
FACULTY OF INFORMATICS

Detecting code quality defects in

students’ solutions

Master’s Thesis

ANNA ŘECHTÁČKOVÁ

Advisor: RNDr. Tomáš Effenberger

Department of Computer Science

Brno, Spring 2023

Declaration

Hereby I declare that this paper is my original authorial work, which
I have worked out on my own. All sources, references, and literature
used or excerpted during elaboration of this work are properly cited
and listed in complete reference to the due source.

Anna Řechtáčková

Advisor: RNDr. Tomáš Effenberger

iii

Acknowledgements

First and foremost, I thank my supervisor, for always being ready to
discuss any questions I had, no matter how big or small, for pointing
out my many oversights in section headings and for offering me this
topic in the first place. Thank you Tom, it was a pleasure to work with
you :)

I am also ever so grateful to Ondra for guiding me through all the
industry best practices and for all the food and tea.

iv

Abstract

Code quality is critical for easy code maintenance, but teaching it
to novice programmers through manual code reviews scales poorly.
Several automated tools exist, but their feedback is only sometimes
relevant, or they are hard to use by novices. The focus of this thesis is
to create a tool that overcomes the shortcomings of the existing tools.

To achieve that, I developed EduLint, a Python linter adapting
Pylint and Flake8, tailoring them to deliver only feedback suitable to
novice programmers. The tool can detect over 200 code quality defects,
some of which are not detected by any other tool. It can be configured
to suit various programming tasks and target groups. Students can
use the tool through a web interface, which also displays explanations
for the detected defects.

I compare EduLint with other Python linters on a dataset of 100,000
submissions by novice programmers, showing EduLint provides code
quality feedback that is more relevant for novices.

Keywords

automation, program analysis, Python, source code reviews, artificial
intelligence, data analysis

v

Contents

1 Introduction 1

2 Aims and Scope 3
2.1 Defect definition . 3
2.2 Target audience . 4

2.2.1 Novice programmers 4
2.2.2 Educators . 4

2.3 Requirements . 5
2.3.1 Defects relevant to novice programmers 5
2.3.2 Precise detection of defects 6
2.3.3 Configurability 8
2.3.4 Clear descriptions of defects and how to fix them 8
2.3.5 Ease of use . 8

3 Code quality defects 10
3.1 Categorization . 10

3.1.1 Formatting . 10
3.1.2 Unsuited construct 11
3.1.3 Simplifiable . 11
3.1.4 Unused . 11
3.1.5 Erroneous . 11
3.1.6 Error prone . 12
3.1.7 Poor name . 12
3.1.8 Long or overly complex 12
3.1.9 Duplicate . 12
3.1.10 Poorly designed 13

3.2 Defect examples . 13

4 Existing solutions 17
4.1 Industry-grade linters 17

4.1.1 Pylint . 17
4.1.2 Pyflakes . 18
4.1.3 Pycodestyle . 19
4.1.4 Flake8 . 19
4.1.5 Wemake python styleguide (WPS) 19
4.1.6 Ruff . 20

vi

4.2 Integrated development environments (IDEs) 20
4.2.1 Thonny . 20
4.2.2 Industry-grade IDEs 20

4.3 Educational linters . 21
4.3.1 PyTA . 21
4.3.2 Hyperstyle . 22
4.3.3 Others . 23

5 EduLint 24
5.1 Design decisions . 24
5.2 Architecture and linting process 26
5.3 Configuration . 27

5.3.1 Configuration means 28
5.3.2 Default and extended defect groups 28
5.3.3 Other configuration options 29
5.3.4 Documentation 29

5.4 Custom detectors . 30
5.5 Postprocessing . 31
5.6 Explanations . 31
5.7 Website . 33

5.7.1 Design decisions 33
5.7.2 Interfaces . 34

6 Comparison with other tools 36
6.1 Experiments setup . 36

6.1.1 Code datasets . 36
6.1.2 Defects dataset 39
6.1.3 Running the tools 39
6.1.4 Cleaning the linting data 40

6.2 Comparison by frequent defects 43
6.2.1 Finding frequent defects 43
6.2.2 Relevance reasoning 45
6.2.3 Summary . 48

6.3 Comparison by frequent defect categories 49
6.3.1 Relevance reasoning 49
6.3.2 Detectable defects 51
6.3.3 Detected defects 52
6.3.4 Summary . 54

vii

6.4 Comparison by requirements 55
6.5 Threats to validity . 57

7 Adherence to requirements 59
7.1 Evaluation of adherence 59

7.1.1 Defects relevant to novice programmers 59
7.1.2 Precise detection of defects 61
7.1.3 Configurability 62
7.1.4 Clear descriptions of defects and how to fix them 63
7.1.5 Ease of use . 63

7.2 Future work . 63
7.2.1 Different configurations for different target groups 63
7.2.2 More defect detectors 64
7.2.3 Prioritization and presentation 65
7.2.4 Thonny plugin 65

8 Conclusion 66

A EduLint installation and running 68

B Archive organization and contributions 69

C EduLint’s custom detectors 70
C.1 Detectors . 70

C.1.1 Unsuited construct 70
C.1.2 Simplifiable . 74
C.1.3 Unused . 79
C.1.4 Error prone . 79
C.1.5 Poor name . 81

C.2 Custom defect frequencies 82

D The complete list of defects 86

Bibliography 94

viii

List of Tables

3.1 Examples of defects . 13

6.1 Dataset sizes and their code lengths 39
6.2 Ignored defects . 42
6.3 Frequent defects . 44
6.4 Detectable defects by category 52
6.5 Detected defects in files by category 53
6.6 Comparison of tools by requirements 56
6.7 False positives (FP) examples 57

C.1 Custom defects . 83

D.1 All defects with at least one occurrence 86

ix

List of Figures

5.1 An overview of the linting pipeline 26
5.2 EduLint web interface . 35
5.3 EduLint web interface showing an explanation 35

6.1 Defect report cleaning process 41

x

1 Introduction

Code quality is vital for easy code modification and maintenance [1],
which in turn dominates software cost [2]. In spite of this, the teach-
ing of programming focuses prominently on code correctness [3, 1].
Providing novice programmers with manual code reviews can be
resource-intensive or even completely resource-prohibitive [4, 5]. This
leads to code quality often being overlooked [1, 3, 6]. Even still, manual
reviews come with their own set of issues, like stretching the feedback
loop, sometimes to several weeks [7, 8, 9], and different educators
often delivering quite different feedback [6, 8, 9].

While there are several tools aimed at novice programmers that
provide automatic feedback to code quality (mostly for Java [10, 11,
12, 13, 14, 4, 15] and Python [16, 4, 15]), they come with different
caveats: the feedback is sometimes overly demanding of the students’
code or the tools are tailored to a specific course. Meanwhile, general-
purpose linters are usually hard to use, focus on code formatting, often
give feedback that is too advanced, technical, or strict, but also omit a
number of defects altogether [6, 3].

EduLint, the tool developed for this thesis, aims to provide plenty
of relevant feedback, be easy to use and configurable to allow for
differing contexts and educators’ opinions. It is a Python linter which
wraps Pylint and Flake8, both professional Python linters, and uses
a custom configuration to fit novice programmers better. It detects
over 200 different code quality defects and formatting inconsistencies.
The default configuration can be altered in several ways, either by
enabling or disabling individual defects or whole groups of them. The
configuration can also be distributed as a part of a task’s starter code,
which saves the students from managing configuration files.

I created several custom detectors for defects undetected by other
tools (e.g. the code uses a while loop instead of a for loop, uses float
division and explicit conversion to integer instead of integer division).
I also reimplemented several detectors from other tools so that they
would generate fewer false positives, detect more variations of the
defect or provide more actionable feedback.

To make the tool easier to use for novice programmers, I also
developed a web interface for EduLint, where a novice programmer

1

1. Introduction

can paste their code and receive feedback, togetherwith an explanation
of why they should fix the defect and code examples of how they can
fix it.

Both the linter1 and the web interface2 are publicly available, open-
source projects.

I argue that EduLint focuses on code quality feedback relevant to
novice programmers, compared to several industry-grade and edu-
cational linter. I detail how I ensured the tool provides well-suited
feedback through precise detectors and show what the tool’s short-
comings are.

In Chapter 2 of this thesis, I start by defining several terms and
concepts I use throughout this thesis, I characterize the target audi-
ence of EduLint, and I conclude with the list of requirements set for
the resulting tool. In Chapter 3, I present a categorization of different
defects, with examples. In Chapter 4, I introduce existing solutions,
both educational and general-purpose, and discuss their limitations.
In Chapter 5, I describe EduLint itself: the design decisions I made, the
tool’s architecture, the linting pipeline, and I end it by outlining the
web interface. I split the evaluation of the tool between two chapters: In
Chapter 6, I show how EduLint compares to other solutions, arguing
that it provides feedback that is especially relevant to novice program-
mers. In Chapter 7, I evaluate the tool’s adherence to the requirements
I specified. In the same chapter, I also outline the future work. In the
last chapter, I conclude the thesis. In the appendix, I describe how to
run EduLint (A), what is the organization of the thesis archive (B), I
list the custom detectors I developed and explain how they operate
(C), and I show a list of defects EduLint can detect (D).

1. https://github.com/GiraffeReversed/edulint/tree/v2.6.4

2. https://github.com/GiraffeReversed/edulint-web/tree/thesis

2

2 Aims and Scope

In this chapter, I first describe what is a defect. Then I introduce the
target audience (students and educators): who are they, what specifics
they have and how they are expected to use the tool. Third, I present
a defect categorization to illustrate the broadness of different defects
and to provide a means of comparing different tools. In the end, I
describe the main requirements for the tool and the reasoning behind
each of them.

2.1 Defect definition

Defect is defined by Effenberger et al. [17] as “any imperfect part of
code for which it is possible to provide some feedback or advice”.

Defect report reports a specific defect instance to the user. Such a
report contains, among others, the line (and possibly the end line) on
which the defect appears and a message describing what is wrong
and, in some cases, how it can be fixed. The message can be tailored
to include parts of the code where the defect occurs. An explanation
of why the defect should be fixed, and code examples of how to fix it
can also be a part of a defect report.

A report from EduLint can look as follows. A report in machine-
readable format may include more information.

[line] 14: Use augmenting assignment: 'a //= 2'

Why is it a problem?
Using augmented assign is not only shorter, but also clearer and less
prone to errors.

How to solve it?
For example, instead of writing x = x + 1, you can write x += 1.
Works for almost any operator.

Defect detector is an automatic means of discovering a defect.

3

2. Aims and Scope

2.2 Target audience

This section describes the two main groups of users of the tool: the
novice programmers that use the tool to get feedback on their coding
ability and the educators that assess the novice programmers’ skills
and potentially provide feedback based on the results from the tool.

2.2.1 Novice programmers

Many groups of people learn to program: computer science students,
participants in programming courses and seminars, users of various
online learning environments and massive open online courses, and
so on. A novice programmer might only learn of a defect in their code
if it is pointed out to them and be motivated enough to fix it only if
they learn why they should avoid it.

Novice programmers also usually have limited technical knowl-
edge (e.g. using the command line to run programs may present a
challenge).

Novice programmers often start learning programming by writing
short, self-contained code (tens to lower hundreds of lines) inside a
single file. The use of advanced structures in their code is possibly
undesirable (as such usage might suggest that the student cannot
solve the problem using simpler constructs – e.g. a student might
use a closure because they do not know how to pass arguments to
a normal function, a student might use a loop’s else branch as they
might not be aware that a loop does not have to have it).

2.2.2 Educators

I use educators as a broad term for programming task creators, task
graders, consultants, course instructors, etc. They share (among oth-
ers) the goal of delivering quality feedback to novice programmers
efficiently and within their budget.

Each educator usually works with a group of students (be it stu-
dents in a seminar group or all users of a learning environment).
Educators usually possess some degree of technical knowledge.

There are different ways in which different educators may regard
code quality feedback: a course instructor might decide to grade code

4

2. Aims and Scope

quality as a part of students’ evaluation, and a task creator might
add tips on how to come up with a clean solution. However, many
educators or educator groups cannot provide code quality feedback
systematically, as providing students with individual code reviews
is resource-intensive. Aggregate feedback (while still being costly
to prepare) may not completely mitigate all defects in individuals’
code (for example, a student may be under the impression that some
relevant part of the feedback does not apply to their code or assume
their code is all right, even though it contains some defect that was
just too rare to be addressed in the aggregate). Also, students may
only address feedback if they are required to.

2.3 Requirements

In this section, I detail the major requirements for the developed tool
and describe why they are significant, supporting them with related
research in several cases. I collected these requirements consulting
with other educators and observing novice programmers.

2.3.1 Defects relevant to novice programmers

The tool should detect a wide variety of defects relevant to novice
programmers: defects regarding constructs they frequently come into
contact with (e.g. loops, functions, not abstract classes) and defects
appropriate to their level of experience. It is not required for the tool to
report all relevant defects, but all reported defects should be relevant.

Several papers present a list of defects with an indication that the
authors consider them relevant to novice programmers:

• Effenberger et al. [17] list 32 code quality defects appearing in
Python solutions from an online learning environment used by
high-school and university students and show their frequencies
across different CS1 topics.

• De Ruvo et al. [7] list 16 defects prevalent in Java code by
CS1/CS2 students and in project assignments from a software
design course. Only one of the defects cannot occur in Python.

• Keuning et al. present three papers containing a list of defects:

5

2. Aims and Scope

– In 2017 [18], they listed 24 defects found in solutions by
novice users of BlueJ IDE, though seven of these are spe-
cific to Java or OOP and two regard switch statements,
which are not present in Python.

– In 2019 [6], they presented three solutions to a task in
Java and report which defects the samples contain would
educators point out to students. The number of defects
ranges around 20, but the exact number of defects listed in
this paper cannot be determined. They only list some sug-
gestions under general or miscellaneous, and the defects
differ in granularity. Most of the defects are not specific to
Java or OOP.

– In 2021 [14], they introduced their tool for teaching code
quality feedback. Nevertheless, the tool is slightly tailored
to a set of six selected Java tasks that the students improve,
assisted by the tool. They list 19 defects, of which approxi-
mately 12 seem independent of the selected tasks.

• Groeneveld et al. [19] primarily focus on exploring whether
creative novices also write clean code. However, to determine
code quality, they present a list of 26 defects, out of which 17
are also relevant to Python.

• X. Liu et al. [15] list the 10 most frequent defects in Python
code detected by the tool presented in the paper, which they
developed to provide code quality feedback.

The developed tool should often detect defects that some of these
papers mention.

2.3.2 Precise detection of defects

The detectors should have high precision. A novice programmer may
not be able to determine that a defect report is a false positive, which
can be confusing and lead to them lowering the quality of their code
by trying to fix the defect. Also, should the tool be used as a part of the
grading process, false positives could lead to unfairly lost points for the
students. Therefore, the precision of the detectors is more important
than their recall.

6

2. Aims and Scope

A false positive occurs when a detector flags some part of code
that does contain the construct it searches for but in a context in which
a human would judge the use as legitimate. For example, consider
cases when a student uses else: if c instead of elif c. Such a situ-
ation may sound like an obvious defect, but consider the following
simplified code:

if c1:

if c2:

do A

else:

do B

else:

if c2:

do something similar to A

else:

do something similar to B

While this code could be contested for possible code duplication,
transforming the outer else to elif does not much improve its quality
– and on the contrary, it breaks the current consistency of similar code
having the same indentation.

On the other hand, a human might judge every occurrence of a
defect as legitimate. I do not consider this situation a false positive
because it should be possible for the educator to disable the defect as
a whole.

Nevertheless, this does not mean that the tool should emit no
false positives on any code – some constructs have their uses in code
written by an experienced programmer but which often get misused
by novices. An example of this is writing a condition as c is True

– while an experienced programmer might use this to handle three-
valued logic, a novice usually only includes the extra code without
knowing they can omit it. Therefore, reporting that defect (and others
like it) is desirable since a novice programmer should learn of their
misconception. In contrast, a more experienced programmer can find
an alternative approach.

7

2. Aims and Scope

2.3.3 Configurability

Each educator might have a different idea of what defects novice pro-
grammers should learn about, as shown by several research groups
[6, 20]. Some defects may only be relevant to some kinds of novice
programmers (high school versus college students). Therefore, the
tool should allow each educator to use only those detectors they deem
relevant for their students. Also, a different configuration might be
appropriate for each task (for example, detectors could be added grad-
ually during the semester). Ideally, novice programmers should never
be forced to manage the configuration themselves, as they should
focus primarily on learning programming rather than attending to
the tools they use.

Since this requirement leads to the tool having plenty of configu-
ration options, they should all be listed and documented.

2.3.4 Clear descriptions of defects and how to fix them

Each reported defect should come with a clear description of what
problems the defect can cause and why the student should fix it. Re-
ceiving an explanation can help novice programmer understand their
misconception and avoid the defect in the future. The report should
ideally include examples of how the student can fix the defect.

Nutbrown et al. [9] mention this feature as one of the main advan-
tages of automated assessment tools.

2.3.5 Ease of use

As stated in Section 2.2.1, novice programmers might struggle with
installing and running a tool from the command line, especially if
they do not know anybody with whom they might consult technical
problems. Also, not all novice programmers have the rights to install
software on the computer they use (they might only have a school
computer available).

Also, novice programmers should ideally not manage configura-
tion files to use the configuration their educator meant for them.

The tool should therefore provide a way for students to use it
without struggling with technical problems impeding their learning
process.

8

2. Aims and Scope

Most tools providing code quality feedback to novice program-
mers do not just display their output as plain text. They use a web
interface [14], an IDE plugin [11], they generate output in HTML [16]
or were integrated into a learning environment [4, 13, 12, 15].

9

3 Code quality defects

To better understand the scope of defects that (novice) programmers’
code contains and to better compare different linters, I present a defect
categorization. For each category, I give examples of defects that belong
to it.

In the first section, I describe the criteria I used to categorize each
defect. In Section 3.2, I give examples of defects in each category and
sample codes in which the defect manifests. The table also shows
whether EduLint reports this defect.

3.1 Categorization

I distinguish ten categories of defect based on why is code contain-
ing it problematic: formatting, unsuited construct, simplifiable, unused,
erroneous, error prone, poor name, long or overly complex, duplicate, poorly
designed.

I started with the six categories presented by Effenberger et al. [17],
but I decided to split complex code into unsuited construct and simplifi-
able. I also added three categories (erroneous, error prone, poorly designed)
for defects that they did not mention but which occur nevertheless.

This categorization can sometimes lead to ambiguous conclusions
about a defect’s category. For example, a formatting defect could also
trigger a SyntaxError, thus earning a place in the erroneous category.
Removing unused code does simplify the code. Long or overly complex
and duplicate are both symptoms of poorly designed code. I claim that
this categorization is still useful for gaining insight into the capabilities
of different linting tools and their comparison.

For each category, I mention several examples of its defects. For
more examples and code samples that illustrate the defect, see Ta-
ble 3.1.

3.1.1 Formatting

A formatting defect is related to whitespace, parentheses and import
placement. Most of these are PEP8 violations.

10

3. Code quality defects

This category includes defects like mixing tabs and spaces, over-
indented code, whitespace before) or after (, import not placed at the
top of the module, and similar.

3.1.2 Unsuited construct

Defects in this category deal with code that can be rewritten using
another construct (or another way to use the same construct) into a
cleaner, more efficient or more readable version. This may include
suggesting using a for loop instead of a while loop, using integer
division a // b instead of int(a / b), iterating directly like for val

in lst instead of for i in range(len(lst)), testing if a value is in
a set instead of comparing to several variables, and so on.

3.1.3 Simplifiable

Code with a simplifiable defect can have some part deleted or tweaked
without affecting the behaviour. This can include dropping is True

from a condition or simplifying if c: return True else: return

False to return c, dropping else/elif after return/break/continue,
removing redundant operations like adding 0 or empty string, remov-
ing loops that make at most one iteration and more.

3.1.4 Unused

Similar to simplifiable, unused deals with code that can be removed, but
in this case, it is unused variables or arguments, or entire lines that
can be removed (useless pass, unreachable code, variable assigning
to itself, etc.).

3.1.5 Erroneous

Code containing a defect in the erroneous category throws an unex-
pected error when run. This may include passing too many or too few
arguments to a function call, using an undefined name, type errors,
using return outside a function, explicit division by zero and many
more defects.

11

3. Code quality defects

3.1.6 Error prone

While not causing an error, defects in this category mark code that
may cause an error or an error could be easily introduced into it
during modifications. Defects in this category include using global
variables or wildcard imports, comparing floats for equality or adding
or removing elements from a structure being iterated over.

3.1.7 Poor name

This category contains defects regarding variable, argument, class
or module names. This category contains defects regarding names
breaking naming conventions (e.g. a variable name in PascalCase
instead of snake_case), names with confusing characters or character
combinations (e.g. l vs 1, O vs 0), names shadowing built-ins or names
defined in an outer scope, ill-suited names (like foo, names with
spelling errors, possibly single-character variable names), or names
that are outright misleading or hindering readability (like i in for i

in text).

3.1.8 Long or overly complex

This category contains all defects regarding too long functions, func-
tions with too many arguments, nested blocks, methods or attributes
in a class, elif branches, or local variables in a code block, and logical
operators in a condition etc.

All these defects depend heavily on how many “too many” is. The
defect “function is too long” will manifest differently if “too many” is
100 or 10 lines.

3.1.9 Duplicate

There are multiple defects related to duplicate code: duplicate se-
quences or blocks, repeated expressions or the same code in both
branches of an if statement.

12

3. Code quality defects

3.1.10 Poorly designed

This category contains fundamental defects like code that is poorly
decomposed, does not use an appropriate algorithm, or is generally
hard to follow or maintain.

Some of these defects can be easily detected by proxy like long or
overly complex or duplicate, but those do not provide advice on how to
fix it. Many defects in this category can be challenging to detect and
suggest fixes, even for humans.

3.2 Defect examples

Table 3.1 shows examples of defects in each category, together with
a code excerpt in which the defect manifests. The table also shows
whether EduLint is (to the best of my knowledge) the only tool that
detects the defect (⋆), if EduLint detects the defect via a custom
detector I developed to improve over detectors in other tools (↑), if
I adopted a detector from another tool (✓), or if EduLint does not
detect the defect at all (×). If an asterisk follows after the symbol (∗),
EduLint does not detect the defect in its default configuration, but in
some extension (for the difference, see Section 5.3.2).

Table 3.1: Examples of defects

Defect Example EduLint

Formatting

inappropriate whitespace (x+y) ✓

missing newline

def fun1 ():

body

def fun2 ():

body

✓

no empty lines in function to sepa-
rate logical parts

×

13

3. Code quality defects

Defect Example EduLint

Unsuited construct

using a while loop instead of a for

loop

while i < n:

body

i += 1

⋆

using float division instead of inte-
ger division

int(x / y) ⋆

iterating using indices instead of it-
erating directly

for i in range (len(lst)):

code only reading

from lst [i]

↑

comparing to several variables in-
stead of testing if the value is in a
container

x == 1 or x == 2 or x == 3 ↑

using a magical constant instead of
applying ord to a letter

ord(char) - 65 ⋆

Simplifiable

is with a boolean value val is False ↑

simplifiable if return
if c:

return True

return False

↑

nested ifs
if c1:

if c2:

body

⋆

unnecessary else/elif after
return, break or continue

if c:

return val1

else:

return val2

✓

redundant arithmetic val + [] ↑

A loop making at most one iteration for i in range (1):

body
↑

Unused

unused variable ✓

useless pass
def fun ():

pass

body

✓

unreachable code

def fun ():

body

return

unreachable code

✓

self-assigning variable val = val ✓

changing control variable in a for

loop

for i in range (n):

body

i += 1

⋆

14

3. Code quality defects

Defect Example EduLint

Erroneous

passing too many arguments len(lst1, lst2) ×

undefined variable ✓

type error "result: " + 10 ×

using return outside a function ✓

explicit division by zero val / 0 ×

Error prone

global variables ↑

wildcard imports from module import * ✓

comparing floats for equality x == 0.3 ×

adding elements to a structure that
is being iterated over or removing
elements from it

for val in lst:

body

lst. remove (x)

↑

Poor name

name does not follow naming con-
ventions

localVariable, global_constant, CLASSNAME ↑

name can be easily mistaken l, I, 1, O, 0 ✓

name shadows built-in function list, sum ✓

name containing a spelling error lenght ×

name is misleading for i in text ×

single-variable name outside of
usual context

list named x containing measured temperatures ↑1

using variable whose name starts
with an underscore

_ += 1 ×

Long or overly complex

line too long ✓

too many statements in a func-
tion/method

✓
∗

too many arguments ✓
∗

nesting too deep ✓
∗

too many public methods ×

call chain too long fun3(fun2(fun1(arg))) ×

overly complex augmented assign-
ment

a += b ** c - d ×

1. EduLint enables configuring which single-character variable names are allowed
to use in a given task. See C.1.5 for more information.

15

3. Code quality defects

Defect Example EduLint

Duplicate 2

duplicate sequence3 f(1); f(2); f(3); f(4) ×

duplicate block3 if c: f(1); g(1); f(1)

else: f(2); g(2); f(2)
×

duplicate expression3 if a[n//2] % 2 == 0:

print (a[n//2] % 2)
×

same statement in the positive and
the negative branch of an if state-
ment

if c: f(1); i += 1

else: g(1); i += 1
×

Poorly designed 4

missing decomposition code probably contains duplicate code blocks ×

illogical decomposition
code is decomposed into functions that do not
have clear purpose ×

duplicating standard library writing custom sorting function ×

inappropriate algorithm
merging two sorted lists by concatenating them
and then sorting ×

inappropriate data structure repeatedly testing for presence of an item in a list ×

2. EduLint currently detects none of these defects and it is a crucial space for
improvement, discussed in Section 7.2.2.
3. Example is adapted from Effenberger et al. [17].
4. EduLint detects none of these defects as there are other defects it still misses
which are easier to detect than the defects in this category.

16

4 Existing solutions

In this chapter, I describe existing solutions, starting with industry-
grade solutions, be it various stand-alone linters and style checkers
or tools and capabilities built directly into IDEs, ending with linters
developed specifically for novice programmers.

I only considered the tools (or parts of them) dedicated to provid-
ing code quality feedback to any Python code on demand.

I discuss my reasons for choosing or disregarding the reuse of any
particular tool during the development of EduLint in Section 5.1.

For a comparison of selected tools (Pylint, PyTA, Hyperstyle) and
EduLint with regards to the requirements set in Section 2.3, see Sec-
tion 6.4.

4.1 Industry-grade linters

This section lists widely used, real-world, industry-grade linters and
style checkers, their capabilities and limitations and how they can be
configured and extended.

All of the tools discussed here are available as pip packages. Some
are also available on a web page (primarily those focusing on code
formatting).

4.1.1 Pylint

Pylint [21] is a linter that “checks for errors, enforces a coding standard,
looks for code smells, and can make suggestions about how the code
could be refactored”. Over half of all defects it can detect falls is either
erroneous or error prone (though this says nothing about how often
they occur in code).

It is highly configurable (each defect can be disabled or enabled
individually), and several defects come with their own configuration
options (e.g. bad variable names that Pylint should always report).

Pylint can be extended by creating plugins – Python modules
containing classes that register with Pylint when it is being run. Each
class can detect several defects.

17

4. Existing solutions

Out of the box, it comes with short descriptions of the reported
defects and, for some, examples of code that contain the defect and its
fixed version, but these are not presented to the user when they use
the tool to lint their code. They are either available through a special
command or in the documentation.

It provides a wide variety of detectors for many defects but does
not always detect them consistently. For example, in the following code
segment, Pylint reports (among others) R1703: The if statement

can be replaced with ’return bool(test)’ as expected.

if c:

return True

else:

return False

However, in the following code segment, Pylint does not report
the simplifiable-if-statement defect at all.

if c:

return False

else:

return True

Also, since Pylint targets more experienced programmers, sev-
eral detectors have a high number of false positives, counting on the
programmer to be able to evaluate whether it is relevant or not.

All this makes Pylint unsuitable to be used by novice programmers
out of the box. At the same time, Pylint can form a basis for another tool
that would provide an interface more suited to novice programmers
and their educators.

4.1.2 Pyflakes

Pyflakes [22] is a simple Python error checker. It is very conservative,
trying to avoid false positives as much as possible. While it detects
many defects that Pylint also does, it prides itself on being more effi-
cient.

Pyflakes is not documented by itself, apart from how to use it, and
is not extensible. It is meant to be used as a part of Flake8 (more in
Section 4.1.4).

18

4. Existing solutions

4.1.3 Pycodestyle

Pycodestyle [23] is a tool that simply reports PEP8 violations, by
default only those the creators deemed “unanimously accepted".

black, autoflake and isort are also tools focused on formatting, but
they automatically change the code to match some recommendations
from PEP8.

4.1.4 Flake8

Flake8 [24] is a tool that combines Pyflakes and Pycodestyle. It also
wraps mccabe, a tool to measure McCabe’s cyclomatic complexity and
report if it exceeds a preset threshold. Therefore, it focuses prominently
on formatting and erroneous defects.

Like Pylint, Flake8 is highly configurable, allowing each defect to
be enabled or disabled individually. Flake8 is also extensible by a long
list of available plugins. These plugins are independent pip packages
that, once installed, automatically run whenever Flake8 is run (unless
disabled).

4.1.5 Wemake python styleguide (WPS)

WPS [25] is one of the most extensive Flake8 plugins (at least by the
number of detected defects). It presents itself as “the strictest and
most opinionated Python linter ever”. It aims to provide feedback to
all kinds of defects, most notably to reduce complexity (detecting a
significant number of defects in the long or overly complex category),
enforcing consistency by detecting formatting and poor name defects
and suggesting improvements to unsuited constructs, and helping to
avoid bugs by pointing out erroneous and error prone defects.

It is available in two flavours: the full wemake-python-styleguide,
depending on Flake8 and several of its plugins, and wps-light, which
only depends on Flake8, without the extra dependencies.

Though it detects a high number of defects, many of these can
be controversial (forbidding the use of f-strings and explicit string
concatenation in favour of the format method, forbidding static meth-
ods in favour of class methods or functions and more) or focusing
on details like forbidding uppercase string modifiers. Also, almost
all of the defect messages simply state that they found a forbidden

19

4. Existing solutions

construct without indicating how to fix it. This information can only
be found in the documentation.

4.1.6 Ruff

Ruff [26] is a fast reimplementation of Flake8 and some of its plugins
and several other tools, though it does not report those code style
defects that an autoformatter can fix. It provides autofix support.

The development of Ruff started after I started developing the tool
for this thesis. As Ruff is installable through pip and integrates well
with Python projects, it might be worth considering transitioning to it
from the currently used Flake8.

4.2 Integrated development environments (IDEs)

Programmers often get assistance directly through their IDEs. They
can often obtain additional aid by installing a plugin.

This section describes some solutions to providing code quality
feedback directly through the IDEs.

4.2.1 Thonny

Thonny [27] is an IDE developed specifically for novice programmers.
It has a simple GUI so as not to overwhelm the novices. It provides a
debugger which allows for stepping through expression evaluation
rather than debugging the code line by line. It also assists with finding
syntax errors and several more features tailored to the needs of novice
programmers.

Thonny also wraps Pylint and mypy and employs custom dynamic
analysis to warn its users of possible issues in their code. The warning
may contain a description of what is happening or questions which
may help the user to fix the problem. It also rewords some of the
Pylint’s messages to make them easier to understand.

4.2.2 Industry-grade IDEs

In this section, I discuss the capabilities of IDEs used in industry
practice, like PyCharm, Visual Studio Code and similar.

20

4. Existing solutions

Many IDEs provide some hints or feedback on code quality and
possible errors. This advice is tailored to the needs of professional
programmers, advising advanced structures or libraries that might
not be available or allowed to use by novices.

So while creating an IDE plugin is a convenient way to deliver
feedback to a programmer, current industry-grade IDEs often do not
provide feedback suited to novice programmers.

4.3 Educational linters

This section details linters developed for providing code quality feed-
back and evaluation specifically to novice programmers.

4.3.1 PyTA

PyTA, short for Python Teaching Assistant, is a set of tools presented
by D. Liu et al. [16]. They developed it primarily to assist novice pro-
grammers with finding and fixing common bugs (so many detected
defects fall into the erroneous category). Nevertheless, it also checks
for formatting defects and some others.

It was developed for CS1 courses at the University of Toronto.
It wraps around Pylint and Pycodestyle (described in sections 4.1.1
and 4.1.3, respectively). It extends Pylint by several custom defect
detectors.

D. Liu et al. [16] have shown that making the tool available to
their students reduced the number of attempts needed to solve an
assignment, arguing that static analysis may be useful in developing
tools for novice programmers.

PyTA is distributed to students as a pip package. The students
import functions from the package and use them to get feedback on
their code. The tool can also be used to check pre- and postconditions
of a function at runtime or to assistwith debugging a loop by providing
debug prints for each iteration.

By default, students receive the feedback in the form of an HTML
page that contains all detected defects, their severity, description with
possible hints on how to fix the defect and, if relevant, excerpt from
their code with relevant passages highlighted or with a hint of a solu-

21

4. Existing solutions

tion. The tool also changes some defect messages to make them more
understandable to a novice programmer.

Using the HTML page, the student can be presented with much
more information than just through CLI, allowing them to understand
the defect better and making it easier to fix.

It is possible to configure the tool by configuring the wrapped
Pylint directly, using its .pylintrc file. It is also possible to alter the
wording of Pylint’s messages through a dedicated configuration file.

The tool expects particular workflow (e.g. it suggests fixing errors
“before submission”) or specific course rules (e.g. there is a notion of
“forbiddenusage” ormessages like “Global variablesmust be constants
in CSC108/CSC148”). Upon encountering an error, the user is asked
to "report this to [their] instructor". This makes the tool less usable
out of the box. (The text in quotation marks is taken directly from the
tool’s output.)

4.3.2 Hyperstyle

Hyperstyle is a tool for code quality evaluation, presented by Birillo
et al. [4]. It allows linting code in five different languages (Python,
Java, Kotlin, JavaScript, Go) [28] by employing real-world linters and
adapting them to the educational process.

The toolwas integrated into JetBrainsAcademy and Stepik learning
platforms to provide code quality feedback to their users.

To lint Python specifically, it wraps Pylint and Flake8 with the
wps-light plugin and several others (described in sections 4.1.1, 4.1.4
and 4.1.5 respectively) and radon, a tool for measuring various com-
plexity metrics. It does not alter any of the messages, provides no extra
detectors, and provides no explanations or examples of the defects.

Apart from producing reports of individual defects, it grades the
code quality with one of four levels (EXCELLENT, GOOD, MODER-
ATE, BAD).

The configuration files of the specific linters are the only way to
configure which detectors the tool runs.

Away from the platforms that use it, Hyperstyle is available in a
public docker image.

22

4. Existing solutions

4.3.3 Others

This section briefly describes several other solutions focused on Java
code.

AutoStyle [13] is a tool for providing feedback on Python code
(among others). It works by clustering solutions to a given task (works
onlywith solutions containing a single function) and having a teaching
assistant provide feedback for each cluster rather than each student.
Together with the TA, the system gives incremental improvement
tips to the student based on similar but slightly better solutions. This
requires a human in the loop and bootstrapping the system with
existing solutions to each task.

FrenchPress [11] is an Eclipse plugin that gives students automated
feedback on Java defects related to object-oriented programming.

WebTA [12] is a system that gives automated feedback on Java
defects, though there is an effort to extend it to other languages. It
allows educators to implement their own detectors.

Refactor Tutor [14] is a system that provides several examples of
low-quality Java code and guides the student to improve the code
using hints. I found no study on whether this helped them improve
their code.

23

5 EduLint

To fulfil the requirements set in Section 2.3, I developed a tool I call
EduLint. It wraps around Pylint and Flake8 to use their current func-
tionality and extensibility through plugins. Some of their messages
are altered to be more understandable to novice programmers. I also
implemented several custom plugins to extend the list of detectable
defects. EduLint exposes the command line configuration options of
the underlying linters to benefit from their configurability.

EduLint is available as a pip package. See Appendix A to learn
how to install and run it. Since I argued that installing and running a
package can be troublesome for novice programmers (Section 2.3.5), I
also developed a web page serving as an interface, which I describe in
the last section.

In this chapter, I comment on why I chose the technologies I did.
Then I describe the tool’s architecture and the process a piece of code
goes through to be linted. After that, I detail how to configure the tool
and its options. I mention the reasons for developing custom detectors.
Then, I outline the purpose of the three postprocessing steps: filtering,
rewording and overriding. In the second-to-last section, I describe
how explanations for the defects are obtained and used. I describe the
web interface in the last section.

It is important to note that while EduLint aims to provide relevant
feedback tomany kinds of novice programmers, the toolwas calibrated
for IB111, a CS1 course taught at the Faculty of Informatics, Masaryk
University: I used codes from the students of the course to create the
default configuration of detected defects, I also used them for testing
the tool’s precision during development, and the custom detectors I
developed were partly determined by the mistakes that students of
IB111 often make.

5.1 Design decisions

In this section, I list the decisions behind the tool’s development and
the reasoning behind them.

I decided to lint each file individually rather than use information
from other solutions to the same task, as such an approach would

24

5. EduLint

rely on the existence of other solutions and would not work well with
brand-new tasks.

In several tools developed by other researchers [16, 13, 12], defect
detection and their presentation are coupled into a single tool. I devel-
oped a pip package independent; it takes a source file and presents a
defect report for each defect it contains (either in plaintext or as a JSON
for further processing). As a separate project, I created a web interface
which receives the JSON output and displays it to the user. This way,
the package can potentially be used by other tools that display the
output of a linter to the users (and similarly, the website could show
results from other tools, provided they are in the expected format).

I decided against implementing autofixing capabilities, encourag-
ing the students to fix the defects themselves and learning not to create
them in the first place.

Since the beginning of the development, I intended to avoid reim-
plementing detectors already available in other tools. I chose to base
the tool on Flake8 and Pylint (both described in Section 4.1), as to-
gether they cover a wide range of defects, and both come with an
ecosystem of plugins, with a possibility to add more.

Currently, EduLint does not use any of the Flake8’s plugins, as for
each of them, their interaction with already existing detectors would
have to be checked so that the users do not receive a report of one defect
more than once. Also, as noted in Section 4.1.5, most WPS messages
could be more helpful for novice programmers and should be altered,
which is also true for some other plugins. Each newly added detector
needs to be checked for false positives too. Still, adding them is a part
of future work, as discussed in Section 7.2.2.

I decided against using any other tools: I intentionally disregarded
any autoformatters and did not use the whole of any educational
linters described in Section 4.3. Out of those usable for Python code,
only Hyperstyle and PyTA are open-source.

Hyperstyle for Python only wraps Pylint and Flake8 with its plu-
gins, so I decided to use those directly rather than through another
tool. That also gives me a direct way to alter their configuration on
each run.

PyTA has several disadvantages: it has limited usage in a general
context, as argued in 4.3.1. It also requires the user to install a package,
with no alternative way to run the tool, and should some changes

25

5. EduLint

to the default configuration be made, the user would have to place
the configuration files in the correct locations by themselves, which
is deemed unsuitable by the requirements set in Section 2.3. I also
decided against wrapping the tool directly, as significant parts do not
relate to code quality feedback (runtime contract checking, debugging
assistance). At the same time, the tool is open-source, and its licence
allowed me to adopt some of their detectors (top-level code, a for

using an attribute or an indexed array as a control variable: for lst[i]

in range(n)).
I considered integrating mypy, a static type checker, but decided

against it to keep the initial version simpler to develop. Adding it
should take no more than a few hours.

I chose to develop my custom detectors as Pylint plugins as those
consist only of a Python module, while Flake8 plugins require their
own package and all the handling that comes with it.

5.2 Architecture and linting process

In this section, I describe the tool’s architecture on a high level and
outline the phases of linting a file. The following sections describe the
phases in greater detail.

I based the architecture of the tool on the pipe-and-filter architec-
tural pattern. The pipeline can be seen in Figure 5.1.

Figure 5.1: An overview of the linting pipeline

The linting process inputs one or more files and configuration
options passed through the command line interface. Additionally,
each of these files may contain individual configuration in comments.

26

5. EduLint

parse configuration The configuration is extracted from the files in
the first step and combined with the configuration from the command
line. Some configuration options may be translated to options for
Flake8 and Pylint; others affect EduLint directly.

Flake8, Pylint; own detectors In the second step, the two used linters
are run with the configuration extracted in the previous step. Pylint
is run with the custom plugins I created. Each linter produces out-
put in a slightly different format, so it gets converted into a unified
structure. The linters run independently of each other but sequentially
rather than in parallel (though this improvement would be easy to
implement).

filter While some detectors are completely disabled in the configu-
ration, only some emitted messages are let through for others.

reword At this step, the text of a messagemay be changed to bemore
comprehensible to a novice.

override For some combinations of messages, it makes sense to dis-
play only one, for example, when a programmer might fix both in
fixing one. Only the one that would solve the other is kept in this step.
For an example, see Section 5.5.

In the end, the resulting defects are passed to the standard output as
plain text or JSON.

Presently, the filter and reword steps are used only lightly but can
be extended easily.

5.3 Configuration

For any given set of defects to warn novice programmers about, there
would be discord over whether some should be included. For that
reason, I have built EduLint so that every message can be enabled or
disabled. At the same time, through discussion with other educators,

27

5. EduLint

I created what I believe to be a reasonable default set of defects for col-
lege students and others seriously interested in learning programming.
The default configuration can be extended in several ways.

In this section, I first describe how an educator can configure
EduLint. Then I describe the reasoning behind the default config-
uration and its extensions. After that, I list other available options
and conclude with a description of the documentation and how it is
generated.

5.3.1 Configuration means

Currently, there are two ways to configure EduLint: through its com-
mand line interface or by including a comment in a specific format
directly in the linted code.

The intention behind exposing the configuration option through
the command line is that an educator could lint a set of files without
altering them first.

The intention behind setting configuration in the files directly is
to allow for easy configuration sharing with students. The configu-
ration can be a part of the starter code a student receives alongside
the assignment. This way, novice programmers do not have to think
about the configuration; they simply lint a file whose starter code they
received. As long as they do not delete the line with the configuration,
they receive the feedback their instructor intended for them.

Distributing the configuration as a part of the file also naturally
allows for different tasks having different configurations.

5.3.2 Default and extended defect groups

The default configuration is used when a file is linted without addi-
tional options. It contains a list of manually selected defects that would
be problematic in any programming language.

Flake8 is used as-is since PEP8 is a set of conventions mostly ac-
cepted among Python programmers, and it is useful for novice pro-
grammers to learn to adhere to it. It is already required to pass cleanly
through its detectors to get points for any homework in IB111.

For Pylint, I created a curated list of relevant defects, selected out
of all defects Pylint can detect. To prepare the list, I first used Pylint

28

5. EduLint

to check all submissions from IB111 in 2020 and 2021 to see which
ones even appeared. I checked the defect occurrences to determine the
number of false positives and disregarded the detectors that generated
too many. I also scanned the defects with no occurrences to see if any
might be relevant, even if they are rare.

Thisway, I comprised a preselection of defects. Then Iwent through
this shorter list, and for each defect, I decided if it should always be
reported or if it makes sense to report it in a group of similar defects.
As a last step, I consulted the resulting list with two other educators
and adjusted it accordingly.

The list of defects that EduLint should always report became the
default configuration for Pylint.

Three other groups of defects emerged during the process: defects
whose removal can improve the code but are not necessarily bad,
defects specific to Python, and defects related to code complexity.
Each of these groups got a configuration option that can enable all
defects in the group at once. The goal of these extensions is to allow for
a straightforward augmentation of the default configuration, should
a student themself seek improvement or should an instructor have
stricter requirements of their students than default EduLint.

This result comes with several caveats, which I discuss in Sec-
tion 7.2.1.

5.3.3 Other configuration options

EduLint also allows for passing configuration options directly to the
underlying Pylint and Flake8 or disabling a whole tool. There is an
option to specify which single-character variable names are to be
allowed: if it is set, all others will trigger a defect (see C.1.5 for more
details). The last option is specific to the needs of IB111.

5.3.4 Documentation

All configuration options, as well as all custom detectors, are doc-
umented1. Wherever possible, the documentation is automatically
generated directly from EduLint’s source code and configuration files
to ensure it is up to date.

1. https://edulint.readthedocs.io/en/v2.6.4/

29

5. EduLint

The documentation lists which defects are detected in the default
configuration and which are detected in some of its extensions.

Each custom defect has a template of its message together with a
short description of when it is emitted.

5.4 Custom detectors

For the tool, I implemented 33 custom detectors. Seventeen of these
detect defects that are, to the best of my knowledge, not detected
by any other available tool. Compared to detectors in other tools,
the remaining sixteen detectors are either more precise (the global
variable detector does not emit false positives if the code contains type
aliases), broader in scope (for example, “redundant arithmetic” also
detects adding an empty string or dividing a value by itself), or detect
a more specific situation to provide actionable feedback (while True

is only detected if the first statement of its body is an if ending with
a break – in which situation the if’s negated condition can be used as
the condition of the loop).

Some notable examples of these defects can be found in Table 3.1.
See Table C.1 for the complete list. It includes defects like using a while

loop instead of a for loop, float division instead of integer division,
and a negated condition instead of an else branch.

I had several sources of inspiration for the new custom detectors:
the lists of defects presented in Section 2.3.1, most notably the list by
Effenberger et al. [17], the list of defects to point out in code review
that novice teaching assistants in IB111 receive, consultationwith other
educators at FI MUNI and my own experience with novice code.

I list the detectors I implemented in Appendix C. For each defect, I
describe the defect, often with code samples, clarify why I decided to
detect it and explain how it is detected. Section C.2 shows frequencies
of these defects in novice code (together with a sample code exhibiting
the defect and information on whether it is a newly detected defect or
an improved detector).

30

5. EduLint

5.5 Postprocessing

This section explains the purpose and the workings of the postpro-
cessing steps of the linting process.

The first two steps, filtering and rewording, use a manually pre-
pared regular expression that matches the given message emitted by
Pylint. Thus parsed, it can be filtered based on specific parts of the
message or reworded, placing relevant parts (like code excerpts) into
the new wording.

Currently, EduLint uses these two steps just lightly: the filter helps
to go around a feature of the used Pylint version, where Pylint reports
any variable name shorter than three characters, saying “[variable
name] doesn’t conform to snake_case naming style”, even if it does,
which can be misleading for any programmer. The rewording capa-
bilities are used very little. The understandability of the messages
currently relies more on explanations, as described in Section 5.6, as
they can provide more information.

The overriding possibility exists because sometimes Pylint emits
twomessages that refer to two defects on one line, eachwith a different
fix, or fixing one can also fix the other, but not vice versa. An example
of this can be found in the following code:

if c:

return True

else:

return False

There is else after the first return, but the if statement can be
replaced by return c.

Getting two defect reports with conflicting advice can confuse
novice programmers,whomaynot knowwhich action to take. To avoid
this issue, it is possible to specify which messages can be suppressed
by others if they relate to the same line.

5.6 Explanations

Novice programmers may struggle with understanding or fixing a
defect, or they may not see a reason to fix it. To address this, Edulint
provides an explanation for each defect. The explanation clarifies the

31

5. EduLint

unwanted effect of the used construction and why it should be altered.
The explanation also contains examples of the defective code and its
corrected variant.

Let us consider a defect in which multiple comparisons are used
instead of testing for the presence of an element in a container. An
example of how to fix this could be:

Comparison of a variable to two values can be simplified using the
in operator. This is more readable and also safer against copy-paste
errors.

def problematic (text: str):

if text == 'a' or text == 'b':

return

def good(text: str):

if text in ('a', 'b'):

return

If you are comparing a single character, you can also do this:

def good(char: str):

if char in 'ab':

return

This concludes the example of how to fix the defect. An explanation
for why a student should fix the defect could be that shorter conditions
are usually easier to read.

Currently, most of these explanations are autogenerated from data
from various sources: Pylint’s documentation, which contains longer
descriptions of the defects and code examples, and Thonny’s source
code, which also builds on Pylint’s message descriptions with some
slight alterations.

Any automatically generated explanation can be overridden by a
manually written one. At present, manual explanations are written
mainly for the custom defects.

The goal for the explanation is for each defect to have its own man-
ually written explanation tailored specifically to novice programmers.

The explanations are a part of the EduLint package though cur-
rently, they are not accessible through the command line interface
and can only be viewed through the website I describe in Section 5.7.

32

5. EduLint

This is because the package is primarily intended to be used by ed-
ucators to check on frequent defects in a set of submissions. Novice
programmers are expected to use the website.

5.7 Website

In this section, I describe the website developed to serve as a web
interface for EduLint. In the first subsection, I describe the design
decisions that affected the development of the website. In the second
subsection, I describe the application programming interface (API) I
provide and the web interface.

A public instance of the website is available2.

5.7.1 Design decisions

I present EduLint to novice programmers through a website. This way,
it is available to all those capable of using the internet, which should
cover all novice programmers. The website also does not require the
installation of any new software. The drawback is that it requires the
novice programmer to leave the environment they use to get the code
quality feedback. I plan tomitigate this by developing a Thonny plugin
(see 7.2.4 for more information.

I did also consider developing a plugin for an IDE. However, I
decided against it as it would have higher maintenance cost and as
(novice) programmers use different IDEs, there would be an incentive
to develop multiple plugins, which would up the development time
since the original intention was to make the tool available to as many
users as possible.

I built the backend using flask as it is a lightweight web frame-
work, and I only developed a small site.

For similar reasons, I created the front end without any framework
in native JavaScript.While thiswas enough to develop the basic version
of the site, it proved insufficient for any more modifications, and I am
rewriting the site to use React, though this is not a part of the thesis.

2. https://edulint.com

33

5. EduLint

5.7.2 Interfaces

The website provides two separate interfaces: the API for exchanging
data and the graphical web interface for displaying them. This section
describes them in turn.

API

Most importantly, the programming interface provides endpoints to
upload and lint a file. It also provides endpoints to get the explanations
and the available EduLint versions.

Most available endpoints are documented using Swagger3.

Web interface

I developed the web interface to be as simple as possible: the main
site only allows users to paste or upload the code and check it to show
its defects, see Figure 5.2. For each reported defect, it shows its line
and message. The user can jump to the line with the problem (this
can take the user to the line with the problem even if they edited the
file, though the displayed number does not change due to technical
complications). The user can also mark individual defects as solved
(the front end cannot determine this on its own, as the linter is written
in Python, and while it is possible to run it in-browser, it has not been
a priority). The user can also display the explanation for the defect
(as described in Section 5.6). A defect with an explanation can be seen
in Figure 5.3.

The website also provides a quick overview of where to find more
information aimed at educators.

3. https://edulint.com/api/

34

5. EduLint

Figure 5.2: EduLint web interface

Figure 5.3: EduLint web interface showing an explanation

35

6 Comparison with other tools

In this chapter, I compare EduLint to Pylint, PyTA and Hyperstyle.
This comparison aims to argue that the feedback EduLint provides is
relevant to novice programmersmore often than feedback provided by
other tools and that no tool other than EduLint fulfils the requirements
set in Section 2.3

In the first section, I introduce the dataset of defect reports I used
for the evaluation: where from were the original novice codes, how
I obtained the reports and how I cleaned them. Then, I compare the
tools, first by frequently reported defects, to provide insight into which
defects reports the students would receive most often had they used
the given tool. Then, I compare the tools by frequently reported defect
categories to determine which categories the tools focus on and pro-
vide a more comprehensive overview of the tools’ capabilities. Lastly,
I compare the tools by the requirements set in Section 2.3.

6.1 Experiments setup

I used a dataset ofmore than a hundred thousand student submissions
for the experiments. From it, I obtained a dataset of 3.2 million defect
reports.

I first describe the three sources of novice code I used, then I de-
scribe how I categorized the defects the tools report, and lastly, I detail
how I obtained the defect reports and how I cleaned the data for
further analysis.

6.1.1 Code datasets

I used three sources of Python code for the experiments: submissions
from the last three years of IB111 (the course is held one semester a
year), the last eight years of the Correspondence Seminar of Informat-
ics (KSI) organized by students of FI MUNI and submissions from
users of Stepik and JetBrains Academy education platforms, made
available by Birillo et al. [29]. I refer to this last dataset as the Hyper-
style dataset because it was used to evaluate this tool introduced in
the paper. I introduce each of these datasets in more detail in turn.

36

6. Comparison with other tools

These datasets contain mostly correct single-file solutions to vari-
ous tasks written by novice programmers.

In the experiments, I used them all joined without filtering or
balancing.

Neither the IB111 nor the KSI dataset can be publicly disclosed, as
they contain solutions to tasks used repeatedly each year. The solutions
are also the students’ intellectual property and are available only for
research purposes within FI MUNI. The Hyperstyle dataset is freely
available [29].

IB111 dataset

This dataset contains 80,049 mostly correct solutions from about 1,500
students to various programming tasks on introductory programming
topics: use of control structures (conditions, loops, functions), basic
algorithms (sorting, binary search), basic data structures (numbers,
lists, strings, sets, dictionaries, classes as structures), recursion.

The dataset contains several completely incorrect solutions, as
though students have some tests available, they sometimes submit a
solution that does not pass them.

In the course, the code must pass cleanly through Flake8 checks to
earn any points for the task.

The students usually receive a starter code that contains the assign-
ment text, headers of functions they are to implement, and several
tests for their implementation (asserts inside the main() function).

As the other datasets are significantly smaller, this dataset influ-
ences the experimental results the most.

KSI dataset

This dataset contains 19,256 submissions made by about 2,700 users in
the past eight years of the seminar. The seminar covers a broad range
of topics, from doubly linked lists and deterministic finite automata
to data analysis and web servers.

The seminar’s participants are not required to adhere to any for-
matting rules or conventions.

37

6. Comparison with other tools

The participants often receive a starter code containing the headers
of the functions they are to implement and several tests (prints at the
top level of the code).

Hyperstyle dataset

The dataset contains 24,250 Python submissions by 300 users of Stepik
and JetBrains Academy education platforms. I only used 9,842 sub-
missions by 150 users, as the rest were codes collected after they intro-
duced Hyperstyle to the users.

The nature of the tasks and the environment in which the submis-
sions were collected are not discussed. By observation, the tasks range
from computing the circumference of a circle whose radius they re-
ceive from the standard input to implementing functions for Huffman
encoding and decoding.

It also seems the users were not required to adhere to any format-
ting rules or other conventions.

The users seem required to write a utility that inputs information
from the standard input, a function or a class. The code sometimes
seems to be written to be inserted into another piece of code (for
example, it uses undefined variables).

Dataset size overview

Table 6.1 shows an overview of the dataset sizes and lengths of the
codes they contain. To lower the differences between the lengths of the
codes (due to the presence of tests and assignment text directly inside
the submitted file), I removed empty lines, lines that only contain a
comment (start with #), for the IB111 dataset any code that is inside
the main function or after it (tests) and for the KSI dataset any print
statements at the top level (also tests). I did this only to show the
lengths of the codes, not during the analyses (as it would be challeng-
ing to remove only the irrelevant parts, leaving the code in working
order).

38

6. Comparison with other tools

Table 6.1: Dataset sizes and their code lengths

code lines percentile
files 25% 50% 75%

IB111 80,049 16 24 38
KSI 19,256 9 18 31

Hyperstyle 9,842 3 6 10

6.1.2 Defects dataset

I also comprised a list of all defects the tools are capable of detecting
and labelled them with the categories from Chapter 3. I used three
extra categories for the labelling: internal for reports of a tool’s error or
warning (e.g. error while parsing the code, reports that a file was ig-
nored), deprecated for warnings about Python features novices are not
likely to encounter (e.g. which are emitted only for some pre-Python
2.5 syntax) and advanced, to differentiate defects regarding more ad-
vanced topics (the defects in this category could still be categorized
in terms of the original categories from Chapter 3).

To determine which topics are advanced, I examined whether they
are being taught or required in IB111 (if not, it is advanced). Some
topics or constructs that ended up advanced are docstrings, exceptions,
lambda functions, star expressions, generator functions, decorators,
class and static methods, double underscore methods, inheritance,
access levels, abstract classes, metaclasses, properties, slots, threading,
async/await etc.

6.1.3 Running the tools

I ran the experiments using Python 3.8.10, Pylint 2.14.5, Flake8 3.9.0,
and EduLint 2.6.4. The used versions of Flake8 plugins can be found
in Hyperstyle’s requirements1

I configured each tool to report all defects it is capable of detecting.
To obtain the defects any one tool would provide, I filtered all the
reports for those the tool detects in its default configuration.

1. https://github.com/hyperskill/hyperstyle/blob/0a1eafb51ed20d5e92

b65656ca25aae6aa4dc494/requirements.txt

39

6. Comparison with other tools

I did not manage to employ several PyTA plugins (detectors for
undefined variables, redundant assignment and type error), as they
required advanced static analysis that I was not able to run. I also did
not use Flake8’s cohesion plugin, as it emitted errors I could not fix.
For several other detectors (for Pylint, Flake8 and PyTA), I had to fix
several minor bugs (e.g. the analysis terminated with an error when
the analyzed code used an undefined variable as a default argument
value).

6.1.4 Cleaning the linting data

Overview of the cleaning process with defect counts after each phase
can be found in Figure 6.1.

I received 11 million defect reports of 505 different defects on the
dataset of just over a hundred thousand files.

More than half of these reports were relics of how I ran the analysis,
so I removed them. These were defects regarding spelling errors in
comments (I did not install a Czech dictionary for the plugin), incor-
rect module names and names that are too long (I named the modules
containing the novice codes for convenience, not to adhere to PEP8
requirements or length limitations), unable to import, no such name
in module (some submissions relied on a file being present in the
same folder or on some library being installed), and Pylint’s duplicate
code (the detector detects only similarities between different files; all
the submissions were stand-alone, so it detected similarities, like the
same set of tests, between different submissions). After filtering out
these, I had just over 5 million defect reports.

Furthermore, I decided to remove several other defects, as most of
their occurrences were caused by the starter code already (e.g. PyTA
reports the use of input/output functions as a defect, but the KSI
dataset often provides tests as top-level prints) or their occurrence
was an unavoidable part of the solution (some tasks in the Hyperstyle
dataset require using print and input). I list the defects I ignored in
Table 6.2 and why I chose to ignore them. This left a dataset of around
3.9 million defect reports.

I also aggregated several defects from Pylint and PyTA into one:
Pylint’s missing module docstring, missing function or method doc-
string and missing class docstring became one defect; similarly for

40

6. Comparison with other tools

Figure 6.1: Defect report cleaning process

41

6. Comparison with other tools

Table 6.2: Ignored defects

Defect Additional information Reason to ignore

Pylint

too few public meth-
ods

by default less than 2
several IB111 assignments use classes
as structures, so they only have the ini-
tializer method

some unused imports
from ib111 import week_01,
which is not used later

IB111 uses importing a special unused
value from a module to limit constructs
which students have available

PyTA

use of global variables also flags type aliases
several Hyperstyle tasks do not require
a function, but a short script working
through standard input/output

top-level code
flags any top-level code that is
not an assignment to a constant;
also flags type aliases

KSI dataset has test prints on top-level

use of input/output
function

input, open, print
KSI and Hyperstyle datasets often en-
dorse or even require the use of these

forbidden imports
any import is flagged as forbid-
den unless configured otherwise

solutions often use imports, most often
for typing

Hyperstyle

found magic number
any number that is not between
−10 and 10 (and several others)

IB111 uses “magic constants” in tests

found string constant
overused

any constant string that is used
more than three times

IB111 uses constant strings in tests

too many asserts
IB111 uses asserts in tests, sometimes
several of them

wrong magic comment
noqa or type annotation in a com-
ment

IB111 uses noqa to suppress Flake8 er-
rors in non-student code

overused expression
like len(lst) or [1, 2, 5, 66]

used more than four times
IB111 repeats expressions in tests

EduLint

global variables
same reason as for PyTA’s global vari-
ables detector

top-level code
flags any top-level code that is
not an assignment to a variable

same reason as for PyTA’s top-level code
detector

42

6. Comparison with other tools

PyTA,which otherwise reportsmissing return, argument and attribute
type annotation separately. I did this so that the analysis of the most
frequent defects in Section 6.2 would show a broader range of defects.

PyTA, Hyperstyle and EduLint all report formatting defects de-
tected by Pycodestyle. Hence, I decided to ignore all formatting de-
fects, as they are not particularly interesting for comparison. Also
any dataset where PEP8 is not enforced (which KSI and Hyperstyle
datasets are) is bound to contain plenty of its violations. Removing
them left 3.2 million defect reports.

Throughout the comparisons, I do not use the total occurrence
counts of the defects, but I count each defect at most once per file. I
do this so that the defects that are more likely to occur multiple times
would not so easily overwhelm other defects. (For example, Pylint
reports using CRLF line endings. It would be one of its five most
frequent defects, even though it appears in only 2% of the files.) The
dataset contains 750 thousand of thus counted defect reports of 406
defects.

6.2 Comparison by frequent defects

In this section, I show frequent defects reported by the selected tools
and argue their (ir)relevance. I summarize the results at the end of
the section.

I aim to show that the defects frequently reported by EduLint are
more relevant to novice programmers than defects frequently reported
by the other tools.

6.2.1 Finding frequent defects

Table 6.3 shows the five most frequently occurring defects for each of
the selected tools.

The table also shows how relevant the defect is to novice program-
mers for a better overview. The arguments for the results can be found
later in the section.

43

6. Comparison with other tools

Table 6.3: Frequent defects

Defect Additional information
Files with
the defect

Percent of
detecteda Relevant

Pylint

missing docstring 98.7% 40.5% ×

variable namedoes not con-
form to naming style

many false positives, see Table 6.7 33.8% 13.8% ∼

compare to a falsey value
code uses if lst == [] instead of if

not lst and similar
11.6% 4.8% ×

unused variable most are control variables of a for loop 9.2% 3.8% ∼

unnecessary else after
return

7.5% 3.1% ∼

PyTA

missing docstring 98.7% 41.2% ×

missing type annotation 60.4% 25.2% ∼

unused variable most are control variables of a loop 9.2% 3.8% ∼

line too long over 100 characters 5.4% 2.3% ∼

redefining built-in function sum = 0 4.2% 1.8% ∼

Hyperstyle

possibly misspelled name many false positives, see Table 6.7 52.0% 13.4% ∼

function with too much
cognitive complexity

the specific measure is not well docu-
mented

23.0% 5.9% ∼

compare to a falsey value
code uses if lst == [] instead of if

not lst and similar
15.4% 3.9% ×

block variables overlap
two consecutive or nested for loops use
the same control variable name

14.9% 3.8% ∼

explicit string concatena-
tion

code uses "str: " + val instead of
"str: {}".format(val)

12.2% 3.1% ×

EduLint

use augmented assign code uses x = x + 1 instead of x += 1 7.6% 13.2% ✓

unnecessary else after
return

7.5% 13.0% ∼

iterate directly instead of
using indices

code uses for i in range(len(lst))

instead of for val in lst
5.6% 9.7% ✓

redefining built-in function sum = 0 4.2% 7.3% ∼

simplifiable if statement
code uses if c: return True else:

return False instead of return c
4.1% 7.2% ✓

a. Shows the number of occurrences of this defect over the total number of all
defects detected by the tool (each defect is counted at most once per file).

44

6. Comparison with other tools

6.2.2 Relevance reasoning

In this section, I argue the (ir)relevance of defects found in Table 6.3.
To support the reasoning, I use the papers presenting a list of defects I
introduced in Section 2.3.1.

missing docstring Out of the considered papers, Groeneveld et
al. [19] and Keuning et al. [18] mention docstrings, but not as an
item on their list of defects, but as a defect they did not include. Other
papers also mention docstrings, though: Börstler et al. [3] explicitly
question the relevance of docstrings for novice programmers. Edwards
et al. [30] also mention docstrings, but only as a defect that frequently
occurs in novice code, without any arguments for their relevance.

I argue that for a programmer who struggles to write their first
function, it is not all that important if they document it as well. Also,
since novice programmers are often tasked with writing a single func-
tion, any documentation would probably be just a compression of the
assignment.

variable name does not conform to naming style As in the previ-
ous case, Groeneveld et al. [19] did not include this defect. However,
complying with standard conventions, like Python’s naming conven-
tions, helps make the code readable to other programmers. All of
the considered tools enforce keeping to naming conventions in their
default configuration. Nevertheless, Pylint combines this check with
discouraging the use of short variable names, which leads to many
seeming false positives and confusing defect messages.

Pylint’s behaviour does not change in the latest version (2.17.3) nor
the upcoming Pylint 3.0.0. The behaviour can be at least reconfigured,
but primarily through configuration files.

compare to a falsey value None of the papers mentions this defect.
I argue that using not lst to test for emptiness can be confusing to
novice programmers, especially if they simultaneously learn a lan-
guage with a stronger type system. While getting used to this idiom
is useful for programmers who intend to focus on Python, it is less
relevant to novices who learn programming in general since many
other languages do not support this construct.

45

6. Comparison with other tools

unused variable Most of the papers mention unused variable as a
defect [17, 7, 19, 15], although Keuning et al. [18] decided to disregard
all defects related to unused code, though they do not state why. How-
ever, most of the cases reported by this detector are unused control
variables of a loop. The expected solution is to start the variable name
with an underscore. Novice programmers are usually unfamiliar with
this convention, so any feedback should contain this advice (these
report messages do not).

Still, it is debatable whether novice programmers should be made
to follow this convention. Since underscore is not a usual variable
name, they might be tempted to treat the loop differently from others,
or they might start using the variable named underscore once they
realize they need it, which can only lead to code that is even more
confusing than if the original variable just stayed unused. (Effenberger
et al. [17] specifically disregard cases when the unused variable is a
loop’s control variable.)

unnecessary else after return None of the papers mentions this
defect. In some cases, fixing it is only a minor change. However, if
the else’s body is a long block of code, this leads to a lower code
indentation, which is usually easier to read.

missing type annotation None of the papers mentions this defect,
but several of them deal with Java code, where they are compulsory.

Using type annotations and type checking helps to avoid many
errors. However, type systemsmay not be obvious to a novice program-
mer and require a proper explanation which a linting tool is probably
not created to provide. While encouraging novice programmers to
use type annotations and type checking is definitely of relevance, it is
debatable whether a tool should enforce type annotations in a general
context.

line too long Out of the considered papers, only Effenberger et
al. [17] list too long line as a defect, though Edwards et al. [30] also
mention it as a defect that occurs frequently.

Overly long lines are problematic for two reasons: they can be a
symptom of behaviour that is too complex, which is definitely prob-

46

6. Comparison with other tools

lematic, and they also pose the practical challenge of fitting the code
on a computer screen. Even though the defect can be solved by break-
ing the line up, this may not address the over-complication. A report
of this defect provides no actionable advice on solving the underlying
issue. Attempts at fixing it can lead to a line broken up illogically and
thus even harder to read.

redefining built-in function Only Effenberger et al. [17] advocate
against shadowing built-in functions. However, this defect cannot
occur in Java, as it does not have functions as such.

Shadowing built-ins can hinder readability and introduce bugs.
It is uncertain whether even functions that novice programmers do
not usually come into contact with but which block useful variable
names (like next or id) should be reported. At the same time, some
IDEs highlight built-in functions, so a novice could be confused about
why are some local variables highlighted differently from others.

possibly misspelled name None of the considered papers mentions
this defect. A misspelled name is more of a stylistic issue since most
IDEs highlight undefined variables or methods.

function with too much cognitive complexity Only X. Liu et al. [15]
mention cognitive complexity specifically, but Keuning et al. [18] and
Groeneveld et al. [19] list cyclomatic and NPath complexity. Other
research groups also suggest some complexity metric as a proxy for
measuring code quality [31, 32]. The popularity of these measures is
possibly partly because they are easy to compute.

The defect is similar to “line too long”: it is a symptom of poorly
readable code but does not provide any actionable advice on improv-
ing it.

block variables overlap None of the papers mentions this defect.
Using the same name for the control variable of two nested for loops
can be problematic, as using the variable would probably lead to hard-
to-fix bugs for the novice programmer. Nevertheless, the case this
detector reports most frequently are two consecutive loops that use

47

6. Comparison with other tools

the same control variable name, which can be a valid decision. The
detector is, therefore, not very precise.

explicit string concatenation None of the papers mentions this as a
defect. The reports come fromWPS, whose documentation [33] states
that .format is preferred over explicit concatenation, % operator and
f-strings for consistency reasons. However, consistency may not be the
main concern for novice programmers. Also, the use of + to join two
strings is far easier to grasp than the format method.

use augmented assign Effenberger et al. [17] and Keuning et al. [6,
14] mention endorsing the use of augmented assign.

The augmented statement is shorter and less error-prone, as the
programmer cannot write the name of a wrong variable. (In Python,
+ and += do not have the same semantics on all types; EduLint takes
care to suggest the change only if it is sound.)

iterate directly instead of using indices Effenberger et al. [17], Keun-
ing et al., Keuning et al. [6, 14] and Groeneveld et al. [19] all prefer us-
ing foreach-style loop over iterating using indices. Using a foreach-syle
loop enables naming the container’s elements, improving readability
and saving the mental effort of evaluating the subscript expression.

simplifiable if statement Effenberger et al. [17], De Ruvo et al. [7],
Keuning et al. [18, 14] and Groeneveld et al. [19] all agree that sim-
plifiable if statements should be simplified. Otherwise, the code is
unnecessarily complex and cluttered.

6.2.3 Summary

When examining frequently detected defects, EduLint reports more
relevant defects than other considered tools. The relevance of the
reported defects is supported by several research groups that listed
defects in novice code that should be pointed out, listed in Section 2.3.1.

The other tools focus on more advanced topics and specific Python
idioms and provide feedback that can be confusing without much

48

6. Comparison with other tools

more explanation or is not actionable. Some of the frequent defect
reports are also riddled with false positives.

Also, only two defects EduLint reports got filtered out during the
evaluation process (use of global variables, top-level code), and it did
not provide false positives, showing it to be possibly more robust than
the other tools.

6.3 Comparison by frequent defect categories

In this section, I show into which categories fall the defects the tools
detect, as this provides a more general overview of the tools’ scope
than the frequent defects discussed in the previous section.

I aim to show that EduLint is more focused on categories unsuited
construct and simplifiable and to argue that these are of particular rele-
vance to novice programmers when regarding code quality.

In this comparison, I also compare the tools to EduLint in its ex-
tended configuration, not only the default, to showcase how the ex-
tensions alter EduLint’s behaviour.

In this section, I first evaluate the relevance of different categories
of defects. Then I show which categories of defects the tools are most
focused on detecting and which they actually detect in the dataset,
after which I summarize the results.

6.3.1 Relevance reasoning

Out of the categories introduced in Chapter 3, I do not discuss format-
ting, as it is not particularly interesting, duplicate, as after cleaning the
defect reports, none of the tools detects any defect in this category,
and poorly designed, as again none of the tools reports any defects in
this category. I defined the advanced category in Section 6.1.2.

I use the same set of papers I used to argue the relevance of fre-
quent defects in Section 6.2.2, presented in Section 2.3.1. However,
the often-mentioned defect categories are also heavily influenced by
which categories contain defects that are easy to detect (e.g. computing
cyclomatic complexity vs finding misleading variable names).

49

6. Comparison with other tools

unsuited construct and simplifiable These categories can be con-
sidered especially relevant to novice programmers’ code quality, as
addressing them can correct misconceptions or fill gaps in the knowl-
edge of the students. Effenberger et al. [17] list 17 defects falling into
these two categories out of the total 32. Out of 15 defects listed by
De Ruvo et al. [7], 10 fall into these two categories. About half of the
defects listed by Keuning et al. [18, 6, 14] fall into these categories,
though the precise number is difficult to determine, as the defects are
not described clearly enough. Six out of the seventeen Python-relevant
defects given Groeneveld et al. [19] and two out of ten defects by X.
Liu et al. [15] are unsuited construct or simplifiable. However, they also
list several defects on the border between simplifiable and unused.

unused Defects in this category can also be a symptom of an error
(e.g. unreachable code), but often they can be just an omission (like
an unused import). Their relevance partly depends on the expected
level of tidiness. Effenberger et al. [17] mentions five unused defects,
De Ruvo et al. [7] mention two, Groeneveld et al. [19] give three and
X. Liu et al. [15] list five.

erroneous and error-prone Reporting defects in these categories can
help students discover bugs and fix their misconceptions faster, as was
shown by D. Liu et al. [16]. However, they do not directly relate to
code readability.

poor name The most interesting class of defects in this category
are names that are ill-fitting or outright misleading (e.g., using i

for something that is not an index, naming a container after what
it contains, but using singular count), but none of the tools detects
defects in this class (since they rely on the semantics of the code,
which is hard to derive automatically, these are challenging to detect
in general). Therefore this category effectively focuses on names that
are easy to confuse (l vs 1 or length vs lenght) and which break
naming conventions. Even though these variations do not address the
most fundamental issues in naming variables, they can still improve
the code’s readability. Effenberger et al. [17] list three defects from
this category.

50

6. Comparison with other tools

long or overly complex While the defects in this category can be a
symptom of poorly designed code, which is possibly the most crucial
category of defects, the defects themselves do not provide any action-
able advice. Beginners’ attempts to fix them can lead to confusing line
breaking, illogically broken down functionality or overuse of local
variables. Such fixes can silence the detector but may lead to code that
is of even poorer quality. Therefore, I believe these defects should be
treated carefully if reported to novice programmers. Effenberger et
al. [17] mention two defects that would fall into this category, Keuning
et al. give six in the 2017 paper [18], but the 2019 and 2021 papers do
not mention them [6, 14]. Groeneveld et al. [19] list seven and X. Liu
et al. [15] list one.

advanced The relevance of the defects in this category can be ar-
guable at best and heavily depends on topics covered in a specific
course.

6.3.2 Detectable defects

Table 6.4 shows what proportion of all defects each tool can detect
falls into a given category. I only consider those defects that appeared
at least once in the dataset and were not filtered out later.

Since each defect corresponds to a specific emittable message, the
way the messages are formulated affects the total count. That is, some
detectors have onemessage template, which they fill inwith additional
information; other detectors use a specificmessage for each eventuality.
This makes the table less representative, as not all defects have the
same granularity, but it can still provide an overview of what kind of
defects the tool was probably built to report.

About a fifth of defects that Pylint, PyTA and Hyperstyle detect
fall into the advanced category. The high ratio suggests they were devel-
oped for programmers dealing with a broader range of topics. Apart
frommissing docstrings, PyTA also reports defects dealingwith access
levels in classes, lambdas and exceptions. Additionally, Hyperstyle re-
ports defects regarding getter and setter methods, inheritance, context
managers, and more. Both EduLint’s default and the extended config-
uration detect only two advanced defects, regarding bare except and
unnecessary lambda.

51

6. Comparison with other tools

Table 6.4: Detectable defects by category

unsuited
construct simplifiable unused erroneous

error
prone

poor
name

long or
complex advanced total

pylint 19% 7% 8% 26% 8% 4% 7% 21% 159
PyTA 17% 5% 8% 32% 8% 7% 7% 17% 132

Hyperstyle 22% 7% 7% 18% 7% 10% 7% 23% 335
EduLint (default) 28% 18% 14% 14% 15% 8% 0% 3% 65

EduLint (extended) 36% 17% 9% 9% 12% 7% 7% 2% 98

The table shows what portion of defects the tool is capable of detecting falls into the category. Only the
defects that were detected at least once are counted. The rows sum to 100%, which corresponds to the
number in column total. The table is colored linearly between 0 and the highest value.

Apart from the advanced category, Pylint, PyTA, and Hyperstyle
focus prominently on the erroneous category; almost a third of defects
detectable by PyTA fall into this category,which corresponds to the fact
that the tool was developed primarily to help novices with debugging.
EduLint somewhat lacks in this category, as it was built to address
defects which relate to code quality more closely. Still, EduLint could
become more useful during implementation by adopting more of the
erroneous and error prone defects.

Around a fifth of defects that Pylint, PyTA, and Hyperstyle detect
fall into unsuited construct category, with less attention given to sim-
plifiable. Also, Hyperstyle does detect some defects through several
detectors, so sometimes it reports the same defect occurrence multiple
times.

EduLint focuses most heavily on unsuited construct and simplifiable
categories, and it does detect several defects that other tools do not
(as demonstrate in Appendix C).

Still, the overall number of defects detected by EduLint is much
lower than by the other tools. This is partly due to EduLint’s focus
on relevance and precision. Still, many detectors from the other tools
could be incorporated to improve EduLint’s abilities even further (for
example, if the code creates a variable only to return it instead of
returning the value directly).

6.3.3 Detected defects

Table 6.5 shows what fraction of submissions contains at least one
defect from a given category detected by a given tool. The results in

52

6. Comparison with other tools

Table 6.5: Detected defects in files by category

unsuited
construct simplifiable unused erroneous

error
prone

poor
name

long or
complex advanced total

pylint 11% 22% 17% 6% 13% 37% 16% 99% 266,192
PyTA 9% 2% 16% 6% 62% 11% 15% 99% 261,226

Hyperstyle 40% 37% 19% 8% 18% 64% 37% 8% 424,821
EduLint (default) 19% 15% 5% 2% 1% 8% 0% 0% 62,820

EduLint (extended) 31% 20% 5% 2% 10% 8% 11% 0% 120,613

The table shows what portion of all files contains a defect in the category. Neither the rows nor the
columns sum to 100%: a file may contain multiple defects and multiple tools can detect defects in the
same category. The number of detected defects in some of the considered categories (each defect counted
at most once per file) is in column total. The table is colored logarithmically between 0 and the 100%.

this table are greatly affected by the most frequent defects I already
discussed in Section 6.2.

For Pylint, the most frequently detected category, present in almost
all files, is advanced. However, only 7% of files contain a defect that
is not a missing docstring. The second most frequent category poor
name but again, only 4% files contain a defect other than a name not
conforming to naming style. The third category is simplifiable, though
only 12% of files contain a defect which does not discourage comparing
with falsey value. After that, Pylint detects unused and long or overly
complex in less than a fifth of all files, and error prone and unsuited
construct in more than a tenth.

For PyTA, the most frequently detected category is again advanced,
but just 4% of files contain a defect other than missing docstring. The
second most frequent category is error prone, but just 7% contain a
defect unrelated to the presence of type annotations. Then come unused
and long or overly complexwith around 15%, and poor name and unsuited
construct present in around 10% files. In only 2% of files, PyTA detects
a simplifiable defect.

Hyperstyle detects the most defects of all the tools: almost twice
as many as the second most prolific tool (Pylint). Its most frequent
category is poor name in almost two thirds of all files; however only
a third contains a defect other than a spelling error in a name. Out
of the 40% of files with unsuited construct, only 35% contain another
defect from using explicit string concatenation and out of the 37%
simplifiable files, just 27% contain another defect from comparing to a
falsey value. While this still leaves a significant percentage of files with
a defect in either of these categories, the relevance of some of these

53

6. Comparison with other tools

defects is still questionable (e.g. advocating for the use of sum with a
generator instead of a for loop, or forbidding testing for emptiness
by comparing if the size of a structure is zero, the sixth and seventh
most frequent defect in the unsuited construct category). A third of
files contains long or overly complex code. Unused or error prone defect
is each present in a fifth of submissions.

Default EduLint focuses almost exclusively on the unsuited con-
struct (a fifth of files) and simplifiable (15%) categories, with some
attention also given to poor name (mostly redefining builtin and name
not conforming to naming style – it avoids the false positives generated
by Pylint).

Extended EduLint favours unsuited construct (a third of files) and
simplifiable (a fifth of files) even more prominently. It also detects
defects from long or overly complex and error prone categories in around
a tenth of the files.

EduLint significantly lacks behind the other tools in the number of
detected defects. However, many of the defects reported by the other
tools are either arguably irrelevant or duplicates of other reported de-
fects. Also, already in the requirement of precision set in Section 2.3.2,
I stated that the precision of the detectors is more important than their
recall, which is also reflected in EduLint’s defect count.

Even though a significant fraction of defects which Pylint, PyTA
and Hyperstyle detect falls into the erroneous category, only a lower
number of files contains a defect in this category. This is probably
caused by the fact that the dataset contained mostly correct solutions.
Still, the dataset did also contain solutions which were not correct at
all, passed only a part of their tests, or were meant to be run as a part
of some large code, so the tools do detect some erroneous and error
prone defects.

6.3.4 Summary

Both when considering which defects EduLint can detect and which
get reported, EduLint provides plenty of relevant code quality feed-
back since most of the reported defects are in the unsuited construct
and simplifiable categories.

The frequent defects which are problematic (as discussed in Sec-
tion 6.2.2) and get reported by the other linters almost overwhelm

54

6. Comparison with other tools

the other defects the tools detect. When disregarding these defects,
the focus of the tools shifts to reporting long or overly complex defects,
which can be relevant, but usually lack actionable feedback that would
ensure that the code quality improves. Defects from the unused cat-
egory also get reported frequently by Pylint, PyTA and Hyperstyle.
However, for 10 % of the files, the only unused defect they contain is
either unused control variable of a for loop (which I already discussed
and marked questionable in Section 6.2.2) or an unused argument
(which is often just an unfinished implementation of a function with
provided header).

Hyperstyle does detect many defects, both overall and in the un-
suited construct and simplifiable categories. While some of them are
potentially relevant (though not the most frequent ones), adopting
them would require careful selection, improving the messages and
providing explanations.

6.4 Comparison by requirements

In this section, I compare EduLint to the other existing tools with
regard to how they fulfil the requirements set in Section 2.3. Table 6.6
shows the comparison and the criteria I used to determine the level of
adherence. It can be seen that EduLint is the only tool that fulfills all
of the requirements.

The criterion for the tool’s precision uses false positives in frequent
defects – examples of these are in Table 6.7. The relevance of detected
defects was discussed extensively in sections 6.2 (relevance of frequent
defects) and 6.3 (relevance of frequent categories).

I did not set a fail criterion for precision, as the tools were mostly
precise (with notable exceptionsmentioned in Table 6.7), at least to the
degree I could determine. I also did not set a fail criterion for relevance
to novice programmers, as I find it impossible to argue irrelevance en
masse objectively.

I elaborate on EduLint’s adherence to the requirements further in
Chapter 7.

55

6. Comparison with other tools

Table 6.6: Comparison of tools by requirements

pylint PyTA Hyperstyle EduLint
Precision ∼ ∼ ∼ ✓

Relevance ∼ ∼ ∼ ✓

Configurability ✓ × ∼ ✓

Explanations ∼ ✓ × ✓

Ease of use × ∼ × ✓

Criteria

Precision

∼ At least one detector frequently generates false positives (examples in Ta-
ble 6.7).

✓ Detectors do not generate any known false positives.

Relevance (for more arguments see sections 6.2 and 6.3)

∼ Frequently reports defects which can be argued of little relevance.
✓ Frequently reports defects which can be argued to be relevant to novice

programmers.

Configurability

× The tool does not allow enabling and disabling individual defects on each
run.

∼ The tool allows enabling and disabling whole tools it wraps, but not indi-
vidual defects, on each run.

✓ The tool allows enabling and disabling individual defects on each run.

Explanations

× The tool provides no explanations or examples, except for the defects’ mes-
sages.

∼ The tool provides explanations and examples, but only in its documentation.
✓ The tool provides explanations and examples to most defects.

Ease of use

× The tool is only available from command line (or through a paid service).
∼ The tool provides a graphical output, but still requires installing a package.
✓ The tool can be run through a graphical interface, which does not require

installing any special software.

56

6. Comparison with other tools

Table 6.7: False positives (FP) examples

Tool Defect
Files with
the defect

FP a FP case

pylint

name does
not conform
to naming
style

34% cca 90%

the detector flags any vari-
able name with less than
three characters as not
conforming to snake_case,
even if it does

PyTA
use of global
variables

26% cca 40%

the detector flags any def-
inition of a type alias as a
global variable, even if it is
not modified

Hyperstyle
possibly
misspelled
name

52% cca 60%

the detector flags names
containing a number, like
p1 or word1, common ab-
breviations like ipv4, and
actual Pythonmethods like
isdecimal

a. Probable false positives over the total number of occurrences of the defect.

6.5 Threats to validity

There are multiple limitations to the evaluation methods, especially
when comparing tools regarding the frequency of defects and defect
categories.

I attempted to use data from several sources of novice code to
examine the tools’ behaviour in a broader range of settings; however,
the sizes of the individual datasets are unbalanced. The results are
therefore skewed towards defects appearing in the first-year university
course IB111. Also, I used parts of the IB111 dataset for fine-tuning
during the tool’s development (though I did not examine all 80,000
files).

Out of the compared tools, Pylint nor PyTA were built specifically
to provide code quality feedback to novice programmers. Pylint fo-
cuses on providing feedback to professional programmers, and PyTA
concentrates on helping novices write functionally correct code. I also
only considered some existing tools; I did not search for solutions that

57

6. Comparison with other tools

could work with any programming language, nor did I pursue tools
that were not, to the best of my knowledge, already publicly available.

In the analyses, I focused heavily on the most frequent defects and
categories, not examining potentially highly relevant but less frequent
ones.

PyTA does report several defects that I argued are irrelevant in
general settings (missing docstrings, missing type annotations) or
which were false positives in the context of the dataset (global vari-
ables, top-level code). These defects seem to arise from a set of course
rules, and they would be highly relevant in any other course with the
same rules.

Formatting defects are not particularly interesting, and also all Py-
codestyle defects are reported by all of the tools, except for Pylint,
so they are not that useful for comparison. However, formatting de-
fects still comprise a portion of detected defects, and for some, their
relevance is also debatable.

I only compare EduLint’s performance on historical data without
examining how actual students interact with it.

I strive to support my conclusions through research in the argu-
ments for defects’ and categories’ relevance. However, the results are
still biased in favour of EduLint since I would not have it detect defects
I do not consider relevant. There is a similar issue with the overall
set of requirements and the criteria for their fulfilment: I developed
EduLint so that it would pass this set of requirements with these crite-
ria, though I offer justification for the requirements and I attempted
to set the criteria fairly.

58

7 Adherence to requirements

In this chapter, I first show how EduLint adheres to the requirements
set in Section 2.3. I claim it succeeds at employing precise detectors
of relevant defects, is highly configurable and that the web interface
provides an easy way to interact with the tool, supplying the users
with explanations of the defects and examples of how they can be
fixed. In the last section, I outline the future work. Most notably, I
suggest creating different configurations for different kinds of novice
programmers (like high school who are just discovering programming
vs university computer science students).

7.1 Evaluation of adherence

In this section, I evaluate how EduLint holds up to the requirements
set in Section 2.3 and describe how I ensured the requirements are
met.

7.1.1 Defects relevant to novice programmers

As established in Section 2.3.1, the tool should defect a wide variety
of defects, all potentially relevant to novice programmers.

EduLint can detect many defects, most of which occur in novice
code. Their selection was based on articles dealing with common
novice defects, listed in Section 2.3.1, guidelines to novice teaching
assistants, consultation with other educators and lastly, personal ex-
perience with tutoring novice programmers and reviewing their code.
These defects are split between the default and several extension con-
figurations (presented in Section 5.3.2.)

In this section, I show how many defects EduLint detects in code
by novice programmers. I describe the reasons behind developing
custom detectors. I state that the idea of a default configuration is
problematic and suggest mitigation.

I argued for the relevance of the defects EduLint detects extensively
in sections 6.2 (shows frequently detected defects are relevant) and
6.3 (shows frequently detected defect categories are relevant).

59

7. Adherence to requirements

The number of defects

EduLint is capable of detecting 185 different defects in the default
configuration, 222 if the extension groups of Python-specific, code
complexity-related and enhancing defects are included.

When EduLint is run on the dataset I introduced in Section 6.1.1, it
detects 124 different defects in the default configuration at least once,
159 in the extended configuration. Out of the 61, resp. 63 undetected
defects, 57 are Flake8 defects in both cases (15 of those 57 are advanced
or deprecated and 14 regard the format method).

Custom detectors

Out of the 33 defects for which EduLint has custom detectors, 17 are
not present in any of the examined tools (listed in Section 4), nor any
other, to the best of my knowledge. The remaining 16 detectors have
either higher precision or higher recall or are narrower in scope but
only to provide actionable feedback to a more specific situation (for
concrete examples, see Section 5.4).

Table C.1 shows the complete list of these custom defects. For
each defect, it shows a code containing it, the information on whether
EduLint is the only tool that detects the defect and the frequency of
the defect on novice code.

While EduLint does detect many defects that probably would
not be addressed otherwise, there are still plenty of defects that go
unnoticed. The defect category in which EduLint lacks the most is
duplicate code, though it shares this weakness with all other discussed
tools. See 7.2.2 for more information.

Relevance of the default configuration

The default configuration is relevant primarily to first-year computer
science college students but not so much to different groups of novice
programmers (like high school students). Even more defects would
have to be moved to some extension group to make the default con-
figuration relevant to a more general audience. Creating more exten-
sion groups would make using the tool impractical for educators with
higher expectations of their students. Theywould need to enablemany
of these groups for each task (and study the options more extensively

60

7. Adherence to requirements

beforehand). I discuss the issue further and outline the mitigation
steps I plan to take in Section 7.2.1.

7.1.2 Precise detection of defects

EduLint detectors were chosen or developed with precision on novice
code as the first priority.

As stated in Section 2.3.2, any report of a piece of code containing
the detected construction but in a context where it could be judged
legitimate by a human is considered a false positive (for an example,
see the section mentioned above). Despite all efforts, EduLint’s detec-
tors still sometimes provide false positives, but these are treated as
bugs and should be fixed as soon as possible.

In this section, I describe how I went about ensuring the high
precision of the detectors, how I handled false positives I encountered
and how the code is tested.

Ensuring precision

For each detector I adopted or developed, I linted submissions from the
last three years of IB111 and manually examined 10–20 submissions
to see which parts of the code were flagged as defective.

For some detectors I developed, I used an iterative approach. I first
wrote a simple detector for the most straightforward variant of the
defect and then incrementally added detection for more specific cases,
examining which instances appeared and which disappeared in each
iteration. This process helped me examine even more specific variants
of the defects.

I also monitored the frequency of defects overall. It helped me dis-
cover several detectors generating false positives because their defect
occurred more often than expected.

Lastly, I used the instructors’ solutions for the IB111 tasks as a
benchmark, assuming that the code written by instructors should be
exemplary. While this assumption has not proven entirely accurate,
this process also helped discover several false positives.

61

7. Adherence to requirements

False positives remediation

If I encountered any false positives in a detector I wanted to adopt, I
either tried to filter out the unwanted messages, reimplemented the
detector, or marked the defect as needing more attention.

For each encountered false positive in the detectors I developed, I
altered the implementation. Sometimes, this forced me to reconsider
the scope of the defect, as there were too many false positives for
its broader definition. In some cases, I even discard the defect as a
whole (for example, in the case of else: if to elif described in
Section 2.3.2).

Testing

I also wrote a regression test for each false positive in my detectors. I
wrote tests for true positives or true negatives as well.

Currently, the project has 151 tests for the 33 custom detectors
(some tests regard multiple defects, especially those on real-life code).
The project currently runs 296 tests in total. Unfortunately, I cannot
provide any coverage information because both the linters are being
run as separate subprocesses (to my knowledge, neither provides a
stable and documented API for linting files directly).

A new version of EduLint is published only if it passes the tests.

7.1.3 Configurability

EduLint allows each detector to be enabled or disabled on each run. It
also allows putting configuration directly into the source code, allow-
ing for easy distribution to students (which is an option that no other
tool provides, they usually only allow disabling specific detectors for
specific parts of code).

Out of the commonly available means of configuration, EduLint
does not implement configuration files. This was initially on purpose,
as I wanted to avoid forcing the students to manage configuration files.
However, I plan to add support for them to mitigate an issue with the
default configuration, which I discuss further in Section 7.2.1.

62

7. Adherence to requirements

7.1.4 Clear descriptions of defects and how to fix them

EduLint scrapes explanations and examples of fixing Pylint’s defects
from Pylint’s documentation. It also provides manually written ones
for some customdefects. It does not yet provide hints for Flake8 defects
because they are mostly straightforward to understand and fix.

While the scraped explanations are better than no explanations,
they were not written for novice programmers and canmiss important
information or opportunities to fix students’ misconceptions. In this
aspect, the explanations can still be significantly improved.

The explanations are displayed alongside the detected defects on
EduLint’s web page, though not when the package is used through the
command line directly. This behaviour follows the assumption that
students will use the web interface while only educators will interact
directly with the command line interface.

7.1.5 Ease of use

Although the package itself does not fulfil this requirement (as it
still requires installing the package locally), EduLint comes with an
accompanying web page (described in Section 5.7) that a student can
paste their code into and receive the results there.

As stated in Section 5.7.1, this solution has the advantage of high
accessibility and low barrier to use, but it forces the student to leave
their IDE. I describe the arguments against developing a plugin in the
section mentioned above. Nevertheless, I plan to adapt EduLint as a
Thonny plugin; I discuss this in greater detail in Section 7.2.4.

7.2 Future work

In this section, I discuss the improvements I plan for the tool.

7.2.1 Different configurations for different target groups

Even though the tool strives to provide a reasonable default, the idea
that there could be one default configuration for all different target
groups (from high school students who learn programming as a com-
pulsory topic to college students who hope to make their living as

63

7. Adherence to requirements

a programmer one day) has proven to be too idealistic. At the same
time, the expectation that each educator would select extension groups
according to their need creates a high threshold for adopting the tool.

Therefore, I plan to develop several configurations for different
groups of novice programmers. These would be distributed in the
form of configuration files but as a part of the package. The informa-
tion on which configuration file to use would still be a part of the
file itself. Hence, if an educator chooses one of these pre-prepared
configurations, their students would not have to handle any configu-
ration files. I am still considering how to handle distributing custom
configuration files.

7.2.2 More defect detectors

While EduLint already detects many relevant defects, it can always
detect more. The most glaring gap is in the category of duplicate code,
where it detects no defects, even though the defects in this category
are undoubtedly important (Several of the papers with novice defects
listed in Section 2.3.1 contain some defects in the duplicate category
[17, 18, 14, 19]).

From the considered tools, only Pylint and WPS detect some de-
fects related to code duplication: Pylint can check for identical code
segments in multiple files and WPS checks for expressions repeated
too many times. Both come with their limitations: Pylint’s solution
cannot find code segments that are very similar but not identical, and
it cannot search for duplicate code inside a single file; WPS flags even
repeated uses of simple expressions like len(lst), even though ex-
tracting them to a variable would not improve the code much. I briefly
searched for other tools but did not find any solution that would be
able to find similar code blocks inside one file, except for a PyCharm
plugin.

I attempted to write my own detector, but I did not create a precise,
robust and general solution in the allocated time, so I decided to
abandon the effort for the time being. Creating at least detectors for
more specific situations should nevertheless be much easier.

Apart from defects from the duplicate category, many other defects
remain to be detected. Flake8’s plugins already detect several inter-
esting ones; these still need to be vetted for false positives, possibly

64

7. Adherence to requirements

reworded to be clearer and provisioned with an explanation. I also
consider adding mypy as one of the tools that EduLint incorporates.

Lastly, there are some other defects undetected by other tools, like
checking if a function is pure.

7.2.3 Prioritization and presentation

The number of defects EduLint can detect is already relatively high
and is only expected to grow. For around 800 codes linted during the
evaluation described in Chapter 6, EduLint emitted over 50 messages.
Currently, the web only shows the list of detected defects (which can
become overwhelming if there are too many), without any indication
of which are critical to avoid and which are only small enhancement
proposals. So, EduLint, and most notably its web interface, could be
improved by clearly communicating which defects the novices should
focus on the most.

Also, allowing the students to easily receivemore feedback on their
code than their instructor set as the required level might be beneficial
if they seek to improve the code even further.

7.2.4 Thonny plugin

While creating a web page as an interface has many advantages (de-
tailed in Section 5.7.1), this solution is still not ideal. A web interface
forces the student to leave the IDE they have been working in, encour-
aging the practice of fixing all errors when they solve the task rather
than throughout when the hints of erroneous or error prone construc-
tions would be more helpful. Also, in the web interface, the students
(currently) cannot run their code to see whether their attempts to
fix the defects broke the functionality. This setup might force the stu-
dents to switch between the web page and their IDE, which can be
bothersome.

To balance this issue while avoiding the pitfalls of maintaining
multiple IDE plugins, I plan to develop a plugin only for the Thonny
IDE, which already has several other features tailored to novice pro-
grammers and is often recommended to them. (The students who
decide against using Thonny can still use the web interface.)

65

8 Conclusion

Teaching how to write high-quality code is important because quality
code is easier to extend and maintain. However, providing feedback
on code quality to novice programmers is costly, bordering on infea-
sible in many cases. Even though there are multiple automatic tools,
including several explicitly aimed at novice programmers, they come
with different shortcomings.

To create a tool that avoids at least some of those shortcomings, I
proposed, developed and evaluated EduLint. This tool automatically
provides feedback on many code quality defects found in Python code
by novice programmers.

I set and justified requirements for the tool: it should provide pre-
cise and relevant feedback to novice programmers, with examples and
explanations, and be easy to use. I introduced defect categorization
to reveal the scope of defects that can occur in novice code and to
ease assessing the capabilities of existing tools and comparing them
to EduLint’s. I presented several existing solutions for providing code
quality feedback, ranging from industry-grade linters to tools devel-
oped specifically for novice programmers.

I described how the EduLint linter and its web interface operate.
EduLint is available as a pip package. It extends the basic capabilities
of Pylint and Flake8, widely used Python linters, by employing several
custom detectors I developed. Many of these detect defects that other
examined tools miss (e.g. using a while loop instead of a better-suited
for loop). It allows for flexible configuration of detectors and provides
a default configuration crafted specifically for novice programmers.
EduLint’sweb interface can lint a filewithout installing any specialized
software. It also displays explanations for many defects and examples
of how a student can fix them.

I extensively evaluated the developed tool: I rigorously examined
the relevance of defects EduLint reports compared to defects and de-
fect categories frequently reported by other tools. I concluded that out
of all examined tools, EduLint provides the highest share of feedback
relevant to novice programmers, as it frequently reports defects and
defect categories that are often listed as problematic in novice code in
related research. Furthermore, I examined how EduLint adheres to

66

8. Conclusion

the requirements mentioned above, and I suggested steps to improve
its capabilities even further.

I plan to improve EduLint’s usability for various kinds of novice
programmers by creating different configurations. Currently, its con-
figuration is best suited to first-year college students but is probably
too strict for high school students. I also plan to investigate ways to
detect duplicate code, as duplication is a frequent and serious defect,
but it goes undetected in all of the examined tools.

67

A EduLint installation and running

The easiest way to run EduLint is to visit https://edulint.com, where
the user can paste the code they intend to lint and click “Check”. The
site also contains an example defective code1.

EduLint can also be installed locally using pip by running the
following command. It might be necessary first to activate a virtual
environment if the tool’s dependencies clash with versions of some of
the installed packages. It requires a Python version of at least 3.8.

python3 -m pip install --user edulint ==2.6.4

The tool can be run from the command line like so:

python3 -m edulint FILE [FILE ...]

For ways to configure the tool and available configuration options,
see the tool’s documentation2. It might be desirable to run only Pylint
and the custom detectors. This can be achieved by using the no-flake8

option, running the tool like so:

python3 -m edulint -o no -flake8 FILE

EduLint can also be run directly from the source code by running
the previous command in the root folder of its GitHub project3 (or
in the edulint folder of the archive). However, when run this way, it
is necessay to set PYTHONPATH, to correctly load the custom detectors.
To run the tool directly from source, I recommend using the enclosed
Makefile.

make run ARGS="FILE"

make run ARGS="-o no - flake8 FILE"

EduLint does report defects in EduLint’s source code.Most of them
regard lines longer than 79 characters, which is the limit recommended
by PEP8.

1. https://edulint.com/editor/code/example

2. https://edulint.readthedocs.io/en/v2.6.4/#configuration

3. https://github.com/GiraffeReversed/edulint/tree/v2.6.4

68

B Archive organization and contributions

The archive contains three folders:
• Folder edulint contains the GitHub project for the linter pack-

age. The same version can be found online1.
• Folder edulint-web contains the GitHub project for EduLint’s

web interface. The same version can be found online2.
• Folder analysis contains the Jupyter notebookwith code I used

to compare and evaluate the tools and its accompanying files.
The notebook cannot be run as I am not at liberty to disclose
the data I used. There is also an HTML version of the notebook,
which shows at least the output the notebook produced (the
notebook itself does not display several tables). The folder also
contains the categorized list of defects as a CSV.

I received some minor code contributions to the open-source reposi-
tories for EduLint and its web interface. These consisted of improve-
ments of the continuous integration and deployment, the README
files, the wrapper for handling sub-processes and some explanations.
The relevant commits are identifiable by the author field in GIT history.

1. https://github.com/GiraffeReversed/edulint/tree/v2.6.4

2. https://github.com/GiraffeReversed/edulint-web/tree/thesis

69

C EduLint’s custom detectors

In this chapter, I first describe how the individual custom detectors
operate, and then I show how frequently these custom defects appear
in novice code.

C.1 Detectors

In this section, I list the detectors I implemented, grouped by categories
I present in Chapter 3. For each, I detail why I implemented it and
describe roughly how it works, with examples where relevant. I also
mention known issues with these detectors, if there are any.

The detectors walk the abstract syntax tree (AST), inspecting the
node types and their values. Since I have built the detectors as pylint
plugins, they use the AST representation from the library astroid.

C.1.1 Unsuited construct

This section describes newly detected defects that can be fixed using a
more appropriate construct.

Use a for loop instead of a while loop

Novice programmers sometimes forget to use a for loop when the
number of iterations is known in advance.

i = 0

while i < n:

do something

i += 1

This defect is detected when there is a while loop with a condition
that comprises a comparison between two values or variables. The
detector emits the suggestion if precisely one of these is modified in
the body of the while loop, and this modification happens as the last
statement of the block. The modification must be incrementing or
decrementing the variable by one.

70

C. EduLintŠs custom detectors

Iterate through values rather than through indices

Novice programmers often prefer the more general approach of it-
erating through range(len(list)) to iterate over list elements, even
when iterating directly over list would suffice.

for i in range(len(lst)):

do something with value at lst[i]

(other than assigning to it)

To detect this situation, upon encountering a for loop such as for

i in range(len(list)), the detector checks the body for all occur-
rences of i and list[i]. If there are no occurrences of i (except in
list[i]) and no occurrence of list[i] is being assigned to, the de-
tector emits the suggestion to iterate the list directly.

Iterate using enumerate rather than through indices

In some cases, novice programmers might not be aware that they may
use enumerate if they need to use both the index and the correspond-
ing value.

for i in range(len(lst)):

do something with i and lst[i]

The detector for this defect is a less restrictive variant of the detector
in the previous section – it just detects if both the index and the value
at it are used.

Use a while loop with a condition rather than while True

Novice programmers sometimes overuse the while True loop, mak-
ing their code less readable as it is unclear under which condition (if
ever) the loop terminates.

while True:

if c:

break

do something

If a detector finds a while loop with its condition being just True,
it checks if the first statement of the loop’s body is an if statement

71

C. EduLintŠs custom detectors

ending in a break, and if yes, then it suggests using the if’s condition
negated as the condition of the loop.

Use tighter range boundaries

A novice programmer might use range(n) out of habit, even though
they want to skip the first/last iteration (for example, when working
with consecutive pairs of elements in a list).

for i in range(n):

if i == 0:

continue

do something

The detector seeks for loops over a range. For each such loop, it
checks whether the first statement in the loop is an if statement that
tests whether the value of the control variable is equal to the starting
value of the range (like in the code above) or to the last value the
range would generate. If the if statement tests this and immediately
skips the iteration with continue, the detector suggests using tighter
boundaries for the range instead (e.g. range(1, n)).

Use append

A novice programmer might create an unnecessary list of size one to
append an item to a list: list += [val] or list.extend([val]).

The detector checks if a single item list is added to a value or if the
extend method is called with a list of size one. If it finds such a case,
it suggests using append instead.

Use integer division

A novice programmer may use float division and immediately convert
the result to an integer (i.e., int(p / q)), even though this may cause
numeric instabilities when working with large numbers.

If a detector finds a call to the int function whose parameter is the
application of / on some values, it suggests using integer division //

instead.

72

C. EduLintŠs custom detectors

Use isdecimal

Novice programmers might not be aware of the differences between
the functions isdecimal, isnumeric and isdigit and use the wrong
one to test if a string is convertible to a number using the int function.

If a detector comes across an occurrence of isnumeric or isdigit,
it suggests using isdecimal. It flags any use of these functions, as it
can be assumed that any use of them in novice programmers’ code
was meant to test if a string contains a number.

Use augmented assignment

A novice programmer might forget to use an augmented assignment,
using a regular assignment instead, though it is longer and possibly
more error-prone.

The detector examines assignments, and if it finds one that assigns
a binary operator that uses the assigned variable as one of its operands,
it suggests using an augmented assignment instead. It does not suggest
this if one of the operands is a mutable data structure, as these have
different semantics (e.g. + creates a copy of both of its operands while
+= does not). It also does not suggest a change if a list or a string
is added to a variable (e.g. var = "x" + var). This operation is not
commutative, so using the augmented assignment here would lead to
a different result.

Compare to a string literal directly

Novice programmers sometimes use magical constants when compar-
ing letters (e.g. ord(letter) < 65) as they might not be aware that
they can compare characters directly.

The detector searches for comparisons inwhich at least one operand
contains a call to ord (to determine if the expression compares letters),
and some are constant. If yes and the constant is in the printable range,
it suggests removing the call to ord and directly comparing the value
to a literal string.

As it is usually more readable for a comparison to happen in terms
of some border values (specifically 'a', 'z', 'A', 'Z', '0' and '9'),
the detector checks if altering the comparison operator (e.g. from < to

73

C. EduLintŠs custom detectors

<=) would allow for comparing to these preferred values instead and
if it does, it also suggests changing the operator.

Use ord applied to a letter

Similarly to the previous case, novice programmers sometimes use
magical constants when doing arithmetic with letters (e.g. letter -

65).
The detector checks binary operations to see if one operand con-

tains a call to ord (again to determine if the expression deals with letter
arithmetic) and if the other is a constant in the printable range. If yes,
it suggests replacing it with an ord call with the corresponding letter
as the argument. Again, the same values are preferred; for example,
ord('A') - 1 is suggested over ord('@').

Use appropriate operation instead of repeating
addition/multiplication

A novice programmer may use repeated addition/multiplication in-
stead of multiplication/exponentiation. This can lead to errors if the
programmer, for example, multiplies different numbers, and the in-
tention is less clear as well.

The detector checks for cases of addition/multiplication in which
both operands are the same (e.g. x + x). If one of the operands is again
a binary operation (like in, for example, x * x * x), it checks whether
it is the same type of operation and if so, if both of its parameters are
again the same (to find even occurrences where the operation is used
multiple times). If it finds such a case, it suggests using multiplication
or exponentiation instead.

C.1.2 Simplifiable

This section describes newly detected defects that can be fixed by
removing or restructuring some parts of the code.

If statement simplifiable to its condition

Some novice programmers tend to overuse if statements or if expres-
sions in situations where directly manipulating the values used in the

74

C. EduLintŠs custom detectors

condition would suffice. This section shows some examples of code
containing variations of this defect and details how they are detected.

Bool values only The basic variation of this defect would be as
follows:

if c:

return True

else:

return False

The detector for this defect checks each if statement by first check-
ing if the positive branch contains a single statement: the return of
a value. If it does, it then checks if the negative branch immediately
returns a value or if the statement right after the if statement is a re-
turn statement. The detector extracts the returned values if these two
return statements are present. If they are both bool values, it emits
the suggestion that the if statement can be simplified either to the if
statement’s condition or to its negation, depending on which branch
returns True and which False.

The defect might manifest in several other situations: instead of
an if statement, the programmer might use an if expression (True

if c else False) or assign the bool value to a variable rather than
returning it. These are detected similarly.

Bool value and an expression A more complicated variation of this
defect is when only one of the branches returns a variable containing
a bool value:

if c:

return val

else:

return False

This variation is detected similarly to the previous one, with less
strict requirements on the returned values: only one must be a bool,
and the other can be any expression. If this variation is detected, the de-
tector suggests returning an expression created from the if’s condition
and the returned expression using logical operators.

75

C. EduLintŠs custom detectors

Nested if statements The second-to-last variation is when the pro-
grammer uses nested if statements instead of joining their conditions
with and:

if c1:

if c2:

do something

If the detector for this variation comes across an if statement with
no negative branch and the only statement in its positive branch is
again an if statement with no negative branch, it suggests merging
them into one using logical conjunction.

Consecutive if statements The last variation is when the program-
mer uses two consecutive if statements returning the same value:

if c1:

return False

if c2:

return False

do something

This variation is detected when there are two if statements, one
immediately after the other, each without an else block, that both
directly return the same value. In such a case, the detector suggests
merging them into one using logical disjunction.

Known issues There are two known issues with these detectors. The
first is that there may be type changes in the suggested solution. For
example, should the value c in the basic variation not be a bool, then
in the suggested return c, the returned value would have a different
type than in the original solution. It would be possible to suggest
returning bool(c), but this would introduce an unnecessary call to
the bool function when c is a bool. Differentiating between these two
cases can only be done precisely in type-safe code.

The second known issue is that the resulting condition might be
overly complex for all the variations except the first, as it is created by
combining two other ones. This issue could be mitigated by specifying,
for example, the maximum length of the resulting condition in tokens
or in used logical operators.

76

C. EduLintŠs custom detectors

If statement with an empty positive branch

Sometimes novice programmers write an if statement with only pass

in the positive branch and all the relevant code in the negative branch,
possibly due to refactoring.

if c:

pass

else:

do something

Suppose the detector finds an if statement with nothing but pass

in its positive branch. In that case, it suggests negating the condition,
moving the code from the negative branch to the positive one and
removing the else branch.

A loop making at most one iteration

During refactoring, a novice programmer might create a loop that
only makes one iteration without realizing it is no longer needed.

Suppose the detector finds a for loop iterating over a range inwhich
the start plus the step value equals or exceeds the stop value. In that
case, it suggests dropping the loop altogether.

Redundant arithmetic

For example, a novice programmer might use some arithmetic opera-
tion because they misunderstand the operators’ priority.

The full list of operators and their arguments is as follows (v can
be any expression):

v + 0

0 + v

v - 0

0 - v

v * 0

0 * v

v ** 0

v * 1

1 * v

77

C. EduLintŠs custom detectors

v / 1

v ** 1

v + ""

"" + v

v / v

v // v

v % v

The detector checks binary operations and augmented assignment
operators. If it finds one using one of the redundant patterns listed
above, it suggests removing the redundant operation.

The detector does not detect v // 1 and v % 1, because some
students use it to test whether a variable contains a whole number.

Redundant elif

A novice programmer might write two consecutive if statements with
the condition in the second one being a negation of the first one’s
condition.

if n > 0:

do something

elif n <= 0:

do something else

If such a situation is detected, the tool suggests using else instead
of the second elif. Whether one condition is a negation of another is
checked purely syntactically (by matching operators and subexpres-
sions, taking not occurrences into consideration).

If the second if statement is in the else branch of the first if state-
ment and has an else branch, the detector suggests removing the else
branch as it is unreachable.

is with a boolean value

A novice programmer might use is with a boolean value to test if a
condition is true or false (e.g. c is True).

If such a use of is is discovered, the tool suggests using the condi-
tion directly.

78

C. EduLintŠs custom detectors

C.1.3 Unused

This section describes the newly detected defect that regards lines that
do not affect the code’s outcome.

Changing control variable has no effect

Novice programmers sometimes change a for loop’s control variable
in the loop’s body even though this does not affect its value in the next
iteration. This might result from an oversight during refactoring or a
misconception about how the for loop works in Python.

for i in range(n):

do something

i += 1

If a for loop’s control variable is reassigned in the last statement of
the loop’s body, the detector suggests removing the line.

C.1.4 Error prone

This section describes newly detected defects that regard constructs
that can easily introduce a bug into the code.

Using global variables

Novice programmers sometimes introduce global state into their code
through global variables, though this is often unnecessary [?]. In some
cases, their solution relies on the fact that the tests run some parts of
the code only once, which is problematic. The purpose of this checker
is to detect any use of global variables.

The detector first collects all variables defined at the global (mod-
ule) scope. Then, to avoid falsely marking global constants, including
type aliases, it checks which variables are being modified anywhere
in the code. It considers that a variable defined in another scope does
not modify the global variable but also considers scope modification
keywords global and nonlocal.

79

C. EduLintŠs custom detectors

Modifying structure (by adding or removing elements) that is
being iterated over

A novice programmer might modify an iterated-over structure by
adding or removing elements, unaware that this may lead to hard-to-
find bugs.

for elem in lst:

lst. remove(elem)

The detector searches for a for loop that iterates over a structure,
then checks what operations are applied to the structure inside the
loop. If one of these operations adds elements to the structure or
removes some, it reports this, as iterating over a copy is usually prefer-
able.

Using a loop with else

A novice programmer may forget that any code after a loop executes
when the loop terminates, not only the one placed in the loop’s else

branch. This misconception seemsmore prevalent than correctly using
the loop’s else branch. Even the correct use can be hard to read and
can usually be reworked.

The detector looks for any loop with an else branch, and if it finds
such, it suggests getting rid of the else.

Multiplying a list containing a mutable data structure

A novice programmermight be tempted to use the shortcut of creating
a list containing one item several times bymultiplying a single-element
list with such item by a constant (e.g. [[]] * n to create a list of n

empty lists). If the item is an instance of a mutable data structure, a
list containing n references to that one instance is created rather than
a list of n independent instances.

If a detector comes across a list containing a mutable element being
multiplied, it suggests using list comprehension instead.

80

C. EduLintŠs custom detectors

One branch is not returning a value

A novice programmer might write a function that returns a value
in one conditional branch but leaves the other one to simply return

(thus returning implicit None, which is a behaviour they may not even
be aware of and which might lead to an error).

if n < 0:

return

return True

The detector looks for an if statement that either returns in positive
and negative branches or has no else branch but is followed by a
return. If it finds these two return statements and exactly one of them
does not return a value (is a bare return), it suggests returning a
value in both branches or neither.

C.1.5 Poor name

This section describes newly detected defects related to ill-suited
choices of variable names.

Single character variable names

Novice programmers sometimes overuse single-letter variables, be it
i for purposes other than the control variable of a loop or just using
letters of the alphabet for intermediate results.

In general, it cannot be said which single-letter variable names
are not appropriate. However, a set of allowed single-letter variable
names could be created for a specific task.

I did not write a separate detector for this defect but instead used
Pylint’s ability to disallow some variable names. On passing an option
specifying a list of allowed single-character names, I configure pylint
to report usage of any single-character variable and then filter the
results, keeping only those reports that mention a name not listed as
allowed.

81

C. EduLintŠs custom detectors

Variable shadowing the control variable of the parent for loop

A novice programmer might habitually name the control variable of
every for loop i. This may cause them problems if the for loops are
nested.

for i in range(m):

for i in range(n):

do something

If the detector finds out that a for loop uses the same name for its
control variable as a for loop anywhere in its body, it reports this.

C.2 Custom defect frequencies

I developed several custom detectors for EduLint, either to cover a
defect that was not detected by any other tool or to create a detector
with higher precision or higher recall than available detectors had. In
Table C.1, I show how frequently these defects appear in the dataset
described in Section 6.1.1. Even though the absolute counts are quite
low, each piece of code that does not contain them will be slightly
better than the code that does. (Also, they would no longer draw a
reviewer’s attention should the code receive manual code review.)

Most often, the defects belong to the unsuited construct, simplifiable
and error prone categories; in Section 6.3, I argued these are at the
intersection of relevant defects (mostly with regards to code quality)
and defects detectable with relative ease.

For a description of the detectors themselves, see the previous
section.

Same as in Table 3.1, the table also shows whether EduLint is
(to the best of my knowledge) the only tool that detects the defect
(⋆), if EduLint detects the defect via a custom detector I developed
to improve over detectors in other tools (↑) or if EduLint does not
detect the defect at all (×). If the symbol is followed by an asterisk
(∗), EduLint does not detect the defect in its default configuration, but
in some extension (for the difference, see Section 5.3.2).

82

C. EduLintŠs custom detectors

Table C.1: Custom defects

Defect Category Defective code EduLint Files
with
defect

use augmented assign
unsuited
construct

x = x + 1 ↑ 8336

use enumerate
unsuited
construct

for i in range (len(lst)):

code using both

i and lst [i]

↑∗ 7526

iterate directly
unsuited
construct

for i in range (len(lst)):

code only reading

from lst [i]

↑ 6145

simplifiable if return simplifiable
if c:

return True

return False

↑ 4519

nested if statements simplifiable
if c1:

if c2:

body

⋆
∗ 4414

use elif
unsuited
construct

else:

if c:

code

×1 3568

use a for loop instead of a
while loop

unsuited
construct

while i < n:

body

i += 1

⋆ 2733

consecutive if statements simplifiable

if c1:

return True

if c2:

return True

⋆
∗ 2464

if return simplifiable us-
ing logical operator

simplifiable
if c:

return True

return x

⋆
∗ 2335

use isdecimal
unsuited
construct

val.isnumeric() ⋆ 2091

do not use is with bool simplifiable val is False ↑ 1887

use else instead of elif simplifiable

if x <= y:

body

elif x > y:

body

↑ 1276

redundant arithmetic simplifiable val + [] ↑ 1016

repeated operation
unsuited
construct

x * x * x ⋆
∗ 1004

use append
unsuited
construct

lst += [val] ⋆ 685

use integer division
unsuited
construct

int(x / y) ⋆ 612

1. This defect is currently not reported in any configuration, as it generated too
many false positives.

83

C. EduLintŠs custom detectors

Defect Category Defective code EduLint Files
with
defect

global variables
error
prone

↑ 604

use ord applied to a letter
instead of using a magical
constant

unsuited
construct

ord(char) - 65 ⋆ 539

empty if branch simplifiable

if c:

pass

else:

body

⋆ 514

compare to a string literal
instead of a magical con-
stant

unsuited
construct

ord(char) < 65 ⋆ 495

simplifiable if expression simplifiable True if c else False ↑ 467

do not use a loopwith else
error
prone

for val in lst:

body

else:

body

↑ 393

do not add elements to it-
erated structure or remove
from it

error
prone

for val in lst:

body

lst. remove (x)

↑ 382

do not use while True fol-
lowed by break

unsuited
construct

while True:

if c:

break

body

⋆ 231

inner loop shadows outer
loop’s control variable

poor name
for i in range (n1):

for i in range (n2):

body

↑∗ 218

simplifiable if with assign-
ment

simplifiable

if c:

v = True

else:

v = False

↑ 195

unnecessary changing con-
trol variable

unused
for i in range (n):

body

i += 1

⋆ 151

use tighter range bound-
aries

unsuited
construct

for i in range (n):

if i == 0:

continue

body

⋆ 43

for loopmakes atmost one
iteration

simplifiable for i in range (1):

body
↑ 34

one branch is not returning
a value

error
prone

if n < 0:

return

return True

↑ 31

if assignment simplifiable
using logical operator

simplifiable

if c:

v = False

else:

v = x

⋆
∗ 25

84

C. EduLintŠs custom detectors

Defect Category Defective code EduLint Files
with
defect

unreachable else unused

if x <= y:

body

elif x > y:

body

else:

unreachable

⋆ 19

if expression simplifiable
using logical operator

simplifiable x if c else True ⋆
∗ 14

multiplying a list contain-
ing a mutable data struc-
ture

error
prone

[[]] * 5 ↑ 5

85

D The complete list of defects

This chapter shows those defects EduLint can detect that had at least
one occurrence in the dataset. There are 185 defects with at least one
occurrence out of the 222 EduLint can detect. Column Extension says
whether the defect is detected in the default configuration or which
extension group it belongs to.

Table D.1: All defects with at least one occurrence

Message Extension Defective code Files with defect

top-level code enhancement 23880

line too long default over 79 characters 11044

expected 2 blank lines
after class or function
definition, found 1

default 10447

expected 2 blank lines,
found 1

default 9612

no newline at end of
file

default 9117

blank line at end of file default 8643

blank line contains
whitespace

default 8414

use augmented assign default x = x + 1 8336

unnecessary else after
return

default

if c:

return val1

else:

return val2

8233

use enumerate Python-specific
for i in range (len(lst)):

code using both

i and lst [i]

7526

do not use open with-
out specifying encod-
ing

enhancement open("/path") 6819

at least two spaces be-
fore inline comment

default 6390

iterate directly default
for i in range (len(lst)):

code only reading

from lst [i]

6145

unnecessary parenthe-
sis after keyword

enhancement return(value) 5988

too many blank lines default 5731

missing whitespace af-
ter ,

default 5494

86

D. The complete list of defects

Message Extension Defective code Files with defect

redefining built-in default sum = 0 4631

simplifiable if return default
if c:

return True

return False

4519

too many arguments complexity more than 5 4474

nested if statements enhancement
if c1:

if c2:

body

4414

too many branches complexity more than 12 4349

trailing whitespace default 4080

too many statements complexity more than 50 3810

name doesn’t conform
to naming style

default
localVariable, global_constant,
CLASS_NAME

3608

some returns value,
some do not

Python-specific
if c:

return True

return

3203

too many return state-
ments

complexity more than 6 2929

unused import default 2785

use a for loop instead
of a while loop

default
while i < n:

body

i += 1

2733

missing whitespace
around operator

default x+y 2621

consecutive if state-
ments

enhancement

if c1:

return True

if c2:

return True

2464

if return simplifiable
using logical operator

enhancement
if c:

return True

return x

2335

merge comparisons
with in

Python-specific x == ’a’ or x == ’b’ 2265

block comment should
start with #

default using """ for block comment 2214

use isdecimal default val.isnumeric() 2091

use with for resource
allocation

enhancement file = open("/path") 2050

do not use is with bool default val is False 1887

too many local vari-
ables

complexity more than 15 1817

iterate with items Python-specific for key in dct:

print (key , dct[key])
1332

87

D. The complete list of defects

Message Extension Defective code Files with defect

Unnecessary else af-
ter break

default

if c1:

break

else:

body

1326

syntax error default 1322

use else instead of
elif

default

if x <= y:

body

elif x > y:

body

1276

use f-string for format-
ting

Python-specific
using %, +, join, format or Template

to format a string 1127

undefined name default 1090

whitespace before (default 1084

inline comment should
start with #

default 1079

indentation is not a
multiple of 4

default 1059

indentation contains
tabs

default 1038

too many boolean ex-
pressions in an if state-
ment

complexity more than 5 1036

unnecessary pass default
def fun ():

pass

body

1023

redundant arithmetic default val + [] 1016

unreachable code default code behind return or raise 1008

missing whitespace
around %

default 1007

redundant operation enhancement x * x * x 1004

toomany nested blocks complexity more than 5 996

unnecessary use of a
comprehension, use
list/dict/set

Python-specific {number for number in lst} 976

use is for comparison
to None

default v == None 916

multiple statements on
one line with colon

default if c: val = 0 881

ambiguous variable
name (l, O, I)

default 875

unexpected spaces
around keyword /
parameter equals

default def fun(key = val): 874

import outside top-
level

default def fun ():

import module
824

88

D. The complete list of defects

Message Extension Defective code Files with defect

whitespace before : default 818

indentation contains
mixed spaces and tabs

default 817

use {} instead of
dict()

Python-specific 816

whitespace before) default 780

local variable is as-
signed to but never
used

default 744

whitespace after (default 733

over-indented code default
if c:

code indented

by five spaces

709

use append default lst += [val] 685

use integer division. default int(x / y) 612

global variables default 604

continuation line
under-indented

default print (" Hello ",

" world ")
542

use ord applied to a let-
ter instead of using a
magical constant

default ord(char) - 65 539

empty if branch default

if c:

pass

else:

body

514

compare to a string lit-
eral instead of a magi-
cal constant

default ord(char) < 65 495

simplifiable if expres-
sion

default True if c else False 467

do not compare to bool default c == True 464

expected 1 blank line,
found 0

default 393

do not use a loop with
else

default

for val in lst:

body

else:

body

393

do not add elements to
iterated structure or re-
move from it

default
for val in lst:

body

lst. remove (x)

382

use set comprehension Python-specific set([fst for fst, _ in pairs]) 356

use [] instead of
list()

Python-specific 322

missing whitespace
around bitwise or shift
operator

default 307

89

D. The complete list of defects

Message Extension Defective code Files with defect

unexpectedly indented
comment

default 298

use max enhancement if longest < current :

longest = current
290

use def instead of as-
signing lambda

default val = lambda x: x // 2 290

multiple spaces before
operator

default 288

iterate dictionary di-
rectly

Python-specific for key in dct.keys() 256

statement ends with a
semicolon

default 251

redefining argument
with a local name

default def fun(val):

val = 0
249

multiple spaces after
keyword

default 248

statement with no ef-
fect

default val == 0 234

do not use while True

followed by break
default

while True:

if c:

break

body

231

inner loop shadows
the outer loop’s control
variable

enhancement
for i in lst1:

for i in lst2:

body

218

multiple spaces after
operator

default 197

simplifiable if with as-
signment

default

if c:

v = True

else:

v = False

195

multiple imports on
one line

default 185

assigning variable to it-
self

default val = val 168

indentation is not a
multiple of 4 before a
comment

default 166

do not use bare except default 162

boolean expression
contains unneeded
negation

default not val1 == val2 154

unnecessary changing
control variable

default
for i in range (n):

body

i += 1

151

dangerous default
value

default def fun(arg=[]): 147

90

D. The complete list of defects

Message Extension Defective code Files with defect

use isinstance Python-specific type(val) == int 138

invalid escape se-
quence

default "\d" 137

use tuple unpacking
for swapping variables

Python-specific
tmp = val1

val1 = val2

val2 = tmp

129

continuation line over-
indented

default print (" Hello ",

" world ")
127

use the generator di-
rectly for all/any

Python-specific all([val > 3 for val in lst]) 108

too many leading # for
block comment

default 107

use join Python-specific
result = ""

for word in lst:

result += word

107

multiple spaces before
keyword

default val in lst 98

unexpected indenta-
tion

default print (" Hello ")

print (" world ")
90

continuation line miss-
ing indentation or out-
dented

default print (" Hello ",

" world ")
90

expected an indented
block

default if c:

body
85

test for membership
should be not in

default not val in lst 82

module level import
not at top of file

default 79

wildcard import default from module import * 78

wildcard import used;
unable to detect unde-
fined names

default 78

use min enhancement if shortest > current :

shortest = current
75

continuation line with
the same indent as the
next logical line

default
if c1 \

or c2:

val = 0

73

blank lines after func-
tion decorator

default 71

method should have
self as first argument

default def method(arg) 69

undefined name default 68

redefinition of unused
variable

default 63

unnecessary dictio-
nary index lookup

default for k, v in dct. items ():

print (k, dct[k])
60

91

D. The complete list of defects

Message Extension Defective code Files with defect

expected an indented
block before comment

default
def fun ():

comment

return 0

58

multiple statements on
one line with semi-
colon

default x = 0; y = 1 52

expected 1 blank line
before a nested defini-
tion

default 51

use tighter range

boundaries
default

for i in range (n):

if i == 0:

continue

body

43

using variable before
assignment

default 41

a backslash is redun-
dant between brackets

default

[

" Hello ", \

" world "

]

41

the closing bracket
does not match visual
indentation

default val = [" Hello ", " world ",

]
40

for loopmakes atmost
one iteration

default for i in range (1):

body
34

redundant comparison default val == val 31

one branch is not re-
turning a value

default
if n < 0:

return

return True

31

disallow trailing
comma tuple

default val1, val2 = 0, 1, 29

unused wildcard im-
ports

default 28

function/method
already defined

default 27

use ==/!= to compare
with constant literals

default val is " " 27

if assignment simplifi-
able using logical oper-
ator

enhancement

if c:

v = False

else:

v = x

25

reimported module default 24

continuation line un-
aligned for hanging in-
dent

default

[

" Hello ",

" world "

]

21

visually indented line
with the same indent
as the next logical line

default
if (c1

or c2):

val = 0

20

92

D. The complete list of defects

Message Extension Defective code Files with defect

unreachable else default

if x <= y:

body

elif x > y:

body

else:

unreachable

19

if expression simplifi-
able using logical oper-
ator

enhancement x if c else True 14

indentation error default 14

disallowed name default foo, bar 13

f-string with no place-
holder

default f"Hello world" 9

for loop does not tar-
get a name

default for lst[i] in range(n): 6

dictionary key re-
peated with different
values

default {0: "Hello, 0: "world"} 6

return outside func-
tion

default 5

multiplying a list con-
taining a mutable data
structure

default [[]] * 5 5

<> is deprecated, use
!=

default 5

missing whitespace
around parameter
equals

default def fun(val: int=None) 3

test for object identity
should be is not

default not val is None 3

a local variable refer-
enced before assign-
ment

default
val = 0

def fun ():

val += 1

1

ambiguous function
name (l, O, I)

default 1

do not alias import
with same name

default import package.sub as sub 1

has_key() is depre-
cated, use in

default 1

do not compare types default type(val) == type([]) 1

93

Bibliography

1. KIRK, Diana; CROW, Tyne; LUXTON-REILLY, Andrew; TEM-
PERO, Ewan. On Assuring Learning About Code Quality. In:
Proceedings of the Twenty-Second Australasian Computing Educa-
tion Conference. Melbourne, VIC, Australia: Association for Com-
puting Machinery, 2020, pp. 86–94. ACE’20. isbn 9781450376860.
Available from doi: 10.1145/3373165.3373175.

2. SCHACH, S. Object-Oriented and Classical Software Engineering.
McGraw-Hill Publishing, 2010. isbn 9780077417987.

3. BÖRSTLER, Jürgen; STÖRRLE, Harald; TOLL, Daniel; ASSEMA,
Jelle van; DURAN, Rodrigo; HOOSHANGI, Sara; JEURING, Jo-
han; KEUNING, Hieke; KLEINER, Carsten; MACKELLAR, Bon-
nie. "I Know ItWhen I See It" Perceptions of CodeQuality: ITiCSE
’17 Working Group Report. In: Proceedings of the 2017 ITiCSE Con-
ference on Working Group Reports. Bologna, Italy: Association for
Computing Machinery, 2018, pp. 70–85. ITiCSE-WGR ’17. isbn
9781450356275. Available from doi: 10.1145/3174781.3174785.

4. BIRILLO, Anastasiia; VLASOV, Ilya; BURYLOV, Artyom;
SELISHCHEV, Vitalii; GONCHAROV, Artyom; TIKHOMIROVA,
Elena; VYAHHI, Nikolay; BRYKSIN, Timofey. Hyperstyle: A Tool
for Assessing the Code Quality of Solutions to Programming
Assignments. CoRR. 2021, vol. abs/2112.02963. Available from
arXiv: 2112.02963.

5. ROY CHOUDHURY, Rohan; YIN, Hezheng; FOX, Armando.
Scale-Driven Automatic Hint Generation for Coding Style. In:
MICARELLI, Alessandro; STAMPER, John; PANOURGIA, Kitty
(eds.). Intelligent Tutoring Systems. Cham: Springer International
Publishing, 2016, pp. 122–132. isbn 978-3-319-39583-8.

6. KEUNING, Hieke; HEEREN, Bastiaan; JEURING, Johan. How
Teachers Would Help Students to Improve Their Code. In: Pro-
ceedings of the 2019 ACMConference on Innovation and Technology in
Computer Science Education. Aberdeen, Scotland Uk: Association
for Computing Machinery, 2019, pp. 119–125. ITiCSE ’19. isbn
9781450368957. Available from doi: 10.1145/3304221.3319780.

94

BIBLIOGRAPHY

7. DE RUVO, Giuseppe; TEMPERO, Ewan; LUXTON-REILLY, An-
drew; ROWE, Gerard B.; GIACAMAN, Nasser. Understanding
Semantic Style by Analysing Student Code. In: Proceedings of
the 20th Australasian Computing Education Conference. Brisbane,
Queensland, Australia: Association for Computing Machinery,
2018, pp. 73–82. ACE ’18. isbn 9781450363402. Available from doi:
10.1145/3160489.3160500.

8. STEGEMAN, Martijn; BARENDSEN, Erik; SMETSERS, Sjaak.
Designing a Rubric for Feedback on Code Quality in Program-
ming Courses. In: Proceedings of the 16th Koli Calling International
Conference on Computing Education Research. Koli, Finland: Associ-
ation for Computing Machinery, 2016, pp. 160–164. Koli Calling
’16. isbn 9781450347709. Available from doi: 10.1145/2999541.

2999555.

9. NUTBROWN, Stephen; HIGGINS, Colin. Static analysis of pro-
gramming exercises: Fairness, usefulness and a method for appli-
cation. Computer Science Education. 2016, vol. 26, no. 2-3, pp. 104–
128. Available from doi: 10.1080/08993408.2016.1179865.

10. HRISTOVA, Maria; MISRA, Ananya; RUTTER, Megan; MER-
CURI, Rebecca. Identifying and Correcting Java Programming Er-
rors for Introductory Computer Science Students. In: Proceedings
of the 34th SIGCSE Technical Symposium on Computer Science Educa-
tion. Reno, Navada, USA: Association for Computing Machinery,
2003, pp. 153–156. SIGCSE ’03. isbn 158113648X. Available from
doi: 10.1145/611892.611956.

11. BLAU, Hannah; MOSS, J. Eliot B. FrenchPress Gives Students
Automated Feedback on Java Program Flaws. In: Proceedings of
the 2015 ACM Conference on Innovation and Technology in Computer
Science Education. Vilnius, Lithuania: Association for Comput-
ing Machinery, 2015, pp. 15–20. ITiCSE ’15. isbn 9781450334402.
Available from doi: 10.1145/2729094.2742622.

12. UREEL, Leo C.; WALLACE, Charles. WebTA: Automated itera-
tive critique of student programming assignments. In: 2015 IEEE
Frontiers in Education Conference (FIE). 2015, pp. 1–9. Available
from doi: 10.1109/FIE.2015.7344225.

95

BIBLIOGRAPHY

13. MOGHADAM, Joseph Bahman; CHOUDHURY, Rohan Roy; YIN,
HeZheng; FOX, Armando. AutoStyle: Toward Coding Style Feed-
back at Scale. In: Proceedings of the Second (2015) ACM Conference
on Learning @ Scale. Vancouver, BC, Canada: Association for Com-
putingMachinery, 2015, pp. 261–266. L@S ’15. isbn 9781450334112.
Available from doi: 10.1145/2724660.2728672.

14. KEUNING, Hieke; HEEREN, Bastiaan; JEURING, Johan. A Tu-
toring System to Learn Code Refactoring. In: Proceedings of the
52nd ACM Technical Symposium on Computer Science Education.
Virtual Event, USA: Association for Computing Machinery, 2021,
pp. 562–568. SIGCSE ’21. isbn 9781450380621. Available from doi:
10.1145/3408877.3432526.

15. LIU, Xiao; WOO, Gyun. Applying Code Quality Detection in
Online Programming Judge. In: Proceedings of the 2020 5th Interna-
tional Conference on Intelligent Information Technology. Hanoi, Viet
Nam: Association for Computing Machinery, 2020, pp. 56–60.
ICIIT 2020. isbn 9781450376594. Available from doi: 10.1145/

3385209.3385226.

16. LIU, David; PETERSEN, Andrew. Static Analyses in Python Pro-
gramming Courses. In: Proceedings of the 50th ACM Technical Sym-
posium on Computer Science Education. Minneapolis, MN, USA: As-
sociation for Computing Machinery, 2019, pp. 666–671. SIGCSE
’19. isbn 9781450358903. Available from doi: 10.1145/3287324.

3287503.

17. EFFENBERGER, Tomáš; PELÁNEK, Radek. Code Quality De-
fects across Introductory Programming Topics. In: Proceedings
of the 53rd ACM Technical Symposium on Computer Science Educa-
tion - Volume 1. Providence, RI, USA: Association for Computing
Machinery, 2022, pp. 941–947. SIGCSE 2022. isbn 9781450390705.
Available from doi: 10.1145/3478431.3499415.

18. KEUNING, Hieke; HEEREN, Bastiaan; JEURING, Johan. Code
Quality Issues in Student Programs. In: Proceedings of the 2017
ACM Conference on Innovation and Technology in Computer Science
Education. Bologna, Italy: Association for Computing Machinery,
2017, pp. 110–115. ITiCSE ’17. isbn 9781450347044. Available from
doi: 10.1145/3059009.3059061.

96

BIBLIOGRAPHY

19. GROENEVELD, Wouter; MARTIN, Dries; PONCELET, Tibo;
AERTS, Kris. Are Undergraduate Creative Coders Clean
Coders? A Correlation Study. In: Proceedings of the 53rd ACM
Technical Symposium on Computer Science Education - Volume 1.
Providence, RI, USA: Association for Computing Machinery,
2022, pp. 314–320. SIGCSE 2022. isbn 9781450390705. Available
from doi: 10.1145/3478431.3499345.

20. BROWN, Neil C.C.; ALTADMRI, Amjad. Investigating Novice
ProgrammingMistakes: Educator Beliefs vs. StudentData. In:Pro-
ceedings of the Tenth Annual Conference on International Computing
Education Research. Glasgow, Scotland, United Kingdom: Associ-
ation for Computing Machinery, 2014, pp. 43–50. ICER ’14. isbn
9781450327558. Available from doi: 10.1145/2632320.2632343.

21. Pylint [online]. [visited on 2023-05-06]. Available from: https:

//pypi.org/project/pylint/.

22. Pyflakes [online]. [visited on 2023-05-06]. Available from: https:

//pypi.org/project/pyflakes/.

23. pycodestyle [online]. [visited on 2023-05-06]. Available from:
https://pypi.org/project/pycodestyle/.

24. Flake8 [online]. [visited on 2023-05-06]. Available from: https:

//pypi.org/project/flake8/.

25. wemake-python-styleguide [online]. [visited on 2023-05-06].
Available from: https://pypi.org/project/wemake-python-

styleguide/.

26. Ruff [online]. [visited on 2023-05-06]. Available from: https:

//pypi.org/project/ruff/.

27. Thonny: Python IDE for beginners [online]. [visited on 2023-05-06].
Available from: https://thonny.org/.

28. Hyperstyle repository [online]. [visited on 2023-05-06]. Available
from: https://github.com/hyperskill/hyperstyle.

97

BIBLIOGRAPHY

29. BIRILLO, Anastasiia; VLASOV, Ilya; BURYLOV, Artyom;
SELISHCHEV, Vitalii; GONCHAROV, Artyom; TIKHOMIROVA,
Elena; VYAHHI, Nikolay; BRYKSIN, Timofey. Supplementary
materials for the paper "Hyperstyle : A Tool for Assessing the Code
Quality of Solutions to Programming Assignments". Zenodo, 2021.
Version 1.0. Available from doi: 10.5281/zenodo.5749825.

30. EDWARDS, Stephen H.; KANDRU, Nischel; RAJAGOPAL,
Mukund B.M. Investigating Static Analysis Errors in Student
Java Programs. In: Proceedings of the 2017 ACM Conference on
International Computing Education Research. Tacoma, Wash-
ington, USA: Association for Computing Machinery, 2017,
pp. 65–73. ICER ’17. isbn 9781450349680. Available from doi:
10.1145/3105726.3106182.

31. BREUKER,DennisM.; DERRIKS, Jan; BRUNEKREEF, Jacob.Mea-
suring Static Quality of Student Code. In: Proceedings of the 16th
Annual Joint Conference on Innovation and Technology in Computer
Science Education. Darmstadt, Germany: Association for Comput-
ing Machinery, 2011, pp. 13–17. ITiCSE ’11. isbn 9781450306973.
Available from doi: 10.1145/1999747.1999754.

32. PETTIT, Raymond; HOMER, John; GEE, Roger; MENGEL, Susan;
STARBUCK, Adam. An Empirical Study of Iterative Improve-
ment in Programming Assignments. In: Proceedings of the 46th
ACM Technical Symposium on Computer Science Education. Kansas
City, Missouri, USA: Association for ComputingMachinery, 2015,
pp. 410–415. SIGCSE ’15. isbn 9781450329668. Available from doi:
10.1145/2676723.2677279.

33. WPS documentation of ExplicitStringConcatViolation [online]. [vis-
ited on 2023-05-07]. Available from: https://wemake-python-

styleguide . readthedocs . io / en / 0 . 17 . 0 / pages / usage /

violations/consistency.html#wemake_python_styleguide.

violations.consistency.ExplicitStringConcatViolation.

98

