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Abstrakt

V této práci je představen multikamerový lokalizačńı systém založený
na referenčńıch značkách společně s upraveným algoritmem pro de-
tekci černob́ılých kruhových referenčńıch značek. Představený lokalizačńı
systém vycháźı z jednokamerového systému pro detekci referenčńıch
značek v reálném čase s určeńım jejich pozice a orientace v 3D prostoru
a rozpoznatelným variabilńım kódováńım identifikátor̊u. Tento multi-
kamerový lokalizačńı systém postavený na levných a široce dostupných
webových kamerách představuje masově dostupný lokalizačńı systém
jako alternativu k aktuálně dostupným high-end systémům se special-
izovaným hardwarem a zdlouhavým nasazeńım. Za účelem posouzeńı
výkonu je lokalizačńı systém testován proti p̊uvodńı jednokamerové
metodě široce použ́ıvané v oblasti mobilńı a rojové robotiky. Vytvořili
jsme simulovaná testovaćı prostřed́ı umožňuj́ıćı dynamicky měnitelné
simulované scénáře a také jsme shromáždili datovou sadu zachycuj́ıćı
nasazeńı systému pro sledováńı pozice mobilńıho robotu při autonomńı
navigaci v exteriérech. Pro lepš́ı správu test̊u byl připraven automatický
evaluačńı a simulačńı nástroj.

Abstract

In this thesis, the multi-camera localisation system based on fiducial
markers is presented together with a modified algorithm to detect black-
and-white circular fiducials. The introduced localisation system origi-
nates from the real-time single-camera fiducial marker system with an
estimation of the position and orientation in the 3D space and a distin-
guishable encoded variable identification. This multi-camera localisation
system built on cheap and widely available web cameras represents a
publicly available and open localisation system as an alternative to the
currently available expensive, closed systems using high-end cameras and
specialised hardware requiring tedious deployment. In order to assess the
performance, the localisation system is tested against the single-camera
original method widely used in the fields of mobile and swarm robotics.
We created simulated testing environments allowing dynamically change-
able simulated scenarios, and we also collected a real-world dataset of
an application on the mobile robot external localisation. An automatic
evaluation and simulation framework was introduced to make the testing
process more manageable.
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1 Introduction

Nowadays, the capabilities and utility of technologies have undergone an enormous evo-
lution; especially, robot development is in the exponential era. Robots have become famous
through massive improvements in material engineering, the accuracy of the manufacturing
process and miniaturisation of electronics, and advances in the algorithms powering the
robots. The robots managed to find their way into our daily lives without much disruption,
primarily because they are in utility services, usually under the supervision of their masters
or anyone passing by. However, the fully autonomous and independent behaviour is highly
challenging to achieve while allowing the coexistence of the robots and people in the same
environment.

In the case of a robot operating in a particular environment without constant supervi-
sion, it has to establish a plan to fulfil the required tasks. The robot needs to know the
representation of the state space, a map, and the assigned goal in order to be able to plan.
The map can be used to find a plan of getting from one state to another, and such actions
of following a path constitute the navigation task. To know where the robot is on the map
and to verify it is progressing on the path correctly, another area is addressed, the locali-
sation. In many situations, those tasks are addressed jointly as Simultaneous Localisation
and Mapping, SLAM.

In either the decoupled or joint approach, the crucial question to answer is how the robot
can create such a representation of its surroundings. As the robot needs this knowledge in
order to operate correctly, it has to be equipped with a way to sense the environment. The
camera sensor is among the essential robotic sensors, and it can capture the environment’s
look in various image representations based on the detected light spectrum. Many image
processing algorithms have been proposed to extract meaningful information from those
images about what is in the image and how it can be utilised in robotics. One can use the
found information for map building or for localising in an already built one. The information
can span from a low to a high level of semantic understanding of what is the robot looking
at, either significant groups of pixels, distinguishable patterns, or real-world objects. This
thesis focuses on such patterns, fiducial markers, which are artificial landmarks enhancing
the environment with reliable and accurate information about its position and, in many
cases, also the orientation, which can be used for localisation. The fiducials are prominent
among the other image features because of their clearly distinguishable characteristics,
which make them easily detectable and localisable. Thanks to their low entry price, a
printer and an off-the-shelf camera, they can be found in various fields and applications
like augmented reality, reliable ground-truth for experiments evaluation, unmanned areal
vehicles landing, swarm and multi-robot formations and tracking, and deployments where
there is a need for additional supporting localisation information such as featureless or
feature ambiguous environments.

However, as in the case of any measuring device, there are certain imperfections and
preconditions which can swing the use of a camera from a success to a failure. First, there
is a noise always present in an image that can have many forms, so not only the standard
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Gaussian distribution as it is commonly assumed but all it depends on the illumination
conditions and especially on the manufacturing quality and capabilities of a given camera
chip. The next significant source of issues in the image processing is presented by the used
lenses, which can cause a spacial warping, colour shifting, and misalignments requiring an
additional set of methods to compensate them. A further drawback of a camera is the
limited resolution, where one loses the precision with lower resolution and the field of view,
which is bounded by the used lenses. One can opt for a camera with a very wide field
of view, but at the same time, they would have to handle the more significant distortion
or use expensive high-end lenses. Overall, there are many problematic aspects that one
can encounter while deploying a fiducial marker localisation system; thus, it is essential to
question how well the localisation system can address those.

This thesis introduces a localisation system using multiple cameras in configurations
to cover large areas or improve the localisation performance. The localisation system is
needed to support reliable estimation of the full 6 degrees of freedom for such a localisa-
tion system. On top of that, there should be an option to distinguish individual markers
and provide a high detection rate even under a broad range of illumination conditions. How-
ever, the localisation system has to be able to provide sufficient real-time pose estimation.
Therefore, computational performance is another restriction. The current state-of-the-art
fiducial markers do not satisfy all the requirements, so that those additional modifications
will constitute an improved fiducial marker detection method. Then, the overall perfor-
mance is assessed to verify the capabilities of the extended system.

The thesis consists of five main sections. Firstly, the localisation and mapping in robotics
are presented by the most popular state-of-the-art methods currently used. The methods
are chosen from the field of camera-based localisation and vision geometry, which are suit-
able for external localisation over large areas. The second section evaluates the dominant
fiducial markers in the single-camera application over a real-world dataset to gain a foun-
dation for selecting the localisation system for further extension. The newly introduced
multicamera system is presented in the third section, where the selection of the fiducial
marker system is discussed, together with the algorithm for localisation and tracking us-
ing multiple cameras. The fourth section presents the collected datasets and the testing
framework allowing reproducible and automated evaluation of given experiments. The fifth
section evaluates the localisation system mainly for its accuracy and performance over sev-
eral datasets compared to the base single-camera variant.
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2 State-of-the-art in localisation and mapping

Once a mobile robot has to perform an autonomous task, it needs to know, represent,
and understand the environment where it operates. In order to deliver the task, the robot
has to follow partial steps to achieve the goal state, navigate, and know that the task
has been achieved. In mobile robotics, the navigation task is about finding those partial
steps, planning, and moving to specific locations or following a path. To plan, the robot
has to have a map which is a simplified representation of an environment. Then, the robot
needs to find itself within the map, localise, and assess the constitution regarding the
goal state or the planned path. There comes the need to understand the surrounding,
and for such, the robot utilises and evaluate equipped sensors. The received data are
used for pose estimation with respect to a given coordinates frame. In situations when
the localisation and map building problems are solved jointly, the problem is studied as
Simultaneous localisation and mapping (SLAM). Because of the real-world dynamics, the
incoming sensory data suffer from a naturally occurring noise and false reading, so the
additional problem appears in terms of proper data evaluation and filtering. Therefore, it
is crucial to address the data imperfection and introduce means of data processing and
robust methods for the tasks above, as in the other case, the solutions might be corrupted
and faulty.

2.1 Mapping

Capturing the appearance of the robot’s environment can be utilised for building maps
which are the abstract understanding of how the robot perceives the world. Basically,
any information that describes a part of the surrounding can be considered a map. Pure
recording of the raw sensory input maintains the exact appearance of the world; however,
it is almost impossible to use such data as they are for higher-level decision making like
planning, localisation, or searching for goals to explore or exploit. Therefore, a particular
abstraction of the robot perception is required for meaningful mapping. There exist various
approaches to map building, as each of them is beneficial in different applications. The
robot does not have to build the map by itself, but it can be provided with a hand-crafted
or generated one which can feature more complex information than the robot would be
capable of acquiring. Based on the level of the data abstraction, the mapping techniques
can be divided into topological or metric methods [1].

2.1.1 Metric maps

The metric maps record and maintain the real-world metric relations of the mapped
environment, usually in the form of a grid with uniform resolution [2, 3]. The individual
objectives, such as obstacles, are expressed by coordinates either in the world frame or in
the discretised grid-map frame. The advantages of those maps are their straightforward
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2.1 Mapping

implementation and modification because, in order to incorporate the sensory measure-
ments, it is enough to know their transformation from the sensors to the current position
of the robot within the map. As they represent a simple abstraction and discretisation
over the robot observations, they can also be easily visualised and validated by people.
When building the maps, it is essential to properly know the position and orientation of
the sensors because any offset leads to not only incorrectly recording the new data but
also can corrupt the already existing map. The metric maps are usually more complex and
require more resources as even unimportant parts of the maps between several points of
interest have to be kept in order to persist their mutual spacial relation.

Occupancy grids provide the information about the traversability of individual cells,
usually in terms of the probability that the given cell is occupied, see Figure 1. The occu-
pancy of individual cells is considered independent even though one can expect similarities
of spacial close places in the real world. Every new measurement from the sensors has to
be evaluated for possible obstacles. The traversability of every observable cell has to be
updated based on the currently estimated occupancy state.

Geometric maps represents the robot’s surrounding through simple geometric objects.
The sensory data needs to be interpreted to form a line and other primitives, and therefore
the cost of a more abstract and effective representation is the additional computational
requirement. Those maps express the obstacles or objects, in general, more smoothly as
they are geometry modelled. However, it also means that finer details might get lost as
they would appear insignificant to the object fitting algorithm.

Landmark maps are even more simplified maps than the previous two approaches.
They are usually built by recording only the position and orientation of known landmarks
with respect to the global map coordinates. Such representation can be highly compact and
efficiently created. However, with the additional abstraction, the robot must be provided
with a dedicated algorithm for detecting and distinguishing individual landmarks. Also,
those maps are highly dependent on the landmarks’ observability, and in case of a change
in the environment affecting the landmarks, the map might become useless.

2.1.2 Topological maps

In situations when the robot’s pose does not have to be determined with high accuracy
and the environment is easily distinguishable, the topological maps are more efficient [4, 5].
The efficiency is gained through a higher level of place representation. The places are
transformed into a graph with the nodes as places and the edges as mutual relations
between them as in Figure 2. Therefore they are more suitable for coarser maps and thus
lower accuracy in localisation because the more accurate the map would be, the more
nodes in the graph there would be. Thanks to the graph structure, planning or any graph-
based algorithms are easier and faster to be applied. As the locations are represented as
independent nodes, it is not necessary to express the robot’s observations in the global
map frame because it is enough to keep only a detailed description of the nodes, which
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2.2 Localisation

can be specific to a given node. However, those maps become impractical if the individual
locations are ambiguous because it is likely that the localisation would be highly incorrect
due to imperfect sensory data.

Figure 1: Occupancy grid map

Entrance

Hall

Presentation room

Staircase Office space

Meeting room

Figure 2: Topological map

2.1.3 Hybrid maps

A unique and more complex mapping approach is the hybrid map which integrates mul-
tiple different forms of maps into one. In [6], the authors combine the matric grid-based
maps with the high-level topological maps. Although the grid-based mapping methods
achieve high accuracy and a more consistent representation of the environment, their re-
source requirements increase quickly with the accuracy and the area they cover. However,
they can be abstracted and split into individual smaller maps, and a topological map can
be built on top of them, which benefits from the effectiveness in more complex planning
or, in general, in the robot deployment over large spaces. Such hybrid map application is
beneficial when a pure localisation in one or the other map would lead to incorrect pose
estimation and thus the robot being lost.

2.2 Localisation

To localise means to estimate the robot’s immediate position and orientation in a given
frame using the available sensors. This task is specifically important when the robot needs
to change the position but not only as a part of a static path following but rather when the
destination is different with the time. Localisation approaches can be categorised into two
sections depending on the frame of reference it is performed - relative or absolute. Other
divisions are described based on the location of the sensors, whether it is equipped on the
robot, onboard localisation, or whether they are not external localisation.
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2.2 Localisation

2.2.1 Relative localisation

When a robot estimates the pose with respect to its previous pose, it is called relative
localisation or dead-reckoning. In this case, the pose is only considered as a change from
the previous one. It can be accumulated to represent the pose in the frame of the beginning
of the localisation, which is generally used rather than the first approach. As it is based
on the estimation of the movement delta, the robot can only analyse the change in the
incoming data from sensors, and thus, due to the accumulation of estimations, also the
error is accumulated. Therefore, a certain method must be incorporated to overcome the
error and correct it as the robot operates. However, thanks to evaluating only the small
changes in the pose, the localisation is accurate from a short-term perspective. Moreover,
it is often used as a source of differential change in localisation. Relative localisation is not
memory demanding as it keeps just the previous estimation. In general, only the onboard
sensors are considered for dead-reckoning.

Odometry

Odometry localisation is based on sensors for measuring the movement by encoders, and
commonly they are either optical or magnetic. When a moving part of a robot is equipped
with encoders, they count how many times the given part, wing, wheel, or belt, has turned
around, even partially with a specific step. Together with the distance between individual
steps, the overall moved distance can be obtained. As the number of signals to the encoders
can grow quickly, the sensor control unit usually only provides the number or signally per
a set interval. Therefore, the sensory output provides the robot’s velocity, which must be
integrated to establish the pose. Such an approach introduces the possibility of numerical
instability when integrating over a large distance travelled or errors in estimation by delays
in sensor readings. Moreover, when the parts are moving over various materials, they might
slip and move more, so signals significantly different displacement than actually happened.
So, the odometry cannot be entirely relied on as the only localisation estimation. However,
it is accurate in the short term because it is directly based on the physical movement of
the robot’s motors. Thanks to its direct incorporation into the motors, they can be found
in almost all current robots. To overcome the odometry drift in time, it can be joined with
a different pose estimation for correction as in [7] where the authors are fusing it with a
visual pose estimation.

Inertial localisation

In the case of using sensors measuring acceleration, thus accelerometer or gyroscope,
we talk about inertial localisation. As the inertial sensors provide rotation readings, the
derived localisation shows higher accuracy in the orientation estimation than the odometry,
which can only approximate the orientation based on the differences between individual
encoder readings. In [9], the authors present an accessible localisation framework using only
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Figure 3: Combined kit of accelerometer and gyroscope [8]

the inertial sensors. The main drawback is position estimation because there have to be two
integrations from acceleration to velocity and then into position. Thus, the localisation is
even more sensitive to numerical instability or false reading from sensors because the error
can significantly influence the odometry localisation. Thanks to the advances in technology,
accelerometer and gyroscope can be manufactured together into an inertial measurement
unit, IMU, providing a unified and reliable source of angular changes, see Figure 3.

Accelerometers provide robots with the knowledge of proper acceleration and its di-
rection in space. However, they are easily affected by tilting or any change in the levelled
position, also by the Earth’s gravity. Therefore, they should be correctly calibrated when
deployed on robots and even completely insulated in case of a rough environment to prevent
errors. As the accelerometer measures instantaneously, the data might be indistinguishable
from noise during slow movements.

Gyroscopes contrary to the accelerometers measure primarily the angular acceleration,
which can be directly integrated into orientation estimation. Because of its high accuracy
in orientation, it is commonly fused together with odometry’s position estimation. Gyro-
scopes also need isolation from the surrounding in order to provide robust and accurate
measurements, and so their enclosures have a bigger size. Therefore, it might limit their
positioning or even deployment in general. Coriolis forces and also centrifugal forces have
significant influence, and thus the reliability might decrease while the robots perform rapid
changes in heading.

2.2.2 Absolute localisation

Absolute localisation, also called the kidnapped-robot localisation, is a task of establish-
ing the current position and orientation with respect to a given global coordinate system
which differs from the localised object’s frame. Contrary to the relative localisation, no
previous localisation estimation is incorporated. This approach benefits from the elimina-
tion of the likely introduced drift in integration over relative pose estimations because each
pose is calculated independently on the previous one. Thanks to not relying on history, any
sporadic mistake does not affect the future state. We can distinguish the kidnapped-robot
problem into two categories based on the position of the sensors - onboard and external
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localisation. As onboard localisation is more suitable for relative localisation, additional
information about the robot’s surroundings and relations between existing frames must be
provided. However, the external approach to localisation requires complete coverage of the
operational space with sensors.

Figure 4: Digital compass [10] Figure 5: South-pointing chariot [11]

Compasses

Compasses represent an onboard sensor for obtaining the robot’s direction regarding
a specific reference place. Measuring the proper heading of the robot is especially impor-
tant in localisation and also navigation tasks because a slight inaccuracy might lead to
a larger turn, therefore significantly different and erroneous end position. In [12], the au-
thors present the application of compasses for improving the estimation of orientation. As
the sensor provides just the heading to the pole, it is not possible to transform it into
a position estimate. Also, the measurements of the most common magnetic compasses
would be influenced by strong electricity sources, metal constructions or even irregulari-
ties which naturally happen. Because of the tendency to be affected by the surrounding,
it is not preferable indoors. The digital compasses are accessible sensors without moving
components and are more durable and better for deployment in robotics, see Figure 4.
Nevertheless, the idea to measure and track the heading for localisation dates back to the
ancient Chinese south-pointing chariot, see Figure 5.

Global positioning system

The Global positioning system (GPS) is an orbital localisation system formed from mul-
tiple satellites providing the observer data with their immediate location and current time.
Because a sufficient number of satellites might not always be available, usually because of
occlusion, the typical position estimation accuracy is approximately fifteen meters. How-
ever, local ground sources of supporting position information can be incorporated in order
to increase the accuracy up to centimetres, and such a technique is called the differential
GPS. As one has only to have a receiver for the emitted signal from orbit, there is no
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need for supporting hardware setup, and therefore, it makes it highly suitable for portable
robots. The drawback of GPS deployment is the necessity of satellite visibility. Thus its
usage indoors or underground is not possible due to the unavailability of the signal [13].

Landmark localisation

Objects or patterns which stand out against their surrounding are called landmarks, and
they can provide prominent information for localisation. Landmarks have a characteristic
signature in the robot’s sensory data so that they can be easily detected and recognised.
They can have many different forms and types, but their analytical description is usually
a priory known, which includes their visual appearance, space proportions, signal struc-
ture and many more aspects. The mutual spatial relation between the landmark and the
robot can be established based on such an analytical description. The landmarks can vary
significantly, so we can categorise them into artificial or natural classes depending on their
source in an environment. We can approach the division from the point of view of emitted
energy, thus either passive or active landmarks.

Natural landmarks are such patterns or objects that are serving a different purpose
in the environment, but their characteristics are so distinguishable that they can be relied
on. The widely used sensor, a camera, can be used for detecting high contrast environment
areas like a window corner or edges [14]. Also, the position in the space can be sometimes
recovered so that it can be used for localisation. When the natural landmarks are described
by the vision sensors, they are primarily passive landmarks and are commonly referred to
as image features [15, 16, 17, 18, 19, 20]. As mentioned, they are based on things that have
originally had a different purpose, and therefore, nothing additional had to be added to
the environment for localisation. Such an advantage can quickly turn into a disadvantage
in situations when the environment is not constant, so the visibility or appearance of the
features changes in time. The features are often more straightforward descriptions of image
pixel patches as in Figure 6. Thus, there might be many of those across multiple images
resulting in more complicated distinguishability and uniqueness.

Artificial landmarks are, on the other hand, mainly designed for straightforward de-
tection and localisation based on known analytical characteristics. Contrary to the natural
landmarks, the artificial ones are deliberately distributed over the operational space for
easier localisation, especially in the case of a scarcity of natural ones. As almost anything
that is added to the scene can be considered a landmark, there has been a wide variety in
the appearance of mainly passive landmarks because manufacturing is considerably more
manageable. One can think about QR-code like tags, reflexive pads or in the case of ac-
tively producing signals, and there are commonly used light or radio beacons as in [21].
In [22], the authors presents an ulstrasound indoor positioning system for robot tracking
and localisation using active beacons as in Figure 7. Thanks to the prior knowledge of the
landmark, the artificial approach succeeds in higher robustness and detection stability and
reliability.
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Figure 6: FAST corner detector [16] Figure 7: Ultrasonic beacon [22]

The idea of landmark localisation is to find the transformation between the immediately
detected landmarks and the ones available in the map [23]. As the estimation of the land-
mark’s pose is bounded to the mutual configuration with the robot, usually the perception,
thus also the accuracy, is improved with a smaller distance and under a smaller observ-
ing angle. In many situations, some occlusions might happen, and therefore the landmark
localisation is fused with other types of localisation like odometry to overcome the tem-
porary lack of information. In [24], the authors present the below elementary solutions to
the localisation task using landmarks. When the displacement from the individual land-
marks is available, trilateration can be applied. However, the triangulation can provide the
localisation estimation from the angles between the landmarks and the y-axis of the robot
frame.

External localisation systems

External localisation systems are complete out-of-the-box positioning and motion cap-
ture systems monitoring from outside the behaviour within the operational space. Their
main domain is the excellent precision and high frequency of measurement. They usually
serve as an evaluation framework for experiments because of reliable ground truth data or
densely sampled motion analysis. Unfortunately, the hardware and technologies involved
in the systems are often not open source and are actually at the high-end price spectrum.
Apart from the limiting price aspect, they also suffer from lower flexibility because the
systems have to be thoroughly calibrated every time there is a change in the setup. An-
other drawback of the vision-based localisation technology is that it commonly uses the
infrared light spectrum, which means that there should not be other infrared light sources,
resulting in the impossibility of deploying those systems outdoors.

Vicon is one of the most popular passive marker localisation systems for estimating
both the position and orientation in various coordinates frames [25]. It is a vision-based
system that consists of small markers which can reflect the infrared light which is emitted
by the observing cameras, see Figure 8. The incorporated cameras have to be synchronised,
so the captured images for localisation are reliable. The system firstly detects the reflec-
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Figure 8: Vicon retroreflective markers [25] Figure 9: PTI Phoenix markers [26]

tive markers in the image coordinates, and then, using triangulation, the 3D position is
estimated. As in [27], the Vicon system is used across a wide range of research fields, from
robotics and augmented reality to biomechanical and gait analysis.

OptiTrack represents a passive motion capture and positioning system based on in-
frared light reflected by specialised markers equipped on the tracked desired targets [28].
This system is similar to the Vicon system because it incorporates multiple cameras and
synchronised image capture to localise infrared targets in the space. In order to track and
monitor intended objects, the retroreflective markers have to be visibly mounted to be cap-
tured by the high-resolution cameras. Because the high-level approach to the localisation is
shared with the Vicon system, triangulation is used for the position estimation. However,
the localisation is based on the markers’ reflected light signal; therefore, it also suffers from
the restrictions when deployed outdoors. OptiTrack’s performance is comparable to the
Vicon’s one, as stated in [29], where the authors conclude that although the OptiTrack is
priced lower, the localisation precision is comparable or slightly lower, which might still be
acceptable in many fields.

PTI Phoenix is, contrary to the previous two systems, an active external localisation
system [26]. The system again operates in the infrared light spectrum where the active
LED markers emit specialised light signals as the markers can be distinguished based on
the blinking frequency. Apart from the active LEDs, the overall system setup is similar
to the others as it also requires synchronised image capture from multiple high-resolution
cameras. Because the light source is in the operational space and not in the cameras, the
environment is not flooded with infrared light. Therefore, there is a chance that the other
infrared-sensitive sensors would not be blinded, as is shared among the passive systems.
The main drawback of this system is the necessity of a power source for the LEDs, which
introduces not only making sure that the batteries are charged but also thin and fragile
wires that connect the LEDs with their control unit. In Figure 9, there are the necessary
system components to be equipped on the tracked object.
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2.3 Simultaneous localisation and mapping

The task of building a map and, at the same time, localising is called simultaneous
localisation and mapping (SLAM). This complex problem is the foundation of various
robotic applications where the robot has to operate in a previously unvisited environment.
In the beginning, the robot’s position and the map are not known, and both of them
have to be accurately estimated at the same time. Thus, it is essential to at first correctly
interpret the current observation and add it to the map and then localise itself within the
newly extended map. Then, when the robot moves, the motion model, which describes the
probability of the new position, can be used to estimate the new position. The standard
approach is based on derivations of the recurrent Bayes rule, so the imperfect measurements
from sensors together with the robot’s state transitions can be modelled jointly. In order
to estimate the most probable map and pose, there are two main approaches, the extended
Kalman filter and the particle filter [30] visualised in Figure 10.

Extended Kalman filters

Extended Kalman filter (EKF) represents the belief of the map and pose by unimodal
and multivariate Gaussian distribution. Therefore, the number of variables required to
model the distribution is relatively small, however, only for small-sized maps. The underly-
ing assumptions are the linearity of the state transition and sensor observation probabilities
are linear with added Gaussian noise. Another assumption is the known observed feature
correspondence with the ones on the map. The main disadvantage of the EKF approach
is the dimensionality growth with the growth of the map. Thus, there is a computational
limit on the size of a map. The restriction on the size of the environment can be overcome
by either selectively choosing which observed features to add to the map or splitting the
map into a set of smaller ones. In [31, 32], the authors presents the EKF-based SLAM
effectivness in feature rich environments.

Particle filters

Particle filters model the belief of the map and robot’s position and orientation by
multiple particles creating a probability density. With an incoming sensory measurement,
each particle is drawn newly from a distribution with modified weights with respect to the
sensor model and alignment with the map. Therefore, the particles cluster around the most
likely solutions to the SLAM problem and form several hypotheses to choose from. The
complexity of the filter increases with every new landmark added to the map because to
achieve a high probability of such a landmark, it requires a high density of particles. Thus,
in the pure form of this approach, it becomes quickly unpractical to build the map, and it is
reasonable only to use it for robot localisation. The authors of FastSLAM [33] introduced
an improvement to the resource requirements of particle filter by Rao-Blackwellization,
which represents the landmarks as conditionally independent.
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(a) extended Kalman filter
(b) Particle filter

Figure 10: Robot position estimation by SLAM filters [34]

2.3.1 Visual SLAM

Multiple different sensors have been fused together in the beginnings of the SLAM meth-
ods. However, the increasing accessibility and simplicity of onboard cameras opened the
door for studying the SLAM methods based only on the visual information provided by the
cameras. Contrary to the other sensors like laser range finders or GPS, the camera images
are only a 2D projection of the surroundings. Therefore, obtaining the scale information
important for accurate map building is substantially more challenging. We can divide the
visual SLAM techniques into two groups depending on the image processing methods ap-
plied. Feature-based methods detect image features and use them for pose estimation and
map building, and the direct methods process the whole image buffer, which might be
beneficial in feature-less environments [35, 36].

MonoSLAM

In [37], the authors presented the first feature-based visual SLAM using only a monocular
camera, thus called MonoSLAM. The underlying algorithm is the extended Kalman filter
for the map and position estimation. To initialise the mapping, it is required to capture
a priory known landmark or object in the space to establish the global frame. The used
image descriptors are the SIFT features. The features are extracted from a single camera
image, so the depth information cannot be directly recovered; therefore, it is estimated by
tracking individual features in an image sequence. In order to correctly track the features,
they have to be correctly detected and matched with the map. Therefore, the movement
must be stable and slow enough to allow reliable tracking. Thus the algorithm assumes a
uniform state transition model. Faster and sharper movements can be supported by using a
higher frame rate, but it is in opposition to the resource restriction imposed by the growth
of the map.

13



2.3 Simultaneous localisation and mapping

LSD-SLAM

LSD-SLAM, or Large-Scale Direct Monocular SLAM, represents the second category of
visual SLAMs; thus, it evaluates the whole incoming images directly from the monocular
camera [38]. Direct image processing is utilised for both the localisation and also map
building. As the image is exploited for information as a whole and not only a specific
descriptor region, more information for localisation can be used. Compared to the previous
direct SLAM methods, this approach addresses and corrects the scale drift occurring in
large-scale maps. Contrary to the feature tracking in the image stream to assess the depth,
the LSD-SLAM recovers the depth using stereo view comparison on a pixel level basis. It
is more beneficial in feature-less or distinctive texture-less environments where it provides
more accurate and robust pose estimation. In [39, 40], the authors present the modifications
to support a stereo and omnidirectional camera, respectively.

ORB-SLAM

Another popular representative of the feature-based visual SLAMs is the ORB-SLAM
which uses the ORB image features instead of the SIFT as in the MonoSLAM [41]. Those
features originate from the binary BRIEF descriptors with the addition of robustness to
noise and changes in orientation. Because of their real-time detection capabilities, even on
a CPU, they do not suffer from high resource requirements. The possibility of mapping
large areas is achieved by expressing the maps as a co-visibility graph. Therefore, global
relations are known, but the robot always operates on one local map. The drift correction
through loop closure is not applied to the whole keyframe graph but only to the edges in
a found spanning tree. The correction is then recalculated more quickly. Further evolved
ORB-SLAM2 introduced in [42] extends the types of applicable cameras with stereo and
even the depth cameras. Such extension supports the easier recovery of the map scale or
improves the feature tracking.

UcoSLAM

UcoSLAM is a special kind of visual SLAM as it fuses the fiducial marker pose esti-
mation with the traditional feature-based localisation and mapping [43]. Originally in the
work [44], the authors designed the SLAM to use the fiducial markers only instead of the
image descriptors as in the aforementioned methods. However, in the last modification, the
method can use both feature sources because otherwise, the environment would have to
be enough populated with the markers. The used marker, the ArUco, reduces the uncer-
tainty of the map scale of even the accumulated drift. As the markers have prior known
characteristics, once detected, the map can be corrected to correspond with the metric
relations obtained from the marker. Such SLAM feature is advantageous in applications
with repetitive structure, thus with the high rate of false loop closure detection. Also, it
supports proper relocalisation after the feature tracking has been lost.
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2.4 Fiducial markers

Fiducial markers are artificial landmarks added to the environment in order to provide
a stable and reliable source for measurements or a distinguishable anchor point in the
image. Thanks to this property, the fiducials are highly used in robotics to support various
localisation, tracking, and even navigation tasks[45, 46, 47]. Basically, the fiducials can be
deployed to improve the onboard or external localisation whenever a camera is involved.
Because they are designed to be easily detectable by image processing techniques, they
commonly have a shape based on simple geometric objects, and their colour palette has
high contrast. Therefore, there are usually black and white. In order to support their
versatility, they are planar markers with variable sizes; thus, they can be attached and
placed almost anywhere. In Figure 11, the fiducials are used for the unique identification of
individual objects in the environment and for estimating their mutual positions, whereas
in Figure 12, the markers is used for the bee queen tracking. An exhaustive evaluation of
the performance of fiducial markers applied in the area of autonomous cars is presented in
detail by the author in [48].

Figure 11: AprilTag markers as labels for
warehouse robot [49]

Figure 12: WhyCode marker for bee queen
tracking

AprilTag

AprilTag is one of the fiducial markers with a black square shape and black-and-white
binary code inside [50, 51]. The fiducial features a unique identifier based on lexicographical
binary encoding within the inner area of the square, see Figure 13. The binary code can be
flexibly generated to produce sufficiently many markers while being resistant to false ID
decoding by the scalable hamming distance between individual code words. The partial pose
is estimated by the homography and extrinsic transformation, which provides the possible
position and orientation of the fiducial. Also, the yaw rotation is recovered from the rotation
of the 2D binary code obtained by thresholding the marker’s inside area. Therefore, it is
possible to estimate the full six degrees of freedom with respect to the camera coordinate
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frame. Even partially occluded markers can still be detected and even identified thanks to
searching for all line segments in the image and then line fitting to form a closed region
with four corners. If the region passes several checks for its squareness, then the ID is
attempted to be estimated. An extension of the fiducial marker system is presented in [52]
for estimating the camera calibration parameters. The authors of [53] relaxed the marker’s
shape to support a broader range of shapes and even allowed the embedding of custom
content within the centre area. The marker design was further extended to applications
with highly variable observing distance by introducing a recursive marker which consists
of several differently sized markers.

ArUco

ArUco is a fiducial similar to the AprilTag in terms of the shape and ability to estimate
the full six degrees of freedom [54]. As the marker detection shares the approaches with
the AprilTag, it also relies on the pose estimation using the four corners of the marker.
However, when the marker is partially covered, the detection is not possible as there is
no line reconstruction from partial line segments. On the other hand, the authors propose
to utilise smaller markers close to each other; thus, the others could still be detected in
case of occlusion. The used ID enoding is based on mixed-integer linear programming as
introduced in [55]. A faster version of the detection algorithm relies on the evaluation
of consecutive frames and on-the-fly selective limits on the marker’s size and position as
in [56]. In [48], the authors present an evaluation of the marker performance showing an
unstable time required to detect the marker in an image which might become a bottleneck
of a more complex localisation pipeline. The fractal variant based on ArUco has been
presented in [57], and it introduces the resistance to occlusion and increases the detection
distance. In Figure 14, one can see the similarity between the square-based marker designs.

Figure 13: AprilTag Figure 14: ArUco

WhyCon

WhyCon represents a black-and-white annular fiducial marker which consists of two
concentric circles with a flexible size ratio [58, 59]. For successful localisation, the outer
black diameter together with the size ratio with the inner white area must be provided as
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those are the prior metric knowledge for scale estimation. As the design is relatively simple,
the localisation can estimate up to five degrees of freedom because there is no informa-
tion for determining the revolution around the marker’s surface normal. The underlying
geometric model can provide position estimation precision in a few millimetres. Therefore,
its primary applications involved mainly the position estimation and tracking due to the
fact that the time required to detect thousands of markers is in lower milliseconds. Such
performance is the system’s main advantage because it can smoothly run even on compu-
tationally restricted hardware [60]. Because of the marker’s lack of distinguishability from
each other and the impossibility of recovering the full six degrees of freedom, other marker
systems evolved from it - WhyCode and SwarmCon as visualized in Figure 15.

WhyCode

WhyCode is a circular fiducial marker which originates in the WhyCon marker and
introduces solutions to the missing features of the original marker [61]. Because of the
marker’s similarity to the WhyCon, the core parts of the system are shared, especially
the detection of the black-and-white inner and outer segments. Also, the 3D position and
orientation estimation from the characteristics of the approximated conic section is based on
the marker contour. In [62], the authors presented the WhyCode with a circular binary code
which is inspired by the Necklace codes. The encoded binary sequence can be interpreted as
an ID and uniquely generated for individual markers. Using the binary code, the rotation
around the marker’s surface normal can be estimated because the Necklaces are rotationally
invariant sequences; therefore, the yaw rotation corresponds to the required shifts of the
code until the lowest value is achieved. Unfortunately, the introduced IDs restrict the wide
range of detection angles and lower the distance as the pattern is more complicated. In [59],
further improvements of the pose estimation by resolving the ambiguity are presented.

SwarmCon

SwarmCon is a specialised modification of the WhyCon marker localisation system,
which adds the possibility of encoding unique marker ID and estimation of the rotation
around the marker’s surface normal [63]. The two concentric circles are generalised into
ellipses with offset centres, and therefore, the yaw angle can be determined from the ellipses’
semi-axes. The marker’s ID is encoded into the centres’ offset and rotation of the inner
ellipse. Unfortunately, such an approach brings a restriction on the viewing angles, which
are reduced to the almost perpendicular placement of the camera above the operational
space. As of such restriction, the applications are mainly in mobile swarm robotics, where
real-time tracking and minimal computational requirements are beneficial. Because of the
specialisation for swarm experiments evaluation, the system offers an embedded coordinate
system calibration.
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(a) WhyCon (b) WhyCode (c) SwarmCon

Figure 15: WhyCon-based fiducial markers

ChromaTag

ChromaTag [64] localisation system stands out in its specific usage of LAB colour space
instead of black and white representation as in Figure 16. Even though the marker has a
square shape, the detection is real-time and faster than other more traditional black-and-
white square markers. Such performance is possible because it does not detect the edges in
a thresholded grayscale image which can easily overwhelm the detection algorithm as those
edges are naturally present in the environment. Instead, the detection is performed on the
coloured image in the LAB colour space, which has the appropriate colour distribution
suitable for immediate rejection of segments not belonging to the marker. However, due
to the increased complexity of the marker’s design, the detection distance and angles are
more restricted than the other state-of-the-art markers.

RuneTag

RuneTag markers are based on the circular markers approach; however, they utilise
small dots to outline several concentric circles instead of solid coloured rings [65]. A specific
dot pattern along the perimeter represents the unique encoded ID of a given marker, see
Figure 17. The ID can be recovered even under significant occlusion thanks to a highly
flexible error-correcting coding system. The fiducial design does not incorporate the inner
area for detection or localisation purposes. Therefore, it is open to the placement of any
additional helpful information for the image processing pipeline. However, as the pattern
is based on small dots, they have to occupy a sufficient number of pixels in the image to
be detectable; thus, the detection capabilities are lower than the other marker designs.

2.5 Camera-based localisation

All of the methods mentioned above require a sensory source of information as otherwise,
the robot could not perceive its surrounding. With the development and minimisation of
camera sensors, they have become more accessible and bearable for robots. Therefore, it
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Figure 16: ChromaTag Figure 17: RuneTag

is essential to pay attention to this sensor as it is information-rich and can be used stand-
alone for localisation. However, the geometry model is more complex compared to other
sensors like laser range finders, as the information obtained is only the 2D projection of the
surrounding world. Also, the captured image requires a significant amount of processing to
detect and localise the features present.

2.5.1 Camera model

A camera sensor is a very complex and advanced device that can capture the observed
environment’s visual appearance. It is possible by recording the intensity of the light spec-
trum. The light intensity is measured by a special CMOS chip composed of many individual
cells forming a square grid. As each cell provides only the intensity of the light and not the
colour, there is a filter applied over the cells in order to allow only the light wavelengths
of the desired colour. The most popular filter is the Bayer filter which is formed of a grid
pattern with half the cells green, and the rest is half red and half blue because the human
retina is the most sensitive to the green colour [66].

The camera chip cannot be used as is to capture an image because it would be over-
whelmed by all of the surrounding light. It has to be enclosed, and the light rays have to
be restricted in the way that only the rays reflected by the intended objects are measured.
This approach was demonstrated in the early beginning of the cameras by the camera
obscura, see Figure 19. It achieves it by directing the light through a tiny pinhole in a
box-like device which allows the rays to form the image on the backside of the box as in
the Figure 18. However, such an image has poor quality as it is blurry and dark due to the
limited amount of light. When the pinhole is enlarged, more light can be captured, but the
image becomes more and more blurry because the rays are not focused on a small point
by the pinhole. This problem can be mitigated by adding lenses directing the light back to
a single point.

The obtained image is a projection of the 3D world onto a 2D plane. When we want to
relate the world point with its point in the image and vice versa, we have to be able to
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Figure 18: Pinhole camera [67] Figure 19: Camera obscura [68]

model the camera projection. However, the introduced optic system for focusing the light
makes it more complex even for using the simple thin lens model. Therefore, the pinhole
camera model is used for its simplicity and linearity. However, it only approximates the
actual camera, so the compound lenses that distort the resulting image are not reflected
in the model.

The image must be adjusted to be as the pinhole camera would capture it. The ad-
justement is called rectification and it is described by the distortion parameters which
compensate the captured picture element, pixel, position. There are two main types of
distortion - radial and tangential. The radial distortion is caused by the uneven thickness
of the lens, which causes the light bends differently around the edges and can be of two
types - barrel and pincushion, see Figure 20. The tangential distortion is produced by im-
proper assembly of the camera device when the capturing chip is not parallel to the lens.
In order to determine the distortion parameters and estimate the parameters of the camera
projection model, the camera has to be calibrated.

(a) Barrel [69] (b) Pincushion [70]

Figure 20: Radial distortions

A 3D point in the camera’s field of view can be projected onto the 2D image plane and
assigned the image pixel coordinates. As the camera’s coordinate system origin is usually
at a different location than the world origin, we at first have to estimate the 3D rotation
matrix R and the translation of origins t to transform the world frame to the camera
frame. Then, we have to appropriately scale the coordinates so they would correspond to
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the pixel size, and the point would be lying in the image plane. Such transformation is
denoted by matrix K below

K =





fx s cx
0 fy cy
0 0 1



 , (1)

where cx, cy are the coordinates of the optical center in pixels, s is the skew coefficient in
case of the axis are not perpendicular, fx, fy are the focal lengths in pixels obtained by
dividing the focal length in millimeters by the dimentions of the pixel expressed in the
same unit. When the first rigid transformation and the projection are combined, they form
the projective matrix P as

P = K
︸︷︷︸

intrinsic
matrix

[R | t]
︸ ︷︷ ︸
extrinsic
matrix

(2)

Putting it all together, the pixel coordinates, u, v, of a world point, (xw, yw, zw)
T , are

calculated as





xi

yi
zi



 = P







xw

yw
zw
1







(3)

u = xi/zi (4)

v = yi/zi (5)

Camera calibration is a procedure to find the perspective projection matrix. The
straightforward approach is the six-point algorithm which is based on six-point correspon-
dences between the image point and the world points [71]. However, it is possible to recover
only a non-zero multiple of the projection matrix as any introduced non-zero scale will can-
cel out in the projection to a 2D point. Also, the distortion parameters are not obtained,
which are highly important, especially for cameras with small lenses. Another widely used
approach is to capture multiple images of a planar pattern from different views [72, 73].
The used pattern can be anything, but we have to know the metric relations of it as in
Figure 21. Because it does not require the correspondences, it is easier to use as measuring
the exact position of a point in space is rather nontrivial. Also, this method can estimate
the distortion parameters of the camera.

2.5.2 Camera pose estimation

The camera pose can be estimated from two views which observe the same points in the
world coordinate frame. In other words, the cameras have to have an overlapping field of
view. It can be applied for both an onboard localisation using the robot’s camera and two
cameras calibration for external localisation. In terms of the onboard localisation, the two
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2.5 Camera-based localisation

Figure 21: Camera calibration chessboard pattern

views can be even obtained from a single camera when considering the time to distinguish
them. However, the robot’s control has to be adjusted for it because an image loses quality
under abrupt and sharp movements. The utilisation of two camera calibrations provides the
transformation from one camera’s coordinate frame to another; thus, their mutual position
and orientation can be estimated.

The methods for multiple view geometry estimate the camera pose from a particular
number of point pairs which are the mutual corresponding points in either the image or
the world coordinate system. Therefore, most of the methods require additional knowledge
in order to determine if the points belong to each other or not. We can divide the methods
based on whether they need such information in advance of the pose estimation or are
more general and can automatically find those correspondences.

Another point of view on the method categorisation is based on the coordinate frames
of the observed points. There are methods which are more general and not bound directly
to vision techniques, so they can be used for estimating the transformation between almost
any standard metric system. However, sometimes, it might not be possible to use them for
localisation because the data obtained from camera observations are only a projection from
3D to 2D space, so they are missing the depth and scale information. The pose estimation
would be useless for any integration into a global coordinate system. The deployment
of fiducial markers and other landmarks which can provide metric pose estimation can
overcome this limitation. On the other hand, one can use methods designed to work directly
with the perspective projection within and work over correspondence pairs in the image
frame. They utilise the epipolar geometry to calculate the orientation and translation
between cameras. It can be even used to obtain the projection of points from one camera
into the other.

The epipolar geometry describes the geometry of two views [71]. When two cameras
observe a place, various restrictions and relations can be imposed on their mutual pose
and on the projected points they observe. The individual camera centres can be projected
into each other as epipoles as in Figure 22. Also, as the 2D image point in one image
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2.5 Camera-based localisation

can be understood as a perspective projection of a light ray cast to the camera, such a
ray can also be projected into the other camera image and form an epipolar line through
the epipole and the corresponding image point in the second camera. The relation of the
epipolar transformation between the two images can be described by either the essential
matrix, which embeds the mutual position and orientation and by the fundamental matrix,
which is the essential matrix with the individual camera calibrations applied to it. Those
two matrices can be further decomposed to obtain the sought second camera relative pose
to the first one.

Figure 22: Epipolar geometry of two cameras [74]

Known-correspondences methods

Many methods for transforming from one coordinate frame to another require knowing
the correspondences between the individual points. The knowledge is necessary for ad-
equately minimising a given criterion or establishing a set of equations to solve for the
sought parameters. This precondition might appear straightforward, but it brings a new
problem of correctly matching two sets of points, each in a completely different frame. To
overcome the problem, one has to deliberately select the landmarks they will detect in
the image so they would be distinguishable enough to be uniquely matched. It is usual
that the points are obtained by appropriate image features or even by placing in the scene
the fiducial markers, which can provide the position in both image and metric coordinate
frames.

Absolute orientation problem describes the least-square method applied to obtain-
ing the rotation and translation between two sets of matched points. In [75], the authors
present a solution to this problem using the singular value decomposition for calculating
the rotation matrix and then the difference between the datasets’ means after rotation
to obtain the translation estimate. The least-square minimization is over the space of 3D
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2.5 Camera-based localisation

position vectors and the space of rotations of the corresponding dimensionality as follows

R∗, t∗ = argmin
R∈SO(3),t∈R3

∑

i

‖Rpi + t− qi‖2, (6)

where the R∗ and t∗ are the transformation estimates, pi and qi are the matching points
to be aligned.

Essential matrix decomposition is a technique to recover the cameras relative poses
from image measurements [76, 77]. In the decomposition process, there is an ambiguity in
the estimation of rotation and translation because any combination of them is valid under
the epipolar constrain

pTEq = 0, (7)

where E is the essential matrix and p and q are the uncalibrated image points, meaning
they have been multiplied by their respective inverse camera calibration matrices. Thus,
based on the possible combinations, there are four different solutions, among which there
is the correct pose estimate, its twisted pair and their reflections. For assessing the proper
pose, the individual poses have to be tested whether the observed points are located in
front of both cameras.

Unknown-correspondences methods

There are common situations when it is not possible to reliably assign the corresponding
data point from one dataset to the other such as low-level image features, point clouds from
laser range finder, and measurements with different capture rates. Therefore, the matching
between datasets has to be approximated through their mutual closeness in a certain
metric or by random sampling. Even though the methods applicable for matched data
samples cannot be applied directly, they can be used as a quality measure in the following
generalised methods.

Iterative closest point (ICP) is an algorithm widely used for geometric alignment of
three-dimensional models [78]. The method minimises the euclidean distance between two
sets of points. Firstly, it matches the point sets to obtain correspondences given euclidean
or other metrics; then, it transforms one set of points while the other is kept unchanged. As
it is an iterative numerical method, the termination condition can be a maximum number
of iterations or a small enough error threshold value. The convergence can be speeded up
by seeding the initial transformation from other robot sensors. In [79], the authors present
a comparison of various method modifications, which can improve the convergence speed
or the accuracy of the found transformation.

Random sample consensus (RANSAC) is a general iterative algorithm for finding
parameters of a given model [80]. Compared to the ICP, it is more robust to outliers as it
creates the corresponding data pairs by random sub-sampling of the datasets. At first, a
minimal number of samples is drawn to estimate the sought parameters and the obtained
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2.5 Camera-based localisation

model is evaluated over the whole dataset. Data points achieving error below a set threshold
are considered as inliers and the rest as outliers. If the ratio of inliers to all data points
is sufficiently large, the consensus is assumed to be reached. The MLESAC [81] further
improves the fitted model by additionally maximising the likelihood of the model only on
the inlier set.
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3 Single-marker evaluation

There are many kinds of fiducial marker localisation systems, and each varies in the
available features and the target users. Considering the robotic applications, the highly
popular and verstile markers are the AprilTag, ArUco, and WhyCode [45, 82, 83, 84, 85,
46, 86, 87, 47]. We at first have to establish the critical aspects of the fiducial marker
performance, so they can be then compared and evaluated for the marker system to be
extended into a multi-camera system further. The pose estimation precision and accuracy
are essential method characteristics to look for. However, it is also necessary to assess
their computational speed. When deployed on a robot, the less resource-demanding the
algorithm is, the longer the robot can operate on batteries or perform other tasks that
would be suppressed in another way.

Figure 23: The real-world dataset of the swarm arena with three robots.

3.1 Real-world dataset collection

In order to approximate the typical marker application, a real-world robotic dataset
has been collected at the University of Manchester. The dataset represents an application
of the fiducials in swarm robotics, and so we obtain information about the performance
under real-world conditions and camera imperfections. The dataset was recorded by an
off-the-shelf web camera observing a swarm arena with three mobile robots moving around
carrying a board with the evaluated fiducial markers, see Figure 23. The deployed mobile
robots are the MONA [88, 89] swarm robots, which are accessible and easily modifiable
robots based on a platform similar to the Arduino Mini. In the corners of the arena,
other boards were placed with the markers to provide the coordinate system to align the
estimated poses. The size of the individual markers is the same 8.4 cm. Thus, it is the size
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3.2 Experimental evaluation

of the square-base markers’ side and the diameter of the circle-based marker. The used
ID range of each marker was chosen to contain approximately the same number of unique
markers, so there would not be an advantage of choosing a smaller ID range to improve
the detection. Thus, the AprilTag uses the 16h5 encoding family, the WhyCode represents
the ID by 8 bits, and the ArUco has 4× 4 2D code within. As all methods are designed to
estimate the pose with the error in lower millimetres, we had to collect the ground-truth
measurements by an even more precise device, the Vicon positioning and motion capture
system.

The swarm arena has dimensions of 2 and 3 metres, and the recording camera is located
around 3 metres above. The web camera does not suffer from significant lens distortion,
and the resolution was set to FullHD with 30 frames per second. The distortion model and
intrinsic parameters were obtained through the commonly used OpenCV library camera
calibration toolbox. The recorded video stream and ground-truth measurements span over
four minutes, which results in more than 7000 captured frames and more than 60000
ground-truth positions. The reference position data were captured at a significantly faster
frame rate than the images; therefore, it required data stream synchronisation. The high
measurement rate is expected for such high-performance localisation systems because it
allows finer resolution of the observed movement. In order to align the two streams, the
dataset collection started before any robot started driving around and continued even
after the robots stopped because those significant moments can be easily spotted in the
measured positions and the video stream. Once those two moments were identified, the
individual frames could be matched with the nearest corresponding ground-truth position
measurement.

3.2 Experimental evaluation

We evaluated the mentioned fiducial markers on the presented dataset for the estimation
error in position and their execution time required to detect and localise the three moving
and four stationary markers. It is beneficial to test the marker methods on the real-world
data because it can demonstrate their robustness to the data imperfections. The dataset
actually contains several sections where the markers are blurred due to the fast robot
motion and sharp turns, which would not be straightforward to model in a simulated
environment. Therefore, the evaluation criteria for selecting the marker for application in
the multi-camera setup are the ones below.

3.3 Position estimation

In the beginning, we focus on the precision of the position estimation, which is essential
in both external and also onboard localisation applications. For the purpose of the single-
marker evaluation, thus understanding essential performance characteristics, we assess the
position estimation using the summarised indicators in Table 1. We evaluated the mean
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3.4 Execution time

AprilTag ArUco WhyCode

Mean 35.53 17.26 18.68
Median 35.35 17.45 18.98
Std. dev. 11.56 7.66 6.15

Table 1: Position estimation error [mm]

and median error estimation as the first value implies overall general performance, and
the second one signifies the expected value with higher resistance to outliers. Another
critical factor is the accuracy of the position measurements, which we express in the form of
standard deviation. When examining the errors in the summary table, the AprilTag did not
achieve convincing results; actually, it scored the worst. Even though the AprilTag shares
similar detection concepts with the ArUco, the estimation errors differ significantly. The
ArUco’s results indicate higher precision than the WhyCode marker in mean and median
comparison. However, the WhyCode might achieve higher accuracy than the ArUco.

3.4 Execution time

Another critical aspect of the fiducial marker localisation systems is the ability to process
images at a high frame rate. The methods were tested on the same dataset, and the
measured time is the duration of the detection and localisation function of the methods.
The execution time was measured on the same machine Lenovo X280 with 16GB memory
and the processor Intel Core i7-8550U and the operating system, Ubuntu 20.04 LTS, was
without any additional load. In Table 2, the individual average durations over the whole
dataset to process one image frame are listed together with the speedup relative to the
AprilTag marker.

3.5 Marker selection

The performed evaluations do not provide a clear candidate for further extension into the
multi-camera localisation system. We can either select the ArUco marker, which scored the
best in the precision of the position estimation. However, on the other hand, the required
time to process an image is related by the nature of the detection algorithm to the scene

Marker Time per image [ms] Speedup [%]

AprilTag 30.3 N/A
ArUco 30.2 0.2
WhyCode 0.9 3465.4

Table 2: The execution time of the fiducial marker methods. The speedup is relative to the
AprilTag
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3.5 Marker selection

composition as it requires more processing time in cluttered scenes. Another candidate
to choose is the WhyCode marker, which does not achieve such a high precision as the
ArUco but is more accurate in the estimated positions. The WhyCode can also localise
the marker at a much higher frame rate than the other square-based markers. In mobile
robotics, the computational resources are always limited either because of other parts of
the localisation pipeline running on the robot or because a small power supply source and
extensive computation would restrict the operational time of the robot. Taking into account
the described setting, the marker for further extension is the WhyCode marker, as it can
run at the highest frame rate and at the same time maintains a comparable performance
to the ArUco marker. The thorough details of the aforementioned single-camera fiducial
marker evaluation were presented in [59].
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4 Multi-camera localisation system

In this section, the single-camera fiducial marker localisation system is further intro-
duced with the necessary steps to transform it into a multi-camera localisation system.
As presented in the previous sections, there is active research and development of many
different fiducial markers. Therefore, in Section 3, we evaluated the characteristics and
performance of the most popular state-of-the-art methods in order to gain the knowledge
of their capabilities on real-world data. The most promising fiducial marker for the ap-
plication in mobile robotics appears to be the WhyCode circular marker because of its
real-time image processing and high localisation precision and accuracy. The marker has
already been deployed in various scenarios of high frame-rate tracking in adverse condi-
tions and also as an accessible and reliable ground-truth localisation system for robotic
experiments evaluation.

The WhyCode marker is one of the circular patterns with foundations in the WhyCon
marker. Therefore, it features minimal requirements like an off-the-shelf web camera and a
basic office printer in order to achieve a few millimetre precision while being versatile to be
embedded into complex image processing and robotic pipelines. The roots in the WhyCon
system are noticeable in the low computational requirements, which was the primary de-
sign principle. Thus, despite robotic platforms’ growing performance, the WhyCode is still
significantly more efficient than the square fiducial markers. The legacy of the WhyCon is
in the roundel detection stage presented in [58] and in [60] for the mobile robots swarms.
As the detector module caches the estimated parameters from the preceding image frame
on the fly, the binarization and seeding of the flood-fill segmentation are taken advantage
of rather than evaluating every image pixel for the presence of a marker. The pattern de-
tection is also accelerated by the cascade of relatively simple characteristics tests in order
to reject the false positive detections at the early processing stages. The precondition that
a marker would not drastically change its position in consecutive image frames, together
with the marker parameter caching, allows the real-time tracking of even thousands of
markers. Thus, the flood-fill algorithm searches only the local neighbourhood around the
previous position, resulting in significantly fewer evaluated pixels.

The specific features of the WhyCode were introduced in [62, 61] where the authors
describe the unique encoding system for individual marker identification with the possibility
of recovering the missing sixth degree of freedom, the rotation around the marker’s surface
normal vector. The encoding of distinguishable IDs is performed by embedding a circular
binary sequence along the perimeter in-between the black outer and white inner concentric
marker segments, see Figure 24. The binary code is in the form of the Manchester encoding
in order to improve the black and white area ratio of the marker as it is part of the cascade
mentioned above of detection tests. Also, to ensure the uniqueness of the circular code, the
binary values are inspired by the Necklace patterns [90] which are invariant to a rotation.
Therefore, the decoding of the ID is not dependent on the starting sampling position on
the circle, as the extracted binary code is rotated to find the lowest value corresponding to
the sought ID. The amount of the binary code shifts to reach the lowest value determines
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Figure 24: Manchester-encoded Necklace WhyCode ID scheme. The binary code is unrolled
and rotated and based on the required shifts, the rotation is recovered [62].

the rotation around the marker’s surface normal vector.

To unleash the full potential of the localisation system based on the fiducial markers, it
needs to support simultaneous localisation in multiple cameras. The current system support
for only a single camera scenario restricts the operational space significantly because it is
highly dependent on the camera’s field of view, which is traditionally in the range of
60◦ to 70◦ for the cameras approximated by the pinhole camera model. Of course, there
are cameras capable of an even wider field of view. However, they introduce significant
distortion to the image and require a different and more complex approximation camera
model. This restriction can be partially overcome by observing the scene from a further
distance or using smaller markers; however, in both cases, the available information for the
precise marker localisation is reduced due to the lower amount of marker pixels. Therefore,
it is beneficial to deploy multiple cameras, each observing a different part of the space with
enough overlap between the scenes to support the extrinsic camera calibration procedure.
There are two general configurations of their setup when deploying multiple cameras in
terms of the captured area. Either they can be positioned to extend the field of view so the
covered area would be maximized, or they can share as much observable scene as possible
to combine the pose estimation by the individual camera so the estimation error would be
lowered.

The following subsections describe the necessary steps to build the multi-camera fiducial-
based localisation system. At first, we present the needed modifications of the WhyCode
marker detection algorithm to remove the precondition of tracking and to remember the
detection parameters. The possible extrinsic calibration approaches are discussed from the
perspective of available information provided by the marker system. We introduce the
possibilities to increase the methods of pose estimation performance by combining the
localisation outputs of the individual cameras. Then, the system overview and design are
described separately for the calibration and localisation functionality.
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4.1 Marker modifications

4.1 Marker modifications

The current version of the WhyCode localisation algorithm is not suitable for reliable si-
multaneous detection in multiple images. Such a claim originates in the image thresholding
and segmentation method, tailored for single-camera tracking. The method achieves such
a high frame rate in situations when the tracked markers do not disappear and reappear
in the scene. The applied thresholding is adjusted on the fly from the previously measured
marker brightness, and when a marker moves from one camera’s field of view to another’s,
such statistics are not transferable, and it cannot be reliably passed from the previous
camera as each camera sensor might observe the scene illumination differently. In terms of
marker segmentation, an exhaustive flood-fill approach is used with a starting seed from
the marker’s previously known image pixel position. It is beneficial only in scenarios when
it is known in advance how many markers there are in the scene and that they will not
drastically change their position. Otherwise, the detection time is not stable and suffers
from significant delays.

4.1.1 Thresholding

Two main approaches are available regarding the change in the used thresholding algo-
rithm. Either one global threshold can be applied to the whole image, or each pixel can
be thresholded based on a local characteristic [91]. The local adaptive methods have a
significant disadvantage for our application, and that is their high dependence on the size
of the local neighbourhood around the pixel they evaluate for thresholding. They are more
suitable for images where the sought objects, meaning the foreground and background seg-
ments, are not expected to change their size, which is not our situation because the marker
is expected to move freely in the scene. As the marker can move freely in the space, in
situations when it would be close enough to the camera, thus occupying a large area of
the image, the local pixel neighbourhood would be smaller than the width of the marker’s
black outer ring, so the inner ring part would be thresholded wrongly as the local charac-
teristic would be obtained only from the black area. Therefore, it is more suitable to select
the global thresholding approach for our purpose. The chosen method is the leading state-
of-the-art Otsu algorithm for finding a threshold that maximises the inter-class variance
between the foreground and background based on the image brightness histogram [92].

4.1.2 Segmentation

The image segmentation task groups together pixels with similar properties to form a
general blob or a specific object with apriori known properties [93, 94]. One of the common
approaches is to understand the image as a graph where each pixel is a node connected
to its immediate four or eight neighbouring pixels. Each node has a specific label; in our
thresholded binary image, it is foreground and background, and the nodes are grouped
based on their label and presence in a connected component. It is also possible to directly
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segment a coloured image; however, those methods are more computationally demanding as
they need to evaluate the colour information and update the segment characteristics with
every newly processed pixel. In order to overcome the current limitations of the flood-fill
method, we incorporated the Spaghetti Labeling [95, 96], which is based on an automat-
ically generated directed acyclic graph producing a highly efficient connected component
labelling algorithm. The method has been used because it allows scaling from four to eight
neighbourhoods, and it is directly transformable into parallel image processing.

4.2 Extrinsic calibration

The camera calibration is formed of two main parts, the intrinsic and the extrinsic
parameters. The intrinsic parameter matrix describes the coordinate scaling and the per-
spective projection onto the image plane. The extrinsic matrix [R | t] represents the trans-
formation of the camera coordinate frame from a particular global world frame. Such
transformation does not necessarily have to relate to a world frame but also relatively to
another camera coordinate system. Thus, we can construct the individual relative camera
transformations to obtain marker poses in the one base camera frame. However, there has
to be an overlap of the cameras’ fields of view so there would be corresponding measure-
ments in the images. Based on the information provided by the marker localisation system,
there are two approaches to determine the relative transformation, either the 3D marker
position or the respective image pixel coordinates.

4.2.1 Absolute orientation problem

Using the metric position estimation from the local localisation in one camera coordinate
frame allows using of the least-square formulation to directly obtain the rotation R and
translation t. Assuming the relation of the n marker positions pi in one image and the
respective positions qi in the base image is as qi = Rpi+t, we can find the sought rotation
and translation as a solution to the following minimization

R∗, t∗ = argmin
R∈SO(3),t∈R3

n∑

i=1

‖Rpi + t− qi‖2, (8)

In [75], the authors describes a closed form solution to directly obtain the sought parameters
through the singular value decomposition as follows

p′

i = pi −
1

n

n∑

i=1

pi

︸ ︷︷ ︸
p

, q′

i = qi −
1

n

n∑

i=1

qi

︸ ︷︷ ︸
q

(9)

H =
n∑

i=1

p′

iq
′T
i = USVT (10)

R∗ = VUT , t∗ = q−R∗p (11)
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4.2.2 Essential matrix decomposition

We can also use the image pixel positions of the local marker localisation to approach
the extrinsic calibration from the epipolar geometry point of view. The 3D structure can
be recovered from the essential matrix, which embeds the individual camera frame trans-
formations from the world frame into them as E = R2[C2 − C1]R1 where Ri,Ci are the
respective camera centres in the world frame and rotations to the camera frames as in the
construction of the camera projection matrices. Thus, it is necessary at first to construct
the essential matrix, thoroughly described in [76, 77]. The decomposition yields four sign
combinations for the relative translation and rotation between the cameras. The world po-
sition vectors of the image points can be calculated using the camera projective matrix and
the pixel coordinates. Then, individual solutions can be distinguished by the restriction
on the world position of the used points as they have to be in front of the cameras and
within their field of view. The world position vectors are tested by their reprojection onto
the image using the camera projection matrices constructed from the four solutions pairs
and the intrinsic matrices.

4.2.3 Method’s approach

In our approach for the extrinsic calibration, the least-square absolute orientation prob-
lem is chosen to estimate the transformation between the camera frames. It uses the pose
estimation directly in the local camera coordinate system and the marker ID for estab-
lishing the correspondences. Compared to the essential matrix decomposition, it is more
efficient because the correct pixel position of a marker is strongly dependent on the esti-
mated metric position of the marker. It is because the method requires the exact matching
points, and thus we cannot use only the average pixel position of the roundel shape in
the image obtained in the early detection phase. Actually, the pixel position of the marker
centre is the reprojection of the obtained metric position onto the image plane. Then, it
would require constructing and decomposing the essential matrix as described above. Thus,
it would be not only more resource-demanding, but also it would still be highly dependent
on the firstly established metric position of the marker in space. For such reasons, it is more
beneficial to approach the extrinsic calibration through the least-square minimization of
squared differences.

4.3 Localisation improvements

The fiducial marker localisation using multiple cameras can bring more advantages than
only enlarging the field of view. It can also improve the accuracy and reliability of the de-
tection. Given multiple detections of a marker in multiple cameras, it is possible to improve
further the pose ambiguity resolution, which is in a single-camera approach based only on
the circular binary code sampling and evaluating the code shape. Also, the possible esti-
mation error might be reduced by fusing together the individual estimated poses. Another
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improvement is the higher resistance to marker occlusion because when a marker would be
covered in one of the cameras, the other cameras at different positions could still detect
the marker.

4.3.1 Ambiguity resolution

The marker’s pose estimation is an ambiguous process as we are trying to recover the
3D pose information from the 2D projection. Of course, one could object that it can be
mitigated with a higher resolution camera which would provide more information about
the pixel properties of the conic section. However, it can be approached by the simultane-
ous localisation in multiple cameras because it is less likely that the ambiguity would be
undecidable in all of the camera images. When the marker pose is obtained, the surface
normal vectors are also recovered as parts of the solutions. The normal vector associated
with the assumed correct pose estimation can be transformed into the frame of the other
camera, which also detects the same marker. Then, the directions of the two normal vectors
are compared. If they have similar orientations, the ambiguity in the estimation has been
resolved at the first local stage successfully. In the case of different orientations, one of the
estimates must be considered a correct one, and the other must be changed to the second
ambiguous solution to match the direction of the base normal vector. To assess which nor-
mal vector is the right one, we propose to select the one which is the furthest from the
image centre, the principal point, because such a marker is affected the most by the ap-
plied perspective, and thus it should provide the most information for the already existing
ambiguity resolution based on the circular binary code. Then, the other detections from
the other cameras are flipped based on the difference in their normal vector orientations
compared to the chosen base normal vector.

4.3.2 Averaging estimations

Once all of the marker detections are in accordance with the above, the individual pose
estimations can be fused together instead of selecting an arbitrary solution. Each detec-
tion and localisation from the cameras is burdened with an unknown level of uncertainty
imposed by the image acquisition errors or imperfect processing of the image pixels. How-
ever, the corresponding marker poses can be transformed into the base coordinate frame
and combined in order to distribute the estimation error among the other solutions. The
approach is relatively straightforward in terms of position estimation, and all the position
vectors can be averaged to find the most likely position estimation. Unfortunately, the ori-
entation fusing of the fiducial is a little bit more complex. There are several approaches to
the orientation averaging depending on the used representation and also the similarity or
closeness of the individual orientations. The first option is to approximate the individual
representation elements by their mean value. Such an approach is only an approximation,
and it is not a robust nor correct solution to the problem; however, it may lead to a likely
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estimate when all of the orientations are close enough to each other. Based on the rep-
resentation, whether we use a rotational matrix or a quaternion, we have to choose an
appropriate method. In [97], the author presents two approaches to finding the mean 3D
rotation matrix. However, the use of rotational matrices introduces unwanted singularities
in expressing a rotation and also, and the construction of a rotation matrix from an axis-
angle representation, which is the base representation obtained by the marker method, is
more complicated. The quaternion averaging is thoroughly explained in [98], where the
authors calculate the average of n quaternions as the normalized eigenvector associated
with the largest eigenvalue of the 4× 4 matrix

Q =
n∑

i=1

wiqiq
T
i , (12)

where the wi is the possible weight of the i-th quaternion; however, the weights are nor-
malized, to sum up to one. The quaternion approach to average the orientation of the
multiple estimations is prefered due to the straightforwardness and the growing popularity
in robotics as it is the primary representation of rotation in the Robot Operating System.

Figure 25: Calibration marker board for extrinsic calibration

4.4 System overview

The multi-camera localisation pipeline composes of three main parts, the local single-
camera localisation, the extrinsic calibration and the actual marker localisation, see Fig-
ure 26. The initial stage for the pose estimation in the individual camera frames is shared
for the two latter parts because it accepts the captured images from the cameras and
localises the markers independently in each of them. It also provides both the possible
solutions for every marker and an indication of which one is more likely, based on the local
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ambiguity decision. However, one has to ensure the image capture synchronization; oth-
erwise, the markers could move in-between the captures; and therefore, the images would
not represent the same marker pose leading to a possible decrease in precision. Then, the
extrinsic camera calibration can follow unless the system is provided by the user with the
transformation parameters acquired by different external methods. Because the calibration
is performed by a marker board, see Figure 25, a supplemental ambiguity resolution can
be applied because all the markers on the board must have similar directions of the surface
normal vectors. Thus, the orientation shared among most markers is assumed to be the
correct one and the markers not satisfying it have to change the pose estimation to the
second one from the ambiguity pair. The markers are then matched based on their IDs
to form correspondence pairs between the cameras, and the calibration is performed. The
localisation procedure can no longer expect the common marker plane, so the ambiguity
resolution cannot be applied immediately. At first, the assumed pose is transformed into
the base camera frame. Then, multiple estimations of the marker orientation are compared,
and if they do not correspond within a predefined threshold, the other pose estimate has
to be selected. To determine which measurement is incorrectly resolved, we propose a com-
parison based on the marker position in the image because we expect the marker further
from the image centre to be more affected by the perspective projection and thus provide
better information for the initial sing-camera ambiguity resolution. As presented above,
the results are averaged to estimate the marker’s most likely pose.
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4.4 System overview
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Figure 26: Multi-camera system overview
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5 Datasets

Two types of datasets were collected to evaluate the localisation system performance
after the extension and the modifications of the detection module. Because the fiducial
marker can estimate the pose with high precision, it brings higher requirements on the
ground-truth measurements because they need to be obtained with even higher precision.
Therefore, the first dataset type was recorded in an synthetic environment that simulates
the camera sensor and observed scene. It allows a flexible and repeatable data collection
with a perfect image capture without noise. Also, the exact poses of individual elements
are apriori known because it is computer-generated on demand. The second dataset we test
the method on is a real-world robotic dataset to gain knowledge of the methods’ behaviour
in real conditions. However, it required additional methods to establish the mutual camera
poses and measure the marker position precisely.

5.1 Synthetic dataset

The simulation to generate the synthetic dataset was performed using the Gazebo frame-
work [99] which is one of the leading simulation platforms with a reliable graphics engine.
It has an interface to the industry’s popular Robot Operating System and provides com-
prehensible and flexible scene configuration with a wide range of available tools and sensor
emulators. Two testing scenarios were created which correspond to the introduced possible
multi-camera configurations. Thus one represents the extension of the field of view, and
the other is to test the pose improvement when the scenes are highly overlapped. The data
generation is programmatically coordinated through a central application that on-demand
captures the images by individual cameras and then passes them to the localisation system.
Also, the coordinator displaces the observed marker and records its ground truth and esti-
mated position for further evaluation. Because we want to simulate a perfect environment,
the used cameras are all the same, and they do not have any noise set, and their distortion
is omitted. The size of the marker is set equally in both the simulated scenarios.

The world description originates in the empty base world with only minor changes.
There is no directional light applied, and the ambient light is set to the maximum value
in order to prevent any shadow casting over the markers. The camera sensor is provided
through the standard Gazebo camera sensor with the additional gazebo ros trigger camera
plugin to capture the image when intended rather than at a fixed frame rate. The image
resolution is set to 1280 × 720 pixels for all the cameras. The fiducial marker and the
extrinsic calibration marker board are constructed by the fundamental visual element with
box geometry and applied image of the marker as the PNG image. The WhyCode marker
was generated with 7-bit encoding for both the localised marker and also the calibration
board, where are twelve markers in a 4× 3 matrix configuration.

39



5.1 Synthetic dataset

5.1.1 Extend the field of view scenario

The world configuration consists of three cameras and one marker, as in Figure 27.
The base camera frame is considered the coordinate frame of the middle camera, which is
positioned at the centre of the world frame. The two other cameras are placed arbitrarily
around it, also with different orientations to extend the field of view. The used marker
has 20 cm in diameter, which is inspired by the maximal reasonable size possible to be
printed on the A4 paper format. The marker poses are generated randomly by a uniform
distribution in lateral direction ranging [−3, 3] meters, the vertical [−1, 1] meters, and the
distance [3, 5] meters. We also sampled the marker’s orientation from a uniform distribution
covering all rotations around the surface normal, and the other two angles were drawn from
the same range [−1, 1] radians. Evaluating the method on this dataset, we examine how
well it can transform in-between the individual camera frames together with the performed
modifications to the marker.

(a) Calibration procedure (b) Marker localisation

Figure 27: Extend the filed of view scenario overview

5.1.2 Overlap scenario

In this scenario, the world setup is equivalent to the large-area scenario in terms of the
used visual models and their parameters. However, the camera poses are different for the
two cameras that are not at the origin of the world coordinate frame. They are positioned
so their observations would highly overlap; thus, we can focus on the evaluation of the pose
averaging capabilities as in Figure 28. The positions for the marker are sampled again from
uniform distributions. The distance varies from 3 meters to 6 meters, and the horizontal
and vertical displacement is in a range of [−1, 1] and [−0.5, 0.5] meters, respectively. In
terms of the orientation, the rotations around the y and z world axes range [−1, 1] radians,
while the revolution around the normal vector covers the whole 2π.
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5.2 Real-world dataset

(a) Calibration procedure (b) Marker localisation

Figure 28: Overlap scenario overview

5.2 Real-world dataset

The real-world dataset was collected to evaluate our method’s performance under con-
ditions the simulated dataset cannot easily provide. The dataset represents a possible
application of the proposed system for localisation in an outdoor environment over a large
area, see Figure 29. The used robotic platform is the Husky A200 mobile robot equipped
with additional sensors and the computational payload necessary for operation. In order
to measure precisely the robot’s position, the geodetic 360◦ crystal was mounted on top
of the robot, and it was tracked by the Leica TS-16 positioning system, which provides
the crystal position in the custom-defined 3D space with the precision below a millime-
tre. The measuring frequency were 8Hz in average. As the data collection was done at
the Czech Technical University in Prague’s courtyard, the use of RTK-GPS for position
measurements was not possible because of the closeness of the surrounding buildings.

The multi-camera system is highly heterogeneous as it consists of the Intel RealSense
D435, Logitech C980, and Logitech C920 cameras positioned next to each other with a step
of approximately 0.5m and different orientations. The first two cameras recorded the video
streams at the resolution of 1920×1080 and the latter one at 1280×720. As all the camera
recording was done on one laptop, the frame rate was not stable, and occasional dropping
of frames occurred. Also, the Logitech C920 camera suffered the most from the limited
bandwidth and achieved only ten frames per second compared to the 30 frames of the
other cameras. The cameras’ intrinsic parameters were estimated by the widely used tool
from the Robot Operation System framework, which relies on the computer vision library
OpenCV. The used calibration board for extrinsic parameter estimation had markers of
the same size 7.767 cm, and it featured 7-bit ID encoding. The localised marker was placed
visibly on the robot passing by the cameras at approximately 3m distance. The marker
has 7.327 cm in diameter, and the ID is encoded into a 5-bit binary code.

In order to assure the correct synchronization of the captured images and the ground-
truth position, a local NTP server was set up. Thus, the recording systems could label the

41



5.3 Data generation

data with synchronized time stamps. The individual camera streams were then manually
checked and verified to assure proper synchronization. In terms of the total station mea-
surements, they were obtained at a lower frame rate than the camera images, and therefore,
the time alignment was performed in the nearest neighbour manner.

5.3 Data generation

The experiment evaluation, data generation, and recording were performed on the same
machine based on the Ubuntu 20.04.4 LTS operating system with the Linux kernel 5.13.
During the data gathering and evaluation, the Robot Operating System at version Noetic
was used as it provides unified and widely used middleware for robotic platforms. The
employed simulator for the synthetic experiments was Gazebo at version 11.10.2. In terms
of the codebase, it was written primarily in C++11 and partially in Python 3.8. Some parts
of the codebase depend on the OpenCV, which is a popular library for matrix operations
and image processing, the version used was 4.2. The used computer is the Lenovo X280
laptop equipped with Intel Core i7-8550U CPU and system memory of 16 GB, and a
storage device connected over M.2 PCIe interface.

(a) Overview of the used equipments and the
experiment environment

(b) Cameras for recording. Left to right: Log-
itech C920, Intel RS D435, Logitech C980

Figure 29: Real-world dataset collection setup
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6 Experiments

In this section, the proposed multi-camera system is evaluated on the aforementioned
datasets to assess the performance compared to the single-camera method. The evaluation
of the synthetically generated dataset provides insights into the theoretical capabilities of
the presented system and whether the core idea leads us in a positive direction. However, it
is essential to ask what is the method capable of under real-world conditions like imperfect
intrinsic calibration, naturally occurring noise and image distortion. These are the main
affecting elements which differentiate the evaluation results of the simulated and real-world
experiments.

The evaluation starts with the synthetic dataset, where we focus on the pose estimation
performance in the perfect environment, thus noise-free images with perfect information
about the camera model. First, we focus on the synthetic scenario of overlapping scenes to
extensively test the pose averaging influence on the position and orientation estimation.
We evaluate the quality of the extrinsic calibration because we know them apriori from
the simulator. We compare the 3D position estimation error of the presented method and
the single-camera method, and also the orientation estimation separately. Those tests can
provide us with an intuition of how well the current localisation capabilities combine with
the estimated extrinsic transformation, which results in averaging the resulting individual
poses. Further, we evaluate the extended field of view observable by the multi-camera
configuration and assess the gain in area coverage thanks to the extended field of view.
Then, the real-world dataset is used to obtain the position estimation error and understand
how the method could behave in an actual deployment. Statistical tests were employed
because we needed to compare the multiple and single-camera configuration errors.

6.1 Statistical evaluation

In order to statistically compare the obtained estimation errors and differentiate which
are significantly smaller, we decided to employ the Student’s t-test to compare the esti-
mated mean error values. The number of error samples is large enough to provide sufficient
information about the methods’ behaviour. As we have enough samples, we can assume
the normal distribution of the errors. To compare the two mean error values, the paired
t-test is used where we assume that the random variable is the position or the orienta-
tion error tight to a specific image. Our primary hypothesis to test is whether the sample
means equals or not. If rejected, we can proceed to one-sided interval testing to perform
an ordering on the errors if even that hypothesis would be rejected. The confidence level
of the performed tests is p = 0.05.

To perform the statistical testing, we have to compute the sample mean and sample
standard deviation, which is straightforward regarding the position errors because the
errors are in metres that can be just averaged. However, this approach cannot be directly
applied to the measured orientation errors because they are angles which are circular
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6.2 Overlap field of view scenario

variables; thus, a different approach had to be taken. Therefore, we used the directional
statistics [100] methods to estimate the sample mean as follows

θ̄ = arctan2

(

1

n

n∑

i=1

cos θi,
1

n
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i=1

sin θi

)

, (13)

where θi is the orientation error, thus the shortest angle between the orientation samples,
and n is the number of samples. The deviation is calculated as follows
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(14)

where n is the number of samples, θi is the orientation error, and R is the norm of the
averaged vector in the complex plane.

The angles for the evaluations represent the distance between the quaternions, the pri-
mary representation of the orientation in the systems. In [101], the authors explain that
the difference between two quaternions is represented as the smallest rotation angle to
transform from one to the other. The quaternion distance can be calculated as

Φ(q1,q2) = arccos |q1 · q2|, (15)

where q1, q2 are unit quaternions and to restrict the possible negative results of the vector
dot poduct in arccos, the absolute value restricts the Φ values from 0 to π/2 radians.

6.2 Overlap field of view scenario

The following experiment focuses on improving the pose estimation by averaging the
local estimates of the individual cameras. It is an excellent representation of the second
possible multi-camera configuration because they share most of their fields of view. The
evaluation results can signify whether the position and orientation of the marker are being
averaged correctly and whether the second level of ambiguity resolution is based on the
correct assumption that the distance to the camera centre shall decide. The experiment is
inspired by the application in the swarm robotic experiment evaluation because they are
usually held in an indoor arena which can be surrounded by cameras.

To start with, the extrinsic transformation parameters were tested as the correct trans-
formation is the key to estimating the pose as an averaged estimate correctly. The dif-
ferences between the rotation and translation given to the synthetic simulator and the
transformation obtained by the calibration procedure are presented in Table 3. The esti-
mation errors appear to be sufficiently small apart from the translation between the camera
1 and 3 because 2.7 cm might be large enough to influence the other position estimates
during the averaging phase.
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6.3 Extended field of view scenario

Translation Rotation
Absolute [m] Relative [%] Absolute [rad] Relative [%]

Cameras 1 ↔ 2 0.0098 0.7161 0.0011 0.3749
Cameras 1 ↔ 3 0.0274 1.5777 0.0030 1.1184

Table 3: Extrinsic calibration errors of the overlap scenario

The detection stability can be evaluated even though the observed area is shared rather
than enlarged. The single-camera failed to detect the marker in 31 cases out of 3000 uni-
formly sampled poses over the described configuration space. Those poses were significant
in the extreme marker orientation; thus, the single-camera method was not able to reliably
detect and localise the marker. However, the multi-camera system successfully detected the
markers at all of the tested poses, which is the benefit of observing the same place from
different viewing angles.

The main performance criteria of the presented system and the single-camera system,
the position and orientation errors, are visualized in Figure 30. The position estimation im-
proved significantly with the usage of multiple cameras, and the estimation is more accurate
than using only one camera. The orientation error did not show a significant improvement
over the single-camera system, and we could not reject the equality hypothesis.
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Figure 30: Histograms of the overlap scenario localisation errors with 0.02m bins for posi-
tion and 0.05 rad bins for angles. Vertical axis is in logarithmic scale of decadic base

6.3 Extended field of view scenario

In this tested scenario, both the multiple and single-camera systems are thoroughly
examined for the position and also orientation estimation errors. Even though the environ-
ment is synthetic, the gained understanding of the behaviour of the methods can provide
hints for further development and also about their maximal possibilities when deployed in
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6.3 Extended field of view scenario

Translation Rotation
Absolute [m] Relative [%] Absolute [rad] Relative [%]

Cameras 1 ↔ 2 0.0059 0.4647 0.0010 1.2589
Cameras 1 ↔ 3 0.0167 1.5375 0.0019 1.5416

Table 4: Extrinsic calibration errors of the extended scenario

the real world. The experiment represents one of the two main possible configurations of
the multi-camera system, which is to cover larger areas than one would be able with only
the single-camera method. The difference between the expected and measured pose of the
marker is a general performance measure which assesses all of the individual parts of the
involved image processing, from the pixel thresholding to the ambiguity resolution.

We focus on the precision of the camera extrinsic calibration because the rest of the
evaluation relies on it. After all, if the system cannot correctly estimate those parameters,
the localised markers would be wrongly transformed to the base camera coordinate frame.
In Table 4, there are summarized the differences between the expected extrinsic param-
eters provided to the simulator and the estimated one by the multi-camera system. The
orientation estimation results in an insignificant difference, and even the position achieved
difference small enough to be considered sufficient.

Further, we can evaluate the number of successful detections in the sampled space to
demonstrate the benefit of deploying multiple cameras. We uniformly sampled 3000 random
marker poses covering the introduced synthetic environment. The single-camera configu-
ration failed to detect the fiducial in 467 cases, while the proposed system did not succeed
only in 12 situations. Detecting 18% more marker configurations clearly demonstrates bet-
ter space coverage.

The extended field of view scenario can also be utilized to test the performance of a
hybrid situation when markers are located in the overlap between the cameras but not
necessarily observed by all of them. We assume that the performance would follow the
evaluation of the overlapping scenario, and thus in the overlapping region, the marker
would be localised more precisely. Figure 31 presents the following important performance
factors, the position and the orientation estimation error distribution of the compared
methods. The visualized histogram of errors represents such marker poses when detected
by the single-camera method and the multi-camera method. The multi-camera position
estimation improved significantly, and the standard deviation of errors decreased by half of
the single-camera value. The orientation estimation results are comparable to the single-
camera estimation, with a slightly lower mean error but statistically undecidable. Therefore,
in this camera configuration, one gains not only the better operational space coverage but
also the improved pose estimation in the overlapped regions.
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6.4 Real-world experiment
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Figure 31: Histograms of the extended scenario localisation errors with 0.02m bins for
position and 0.05 rad bins for angles. Vertical axis is in logarithmic scale of decadic base

6.4 Real-world experiment

Evaluating the multi-camera system on the real-world dataset is crucial for assessing
the performance under natural conditions that one would encounter when deploying the
system. In this experiment, we focus only on the position estimation because the ground-
truth measurement device could not estimate the orientation. However, it is not degrading
the provided information of this evaluation because, in many situations, the position local-
isation is sufficient for a given application. The experiment extensively tested the system’s
ability to handle a highly heterogeneous system composed of three different cameras with
dissimilar image resolutions.

6.4.1 Position estimation

The performance of the extended field of view configuration were discussed in the pre-
vious sections. We verified that the system could localise the marker by multiple cameras
without losing the single-camera pose estimation performance. Thus, in the real-world ex-
periment, we decided to focus on the part of the dataset where the individual cameras’
fields of view overlap. We assume a similar improvement in the position estimation error
as in the simulated scenarios. As the cameras were placed next to each other with 0.5m
step, we compared the position estimated by the middle camera with the fused estimated
from all the cameras. Thus, we focused only on the overlapping regions where there was
a single-camera detection, and at the same time, at least two of the cameras detected the
marker in the multi-camera system. Evaluating such regions would allow us to verify the
assumption that even in real-world conditions, the combination of more cameras leads to
better estimations.

Table 5 presents the key position error distribution characteristics of the evaluated
methods. The multi-camera achieved a significantly lower estimation error compared to the
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6.5 Experimental results summary and discussion

Single-camera Multi-camera

Median 0.0685 0.0391
Mean 0.0664 0.0427
Std. dev. 0.0347 0.0265
Min 0.0022 0.0034
Max 0.1562 0.1130

Table 5: Position estimation errors in the overlapped regions of the real-world dataset. The
listed values are in metres.

single-camera method. When examining the key characteristics, the overall performance of
the presented method is better as the lower median error signifies even lower error omitting
outliers, and the lower standard deviation implies higher accuracy. Unfortunately, the range
of the measured errors was not reduced, but only their distribution improved.

6.4.2 Computational performance

Another critical performance measure is the computational performance to detect and
localise the fiducial marker. For multi-camera localisation, processing the images reasonably
fast and at a stable frame rate is essential. We evaluated the presented modified detection
approach on the real-world dataset with HD images and compared it to the original method.
We have to distinguish two situations, whether the marker is present in the image or not,
because the original detection method takes advantage of locally tracking the marker.
Therefore it does not have to process all of the image pixels. However, it suffers from
the threshold selection procedure. Once a threshold is selected, the image is searched. If
nothing is found, the threshold is modified, and the search starts again. Thus, to assess the
execution time on the images, we let the aforementioned selection procedure run sixteen
times to find the proper threshold.

We averaged the individual measured times based on the presence of the marker. The
original method took 84.17ms to output that no marker was present in the image. However,
once the marker was found and the tracking could be initialised, it required only 0.49ms
to detect and localise the marker. The modified variant of the detection algorithm runs for
10.91ms on images without the marker and 15.7ms when it can find it.

6.5 Experimental results summary and discussion

To wrap up the results of individual extensive experimental evaluations on various
datasets, each of the tested scenarios has to be considered because they represent the
essential multi-camera configurations and applications. Judging the performance just on
one of them might lead to a false understanding of the localisation system capabilities and
reliability. If the system would establish the extrinsic transformation parameters correctly
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6.5 Experimental results summary and discussion

but then would not be able to localise the marker or vice versa, the whole reason for
extending the single-camera method would be meaningless.

After thoroughly examining in performance outcomes of the experiments, we can con-
clude that the multi-camera localisation system based on the fiducial marker method man-
aged to reliably and with a high precision estimate the marker pose over a large area. Also,
all pose estimates were based on the estimated extrinsic calibration by the method itself
rather than dividing the evaluation into separate stages and providing the system with
transformations obtained through external tools. Two main spacial configurations of the
cameras were evaluated. The highly overlapping scenario demonstrated the system’s ability
to improve the pose estimation significantly and even make the detection more reliable as
the single-camera method suffered from poorer detection of highly rotated markers. The
configuration for extending the field of view provided us with the opportunity to observe
large areas without a loss in the estimation precision together with the hybrid functionality
of improved localisation in the regions where the cameras observe the same scene. Thus,
deploying a multi-camera localisation system is more beneficial than using only a single
camera.
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7 Conclusion

This thesis aimed to design and propose a new multi-camera localisation system based
on the detection and localisation of fiducial markers. The system can process multiple image
sources and localise a fiducial marker in them, and output the best estimate of the pose
based on fusing the multiple estimates to achieve higher accuracy. The system also allows
the extrinsic calibration of the individually calibrated cameras, which results in no other
image processing tools to be incorporated in order to obtain additional parameters. The
fiducial marker the system is built around is the state-of-the-art WhyCode marker which is
a highly versatile and real-time localisation system using a circular black-and-white pattern
for detection and the six degrees of freedom estimation. However, the WhyCode system
can only process and localise the marker in a single camera. More importantly, it has to
be provided with the number of markers in a scene in advance. The number of visible
markers should not change. The flexible spacial configuration of the used cameras presents
two main deployment setups; either the cameras can be positioned to have only minimal
overlap; thus, the effective field of view would be maximised, or the observed scene can be
shared among the cameras as much as possible which allows the pose estimates fusion and
results in higher accuracy.

The limitation of the single-camera WhyCode of requiring the number of occurring
markers has to be resolved prior to the multi-camera extension. Otherwise, only the con-
figuration scenario with highly overlapping fields of view would be possible. Therefore, the
detection core of the system was inspected, and necessary modifications were proposed.
First, the pixel thresholding had to be changed from the local approach to the global one,
and then also the segmentation had to undergo a similar scope change. Thus, the connected
component labelling over the whole image replaced the local flood fill algorithm. Perform-
ing those modifications, the image is processed completely and therefore, the restriction of
the apriori knowing number of markers to search for is overcome.

The next step was to find the extrinsic parameters of the individual cameras so the poses
could be transformed into one base camera coordinate frame. The calibration is performed
by a custom pattern formed from multiple different WhyCode markers on a calibration
board which is moved around in the fields of view to establish mutual correspondence
points between the cameras. Then, the relative rotation and translation of the cameras are
estimated by the least-square minimization of the euclidean distance between the point
correspondences.

The actual localisation from multiple cameras uses the pose estimates in the local coor-
dinate frames of the used cameras. Each pose is then transformed into one based camera
frame where they are compared and checked by the second level of ambiguity resolution
because the individual transformed orientations should have the same direction. If not, the
second from the ambiguous pair is selected. The transformed poses are then adequately
averaged to provide a more likely estimate of the fiducial marker pose.

In order to evaluate the proposed modifications and the overall performance and capa-
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bilities of the multi-camera system, we evaluated it on three different datasets. The first
two were generated artificially by a computer simulator, while the third was collected by
real-world cameras and a ground-truth positioning system. The simulated datasets repre-
sent the two main system configurations, the extension of space coverage and the estima-
tion improvement of the highly overlapped scene. Based on the experimental evaluation
and comparison to the original single-camera WhyCode, the multi-camera system provided
higher accuracy in the overlapping scenario and maintained comparable results in the other
scenario. The real-world dataset represents a hybrid setup, thus extending the field of view
and also providing reasonable overlap, whose evaluation showed that the system is also
capable of desired performance even when using different off-the-shelf cameras integrated
into one localisation system.

In future works, reducing the dependency on synchronized cameras could increase the
system performance because delayed frames would not affect the pose averaging. One could
approach it by introducing a motion model of the tracked object and estimating the pose
through the extended Kalman filter. Another aspect to focus on is the computational
requirement which grows with every added camera. Thus, it would be beneficial to transfer
the algorithm to the GPGPU devices and take advantage of the parallel processing. Apart
from the technical modifications, we noticed a higher level of false-positive detections whose
rejection at earlier stages of single-camera localisation would decrease the required work in
the multi-camera system. The integration of the presented system into the currently most
popular frameworks in robotics, Robot Operating System 2 and OpenCV, would broaden
the target group of potential users.
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Appendix

Data carrier content

In Table 6, the top level directories are listed with brief content description.

Directory name Description

calib bag imgs Real-world dataset images for extrinsic calibration
cameras bag imgs Real-world dataset images for marker localisation
report Total station measurements and images time stamps
rosbag reader Tool to publish or decompose rosbags on demand
simulation and coordination Gazebo simulation description of worlds and models.

Main programs to perform the experiments.

Table 6: Data carrier content
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