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Manuálne metódy overovania faktov sa stávajú neúčinnými v dôsledku rapídneho šíre-
nia nepravdivých informácií prostredníctvom sociálnych sietí. Automatické systémy
overovania faktov sa pokúšajú zmierniť potenciálne škody spôsobované nepravdivými
informáciami detekciou overovania hodných tvrdení, zhromažďovaním relevantných
informácií k týmto tvrdeniam a vyvodzovaním pravdivosti týchto tvrdení. Práce súčas-
ného výskumu v oblasti vhodnosti overovania sa pri sprostredkovaní významu textu
v čoraz väčšom rozsahu spoliehajú na technológie slovných a vetných embeddingov.
Nahrádzajú tým jednoduchšie textové črty ako tf-idf, sentiment a iné, nájdené pre-
dovšetkým v starších prácach. Motivovaní vyššie uvedenými skutočnosťami a tiež
všeobecným nedostatkom využitia technológie vetných embeddingov, predstavujeme
náš sent-nnmodel. Ten reprezentuje text vetnými embeddingami založenými na BERT
jazykovom modeli. Náš model prekonal obe metódy určené na porovnanie o viac ako
2.5 % a 4.2 % v metrikách average precision a f1-score na pozitívnej triede.

Kľúčové slová: fact-checking, check-worthiness, sentence transformers



ABSTRACT
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Master’s thesis: Automatic pre-selection of potential misinfor-
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The rapid spread of false information on social media renders manual fact-checking
methods ineffective. Automatic fact-checking systems try to inhibit potential damage
caused by false information by detecting check-worthy claims, gathering relevant infor-
mation, and inferring their veracity. The recent research in the check-worthiness field
relies increasingly on word and even sentence embeddings technology to convey mean-
ing, substituting simpler text features such as tf-idf, sentiment and others found in ear-
lier works. Motivated by the above and general scarcity of use of the sentence embed-
dings, we present our sent-nnmodel utilising BERT-based sentence embeddings as its
text representation, which outperforms baseline methods by more than 2.5% and 4.2%
in average precision and f1-score on the positive class.
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Chapter 1

Introduction

On social media, false information spreads faster and to more users than legitimate in-
formation, as shown by Vosoughi et al. [45]. Combined with the fact that more than
60% of people acquire their news on social media1, this creates a genuine threat to hu-
man society. Organizations like FactCheck.org, PolitiFact orDemagog try tomitigate the
potential damage of false information by manually and comprehensively fact-checking
societally relevant claims present in public space. However, the lengthy and demanding
process of manual fact-checking cannot keep upwith the easy unrestricted creation and
spread of false information.

Therefore, the need for an automatic fact-checking system arises, although it proves
to be just as complex a problem as its manual equivalent. An automatic fact-checking
pipeline usually consists of three main steps: detecting check-worthy parts of the text
(i.e., sentences containing the claim that should be fact-checked), collecting informa-
tion relevant to the check-worthy claim, and finally, using this information to infer the
veracity of the check-worthy claim. Most research in this area primarily focused on the
last two steps of the pipeline. These steps, collecting relevant information and infer-
ring the veracity of check-worthy claims, usually expect check-worthy claims as their
input. However, the step of acquiring check-worthy claims was, until recently, much
less researched. That has changed with the inception of the CheckThat! Lab2, a compe-
tition by the CLEF association devoted to finding a state of the art solutions to natural
language processing (NLP) tasks such as claim retrieval, fake news detection and check-
worthiness estimation.

The earlier approaches rely on relatively simple tf-idf features [21, 33] to represent
their words and transitively sentences, whereas the more recent works represent sen-
tences with much more sophisticated and meaningful word [46, 17, 7, 29] or even sen-
tence [24] embeddings. Approaches extend their sentence representations with text
features such as sentence length [21, 33, 46], sentiment [21, 33, 46], part-of-speech
(POS) tags [21, 33, 46, 24, 7], named entities (NE) [21, 33, 46, 24] and syntactic de-
pendencies [46, 17] trying to convey in them as much meaning as possible. Although

1https://pewrsr.ch/3My8ZE9
2https://sites.google.com/view/clef2021-checkthat/home
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as embeddings technology improves, the value of text features diminishes, and thus the
later approaches tend to simplify their sentence representations in terms of text features
while retaining the meaning via embeddings. The use of state of the art embeddings
models seems to be the most impactful decision one can make when designing a check-
worthiness solution.

The goal of this work is two-fold:

1. find, modify if need be and run available check-worthiness solutions to act as
baseline methods,

2. design and implement an original solution to outperform said baseline meth-
ods.

Inspired by the great works in the check-worthiness area of research and motivated
by the fact that no prior work has utilized sentence embeddings based on the Bidirec-
tional Encoder Representations from Transformers (BERT)3 language model, we train
two separate models, both employing BERT based embeddings. The first model, in-
spired by Hansen et al. [17], is centred around a bidirectional LSTM layer and makes
use of word embeddings extracted with the BERT base model. The second one is a sim-
ple neural network that takes inspiration from Konstantinovskiy et al.’s use of sentence
embeddings [24]. We experiment with our word and sentence representation by ex-
tracting features based on less andmore granular POS tags and syntactic dependencies.
For training, highly unbalanced data (see Figure 3.1) comprised of transcripts of multi-
ple political debates provided by the CLEF association for 2019 CheckThat! Lab [1] is
used. To mitigate the issues of class imbalance and general scarcity of the data, we ex-
periment with training on a considerably larger domain-specific dataset weakly labelled
with the existing check-worthiness solution.

To acquire baseline methods for comparison with our models, we download and
modify two check-worthiness solutions [7, 29] to run with the data we use. We evalu-
ate ourmodels with average precision and f1-score on the positive class to conduct a fair
comparison as baseline methods optimized the former metric and our models the latter.
Our best performing model, which uses sentence embeddings as its sentence represen-
tation, achieves 4.36% and 2.62% performance improvements in average precision over
Cheema et al.’s [7] andMartinez et al.’s [29] solutions, respectively. It also outperforms
both baseline methods in f1-score by 4.24% and 13.77%.

Our contribution is a neural network classifier implemented in PyTorch4, which uti-
lizes a pre-trained sentence transformer to encode sentences into sentence embeddings.

3https://huggingface.co/docs/transformers/model_doc/bert
4https://pytorch.org/
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Chapter 2

Problem analysis

2.1 Journalistic fact-checking

Fact-checking as a concept originates in New York City in the 1920s. TIME magazine1

founders then hired new employees to ensure everything gathered by the reporters was
accurate [39]. Today fact-checking is considered an essential part of journalistic work.
Shapiro et al. [38] have defined journalism as a “discipline of verification" to discrimi-
nate it from “entertainment, propaganda, fiction or art". Fact-checking and verification
are often used interchangeably, even though Silverman [39] sees verification as a “dis-
cipline that lies at the heart of journalism, and that is increasingly being practiced and
applied by other professions" and fact-checking as a “specific application of verification
in theworld of journalism". Furthermore, Mantzarlis [28] says fact-checking “addresses
the claim’s logic, coherence, and context", while Kovach and Rosenstiel [25] define ver-
ification as a “scientific-like approach of getting the fact and also the right facts", which
often involves reviewing the source, date, and location of materials. We could say veri-
fication is the necessary step in the process of fact-checking.

A new, but related meaning for fact-checking emerged in 2003 with the launch of
FactCheck.org2, a website whose goal is to “monitor the factual accuracy of what is said
by major U.S. political players in the form of TV ads, debates, speeches, interviews and
news releases." [39] Later, it was joined by PolitiFact3, Demagog4 and many others. Ac-
cording to Duke Reporters’ Lab [40], number of fact-checking organizations more than
doubled between years 2016 and 2020, reaching over 300 total. Fact-checking organi-
zations like these usually rate statements on a scale based on how truthful the state-
ments are, e.g. Politifact’s trademarked scale Truth-O-Meter runs from “True" to “Pants
on Fire." Graves [16] describes the actual process of fact-checking as consisting of five
distinct areas of practise. The first and vital function of fact-checker is to choose claims
to check. Once the fact-checker has chosen a claim to check, they contact the author

1https://time.com/
2https://www.factcheck.org/
3https://www.politifact.com/
4https://demagog.sk/
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of the claim. This practise serves as a matter of fairness toward the author as well as
an investigative technique. Whether the contacting of the author was successful or not,
fact-checker continues by tracing claim’s origin and reconstructing its spread in hopes of
acquiring important contextual cues. Next comes verification duringwhich fact-checker
must rely on official data from government agencies and often needs to consult experts.
Final practise to present a verdict on the scale, followed by review of presented verdict.

Both individual practises and the process in its entirety are non-trivial and require
substantial amount of time. In case of PolitiFact, this amount of time can be estimated
ranging from one to three days per fact-check.

2.2 The spread of misinformation

Misinformation is information that may not be accurate or complete [23]. We can also
say it is false information. Vosoughi et al. [45] investigated differences in the spread
of true and false information on Twitter between 2006 and 2017. Their data consisted
of 126,000 stories tweeted more than 4.5 million times. They classified these stories
based on an agreement between 6 independent fact-checking organizations. They found
that “falsehood diffused significantly farther, faster, deeper, and more broadly than the
truth in all categories of information." False stories were retweeted more times than
true stories - the fraction of false stories which were retweeted ten or more times was
significantly greater than true stories. They reached more people - the top 1% of false
stories regularly reached between 1,000 and 100,000 people, while true stories rarely
reached 1,000 people. Furthermore, false information reached 1,500 people six times
faster than truth.

To put this information into perspective, Leskovec et al. [27], tracking 1.6 million
mainstream media sites and blogs over three months to observe the news cycle’s dy-
namics, found a typical lag between peaks of attention to a phrase in the news media
and blogs is 2.5 hours.

Even though Leskovec et al. do not discriminate between true and false information
and their type of information slightly differ from Vosoughi’s Twitter stories, it is reason-
able to assume Twitter stories travel at approximately the same speed, if not faster.

The previous two sections lay a firmground that supports the need for an automated
fact-checking solution as they contrast the lengthy and thorough process ofmanual fact-
checking with the speed and depth of the spread of false information

2.3 Automated fact-checking

A typical automated fact-checking pipeline consists of three crucial steps: choosing
check-worthy sentences, obtaining information related to those sentences, and finally
inferring the veracity of the check-worthy sentences based on related information [17].
However, specific implementations of such pipeline differ. Thorne and Vlachos [42]
divide many existing approaches by inputs, sources of evidence, and outputs.
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Input-wise, they describe three categories of approaches used: triplets (subject -
predicate - object) [31, 9, 4], textual claims [29, 7], and even entire documents [44, 20,
17, 33, 46].

By sources of evidence, they mean types of evidence used for fact-checking. There
are five different types of sources described: no evidence besides the claim itself [36],
knowledge graphs [9, 41, 44], pure text (such as encyclopedia articles, policy docu-
ments, verified news, and scientific journals) [14], repositories of previously checked
claims [21], and finally, aggregate information on the distribution of posts on social me-
dia networks [11]. Different types of evidence have a different impact on the model as
well as the output of the model.

As for outputs, they describe simple binary true and false [31], a scale of values
ranging between true and false (similar to one described in section 2.1) [36], triplets
scored within a numerical range indicating how likely they are to be accurate [3], ar-
ticle’s stance towards the claim (supported, refuted, neutral, irrelevant) [14], output
consisting of the label (supported, refuted, not enough information) and the sentences
required to reach the verdict if the label states supported or refuted [43].

It is important to note that although these approaches all share the same goal, their
definitions of tasks being automated vary and consequently vary their inputs, sources
of evidence, and outputs.

2.4 Fact-check worthiness estimation approaches

2.4.1 ClaimBuster

The development on ClaimBuster has started in December 2014 and lasts to the present
time. However, this analysis covers its state as described in [20, 21]. ClaimBuster is con-
sidered to be the first end-to-end automatic fact-checking system. It is composed of three
main components: claim monitor, claim spotter, and claim matcher. The claim monitor
monitors various sources of information to obtain data for the claim spotter. Claim spot-
ter identifies check-worthy sentences containing factual claims. Claim matcher finds
closely related or identical fact-checked claims. There is also a component called a claim
checker, which queries external knowledge bases, and the Web, but only in case that
claim matcher could not find any similarities. The following text focuses on the func-
tionality of the claim spotter, described in detail in [21].

Hassan et al. constructed their own dataset from U.S. presidential debates between
1960 and 2012. Therewere a total of 15 presidential elections in that time, out ofwhich 12
had debates before the event. After reducing the number of sentences from the collected
corpus by removing those not spoken by a candidate and those shorter than five words,
they ended up with 20,788 sentences. They also developed a ground-truth collection
website for dataset annotation purposes. A monetary reward system was put in place
to encourage high-quality labelling. The final class distribution was 66.31% of NFS,
10.17% of UFS, and 23.52% CFS (labels are described in detail in a paragraph dedicated
to the classification task).

5



ClaimBuster’s check-worthiness pipeline takes a sentence as its input. We will see
that almost all other analysed approaches chose sentence as theirs’ model input as well.
Features described in the following paragraph are then extracted from the sentence,
forming a new sentence representation. These new sentence representations are used
as training data for supervisedmethods employed by ClaimBuster team. In the end, the
check-worthiness pipeline returns a score in the range from 0.0 to 1.0 for each sentence
indicating how likely a given sentence contains a factual claim.

The following features categories were extracted from sentences: sentiment, length,
part-of-speech (POS) tags and entity type. To calculate sentiment features, they used
AlchemyAPI5, which produced a sentiment score ranging from -1 for the most negative
sentiment to 1 for the most positive sentiment. The length feature category represented
the word count of a tokenised sentence. They used Natural Language Toolkit (NLTK)6

for the sentence tokenisation as well as POS tagging. There were 43 POS tags found in
the corpus, each having its own feature defined as the number of words in a sentence
belonging to a given POS tag. Similarly to the sentiment feature category, entity types
were also extracted using AlchemyAPI. A total of 2,727 entities from labelled sentences
belonged to 26 distinct types. The entity type feature corresponded to the number of en-
tities of a given type in a sentence. Hassan et al. performed feature selection by training
a random forest classifier to find the best discriminating features. GINI index was used
to determine features’ importance in constructing each decision tree. They calculated
the overall importance of a feature as its average importance over all the tress. They
found that the most discriminating features are POS tags referring to past tense (VBD)
and cardinal numbers (CD).

The authors of ClaimBuster refer to the check-worthiness task as claim spotting.
Theymodelled the claim spotting task to be partly classification task and partly ranking
task. In the classification task, they categorised sentences into three categories: Non-
Factual Sentences (NFS), Unimportant Factual Sentences (UFS), Check-worthy Factual
Sentences (CFS). Subjective sentences containing opinions or beliefs and many ques-
tions belonged to the NFS category, i.e. “But I think it’s time to talk about the future."
Sentences with factual claims which were not check-worthy were part of the UFS cate-
gory, i.e. “Two days ago we ate lunch at a restaurant." Finally, sentences that contained
check-worthy factual claims were included in the CFS category, i.e. “Over a million and
a quarter Americans are HIV-positive." They used three supervised learning methods,
namelyMultinomial Naive Bayes Classifier (NBC), Support VectorMachine (SVM) and
Random Forest Classifier (RFC), to conduct this classification task. Methods were eval-
uated utilising 4-fold cross-validation with SVM reaching the best precision and recall
across all three classes. They also experimentedwithmultiple combinations of extracted
features. Models’ performance was tested on word features (tf-idf) alone, then on word
features together with POS tags, and finally word, POS tags and entity type features.
While entity type features improved the performance of NBC, for the other twomodels,
these features either did not affect performance or were detrimental. POS tags features

5https://pypi.org/project/AlchemyAPI/
6https://www.nltk.org/
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weremuchmore helpful, however for the best scoring SVMmodel, they only accounted
for a 0.2% increase in precision and a 0.1% increase in recall (both precision and recall
were weighted averages across all three classes).

The ranking task was defined as deriving “a score that reflects the degree by which
a sentence belongs to CFS." They achieved this by treating sentences from both NFS and
UFC categories as negatives and only CFS sentences as positives. They then employed
SVM to find a decision boundary between the two classes. Lastly, they followed Platt’s
scaling technique [35] to calculate a posterior probability of the sentence belonging to
CFS using SVM’s decision function. Sentences were ranked according to their probabil-
ities. This SVM model reached an average precision of 97.9% and 89.7% on the top 100
and 500 sentences, respectively.

2.4.2 TATHYA

Patwari et al. [33] suggest that a set of check-worthy text is a subset of the more exten-
sive set described as checkable text and that check-worthiness is not consistent across
statements with similar content. Their multi-classifier system TATHYA utilises this in-
formation by identifying latent groupings of data that best describewhether a statement
is check-worthy or not.

Similarly to the ClaimBuster team, the authors of TATHYA created their own dataset
frompolitical debates. However, they chose primary and presidential debates from 2016
and included Donald Trump’s Presidential Announcement Speech to analyse a single
person discourse. A total of 21,700 collected statements was reduced to 15,735 after re-
moving all of the statementswith less than two tokens. It is important to note that tokens
were extracted after the removal of stop-words and frequently used words. They dis-
covered a significant class imbalance with only 967 statements labelled as check-worthy.
The process of labelling relied on fact-checking results from multiple fact-checking or-
ganisations like Factcheck.org, Politifact, Washington Post, and others. If any of the fact-
checking organisations fact-checked a sentence, TATHYA team labelled that sentence
as check-worthy. During empirical analysis, they found that there are inconsistencies in
the form of small overlaps on checked statements between fact-checking organisations.
Consequently, they asked two human annotators to find more check-worthy sentences.
Human annotators agreed on 145 additional check-worthy statements.

TATHYA’s fact-checking unit is a single sentence, adding to the previously outlined
pattern. Themulti-classifier system accepts its feature representation and returns either
check-worthy or not. TATHYA is one of two analysed approaches that return discrete
binary values.

Patwari et al. build on top of ClaimBuster’s features but include topic of discussion,
entity history, POS tuples, and frequently occurring phrases. To acquire discussion topic
features, they train an LDA topic model [6] with Gibbs sampling7 on the dataset and
tune the number of topics to 30. They then calculate the topic probability distribution
and define context size x. For x/2 previous and following sentences, they calculate co-

7https://pypi.python.org/pypi/lda
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sine similarity. The authors introduce new entity history features. Each sentence has its
entity history of sizeh, which holds all the entities appearing in the previoush sentences.
If any entity within the entity history of a sentence is repeated in that sentence, they acti-
vate one of two features (entity_type, discuss), (entity_type, repeat) based on the speaker.
The POS tuples features are built on the proposition that claims often have a subject,
verb, object dependency structure. They focus on subject and verb to capture references
of self and opponent. An example of such POS tuple is (noun_tag, verb_tag, neg) with
the corresponding sentence “She did not." The approaches by Hansen et al. [17] and
Zuo et al. [46] would later replace this feature with the features based on dependency
parse trees. They use Stanford CoreNLP8 and NLTK9 for tokenisation, POS-tagging,
NER-tagging and Coreference-Resolution.

Patwari et al. justify the use of a multi-classifier system by claiming that “Multi-
classifier systems have been shown to improve performance when a single classifier
system lacks expressiveness." [33] This multi-classifier is trained by following a train-
ing algorithm that starts with clustering data into the same number k of groups as there
are classifiers. As their classifiers, they use SVMs with linear kernel from the scikit-
learn10 module, and clustering is done using the Kmeans algorithm. In the successive
steps, they iteratively train classifiers on the groups and evaluate their ability to pre-
dict the check-worthiness of the training sentences. Hyperparameters tuning is done
via grid search on cross-validation. The best groupings are then found based on the
classifier confidence in their prediction. They found that their multi-classifier system
achieves the best results on the test set when the number of groups k equals 3. Patwari
et al. performed a comparison between the ClaimBuster and TATHYA on the test set
comprising of only presidential and vice-presidential debates. TATHYA out-performed
ClaimBuster in recall and f1-score but achieved a lower precision score. Their scores
were 0.188 and 0.226 precision, 0.248 and 0.148 recall, and 0.214 and 0.179 f1-score, re-
spectively.

It is important to note that the authors performed an ablation study where they
trained a single SVM classifier on various combinations of sentence feature represen-
tations. They discovered that adding POS tags and entity types improves the model by
4%.

2.4.3 Zuo et al.

The work by Zuo et al. [46] was a winning submission to 2018 CheckThat! Lab [32].
The definition of their task was:

Predict which claim in a political debate should be prioritized for fact-
checking. In particular, given a debate, the goal is to produce a ranked list
of its sentences based on their worthiness for fact-checking [32].

8https://stanfordnlp.github.io/CoreNLP
9http://www.nltk.org

10http://scikit-learn.org/stable/modules/svm.html
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They were provided with English and Arabic versions of the dataset however, they
chose to only work with the English version due to their intention of using heuristics
that rely on linguistic insight.

The English version of the dataset included three political debates as training data
and two political debates and five speeches as test data. It is important to note that the
distinction between debates and speeches in the test set was made by Zuo et al., not
authors of 2018 CheckThat! Lab. Training data consisted of extremely imbalanced 3,989
sentences, out of which only 94 were labelled as check-worthy.

The authors extract a vast number of features, including those described in previous
works. However, prior to the feature extraction, they process the data by normalizing
speaker names to unify different names referring to the same person and extracting
all the sentences by a speaker to create sub-datasets in the training data that represent
speech-like texts. The latter is done to help train the model as political speeches are in-
cluded in the test dataset. Then the feature extraction begins with removing stopwords
and stemming the remaining terms with Snowball stemmer11. On top of POS tags and
sentence length, they add a number of tokens in past, present and future tenses inferred
from POS tags and a number of negations in a sentence as features. They create depen-
dency parse trees containing clause and phrase-level tags. A number of words within
the scope of each tag is extracted as a feature. There are also affective features such as
subjectivity, direct and associated bias, and opinion. Metadata features that describe
whether the speaker’s opponent is mentioned, the speaker is the moderator, or whether
a strong reaction follows a sentence are included. However, many fact-checking organi-
sations are reluctant to use systems where metadata features regarding the speaker are
utilised [24]. They define a segment as a maximal set of consecutive sentences by the
same speaker. The use of segments yields the following features: relative position of
a sentence within its segment and sentence count in previous, current, and subsequent
segments. Thiswork is the first of the analysedworks to utiliseword embeddings, which
are a great tool to capture contextual information. They use 300-dimensional Google
News word embeddings12 to represent each word as a vector. The arithmetic mean is
then taken of the vectors corresponding to words in a sentence to get an abstract sen-
tence embedding used as a feature. To battle the high dimensionality of their feature
space, they employ two distinct dimensionality reduction methods. First, they apply a
feature selection module from scikit-learn13 library to perform univariate feature selec-
tion with x2-test to select the best 2,000 features. Second, they train SVM with linear
kernel and L1 regularization, motivated by the observation that linear models with L1
regularization encourage the vanishing coefficients for weakly correlated features. Af-
ter applying these methods, the total number of features is reduced to 2,655 for debates
and 2,404 for speeches.

Zuo et al. train SVM,MLP and an ensemble of bothmodels for the check-worthiness
ranking task. Both models utilise L2 regularization to combat over-fitting. The MLP

11http://snowball.tartarus.org/texts/introduction.html
12https://code.google.com/archive/p/word2vec/
13https://scikit-learn.org/stable/index.html
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model has two layers with 100 and 8 neurons, a hyperbolic tangent as an activation
function and adam as its optimizer. The ensemble model’s score consists of scores by
SVMandMLP, normalised and averaged. An adaptive synthetic sampling algorithm for
imbalanced learning, ADASYN, is used to overcome significant class imbalance during
training. They use 3-fold cross-validation for model selection and a 2-fold version for
speeches. As previously mentioned, the authors only work with the English dataset to
be able to use heuristics. These heuristics require linguistic understanding to be formu-
lated and address the following properties of sentences: whether the speaker of a sen-
tence is a candidate, the length of a sentence, whether the sentence contains the phrase
“thank you," the number of subjects in the sentence, and whether the sentence ends
with a question mark. There are thresholds regarding these properties, based on which
heuristic rules override scores assigned by the classification models. The primary eval-
uation metric is MAP. Their best scoring model is MLP with strict heuristics with 0.1366
MAP.

2.4.4 Konstantinovskiy et al.

Konstantinovskiy et al. [24] are the first to develop a claim detection system that lever-
ages universal sentence representations. They also introduce the first annotation schema
for claim detection, developed by experts at Full Fact14.

The authors created their own dataset via the crowdsourcing annotation method.
However, prior to creating the dataset, they initiated the development of the first an-
notation schema for claim detection. The annotation schema, developed by experts at
Full Fact, consisted of 7 different categories: personal experience, quantity in the past or
present, correlation or causation, current laws or rules of operation, prediction, another
type of claim, and not a claim. They recruited 80 volunteers to annotate 6,304 sentences
extracted from subtitles of four UK political TV shows. Due to the differences between
the annotations from volunteers, they had to apply an agreement strategy. The agree-
ment strategy where at least 60% of the participants had to agree on the annotation
would eliminate too many sentences. Therefore they chose the majority vote strategy
where at least three annotators marked the sentence, and at least half of the annotators
agreed. This strategy selected 4,080 sentences for previously outlined seven categories
and 4,777 sentences for two categories - claim and not claim.

Konstantinovskiy et al. extract considerably fewer features compared to previous
approaches. Sentence embeddings, POS tags and named entities are their only features.
However, they compensate for this lack of features with more sophisticated embed-
dings. They use InferSent encoder published and later publicly released by Conneau
et al. [10]. The InferSent embeddings differ from word embeddings by utilising a re-
current neural network to account for word order. The InferSent method first converts
the words to their common crawl GloVe15 representations, then passes them through
bidirectional long-short-term memory (BiLSTM) network [22]. They pre-train these

14https://fullfact.org/
15https://nlp.stanford.edu/projects/glove/
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sentence embeddings on a large corpus of Natural Language Inference tasks16. POS
tags and named entities are included in the form of a feature vector concatenated to the
sentence embedding. The feature vector contains the count of each POS or NE tag in a
sentence. However, experiments conducted by the authors reveal that their most suc-
cessful classifier does not benefit from having access to POS or NE information within
an embedding.

The authors train Logistic Regression, Linear SVM, Gaussian Naive Bayes, and Ran-
dom Forest supervised classifiers from the scikit-learn library, all with default param-
eters. They compare classifiers performance-wise among each other as well as among
baseline approaches of other teams in the aforementioned experiments. Their Logistic
Regression classifier gives the highest overall f1-score of 0.83, outperforming the best
ClaimRank-based model by 6% and best ClaimBuster-based model by 4%.

2.4.5 Hansen et al.

Similarly to Zuo et al. [46], the approach by Hansen et al. [17] is also a winning sub-
mission to CheckThat! Lab, although in the following year of 2019. The subsequent
analysis, however, is based on their article published in Companion Proceedings of The
2019 World Wide Web Conference. Hansen et al. present a neural check-worthiness ap-
proach, which utilises various novel ideas such as dual word representations fed to the
recurrent neural network or weak supervision.

As for data, they use three datasets, each with a different purpose. The Embedding
Training Dataset is comprised of all US election-related documents available through
American Presidency Project17. It contains 15,059 documents, and theyuse it to pre-train
domain-specific word embeddings. The Evaluation Dataset consists of 2,602 sentences
from seven check-worthiness annotated political speeches from the 2016 US elections.
Finally, the Weakly Labelled Dataset contains all publicly available speeches by Hillary
Clinton and Donald Trump from the 2016 US elections. They weakly label a total of
37,732 sentences using the public API of ClaimBuster18.

Each word in the Hansen et al. approach is represented by its word embedding and
syntactic dependencies. There are no other categories of features extracted. Themotiva-
tion behind dual word representation lies within the understanding that the word em-
bedding seeks to represent the semantics of the word in its context, while the syntactic
dependencies of a word strive to identify the role of that word in modifying the seman-
tics of other words in the sentence. Furthermore, they highlight Le et al. [26] finding
that the top-weighted words in check-worthy and non-check-worthy sentences overlap.
They hypothesise that the syntactic dependencies of a word may help distinguish these
overlapping top-weighted words. Their domain-specific pre-trained embeddings are
based on the word2vec19 skip-gram model. The syntactic dependencies of words are

16https://nlp.stanford.edu/projects/snli/
17https://web.archive.org/web/20170606011755/http://www.presidency.ucsb.edu/
18https://idir.uta.edu/claimbuster/api/
19https://code.google.com/archive/p/word2vec/
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parsed using the spaCy syntactic parser. Section 5.2 mentioned above analyses the ef-
fects of word embeddings and syntactic dependencies on themodel’s performance. The
domain-specific pre-trained embeddings in combination with syntactic dependencies
score the best with 0.302 MAP. Syntactic dependencies account for 1.7% improvement
as the domain-specific pre-trained embeddings without syntactic dependencies score
0.285 MAP.

The dual word representations are fed to a recurrent neural network (RNN) with
GRU [8] memory units. They aggregate the output of each word in RNN using an at-
tention mechanism. A fully connected layer then accepts the attention-weighted sum
to predict an output using the sigmoid activation function. They use RMSprop opti-
mizer and binary cross-entropy as the loss function. They tune and evaluate using 7-fold
cross-validation. The neuron ratio between GRU cell and single fully connected layer is
4 to 1. They provide a comparison of the effectiveness of multiple check-worthiness ap-
proaches, bothwith andwithout the use of weak supervision. Their model outperforms
the second-best approach without weak supervision by Konstantinovskiy et al. by 1.1%
with 0.278 MAP and the second-best approach with supervision by Gencheva et al. by
6.6% with 0.302 MAP. However, it is crucial to note that theirs is the only one of the
models to benefit from using weak supervision.

2.4.6 Cheema et al.

Cheema et al. [7] participated in 2020 CheckThat! Lab [2], where they submitted their
approaches to tasks 1 - Tweet Check-Worthiness English and Arabic, and 2 - Claim Re-
trieval. However, only the English version of task 1 is subject to the following analysis.
Along with the submission, they released the code for their approaches to the public.

They use an English version of the dataset provided by CheckThat! Lab with 962
tweets on the topic of Covid-19. The tweets are divided into training, development, and
test splits with 672, 150 and 140 tweets, respectively.

Cheema et al. tackle the problem of a small dataset by extracting various features
to acquire a rich feature representation. With a plethora of elements like hashtags and
user mentions, the tweets require excessive pre-processing. They use the Baziotis et
al. [5] tool to apply tokenization, lower-casing, removal of punctuation, spell correc-
tion, and normalization of hashtags, all-caps, censored, elongated and repeated words
and elements like URL, email, phone number or user mentions. They use spaCy20 to
extract POS, NE and syntactic dependencies. There are 16 POS tags extracted in to-
tal and later reduced to eight based on their importance during empirical evaluation.
For the features based on syntactic dependencies, they use relations between tokens
within a given tweet. The dependency relation is used if POS tags of parent and child
nodes belong to a subset containing ADJ, ADV, NOUN, PROPN, VERB or NUM. Such
dependency relations are then converted into pairs (child node-POS, parent node-POS) or
triplets (child node-POS, dependency relation, parent node-POS). They encode features us-
ing a histogramvector containing the number of POS,NEor syntactic relation pair types.

20https://spacy.io/
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To acquire contextual information, they experimentwithmultiple types ofword embed-
dings such as GloVe [34] embeddings trained on Twitter andWikipedia, word2vec em-
beddings trained onGoogleNews, FastText [30] embeddings trained on various sources
and transformer BERT embeddings. According to observation in [12], different layers
of BERT capture different kinds of information. Therefore, to extract one embedding
per tweet, they experiment with various pooling strategies to find the appropriate one.
The experiments encapsulate four distinct combinations: a concatenation of the last four
hidden layers, averaging the last four hidden layers, the last hidden layer, and the sec-
ond to last hidden layer. The final embedding is normalised so that the L2 norm of the
vector is 1. To finalise the overall representation of the tweet, they concatenate all the
syntactic features with either BERT or other types of embedding and then apply PCA
for dimensionality reduction.

Cheema et al. perform a grid search over PCA energy conservation, regularization
parameter C and gamma of RBF kernel during training of the SVM model. Their best
scoring model with 0.7217 MAP is an ensemble of SVM models that utilises POS, syn-
tactic dependency relations and BERT embeddings.

2.4.7 Martinez et al.

Similarly to Cheema et al. [7], Martinez et al. [29] also participated in 2020 CheckThat!
Lab [2]. However, they submitted approaches for tasks 1, 2 and 5. Both tasks 1 and
5 deal with the check-worthiness problem, although on different topics, Covid-19 and
politics, and consequently different datasets.

The dataset for task 1 is the same as described in subsection 2.4.6. The dataset for
task 5 is comprised of 50 fact-checked documents such as debates, speeches, press con-
ferences, and other similar formats in the training subset and 20 debates in the test sub-
set.

Martinez et al. extract two types of features: embedding and graph. The embed-
dings are either self-generated during training or preloaded at startup. The latter uses
Twitter GloVe embeddings of dimension 2006. They tokenize the tweets using theNLTK
tokenizer to use the first 50 tokens as the input for the embeddings. As for the graph fea-
tures, they utilise the complete information about each tweet provided by the authors of
the dataset to increase the size of the input with tweets related to the given tweet. They
use the complete information to extract triples in format (tweet-relation-subject) such as
(tweet-quoted-tweet) or (tweet-reply_status-tweet) and construct a graph from these triples.
For each tweet, they iterate over its edges in the graph to find a relation node which is
in turn connected to at least three other tweet nodes. After such nodes are found, they
concatenate their tweet text to the text of the original tweet. They prepare a version of
the English Regressive Imagery Dictionary (RID) with a format compatible with liwc21

Python module to perform text analysis. The dictionary is comprised of 3,150 words
and roots in 48 categories, which are further divided into three main categories: pri-

21https://pypi.org/project/liwc/
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mary, secondary and emotion. The input vector based on this dictionary contains one
number per category representing the percentage of words in those categories.

For both tasks 1 and 5, Martinez et al. propose five different models with slight
variations based on the task. The first four models take as input word embeddings
of the first n words of the tweet. Model 1 is a feed-forward neural network (FFNN).
The architecture after the input layer continues with a 1D global max-pooling layer that
operates on nword vectors, a hidden layer, and a sigmoid layer of size 1, which outputs
a score between 0 and 1. Model 2 is of type CNN with the architecture that consists
of the following layers: input, embedding, two pairs of convolutional 1D with a kernel
size of 5 and max-pooling 1D with a pool size of 5, flatten, dense, and finally, a dense
sigmoid layer of size 1. Model 3 is a long short-term memory network (LSTM) with
input, embedding, LSTM and dense sigmoid layers. The fourthmodel is a bi-directional
LSTMmodel with a comparable architecture as Model 3, but instead of one LSTM layer
and one dense layer, it has two bi-directional LSTM layers and two dense layers. Finally,
Model 5, like Model 1, is FFNN, although with input constructed from tf-idf vectors.
The network contains three pairs of dense layers that scale down by 50% in each stage
and batch normalization layers, followed by a batch normalization layer, a dropout layer
and a dense sigmoid layer. Models 2, 3 and 4 are unaffected by the task they are applied
to. However, Models 1 and 5, applied to task 5, run without a hidden layer but with
input enriched with the vectors described at the end of the previous paragraph.

Martinez et al. conducted a grid search to find the best performing hyperparameters
configuration. For task 1, the best performing configuration is Model 4 (Bi-LSTM) with
both graph and embedding features, tangent activation function, 10 neurons in the hid-
den layer, no dropout, 64 epochs, batch size of 10 and the MAP score of 0.7425. As for
task 5, the best performing configuration is Model 4 (Bi-LSTM) with no oversampling,
embedding features, tangent activation function, 256-neuron hidden layer, 0.2 dropout,
10 epochs, 16 batches, and finally, the MAP score of 0.17. The official results from 2020
CheckThat! Lab show that their primary and constrastive1 runs based on the Bi-LSTM
model with GloVe embeddings achieved the first positions in the classification.

2.5 Analysis summary

Shapiro et al. [38] define journalism as a “discipline of verification." Although fact-
checking and verification are often used interchangeably, Silverman [39] sees fact-
checking as a “specific application of verification in the world of journalism." We could
say that verification is the necessary step in the process of fact-checking. A new but
related meaning for fact-checking emerged in 2003 with the launch of FactCheck.org,
a website which goal is to “monitor the factual accuracy of what is said by major
U.S. political players in the form of TV ads, debates, speeches, interviews and news
releases." Since then, a number of fact-checking organisations has been on the rise,
reaching over 300 in 2020. The process of manual fact-checking is non-trivial and
requires a substantial amount of time. In the case of PolitiFact, this amount of time can
be estimated, ranging from one to three days per fact-check.
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According to Vosoughi et al. [45], who investigated the spread of true and false in-
formation on Twitter, “falsehood diffused significantly farther, faster, deeper and more
broadly than the truth in all categories of information." Furthermore, Leskovec [27]
found a typical lag between peaks of attention to a phrase in the newsmedia and blogs is
2.5 hours. Combining these two pieces of informationwith the aforementioned estimate
of time needed to complete one fact-check, it becomes evident that manual journalistic
fact-checking cannot keep pace with the spread of misinformation.

Hence, the need for an automated fact-checking system arises. A typical automated
fact-checking pipeline consists of three crucial steps: choosing check-worthy sentences,
obtaining information related to those sentences, and finally inferring the veracity of the
check-worthy sentences based on related information [17].

Currently, one is able to findmanyworks and approaches to the broader task of auto-
mated fact-checking. These, however, may vary by their definition of the task being au-
tomated. One such task, often described as the first step in an automated fact-checking
pipeline, is check-worthiness. As defined by the CLEF 2018 CheckThat! Lab [32], check-
worthiness is the prediction task of prioritising claims for fact-checking.

Yearly CheckThat! Lab by CLEF [32, 13, 2], starting in 2018, motivated numerous
teams to submit theirwork on this task. Consequently, an abundance of suchworks from
recent years is at one’s disposal for analysis. However, to better grasp the evolution of
solutions to check-worthiness task, there areworks unrelated to CheckThat! Lab present
in the analysis as well.

The collection of analysed works uses a sentence as an input type, with the excep-
tions being Hansen et al. [17], who used a double representation of a word and works
that expect the entire tweet as their input. Similarly, the outputs of analysed approaches
vary only slightly. Most approaches output a value in the continuous range between 0.0
and 1.0, while Patwari et al. [33] and Konstantinovskiy et al. [24] only mention values
check-worthy or not and claim or not claim, respectively.

The datasets used in analysed approaches can be split into two categories: the au-
thors’ and the provided datasets. Teams Hassan et al. [20, 21], Patwari et al. [33], Kon-
stantinovskiy et al [24]. and Hansen et al. [17] created their own datasets, while Zuo
et al. [46], Cheema et al. [7] and Martinez et al. [29] used datasets provided by the
CheckThat! Lab organizers. Although Hansen et al. [17] competed in CheckThat! Lab
too, their work analysed here was published independently and describes their original
dataset. The datasets in the latter category differ with the year and topic but are other-
wise uniform in their format. Datasets from CheckThat! Lab 2018, 2019 and 2020 [32,
13, 2] (for task 5) consist of political debates transcripts split into sentences, formatted
into tab-separated values and annotated with 0 or 1 based on their check-worthiness.
CheckThat! 2020 Lab dataset for task 1, tweets on the topic of Covid-19, is comprised
of tweets, their metadata, and annotation regarding their check-worthiness. Dataset is
provided in .tsv and .json formats. Datasets created by the authors are similar in hav-
ing political debates as their source but differ in themethods bywhich theywere created
and annotated. Hassan et al. [21] extracted their dataset from US presidential debates
and annotated it using a self-developed ground-truth collection website where they of-
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fered monetary rewards to annotators to incentivise high-quality labelling. Patwari et
al. [33] used US presidential and primary debates and Donald Trump’s Presidential
Announcement Speech, which they annotated with a self-devised mechanism based on
information frommultiple fact-checking organizations. Dataset by Konstantinovskiy et
al. [24] was created from the transcripts of UK political TV shows and annotated using
the crowdsourcing method. Unlike the rest of the approaches, they used an annota-
tion schema with seven different categories. Finally, Hansen et al. [17] created two out
of three datasets used in their approach. Both their Embedding Training Dataset and
Weakly Labelled Dataset were created using data from American Presidency Project22.
The latter was weakly annotated using ClaimBuster [21] API23.

Approaches towards feature extraction deviate across analysedworks in the number
of different features extracted, i.e. ClaimBuster [21] extracts five, TATHYA [33] eight,
and Zuo et al. [46] over 15, and in features selected. Nevertheless, features like part-of-
speech (POS), sentiment, and named entities appear in almost all works, although their
effectiveness fluctuates, improving TATHYA’s SVMmodel by 4% but unaffecting logis-
tic regression model by Konstantinovskyi et al. [24]. Noteworthy are features based on
syntactic dependency parsing utilised by both Zuo et al. [46] and Hansen et al. [18, 17],
who won during their respective CheckThat! Lab participation. The most influential
features, however, are those based on word embeddings. According to a comparison
performed by Hansen et al. [17], the use of word embeddings improved model per-
formance by 5% in the mean average precision (MAP) score. Furthermore, another
comparison by Hansen et al. shows that two models which did not utilise word embed-
dings scored the lowest. The effectiveness of word embeddings could be explained by
their ability to capture the linguistic distributional hypothesis that words with similar
meanings tend to appear in similar contexts [19].

As previously mentioned, check-worthiness is a classification task, and therefore
each approach employs one or more classifiers for deciding on a statement being check-
worthy. The most frequently occurring is the Support Vector Machine (SVM) type clas-
sifier, as it is used in all but two approaches. Zuo et al.[46] utilised SVM for both clas-
sification and feature selection. The latter is noteworthy since they turned the usually
disadvantageous vanishing gradient effect into a valuable discriminator of weakly cor-
related features. There is no readily observable correlation between the specific type
of classifier and positive or negative results. This phenomenon could be explained by
looking at how different teams used the same type of classifier differently. For example,
both Hassan et al.[21] and Patwari et al.[33] used SVM, but Patwari et al.[33] trained
multiple SVMs on grouped data, while Hassan et al. trained single SVM without data
grouping. Furthermore, as previously outlined, extracted features also influence check-
worthiness prediction ability, further obscuring the impact of classifier selection.

22https://web.archive.org/web/20170606011755/http://www.presidency.ucsb.edu/
23https://idir.uta.edu/claimbuster/api/
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2.6 Implications for our work

During analysis, we have identified potential problems embedded within the check-
worthiness task, however, analysed works served us as a potent source of inspiration for
solutions to those problems. The proposed approach is comprised of these inspirations
as well as original ideas in the hope of achieving improvement in the check-worthiness
task.

The proposed approach extracts POS tags and syntactic dependencies as features.
We considered extracting more features like named entities or sentiment features, but
according to Konstantinovskiy et al. [24] who extracted both POS tags and named en-
tities, the latter shows little promise in improving models scores. The models which
utilise POS tags score better in multiple works [20, 33, 46, 24]. Syntactic dependencies
appear in works of Zuo et al. [46] and Hansen et al. [17] whom both have won during
their respective participation in CheckThat! Lab. According to Hansen et al. [17], syn-
tactic dependencies are able to identify the role of a word in modifying the semantics
of other words in the sentence. This is contrasted with word embeddings which encode
the semantics of the word in its context.

As previously mentioned in the analysis summary, word embeddings seem to be
the most influential feature in improving models’ scores. Their choice is, therefore, a
significantly important decision. In recent years BERT-based models started showing
their superior performance and hence are a good candidate for an embedding extraction
tool. Sentence embeddings are also worth considering, as shown by Konstantinovskiy
et al. [24] who utilised InferSent24 sentence embeddings to great success.

To battle a heavy class imbalance and inspired by Hansen et al. [17], we will use
so-called weak labelling on a large additional dataset. Dataset will be acquired from
American Presidency Project via means of web scraping. We will weakly label it using
ClaimBuster online check-worthiness api25.

Finally, the type of classificationmodelwill depend on the level of embeddings used.
While forword embeddings, wewill train a bi-directional LSTMmodel to capture the in-
teractions between word embeddings in a sentence. For sentence embeddings, a model
consisting of a short sequence of dense layers will probably suffice as the majority of
inter-word interactions are captured within sentence embeddings.

With such a proposed approach, we hope to outperform at least a few of the newer
analysed solutions.

24https://github.com/facebookresearch/InferSent
25https://idir.uta.edu/claimbuster/api/

17

https://github.com/facebookresearch/InferSent
https://idir.uta.edu/claimbuster/api/


Chapter 3

Datasets used

This section talks about data used in our experiments, source, format, class balance, and
minimal pre-processing required to work with the data.

As the main training dataset, we use one that is created, labelled and provided by
an entity other than us, in this case, the CLEF association. This decision seems natural
as the creation and labelling of our own dataset, we feel, is out of the scope of this the-
sis. Furthermore, the CLEF association’s dataset satisfies all the expected requirements:
domain specificity, thorough labelling, real-world imitation, and considerable size.

3.1 Political debates dataset

The CLEF team provided this dataset for the participants of 2019 CheckThat! Lab task
1 [1]. The dataset available on GitHub1 is comprised of American political speeches and
debates from the years 2015 through 2019.

The data is split into test, test_annotated and training directories, which are in
turn split into multiple tab-separated values (.tsv) files. Each .tsv file corresponds to
and holds the transcripts of the specific political speech or debate. There are 15,554 and
6,478 sentences in all of the files inside the training and test directories. The files are
named using the date of the event followed by the speaker’s name, place of the event or
other distinctive features. The files in directories test_annotated and training contain
four columns: ID of the sentence, source or speaker of the sentence, the sentence itself and label
of the sentence.

In order to work with the data more efficiently, we wrote a function to combine all
of the files in the respective directories into two files representing test and training data.
We handled the IDs of the sentences, which would cease to be unique after combining
as they are monotonically increasing numbers starting from one in each of the events
files by prepending the date of the event to them.

To create a validation dataset, we further split the training dataset with the ratio of
three to one in favour of the training dataset. We also create the development (dev) set

1https://github.com/apepa/clef2019-factchecking-task1
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Figure 3.1: The class imbalance in all of the splits of the Political Debates dataset. The percentage of check-worthy
sentences in the dataset ranges between 2.1% and 2.9%, indicating a severe class imbalance. The dataset splits from
the left top corner to the right bottom corner: training data, training data minus the validation split, test data, and
validation split sampled from training data. The pie charts sizes correspond to the sizes of the splits. The fractions of
check-worthy and check-unworthy sentences are displayed in red and blue colours, respectively.

by sampling 10% of the training dataset. We use the dev dataset only during the devel-
opment phase as it is just a fraction of the training dataset, enabling faster workflow.

The data in all the datasets is highly imbalanced, with a fraction of worthy-labelled
sentences floating between 2 and 3%. Figure 3.1 displays the class imbalance for all of
the datasets in percentage as well as raw values.

3.2 Weakly labelled dataset

Inspired by Hansen et al.’s [17] successful utilization of a weakly labelled dataset, we
prepared a dataset containing US presidential candidates’ debates from 1960 to 2020.
We used the web-scraping technique to obtain the transcripts from the American Presi-
dency Project webpages2.

We pre-processed the web-scraped content to separate the sources from their sen-
tences and to prepare the sentences for labelling. Some of the separated sources were
malformed as a result of inconsistencies present in the source notation. We used the

2https://www.presidency.ucsb.edu/
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Figure 3.2: The class imbalance and size comparison of Political Debates and Weakly Labelled datasets. The class
imbalance in theWeakly Labelled dataset is approximately seven times less severe than in the Political Debates dataset.
TheWeakly Labelled dataset is also almost eleven times bigger. The datasets from left to right: Political Debates dataset
training data before validation split, Weakly Labelled dataset. The pie charts sizes correspond to the sizes of the splits.
The fractions of check-worthy and check-unworthy sentences are displayed in red and blue colours, respectively.

Claimbuster web API3 to weakly label the dataset. The API accepts a single sentence
or a paragraph of text, which it splits into sentences and gives each sentence a continu-
ous score between 0 and 1, thus prompting us to introduce a threshold, based on which
we decide whether the sentence is check-worthy (1) or not (0). Finally, we export the
sentences, their IDs, sources and labels to the .tsv files with similar nomenclature de-
scribed in the section above.

Prior to training with this dataset, we combined all of the files and handled the IDs
of the sentences in the samemanner applied to the political debates dataset. The dataset
contains a total of 168,758 sentences, with 34,533 labelled as check-worthy, which makes
up to 20%. Even though the class imbalance is present, it is approximately seven times
less severe compared to the political debates dataset. The comparison of the weakly la-
belled dataset and the political debates dataset’s training split is shown in the following
figure.

3https://idir.uta.edu/claimbuster/api/
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Chapter 4

Method for fact-check worthiness
estimation

4.1 Our Solution

Our solution consists of two independent pipelines, each based on a different approach
to check-worthiness task. The firstmodel is centred around the bidirectional LSTM layer,
which uses tensors of BERT-basedword embeddings as its sentence representation. The
second model relies on a BERT-based sentence transformer as its embedding model,
followed by a simple neural network.

We also extract text features such as sentence length, less and more granular POS
tags and syntactic dependencies to help our sentence representations convey meaning.
The features are encoded either using one-hot or sum encodings.

4.1.1 Features

In our solution, we extract multiple features to improve the performance of our mod-
els. Prior to feature extraction, we perform the necessary pre-processing steps such as
tokenization, POS-tagging and syntactic dependency parsing. We also experiment with
the removal of stopwords.

Figure 4.1: Syntactic dependency graph of the sentence “We must invest in our people." The arrows represent depen-
dencies between words they connect, while the origins of the arrows correspond to the head-words and the destinations
correspond to the child-words. The role of head-words is to modify the semantics of their child-words.
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Table 4.1: POS tags granularity comparison. The words you and our share the same less granular POS tag “PRON"
but have different corresponding more granular POS tags, “PRP" and “PRP$". The same applies to the words
said and undermine. The meanings of specific POS tags are displayed in rows labelled as “explanation" under
corresponding POS tags.

granularity words

you our said undermine

less
tag PRON VERB
explanation pronoun verb

more
tag PRP PRP$ VBN VB
explanation pronoun, pronoun, verb, verb,

personal possesive past participle base form

Two of our feature types are based on part-of-speech (POS) tags of different gran-
ularity. The first of the two is extracted by assigning each word in the sentence a tag
from the set of Universal POS tags listed on the Universal Dependencies website1. The
second one is extracted in the same manner, although it assigns a tag from a more gran-
ular set of tags. For example, consider the sentence “Secretary Clinton, you have said
that it would undermine who we are as Americans, shutting our doors.", particularly
the pairs of pronouns “you, our" and verbs “said, undermine". We show the differences
in granularity of the two tags sets on the selected words in table 4.1. We encode these
feature types using one-hot and sum encodings, giving us four features. For both en-
codings, we create a zero vector of length equal to the size of the given tag set. We then
replace zeroeswith ones for one-hot encoding and sums for sum encoding at the indexes
corresponding to the tags present in the sentence.

We also utilize tags acquired by syntactic dependency parsing the sentences to cre-
ate two feature types reflecting the effect of words in the sentence on the semantics of
other words in the same sentence. The complete set of tags is listed and described on
the Universal Dependencies website2. The simpler feature type of the two is created by
substituting the words in the sentence with their corresponding dependency tags. The
more sophisticated feature type, which we call the triplet feature type, consists of the
sequence (POS tag of the head of a word - dependency tag of a word - POS tag of a word). The
head of the word A is the word B, which modifies the semantics of its child word A. The
relationship between the head-word and its child-word is referred to as syntactic depen-
dency. To illustrate these relationships, we provide a syntactic dependency graph of the
sentence “We must invest in our people." in figure 4.1. The relationships, or dependen-
cies, are illustrated as arrows pointing from the head-words to their child-words. The
triplet feature is the only word-level feature that we extract, which means it is extracted
from and appended to each word’s embedding. Both of the feature types described in
this paragraph are one-hot encoded.

1https://universaldependencies.org/u/pos/
2https://universaldependencies.org/u/dep/
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We curate a tag selection for all of the previously mentioned tag types by analyzing
each tag’s discriminatory ability, defined as a combination of the tag’s minimal check-
worthy and check-unworthy fractions difference andminimal percentage of occurrences
in the dataset. Minimal values for both requirements were found empirically using a
balanced development subset. By experimenting with this, we hope to create shorter
but more discriminatory features. The figure 4.2 shows the values of less granular POS
tags for both requirements.

4.1.2 Embeddings

Our solution explores two different embeddings approaches, both based on Bi-
directional Encoder Representations from Transformers (BERT) language model
created and published by Devlin et al. [12] at Google. The original English version of
BERT published in 2018 consisted of two models with multiple encoders and attentions
heads, pre-trained on a total of 3,300million records of unlabelled data. It has since been
extended with numerous modified models for different tasks, purposes and languages.

The first approach utilises a pre-trained BERT uncased base model to extract word-
level embeddings. The model’s intended uses are masked language modelling or next
sentence prediction in its raw state and token classification or question-answering in its
fine-tuned state. However, the model was pre-trained on a vast amount of text data and
consequently acquired an ability to differentiate the words within sentences by their
semantics. Since the model was not explicitly pre-trained as a word-embedding model,
using its original output as embedding is not recommended. Instead, when loading and
initializing the BertModel object, we use the output_hidden_states option to acquire
access to all of the hidden states of the model. We then experiment with three different
pooling strategies to extract the embeddings. The pooling strategies are: extract second
to the last hidden layer, sum the last four hidden layers, and concatenate the last four hidden
layers. After one of the pooling strategies is applied to the model’s hidden states, the
embeddings are created.

In the second approach, we extract sentence-level embeddings using models from
SentenceTransformers framework3 for state-of-the-art sentence, text and image embed-
dings. The framework is based on the Sentence-BERT work by Nils Reimers and Iryna
Gurevych [37], in which they present a modification to the original BERT model that
uses siamese and triplet network structures to extract semantically meaningful sen-
tence embeddings with reduced time consumption. While extracting embeddings, we
treat the model as a black box, meaning we input the sentences and expect the em-
beddings as an output with no additional work. However, we do experiment with
three different pre-trained models: all-MiniLM-L6-v2, multi-qa-mpnet-base-dot-v1,
all-mpnet-base-v2. The models differ in size, encoding speed, and performance, as
noted in the framework’s web page table4.

3https://www.sbert.net/
4https://www.sbert.net/docs/pretrained_models.html
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(a) POS tags occurrence percentages. The dashed orange line represents a minimal percentage
of occurrences in the dataset, which is one of the requirements for a POS tag to be considered
discriminatory. The occurrence percentage for a tag p, νp, is calculated as follows: νp =

np

n
,

where np is the number of all occurrences of tag p and n is the number of all the tags extracted.

(b) POS tags check-worthy and check-unworthy fractions differences. The dashed orange line
represents a minimal check-worthy and check-unworthy fractions difference, which is one of the
requirements for a POS tag to be considered discriminatory. The difference for a tag p, ∆p, is
calculated as ∆p = abs(

npw

np

−

npu

np

), where np is the number of all the occurrences of tag p,
npw is the number of tags p extracted from check-worthy sentences and npu is the number of tags
p extracted from check-unworthy sentences.

Figure 4.2: Figures (a) and (b) display the twometrics we use to find themost discriminatory tags alongwithminimal
values and values of all the less granular POS tags for these metrics. The minimal values were found empirically.
Application of the minimal values for these metrics produces the following subset of less granular POS tags: NUM,
NOUN, PROPN, ADJ.
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4.1.3 Models

In our solution, we train two separate classification models, one for each type of embed-
dings described above.

Bi-LSTM Model

Our first embedding model transforms sentences into sequences of word-level embed-
dings and thus defines the classification task as sequence classification. We base our
model on a Long Short Term Memory (LSTM) layer, a type of Recurrent Neural Net-
work (RNN) with a more sophisticated cell structure, to leverage its capability to learn
long-term dependencies present in the sentences.

The bi-directional LSTM layer is followed by an attention mechanism layer inspired
by the Kaggle submission5, and the discussions on the PyTorch forum6. The modified
attention mechanism we apply is calculated as follows:

Wattt = it@Wattt−1

ra = max(0,Wattt)

a =
exp(raii)∑
ij exp(raij)

o = it
aii∑
ij aij

whereWattt are the attentionweights at time t,Wattt−1 are the attentionweights at time
t− 1 or the initial attention weights at time 0, it is the input to the attention layer at time
t, @ is the matrix product, ra is the attention tensor after rectified linear unit (ReLu)
function application, a is the attention tensor after softmax function application and
finally o is the output of the attention layer. The attentionweights at time 0 are initialized
using the Xavier uniform distribution described in [15]. We regularize the attention
layer’s output with the dropout layer before feeding it to the optional sequential and
dense linear layers. A visually descriptive diagram of the model and its corresponding
embeddings model can be seen in the figure 4.3.

Sent-NNModel

Since the sentence-level embeddings model abstracts away the complexities of classify-
ing the sequences of word-level embeddings, our second classifier can remain simple
in its structure. It consists of an optional sequential layer and a linear, fully connected
layer. The input to both layers is regularized by the dropout layers. The sole purpose
of this simple neural network is to classify the output of our sentence-level embeddings
model as check-worthy or not. A diagram depicting the model with its corresponding
embeddings model is shown in figure 4.4.

5https://www.kaggle.com/code/dannykliu/lstm-with-attention-clr-in-pytorch/notebook
6https://discuss.pytorch.org/t/self-attention-on-words-and-masking/5671
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Figure 4.3: Bert Embeddings Model - Bi-LSTMModel diagram. Bert Embeddings Model tokenizes each sentence on
its input and encodes each word as an embedding. Optionally, word-level features, highlighted in blue, are appended
to word embeddings before the embeddings reach the Bi-LSTMModel. Within the Bi-LSTMModel, the LSTM layer is
applied to the word embeddings in both directions, indicated by bi-directional arrows between LSTM cells. The LSTM
layer’s output is then fed to the attentionmechanism before the sentence-level features are optionally appended. Finally,
this representation is regularized with the dropout layer and fed to the fully connected layer. The regularization and
optional sequential layers are omitted from the diagram for simplicity.

Figure 4.4: Sentence Transformers Embeddings Model - Sent-NNModel diagram. The quotes in the front and back of
the sentence indicate that the embeddings model takes an entire unedited sentence as its input. The embeddings model
produces a single sentence embedding per sentence. In the Sent-NN model, sentence-level features are appended to
the sentence embedding before the tensor is regularized and fed to the fully connected layer. The red background on
the sentence-level features indicates their optionality. The regularization layers and optional dense layers are omitted
from the diagram for simplicity.
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4.2 Implementation

This section introduces essential or otherwise note-worthy implementation aspects and
challenges of this work.

4.2.1 Weakly labelled dataset

As previously mentioned in the section 3.2, we acquired data for weak labelling using
the web-scraping technique and then labelled it with the Claimbuster API. We web-
scraped the data using the Python library Beautiful Soup7, which allowed us to target
specific HTML elements holding the data on the webpage. The challenge here was to
handle as many edge cases as possible while separating the sources from their tran-
scripts, as source notation was not uniform across the debates. Even though we have
not managed to handle all of the edge cases, we ensured to favour the text’s integrity
over the source’s integrity, meaning we rather let the text overflow into the source than
vice-versa. Favouring the text’s integrity is crucial as source overflowing into the text
could affect the text’s labelling. Furthermore, we do not use the source for training or
any other purposes and keep it solely for compatibility reasons; hence malformed in-
stances of the source pose no issues.

4.2.2 Baseline methods

This sub-section describes the process of customizing two separate instances of publicly
available code on the topic of check-worthiness to enable it to run on our machines and
serve as the baseline for our experiments. The code authors, Cheema et al. [7] and
Martinez et al. [29], created their code as a part of a submission to the check-worthiness
task of the CheckThat! Lab 2020. Both codebases were customized to work with Covid-
19 related tweets and political debates datasets, even though the approach by Cheema
et al. initially only worked with the former.

Cheema et al.

The source code repository by Cheema et al., available on GitHub8, consists of two di-
rectories: task_1 and task_2. Since the task_2 directory contains the implementation
of their solution to the second task of CheckThat! Lab 2020 [2] on the topic of claim
retrieval, it is not discussed any further.

Within the task_1 directory, there are format_checker and scorer directories that
contain code for format validation and evaluation, respectively, and eleven Python files
with various purposes. The format_checker and scorer code was provided by the
CLEF team. Eleven Python files can be divided into two categories, utility and ex-
periments. The utility category consists of three files containing pre-processing, em-
beddings extraction and helper functions code, respectively. The code in these files is

7https://beautiful-soup-4.readthedocs.io/en/latest/
8https://github.com/cleopatra-itn/claim_detection
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separated by its purpose and re-used in multiple places, contrasted by the experiments
category, which contains vast amounts of duplicate code. Even though different experi-
ments are divided into eight files, named according to format model-type_embeedings-
type_features-type.py (e.g. svm_bert_posdep.py), the differences between the con-
tents of the files aremarginal. Prior to the realization of the lack of separation of concerns
within experiments files, the amount and complexity of the code appeared challenging
to understand. However, once we discovered that the majority of the code shares the
same purpose, we were able to form a general understanding and proceed to edit the
code to enable it to run on our machine. It should be noted that since this code is part of
the submission to CheckThat! Lab competition, separation of concerns was not the top
priority for the authors.

Our first goal in customizing Cheema’s codewas to run it on our CPU-onlymachine,
first with the Covid-19 related tweets dataset and then the political debates dataset. As
mentioned before, their approach was intended to only work with the Covid-19 tweets
dataset and thus, the changes required to achieve that were few and relatively simple.
They consisted of replacing the thundersvm SVMmodel with a sci-kit SVMmodel and
correcting multiple file paths. We replaced the thundersvm to avoid a complicated set-
up paired with no added benefit as thundersvm is only useful on GPU available ma-
chines.

Conversely, customization required to run their solution on the political debates
dataset was significant. In general, we decided to extract the raw code from scripts
into methods with arguments so that they would be callable from other scripts, thus
enabling easier experimentation. We edited tweets pre-processing script to act as a
method, which accepts string argument denoting the type of dataset altering the be-
haviour of the method in multiple places (e.g. loading corpus for word segmentation
and spell correction for the text pre-processor). Furthermore, instead of using all of the
experiment scripts to run different experiments, we extracted and generalized the code
within the svm_bert.py script so that multiple experiments could be run and controlled
from a single point. The size of the political debates dataset combined with limitations
of CPU-only machine’s performance prompted us to write a dataset sampling method,
with which we could sample a development subset with a specified fraction of the size
of the original dataset. We also had to edit the provided scorer code tomake itworkwith
the political debates dataset, although the required changes were minor, consisting of
conditional reading of output files based on the type of dataset.

Once all the necessary customizations had been done, we moved the project to our
machinewithGPU available formodel acceleration. Even thoughGPUaccelerated SVM
models are not as common as their neural network counterparts, it can be done using
tools like thundersvm9. At this point, we planned to utilise the previously replaced
thundersvmmodel, but unfortunately, we encountered an issue stemming from version
incompatibility between thundersvm library and CUDA interface on our machine. We
explored many different angles to solve this issue, only to be repeatedly stopped by the
lack of control over the machine’s environment and, consequently, the CUDA version.

9https://github.com/Xtra-Computing/thundersvm
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Martinez et al.

Similarly to Cheema et al. [7], the source code by Martinez et al. is also available at
GitHub10. It consists of four directories, although we only studied and customized two
of them, namely T1En for task 1 English version and T5En for task 5 English version. The
other two directories contain code for task 1 Arabic version and task 2 English version
and will not be discussed further.

Martinez et al. chose a different approach to structuring their codebase compared to
Cheema et al. [7]. Both directories are comprised of the main script and resources and
utils directories. The code within the utils directories is further separated into multiple
script files based on its function. The code is well organized and easy to understand.
Both task directories also contain format_checker and scorer used for evaluation and
provided by the CLEF team.

The customizations required to run Martinez et al.’s solution were few and trivial
in nature. They consisted of installing missing dependencies such as liwc library, fixing
IO paths and modifying function for listing train and test data directory to omit files
created by us. The numerous models trained in this solution are selected at the end of
the main task5.py file.

4.2.3 Feature extraction

Wehave decided to extract features freshly every timewe train instead of once before the
first training. This decision enabled us to experiment with extraction more freely at the
expense of more computing time. During the training, we iterate over batches of sen-
tences, their ids, labels and features provided by the instance of DataLoader class from
the PyTorch library11. The DataLoader object expects an instance of the PyTorch Dataset

class or classes that extend it. We extended the Dataset class with our DebatesDataset
class to modify the returned value to our needs. The Dataset class and classes that
extend it provide optional argument transform, which expects either an object of the
transform class that extends PyTorch Module or TorchVision Compose object. These trans-
form classes then modify the data before it is pulled from the Dataset object by the
DataLoader object during the training process. We implement feature encoding meth-
ods as forward class methods of our custom transform classes and chain these together
in various arrangements via TorchVision Compose object. We provide the following
transform classes: HandleStopwords, OneHot, Sum, CountWords, NoTransform, ToBinary
and ToTensor. The HandleStopwords transform either removes stopwords or not and
always occupies the first slot in the Compose object. The ToBinary and ToTensor trans-
form are always used in the last two slots in this particular order to ensure the format
of the features. The OneHot, Sum and CountWords are feature transforms. Finally, the
NoTransform transform simulates an absence of the feature and exists for feature selec-
tion purposes.

10https://github.com/jrmtnez/NLP-IR-UNED-at-CheckThat-2020
11https://pytorch.org/
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4.2.4 Bi-LSTM model

We implemented the Bi-LSTMmodel and the rest of the models used in this work with
the PyTorch library. The Bi-LSTM model’s implementation was particularly tricky as it
presentedmultiple challenges. Firstly, themodel expects a batch of embeddings padded
to the same length, thus requiring us tomodify the embeddingmodel to pad the embed-
dings and return an additional tensor with their original lengths. The model requires
lengths as they are used in the PyTorch pack_padded_sequencemethod, significantly re-
ducing computing time by packing the padded input, effectively avoiding non-essential
operations on the tensor’s padded part. Lastly, since we used a bi-directional version of
the LSTM layer, the LSTM layer was applied to the input twice, once in both ways. The
resulting output doubled in size, and the part corresponding to the backward applica-
tionwas reversed. Furthermore, weunpacked the LSTM layer’s outputwith the PyTorch
pad_packed_sequencemethod to make it compatible with our attention mechanism ap-
plied subsequently. Advanced indexing was required to access the correct parts of the
output while ignoring the padding zeros.

4.2.5 Hyper-parameter optimization and feature selection

We optimize hyper-parameters and select features using the Optuna library12, whose
main purpose is optimization supported by a wide range of samplers based on various
optimization algorithms. The library utilizes three main parts to control the optimiza-
tion: a study object, a trial object and an objective function. The study object represents
one entire optimization experiment. It expects an objective function as an argument, to
which it provides trial objects as the optimization proceeds. The trial object represents
one iteration with a unique set of values from a specified hyper-parameter or feature
space in the optimisation process. The trial objects are created and managed by the
study object. Lastly, the objective function contains the actual training code consisting
of data loading, models initialization, training and validation iterations and returns a
value of a metric being optimized. The trial object is accessible within the objective
function and provides a so-called “suggest" interface with methods like suggest_float
and suggest_categorical, with which we define a hyper-parameter and feature space
for each optimized hyper-parameter and feature type. We optimize hyper-parameters
mostly with the Tree-structured Parzen Estimator (TPE) sampler and select features
with the grid sampler13. Optuna provides pruners to abort unpromising trials prema-
turely based on the metric returned by an objective function. However, we chose to
implement the EarlyStopping class, which does so based on validation loss to avoid
values from over-trained models.

12https://optuna.org/
13https://optuna.readthedocs.io/en/stable/reference/samplers.html
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Chapter 5

Experiments: benchmarking and
method evaluation

The chapter describes the purpose and methodology of conducted experiments, results
and comparisons, and the discussion regarding our intuitions about the results.

5.1 Experimental methodology

We conduct numerous experiments to assess the effectiveness of various methods and
approaches regarding feature selection and hyper-parameter optimization and to test
the performance of different versions of our solution on its own as well as compared to
other solutions. We conduct the feature selection and hyperparameter optimization in
an identical environment, based on the Optuna optimization tool standards, and with a
similar methodology, althoughwith different search spaces. We sub-sample the dataset
with the same degree of class imbalance and the size of 20% of the original dataset.
Even though both feature selection and hyperparameter optimization are conducted in
the same environment and, therefore, could potentially be conducted as a single joined
experiment, we have decided to separate the two into multiple smaller experiments to
avoid unnecessarily large search space and long runtime.

We optimize hyperparameters of both models without and with features. For all of
the optimization processes, we use the TPE sampler 1, which, unlike the Grid sampler,
chooses values for hyperparameters based on previous values’ success, to maximize
model’s f1-score on positive class. We have reconsidered our initial optimizationmetric,
recall on positive class, due to the negative impact on positive class’s precision. It also
chooses values for some hyperparameters from continuous ranges and thus requires
a number of trials, after which the optimization process is considered completed. We
have lowered this number from the initial 200 to 100 to reduce the runtime while still
enabling the sampler to find the best hyperparameters.

1https://bit.ly/3G0MKF0
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Our feature selection approach consists of running multiple optimizations over fea-
ture parameters space to find the best parameters for each of the less (POS) and more
(TAG) granular POS tags and syntactic dependencies (DEP) feature types. The feature
parameters search space contains the following parameters: feature type tag set (full
or selection described in 4.1.1, feature encoding transform (OneHot, Sum or NoTransform
explained in 4.2.3), stopwords (remove themor not), CountWords transform (use it as an
additional feature or not). Oncewe have found the best parameters for each of these fea-
ture types, we perform optimization processes to find the best combination of features
for each model.

After optimizations have been completed, we train the models with the best hyper-
parameters on the full dataset and bothwith andwithout the features. We optimize both
models’ binary cross-entropy loss function using the Adam optimizer. We train for 30
epochs; however, we use an early-stopping method with validation loss to avoid over-
fitting. Our early-stopping implementation saves a model checkpoint each time valida-
tion loss improves. It also monitors the model’s positive class f1-score on the validation
data and highlights a checkpoint if the f1-score improves. We implement this behaviour
as, during some experiments, the sent-nnmodel’s validation loss keeps steadily below
the training loss due to the use of dropout regularization layers, which are not activated
during validation. At the same time, its f1-score on the positive class grows steadily to a
certain point, after which it plummets. This behaviourmost likelymeans that themodel
learns to ignore positive class as doing so will not increase its loss when training on a
highly unbalanced dataset. Once trained, we compare our models’ performances with
Cheema et al.’s[7] and Martinez et al.’s[29] baseline methods described theoretically in
2.4.6, 2.4.7 and practically in 4.2.2.

In the last set of experiments, we train the models on a combination of original train-
ing data and ample amounts of weakly labelled training data. We combine the original
data with the weakly labelled data in three different manners, resulting in different-
sized datasets and different positive class ratios within them. We then compare models
trained on these datasets with our best models trained on the original dataset to confirm
or reject our surmise that big amounts of lower quality data can improve the model’s
performance.

5.2 Results

The following section presents the results our models were able to achieve with and
without extracted features. We also show a comparison with selected baseline methods
followed by results achieved on weakly labelled data. We score models’ performances
using three metrics: average precision, f1-score on positive class and accuracy. These
metrics were chosen to provide a fairground for comparisons as the baseline methods
optimized average precision, our models optimized f1-score on positive class and accu-
racy reflects the general ability of the models to classify.
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Table 5.1: The effect of text feature extraction on the models’ performances. The comparison includes our model based
on the bidirectional LSTM layer (bi-lstm), which utilizes word-level embeddings and our simple neural network
using sentence-level embeddings (sent-nn). The models are evaluated after training without features and with
sentence-level features. Additionally, the performance after training with word-level features is added for bi-lstm
model. The comparison considers average precision, f1-score on positive class, and accuracy as its metrics. Themodels’
versions marked with “*" are loaded from the highlighted checkpoints, explained in the section 5.1, as opposed to the
checkpoint with the lowest validation loss. Our best performing model is the featureless sent-nn model.

metrics models

bi-lstm sent-nn

no
features

sent-level
features*

word-level
features*

no
features*

sent-level
features*

avg. precision 0.0504 0.0470 0.0638 0.1522 0.1233
pos. class f1 0.0751 0.0513 0.0664 0.1477 0.1289
accuracy 0.5503 0.3419 0.6521 0.8250 0.8119

5.2.1 The effect of features

We test the features’ effect on ourmodels’ performances by training themodels with the
same hyperparameters with and without the use of features. The results of this testing
are summarised in Table 5.1. The number of experiments is uneven because our model
based on a bidirectional LSTM layer (bi-lstm) supports word- and sentence-level fea-
tures, while our sentence embeddings neural network only works with sentence-level
features.

Our best performing model is the sent-nn model without the use of text features,
which outperforms itself with text features and all three versions of the bi-lstmmodel
in all three metrics with 15.22% average precision, 14.77% f1-score on positive class and
82.50% accuracy. The second best, sent-nnwith features, loses 2.89%, 1.88% and 1.31%,
respectively. Focusing only on the bi-lstmmodel, its word-level version scores the best
in average precision and accuracy, while the best f1-score is achieved by the version
without text features. However, both versions are underperforming, with more than
6% losses on the best model in average precision and f1-score and approximately 20%
losses in accuracy.

5.2.2 The comparison with baseline methods

For this comparison, we select both our models’ best performing versions. In the case of
the bi-lstmmodel, it is the version utilizing word-level features, while for the sent-nn
model, the featureless version is selected. The results are displayed in the Table 5.2.

Our featureless sent-nn model outperforms all other models in average precision
and f1-score, scoring 15.22% and 14.77%, respectively and is only superseded in accu-
racy, with 82.5%, byMartinez et al.’s and Cheema et al.’s methods. The second-best scor-
ing method in average precision is one by Martinez et al., losing 2.62% on our sent-nn
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Table 5.2: The comparison with baseline methods. We compare the best-performing versions of our models with meth-
ods by Cheema et al. and Martinez et al. in average precision, f1-score on positive class and accuracy. These metrics
should provide a fairground for comparison as both baseline methods optimized average precision, our models opti-
mized the f1-score, and accuracy reflects a general ability of the models to classify. Our sent-nn model outperforms
all other models in average precision and f1-score. Martinez et al.’s model scores the best in accuracy.

metrics models

Cheema
et al.

Martinez
et al.

our
bi-lstm

our
sent-nn

avg. precision 0.1086 0.1260 0.0638 0.1522
pos. class f1 0.1053 0.0100 0.0664 0.1477
accuracy 0.9764 0.9800 0.6521 0.8250

model. It also performs the best in accuracywith 98.0%, beating the second-best Cheema
et al.’s method by 0.36%. Our bi-lstmmodel lags behind all other models, outperform-
ing only Martinez et al.’s method in f1-score on the positive class by 5.64%.

5.2.3 The effect of weakly labelled data

In this experiment, we test the effect of training on a combination ofweakly labelled data
and original training data as a potential solution to issues regarding class imbalance
and a general scarcity of the data. The best performing featureless sent-nn model is
trained on four datasets created using distinct merging strategies. The strategies, their
corresponding product dataset size and positive class ratio, along with the results our
best model achieved, are displayed in Table 5.3.

The table shows that combining training data with weakly labelled data does not
improve the model’s performance, as the best dataset to train on is the original one with
no weakly labelled data combined. Out of the merged datasets, the model performs
best on the one created by the simple merging strategy, with an average precision of
12.96%, losing 2.26% on the model trained on the original data. In terms of the f1-score
on positive class, the merged datasets yield similar results in the range between 10.08%
and 10.45%.

5.3 Discussion and results interpretation

In this section, we present our opinions and intuitions on the results introduced in the
previous section 5.2, their potential causes and possibilities for improvement. We also
discuss additional experiments done after all the steps from the methodological proce-
dure described in section 5.1 have been completed.

Firstly, we address the subpar performance of our bi-lstm model. We suspect the
model could benefit from multiple LSTM layers instead of only one that it has now.
Simultaneously, the fully connected layers following the LSTM layer could be simpli-
fied, supported by the experiment where we inactivated an additional sequential layer
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Table 5.3: The effect of merging weakly labelled data into the original dataset on our featureless sent-nn model’s
performance. The first column shows metrics achieved on the original dataset. The rest of the columns represent three
datasets obtained using distinct merging strategies. The balanced original strategy uses only positive weakly
labelled samples to equal the number of negative samples in the original dataset, hence the positive class ratio of 50%.
When applying the simplemerging strategy, we merge the entirety of both datasets into one. The resulting dataset is
the largest and borrows the positive class ratio of approximately 20% from the weakly labelled dataset. The balanced
result strategy is realized by calculating the sum of positively labelled samples from both datasets and matching it
with an equal number of negative samples. As mentioned in the subsection 5.2.3, using weakly labelled data in this
manner did not improve our sent-nn model’s performance.

metrics different merging strategies

none
balanced
original

simple
balanced
result

# of sentences 11665 22654 140473 54285
pos. class ratio 0.0280 0.5000 0.1926 0.5000
avg. precision 0.1522 0.0762 0.1296 0.1184
pos. class f1 0.1477 0.1011 0.1008 0.1045
accuracy 0.8250 0.7387 0.6993 0.7058

and the attention layer. After these modifications, the model’s average precision has
improved by 8.26% in the featureless version and 10.02% in the sentence-level features
version. It should be noted that while average precision has improved, the f1-score on
positive class retained its previous values or even dropped. We think this points to the
model’s focus shifting on a highly prevalent negative class.

Secondly, we attribute the success of our sent-nn model to its use of sentence em-
beddings. The idea of utilising sentence embeddings comes from Konstantinovskiy et
al. [24], who used InferSent, sentence embeddings created by passing GloVe word em-
beddings through the BiLSTM network, and a simple logistic regression model to out-
perform their baseline methods. Furthermore, the transformers-based models have re-
cently been successfully applied in various NLP tasks, signalling their superior ability
to convey meaning.

Both of ourmodels’ versions that utilize sentence-level text features scoreworse than
their featureless counterparts. This could be attributed to the structure of our pipeline,
which extracts embeddings and features in batches directly during training. Such struc-
ture enables us to experimentwith andmake necessary changes to the extraction process
and lifts the requirement to store the embeddings and features on the disk but restricts
access to certain metadata, such as the range of values within the embeddings tensors.
This restriction further restricts us to scale embeddings meaningfully, which in turn
lessens the potential effect of features as their vectors contain values from the narrower
range between 0 and 1.

Next, wewould like to discuss the performances of ourmodels compared to baseline
methods. As mentioned in the subsection 5.2.2, our sent-nnmodel is the best perform-
ing in average precision and f1-score on positive class, but in the accuracy, it is only the
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third-best behind both baseline methods. The best performing model in accuracy is the
one by Martinez et al., which at the same time scores the lowest in f1-score on positive
class. This indicates that the model focuses primarily on the negative class, similarly
to our bi-lstmmodel after the additional simplifying experiment described in the sec-
ond paragraph of this section. Interestingly, both models are in their core bidirectional
LSTM networks.

The last item to address is the effect of mergingweakly labelled data into the original
dataset on the model’s performance. Across all three merging strategies, we see that
they yield no improvement. Our intuition is that merging weakly labelled data with
humanly labelled data confuses the model due to potentially high amounts of faulty
labels present in the weakly labelled dataset. A more effective way of using weakly
labelled data seems to be the pre-training approach, where one pre-trains the model
on the weakly labelled data and then fine-tunes it using the original training data. We
conducted an extra experiment with this approach by pre-training featureless versions
of bi-lstm and sent-nnmodels on various fractions of the weakly labelled dataset and
fine-tuning the pre-trained model on the original dataset.
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Chapter 6

Conclusion

In this thesis, we tackled the problem of identifying the statements that potentially con-
tain societally relevant and therefore check-worthy claims. The problem is generally
known as the check-worthiness task. We thoroughly analysed the existing solutions, tak-
ing inspiration from them in the process, to learn about the effectiveness of the vari-
ous previously applied techniques and models. Two of the analysed works had their
corresponding code publicly available, which allowed us to use them as our baseline
methods.

Many of the analysed works were created to be used as a submission to CheckThat!
Lab competition by CLEF association. This competition, which challenges academic
teams in various NLP tasks, also provides domain-specific humanly labelled datasets
for its participants. For training and evaluation, we used the 2019 CheckThat! Lab’s
heavily imbalanced dataset consisting of 15,554 and 6,478 politically related sentences
in training and test splits.

Inspired by the analysedworks ofHansen et al. [17] andKonstantinovskiy et al. [24],
we designed and implemented two different check-worthiness models, bi-lstm and
sent-nn. The bi-lstm solution is a neural network based on a bidirectional LSTM layer,
which utilizes BERT-basedword embeddings as its text representation. The sent-nn so-
lution takes a different path by utilizing transformers-based sentence embeddings as its
text representation, which conveys meaning very well and therefore strips the classifier
of otherwise necessary complexities.

These models were subjected to extensive experimentation. We tested their base
performance and the effect of extracted text features on it. We found that our best per-
forming model is the featureless sent-nn model. The model also outperformed both
selected baseline methods. It gainedmore than 2.5% in average precision over Martinez
et al.’s solution andmore than 4.2% in f1-score on positive class over Cheema et al.’s. The
best version of our bi-lstmwas the one utilizing word-level text features. However, the
model generally underperformed. The inclusion of the sentence-level features did not
yield any performance improvement. We also tested the effect of merging the original
training data with weakly labelled data, unfortunately with no performance gains.
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Although both of our models could be improved upon, we consider the sent-nn

model a contribution to the field as it considerably outperformed baseline methods us-
ing state of the art technologies. Future work would consist of fixing models’ obvious
shortcomings, experimenting with different strategies of incorporating weakly labelled
data and reimplementing the models into end-to-end solutions.

38



Bibliography

[1] Pepa Atanasova et al. “Overview of the CLEF-2019 CheckThat! Lab on Auto-
matic Identification and Verification of Claims. Task 1: Check-Worthiness”. In:
Experimental IR Meets Multilinguality, Multimodality, and Interaction. Ed. by Fabio
Crestani et al. Cham: Springer International Publishing, 2019, pp. 301–321. isbn:
978-3-030-28577-7.

[2] Alberto Barrón-Cedeño et al. “Overview of CheckThat! 2020: Automatic Iden-
tification and Verification of Claims in Social Media”. In: Experimental IR Meets
Multilinguality, Multimodality, and Interaction. Ed. by Avi Arampatzis et al. Cham:
Springer International Publishing, 2020, pp. 215–236. isbn: 978-3-030-58219-7.

[3] Hannah Bast, Björn Buchhold, and Elmar Haussmann.Overview of the Triple Scor-
ing Task at the WSDM Cup 2017. 2017. arXiv: 1712.08081 [cs.IR].

[4] Hannah Bast, Björn Buchhold, and Elmar Haussmann. “Relevance Scores for
Triples from Type-Like Relations”. In: Proceedings of the 38th International ACM
SIGIR Conference on Research and Development in Information Retrieval. SIGIR ’15.
Santiago, Chile: Association for Computing Machinery, 2015, pp. 243–252. isbn:
9781450336215. doi: 10.1145/2766462.2767734. url: https://doi.org/10.
1145/2766462.2767734.

[5] Christos Baziotis, Nikos Pelekis, and Christos Doulkeridis. “DataStories at
SemEval-2017 Task 4: Deep LSTM with Attention for Message-level and Topic-
based Sentiment Analysis”. In: Proceedings of the 11th International Workshop on
Semantic Evaluation (SemEval-2017). Vancouver, Canada: Association for Com-
putational Linguistics, Aug. 2017, pp. 747–754. doi: 10.18653/v1/S17-2126. url:
https://aclanthology.org/S17-2126.

[6] DavidM Blei, Andrew YNg, andMicheal I Jordan. “Latent Dirichlet Allocation”.
In: Journal of Machine Learning Research 3 (2003), pp. 993–1022.

[7] Gullal S. Cheema, Sherzod Hakimov, and Ralph Ewerth. Check_square at Check-
That! 2020: Claim Detection in Social Media via Fusion of Transformer and Syntactic
Features. 2020. arXiv: 2007.10534 [cs.CL].

[8] Kyunghyun Cho et al. On the Properties of Neural Machine Translation: Encoder-
Decoder Approaches. 2014. arXiv: 1409.1259 [cs.CL].

39

https://arxiv.org/abs/1712.08081
https://doi.org/10.1145/2766462.2767734
https://doi.org/10.1145/2766462.2767734
https://doi.org/10.1145/2766462.2767734
https://doi.org/10.18653/v1/S17-2126
https://aclanthology.org/S17-2126
https://arxiv.org/abs/2007.10534
https://arxiv.org/abs/1409.1259


[9] Giovanni Luca Ciampaglia et al. “Computational Fact Checking fromKnowledge
Networks”. In: PLOS ONE 10.6 (June 2015), pp. 1–13. doi: 10.1371/journal.
pone.0128193. url: https://doi.org/10.1371/journal.pone.0128193.

[10] Alexis Conneau et al. “Supervised Learning of Universal Sentence Representa-
tions from Natural Language Inference Data”. In: Sept. 2017, pp. 670–680.

[11] Leon Derczynski et al. SemEval-2017 Task 8: RumourEval: Determining rumour ve-
racity and support for rumours. 2017. arXiv: 1704.05972 [cs.CL].

[12] Jacob Devlin et al. BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding. 2019. arXiv: 1810.04805 [cs.CL].

[13] Tamer Elsayed et al. “Overview of the CLEF-2019 CheckThat! Lab: Automatic
Identification and Verification of Claims”. In: Experimental IR Meets Multilingual-
ity, Multimodality, and Interaction. Ed. by Fabio Crestani et al. Cham: Springer In-
ternational Publishing, 2019, pp. 301–321. isbn: 978-3-030-28577-7.

[14] William Ferreira and Andreas Vlachos. “Emergent: a novel data-set for stance
classification”. In: June 2016, pp. 1163–1168. url: http://www.politifact.com/.

[15] Xavier Glorot and Yoshua Bengio. “Understanding the difficulty of training deep
feedforward neural networks”. In: Proceedings of the Thirteenth International Con-
ference on Artificial Intelligence and Statistics. Ed. by Yee Whye Teh and Mike Titter-
ington. Vol. 9. Proceedings of Machine Learning Research. Chia Laguna Resort,
Sardinia, Italy: PMLR, May 2010, pp. 249–256. url: https://proceedings.mlr.
press/v9/glorot10a.html.

[16] Lucas Graves. “Anatomy of a Fact Check: Objective Practice and the Contested
Epistemology of Fact Checking”. In: (2016). doi: 10.1111/cccr.12163.

[17] CasperHansen et al. “Neural Check-Worthiness RankingwithWeak Supervision:
Finding Sentences for Fact-Checking”. In:Companion Proceedings of The 2019World
Wide Web Conference. WWW ’19. San Francisco, USA: Association for Comput-
ing Machinery, 2019, pp. 994–1000. isbn: 9781450366755. doi: 10.1145/3308560.
3316736. url: https://doi.org/10.1145/3308560.3316736.

[18] Casper Hansen et al. “Neural weakly supervised fact check-worthiness detection
with contrastive sampling-based ranking loss”. In: vol. 2380. 2019. url: http://
ceur-ws.org/Vol-2380/paper_56.pdf.

[19] Zellig S. Harris. “Distributional Structure”. In:WORD 10.2-3 (1954), pp. 146–162.
doi: 10.1080/00437956.1954.11659520. eprint: https://doi.org/10.1080/
00437956.1954.11659520. url: https://doi.org/10.1080/00437956.1954.
11659520.

40

https://doi.org/10.1371/journal.pone.0128193
https://doi.org/10.1371/journal.pone.0128193
https://doi.org/10.1371/journal.pone.0128193
https://arxiv.org/abs/1704.05972
https://arxiv.org/abs/1810.04805
http://www.politifact.com/
https://proceedings.mlr.press/v9/glorot10a.html
https://proceedings.mlr.press/v9/glorot10a.html
https://doi.org/10.1111/cccr.12163
https://doi.org/10.1145/3308560.3316736
https://doi.org/10.1145/3308560.3316736
https://doi.org/10.1145/3308560.3316736
http://ceur-ws.org/Vol-2380/paper_56.pdf
http://ceur-ws.org/Vol-2380/paper_56.pdf
https://doi.org/10.1080/00437956.1954.11659520
https://doi.org/10.1080/00437956.1954.11659520
https://doi.org/10.1080/00437956.1954.11659520
https://doi.org/10.1080/00437956.1954.11659520
https://doi.org/10.1080/00437956.1954.11659520


[20] Naeemul Hassan, Chengkai Li, and Mark Tremayne. “Detecting Check-Worthy
Factual Claims in Presidential Debates”. In: Proceedings of the 24th ACM Inter-
national on Conference on Information and Knowledge Management. CIKM ’15. Mel-
bourne, Australia: Association for Computing Machinery, 2015, pp. 1835–1838.
isbn: 9781450337946. doi: 10.1145/2806416.2806652. url: https://doi.org/10.
1145/2806416.2806652.

[21] Naeemul Hassan et al. “Toward Automated Fact-Checking: Detecting Check-
Worthy Factual Claims by ClaimBuster”. In: Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and DataMining. KDD ’17. Halifax,
NS, Canada: Association for Computing Machinery, 2017, pp. 1803–1812. isbn:
9781450348874. doi: 10.1145/3097983.3098131. url: https://doi.org/10.
1145/3097983.3098131.

[22] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-TermMemory”. In: Neu-
ral Computation 9.8 (1997), pp. 1735–1780. doi: 10.1162/neco.1997.9.8.1735.

[23] Garth S Jowett and Victoria O’donnell. “What is propaganda, and howdoes it dif-
fer from persuasion?” In: Propaganda and Misinformation. Sage publications, 2006.

[24] Lev Konstantinovskiy et al. Towards Automated Factchecking: Developing an Anno-
tation Schema and Benchmark for Consistent Automated Claim Detection. 2018. arXiv:
1809.08193 [cs.CL].

[25] Bill Kovach and TomRosenstiel. The Elements of Journalism, Revised andUpdated 4th
Edition: What Newspeople Should Know and the Public Should Expect. Crown, 2021.

[26] Dieu-Thu Le, Ngoc Thang Vu, and Andre Blessing. “Towards a text analysis sys-
tem for political debates”. In: Association for Computational Linguistics, Aug.
2016, pp. 134–139.

[27] Jure Leskovec, Lars Backstrom, and Jon Kleinberg. “Meme-tracking and the Dy-
namics of the News Cycle”. In: (2009).

[28] Alexios Mantzarlis. Will verification kill fact-checking? Oct. 2015. url: https : / /
www.poynter.org/fact- checking/2015/will- verification- kill- fact-

checking/.

[29] JuanMartinez-Rico, LourdesAraujo, and JuanMartinez-Romo. “NLP&IR@UNED
at CheckThat! 2020: A Preliminary Approach for Check-Worthiness and Claim
Retrieval Tasks using Neural Networks and Graphs”. In: vol. 2696. 2020.

[30] Tomas Mikolov et al. Advances in Pre-Training Distributed Word Representations.
2017. arXiv: 1712.09405 [cs.CL].

[31] Ndapandula Nakashole and Tom M Mitchell. “Language-Aware Truth Assess-
ment of Fact Candidates”. In: June 2014, pp. 1009–1019. url: http://www.w3.
org/TR/rdf-primer/.

41

https://doi.org/10.1145/2806416.2806652
https://doi.org/10.1145/2806416.2806652
https://doi.org/10.1145/2806416.2806652
https://doi.org/10.1145/3097983.3098131
https://doi.org/10.1145/3097983.3098131
https://doi.org/10.1145/3097983.3098131
https://doi.org/10.1162/neco.1997.9.8.1735
https://arxiv.org/abs/1809.08193
https://www.poynter.org/fact-checking/2015/will-verification-kill-fact-checking/
https://www.poynter.org/fact-checking/2015/will-verification-kill-fact-checking/
https://www.poynter.org/fact-checking/2015/will-verification-kill-fact-checking/
https://arxiv.org/abs/1712.09405
http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/rdf-primer/


[32] Preslav Nakov et al. “Overview of the CLEF-2018 CheckThat! Lab on Automatic
Identification and Verification of Political Claims”. In: Experimental IR Meets
Multilinguality, Multimodality, and Interaction. Ed. by Patrice Bellot et al. Cham:
Springer International Publishing, 2018, pp. 372–387. isbn: 978-3-319-98932-7.

[33] Ayush Patwari, Dan Goldwasser, and Saurabh Bagchi. “TATHYA: A Multi-
Classifier System for Detecting Check-Worthy Statements in Political Debates”.
In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Man-
agement. CIKM ’17. Singapore, Singapore: Association for ComputingMachinery,
2017, pp. 2259–2262. isbn: 9781450349185. doi: 10.1145/3132847.3133150. url:
https://doi.org/10.1145/3132847.3133150.

[34] Jeffrey Pennington, Richard Socher, and Christopher DManning. “GloVe: Global
Vectors forWord Representation”. In: Association for Computational Linguistics,
Oct. 2014, pp. 1532–1543. url: https://aclanthology.org/D14-1162.pdf.

[35] John Platt et al. “Probabilistic outputs for support vector machines and compar-
isons to regularized likelihood methods”. In: Advances in large margin classifiers
10.3 (1999), pp. 61–74.

[36] Hannah Rashkin et al. “Truth of Varying Shades: Analyzing Language in Fake
News and Political Fact-Checking”. In: Sept. 2017, pp. 2931–2937.

[37] Nils Reimers and Iryna Gurevych. “Sentence-BERT: Sentence Embeddings using
Siamese BERT-Networks”. In: Nov. 2019. url: https://arxiv.org/abs/1908.
10084.

[38] Ivor Shapiro et al. “Verification as a Strategic Ritual”. In: Journalism Practice 7
(2013). issn: 1751-2794. doi: 10.1080/17512786.2013.765638. url: http://
dx.doi.org/10.1080/17512786.2013.765638.

[39] Craig Silverman. “Verification and Fact Checking”. In: Verification Handbook: A
definitive guide to verifying digital content for emergency coverage. Ed. by Craig
Silverman. 1st ed. European Journalism Centre (EJC), 2014. url: https :

/ / datajournalism . com / read / handbook / verification - 1 / additional -

materials/verification-and-fact-checking.

[40] Mark Stencel and Joel Luther. Fact-checking count tops 300 for the first time. Oct.
2020. url: https://reporterslab.org/fact-checking-count-tops-300-for-
the-first-time/.

[41] James Thorne and Andreas Vlachos. “An Extensible Framework for Verifica-
tion of Numerical Claims”. In: Apr. 2017, pp. 37–40. url: http://herox.com/
factcheck.

[42] James Thorne and Andreas Vlachos. “Automated Fact Checking: Task formula-
tions, methods and future directions”. In: (June 2018). url: http://arxiv.org/
abs/1806.07687.

[43] James Thorne et al. FEVER: a large-scale dataset for Fact Extraction and VERification.
2018. arXiv: 1803.05355 [cs.CL].

42

https://doi.org/10.1145/3132847.3133150
https://doi.org/10.1145/3132847.3133150
https://aclanthology.org/D14-1162.pdf
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://doi.org/10.1080/17512786.2013.765638
http://dx.doi.org/10.1080/17512786.2013.765638
http://dx.doi.org/10.1080/17512786.2013.765638
https://datajournalism.com/read/handbook/verification-1/additional-materials/verification-and-fact-checking
https://datajournalism.com/read/handbook/verification-1/additional-materials/verification-and-fact-checking
https://datajournalism.com/read/handbook/verification-1/additional-materials/verification-and-fact-checking
https://reporterslab.org/fact-checking-count-tops-300-for-the-first-time/
https://reporterslab.org/fact-checking-count-tops-300-for-the-first-time/
http://herox.com/factcheck
http://herox.com/factcheck
http://arxiv.org/abs/1806.07687
http://arxiv.org/abs/1806.07687
https://arxiv.org/abs/1803.05355


[44] Andreas Vlachos and Sebastian Riedel. “Identification and Verification of Simple
Claims about Statistical Properties”. In: Sept. 2015, pp. 2596–2601. url: https:
//github.com/.

[45] SoroushVosoughi, Deb Roy, and SinanAral. The spread of true and false news online.
2018. doi: 10.1126/science.aap9559. url: http://science.sciencemag.org/.

[46] Chaoyuan Zuo, Ayla Karakas, and Ritwik Banerjee. “A Hybrid Recognition Sys-
tem for Check-worthy Claims Using Heuristics and Supervised Learning”. In:
vol. 2125. 2018. url: https://par.nsf.gov/biblio/10162052.

43

https://github.com/
https://github.com/
https://doi.org/10.1126/science.aap9559
http://science.sciencemag.org/
https://par.nsf.gov/biblio/10162052


Appendix A

Technical documentation

The following chapter briefly introduces the reader to the technical details of this thesis
and provides the necessary information to run the code if the occasion arises.

Our original code, as well as baseline methods code, is available on GitHub and ac-
cessible by clicking the following links. Please note that for Cheema et al.’s andMartinez
et al.’s solutions, we provide two links for each; the first one is their original code, and
the second one is the code that we forked andmodified to run with the political debates
data and on our machines.

• our code: https://github.com/icobx/dt

• Cheema et al.:

– original: https://github.com/cleopatra-itn/claim_detection

– modified: https://github.com/icobx/claim_detection

• Martinez et al.:

– original: https://github.com/jrmtnez/NLP-IR-UNED-at-CheckThat-2020

– modified: https://github.com/icobx/NLP-IR-UNED-at-CheckThat-2020

The political debates dataset used to train and evaluate our solution is also available
on GitHub.

• https://github.com/icobx/clef2019-factchecking-task1

The code is written entirely in Python, either in the form of Jupyter notebooks or as
standard .py files. The required versions for associated tools are listed below.

• python>=3.7.4

• jupyter_core>=4.7.1.

• ipython>=7.25.0
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• ipykernel>=5.5.5

The works utilize various Python packages. Those that are essential are listed below
and in requirements_v1.txt file in our repository1.

• beautifulsoup4==4.10.0

• camel-tools==1.2.0

• ekphrasis==0.5.1

• huggingface-hub==0.0.19

• matplotlib==3.4.3

• nltk==3.6.3

• numpy==1.21.2

• optuna==2.10.0

• pandas==1.3.3

• plotly==5.5.0

• requests==2.26.0

• scikit-learn==1.0

• scipy==1.7.1

• sentence-transformers==2.2.0

• spacy==3.1.3

• stanfordnlp==0.2.0

• torch==1.9.1

• torchvision==0.10.1

• tqdm==4.62.3

• transformers==4.11.3

1https://github.com/icobx/dt/blob/master/requirements_v1.txt
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A.1 Cheema et al.

Since Cheema et al.’s solution was originally implemented for a dataset consisting of
Covid-19 related tweets, running the original code requires a considerable amount of
modifications to it. Therefore, we recommend running our modified version. The code
can be found in task_1 directory. Please note that the solution is not optimizedwell and
can run for a long time. To run the solution, please follow these instructions:

1. change the paths to the downloaded dataset in definitions.py

2. run combine_datasets and preprocess methods found in preprocess_data.py

file

3. run extract_bert_embeddingsmethod in the file of the same name

4. finally, run svm_bertmethod in svm_bert.py file.

A.2 Martinez et al.

Within Martinez et al.’s repository, the directory T5En/nlpir01 contains code relevant
to the check-worthiness task. The solution required very few modifications to run in
our setting; however, it is more convenient to run our modified version of the solution.
To run the solution, please follow these instructions:

1. change the paths to the downloaded dataset in utils/global_parameters.py

2. within task5.py file, either uncomment the lines corresponding to CLI setup at
the bottom of the file and control the model, embeddings and other parameters
via command line or modify the parameters directly in the file.

3. run the task5.py.

Please note that when running the solution for the first time, the user may be asked to
download additional dependencies and should proceed according to the instructions
provided.

A.3 Our solution

Most of our solution’s code is written in Jupyter notebooks and has an experimental
character and therefore is not very user-friendly. The optimalization code is located
in model_bi_lstm_optim.ipynb and model_sent_nn_optim.ipynb notebooks, although
we do not recommend running it as it requires a lot of internal knowledge to run prop-
erly. The training portion of the code is located in model_bi_lstm_training.ipynb and
model_sent_nn_training.ipynb notebooks. To run the solution, please follow these
instructions:
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1. change the paths to the downloaded dataset in definitions.py

2. run the runmethod in model_bi_lstm_training.ipynbor model_sent_nn_train-
ing.ipynb notebooks with only one required argument is_training, set to True

3. run the same method again with is_training set to False

The run method provides various arguments, although an introduction to their func-
tionality is outside of the scope of this documentation. Please note that when running
the solution for the first time, the user may be asked to download additional dependen-
cies and should proceed according to the instructions provided.
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Appendix B

Súhrn diplomovej práce v
slovenskom jazyku

B.1 Úvod do problematiky

Nepravdivé informácie sa prostredníctvom sociálnych médií šíria rýchlejšie, a zároveň
k viacerým používateľom než informácie pravdivé, ako je ukázané tímom Vosoughi
et al.. V kombinácii s faktom, že viac ako 60 % ľudí získava informácie a správy na
sociálnych médiách, to vytvára legitímne nebezpečenstvo pre ľudstvo ako celok. Or-
ganizácie ako FactCheck.org, PolitiFact alebo Demagóg sa pokúšajú zmierniť poten-
ciálne škody spôsobené nepravdivými informáciami manuálnym a komplexným fact-
checkingom (fact-checking - overovanie pravdivosti výrokov na základe faktov, ďalej
len“overovanie" “overovanie“) spoločensky relevantných tvrdení nachádzajúcich sa vo
verejnompriestore. Avšak, obsiahly a na zdroje náročný procesmanuálneho overovania
zaostáva za jednoduchým a neviazaným vznikom a rozptylom nepravdivých informá-
cií.

Z toho dôvodu vzniká potreba automatizovaného overovacieho systému. Štan-
dardná sekvencia automatizovaného overovania väčšinou pozostáva z troch hlavných
krokov: detekcia častí textu hodných overovania (tzn. vety obsahujúce tvrdenia,
ktoré by mali byť overené), zozbieranie informácií relevantných k tvrdeniam hodným
overovania a nakoniec použitie týchto relevantných informácií na určenie pravdivosti
daných tvrdení. Väčšina výskumu v tejto oblasti sa primárne venovala posledným
dvom krokom sekvencie. Tieto kroky, teda zozbieranie relevantných informácií a urče-
nie pravdivosti tvrdení, zväčša očakávajú tvrdenia hodné overovania ako ich vstup.
Avšak krok prvý, detekcia častí textu hodných overovania, bol donedávna podstatne
menej skúmaný. To zmenil vznik súťaže CheckThat! Lab, iniciovanej asociáciou CLEF,
určenej na hľadanie tých najlepších riešení NLP (natural language processing alebo
spracovanie prirodzeného jazyka) úloh, akými sú získavanie tvrdení z textu, detekcia
falošných informácií a odhad vhodnosti overovania.

Skoršie riešenia sa spoliehajú na pomerne jednoduché tf-idf črty [21, 33], pri
reprezentácii ich slov a následne viet, kým novšie práce reprezentujú vety používajúc
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podstatne sofistikovanejšie a zmysluplnejšie slovné [46, 17, 7, 29] alebo dokonca aj
vetné [24], tzv. embeddingy. Práce rozširujú ich vetné reprezentácie pomocou tex-
tových čŕt, ako napríklad dĺžka vety [21, 33, 46], sentiment [21, 33, 46], part-of-speech
(POS) označenia [21, 33, 46, 24, 7], menované entity (named entities - NE) [21, 33,
46, 24] a syntaktické závislosti [46, 17], v snahe zakódovať v nich čo najviac významu.
Avšak ako sa technológia embeddingov zlepšuje, hodnota textových čŕt klesá, čo má za
následok zjednodušovanie vetných reprezentácií neskorších prác v kontexte textových
čŕt a čoraz väčšie kladenie dôrazu na embeddingy. Použitie čo najpokrokovejších em-
bedding modelov sa zdá byť najdôležitejším rozhodnutím aké môže jednotlivec urobiť
pri návrhu riešenia problému vhodnosti overovania.

Cieľ tejto práce sa skladá z dvoch hlavných bodov:

1. nájsť, modifikovať, v prípade potreby, a spojazdniť dostupné riešenia problému
vhodnosti overenia za účelom získania metód určených na porovnanie,

2. navrhnúť a implementovať originálne riešenie schopné dosiahnuť lepšie
výsledky ako spomenuté metódy.

Inšpirovaní prácami z oblasti výskumu vhodnosti overovania a motivovaní faktom,
že žiadna predošlá práca nevyužila vetné embeddingy založené na Bidirectional En-
coder Representations from Transformers (BERT)1 jazykovom modeli, trénujeme dva
separátnemodely využívajúce embeddingy založené na BERT. Prvýmodel, inšpirovaný
prácou od tímu Hansen et al. [17], je založený na využití obojsmernej LSTM vrstvy
a slovných embeddingov získaných pomocou základného BERT modelu. Druhý je
jednoduchou neurónovou sieťou, ktorá si berie inšpiráciu od tímu Konstantinovskiy et
al. a ich použitia vetných embeddingov [24]. S našou slovnou aj vetnou reprezentáciou
experimentujeme získavaním čŕt založených na menej a viac granulárnych POS označe-
niach a syntaktických závislostiach. Trénovanie prebieha na vysoko nerovnomerných
dátach (viď obrázok 3.1) zložených z prepisov viacerých politických debát, poskyt-
nutých asociáciou CLEF pre 2019 CheckThat! Lab [1]. V snahe zmierniť problémy
spojené s nevyváženosťou tried v datasete a celkovým nedostatkom dát, experimentu-
jeme s trénovaním na podstatne väčšom doménovo špecifickom datasete, ktorý je tzv.
slabo anotovaný už existujúcim riešením problematiky vhodnosti overovania.

Za účelom získania metód určených na porovnanie, sme stiahli a upravili dve rieše-
nia problematiky vhodnosti overovania [7, 29], aby dokázali pracovať s dátami, ktoré
používame. Výkon našich modelov vyhodnocujeme pomocou tzv. average precision
a f1-score na pozitívnej triede, aby bolo vyhodnotenie férové, keďže metódy určené
na porovnanie optimalizovali prvú spomenutú metriku a naše modely tú druhú. Náš
najvýkonnejší model, ktorý používa vetné embeddingy, ako jeho vetnú reprezentáciu,
dosahuje 4.36% and (a) 2.62% zlepšenia, v average precision, nad riešeniami tímov
Cheema et al. [7] aMartinez et al. [29] Taktiež dosahuje lepšie výsledky ako obemetódy
v f1-score a to o 4.24% and (a) 13.77%.

1https://huggingface.co/docs/transformers/model_doc/bert
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Figure B.1: Porovnanie rôznychmnožín hlavného datasetu. Percentá overovania hodných viet sa pohybujú v rozmedzí
od 2.1 % až 2.9 %, čo značí podstatnú nerovnomernosť anotačných tried. Množiny datasetu z ľavého horného rohu po
pravý spodný roh: originálna trénovaciamnožina, trénovaciamnožinamínus validačnámnožina, testovaciamnožina,
validačná množina. Veľkosti koláčových grafov korešpondujú s veľkosťou množín, ktoré reprezentujú. Červenou
farbou sú značené overovania hodné časti množín a modrou farbou tie nehodné.

Našim prínosom je klasifikátor typu neurónovej siete, implementovaný pomocou
nástroja PyTorch2, ktorý využíva predtrénovaný vetný transformer na zakódovanie viet
do vetných embeddingov.

B.2 Použité dáta

Hlavným datasetom použitým na trénovanie a vyhodnotenie je dataset vytvorený, an-
otovaný a poskytnutý asociáciouCLEF.Dataset bol poskytnutý ako súčasť súťažeCheck-
That! Lab 2019 a je zložený z 15,554 trénovacích a 6,478 testovacích viet pochádzajú-
cich z viacerých politických debát a vystúpení. Debaty a vystúpenia sú reprezentované
.tsv súbormi, ktoré obsahujú stĺpce: ID vety, zdroj vety, obsah vety a anotáciu vety. Z
trénovacej množiny datasetu sme vyčlenili približne 25 % validačných dát. Anotačné
triedy v datasete sú podstatne nevyvážené. Percento overovania hodných viet sa na-
prieč rôznymi množinami datasetu pohybuje v rozmedzí 2 % až 3 %. Na obrázku B.1 sú
znázornené rôzne množiny datasetu, ich veľkosti a percentá overovania hodných viet.

2https://pytorch.org/
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Figure B.2: Diagram sekvencie BERT embeddingový model – Bi-LSTM model. Bert embeddingový model rozdeľuje
vety na jeho vstupe na slová a kóduje ich na slovné embeddingy. K týmmôžu byť následne prilepené slovné črty. Takto
zakódované slová putujú do LSTM vrstvy a z nej následne cez mechanizmus pozornosti do plne prepojenej vrstvy,
ktorá je už schopná produkovať výsledok v podobe pravdepodobnosti vhodnosti overenia.

Figure B.3: Diagram sekvencie vetný transformátor – Sent-nn. Úvodzovky na začiatku a konci vety indikujú, že
vetný transformátor akceptuje na svojom vstupe celú vetu nerozdelenú na slová. Ten taktiež produkuje jeden vetný
embedding pre každú vetu. K takémuto embeddingu sa pripoja vetné črty a následne putuje do plne prepojenej vtstvy,
ktorá produkuje výsledok v podobe pravdepodobnosti vhodnosti overenia.
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Table B.1: Porovnanie našich modelov: Efekt textových čŕt na výkon modelov. Porovnanie zahŕňa oba naše modely,
bi-lstm aj sent-nn. Modely sú vyhodnotené bez použitia textových čŕt, a zároveň aj s ich použitím. V prípade bi-lstm
modelu je zahrnutý aj výsledok s použitím slovných textových čŕt.

metriky modely

bi-lstm sent-nn

bez
čŕt

vetné
črty

slovné
črty

bez
čŕt

vetné
črty

avg. precision 0.0504 0.0470 0.0638 0.1522 0.1233
pos. class f1 0.0751 0.0513 0.0664 0.1477 0.1289
accuracy 0.5503 0.3419 0.6521 0.8250 0.8119

Table B.2

B.3 Naše riešenie

Naše riešenie sa skladá z dvoch samostatných modelov, pričom každý je založený na
inom prístupe k problematike vhodnosti overovania. Prvýmodel je založený na využití
obojsmernej LSTM vrstvy, ktorá využíva viacdimenzionálne matice slovných embed-
dingov založených na jazykovom modeli BERT. Druhý model používa vetný transfor-
mátor založený na BERT jazykovom modeli ako jeho embeddingový model. Ten je
nasledovaný jednoduchou neurónovou sieťou.

Taktiež extrahujeme textové črty, ako napríklad dĺžka vety, menej a viac granulárne
POS označenia a syntaktické závislosti, za účelom zlepšenia schopnosti našich vetných
reprezentácií uchovávať význam. Tieto črty sú následne zakódované pomocou one-hot
alebo sum kódovaní. Náčrty modelov sú zobrazené na obrázkoch B.2 a B.3.

B.4 Výsledky

V prvých experimentoch porovnávame naše dva modely navzájom, a zároveň vplyv
extrahovaných slovných a vetných čŕt na ich výkon. Našim najvýkonnejším mode-
lom je tzv. sent-nn model, teda model využívajúci vetný transformátor a jednoduchú
neurónovú sieť bez čŕt. Tento model predbehol všetky ostatné varianty našich modelov
vo všetkých troch metrikách, a zároveň predbehol aj obe metódy určené na porovná-
vanie vmetrikách average precision a f1-score na pozitívnej triede. Výsledky sú zhrnuté
v tabuľkách B.2 a B.3.

B.5 Záver

V tejto práci sme sa venovali téme identifikácie viet potenciálne obsahujúcich spoločen-
sky relevantné, a teda overovania hodné tvrdenia. Tejto problematike sa zvyčajne hovorí
problém vhodnosti overovania (check-worthiness). Dôkladne sme analyzovali existujúce
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Table B.3: Porovnanie našichmodelov s metódami tímov Cheema et al. aMartinez et al. v metrikách average precision,
f1-score na pozitívnej triede a accuracy. Tieto metriky by mali poskytovať férové podmienky na porovnanie, keďže
metriku average precision optimalizovali riešenia vyššie spomenutých tímov a metriku f1-score na pozitívnej triede
optimalizovali naše riešenia. Metrika accuracy v tomto prípade slúži na vyjadrenie všeobecne schopnosti riešení
klasifikovať.

metriky modely

Cheema
et al.

Martinez
et al.

náš
bi-lstm

náš
sent-nn

avg. precision 0.1086 0.1260 0.0638 0.1522
pos. class f1 0.1053 0.0100 0.0664 0.1477
accuracy 0.9764 0.9800 0.6521 0.8250

riešenia, z ktorých sme si v procese brali inšpiráciu. V prípade dvoch analyzovaných
prác bol voľne dostupný aj kód ich riešení, ktorý sme využili na získaniemetód určených
na porovnanie.

Na trénovanie bol použitý voľne dostupný dataset vytvorený asociáciou CLEF pri
príležitosti nimi usporiadanej súťaže CheckThat! Lab, ktorej sa zúčastnilo aj viacero
tímov s nami analyzovanými prácami.

Inšpirovaní prácami tímov Hansen et al. [17] a Konstantinovskiy et al. [24] sme
navrhli a implementovali dve rôzne riešenia problému vhodnosti overovania, bi-lstm
a sent-nn. Riešenie bi-lstm je neurónovou sieťou založenou na obojsmernej LSTM
vrstve, ktorá využíva viacdimenzionálne matice BERT slovných embeddingov, ako jej
vetné reprezentácie. Na druhej strane, riešenie sent-nn na získanie vetných reprezen-
tácií využíva vetný transformátor založený na BERT jazykovom modeli a tie následne
spracúva jednoduchá plne prepojená vrstva.

Rozsiahle experimenty ukázali, že našim najvýkonnejším modelom je sent-nn bez
čŕt, ktorý prekonal náš bi-lstm model ako aj obe metódy určené na porovnávanie v
metrikách average precision a f1-score na pozitívnej triede. Metódu od tímu Martinez
et al. [29] prekonal o 2.5 % v metrike average precision a metódu od tímu Cheema et
al. [7] o 4.2 % v f1-score na pozitívnej triede. Najlepšou verziou modelu bi-lstm je tá,
ktorá využíva slovné črty na zlepšenie vetnej reprezentácie. Celkovo však tento model
nedosahoval dostatočné výsledky.

Napriek tomu, že pre oba modely existuje priestor na vylepšenia, pokladáme náš
sent-nn model za úspech, keďže prekonal metódy určené na porovnanie s použitím
vetného transformátora, založeného na BERT jazykovom modeli, ako jeho embeddin-
gového modela.
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