i ≤ n is a body part identifier and n ∈ N is fixed
number of body parts the skeleton is divided into. Each body part
is quantized using hard quantization, i.e., it is represented by a one-
dimensional identifier (ID) – one hard MW.

The user specifies the number of body parts, but for the purposes
of this work, we set n equal to five. The division of skeleton joints
into body parts is shown in Figure 3.1. We use the following notation
for each body part: the torso with the head is denoted as T, the right
arm is denoted as RA, the left arm is denoted as LA, the right leg is
denoted as RL, and finally the left leg is denoted as LL. We additionally
define a set of all body parts BP = {T, RA, LA, RL, LL}, and a function
ID : CMW × BP → N, which for a CMW and a body part returns
the body part’s ID from the CMW.

The essential part of every MW definition is the matching function.
We first define when two body parts match using matchBP

p : CMW ×

12



3. Composite Motion Word

Figure 3.1: Division of a skeleton into body parts for CMW. Adapted
with modifications from [7].

CMW → {0, 1} function, where p ∈ BP. The function returns one
when the IDs of the specified body part p are the same and zero
otherwise. Formally as follows:

matchBP
p (A, B) =

{
1 if ID(A, p) = ID(B, p)
0 otherwise

Nowwe can definewhen twoCMWsmatch using matchMW
m : CMW×

CMW → {0, 1} function, where m ∈ N as follows:

matchMW
m (A, B) =







1 if ∑
p∈BP

matchBP
p (A, B) ≥ m

0 otherwise

We define the matching function with respect to the parameter
m. This definition allows us to flexibly set the appropriate number of
body parts to match. Note that we do not impose any restrictions on
which body parts should be matched. This stems from the fact that
we may encounter a variety of actions, each of which requires us to
match a different set of body parts.

Previously published MW quantization methods have focused on
ways of tackling the border problem, namely soft and multi-overlay
quantization. We address this issue implicitly by clustering each body
part independently and allowing flexibility in the matching function.

Another motivation for flexibility is the following: if we say that
all body parts should always match, we drastically limit the possible

13



3. Composite Motion Word

CMWmatches. Consider two people clapping their hands. The first
person stands perfectly still on both legs, so themotion of, say, the right
leg is assigned to some cluster. The second person steps forward with
the right leg while performing the clapping. This movement causes
the clustering process to assign the right leg body part to a different
cluster. As a result, these two seemingly identical actions would not
be the same in the eyes of the matching function for m = 5. We study
the behavior of the parameter m in Subsection 5.2.1.

3.2 Joint Relations

Thedefinition of theCMWallows us to partition the skeleton joints into
non-overlapping sets, which are processed and matched separately.
The division serves as the backbone of the CMW but may not capture
all of the category nuances specific to particular joints. To increase the
flexibility of the CMW, we incorporate a new type of MW element
called a joint relation. A joint relation corresponds to an arbitrary set
of joints and is created and processed the same way as a body part.
It is intended to capture an interaction of specific joins that interact
with each other. In addition, the relations can overlap and are added
as new elements to the CMW. They are placed into defined positions
in the CMWs.

3.3 Sequence Alignment of Motion Words

The original MWs were compared with DTW. The problematic na-
ture of DTW lies in the absence of triangle inequality. The inequality
does not hold, which hurts the indexability and makes kNN queries
inefficient.

DTW is used twice throughout the MW creation. The first time
is when calculating distances between skeleton segments. DTW also
calculates the distance between two transformed MW sequences. We
believe that DTWmay not be able to exploit the specific characteristics
of MWs, and therefore we advocate for an alternative. We have identi-
fied three fundamental properties that the algorithm for computing
distance between two MW sequences should adhere to:
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3. Composite Motion Word

1. Be ametric. This propertywould greatly improve the indexability
of MWs.

2. Respect the position of each MW in the sequence. The temporal
part of the motion is encoded into relative positions of MWs,
which precludes distances that treat the sequences as a set or
compare transpositions of two adjacent objects.

3. Respect that the matching function has a Boolean output.

Considering these criteria, we observe that MW sequences exhibit
string-like properties. The hard quantization assigns a one-dimensional
identifier to every segment and defines a Boolean matching function.
The concept remains the same for other quantization techniques. Al-
though they producemore complexMWs from the point of view of the
sequence distance algorithm, the input does not change. The match-
ing function naturally maps to the distance between two characters,
returning zero if the characters match and one if they do not.

Therefore, we propose to exploit this inherent similarity and use
the edit distance [26], a string metric that satisfies the triangle inequal-
ity denoted as dedit. We compare DTW and edit distance in Subsec-
tion 5.2.2.

3.4 Action Repetitions

During the analysis of the action classification task, we noticed an un-
desirable behavior. Actions with multiple repetitions are misclassified
into categories with fewer action repetitions. The issue of misclassi-
fications between categories with action repetitions is to an extent
addressed in [27, 28, 29]. They proposed a modification of the dataset
by merging some of the categories because, in their eyes, they have
the same semantics. Our goal is to address this problem without the
need for dataset modification. As a result, we define an extension of
the MW sequence distance presented in the previous section. This
extension is not strictly dependent on the CMWbut serves as a general
method for dealing with repetitions.

With this method, we target a specific setting where two actions
differ in the number of occurrences. We assume that all the atomic
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3. Composite Motion Word

actions that make up the action with repetitions are performed at
roughly the same speed.

3.4.1 Extending Composite Motion Word with Length

One possible approach is to bound the length of the actions by a
constant or some relative factor. Since the CMWs do not contain any
information about the length of the action to which they belong, we
would have to encode it.We could realize this by adding a new element
into the CMW, which would contain, e.g., the original unprocessed
length of the action. In order to come closer to the essence of MWs, we
could cluster these lengths and replace the value with action length
identifiers. This introduces the border problem, now relevant to the
length of the action.

The problemwith these solutions is that they require adding a new
element to the MW. The easiest solution is to add the new element
to each MW. Every MW in the same action would contain the same
value, which considerably affects the space requirements of MWs.
This would further make each MW no longer a standalone unit but
somewhat dependent upon the action to which it belongs. Another
solution would be to place the action’s length only into the first MW
of the action. Both approaches would have to rethink the matching at
the sequence level and integrate the extraction and some comparison
process directly into the sequence distance function.

3.4.2 Concatenation of Motion Word Sequences

We propose a solution that considers the space requirements of MWs.
We demonstrate our idea with an example. Take two sequences A =
abc and B = dabceabc f , where dedit(A, B) = 6. Focusing on the struc-
ture of the sequences, we could align the sequences if wewere to dupli-
cate A. Specifically, we could create a new action A · A, which is twice
as long as A and is created by appending the A to the end of A. Since
we can align the sequences properly, we obtain dedit(A · A, B) = 3. We
can observe that the sequence distance has decreased. If B did not
contain a sequence similar to A in the second half, the distance would
not decrease.
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3. Composite Motion Word

Based on this observation, we extend the MW sequence distance
function as follows. Let A and B be two MW sequences such that
|A| ≤ |B|, where |X| is a sequence length of the sequence X. We
formalize our idea in a new sequence distance function drepeated:

drepeated(A, B) =

{
∞ if dedit(A · A, B) < dedit(A, B)
dedit(A, B) otherwise

We create a new artificial action based on the shorter action. We
duplicate the shorter action A into a new two times longer action
A · A. Based on this action, we derive the above distance. It is based
on the following idea. Suppose the new synthetic sequence is more
similar to B than to the original action A. In this case, we say that
the original sequences come from a different category, i.e., each has
a different number of repetitions. We project this conclusion into the
distance by returning ∞. This makes these sequences more distant
and effectively removes them from the kNN query results, prioritizing
different sequences. In the other case, if the distance is still the same
or possibly increased, we return the edit distance dedit(A, B) on the
original sequences.

3.4.3 Discussion

A notable feature of this distance is that it does not necessarily have to
defeat the purpose of using the edit distance for the metric property.
The implementation of this distance can be done as a post-processing
filter. We can still use the edit distance while retrieving the nearest
neighbors and then use the distance to filter the neighbors. The number
of neighbors should be adjusted appropriately for the filtering step.

Finally, we would like to comment on the result of this method.
Even though a shorter action may be two times shorter than a longer
one, we cannot say that the shorter action is repeated only once and
the longer one twice. The action may be performed more slowly.
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4 Classification Framework

This chapter presents a two-stage classification framework based on
CMWs. We elaborate on the addressed problems and provide details
on the framework’s design. Classificationmethods, a parameter tuning
algorithm, and a two-stage classification are described. A commentary
on the characteristics of the framework with suggestions for possible
modifications concludes the chapter.

Even though a single classifier can detect motions across many
categories, the more nuanced and body part-specific motions may not
be recognized. One of the possible approaches is to implement a re-
ranking mechanism. The re-ranking function would take the nearest
neighbors as input and produce a finer-grained ranking. Thismethod’s
main drawback is that the neighbors may not contain any action from
the same category as the query action. Re-ranking cannot help in this
situation. We aim to develop a different method that might allow us
to increase the performance up to the theoretical maximum.

4.1 Motivation

We based our design on the following observations. The solution
to the problem of action repetitions is realized by modifying the edit
distance into the function called drepeated. The distance requires non-
trivial computational resources. Its use at the global level may hinder
our goal of providing efficient indexability of MW sequences. We
want to isolate its use and use it only when the performance benefit
outweighs the incurred cost.

The flexibility of the matching function may only be suitable in some
situations. The body parts that match between two successive CMWs
may be different. If we can distinguish between two motions based on
the right arm, we want to focus solely on this feature.

The action locality is the last issue not covered by the global classifier.
Consider two categories: an object lying on a desk is either grabbed
or deposited. In such a situation, the comparison mechanism should
focus on the time interval when the actual object is being grabbed or
deposited to identify the correct category.
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4. Classification Framework

Our idea is to refine the classification result by focusing on specific
local needs, as presented above. We achieve this by introducing spe-
cialized classifiers. A specialized classifier makes decisions tailored to
a reduced set of categories to achieve maximum classification perfor-
mance. The framework makes use of CMWs and targets the problems
of action repetition, the flexibility of the matching function, and action
locality.

4.2 Architecture

The design of the framework consists of two stages. The first stage
includes a single global kNN classifier that distinguishes all categories.
The second stage includes several specialized kNN classifiers that
target a pre-specified list of categories. The specialized classification
decisions are made by matching specific body parts or comparing
behavior in the surroundings of the action extremum. The main pa-
rameters of the specialized classifiers are tuned automatically.

The global classification is analogous to the classification in [1]. It
features the sameWeighted-Distance kNNClassifier (global classifier).
We define a global classification function G : S → C that, for an
input sequence s ∈ S returns the classified category C ∈ C. In our
framework, we allow only a single global classifier.

A specialized classifier is also Weighted-Distance kNN Classifier.
The specialized classification function is defined as SSC : S → C,
which for a sequence s ∈ S returns its classified category C ∈ C by
the specialized classifier SC. We do not constrain the number of spe-
cialized classifiers in any way. Each specialized classifier is associated
with an invocation category. The corresponding specialized classifier is
invoked when the global classifier classifies an action into this cate-
gory. The input to the specialized classifier is restricted in this sense,
intercepting the global classification decision. It then makes its own
classification decision based on a subset of categories, called classifica-
tion categories. The main idea behind the specialized classification is
that the specialized classifiers do not work over all dataset categories
as the global classifier but rather over a smaller subsets.

We define two category-distinguishing methods which tackle ob-
served issues and are implemented by the specialized classifiers. For
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Algorithm 1: TrainSpecializedClassifiers(C, t)
Input: C – set of categories containing training actions, t ∈ N –

maximal number of classification categories per specialized
classifier

Output: G – global classification function, SCs – set of specialized
classifiers

1 A← {a ∈ C | C ∈ C}
2 GC ← create a new global classifier with global classification

function G for a set of training actions A

3 (G, m)← ConstructMisclassificationGraph(C, G)
4 SCs ← ∅

5 foreach (IC, CC) ∈ ExtractFromTransposedGraph(G, m, t) do

6 P← TuneSpecializedClassifierParams(CC)
7 SC ← create a new specialized classifier based on parameters P
8 SCs ← SCs ∪ {(IC, SC)}

9 return (G, SCs)

each set of categories, one or a combination of predefined methods
is selected. The auto-tuning algorithm fully automates the process of
creating specialized classifiers. After the initial tuning, the system is
ready to receive actions for classification. Each action is then classified
at most twice, once by the global classifier and then optionally by a spe-
cialized classifier. The creation, design, and tuning of the specialized
classifiers is described in the following sections.

4.3 Classification Process

The training part of the two-stage classification process is captured in
Algorithm 1. It takes a set of categories C, where each training action
is assigned to a single category, and a threshold t as input parameters.
We create a global classifier to classify all training actions. Next, the
misclassification graph is constructed. It is then given as input to the
extraction mechanism, which produces pairs of invocation category
IC and classification categories CC. The classification categories are
transformed into specialized classifiers, while the association with the
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Algorithm 2: TwoStageClassification(G, SCs, A)
Input: G – global classification function, SCs – set of specialized

classifiers, A – action for classification
Output: category assigned to the action A

1 C ← G(A)
2 foreach (IC, SC) ∈ SCs do

3 if C = IC then

4 C ← SSC(A)

5 return C

invocation category is left unchanged. We obtained a single global
classifier with a set of specialized classifiers.

The second part corresponds to the two-stage classification em-
bodied by Algorithm 2. It starts by classifying the action A using the
global classifier. It then iterates over the specialized classifiers, check-
ing whether the category predicted by the global classifier is one of the
invocation categories. If so, we invoke the associated specialized classi-
fier, performing the second stage of the two-stage classification. When
no specialized classifier is found, the result of the global classification
is returned.

The following sections describe the inner workings of extracting
invocation and classification categories, the category-discrimination
methods used by the specialized classifiers, and the tuning process.

4.4 Representing Misclassifications

The first step in building a specialized classifier is to analyze the global
classification result. In particular, we are interested in misclassified
actions between categories and their frequency. These misclassifica-
tions are captured in a directed misclassification graph together with
a misclassification function m. It acts as an edge-weighting function
quantifying the number of misclassifications between two different
categories.

Algorithm 3 takes a set of categories and a global classification
function as input and constructs a directed misclassification graph
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Algorithm 3: ConstructMisclassificationGraph(C, G)
Input: C – set of categories, G – global classification function
Output: G – directed misclassification graph, m – misclassification

function

1 Define m : C × C → N0, such that
∀C, C′ ∈ C : m(C, C′) = |{a ∈ C | G(a) = C′}|

2 V ← {C ∈ C | ∃C′ ∈ C : C ̸= C′ ∧ (m(C, C′) > 0∨m(C′, C) > 0)}
3 E← {(C, C′) ∈ V ×V | C ̸= C′ ∧m(C, C′) > 0}
4 G ← (V, E)
5 return (G, m)

together with themisclassification function. Themisclassification func-
tion captures the number of misclassifications between two different
categories. Vertices correspond to categories from or to which at least
one misclassification occurs. A directed edge from category A to cate-
gory B is added when at least one misclassification occurs from A to
B.

The misclassification function assigns weights to the edges of the
graph according to the number of misclassifications. Note that only
non-zero edges and no self-loops are present, hence the name misclas-
sification graph. To use the constructed graph to correct the misclassifi-
cations, we need to transpose both the graph and the misclassification
function. The idea is this. If an action is misclassified from category A
to category B, we want to develop a method to reverse this misclas-
sification. Our solution is to create a specialized classifier for actions
from both categories and invoke it only when there is a classification
into category B. If this is the case, we can analyze the action by the
specialized classifier and classify it back to category A.

Algorithm 4 takes as input the set of categories, the directed mis-
classification graph, the misclassification function, and the parameter
t ∈ N as a maximum number of classification categories per special-
ized classifier. As mentioned above, the transpositions of the graph
and the misclassification function in the first two lines are responsible
for reversing the misclassification decision. The algorithm iterates
over the vertices of the transposed graph GT. Outgoing neighbor-
hood vertices are selected, and based on the cardinality of Nv, and
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Algorithm 4: ExtractFromTransposedGraph(C, G, m, t)
Input: C – set of categories, G – directed misclassification graph, m

– misclassification function, t ∈ N – maximal number of
classification categories per specialized classifier

Output: a set of ordered pairs (IC, CC) where IC is an invocation
category and CC is a set of classification categories

1 GT ← transpose graph G

2 Define mT : C × C → N0, such that
∀C, C′ ∈ C : mT(C, C′) = m(C′, C)

3 R← ∅

4 foreach v ∈ V(GT) do

5 Nv ← {v′ ∈ V | mT(v, v′) > 0}
6 T ← take first min(t, |Nv|) categories in descending order from

Nv based on mT

7 R← R ∪ {(v, T ∪ {v})}

8 return R

the parameter t, the vertices corresponding to the most misclassified
edges are retrieved. The current vertex v is placed first in an ordered
pair, and the retrieved vertices T are placed second. These pairs are
incrementally added to a result set that is returned.

The pairs returned by the algorithm serve as a basis for specialized
classifiers. Each pair consists of an invocation category IC as the first
element. Each invocation category is associated with one specialized
classifier. This association defines when the specialized classifier is
invoked, i.e., when the global classifier classifies an action into such
an invocation category.

The second element of the pair is a set of categories CC called
classification categories. A new specialized classifier is created based
on the classification categories. It uses actions from these categories
to make the classification decision and returns one of them as a result.
An example of the relationship between the invocation category and
the classification categories is shown in Figure 4.1.
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Specialized Classifier SC
IC = grabHighR

CC = {grabHighR, depositHighR}

G(a) = grabHighR

G(b) = grabHighR

G(c) = grabHighR

SSC(a) = grabHighR

SSC(b) = grabHighR

SSC(c) = depositHighR

Figure 4.1: An example of a specialized classifier created based on the
result of the ExtractFromTransposedGraph algorithm, classifying
actions a, b, and c. The classifier receives actions classified by the global
classifier into the invocation category grabHighR. Each action is then
classified into one of the classification categories in CC.

4.5 Selected Body Parts

Based on the two previously presented algorithms, we can define
which categories a specialized classifier should be built on and when
it should be invoked. A specialized classifier is tailored to the char-
acteristic properties of a subset of categories. We use the following
methods to distinguish between them: matching based on selected
body parts of the CMW and matching a neighborhood around the
extremum of the action.

In contrast to the existing quantization MW techniques, the CMW
design allows us to attack the classification with a targeted approach.
The global classifier uses a flexible matching function. It does not
restrict which body parts should match, but requires a minimum
number of matches. In specialized classification, we stick to comparing
the same body parts throughout the sequence. The question is then
which and how many body parts to choose. In the ideal case, it is a
single body part that uniquely differentiates actions from two or more
classification categories.

The following procedure we apply helps with identifying the best-
performing body part and then adding another one. We do not search
all possible combinations exhaustively. We call the best-performing
body part a primary and the extra body part secondary. The counterin-
tuitive fact is that we must use disjunction instead of conjunction to
match the two body parts. Taking this process a few steps further, we
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could arrive at a complex formula that combines multiple body parts
using conjunctions and disjunctions. We are aware of the danger of
adding numerous body parts, so we limit the number of body parts
to two. Algorithm 5 gives the pseudocode.

The algorithm captures the selection process of a single body part.
The selection of both body parts and assessment of the viability of the
repetition distance is implemented in Algorithm 11.

To match only selected body parts, we define a newmatching func-
tion matchMW

S : MW ×MW → {0, 1} for any S ⊆ BP. The function
returns one if at least one of the body parts of the set S matches, and
zero otherwise. We formally define this matching function as follows:

matchMW
S (A, B) =







1 if ∑
p∈S

matchBP
p (A, B) ≥ 1

0 otherwise

In total, the specialized classifier SCBP tuned by the SelectBody-
Part algorithm uses four parameters (CC, bpp, bps, and r) to make a
classification decision in addition to the classifier itself. The parameter
r decides whether to use the action repetition distance. The classifi-
cation process of the specialized classifier using body parts is then
realized by Algorithm 6. The output of this algorithm is the result of
SSCBP

.

4.6 Finding Extremum

While some actions can be distinguished by a movement specific to
one or two body parts, some problematic actions still require an even
more targeted approach. A typical example would be grab and deposit
categories in [30]. Actions from these categories represent very similar
motions. This leads to a tricky classification because the difference
between the actions in a fewMWs in the middle of a sequence may not
be enough to categorize the action based on theMWdistance.We could
exploit the border problem if the actual grab and deposit motions
were assigned to different clusters for a body part. Nevertheless, the
problem persists as we are comparing the whole MW sequences.

The essence of such action is in a short period when the actual
grabbing or depositing of the object occurs. Ideally, we would like to
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Algorithm 5: SelectBodyPart(CC, BPs, bpp, r)

Input: CC – classification categories, BPs – set of body parts to
evaluate, optional parameter bpp – primary body part, r –
should the algorithm check for repeated actions

Output: configuration parameters for a specialized classifier
together with the achieved accuracy

1 A← {a ∈ C | C ∈ CC}; R← ∅

2 Ct ← create a temporary weighted-distance kNN classifier for the
set of actions A

3 if r is true then d← drepeated else d← dedit

4 foreach bp ∈ BPs do

5 if bpp is nil then S← {bp} else S← {bp, bpp}

6 Rbp ← evaluate Ct, use matchMW
S for matching CMWs and d

for computing distance between two CMW sequences
7 if bpp is nil then

▷ Selected primary body part

8 R← R ∪ {(bp, nil, r, Rbp.accuracy)}

9 else

▷ Selected secondary body part

10 R← R ∪ {(bpp, bp, r, Rbp.accuracy)}

11 return argmax(bpp,bps,r,accuracy)∈R accuracy

pinpoint the moment and its close neighborhood and compare actions
based on these restricted surroundings. The method should not only
be restricted by the neighborhood but also concern itself with only a
specific body part where most semantics come from. To address this
problem, we propose a new fine-grained approach. We aim to design
an algorithm that automatically finds the right time, neighborhood,
and body part. We incorporate all findings into a new distance.

Since skeleton partitioning and its subsequent transformation into
CMWs provide a relatively coarse partitioning, we focus on the orig-
inal actions comprising 3D coordinates of skeleton joints. We only
apply the first step of the MW pipeline, the normalization, see Subsec-
tion 2.1.1, with frame rate reduction, see Subsection 2.1.2. To compute
the distance between two skeleton actions, we use DTW algorithm.
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Algorithm 6: BodyPartClassification(SCBP, A)
Input: SCBP = (CC, bpp, bps, r) – specialized classifier

configuration created based on the SelectBodyPart
algorithm output, A – action to be classified

Output: SSCBP
(A) – category of action A

1 if r is true then d← drepeated else d← dedit

2 if bps is nil then S← {bpp} else S← {bpp, bps}

3 return classify action A, use matchMW
S for matching CMWs and d

for computing distance between two MW sequences

The computational requirements of DTW are minimized since just a
specific body part, and its short motion is used.

We want to know which body part does the most movement. For
this purpose, we use PCA [31] evaluated on a matrix of poses from all
actions; see Figure 4.2. From the result, we extract the most significant
axis a (a matrix column). This axis identifies a join j belonging to a
body part. This body part is then used to calculate the distance within
DTW.

As for selecting the right moment, we look for the minimum or
maximum value in the axis throughout the action. To select the right
neighborhood, we take a certain percentage based on the interval
around theminimumormaximumvalue. Sincewe do not knowwhich
extremum to choose and what the correct percentage is, we have to
tune both the parameters. The neighborhood is then created by taking
a consecutive subsequence of poses around the pose corresponding
to the chosen extremum.

Finally, to compare the two actions, we use the following procedure.
We retrieve raw data of the normalized skeleton actions and construct
a neighborhood for each action based on the parameters selected by
the previous method. This neighborhood is then compared using
dDTW on the selected body part. The proposed method is realized by
Algorithms 7–10.
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x, y, and z coordinate of Pj

︷ ︸︸ ︷

Mm×n =
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}
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Figure 4.2: Matrix M used in the PCA computation in the SelectEx-

tremumNeighborhood algorithm. The number of poses is denoted by
m, the number of joint coordinates by n, Pj for j ∈ {1, 4, 7, . . . , n− 2}
represents xyz-coordinates of a single joint, and Pi for i ∈ {1, . . . , m}
represents a pose.

4.7 Extremum Neighborhood

Algorithm 7 for classification categories CC, a Boolean parameter min,
and a percentage p returns configuration parameters for extremum
neighborhood specialized classifier. It starts by retrieving normalized
skeleton actions from all classification categories. They are assembled
into a matrix on which the PCA is initiated. The result is analyzed, and
a column with the highest absolute value is extracted from the first
principal component. This index contributed to the first component
with the highest variance. Based on this index, the joint j, the axis a,
and the corresponding body part bp are selected. The parameters are
now tuned, and the algorithm computes a neighborhood distance. A
temporary classifier is created and evaluated using the neighborhood
distance. The configuration of the parameters is returned along with
the accuracy of the classifier.

The extremum neighborhood classification is outlined in Algo-
rithm 8. A neighborhood distance is created based on the result pa-
rameters of the SelectExtremumNeighborhood algorithm. It is then
used to classify any given action A. The specialized classifier SCEN

using the extremum neighborhood method consists of the following
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Algorithm 7: SelectExtremumNeighborhood(CC, min, p)
Input: CC – classification categories, min – should we check

neighborhood around minimum instead of maximum, p –
percentage

Output: configuration parameters for a specialized classifier
together with the achieved accuracy

▷ Extraction of joint, axis, and body part from PCA

1 Ao ← retrieve all normalized skeleton actions from CC
2 P← {pose ∈ action | action ∈ Ao}
3 M←matrix where rows are poses from P and columns are

xyz-coordinates for each pose joint, see Figure 4.2
4 RPCA ← run PCA on M
5 i← retrieve the column index from the first principal component

in RPCA with the maximal absolute value
6 j← ⌊(i− 1)/3⌋; a← (i− 1) mod 3
7 bp← the body part containing joint j
▷ Extremum neighborhood computation

8 Ct ← create a temporary weighted-distance kNN classifier for a
set of actions Ao

9 dneighborhood ← CreateNeighborhoodDistance(j, a, min, p, bp)
10 Rbp ← evaluate Ct, use dneighborhood for computing distance

between two MW sequences

11 return (j, a, min, p, bp, Rbp.accuracy)

parameters besides the classifier: CC, j, a, min, p, and bp. The output
of this algorithm is the result of SSCEN

.
Quantification of the distance between two input actions is done

by Algorithm 9. It creates a dneighborhood distance custom for the passed
input actions A and B. It internally retrieves the normalized raw skele-
ton actions and computes the neighborhood of each action. DTW is
applied in the neighborhood on the body part bp. The returned dis-
tance is parameterized by joint j, axis a, Boolean min, percentage p,
and body part bp. Each neighborhood is computed independently of
the other and may result in a different number of poses in each action.
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Algorithm 8: ExtremumNeighborhoodClassification(SCEN, A)
Input: SCEN = (CC, j, a, min, p, bp) – specialized classifier created

based on SelectExtremumNeighborhood algorithm output,
A – action to be classified

Output: SSCEN
(A) – category of action A

1 dneighborhood ← CreateNeighborhoodDistance(j, a, min, p, bp)
2 return classify A, use dneighborhood for computing distance between

two MW sequences

Finally, to select only the poses in the restricted surroundings of
the extremum, Algorithm 10 extracts a consecutive subsequence of
poses from the sequence of poses S, based on the joint j and the axis
a. The algorithm has additional parameters, min, and p, where min
indicates whether to search for a minimum or a maximum, and p is a
percentage of the range of values based on which the neighborhood is
later extracted. These two additional parameters are fine-tuned. The
algorithm uses a function V , which returns the device-estimated value
for a pose-joint-axis combination.

4.8 Tuning Specialized Classifier

In the previous sections, we proposed two classification methods
that specialized classifiers use to make category predictions. Now, we
automate selecting the best method and its configuration.

Algorithm 11 takes classification categories CC as input and gener-
ates configuration parameters for either a body part or an extremum
neighborhood classifier. It starts by selecting a primary body part from
all available body parts BP. Then it selects a secondary body part that
is different from the primary one. These body parts are additionally
evaluated with drepeated by setting the last parameter of SelectBody-
Part to true. The best-performing body part method configuration
is then selected. If all actions are classified correctly, the procedure
stops and returns this body part configuration. Otherwise, we have to
use the SelectExtremumNeighborhood algorithm. We evaluate the
algorithm over the predefined percentages and minimum and maxi-
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Algorithm 9: CreateNeighborhoodDistance(j, a, min, p, bp)
Input: j – joint, a – axis, min – should we check neighborhood

around minimum instead of maximum, p – percentage, bp –
body part on which to compute the distance

Output: d – distance function taking two MW sequences as input
and computing dDTW distance on a consecutive
sub-sequences on the body part bp

1 dneighborhood ← function (A, B):
2 Ao ← retrieve the normalized skeleton action A
3 Bo ← retrieve the normalized skeleton action B
4 NA ← FilterNeighborhood(Ao, j, a, min, p)
5 NB ← FilterNeighborhood(Bo, j, a, min, p)
6 return dDTW(NA, NB) using joints from the body part bp

7 return dneighborhood

mum. As in the previous method, we choose the best one. Finally, we
compare the results of the methods and return the better one.

One may notice that we naturally prefer the result of SelectBody-
Part. The classifier created by this method can make classification
decisions based on the CMW alone, so it does not need any additional
information like the original skeleton action.

4.9 Commentary

The computational requirements of the framework can be significantly
adjusted. The user can select only the body part method with a single
body part without the repetition distance. This configuration allows
for increased classification and tuning speed since no flexiblematching
is required. Moreover, the particular body part can be extracted from
the CMWs and stored directly as a one-dimensional identifier. On the
other hand, one can utilize all of the presented methods. The methods
should be easily adaptable since themain parameterization takes place
in Algorithm 11.

The unsupervised nature of the global classifier constraints the
overall performance. The specialized classifiers may be less effective if
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Algorithm 10: FilterNeighborhood(S, j, a, min, p)
Input: S – sequence of poses, j – joint, a – axis, min – should we

check neighborhood around minimum instead of
maximum, p – percentage

Output: consecutive sub-sequence of poses from S containing only
poses around the neighborhood of Pimin

or Pimax
based on

the min parameter

1 imax ← argmaxi∈{1,...,|S|} V(Pi, j, a)

2 imin ← argmini∈{1,...,|S|} V(Pi, j, a)

3 vmax ← V(Pimax
, j, a); vmin ← V(Pimin

, j, a); range← |vmax − vmin|
4 if min is true then

5 i← imin; t← vmin + p ∗ range
6 else

7 i← imax; t← vmax − p ∗ range

8 l ← i; r ← i

9 while l > 0 and
(
(min is true and V(Pl−1, j, a) ≤ t) or

10 (min is false and V(Pl−1, j, a) ≥ t)
)

do

11 l ← l − 1

12 while r < |S| and
(
(min is true and V(Pr, j, a) ≤ t) or

13 (min is false and V(Pr, j, a) ≥ t)
)

do

14 r ← r + 1

15 return consecutive sub-sequence of poses from S, such that Pi ∈ S
for i ∈ {l, l + 1, . . . , r− 1}

the global classifier creates numerous misclassifications. They must
distinguish between a larger number of actions and categories without
the flexibility of the global classifier. It can be mitigated to some extent
by the parameter t, restricting the maximal number of classification
categories per specialized classifier.

The advantage of the two-stage design is that we can detach the
specialized classifiers at any point. By doing so, we sacrifice the per-
formance benefits of specialized classifiers to gain the possibility of
unsupervised evaluation and increased classification speed.
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4. Classification Framework

Algorithm 11: TuneSpecializedClassifierParams(CC)
Input: CC – classification categories
Output: configuration parameters for a specialized classifier

together with the achieved performance

1 Rp ← SelectBodyPart(CC, BP, nil, false)
2 bpp ← Rp.primaryBodyPart

3 Rs ← SelectBodyPart(CC, BP \ {bpp}, bpp, false)
4 bps ← Rs.secondaryBodyPart

5 RR
p ← SelectBodyPart(CC, {bpp}, nil, true)

6 RR
s ← SelectBodyPart(CC, {bps}, bpp, true)

7 BBP ← the best-performing result based on the accuracy from
{Rp, Rs, RR

p , RR
s }

8 if BBP achieved 100% then return BBP

9 P← {10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%}
10 REN ← ∅

11 foreach p ∈ P do

12 foreach min ∈ {true, false} do

13 REN ← REN ∪ {SelectExtremumNeighborhood(CC, min,
p)}

14 BEN ← the best-performing result based on the accuracy in REN

15 if BEN > BBP then return BEN else return BBP

We allow flexibility in selecting which body parts to compare dur-
ing the global classification. The specialized classifiers are more re-
stricted in this regard. Each classifier has a defined way of making the
classification decision, which benefits the explainability.

Finally, the design of our framework allows for a significant benefit.
The framework can be extended later with new actions and categories.
The phenomenon of catastrophic forgetting [32] present in neural
networks does not affect our design. Removal of existing categories is
also possible.
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5 Evaluation

This chapter goes over parameter tuning and performance evaluation
of the presented methods. The evaluation is done on two datasets ac-
quired with different technologies. The appropriate parameter values
are selected for the newly presented CMW. We study the proposed
classification framework.

5.1 Datasets

5.1.1 HDM05

HDM05 [30] is a dataset of 3D skeleton sequences captured at 120
frames per second. It contains 2,345 actions grouped into 130 cate-
gories. The skeleton consists of 31 joints, tracked by the Vicon sensor.
Five non-professional actors perform the actions.

For CMW, the actions are cut into 80-frame long segments shifted
by 16 frames, resulting in over 28,000 segments in total (see [21, Ta-
ble 4.4 and Figure 4.3] for the segmentation analysis). We reduce the
frame rate to 12 frames per second. We use this dataset in two varia-
tions, HDM05-130, the original dataset, and HDM05-65 [27], a dataset
with a reduced number of categories. In both cases, the number of
neighbors taken into account by the classifiers is set to four, the same
number as in the paper proposing motion words [1].

5.1.2 PKU-MMD

The PKU-MMD [33] dataset was introduced with an emphasis on
multimodal action detection. It uses Kinect v2 to capture skeleton
joints, red, green, and blue colors, depth, and infrared radiation. The
skeleton consists of 3D locations of 25 skeleton joints. The dataset con-
tains over 1000 motion sequences lasting approximately three to four
minutes, captured at 30 frames per second. Each sequence contains
approximately 20 actions, which are grouped into 51 action categories.
We use 43 categories that consist exclusively of everyday activities. The
other eight consist of human interactions. 66 different people perform
actions in three camera views (left, middle, right). We consider 18
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5. Evaluation

neighbors in the classifiers. This value is chosen to account for the
increased number of actions per category compared to the previous
dataset.

The dataset authors propose two evaluation settings: Cross-View
(CV) and Cross-Subject (CS). The former evaluation targets the ro-
bustness of transformation, where left and right captured sequences
are used for training and the middle sequences for testing. The latter
divides the dataset based on subjects who perform the sequences.
The training set consists of sequences performed by 57 subjects. Nine
different subjects then perform the test set. The goal of this division is
to be able to distinguish between movement variations within each
category.

In the case of the PKU-MMD, the segments are 24 frames long and
shifted by 4.8 frames. The number of segments is over 470,000. The
frame rate is reduced from 30 to ten.

5.2 Composite Motion Word

This section is dedicated to finding suitable parameters for the CMW.
Once selected, the process is repeated with the edit distance to as-
certain whether the distance replacement for DTW has a meaningful
impact. Finally, we evaluate and comment on the distance function for
action repetitions.

5.2.1 Clustering Body Parts

In this subsection, we study the optimal parameter values of CMW
while respecting both the clustering overhead and the application
evaluation. We consider how many clusters each body part should
be clustered into and the appropriate number of matches m in the
matching function. For simplicity, we keep the number of clusters k
the same for each body part. We study the classification and search
performance concerning varying k and m ∈ {1, 2, 3, 4, 5}. The range
of values of the parameter k is denoted on the x-axis in Figure 5.1.

Figure 5.1 shows the classification accuracy of CMW using the
DTW algorithm. We observe the following trend: we get better ac-
curacy with decreasing number of matches. It gradually increases
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Figure 5.1: Classification accuracy of CMW on the HDM05-130 dataset
with respect to parameters k and m using DTW distance to compare
MW sequences.

from m = 5 as we decrease the number of matches and reaches its
maximum value with m = 2, k = 400 at 75.57%. This confirms our
earlier motivation for relaxing the number of required matches in
Section 3.1. Although we could continue to evaluate results for higher
ks, the significant computational requirements of clustering outweigh
the minuscule application performance benefits.

Table 5.1 lists the best-performing search and classification config-
urations for each m. Parameter-wise, the optimal k and m were chosen
to be 400 and 2 for classification tasks and 50 and 2 for search tasks.
This is a good compromise between the resources required by the
clustering and the achieved application performance. The selected
configurations can outperform the hard quantization technique by 0.6
percentage points in the case of classification performance and 1.53
percentage points in the case of search performance. No single CMW
configuration can outperform the existingMWquantization technique
when both classification and search are considered simultaneously.
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Table 5.1: Application performance of MWs on the HDM05-130 dataset
with respect to parameters k and m using DTW to compare the MW
sequences.

Type m k Classification Search

Composite

5
4 50.11% 30.16%
7 53.43% 26.11%

4
10 59.91% 37.99%
20 62.90% 33.46%

3
20 63.50% 43.05%
50 69.21% 38.67%

2
50 66.87% 45.74%

400 75.57% 31.91%

1
350 69.72% 43.27%

1750 73.86% 26.32%

Hard [1] 350 74.97% 44.21%

We also tested more granular skeleton divisions with more body
parts, but this approach yielded only a more computationally expen-
sive clustering process. No significant benefits translated into the
application performance.

5.2.2 Sequence Alignment of Composite Motion Words

This experiment aims to determine if the edit distance is a suitable
replacement for DTW. We use the same evaluation as the previous
experiment but replace dDTW with dedit when computing the distance
between two MW sequences. We then study the changes in the appli-
cation performance.

The classification accuracy of CMWwith respect to parameters k
and m when using dedit is used is shown in Figure 5.2. It captures the
increasing trend with increasing ms as in the case with DTW. Themost
notable increase in accuracy is achieved in single and double-digit ks.
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Figure 5.2: Classification accuracy of CMW on the HDM05-130 dataset
with respect to parameters k and m using edit distance to compare
MW sequences.

Regarding the parameter m, it shows the most significant increase in
lower ms.

The best-performing configurations for each m are listed in Ta-
ble 5.2. The classification accuracy using the edit distance with k = 250
reaches a maximum of 80.77%, an increase of 5.2 percentage points
over the k = 400 configuration using DTW. Not only does the perfor-
mance increase, but the maximum value peaks at the lower k = 250.
This means that we have almost halved the number of clusters and we
can increase the performance by changing the MW sequence distance
function. In the case of the search task, the two best-performing config-
urations remain at the same value of k = 50. The search performance
increases by 2.25 percentage points to 47.99%. The edit distance proves
to be effective by not only increasing performance but also reducing
the number of clusters needed.
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Table 5.2: Comparison of the application performance of the best-
performing CMWs and Hard MW on the HDM05-130 dataset with
DTW and edit distance. m is equal to two.

DTW Edit distance

Composite Hard Composite Hard

k = 50 k = 400 k = 350 k = 50 k = 250 k = 350

Class. 66.87% 75.57% 74.97% 75.39% 80.77% 78.59%
Search 45.74% 31.91% 44.21% 47.99% 37.94% 43.31%

5.2.3 Action Repetitions

Table 5.3 lists the results and differences when dedit is replaced by
drepeated. The classification performance increases to a maximum of
81.75%, an increase of almost one percent point. The best search per-
formance decreases from a maximum of 47.99% to 47.04%. The clas-
sification accuracy of the best-performing configurations increases.
The results confirm that it is beneficial to focus on action repetitions
as suggested in Section 3.4. The classification process can take advan-
tage of the substituted distance. In contrast, the search performance
decreased in all configurations.

The design of the drepeated distance is independent of the type of
MW used. In our case, the classification performance can be improved,
but on the other hand, the performance gain does not outweigh the
incurred computational cost. The method should be used in a specific
setting where the number of actions is limited, and we know that
using this distance can improve the result. Therefore, we do not use
this distance globally.

5.3 Classification Framework

In this section, we analyze the misclassifications made by the global
classifier. Then, we study the performance impact of each of the pre-
sentedmethods.We evaluate the framework using a datasetwith fewer
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Table 5.3: The achieved application performance of drepeated distance
compared to dedit on the best-performing configurations. Evaluated
on the HDM05-130 dataset.

m = 5 m = 4 m = 3 m = 2 m = 1

Classification
Accuracy 59.36% 68.87% 75.69% 81.75% 81.02%
Change +1.88% +1.07% +2.13% +0.98% +0.72%

Search
Accuracy 30.79% 38.56% 42.06% 47.04% 46.04%
Change -0.45% -0.50% -0.81% -0.95% -0.60%

categories and compare it to neural networks. Finally, we conclude
with an experiment employing the PKU-MMD dataset.

We use the following notation. |SC| denotes the number of spe-
cialized classifiers generated by the framework. This count includes
the number of classifiers using the body part method, denoted as
|SCBP|, and the extremum method, denoted as |SCEN |. The accuracy
of the specialized classifiers, abbreviated as SC accuracy, is the number
of actions assigned to the correct category by the specialized classi-
fiers divided by the number of actions classified by the specialized
classifiers.

5.3.1 Analysis of Classification Performance

In the previous experiments, we were able to significantly increase the
classification performance of the CMW by adopting the edit distance.
A follow-up question may be as to why the performance did not
increase further. More specifically, we would like to know if there is a
systematic problem that we could potentially mitigate, or if we have
reached the limits of the current classification method. We analyze
the classification result of the best-performing CMW configuration
k = 250, m = 2 using the edit distance.

The category with the highest number of misclassified actions is
grabHighRwith 21 misclassifications, followed by depositHighRwith
19. Here, we make three crucial observations. First, in both cases,
there is a category into which most actions are misclassified. The
misclassifications are not uniformly distributed; a majority is classified
into a single category. Second, both categories are misclassified from
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29 actions
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28 actions

turnLeft

depositMiddleR depositMiddleRrotateArmsRBackward1Reps
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18
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Figure 5.3: A part of the misclassification graph for categories grab-
HighR and depositHighR evaluated on the HDM05-130 dataset. 18
actions in grabHighR are classified as depositHighR. 16 actions in de-
positHighR are classified as grabHighR. The rest are misclassifications
into other categories.

one to the other. Finally, these categories are very close in terms of
general movement. This misclassification relationship is depicted in
Figure 5.3.

After analyzing all categories, we observed several recurring mis-
classification tendencies. We summarize them in the following list:

1. Actions from a category with multiple action repetitions are
classified into a category with fewer repetitions. The repetitions
also take the form of hops or steps (e.g., kickRSide2Reps to kickR-
Side1Reps).

2. Actions are misclassified between categories with a similar move-
ment (e.g., walk2StepsLstart and shuffle2StepsLStart).

3. Actions from categories where the motion is made in a specific
direction on the spot (e.g., grabHighR and depositHighR; kickL-
Front1Reps and kickLSide1Reps).

These observations led us to the definition of the classification
framework, which serves as a correction mechanism for the misclassi-
fications made by the global classifier. The drepeated distance addresses

41



5. Evaluation

the first item. The second and third items are addressed implicitly by
restricting the matching function to predefined body parts. In spe-
cialized classifiers, all three points are the essence of the body part
method. The extremum neighborhood method was specifically de-
signed to address the particular situation of grabbing and depositing.
It can be thought of as a solution to the coarse nature of the MW.

5.3.2 Performance Impact of Classification Methods

Since we are using labels within the classification framework, we
need to change the evaluation scenario. Instead of using the leave-
one-out approach, we use n-fold cross-validation. The dataset is split
into n non-overlapping sets, respecting the number of actions in each
category. The following process is repeated for each i = 1, . . . , n. The
n− 1 sets, different from i, form the training samples used in the run
i. The actions from set i are test samples for measuring the application
performance. The resulting performance is then averaged over the n
runs.

We conduct experiments under seven different configurations. To
account for all misclassifications, the experiments are evaluated with
t = ∞, the maximum number of classification categories per special-
ized classifier. The first configuration, Without Specialized Classifiers,
evaluates the CMW in the cross-validation settings using only the
global classifier. The other configurations are implemented as modifi-
cations of Algorithm 11 (page 33) by omitting some internal results
from consideration before returning the best-performing one. The ex-
periments are evaluated using the two-stage classification framework.

The Primary BP configuration uses specialized classifiers but is lim-
ited to no extremum neighborhood classifiers and only a single body
part (Rs, RR

p , RR
s , and REN omitted). The following configurations, Sec-

ondary BP with AND and Secondary BP with OR, extend the previous
one by allowing a secondary body part. The first one is matched in
a hypothetical situation where we always require the match of both
body parts (RR

p , RR
s , and REN omitted). The second corresponds to the

definition of thematching function for specialized body part classifiers
(RR

p , RR
s , and REN omitted). Action Repetitions is the last configuration

studying the effects of body part classification methods. It builds upon

42



5. Evaluation

Table 5.4: Classification accuracy of CMW and the two-stage classifica-
tion framework with the listed modifications. Evaluated using 2-fold
cross-validation.

SC accuracy Accuracy St. dev.

Without Specialized Classifiers 71.77% 0.72
Primary BP 71.30% 74.41% 0.71
Secondary BP with AND 71.20% 74.33% 0.95
Secondary BP with OR 73.63% 76.42% 0.20
Action Repetitions 74.18% 76.89% 0.38
Only EN 72.89% 75.78% 0.83
Combination BPs + EN 75.95% 78.38% 1.36

the Secondary BP with OR configuration by using the action repetition
distance in performance-improving situations (REN omitted).

To provide insight into the performance of the extremum neigh-
borhood method, we use a configuration called Only EN. It uses the
extremum neighborhood classifiers and does not allow body part
classifiers (Rp, Rs, RR

p , and RR
s omitted). Finally, the Combination BPs

+ EN configuration does not restrict Algorithm 11 in any way. Both
extremum neighborhood and body part specialized classifiers are
used. The body part classifiers use the same configuration as Action
Repetitions.

Table 5.4 lists the obtained results from the evaluation. Note that
results in this table are evaluated using 2-fold cross-validation, while
the previous experiments used a leave-one-out approach. Adding spe-
cialized classifiers in the restricted settings defined by the Primary BP
configuration improves the accuracy by more than three percentage
points over the global configuration. An interesting observation can
be made by comparing the Primary BP and Secondary BP with AND
configurations. They produce almost identical results, suggesting that
a disjunction should be used when matching two body parts, as cap-
tured by the Secondary BP with OR configuration. TheAction Repetitions
configuration is the best-performing configuration using only body
part classifiers, improving the accuracy by over five percentage points
compared to global classification.
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The Only EN configuration studies the situation where we exclu-
sively use the extremum neighborhood method. On the one hand, it
can outperform the single body part evaluation. On the other hand,
the configuration is outperformed when the secondary body part is
added to the body part classifiers. The last configuration, Combination
BPs + EN, proved to be the best-performing one, producing 59.5 body
part classifiers and 38.5 extremum neighborhood classifiers on aver-
age. Specialized classifiers classified 85.42% of the test set actions on
average.

5.3.3 Merging Similar Categories

In [27], the authors argue that some categories of the HDM05-130
dataset are identical and should be merged. As an example, they state
that actions from the categories walk2steps and walk4steps should be
treated as actions belonging to a single category walk. They combine
several categories of the original HDM05-130 dataset according to the
following rules:

• actions that differ in the number of repetitions performed are
combined into a single category;

• actions that differ in the starting limb are combined into a single
category.

Based on these rules, a new dataset named HDM05-65 is created with
2,345 actions divided into 65 categories. They evaluate the dataset
using 10-fold cross-validation. The evaluation results of different clas-
sification methods [27, 28, 29] in conjunction with our approach are
listed in Table 5.5.

Our technique achieves 90.02% accuracy, less than six percentage
points below a neural network approach [27]. In addition, on average,
the two-stage classification produced 47.6 specialized classifiers (14.1
body part, 33.5 extremum neighborhood), while the classification
accuracy of the specialized classifiers reached 88.18%. On average, the
specialized classifiers classify 82.95% of the actions from the test set.
The standard deviation of the CMW and the framework was 2.2 and
0.98, respectively.

We see the dataset modification as a partial solution to our prob-
lems listed in Section 5.3.1. The rules suggested in [27] essentially
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Table 5.5: Classification accuracy of 10-fold cross-validation on the
HDM05-65 dataset. Composite Motion Word and Two-Stage Classifi-
cation framework evaluated with parameters k = 250, t = ∞.

Method Accuracy

Composite Motion Word 85.98%
Two-Stage Classification 90.02%

Multi-Layer Perceptron [27] 95.59%
Hierarchical Bidirectional RNN [28] 96.92%
Deep LSTM + Co-occurrence [29] 97.25%

target one of our observed problems: misclassifications between cate-
gories with different numbers of action repetitions.

The authors of [28] list the categories grabHighR, depositHighR,
grabMiddleR, depositMiddleR, grabLowR, and depositLowR as the main
misclassifications in their approach. This phenomenon corresponds
to the third item of our list of misclassification tendencies. In our
case, differentiating between such motions is a matter of favorable
clustering. The actions are not well-separated. We can only reasonably
distinguish between them using a more sophisticated method, such
as the proposed extremum neighborhood.

5.3.4 Joint Relations

The second dataset, PKU-MMD, is captured with less accurate sensors.
The size of the dataset is almost an order of magnitude larger than
the HDM05 dataset. Some of the categories feature motions requiring
precise capturing in order to be correctly differentiated. The imprecise
nature of PKU-MMD motivates the introduction of joint relations.
Upon closer inspection, many of the categories exhibit motion with a
hand around the head, e.g., saluting, brushing hair, touching the head, or
wearing glasses. Along with the imprecision, this makes it difficult to
classify the data solely on the body part composition of the CMW.

To stay within the limits of the CMW representation, we define
three joint relations. They consist of a set of joints captured separately:
right hand (RH), left hand (LH), and head (H). They are subse-

45



5. Evaluation

Table 5.6: Evaluation comparison of CMW and two-stage classification
with and without the three relations in the CS and CV settings of the
PKU-MMD dataset.

Relations |SC| |SCBP| |SCEN | SC accuracy Accuracy

CS

CMW
✗ 48.35%
✓ 62.26%

Two-Stage
✗ 43 23 20 52.49% 52.49%
✓ 43 28 15 64.77% 64.77%

BiLSTM [34] 84.73%
Activity images + CNN [35] 85.00%

CV

CMW
✗ 65.48%
✓ 75.73%

Two-Stage
✗ 43 22 21 68.46% 68.46%
✓ 43 27 16 77.01% 77.01%

Activity images + CNN [35] 92.00%
BiLSTM [34] 92.11%

quently combined to form the relations of RH + LH, a relation of the
right hand and the left hand, RH + H, a relation of the right hand and
the head, and LH + H, a relation of the left hand and the head. They
are processed in the same way as body parts and form new elements
in CMW. They are used in the same situations as the body parts; they
are used in the classification process on both global and specialized
levels.

Experiments are carried out with the number of clusters equal
to 300. We set the maximum number of classification categories per
specialized classifier (parameter t) to two. In contrast to the previous
evaluations, the training and test sets are defined for the PKU-MMD.

Table 5.6 shows the increased classification performance when the
relations are added. A substantial increase can be seen for both the
CMW and the two-stage classification framework. In the context of the
two-stage classification, the added relations increase the accuracy by
more than 12 percentage points in CS and over eight percentage points
in the CV settings. This change also positively affects the number of
classifiers using body parts. The exact values of the two-stage classifi-
cation accuracy and the accuracy of the specialized classifiers reflect
the fact that every action was subject to the specialized classification.

The performance benefit of specialized classifiers is limited, achiev-
ing only a slight increase in accuracy. There are numerous misclassifi-
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cations on the global level due to the imprecise nature of the dataset
and the size of each category. The other possibility is that the unsu-
pervised core of the framework cannot contend with neural networks.
In previous experiments, we always used t = ∞ to account for all
misclassifications. In this case, we have to limit it to two to achieve the
best accuracy since it tends to decrease for larger t.
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6 Conclusion

This thesis presented a new type of motion word (MW) called com-
posite motion word (CMW). We considered a skeleton divided into
five body parts, each clustered into the same number of clusters. The
evaluation showed that the optimal number of clusters for the clas-
sification task is 400. The accuracy reached 75.57% outperforming
the hard quantization. The same division featuring 50 clusters per
body part was used to reach a search performance of 45.74%, again
surpassing the hard motion word. These results were achieved when
the number of matches in the matching function was equal to 2.

The edit distance successfully replaced DTW for calculating the
distance between two MW sequences. In the case of the CMW, the
classification accuracy increased by over five percentage points to
80.77%. This change significantly increased the indexing capabilities
of MWs. It also reduced the number of clusters required by nearly half
to 250. As a result of this improvement, the CMW in this configuration
outperforms all originally presentedmethods in classification accuracy.
Finally, the action repetition distance, motivated by the numerous
repetition-based categories in the HDM05 dataset, further improved
the classification accuracy to 81.75%.

The definition of the CMW inspired the two-stage classification
framework. After observing the results of the classification task, we
developed a correction mechanism designed to address misclassifica-
tions called specialized classifiers. Focusing on subsets of categories,
the specialized classifiers are designed to target the problems of action
repetition, the flexibility of the CMWmatching function, and action
locality.

Three misclassification tendencies were observed and mapped to
the presented classification methods. Seven different configurations
were examined, providing insight into the advantages of the proposed
methods. The accuracy improved from the base 71.77% to 78.38%
when utilizing all of the presented methods.

The subsequent experiment compared existing neural network
solutions to our proposal. On the modified dataset, the framework
achieved an accuracy of 90.02%, less than six percentage points below
the solution using a multi-layer perceptron. Although unsupervised
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6. Conclusion

at its core, the framework provides a semi-explainable and dynamic
solution with a reasonable trade-off in classification accuracy.

Finally, the size and capturing precision of the PKU-MMD dataset
motivated the introduction of joint relations. The nearly an order-
of-magnitude larger dataset, captured with off-the-shelf hardware,
limited the accuracy improvement of the classification framework.
Nevertheless, the relations were successful and provided a significant
improvement in accuracy. The accuracy in the cross-subject settings
increased by over 12 percentage points to 64.77%. The cross-view
settings achieved an increase of over eight percentage points to 77.01%.

Future research could investigate the effect of a different number
of clusters for each CMW body part. A new mechanism limiting the
number of actions processed by the specialized classifiers should
also be considered. Systematically, the mechanism should allow more
actions to be classified only by the global classifier without needing
specialized ones.
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A Attachments

The attached archive contains the following.

• code – Source code.

– clustering – Scripts for splitting the dataset, running seg-
ment clustering, converting actions into motion words, and
combining multiple hard motion words into a single com-
posite motion word.

– motionvocabulary – Converts actions into motion words.
Extended with joint filter. Modifications are marked with
the corresponding author tag in JavaDoc.

– mcdr – Implementation of composite motion word and its
sequence distances. Implementation of the tuning process,
itsmethods, and specialized classifiers. Evaluation of the ap-
plication performance in the cross-validation setting. Modi-
fications are marked with the corresponding author tag in
JavaDoc.

• data – Composite motion word actions with accompanying files
used for evaluation.
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