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Abstract

This thesis provides an overview on job recommendation for students. The
research part describes current state-of-the-art methods of recommender sys-
tems and analyses current research for student profiling.

The experimental part focusses on the implementation of several different
methods described in the research part. These methods are tested and one of
those methods is selected, specifically a method based on the term frequency-
inverse document frequency algorithm with a custom set of keywords. The
general model deals with recommendation based on interactions and is ex-
tended with recommendation based on student profiles using the selected
method. The presented recommendation system is tested in two experiments.
Overall, the results suggest a significant improvement with recommendation
using the presented method.

Keywords recommender system, job recommendation, student profiling,
NLP, collaborative filtering, content-based model, embedding
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Abstrakt

Diplomová práce poskytuje analýzu doporučovaćıch systémů pro studenty. Te-
oretická část popisuje současné nejmoderněǰśı metody v oblasti doporučovaćıch
systémů. Dále se zabývá analýzou současného výzkumu pro profilováńı stu-
dent̊u.

Experimentálńı část se zaměřuje na implementaci r̊uzných metod popsaných
v rešeršńı části. Tyto metody jsou testovány a je vybrána nejvhodněǰśı metoda,
specificky metoda založená na term frequency-inverse document frequency al-
goritmu s využit́ım vlastńıho výběru kĺıčových slov. Obecně je navržen mo-
del, který se zabývá doporučováńım na základě interakćı a je rozš́ı̌ren o do-
poručováńı na základě profil̊u student̊u pomoćı vybrané metody. Prezentovaný
rekomendačńı systém je otestován ve dvou experimentech. Celkové výsledky
naznačuj́ı výrazné zlepšeńı při použit́ı navrhované metody.

Kĺıčová slova rekomendačńı systém, doporučováńı práce, profilováńı stu-
dent̊u, NLP, kolaborativńı filtrováńı, atributový doporučovaćı model, embbe-
ding
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Introduction

In this thesis, we deal with the issue of recommending work for university
students specifically for students of the Czech Technical University in Prague.
There have been many papers and research on job recommendation, but there
has been very little research on job recommendation for students.

We see the significance of our work in the connection of school and industry,
which is in our opinion missing at most universities. The job market can be
often very large and confusing, especially for inexperienced students. Many
students have no idea what they want to do once they finish their studies, and
it might be difficult for them to weigh all the opportunities available.

We want to create a portal that can help students navigate not only on
the labour market, but also recommend them potential interesting school and
work opportunities.

We choose this issue because we think it could be beneficial for both stu-
dents and employers to connect them. We believe that this work could help
graduate students find their first employment. It could also help undergrad-
uate students find their first job in the field of their studies. We believe that
this could help them realise what specialisation they want to pursue in their
future studies and work.

First, we want to explore current state-of-the-art methods concerning work
recommendation, such as collaborative filtering and content-based models. We
also aim to describe the current research that has been done regarding the
recommendation of work for students.

In the practical part of our thesis, we want to cover our findings regarding
job recommendation for students based on the historical interactions of stu-
dents with the system. We also want to consider basic profiling of students
and to see if we can improve recommendations based on student profiles and
metadata. We evaluate the performance of the prototype on the data provided
by the faculty and we perform two A/B testings.
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Chapter 1

State-of-the-art

In the first chapter, we focus on research of current state-of-the-art methods.
We describe the state-of-the-art recommendation system methods and focus
more on job recommendation systems, especially for students. In the last part
of this chapter, we take a look at student profiling in more detail.

1.1 Recommender Systems

Recommender systems have been widely used in recent years. They have
found their place in e-Commerce, on-line advertisements, etc. Recommender
systems are used by most of the media orientated web services such as Netflix,
Spotify, Youtube. People encounter recommender systems on a daily basis on
the Internet. [1]

The goal of recommender systems is to give a certain user a list of rec-
ommended items that they might be interested in. Recommender systems
typically collect all the interactions the user makes (e.g. searching, clicking,
buying). The recommender system can then use past interactions alongside
user and item parameters to improve the recommendation not only for the
user who made the interactions. The recommendation problem can be inter-
preted similarly to the predictive modelling task and can be approached as
such a model, for example during its tuning. [2]

The goal of the predictive modelling task is to predict what the given user
might like (which interaction he is likely to do).

The recommender system consists of the following types of data that are
used for the recommendation:

• item attributes,

• user attributes,

• interactions. [2]

3



1. State-of-the-art

Each datatype has its purpose when it comes to recommendation. We
can use the item attributes to recognise similar items and, based on the item
similarity, we can then recommend related items. The user attributes can
be used for the analogical purpose to separate users that are different and to
unite those that are similar.

The interactions are used to distinguish users who share a common taste
for items. The similar taste for items can be shared across multiple user groups
(based on their attributes regardless on their, for example, age, gender, etc.).
[1]

1.1.1 User-item Interactions

User and item attributes might seem like the most important part of the re-
commendation system, but in many practical situations, user-item interactions
are, in fact, the most important source of data.

We distinguish two different types of interaction (implicit and explicit).
Explicit interactions are those where the user explicitly rates an item:

• likes vs dislikes – we differentiate negative and positive feedback,

• ratings in stars – the item can be assigned a number or explicit number
of stars.[2]

Implicit interactions are those in which the user does not explicitly say
whether he likes or dislikes a certain item. We can collect the following basic
interactions:

• Detail views – an event that occurs when a user views a product’s detail
page (used in e-commerce systems).

• Cart addition – this interaction occurs when a user adds a certain prod-
uct to the cart (used in e-commerce systems).

• Bookmark – a type of interaction where user marks an item that he/she
wants to visit later (e.g. video streaming services, forums)

• Plays – this event occurs when the user streams a song or a video.

• Purchases – a user purchases an item (used in e-commerce systems or
classifieds portals)

• Likes and shares – a concept commonly known from social networks.
If there is no possibility of a negative rating, the interaction is still
considered an implicit interaction. [2]

4



1.1. Recommender Systems

1.1.2 Recommender Methods

In this section, we focus on different state-of-the-art recommender system
methods and cover the two main paradigms, collaborative filtering and content-
based methods along with hybrid recommender systems.

1.1.2.1 Collaborative Filtering

The basic and original implementation of collaborative filtering recommends
to the active user the items that had been interacted with or liked by similar
users in the past. The similarity of two users is calculated solely based on the
similarity of the historic interactions (e.g. views, likes). That is the reason why
this method is sometimes referred to as a people-to-people correlation. This
method is considered to be the most widely used technique in recommendation
systems. [3]

The interactions are stored in the user-item interaction matrix. Collab-
orative filtering methods can be split into two subcategories: memory-based
and model-based. The memory-based method works only with the user-item
interaction matrix, and the recommendation can be done using a nearest-
neighbour search. The model-based approaches assume that there exists an
underlying model which can explain the interactions. [4]

The biggest advantage of a collaborative approach is that it does not re-
quire information about users or objects and can therefore be used in many
situations. In addition, the system is improved with each new user and every
interaction.

On the other hand, the biggest issue related to collaborative approaches
is the so-called cold start problem, which addresses the situation with a new
user (or a new item). When there are no interactions for a certain user (item),
it is impossible to recommend anything to that user (or recommend the item
to any user).

There are many solutions to the cold start problem. The new user can
be recommended a list of random items, the list of the most popular items,
or a list of various items, which helps the system to categorise the user. The
most sophisticated approach to addressing the cold start problem is to have
a different method from collaborative filtering in the early stages of the new
user (item). The early stages method can then utilise the attributes of an
user (item) to spot a similarity (we suppose that the user/item attributes are
available). [1]

1.1.2.2 Content-based Methods

The other family of recommender systems are content-based methods. In
contrast to collaborative filtering, content-based methods use information con-
cerning users and/or items. The main idea of these methods is to recommend
items similar to those that the given user liked or interacted with in the past.

5



1. State-of-the-art

For example, if a user liked a rock song, the algorithm would then tend to
recommend songs of the same genre. Or, on the other hand, recommend the
same things to the users that have the same attributes (e.g. age, sex). [4]

The goal of content-based models is to construct a model that explains the
user-item interaction previously collected using available attributes (features).
For example, we can distinguish which movies interest the most young women
compared to older men. [3]

Content-based methods suffer much less from the cold start problem. New
users (or items) can be characterised by their attributes and given a relevant
recommendation on their first visit. The only time the cold start problem
occurs is when new, previously never seen attributes are introduced to the
system. [1]

Although not suffering from the cold start problem, the content-based
methods have a tendency to create a so-called ”filter bubble”. The filter bubble
problem arises when the recommendations are over-specialised and the system
recommends only items to those that were already consumed. [5]

1.1.3 Knowledge-based Methods

A knowledge-based model is not built on the user rating history but is created
based on the user’s historical queries. The queries specify what the user wishes
to see and can return desired results.

These systems can be implemented, for example, on the housing website,
where the user specifies the price range, number of rooms, or location. An issue
might arise questioning the necessity of the recommendation system when the
user can define which results he/she wants to see. User queries may be too
specific, resulting in the filtration of all available results. Later, these queries
can be used to purpose at least similar items to those the user would like to
see. [6]

The system can apply similarity metrics to be able to find the results that
do not exactly match. For each query, the relative importance and a utility
function that describe the distance between two items need to be known.
These functions can be set by an expert as well as extracted from the user
feedback. [7]

1.1.4 Hybrid Recommender Systems

Hybrid recommender systems can be considered nothing more than a combi-
nation of collaborative filtering and content-based methods. The reason we
combine these methods is to overcome the drawbacks that each of the methods
faces when used separately. [8]

The architecture of hybrid recommender systems can often vary. The
collaborative filtering and content-based parts of the algorithm can be imple-
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1.1. Recommender Systems

mented separately to generate predictions and then combined; or they can be
built by adding the capabilities of one method to the other. [9]

There are many different types of hybrid recommendation system:

• Weighted RS – we define a few models that can each perform the
recommendation. We then take the outputs and combine the results
using weights.

• Switching RS – the RS switches among many redommender systems
based on the specific situation.

• Mixes RS – first we take the user profile and the features to generate
a different set of candidate datasets. We then provide different datasets
to different RSs that generate results that are later combined.

• Feature Combination RS – we create a contributing RS that gener-
ates additional features to the main RS. We can inject a recommendation
from the collaborative filtering method into a content-based RS.

• Feature Augmentation RS – a contributing RS is used to augment
the user profile that is later sent to the main RS. The idea behind this
architecture is to improve performance without changing the main RS.

• Cascade RS – the main RS is the first module that generates primary
results that are then modified in a minor manner by a secondary RS.

• Meta Level RS – it uses the model learnt by one RS as input for an-
other. The idea is similar to the feature augmentation RS. The difference
is that the contributing RS completely replaces the original data source
with the trained model which the main RS uses in its computations. [10,
9, 11]

1.1.5 Content-based Methods Utilising Neural Embeddings

To determine the similarity between items (users) in content-based methods,
it is useful to process all available attributes. It is easier to process some
features – usually the numerical or categorical ones (e.g. movie genre, price).
There are some features that are harder to process such as item description,
book description. To use the features that contain continuous text, we need
to address them as a natural language processing (NLP) task. [12, 13]

1.1.5.1 Feature Processing Using NLP Methods

In NLP tasks, we usually want to create some kind of embedding that repre-
sents continuous texts. To achieve that, we can use classical methods (such
as tf-idf, term frequency-inverse document frequency) that create larger more
sparse vectors that are derived from the keyword extraction process; or we

7



1. State-of-the-art

can use machine learning methods (such as word2vec – for more information,
see Section 1.1.6) that extract dense vectors which are harder to interpret but
are capable of capturing the context between words. [14, 13]

The typical baseline method for NLP tasks is tf-idf. The biggest advan-
tage of tf-idf is its simplicity for both implementation and computation. The
biggest handicap is that it cannot capture any semantic meaning – it takes
into account the importance of the words, but it cannot derive the context of
the words in which they are used. [14]

In recent years, machine learning methods (such as Word2Vec or BERT-
like architectures) have become popular and, in many cases, the state-of-the-
art solution when dealing with NLP tasks. [15]

1.1.6 NLP Using Neural Embeddings

Natural language processing (NLP) and machine learning communities have
greatly focused on continuous space word embeddings because of their abil-
ity to model term similarity and other relationships. The methods derived
from Word2Vec, introduced in 2013, have shown that neural embeddings are
capable of capturing not only individual words but also the context of those
words. Neural network approaches for NLP tasks have evolved since Word2Vec
through Doc2Vec (similar idea to Word2Vec) to transformer-like architectures
utilising self-attention layers represented by revolutionary BERT, GPT-2 to
GPT-3. [16, 17, 18]

1.1.6.1 Word2Vec

Word2Vec can be viewed as not a singular algorithm, but rather a family of
model architectures that can be used to learn continuous word embeddings
from large datasets. The goal of these algorithms is to search for a more
compressed representation, which is achieved by reducing the dimensionality
to feature vectors. [19]

Word2Vec algorithm uses the compression idea (autoencoder-like architec-
ture) and tries to learn to output the same value that was received as input.
The idea is to build a less-dimensional model that represents the input in one
of the hidden layers, the least-dimensional layer in the middle of the neural
network model. [19] [20]

The representation can be improved by using the context of the surround-
ing words that can be learnt using the following two basic approaches.

• Continuous bag-of-words model tries to predict the middle word
based on the surrounding ones. Usually, words in the immediate neigh-
bourhood are used. This model is called a bag-of-words because the
order of the words is not important. The goal is to estimate the follow-
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1.1. Recommender Systems

ing equation:

P (wt|wt−L, wt−L+1, . . . , wt−1, wt+1, . . . , wt+L−1, wt+L) (1.1)

• Continuous skip-gram model uses the inverse logic of the continuous
bag-of-words model, it attempts to predict which words are used in the
context (the immediate neighbourhood – the range can differ) of a single
word. The goal is to estimate the following equation:

P (wt−L, wt−L+1, . . . , wt−1, wt+1, . . . , wt+L−1, wt+L|wt) (1.2)

One of the advantageous side effects of the Word2Vec representation of
the features is the hidden relationship between words. Words with similar
meanings are closer to each other in the latent-space representation of the
feature space, meaning that its easier to recognise words with analogous sense.
Furthermore, this means that relationships of similar words go in the same
direction (see Equation 1.3 and Image 1.1 for an example). [19]

vec(Berlin) − vec(Germany) + vec(France) = vec(Paris) (1.3)

1.1.6.2 BERT-like Architectures

Current state-of-the-art architectures still use neural networks, specifically
transformers, in their architectures. The huge improvement came in year
2017 with the paper Attention is All You Need. [22] The paper introduced
a transformer that eschews recurrent neural networks and instead uses only
the attention mechanism to capture global dependencies between input and
output. This architecture significantly improves computational speed because
it enables much greater parallelism and reaches the state-of-the-art results in
translation quality.

This architecture is still used in nowadays state-of-the-art models such as
GPT-2 and GPT-3. Today’s transformers can deal with much more sophis-
ticated tasks than filling in the missing words. GPT-3 is capable of creating
stories, poetry, articles, news reports. Only a small amount of input text can
be used to generate large sections of quality text. It can also be used to per-
form automated conversational tasks responding to any person or computer.
Interestingly, it can also generate text summaries and programming code. [22,
23]

The attention-like architectures in the transformers allow the use of models
that need much lower computational power to outperform the previous state-
of-the-art methods. Nevertheless, the paradigm describing that with more
computational power and bigger models the quality of NLP processing models
increases, still remains. [23]

9



1. State-of-the-art

Figure 1.1: The PCA projection of a 1000-dimensional skip-gram vector of
countries, their capitals, and the relationships between them. [21]

1.1.6.3 Image Processing

Another feature that can be used to represent an item in a RS is an image. Im-
age recommendation is the same thing as the image classification task. These
two tasks share similar goals. Image recommendation involves the underlying
process of image classification, but in a much broader sense. Image recommen-
dation needs the most descriptive and distinctive features that can be used to
obtain matching items. [24]

1.1.6.4 Usage of Embeddings in Recommender Systems

As mentioned in previous sections, feature extraction methods on NLP tasks
using both large sparse vectors or continuous dense vectors can discover more
than just the similarity of user-defined keywords or categories. These embed-
dings can be used within RSs to create more sophisticated features that may
contain more information about item/user similarities. That is why feature
pre-processing plays a huge role in content-based methods and can help with
improvement of not only content-based recommender systems.

10



1.2. Job Recommendation

1.1.7 Existing Solutions

In this part, we take a look at existing solutions that are available and can be
used instead of implementing a recommender system from scratch.

• Recombee is an artificial intelligence-powered recommender system
that uses deep learning, collaborative filtering methods, and content-
based algorithms and provides real-time analytics.

Recombee is not a traditional rule-based recommender system; instead,
it uses an AI-driven solution that can reflect real-time changes, as well as
the complexity of user behaviour online. The model enables its users to
upload visual data and is capable of processing these images to extract
visual similarities.

By implementing not only collaborative filtering methods, Recombee can
deal with the cold start problem by introducing user and item attributes.
These attributes are used to discover groups of similar items.

This recommender system allows users to create custom scenarios, which
can each focus on different situations (landing page, personalised recom-
mendation, etc.). It also allows for the creation of so-called business rules
– filters and boosters. These methods help to specify various rules based
on the item properties. For example, boosters can help with the promo-
tion of new items, or items on sale, and filters can for example prevent
children from seeing inaccessible content. [25]

• Google’s recommendation AI software was introduced in 2019. It
is a fully managed service designed for retail-orientated businesses. Its
purpose is to increase click-through rates, conversions, and overall rev-
enue. [26]

Recommendation AI supposedly excels at scenarios with long-tail prod-
ucts and cold-start problem. It uses a so-called context-hungry deep
learning model developed in connection with Google Brain and Google
Research. Recommendation AI should be able to handle the bias that
arises with popular or on-sale items; and be able to dynamically adapt
to real-time customer behaviour. [27, 28]

One of the biggest advantages is the connection with other Google ser-
vices such as Google Analytics 360, BigQuery or Google Tag Manager.
[27]

1.2 Job Recommendation

Job seeking is an activity that most people encounter in their lives. It can
be difficult to get into the job market. There are many platforms that try to
connect people seeking jobs with the companies that offer them (e.g. LinkedIn,
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Jobs.cz). The usage of recommmender systems is quite evident in this specific
use case. The RS can be used for both sides, by recommending available jobs
to candidates and by recommending potential candidates to companies’ that
seek employees.

1.2.1 Specific Problems

The job RS differs from a variety of other RS. It is different in its main
purpose and logic. If there is a job opening, it is usually filled by one or a few
candidates, and it cannot be later recommended to any additional users.

Researchers working on LinkedIn’s recommender system encountered some
unique information retrieval, system, and modelling challenges while tuning
their RS. [29]

The first issue is that personalised recommendations need to be computed
in real-time, which becomes a challenge when it comes to scoring millions of
different structured candidate job documents with each query without lowering
the degree of data freshness and while maintaining reasonable latency limits.
The query is composed of the member context and the interests expressed in
the member profile.

The underlying retrieval systems often use content-based models, which
can create another issue, which originates from their definition (more about
this in Section 3.3.3.3). Recommendations are made mostly using the ex-
plicit member context and interests extracted from the user profile and may
not consider the users’ implicit interactions. Therefore, it is possible to face
challenges in integrating different types of user-interaction signals into the
relevance model.

Lastly, the recommendation problem differs in its core from the more tra-
ditional recommender system problems (e.g. book, movie, product recom-
mendation). While all the mentioned problems share the same objective to
maximise user engagement, there is a difference that typically the job offer can
be filled by one or a few best candidates, whereas the movie can be consumed
by innumerable users.

The goal is to provide a sufficient number of candidates, while not deliver-
ing too much to overwhelm the job posting. Offering too many job candidates
would also result in the decreasing chance of getting the job even for perfectly
qualified members. This may result in the decline of unsatisfied users after a
certain number of unsuccessful interviews. [29]

1.2.2 User Job Profiles

There are many different pieces of information that the recommender system
can use to enhance its recommendation capabilities. The user profile can con-
sist of both basic information about the user and interaction records. Basic
user information can consist of the user’s background, education background,
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previous work experience, demographic information, and many others. The
interaction records consist of the user’s behaviour history with the recom-
mender system, such as detail views of job postings, searches, and browsing
history.

In recent years, data such as previous job duration, social network be-
haviour history, and other external information sources have drawn interest
in the job recommendation task.

1.2.3 Job Recommendation for Students

The task of recommending jobs to students is quite different from the recom-
mendation to people with previous work experience. Students often do not
have work experience, and it is harder for them to orient themselves in the
job market. On the other hand, we have more personal information about the
student. We can take into account their major and courses.

It is quite common for many students to try to get suggestions from their
families, friends, mentors, or supervisors during their first job hunt. [30] Many
students rely on their university as the primary source of information regarding
job possibilities. [31]

Furthermore, the location where an individual’s potential job is sought
can be more diverse than in the case of other adults. The most preferable
locations are usually around the student’s hometown or school (university).
[31]

The issue we want to address in this paper is that it is difficult for students
and employers to go through all the possibilities and face the information over-
load. [32] This problem can be solved by creating a suitable system for both
students and employers to filter the information and get recommendations.
[33]

Many times, student data are stored in the school databases but are never
utilised because it can be hard to generalise the information contained in the
student data. The problem is that there are no processes that transform the
data to non-confidential form and still keep their utility. [33]

1.2.4 Related Work

There has been some research done regarding job recommendation for students
on the Beihang University, Beijing, China. [34, 35] They try to recommend
jobs to students based on the jobs that their graduate students have acquired.

In [34] a student’s similarity is calculated to other graduate students. After
that, a top-n voting algorithm is used, which provides a recommendation.
After which the employer’s information is used for re-ranking (see 1.2).

The student’s similarity is calculated on the basis of two attribute groups.
Firstly, the individual background of the student (home town, gender, univer-
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sity, department, courses taken, etc.) and second, his achievement attributes
(e.g. grades, scholarships, grants, awards).

The re-ranking algorithm uses information using employer’s attributes
such as business category, location. These attributes are projected onto the
recommendation through graduate students who are used for the original re-
commendation. The advantage of the re-ranking module is that it can be
easily removed, changed, or added without changing the original job recom-
mendation. [34]

Figure 1.2: Beihang job recommendation system framework

In [34] they found that the similarity of the student’s course plays an
important role in the job recommendation task. They also found that recent
job employment data plays a much bigger role in job recommendation than
more historical information.

The other paper on Beihang University [35] focusses more on the impor-
tance of the personal attributes of the students and their influence on the
quality of the recommendation. The authors emphasise the relevance of the
regional economic index (REI) and the regional familiarity index (RFI).

REI is calculated based on the total population, the urban-rural population
ratio, and the average consumption and income of a region. RFI represents
the individual’s familiarity with his hometown and university.

These two indices are combined with the graduate performance index
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Figure 1.3: The other Beihang job recommendation system framework

(GPI) to construct a more complex recommendation system (see Figure 1.3).
They try to solve the following three challenges:

• how to measure the abilities and conditions of a student,

• how to use collaborative filtering methods for students without historical
data,

• how to integrate student’s preferences for jobs into the collaboration
filtering method.

They found that both job attributes and job locations have a positive
impact on the hit ratio, but job preferences for job locations are more effective
than job attributes (it is necessary to note that the research took place only
in China and its regions).

1.3 Student Profiling

There has been quite a lot of work done on student profiling. The only problem
is that it is usually done for the purpose of helping them in their school
environment and not for the search for a job.
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The most common approach is to classify students into clusters that are
created using basic clustering methods such as k-means, apriori algorithm or
decision trees.

The most common attributes considered for student clustering are:

• Student’s grades – it can be further divided into exam marks, term
grades, etc.

• Participation in learning environments – text mining and social network
analysis techniques were used on the learning forums.

• Personal information – family information, financial support, diseases,
work.

• Psychological traits – motivation, participation, cognitive processing
strategies, etc.

All the mentioned papers on student profiling focus on student’s perfor-
mance in the school environment. They try to select either extraordinary
students or students who need more focus from their teacher in order to suc-
ceed.

In conclusion, all the papers point out that it is advantageous to include
more information than just student’s academic performance. All the attributes
mentioned above have their purpose in the student clustering.

1.3.1 Student Skill Mining

Unlike most related work, the paper [36] focusses its research specifically on
connecting educational facilities with industry. They point out that in recent
years companies have developed interest in research that takes place in uni-
versities and they try to build a system to connect the industrial needs with
the academic world. This work is carried out at the Faculty of Information
Technology at Czech Technical University in Prague.

In this paper, an ontology (skill tree) is built for each student that describes
the mapping of student courses (subjects). The purpose of these ontologies
is to create a well-organised student profile that can be more easily under-
standable by external partners. At first, skills are estimated on the basis of
the evaluation from university courses, and data mining processes are used to
create a skill tree, which is later transformed into a final more standardised
set of skills.

Using this mapping, they create a student profile that is easy to interpret
and matches potential industrial opportunities. They distinguish two groups
of skills: objective skills – the skills that are computed using the success-
fully finished courses, and subjective skills – the skills the student enters in
his profile at his/her own discretion. Skills aim to represent various levels
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of abstraction and are simplified to cover the requirements of the industrial
partners of the university. [36]

The paper not only distinguishes the courses that a certain student has
completed, but also considers the student’s grade. They purpose two different
grade mappings. The first mapping takes the successful grades available to
which a value is uniformly assigned (A: 1, B: 0.8, C: 0.6, D: 0.4, E: 0.2). The
other mapping tries to deal with the issue of dealing with the dissimilar diffi-
culty of various courses by applying a CUME DIST (cumulative distribution)
function to assign the values for each grade. [36]

1.4 Recommendation with Capacity Constraints

In many cases, candidate items are associated with a maximum capacity (e.g.,
the maximum number of pieces of clothing on stock). Despite the fact that
in most recommendation scenarios a capacity constraint is present, nowadays
recommendation methods are not designed to deal with or optimise their re-
commendation in regard to these constraints.

This issue is addressed in [37]. They purpose a Recommendation with
Capacity Constraints framework that aims to optimise the precision of the
recommendation and the usage of expected items with respect to capacity
constraints.

They introduce new attributes for both items and users. First, item ca-
pacities indicate the maximum number of users who can use the given item
simultaneously (e.g. visit a movie theatre at a certain time slot). Second, each
user has a defined user propensity that indicates his probability of following
the system recommendations.

They show that when they apply their newly purposed method to three
state-of-the-art recommendation models based on the latent factor (proba-
bilistic matrix factorisation, Bayesian personalised ranking and geographical
matrix factorisation), they can achieve an improvement on the top-n recom-
mendation quality of the respective unconstrained models.
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Chapter 2

Data Analysis

In this chapter, we analyse the data with which we work in this work. Their
structure, volume, and manner in which we process them.

2.1 Student Data

The students dataset contains the following columns and has 13,810 rows:

• Study ID (integer) – an identification number of a student’s study (if a
student failed the study programme and started over again, the study
ID would change).

• Username (string) – student’s unique identification string.

• Form of the study (category – string) represents whether the student
studies remotely or full-time.

• Study programme (string) – name of the study program.

• Field of study (string) – name of the student’s field of study.

• Field of study code (category – string) – code of the student’s field of
study.

• Study begin date (date) - the date on which the student joined the
university.

• Study end date (date) - the date on which the student ended his studies
at the university.

The university courses data set was composed of the following columns
and had 1,122 rows:

• Course ID (integer) – an identification number of the university course.
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• Code (string) – short representation of the course.

• Czech (English) name (string).

• Finish type (category – string) – each course can end with a credit, a
classified credit, or an exam.

• Scope (string) – the number of lectures and practical tutorials.

• Czech (English) keywords (list divided by commas).

• Lectures’ language (CS/EN).

• Czech (English) annotation (string).

• Czech (English) requirements (string).

• Czech (English) lectures’ outline (string).

• Czech (English) tutorials’ outline (string).

• Czech (English) literature (string).

• Czech (English) goals (string).

• Czech (English) content (string).

• Department name (string).

The student classification dataset contained the following columns with
271,847 rows:

• Credit received (character) – character representing whether the student
received the credit.

• Course finished (integer) – the course has been finished by the student
(1 for the finished course).

• Grade (character A–F) – student’s final grade.

• Study ID (integer) – an identification number of a student’s study.

• Course enrolment ID (integer).

• Scheduled course ID (integer) – identification number of the scheduled
course.
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2.2 Opportunities Data

On an abstract point of view, the opportunity data represent a very similar
group of data to the courses. They require a student to have certain skills and
help the student improve some of his skills or even acquire new ones. They
can be defined by text content or a list of keywords.

In total, we have 166 opportunities that are composed of the following
attributes:

• Opportunity ID (integer) – unique number associated with the oppor-
tunity.

• Type ID (category – integer) – a categorical value representing the type
of opportunity (internship, job offer, study project, challenge, contract,
research support).

• Name (string).

• Description (string) – description of the content of the opportunity.

• Keywords (list of strings) – keywords representing the opportunity.

• Location (string) – the location where the opportunity is to be per-
formed.

• Wage (string) – number or string that describes a potential wage.

• Technical requirements (string or list).

• Formal requirements (string).

• Other requirements (any).

• Benefit (string) – benefits that the opportunity offers.

• Job start date (datetime)

• External link (http link) – link for a more detailed description or just
the link for the company’s website.

• Home office (string) – value that describes the possibility of working
remotely.

The opportunity data were filled out by various companies, which is why
the quality and structure of the opportunity specifications differs.
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2.3 Data Processing

The Czech and English data (descriptions, annotations, etc.) are at a similar
level of quality. Therefore, we work only with the English columns during the
dataset processing. The English language was also chosen because in later
stages of our work, we perform natural language processing tasks that are
better documented in English.

We take into consideration only students who are currently studying. We
process their current study as well as their past studies (e.g. we merge bachelor
and master studies together with certain weights) as long as they were on the
same faculty.

2.3.1 Availability

The recommendation system is carried out under the supervision of Unico and
its Experts.ai site. That is why student data is not available to the company to
use them without their consent. We have to implement a subscription policy
in which the user’s consent is explicitly provided and he/she has the right to
unsubscribe at any moment.
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Chapter 3

Realisation

In this chapter, we explain the structure of our recommendation module in
terms of how the recommendation is implemented and structured. We dive
into different architectures and ideas that were created and later tested.

3.1 Recommendation Structure

In the Chapter 1, we discuss many possible realisation possibilities. We de-
scribe some universal methods of recommender systems as well as some very
specific implementations of job recommendation for students.

We choose to implement the general structure idea from 1.2.4 and divide
the entire recommendation process into two parts.

The first part does not take any student data into consideration; it works
solely on the basis of past interactions and possibly item similarity.

The second part is implemented as a re-ranking module (see Figure 3.1)
which receives top recommendation from the first part of the recommender
system (e.g. 20 items) and re-ranks those items based on the student profile.
The position from the interaction-based RS is still taken in the account.

We make this decision due to the scalability of the whole RS. If the sys-
tem is implemented at different universities in the future, the part of the
interaction-based RS can be prototyped very quickly without dealing with
legal responsibilities regarding the processing of student data related to the
European GDPR1.

The RS can work entirely without student data, and the student profile
re-ranking module can be added later, when all the legal responsibilities are
solved.

We also take inspiration in 1.3.1 in the second part of the recommendation
system (the re-ranking module). We implement the same idea of acquiring
skills from the courses that a student has successfully completed. We adopt

1https://gdpr-info.eu/
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Figure 3.1: The process of our global recommendation schema. The left part
displays the necessary part of the RS: the interaction-based RS without the
student profiles implemented using Recombee recommendation service. The
right part (re-ranking module) describes the recommendation of the basis of
the student profiles (for a more detailed description, see Figure 3.2). The right
part is removable, and the system works without it.

only the objective skills part of the system. By doing that, we try to address
the problem with outdated information, where a student places some data in
his profile and never updates it. This idea was consulted and approved by the
authors of the referred paper who came across the same problem in the past.

We also considered the possibility of giving space to students to specify
their preferences about the opportunities they might be interested in (intern-
ship, part-time, etc.). We rejected the idea based on the same idea: the
student preferences can evolve very quickly in comparison to their desire to
constantly update their profile. Furthermore, these preferences can be par-
tially replaced by implementing active filters that the student can use to see
only specific desired types of opportunity.
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3.2 Interaction RS

The goal of this whole work is to focus more on the creation and utility of
the student profile part of the RS, which is why we decided to implement a
pre-prepared solution, specifically the Recombee service (see Section 1.1.7) as
the interaction part of our RS architecture.

This allows us to use a tuned system that does not require a further im-
provement (from the algorithmic part of the work, it only requires some data
tuning to perform better – if the item attributes are well-set, the recommen-
dation quality should increase).

Although we may have some student profiles, we do not add any student
data to the Recombee platform. We want to keep the two modules separated.
Adding student data to the Recombee platform would also complicate the
matching of user tokens through different devices the user can use (e.g. mobile
and desktop).

3.3 Re-ranking Module

The general idea behind all different implementations is to create some kind
of student embedding that can then be matched to the embeddings of the
available opportunities. There are two ideas of embedding creation described
in the following implementation stages.

The first idea is to calculate keywords that individually represent each
student and each opportunity. The main issue related to this idea is the
difference in language. Some opportunities have been written in Czech, and
others have been written in English. To handle this, a translation is required,
which can create some additional noise in the opportunity description.

The second idea is to create neural embeddings. These embeddings can
potentially deal with the language problem more elegantly. On the other
hand, it is much more difficult to interpret these embeddings, even though
they might be the state-of-the-art method when it comes to NLP tasks. [38]

3.3.1 Data Preparation

The creation of embeddings always comes with an NLP task. It is crucial
to have adequate data when creating embeddings, both neural and keyword-
based. For that reason, we need to prepare the data from which we extract
the embeddings in the best possible form.

We do not match opportunities directly with students. All the information
we have about the students is based on their previous study, and we do not
possess any personal information that is not related to the university environ-
ment. Therefore, we need to construct an algorithm that can transform the
finished courses and courses into a student profile. The first thing we need

25



3. Realisation

to do is create a student profile that can be matched with the available op-
portunities. Essentially, we need to create embeddings for both students and
opportunities.

3.3.1.1 Courses (subjects)

The first thing we need to do is process the university courses which can later
be used to build a student profile. There are many columns that must be
considered (see Section 2) – name, annotation, keywords, requirements, goals,
content, lectures’, and tutorials’ outlines. The quality of these columns differs
over different courses. To avoid losing important information, we consider all
the columns mentioned above by merging all the text together. The text is
then used to create the embeddings of the course by processing it as an NLP
task.

3.3.1.2 Opportunities

The opportunities suffer from a very similar problem – there are many columns
that are filled manually by different people. This creates an issue because the
texts are not standardised. Some people fill in different information for dif-
ferent columns, which is why all relevant columns need to be included in
the embedding creation process (see Section 2.2). We consider the follow-
ing columns: name, description, keywords, technical requirements, and other
requirements; in the same manner as in the course processing.

Another issue that needs to be addressed regarding opportunities is the
difference in the language in which they are written. There have been 72
opportunities which were written only in Czech, but we need to translate
them to English so that we could use keyword extracting algorithms.

In order not to translate all the opportunities manually, we decide to use a
DeepL2 translation programme (its advanced plan). [39] After the translation,
we review the translations and edit the texts if necessary.

3.3.2 Keywords Embeddings

In this part, we describe the methods we use to generate student and op-
portunity embeddings. As the first method, we choose to create embeddings
based on keywords extracted (or manually added) from the available data we
have. The general idea of the keyword-based student profiling is depicted in
the schema in Figure 3.2.

2https://www.deepl.com/translator
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Figure 3.2: The process of the student profiling by extracting keywords from
completed courses and available opportunities. The keywords are extracted
from all courses and opportunities. Keywords (potentially with weights) of
the opportunities represent opportunity embedding, which are used to create
a nearest-neighbour model used for recommendation. The student profile
(embedding) is composed of keywords from successfully completed courses;
this profile represents his embedding. Student embedding is used to determine
the closest opportunity embeddings (usually using the cosine distance).

3.3.2.1 Student Embeddings

The only data available about the students are based on the courses (and
grades) they studied. Therefore, the first step is to generate keywords for
courses.

After having keywords for all courses, we can take the keywords of each
course that a certain student had finished and add those keywords to the
student’s profile. We want to include not only the keyword, but also the
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grade of the student. Therefore, each keyword has a weight assigned based
on the student’s grade he received from the course (A:5, B:4, C:3, D:2, E:1,
F:0). The keyword weight for courses that do not have a grade is set to the
maximum value of 5. Keywords of certain (most) of the course are intertwined,
so we solve this by adding up the calculated weights in the student profiles.

The student profile grows with each course he had successfully completed.
We do not take into account the courses in which the student fails. For stu-
dents who have more than one study on the university (e.g. the student
studies master degree and in the past finished his bachelor’s study on the
same faculty), we modify the weights of the courses from the past studies by
a multiplication coefficient of 0.2. We do this to emphasise the courses taken
in recent semesters, while preserving the information from the past. When we
kept the coefficient equal to 1 (without modification in the weights), the oblig-
atory bachelor courses had a tendency to have a stronger effect than the more
specialised courses. In addition, the overall student embeddings were much
more alike, and it was more difficult to distinguish student specialisations.

3.3.2.2 Opportunity Embeddings

The opportunity embeddings are calculated in the exact same manner as the
course embeddings – we mostly operate the same way with courses and op-
portunities. The only difference is that we add the keywords the company
manually filled in to the calculated ones. If we use any weight for the key-
words, we always add the maximum value for those added manually by the
company.

3.3.2.3 Matching Algorithm

After having all student and opportunity embeddings, we can move on to
the matching part of the algorithm. We cluster the opportunities using a
k-nearest-neighbour method. We use the NearestNeighbors model from the
Python sklearn3 library. We use the cosine distance metric to calculate the
distance between embeddings.

After that, we calculate the n closest opportunities to the student’s em-
bedding. In the most basic setting, the top-n recommendation is used and the
closest opportunities are recommended to the student.

3.3.2.4 Explainability

During the explanation process, the algorithm is basically reversed. We find
intersecting keywords (skills) for the student embedding and the opportunity
embedding. Then we look up which courses the skills were gained from. In

3https://scikit-learn.org/stable/
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this way, we can explain to the student why a certain opportunity was recom-
mended to him, we show him the intersecting keywords and the courses from
which the skills were acquired.

3.3.3 Specific Implementations

In this section, we describe some specific implementations of the previously
described methods. We describe a method based on tf-idf, a method based
on custom keyword selection, and their combined method. We focus on their
issues and strengths.

3.3.3.1 Classic Tf-idf

The first algorithm that we go through is the basic term frequency-inverse
document frequency algorithm (tf-idf ) to extract keywords from courses and
opportunities. We implement it using the TfidfVectorizer from the Python
sklearn library. We use English stop words from the NLTK library. The
vectorizer is used on a corpus containing all available courses (subjects) and
all available opportunities merged in a single list.

We implement our own tokenizer that keeps only letters (not numbers).
It then extracts the words using the TreebankWordTokenizer that are later
lemmatised using the WordNetLemmatizer. Both are from the NLTK4 library
(see code snippet 3.3).

def preprocessing(doc):

doc = re.sub(r"[ˆa-zA-Z]", " ", doc.lower())

words = word_tokenize(doc)

words_lemmed = [WordNetLemmatizer().lemmatize(w)

for w in words if w not in stop_words]

return words_lemmed

Figure 3.3: Tf-idf document preprocessing function

The tf-idf function is configured to return ngrams in the range from 1 word
to 3 words. We keep only the top 2000 features that have document frequency
lesser than 19 %. The 19 % limit was decided to remove corpus-specific stop
words such as student, computer, learn. Overall, 75 corpus-specific stop words
are removed using this threshold (see Appendix C for all removed stop words).
We do not set the threshold any lower because we do not want to remove words
such as ”c” in the C programming language.

These features are manually checked later and more words are removed.
We remove all ngrams containing the words: student, course, able; because

4https://www.nltk.org/
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Table 3.1: The table of diversity results of the classic tf-idf method shows the
number of distinct opportunities recommended and the number of times that
the best opportunity was recommended while performing the top-n recom-
mendation for all students.

n-neigbours 1 3 5 10 20

Distinct opportunities 71 106 124 153 160
Top opportunity 661 1011 1234 1457 1731

they do not represent any skill, which is the main point of this whole pro-
cess. We then go through all the generated ngrams and remove even more of
them such as introduction, assignment, study (see Appendix C for all removed
ngrams). Altogether, we keep 1822 ngrams that represent skills that can be
extracted from the school courses and the job opportunities.

stop_words = stopwords.words('english')

vectorizer = TfidfVectorizer(tokenizer=preprocessing,

stop_words=stop_words, ngram_range=(1, 3),

max_df=0.19, max_features=2000, sublinear_tf=True)

kw_matrix = vectorizer.fit_transform(documents.values())

Figure 3.4: Tf-idf Python implementation

Now, we calculate the skills of the student using the algorithm described
in 3.3.2.1. The only difference is that we multiply the weight of the course
(calculated from the student’s grade) by the value that was earlier calculated
by the tf-idf algorithm.

After that, we compose a k-nearest neighbours model described in Section
3.3.2.3. Explainability is done in the same way as in Section 3.3.2.4.

A minor problem we encounter with explainability while using this method
is that keywords are often quite meaningless, for example: machine, specific,
idea, and learning. Although they may be crucial for matching an opportu-
nity with a student (for example, a machine learning opportunity), they are
not very useful when it comes to explaining why a certain opportunity was
recommended.

In Table 3.1 we show the diversity results of this method, we point out two
metrics: the number of different opportunities recommended to all students
when using the top-n recommendation, and the number of times the top op-
portunity is recommended. We can see (even with comparisons in Table 3.7
and Table 3.6) that the tf-idf method performs quite well (second to third
best) in terms of diversity compared to other models.
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'Junior Data Scientist'

# Matching keywords:

{'html', 'layer', 'task', 'database', 'big data', 'real',

'interpretation', 'activity', 'description', 'output',

'production', 'different', 'text', 'web', 'machine', 'format',

'support', 'creation', 'parsing', 'big', 'business', 'various',

'classification', 'science', 'mode', 'code', 'monitoring'}

# Matching courses with their keywords

'bi-emp': {'business', 'classification', 'support', 'output',

'production'},

'bi-aag': {'text', 'classification', 'task', 'machine',

'creation', 'output', 'parsing'},

'bi-big': {'big', 'big data'},

'bi-ppa': {'machine', 'interpretation'},

'bi-zdm': {'database'},

'fi-hte': {'science', 'activity', 'business'},

'bi-vwm': {'layer', 'various', 'text', 'web', 'database',

'mode'},

'bi-prr': {'description', 'monitoring', 'real'},

'bi-xml': {'html', 'text', 'web', 'database', 'format',

'different'},

'bi-kot': {'code'}

Figure 3.5: Explainability of an opportunity recommendation with the basic
tf-idf method. Matching keywords represent the intersecting keywords of the
student and the opportunity. Below that we display matched courses and the
intersecting student-opportunity keywords with those courses.

3.3.3.2 Custom Keyword Method

To address the issue of explainability mentioned in the previous Section 3.3.2.4.
We decided to use a limited set of keywords that will perform more intuitively
during the explanation. In this section, we take the general idea from paper
Reducing cold start problems in educational recommender systems [33] and
recreate some of the parts. The work was done on the same faculty and was
performed with the same (but older) data that we use in this work; therefore,
the solution is tailored for our purpose and we can replicate the process of
creating skill clouds for students. In the mentioned work, the skill clouds are
used to recommend the students to experts who may come into contact with
them. We can adjust the main idea for the recommendation of opportunities.

In the early stages, we proceed similarly to Section 3.3.3.1. We take the
merged text described in Section 3.3.1 and remove all the special characters,
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tokenise the text, remove stop words, and finally lemmatise the remaining
words. After that we create ngrams, again ranging from 1 word to 3 words, and
calculate their overall frequency in the whole corpus (school courses together
with job opportunities).

After that, we take all the generated ngrams (over 130,000 unique ngrams)
and match them to three different datasets of complex skills:

• Linkedin skills – we use the Linkedin dataset5 of 50,000 professional
skills that was published in 2019 and is composed of soft and hard skills.

• India Skills dataset – the skills are taken from the company from India,
It’s Your Skill. We use only free API capabilities to acquire about 5,700
skills.

• ACM classification skills – in paper [33] they use 400 skill categories (all
from the IT domain) from which they build their ontology trees. The
400 skills were inspired by the ACM digital library categories6.

We merge all the datasets together and match them with all the generated
ngrams of the courses and opportunities. This is how we acquire about 3,700
distinct skills. After that, we go through all the skills and remove the stop
skills that are not useful for our task (Czech, assignment, etc.). We create
a skill mapper, which selects which skills are to be mapped to other skills
(e.g. recommender to recommender system, recommending to recommender
system). This process reduces the skill dataset to 1913 distinct skills. The
skill mapper is used on both the skills dataset as well as on the ngram sets
that were previously generated from the courses and opportunities.

Now we have a set of skills for each course (and for each job opportunity),
and we can calculate the embeddings of the students using the algorithm
mentioned in Section 3.3.2.3.

Finally, we again compose a k-nearest neighbours model described in Sec-
tion 3.3.2.3. Explainability is done in the same way as in Section 3.3.2.4. The
advantage of explainability with this method is that it is much more relatable
than with the tf-idf method 3.4 because we have complete control over the
ngrams that are being matched and explained later.

The problem that occurs using this custom method is that the recommen-
dations were not diverse enough. When recommending the top five opportu-
nities to all current students who had at least one skill (total number of 1806
students), the recommender algorithm recommended only 85 of the 166 oppor-
tunities (see Table 3.2). This diversity is significantly lower than the diversity
of tf-idf, which can recommend 124 out of 166 opportunities (Table 3.1) in the
same configuration (for a more detailed comparison, see Section 3.3.3.4).

5https://www.linkedin.com/business/learning/blog/top-skills-and-courses/the-skills-
companies-need-most-in-2019-and-how-to-learn-them

6https://www.acm.org/publications/class-2012
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The best opportunity is also recommended for 1598 out of 1806 . The
reason for this behaviour is that the opportunity has very general keywords
(information technology, operating system, etc.). These general skills are ac-
quired in the mandatory courses each student has to go through during his/her
studies; they can also be acquired by many different courses, resulting in a
huge weight in the profile in the majority of the students.

This creates an issue where the more general keywords that are located
in most of the courses (opportunities) significantly outweigh more specific
keywords that may carry more interesting information about the course (op-
portunity).

'Junior Data Scientist'

# Matching keywords

{'web', 'program analysis', 'recommender systems', 'programming',

'classification', 'parsing', 'interpretation', 'big data',

'databases', 'code', 'business process'}

# Matching courses with their keywords

'bi-emp': {'recommender systems', 'classification',

'business process', 'program analysis'},

'bi-aag': {'programming', 'classification', 'parsing',

'program analysis'},

'bi-big': {'big data', 'databases'},

'bi-ppa': {'interpretation', 'programming'},

'bi-zdm': {'programming', 'databases'},

'fi-hte': {'business process'},

'bi-vwm': {'web', 'program analysis', 'recommender systems',

'programming', 'databases'},

'bi-prr': {'program analysis'},

'bi-xml': {'programming', 'databases', 'web'},

'bi-kot': {'programming', 'code'}

Figure 3.6: Explainability of an opportunity recommendation with the custom
keyword method. Matching keywords represent the intersecting keywords of
the student and the opportunity. Below that we display matched courses and
the intersecting student-opportunity keywords with those courses.

3.3.3.3 Combined Solution

After analysing the two previous solutions, we propose a combined solution
that is supposed to address their weaknesses. The purpose of this solution is
to maintain the limited set of available keywords while addressing the problem
of diversity.
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Table 3.2: The table of diversity results of the custom keyword method shows
the number of distinct opportunities recommended and the number of times
the best opportunity was recommended while performing the top-n recom-
mendation for all students.

n-neigbours 1 3 5 10 20

Distinct opportunities 49 78 85 108 132
Top opportunity 739 1464 1598 1682 1756

Table 3.3: The table of diversity results of the combined method shows the
number of distinct opportunities recommended and the number of times the
best opportunity was recommended while performing the top-n recommenda-
tion for all students.

n-neighbours 1 3 5 10 20

Distinct opportunities 62 105 121 142 152
Top opportunity 457 725 791 1036 1270

We start by implementing a tf-idf vectorizer with all the detected features
(over 130 thousand features) over ngrams of lengths ranging from 1 to 3 words.
Tokenization, lemmatisation, and elimination of stop words are performed in
the same manner as in the tf-idf method (see Section 3.3.3.1).

After generating this large matrix, we update this matrix using the defined
keywords for each opportunity (add one to the appropriate cells). Later, we
map all the generated skills using the same logic as in Section 3.3.3.2.

We basically receive the same set of skills as in the custom keyword method
(see Section 3.3.3.2), but with the difference that these computed skills have
the appropriate weight based on their tf-idf relevance score. After that, we
replicate the work from the previous section with the only difference in the
calculation of the student profile. Here, we multiply the students’ grades by
the relevance of the keyword before appending them to their profiles.

In summary, we observe a diversity similar to that of the pure tf-idf method
while maintaining the explainability of the custom keyword method. Again,
using the top five nearest-neighbour recommendations, we recommend 121
of 166 opportunities – Table 3.3 (for a more detailed comparison, see the
comparison Section 3.3.3.4).

3.3.3.4 Comparison

In this section, we compare the results of the three methods mentioned pre-
viously. Mostly, we compare their ability to recommend a more diverse set of
opportunities, not only to recommend the best opportunity to every student.
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In Tables 3.1, 3.2, 3.3 we compare two metrics for the changing number
of recommendations for each student. We measure the number of distinct op-
portunities that are recommended to all students separately and the number
of times the top opportunity is displayed in the top-n recommendation for
all students. As can be seen, the pure tf-idf method provides the most di-
verse results when it comes to the distinct opportunities metric and is closely
followed by the combined method. However, the combined method provides
almost the same results while beating the pure tf-idf method in the top op-
portunity metric and while preserving the more relatable explainability.

Taken together, the combined method seems to provide overall the most
reasonable results. It maintains very good diversity, and the explainability is
much more explanatory and understandable to the user.

3.3.4 Neural Embeddings

In this section, we focus on experimenting with recommendations based on
neural embedding matching. As mentioned in Section 1.1.6, neural embed-
dings have improved significantly in the last few years and nowadays are a
state-of-the-art solution when it comes to document recommendation, infor-
mation retrieval, and NLP tasks. That is why we want to experiment with
this solution as well, even though the explainability of this solution is hardly
interpretive. [18, 17]

We have to create an algorithm where neural embeddings can be used. We
create a neural embedding for each course and for each job opportunity we
have. The neural embeddings are generated using an OpenAI7 library and its
API. This library is not completely free, but there is a limit of $ 18 that is
sufficient for our purposes.

We query for more than 700 embeddings (representing each opportunity
and each course; the courses with the same warp and the same description
were queried only once). OpenAI offers four types of embedding lengths:

• Ada – 1024 dimensions,

• Babbage – 2048 dimensions,

• Curie – 4096 dimensions,

• Davinci – 12288 dimensions.

We use the Babbage embedding with 2048 dimensions for our purposes.
We would use more-dimensional ones, but they are more expensive, and for
the sake of the experiment, 2048 dimensions should be enough. OpenAI also
offers more engines that differ in their purpose:

7https://openai.com/
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• Similarity embeddings – good at capturing similarity between two or
more pieces of text.

• Text search embeddings – these models focus on measuring the relevance
of long documents to a short search query (the embeddings for docu-
ments and queries differ).

• Code search embeddings – similar logic to text search embeddings. There
are two types of engine, one for embedding code and the other one for
embedding code snippets which are to be retrieved.

Interestingly, when we generate the embeddings based on the description,
name, etc., the neural embeddings we create are very similar to each other.
This happens because all the courses and opportunities are IT related, mean-
ing they all share a similar part of the latent space.

3.3.4.1 Course-opportunity Matrix

After having all the embeddings, we compose a k-nearest-neighbour model
using all courses (their neural embeddings). In the model space, we find the
k courses closest to each opportunity. We use the dot product as a metric
for our kNN model (the L2 norms of all generated neural embeddings equal
1 meaning that the dot product equals the cosine distance). We actually use
(1 − dot(Ea, Eb)) because we want the closest courses to be near each other.
The dot(Ea, Eb) denotes the dot product of two arbitrary course embeddings
(Ea, Eb)

Using the calculated distances for each course i ∈ {1 . . . m} and each op-
portunity j ∈ {1 . . . n} where m represents the number of courses and n rep-
resents the number of opportunities, we create a course-opportunity matrix
OPP ∈ R

m,n:

OPPi,j = dot(Ei, Ej) (3.1)

where Ei represents the embedding of the i-th course and Ej represents the
embedding of the j-th opportunity. For each opportunity (each column of
the OPP ) we keep only k greatest values – only k courses represent each
opportunity.

3.3.4.2 Student-course Matrix

For each student h ∈ {1 . . . l} and each course i ∈ {1 . . . m} where l represents
the number of students and m represents the number of courses, we create a
student-course matrix STU ∈ R

l,m:

STUh,i = grade(Studenth, Coursei) (3.2)
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where grade(Studenth, Coursei) represents an arbitrary function that maps
the student grades in specific courses to a numerical value. We derive the
grade value of the student using the following list: (A = 5, B = 4, C = 3,
D = 2, E = 1, Z = 5). The grade Z means the course ended only with credit
(without any additional grade). As an example on another function mapping
student’s grade in a course to a numerical value could be a percentile function.

3.3.4.3 Recommendation

The recommendation values are computed by multiplying the matrices men-
tioned above (3.1 and 3.2) in the following manner (see Equation 3.3) and
resulting in the recommendation matrix REC ∈ R

l,n where l represents the
number of students and n represents the number of opportunities.

REC = STU · OPP (3.3)

The advantage of this matrix is that we can extract the best opportunities
for each student as well as the best candidates for each opportunity.

recommend stu(studenti, k) = argmax(RECi:, k) (3.4)

recommend opp(opportunityj , k) = argmax(REC:j , k) (3.5)

The opportunity recommendations for the student i are placed in the row
i of the REC matrix (see Equation 3.4). The best candidates for opportunity
j are placed in the column j of the REC matrix (see Equation 3.5). The
function argmax(list, k) returns the indices of k highest values in the list

(row or column).

3.3.4.4 Results of Neural Embedding Recommendation

We create a few experiments that focus mainly on the diversity of courses
used for recommendation and the diversity of opportunity recommendation
for students.

The parameter on which we focus is k used during the construction of the
k-nearest-neighbours model of courses. We consider the following values of k:
5, 10, 20, 40, 100, 200, 420. In total, there are different 420 courses (courses
that have the same description and name are taken as the same course), so
for k equal to 420 the OPP matrix is full of non-zero values (unless the zero
is calculated).

As we can see in Table 3.4 the overall opportunity diversity is high for
almost all cases compared to the keyword methods (see Tables 3.3, 3.2, 3.1).
A surprising observation is that we have to set k = 100 so that most courses
are taken into account during the recommendation.

We try to identify some kind of similarity among the least considered
courses, but cannot find any common trait. There are all possibilities of
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Table 3.4: Diversity of the number of courses considered and the final recom-
mendation of opportunities. Considered courses – the number of non-zero
rows in the OPP matrix. Top course – maximal number of non-zero val-
ues of all columns in OPP matrix. Opportunity diversity – the number of
distinct recommended opportunities while performing 5 best opportunities re-
commendation for all students. Top opportunity – the number of times the
top opportunity is recommended.

k 5 10 20 40 100 200 420

Considered courses 144 198 257 325 390 418 420
Top course 33 50 80 104 141 146 146
Opportunity diversity 133 142 143 137 141 134 36
Top opportunity 1064 1021 809 972 795 813 1354

Table 3.5: The table of diversity results of the neural embeddings method
shows the number of distinct opportunities recommended and the number
of times the best opportunity was recommended while performing the top-n
recommendation for all students.

n-neighbours 1 3 5 10 20

Distinct opportunities 104 143 158 165 166 (max)
Top opportunity 279 537 577 960 1221

courses: theoretical and practical courses, undergraduate and graduate courses,
optional and compulsory courses.

An issue that is very common in association with neural embeddings (and
almost all machine learning methods based on neural networks) is the inter-
pretation and explanation of the decision-making process. In our case, the
only thing we can certainly explain is the ”middleman” in the form of the
course on whose basis the recommendation is made. The reason why some
courses are closer to certain opportunities in the neural embedding space is
hard to interpret for us and remains a bit of a mystery. [40]

The explainability can be done using classical methods such as tf-idf or
the custom keyword method mentioned in Section 3.3.3.2 where we extract
describing keywords. This method has nothing in common with the neural
embeddings, but at least it gives a user some distant reason why he/she might
like the given result.

As we can see from Table 3.5 the number of distinct opportunities is the
highest compared to classical methods (Tables 3.3, 3.2, 3.1). And when we
recommend 20 opportunities to each student, we achieve the recommendation
of all currently available opportunities.
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Table 3.6: Comparison of distinct opportunities of all methods: we compare
the number of distinct opportunities that were recommended to students when
recommending the top n opportunities to each student.

n-neighbours 1 3 5 10 20

Custom keywords 49 78 85 108 132
Basic tf-idf 71 106 124 153 160
Custom keywords with tf-idf 62 105 121 142 152
Neural embeddings 104 143 158 165 166

Table 3.7: Comparison of top opportunity recommendation of all methods: we
compare the number of times the most-fitted opportunity was recommended
during a top n opportunity recommendation for each student.

n-neighbours 1 3 5 10 20

Custom keywords 739 1464 1598 1682 1756
Basic tf-idf 661 1011 1234 1457 1731
Custom keywords with tf-idf 457 725 791 1036 1270
Neural embeddings 279 537 577 960 1221

3.3.5 Overall Comparison

In Tables 3.6, 3.7 and Figures 3.7, 3.8 we can compare the diversity in the
recommendations of all purposed methods. In Table 3.6 and Figure 3.7, we
compare the number of distinct opportunities that the method recommends to
students while performing a top-n recommendation for each of them. Diversity
increases with a higher number of distinct opportunities. In Table 3.7 and
Figure 3.8, we compare the number of times the most frequent opportunity
is recommended while making a top n recommendations for each student. In
this case, the diversity increases with decreasing numbers.

As we can see, the custom keyword method with tf-idf and the basic tf-idf
method perform the best in terms of diversity of all keyword-based methods.
The custom keyword method with tf-idf (the combined method) has the upper
hand in explainability. Overall, the neural embeddings are capable of the most
diverse recommendation in terms of the number of distinct opportunities,
in terms of top opportunity recommendations, it is practically equal to the
custom keyword method with tf-idf.

The measured diversity can tell us only the capabilities of a certain method
to separate students and opportunities, it does not give us the information
about the quality of given recommendations.
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Figure 3.7: Dependence of the different opportunity diversity on N where N
represents the number of top.n recommendations for each student. The top.n
recommendation was made for 1806 students with a total of 166 opportunities.

3.3.6 Summary and Model Selection

If we focus only on the diversity capabilities of the purposed methods, it
would seem appropriate to select the neural embedding method as the best.
However, diversity does not necessarily mean the best recommendation. The
neural embedding method does not take into account the quality in which
individual descriptions are written. One of the best opportunities that was
recommended using this method was an opportunity without a description.
It is really difficult to interpret such a decision.

Ultimately, we decide to test and analyse the custom keyword method
with tf-idf due to its high qualities in the case of diversity of recommenda-
tions and due to its best explanation ability.

For even a better diversity of recommendations, we can use the algorithm
described in Section 3.4 which is derived from the methods purposed in the
paper [37].

3.4 Job Recommendation Constraints

In Table 3.7, we compare the number of times a certain opportunity is recom-
mended to students during a top-n recommendation. As we can see, the best
opportunity is recommended a lot of times for each scenario. This is partially
caused by the students of the first year because they do not have the space
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Figure 3.8: The dependence of the number of times the top opportunity was
recommended on N where N represents the number of top-n recommendations
for each student. The top-n recommendation was made for 1806 students with
a total of 166 opportunities.

to select any optional courses. In general, they mostly all study the same
courses, resulting in very similar profiles.

Nevertheless, we need to address this problem because the job recommen-
dation is different from the recommendation of, for example, movies, because
the opportunity cannot satisfy all users who apply for it. The open position
can be filled by only one or a few students (see Section 1.2.1 for a more de-
tailed description of the problem). This is the reason why we address the issue
of recommending the same opportunity to a large number of students.

In the theoretical part Section 1.4, we refer to a solution purposed in
[37]. This work aims at creating a general solution that considers multiple ad-
justable results on an item/user basis (item capacities and user propensities).
In our work, we deal with a specific subproblem of the work of [37]. The item
capacities are practically the same for most of the opportunities, and they do
not change over time – once the position is filled, it can usually be removed
from the RS (if the position is reopened, we can consider it as a new position
in regards to the item capacity). User propensities are also somewhat specific,
because the goal is usually to find one single opportunity for every student. In
our case, it might be more appropriate to derive the user’s propensity based
on his actions; for example, a subscribed student might be more likely to make
a contact with the opportunity than an unsubscribed one.
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We implement a solution that aims to distribute the opportunity recom-
mendations by setting a maximum number of students to whom the oppor-
tunity can be recommended on the first page (we do not limit the visibility
of the opportunity on further pages or on the first page during user custom
filtering).

We do that by implementing some kind of round robin system for recom-
mendation. At first, we shuffle all students for whom the recommendation is
done, so not to create alphabetical or any other disadvantages. After that,
we iterate the list and add the top three recommendations to all students se-
quentially. The only limitation is that each opportunity can be recommended
only a certain number of times (the limit differs based on the number of
students for whom the recommendations are made and the number of all op-
portunities). The process is repeated two more times (for three and four more
recommendations, respectively) while maintaining and updating the same list.
If an opportunity reaches a maximum number of recommendations in the first
round of robin round, it cannot be recommended again in subsequent rounds.

3.5 Explanation

In this section, we summarise the explanation capabilities of individual meth-
ods that are mentioned in the previous sections. We compare the explanation
of the following methods: basic tf-idf, custom keyword method with tf-idf, neu-
ral embedding method. We do not mention custom keyword method separately
because it is similar to custom keyword method with tf-idf in terms of expla-
nation (the only difference is in matching keywords).

In Figures 3.9 and 3.10 we display the recommendation of the same op-
portunity to the same student using the custom keyword method with tf-idf
and the basic tf-idf method. As can be seen, there are much fewer keywords
matched in Figure 3.9 (custom keyword method with tf-idf ) compared to Fig-
ure 3.10 (basic tf-idf ), but all the keywords matched are much more complex,
such as machine learning, web mining, data analysis. Some of the keywords in
tf-idf methods are also complex, such as machine learning, data mining, but
there are many almost meaningless keywords such as direct, look, way, create.

We tried to reduce the number of non-skill keywords in tf-idf (see the
appendix C), but there are still a lot of them. We could remove even more,
but in that way we would be nearing the custom keyword method, which
would result in the loss of the simplicity of the basic tf-idf method.

We describe a very basic explanation outline for the neural embedding
method in the previous Section 3.3.4, where the explanation is done using the
calculated keywords from either the basic tf-idf method or the custom keyword
method. This is a suboptimal method, because the explanation is based on a
completely different process, and in some cases there might be no matching
keywords.
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'Python Developer junior'

# Matching keywords

{'machine learning', 'qt', 'devops', 'designing', 'spark',

'web', 'bootstrap', 'python', 'data analysis', 'web mining',

'automation', 'agile', 'data mining'}

# Matching courses with their keywords

'ni-mvi': {'machine learning', 'web mining', 'data mining'},

'ni-pdd': {'web mining', 'data mining', 'web'},

'ni-sz1': {'machine learning'}, 'ni-pon': {'machine learning'},

'ni-adm': {'machine learning', 'web mining', 'data mining'},

'ni-bml': {'machine learning', 'bootstrap'},

'ni-sz2': {'machine learning'}, 'ni-scr': {'bootstrap'},

'ni-pdb': {'spark'},

'bi-dbs': {'web'},

'bi-pa2': {'qt'},

'bi-tjv': {'devops', 'web'},

'bi-bez': {'designing'},

'bi-pyt': {'python'},

'bi-zum': {'machine learning', 'web mining', 'data mining'},

'bi-vwm': {'web mining', 'data mining', 'web'},

'bi-si1.2': {'agile'},

'bi-vzd': {'data analysis', 'web mining', 'data mining',

'machine learning'},

'bi-svz': {'automation'}

Figure 3.9: Explainability of an opportunity recommendation with the custom
keyword method. Matching keywords represent the intersecting keywords of
the student and the opportunity. Below that we display matched courses and
the intersecting student-opportunity keywords with those courses.

In general, we evaluate that the custom keyword method with tf-idf is capa-
ble of providing the best explanation for its recommendations. The matched
keywords are understandable and easily interpretable for students.
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3. Realisation

'Python Developer junior'

# Matching keywords

{'numerical', 'bootstrap', 'end', 'least', 'mining',

'data mining', 'agile', 'power', 'web', 'may', 'lead', 'create',

'designing', 'web application', 'technical', 'exact', 'idea',

'machine', 'perspective', 'u', 'machine learning', 'direct',

'graphical', 'data analysis', 'python', 'learning', 'automation',

'look', 'way', 'input'}

# Matching courses with their keywords

'ni-umi': {'lead'},

'ni-mpi': {'numerical', 'machine'},

'ni-mvi': {'learning', 'machine learning', 'mining',

'data mining', 'machine'},

'ni-pdd': {'mining', 'data mining', 'web'},

'ni-sz1': {'learning', 'machine', 'machine learning'},

'ni-pon': {'numerical', 'learning', 'machine learning', 'least',

'machine'},

'ni-pdp': {'technical'},

'ni-adm': {'learning', 'machine learning', 'mining',

'data mining', 'machine'},

'ni-ccc': {'create', 'technical', 'idea', 'way', 'input'},

'ni-scr': {'bootstrap'},

'ni-kop': {'exact'},

'ni-pdb': {'machine'},

'bi-cao': {'power', 'look'}, 'bi-pa1': {'input'},

'bi-zma': {'way'},

'bi-ps1': {'way', 'input'},

'bi-uli': {'learning', 'machine', 'input'},

'bi-sap': {'machine', 'input'},

'bi-dbs': {'way', 'direct'},

'bi-lin': {'u', 'way'},

'bi-pa2': {'may'},

'bi-aag': {'machine'},

'bi-zdm': {'power'},

'bi-tjv': {'end', 'web', 'create'},

...

Figure 3.10: Explainability of an opportunity recommendation with the basic
tf-idf method. Matching keywords represent the intersecting keywords of the
student and the opportunity. Below that we display matched courses and the
intersecting student-opportunity keywords with those courses.
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Chapter 4

Analysis

In this chapter, we focus on analysing the performance of our recommender
systems. We perform two stages of A/B testing with different testing groups,
and we describe the established results.

4.1 Testing Environment

The testing was carried out under the company Unico and its websites. The
testing was carried out mainly on the website of the Faculty of Information
Technology of the Czech Technical University in Prague. The first part of the
testing was started during the COFIT8 student job fair that lasted for more
than three weeks.

The widget on the website with the opportunity recommendation was
placed as an HTML iframe on the website of the faculty9 (see Figure 4.1)
and it was placed in the faculty Microsoft Teams platform (see Figures 4.2
and 4.3).

4.1.1 Measured Interactions

We measure the following interactions: detail views, purchases (apply for a job
using the apply button), and number of recommendations. We also collected
interaction with the website such as text search, filtering using predefined
filters and subscriptions.

The interactions were captured using the Recombee platform and the
Google Analytics tool10. An issue that occurred using this configuration (the
implementation as a website widget) was that the interaction capturing tools
needed to use the third-party cookies that can be disabled by some users
(e.g. the Safari web browser disables the third-party cookies by default). This

8https://fit.cvut.cz/cs/spoluprace/pro-studenty/veletrh-cofit
9https://fit.cvut.cz/cs/spoluprace/pro-studenty/nabidky-prace/partneri-a-sponzori

10https://analytics.google.com/analytics/web/
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created a minor inconvenience, which resulted in the capture of fewer interac-
tions.

4.2 Testing

We randomly create groups of users who receive different types of recommen-
dation. In the first part of the testing, we create two groups and test the
significance of the interaction-only recommendation compared to no recom-
mendation at all.

In the second part of the testing, we measure the importance of the per-
sonalised recommendation based on the student profiles derived from their
past studies. There is a smaller number of students in the second part of the
testing because we need an explicit consent from users so that we can legally
use their profile for the use case of personalised recommendation.

It must be mentioned that in the evaluation of the A/B tests all user
interactions performed during application testing by non-student users were
deleted.

4.3 A/B Testing - Part One

In this section, we describe the setting and results of the first part of the A/B
testing. At first, we created 2 groups of users:

Figure 4.1: The recommendation system placement on the faculty’s website
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• Group A received a personalised recommendation solely based on their
previous interactions and the relationships between the opportunities
(the attributes of the items were used without the use of the attributes
of the user).

• Group B received a random list of available opportunities extracted
from the database without any logic.

Recommendations for group A were made using the Recombee platform.
We should bear in mind that before the testing had started, there were no
item-user interactions recorded on the platform, and in the early stages the
recommender was suffering from the cold start problem. All interactions made
by users in group B were also sent to the recommender to increase its perfor-
mance and mitigate the effect of the cold start problem as quickly as possible.

The recommender system received the following interactions: detail views,
purchases, custom searches, and keyword searches. By keyword search, we
mean the interaction in which a user clicks on the prepared keywords and
filters the opportunities.

4.3.1 Results

We evaluate multiple types of interaction (detail views, purchases, filters,
searches), but detail views and purchases are considered the most important.

Figure 4.2: The landing page of the widget of the RS system in Microsoft
Teams.
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In Table 4.1, it can be seen that there is a notable difference in the num-
ber of total (and average) detail view interactions. The number of users who
performed at least one detail view is practically the same 66 to 69, but the
average number of detail views per user changes from 4.1 (group A – with
recommendations) to 2.8 (group B – without recommendation). In Figure 4.4
we can observe the improvement process of the interaction RS. In the early
stages we can observe the cold start problem, which is gradually solved by ac-
quiring more interactions over time. The cumulative sum ratio of group A is
calculated using Equation 4.1, where IA,t represent the number of interactions
of group A from the beginning to time t.

csr(A, t) =
IA,t

IA,t + IB,t

(4.1)

In Table 4.3, we measure the statistics of the position of the opportunities
with which they interact. It seems that the mean and median are the same
for both tested groups.

The most significant conversion is the purchase interaction, which in our
case is harder to interpret, considering the very low number of overall inter-
actions of this type (see Table 4.2). In total, we measured only 24 purchase
interactions performed by 9 users, of which 15 interactions were performed
by 6 users in group B (without recommendation). This would seem in favour
of the no-recommendation scenario, but the number of interactions is so low
that we do not dare to come to any substantiated conclusions.

Figure 4.3: Recommendations example of the widget of the RS system in
Microsoft Teams.
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Table 4.1: Detail view statistics from the first A/B testing: count – number of
measured interactions; users – number of users who performed the interaction
(users were randomly distributed 50/50); average – average number of inter-
actions per user; Q25, Q50, Q75 – quantiles of the number of interactions.

count users average Q25 Q50 Q75

A 269 66 4.1 1 2 4.75
B 195 69 2.8 1 1 4

Table 4.2: Purchase statistics from the first A/B testing: count – number of
measured interactions; users – number of users who performed the interaction
(users were randomly distributed 50/50); average – average number of inter-
actions per user;

count users average

A 9 3 3
B 15 6 2.5

Table 4.3: Position of detail view statistics from the first A/B testing: count
– number of interactions; mean – mean position of clicked interaction; std –
standard deviation of the interaction position; max – the highest position of
the interaction made; median – median of the position.

count mean std max median

A 269 4.9 3.1 10 4.0
B 195 4.5 3.1 10 4.0

Table 4.4: Performed searches in the first part of the A/B testing. One full text
search can mean more sub-searches if the user types slowly. Count – number
of interactions, users – number of users who performed the interaction. Q25,
Q50, Q75 – quantiles of the number of searches.

count users Q25 Q50 Q75

A 209 44 1 3 6
B 257 50 2 3.5 7

Table 4.5: Filter interaction statistics from the first A/B testing: count –
number of interactions, users – number of users who performed the interaction.
Q25, Q50, Q75 – quantiles of the number of searches.

count users Q25 Q50 Q75

A 828 88 2 5 11
B 662 89 2 5 11
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Figure 4.4: Cumulative sum ratio of detail views in the time span from
29.3.2022 to 23.4.2022. The cumulative sum for group A is calculated using
the following Equation 4.1

4.4 A/B Testing – Part Two

The second part of the users A/B testing focusses on personalised recom-
mendations based on the student profile. As mentioned in Section 2.3.1 the
recommendations are carried out under the supervision of Unico, and we have
to have the student’s consent to be able to use his/her data for personalised
recommendation purposes. Therefore, we can work only with students who
have subscribed to personalised recommendations on the widget.

Personalised recommendation is performed offline, saved in the database,
and later sent to the user via email. Each user has the possibility to unsub-
scribe from any email received.

We assume a certain bias that is connected with the subscription. There-
fore, to eliminate bias, users of all groups are taken from the set of subscribed
students.

4.4.1 Groups

In this part of A/B testing, we create three separate groups to test which
recommendation method performs the best.
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4.4. A/B Testing – Part Two

• Group C receives a personalised recommendation solely based on their
previous interactions and the relationships between the opportunities
(only the item attributes are used). It is the same setting as in Group A
in the previous A/B tests, the difference being that here we use only
subscribed students.

• In Group D, students receive a personalised recommendation based
only on their profile (courses completed). The first ten items are taken
on the basis of this recommendation, and the rest are filled in randomly.
The recommended items are the same for the duration of the email
newsletter; the first 10 items cannot change until a new recommendation
is made with a different setting or different opportunities is made.

• Group E receives the most complex recommendations. The recommen-
dations are a combination of the methods of group C and group D.
First, both the interaction-based RS and the personalised RS based on
the student profile make recommendations. The recommendations are
then rearranged on the basis of the combined position in both recom-
mendation lists (the two positions are summed).

We presume the following behaviour of the individual groups. We antic-
ipate that group C may suffer from the cold start problem. The cold start
problem should affect new users only, because the historical interactions are
kept in the Recombee platform, hence the RS itself should not suffer from the
mentioned problem.

The group D should be able to deal with the cold start problem easily,
however, the system is not capable of adaptation to the user’s behaviour once
he makes a few interactions.

The group E should be able to handle both above-mentioned issues. In the
early stages, it can recommend relevant items based on the student’s profile,
and later it can adapt based on the users’ interactions (searches, detail views,
etc.).

4.4.2 Detailed Parameters

Overall, we have 51 subscribed students. These students are randomly dis-
tributed into 3 groups equally, 17 students in each group. We perform an
offline recommendation and send an email to students with the top 10 recom-
mendations asking for their feedback. There is a link for each recommendation
detail view, a link to the widget with more recommendations, a link to un-
subscribe, and a link with the information that no links were relevant. We
measure all the following clicks (see the email example in Figure 4.5).

Although we save the user identification token during subscription, most of
the people had no previously measured interactions on the Recombee platform.
We assume that this might be because the request for subscription was sent
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via email to all students. We suspect that many students open their emails
on the phones, whereas most of the interactions captured on the system were
made on the desktop. The impact that it has on this experiment is that most
of the recommendations for groups C are covered by the best sellers. It also
has an impact on group E, where the recommendations are combined with
best sellers and not with personalised recommendations.

Figure 4.5: Newsletter example

4.4.3 Results

From the 51 subscribers, 32 students opened the email and 28 of them clicked
on at least one link. The numbers were measured using the Google Analytics
platform and the XCAMPAIGN mailing service11.

No student clicked on the link saying they were not satisfied with any
recommendation, and no student performed an unsubscribe action. We eval-
uate this positively along with the number of clicks and the number of emails
opened.

We can see in Table 4.6 that we have captured the most clicks interaction in
groups D and E (respectively, 37 by 11 users and 33 by 10 users). The overall

11https://www.xcampaign.info/switzerland-en/
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Table 4.6: Second A/B testing statistics for groups C, D, E. We measure the
following statistics: Users – number of users, Click – number of clicks on the
links, Clicks median – median of user clicks, Clicks/user – average number of
clicks per user, Mean I – the average index of the opportunities clicked, Mean
I – the mean index of the opportunities clicked.

Group Users Clicks Clicks median Clicks/user Mean I Median I

C 7 18 3 2.6 3.9 2
D 11 37 3 3.4 3.5 3
E 10 33 3 3.3 4.4 4

best click-per-user ratio has group D with 3.4 clicks/user tightly followed by
group E with 3.3 clicks/user. These values are higher compared to group C
with only 2.6 clicks/user.

It must be noted that 6 out of 7 users that performed interactions in group
C had no previous interactions captured, therefore they received the best seller
recommendation list with no further profiling.

The best seller recommendation (group C) has the best click position me-
dian of 2 (the indices are calculated from 0). The worst click position is
measured in group E (combined recommendation) with a mean 4.4 and a
median of 4.

We conclude that the best-seller recommendation works because most of
the users click on the higher-placed opportunities. The results of Table 4.6
suggest that the personalised recommendation based on the student profile
works well and outperforms the best seller recommendation. This means that
it is better to recommend based on the student profile compared to the best
sellers for the new users (if the student data are available). This also helps to
increase the diversity by not recommending the same set of items to all new
users.

Overall, the most complex method with the combined recommendation
in group E performs well (almost the best) in terms of the number of clicks,
meaning that the re-ranking does not have a negative impact. This is an
important result because this method can be used on the widget, where it is
necessary to provide a changing list of recommendations.

Overall, we dare say that all the tested recommendation settings perform
well and are capable of a relevant recommendation. The better performance
of group D compared to group C indicates that it is useful to use the student
profile for recommendation purposes. Although group E did not perform the
best in the position of opportunities clicked, the important part is that it
managed to recommend relevant opportunities to the students.

The position in which the opportunities are sorted in group E can be a
matter of future testing and can be fine-tuned by hyperparameter adjustments.
In this test, we only averaged the recommendation of both combined methods.
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We would like to experiment with a more complex combination now that we
see that the recommendation based on the student profile works. We could
introduce a parameter that adjusts weights on both recommendation lists
based on the number of interaction the user has performed (e.g., giving more
weight to the student profile personalised recommendation in the early stages,
when there are no interactions captured, and later mitigate its effect in favour
of interaction-based recommendation).

4.5 AI Fairness

In the work, we deal with data processing of university and student data. The
data should be protected and treated in a secure manner. In this thesis, we
work with the data provided by the faculty, and for the sake of this work, we
use the whole dataset with the anonymised data.

During the second part of the A/B testing that focused on personalised
recommendations for students, we needed an explicit consent of all included
students. The consent was acquired using a subscribe button on the widget
website. After a subscription, we could use the data for recommendation pur-
poses. Data were manipulated with according to European GDPR standards.

In terms of personalised recommendation using the student profile, we
acquired some subscriptions using non-university emails which created a minor
inconvenience because we could not use their student profile, because we did
not know who the person was. The subscribed person could even be from a
different university.

There may be a slight bias on the basis of the available data. We have
only data provided by the faculty, meaning that for students enroled in the
graduate programme who previously studied at different faculty/university,
we have no data about their past studies. This gives them a disadvantage and
they may receive suboptimal recommendations.

We try to recommend as many opportunities as possible. This may result
in a recommendation of an opportunity to a non-optimal student, because we
only work with students of one faculty and the optimal student can study on
a completely different university.

4.6 Future Work

We have tested a few models, but essentially we chose the tf-idf model with
custom keywords (ngrams). This model performs very well and is very easy
to interpret. If we wanted to implement our algorithm in different faculties or
even universities in the future, we would choose the basic tf-idf method in the
current situation.

The tf-idf method performs well enough and is capable of easier fine-tuning
with external experts who might not have an understanding of recommenda-
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tion processes. It is even possible to transform the model later to a model
with a limited set of skills in the same way as was done on our faculty.

In our work, we have focused more on the classic methods because it was
easier to fine-tune them. For our second experiment, we had very few students;
therefore, a lot of fine-tuning had been done before the experiment based only
on the expert’s judgment.

We would like to focus more on the capabilities of neural embeddings in
the future because it is a state-of-the-art solution when dealing with NLP
tasks. However, we would need to acquire a larger set of student profiles to
properly tune the necessary parameters.

In our second experiment, we can see the differences in performance of
all the tested methods. All of the methods perform well and are capable of
recommending relevant opportunities. With more traffic in the widget, we
would like to implement all three methods to work in parallel and see which
methods the users tend to choose and tend to interact with.
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Conclusion

We analysed various types of recommender systems in the theoretical part
of our work. We described the possibilities of natural language processing
and implemented some of them to further improve our goal, which was the
creation of a recommender system for students that would recommend job
opportunities for them.

The recommender system was successfully implemented in a scalable style.
Our architecture can make quality recommendations even without the student
data, but the capabilities of this system can be improved by implementing a
re-ranking module that utilises student’s university data. We also provided
ideas about possible implementations in different faculties or universities.

We implemented and compared different types of student profiling based
on the previously analysed methods. These methods were thoroughly com-
pared based on their quality of recommendations, the quality of explanations,
and the general capabilities of student profiling. Overall, the results suggested
that the prime method is the tf-idf-based custom keyword method that was
inspired by the paper Reducing Cold Start Problems in Educational Recom-
mender Systems. [33]

In the final part of our work, we created two experiments that support
the contributions of our work. The results of the first experiment indicated
the improvement in recommendation quality that correlates with the use of
an interaction-based recommender system compared to no recommendation
at all. The final experiment confirmed the improvements with the use of the
student profile and its positive impact on personalised recommendations.

We would like to experiment with a wider variety of parameters in the
student profiling in the future, such as the weight adjustments for compulsory
and optional courses or the weight adjustments depending on the time a course
was studied. We would like to further examine the capabilities of neural-based
embeddings and ideally create experiments on more student profiling methods
on a larger set of students.
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Appendix A

Acronyms

AI Artificial intelligence

BERT Bidirectional encoder representations from transformers

GRPR General data protection regulation

IT Information technology

KNN K-Nearest neighbours

NLP Natural language processing

NLTK Natural language toolkit

NN Nearest neighbours

PCA Principal component analysis

RS Recommender system

REI Regional economic index

RFI Regional familiarity index

TF-IDF Term frequency-inverse document frequency
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Appendix B

Contents of Enclosed CD

README.md..........................................content description
matching........................................... jupyter notebooks

skills.ipynb .............................. custom skills extraction
skill computation.ipynb........custom student skills computation
matching.ipynb..........................custom keyword matching
tf idf matching.ipynb.............................tf-idf algorithm
tf idf matching preselected skills.ipynb ... combined algorithm
embedding matching.ipynb ............ neural embeddings matching
final recommendation.ipynb.....................A/B testing split
embeddings...........................neural embeddings extraction

embeddings.ipynb .. jupyter with extraction of neural embeddings
src.....................................folder with python modules

google analytics....................Google Analytics data processing
ga processing.ipynb..................analysis of the captured data

thesis.................the directory of LATEX source codes of the thesis
text..........................................the thesis text directory

Zidcenek mater thesis.pdf.......... the thesis text in PDF format
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Appendix C

Removed Stop Words

Automatically removed stop words: basic knowledge, use, course, appli-
cation, skill, principle, goal, basic, used, project, also, area, method, communi-
cation, presentation, learn, tool, structure, development, gain, able, algorithm,
problem, architecture, data, function, student learn, nan nan, overview, level,
c, understand, nan, knowledge, system, solution, process, implementation,
fundamental, type, example, theory, practical, network, computer, time, the-
oretical, analysis, programming, modern, get, management, module, security,
language, part, aim, design, software, nanstudents, information, test, based,
technique, using, advanced, processing, control, introduction, technology, ex-
perience, environment, work, student, model.

Manually removed stop words: introduction, assignment, successful,
searching, czech, consultation, gain, foundation, regular, component, learn,
aim, sequence, issue, cover, supply, terminal, related, emphasis, area, point,
consultation, revision, construct, class, grade, new, bi, bie, given, goal, ii,
mi, understand, main, provide, provides, study, topics, topic, basic, nan, ap-
ply, work, consultation, etc, give, many, upon, acquire, ability, small, among,
know, taught, c c, well, due, want, useful, republic, good, czech republic,
company, best, bachelor, strong, seminar, value, take, non, e g, mostly, life,
however, last, working, even, university, need, definition, including, example,
field, simple, like.
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