

Master’s thesis

Anomaly detection on the CERN data

centre monitoring data

Bc. Antońın Dvořák

Department of Applied Mathematics

Supervisor: Mgr. Alexander Kovalenko, Ph.D.

Co-supervisor: RNDr. Dagmar Adamová, CSc.1

Co-supervisor: Domenico Giordano, Ph.D.2

May 4, 2022

1Nuclear Physics Institute of the Czech Academy of Sciences
2CERN, IT-CM-RPS

Acknowledgements

I gratefully acknowledge the effort of everyone who had supported me on this
journey, especially my family and girlfriend.

In the scope of the thesis, I would like to thank Alex for his valuable in-
sights. Thank you, Dagmar, and the whole Nuclear Physics Institute of the
CAS, for this opportunity and support. Thanks to the CERN Cloud Infras-
tructure section (IT-CM-RPS) for welcoming me into the team and mostly
to Domenico for guiding me through this project. Thanks to Stiven, who has
been working with me on the project while doing his thesis. Last but not least,
thanks to Matteo for building the solid foundation, on which this project is
built on.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as a school work
under the provisions of Article 60 (1) of the Act.

In Prague on May 4, 2022

Czech Technical University in Prague
Faculty of Information Technology
© 2022 Antońın Dvořák. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Dvořák, Antońın. Anomaly detection on the CERN data centre monitoring
data. Master’s thesis. Czech Technical University in Prague, Faculty of Infor-
mation Technology, 2022.

Abstrakt

Jednou z mnoha úloh CERN cloud manažer̊u je zajistit požadovaný výpočetńı
výkon všem uživatel̊um dané vědecké komunity. Toho je dosaženo pečlivě
nastaveným statickým alarming systémem nad výkonostńımi metrikami in-
frastruktury.

Pro dosažeńı maximálńı efektivity cloudové infrastruktury a ulehčeńı práce
cloud operátor̊um jsme vytvořili plně automatizovaný systém pro detekci ano-
málíı, který využ́ıvá metody nesupervizovaného učeńı nad časovými řadami.
Konkrétně použ́ıvá kombinaci tradičńıch metod strojového učeńı (Isolation
forest) a metod hlubokého učeńı (Gated recurrent unit/Long short-term me-
mory autoencodery).

Tato práce zahrnuje popis monitorovaćı infrastruktury CERNU, formu-
laci problému, design systému pro detekci anomálíı, použité modely, tvorbu
datasetu a porovnáńı výsledk̊u implementovaných model̊u v̊uči aktuálńımu
alarming systému.

Kĺıčová slova detekce anomálíı, nesupervizované strojové učeńı, časové řady,
cloud

vii

Abstract

One of the many tasks of CERN cloud service operators is to make sure
that the desired computational power is delivered to all users of the scientific
community. This task is accomplished by carefully setting threshold-based
alarming on top of the infrastructure performance time series metrics.

In order to maximize the efficiency of the cloud infrastructure and to re-
duce the monitoring effort for service operators, we have developed a fully
automated Anomaly Detection System that leverages unsupervised machine
learning methods for time series metrics. Moreover, adopting ensemble meth-
ods, we combine traditional (Isolation forest) and deep learning (Gated recur-
rent unit/Long short-term memory Autoencoders) approaches.

This work presents a description of the CERN monitoring infrastructure,
problem formulation, design of the Anomaly Detection Pipeline, description
of used models, creation of the dataset and performance of the implemented
models compared to the performance of the Current Alarming System.

Keywords anomaly detection, unsupervised machine learning, time series,
cloud

viii

Contents

Introduction 1
CERN Data Centre . 2
Thesis Outline . 3

1 Monitoring Infrastructure 5
1.1 MONIT Architecture . 5

1.1.1 Collection . 6
1.1.2 Ingestion . 6
1.1.3 Transport/Processing 6
1.1.4 Storage . 7
1.1.5 Presentation . 7

1.2 MONIT Technologies . 7
1.2.1 Collectd . 7
1.2.2 Spark . 8
1.2.3 HDFS . 8
1.2.4 ELK Stack . 8
1.2.5 Grafana . 8
1.2.6 SWAN . 9

2 Problem Formulation 11
2.1 Definitions . 11

2.1.1 Time Series . 11
2.1.2 Metric . 11
2.1.3 Hostgroup . 12
2.1.4 Anomaly . 12
2.1.5 Anomaly Detection . 12

2.2 Anomaly Detection on the monitoring data 13
2.2.1 Anomaly in data centre context 14

3 Anomaly Detection Pipeline 15

ix

3.1 Input preparation . 15

3.1.1 Filtering . 17

3.1.2 Aggregation . 17

3.1.3 Normalization . 17

3.1.4 Windowing . 18

3.2 Training . 18

3.3 Inference . 19

3.4 Publish . 19

3.5 Presentation . 20

3.6 Production deployment . 20

3.6.1 Airflow . 20

3.6.2 GitLab CI/CD . 22

4 Anomaly Detection Models 23

4.1 Traditional Machine Learning 23

4.1.1 Isolation Forest . 24

4.2 Deep Learning . 25

4.2.1 LSTM Autoencoder . 26

4.2.2 GRU Autoencoder . 29

4.3 Ensemble . 30

5 Labeled Dataset 33

6 Experiments and Results 35

6.1 Used Resources . 36

6.2 Input metrics . 36

6.3 Figure of Merit . 37

6.3.1 AUC-ROC . 37

6.3.2 Training and Inference time 38

6.4 Performance of the Individual Models 39

6.4.1 Isolation Forest . 39

6.4.2 Autoencoders . 40

6.4.3 Summary . 44

6.5 Comparison with Current Alarming System 45

6.5.1 Current Alarming System 45

6.5.2 Evaluation and Comparison 46

7 Future Work 49

Conclusion 51

Bibliography 53

Acronyms 57

x

A Contents of enclosed CD 59

xi

List of Figures

1.1 MONIT architecture [1] . 6

2.1 Long-term load metric for multiple HVs 12

3.1 Anomaly Detection System architecture 16

3.2 Example of Grafana dashboard with anomaly scores 20

3.3 Airflow DAG for the pipeline . 21

3.4 Airflow scheduling over multiple days 22

3.5 GitLab CI/CD pipeline . 22

4.1 Partitioning of the 2D feature space and Path Length in Isolation
Tree for anomalous and normal sample; individual cuts required to
isolate given sample are numbered [2] 25

4.2 LSTM Cell [3] . 28

4.3 GRU Cell [4] . 30

5.1 Labeled Dataset based on a Shared Hostgroup: blue = normal,
orange = anomaly . 34

6.1 Confusion Matrix . 37

6.2 ROC and AUC of poorly performing model (left) and well-performing
model (right) . 38

6.3 Training/validation loss and distribution of the scores of poorly
performing GRU model (5 Units, 0 Dropout) with AUC-ROC of
0.617 . 41

6.4 Training/validation loss and distribution of the scores of well-performing
GRU model (1 Unit, 0.25 Dropout) with AUC-ROC of 0.967 . . . 42

6.5 CPU Load alerts in the Current Alarming System: horizontal red
line = threshold, vertical red arrow = alert triggered, vertical green
arrow = previous alert no longer triggered 46

xiii

6.6 Grafana Dashboard containing anomaly scores from ensemble method
ENS3 and individual models for the time period of 7 days 48

xiv

List of Tables

6.1 Monitoring metrics used by the proposed solution and used by the
current alerting system. 36

6.2 AUC-ROC, training and inference time of IFOR with different
numbers of iTrees . 39

6.3 AUC-ROC, training and inference time of IFOR with different
lengths of the training period . 40

6.4 AUC-ROC, training, and inference time of LSTM-AE with differ-
ent parameters . 40

6.5 AUC-ROC, training, and inference time of GRU-AE with different
parameters . 41

6.6 AUC-ROC, training and inference time of LSTM-AE with different
lengths of the training period . 43

6.7 AUC-ROC, training and inference time of GRU-AE with different
lengths of the training period . 43

6.8 AUC-ROC of LSTM-AE and GRU-AE with a single Dropout layer 43
6.9 AUC-ROC of LSTM-AE proposed in previous work [5] 44
6.10 Stability of model performance based on the average and standard

deviation of the AUC-ROC for one week-long (AUC-ROC week)
and one month-long (AUC-ROC Month) training periods 44

6.11 True positive rate (TPR) measured at different values of the False
Positive Rate (FPR) for the predictions of the Current Alarming
System, the proposed individual models, and the proposed ensem-
ble methods ENSe for e = 1, 2, 3 47

xv

Introduction

“The Big Bang should have created equal amounts of matter and
antimatter in the early universe. But today, everything we see
from the smallest life forms on Earth to the largest stellar objects
is made almost entirely of matter. Comparatively, there is not
much antimatter to be found. Something must have happened to
tip the balance. One of the greatest challenges in physics is to figure
out what happened to the antimatter, or why we see an asymmetry
between matter and antimatter?” [6]

This is the type of questions that CERN, the European Organisation for
Nuclear Research, is aiming to answer. CERN is the largest particle physics
laboratory in the world, located on the border of France and Switzerland.
CERN has built and is operating Large Hadron Collider (LHC) which is the
world’s largest and most powerful particle accelerator.

Processing the data produced by the LHC experiments requires a signif-
icant amount of computing power and storage. During previous years the
experiments produced up to 90 petabytes of data per year. Towards the high
multiplicity LHC upgrade, this amount will significantly increase. To pro-
cess and store the LHC data, CERN has built a worldwide infrastructure
involving almost 170 computing sites in 42 countries spread over 5 continents
interconnected by a high capacity network, the Worldwide LHC Computing
Grid (WLCG) [7].

1

Introduction

CERN Data Centre

Let’s begin with an introduction to OpenStack, Hypervisor, and Virtual Ma-
chine:

OpenStack: a cloud operating system that controls large pools of com-
puting, storage, and networking resources throughout a data centre, all man-
aged and provisioned through Application Programming Interface (API)s with
common authentication mechanisms [8].

Hypervisor: software that creates and runs Virtual Machine (VM). It
isolates the hypervisor’s operating system and resources from the VM and
manages the lifecycle of the VMs [9].

Virtual machine: a virtual environment that functions as a virtual com-
puter system with its own Central Processing Unit (CPU), Random-Access
Memory (RAM), network interfaces, and storage, created on physical hard-
ware [10].

The CERN data centre is in the middle of its scientific infrastructure and is
the central site of the WLCG. Over 90% of the computing resources at CERN
are provided by OpenStack private cloud, which has been deployed by the
CERN IT department and has been running in the production environment
since 2013 [11].

This cloud is composed of 7895 physical servers, which contain 423 000
CPU cores and 1,73 petabytes of RAM.

1695 of the servers are used as a Hypervisor (HV), which contain 48 100
CPU cores and 296 terabytes of RAM. They are hosting 14 435 VMs, which
are used for computations in various physics experiments and in internal IT
services. The rest of the servers are used for the provisioning of bare metal
machines instead of VMS.

Compared to previous years the number of HVs has drastically decreased
– in January 2021 there were around 8000 of them. The introduction of Open-
Stack Ironic project at CERN allowed migration of VMs to physical servers,
which can be operated through the same OpenStack API as VMs, with the
benefit of increased performance (approximately 5% gain from the removal
of the virtualization tax [12]). The CERN Batch service used this possibility
and migrated most of its VMs to bare metals in multiple chunks over several
months.

During the cooperation with CERN, I was part of the IT-CM-RPS (IT de-
partment, Compute & Monitoring, section of Resource Provisioning Services),
which is responsible for the maintenance, operations, and provisioning of the
Cloud Infrastructure.

2

Thesis Outline

Thesis Outline

The thesis is structured as follows:

• Chapter 1 describes the CERN Monitoring Infrastructure,

• Chapter 2 defines important terms and presents the problem formula-
tion,

• Chapter 3 describes the structure of the Anomaly Detection Pipeline,

• Chapter 4 introduces models used for the Anomaly Detection,

• Chapter 5 presents a labeled dataset,

• Chapter 6 contains experiments for the proposed solution and its com-
parison with respect to the Current Alarming System,

• Chapter 7 summarizes topics that can be explored in the future.

3

Chapter 1

Monitoring Infrastructure

In this chapter, we will introduce the architecture of the Monitoring Infras-
tructure and a more in-depth description of several used technologies relevant
to the scope of this work.

Monitoring is an essential component (especially) in large-scale infrastructure.
It is providing the users with information about the state of their service(s)
at a given point in time. It can provide information for both software and
hardware services. Monitoring data consist of:

• metrics – state information,

• logs – event records,

• alarms – notifications about the abnormal state.

1.1 MONIT Architecture

MONIT is a Unified Monitoring that was introduced in 2016 when it was
decided to merge the WLCG monitoring services, resources, and technologies
with the internal CERN IT data centre monitoring services [13].

The monitoring infrastructure is very robust. It has to work with data
provided by all servers, both virtual and physical. This comes to around 20
000 providers, which are sending different kinds of metrics and logs. This
equals to more than 3 terabytes of compressed data every day, with an input
rate of 100 kHz [14].

The architecture of MONIT can be seen in Figure 1.1. All parts will be
introduced in the following sections. The architecture description is based on
multiple sources [1, 15, 16].

5

1. Monitoring Infrastructure

Processing

…

Collection Ingestion Transport /

Processing
Storage Presentation

Transport

CONNECT

http

jms

jdbc

avro

Figure 1.1: MONIT architecture [1]

1.1.1 Collection

The collection layer is composed of multiple daemon agents collecting relevant
monitoring data. These agents are executed locally on the monitored hosts.
They collect Operating System (OS) and application metrics, logs and alarms.
Their job is to collect the data and send results to the next layer.

Various open-source technologies are used for the data collection, for ex-
ample Collectd, Fluentd/Logstash (component of ELK Stack), Prometheus
and the selection depends on specific use case.

1.1.2 Ingestion

The ingestion layer provides various inlet points (gateways) for different data
collectors. Most of the data is sent to Apache Flume which supports 14
different gateways (collectd, Prometheus, JavaScript Object Notation (JSON),
etc.) and is composed of more than 200 instances. The goal of the ingestion
layer is to prepare data with a predefined scheme.

1.1.3 Transport/Processing

The transport/processing layer is the divider between producers and con-
sumers.

The transport part enables streaming processing and provides resilience
and reliability. It is provided by Apache Kafka, which is a distributed stream-

6

1.2. MONIT Technologies

ing platform. It runs on 20 instances with triplicated data and offers a buffer
with a retention period of 72 hours.

The processing part offers processing over big datasets (correlation, ag-
gregation, transformation, data enrichment, compression, etc.). Data can be
streamed directly from Kafka or it can be read from storage. Processing is
mostly done using Spark.

1.1.4 Storage

The storage layer provides multiple backends, which support different reten-
tion periods and types of data.

Time series can be stored in InfluxDB, which offers 3 retention periods – 1
week for original data, 1 month with aggregation of 5 minutes, and 5 years with
aggregation of 1 hour. Elasticsearch (the main component of ELK Stack) is
used to store logs and other JSON documents for a short-term period. HDFS
is used as long-term storage with no aggregation.

1.1.5 Presentation

The presentation layer defines, how users can observe the data and is composed
of multiple web applications. It offers dashboards, notifications, and search
tools.

The most common tool is Grafana for visualizations of time series obtained
from both InfluxDB and Elasticsearch. Kibana (a component of ELK Stack) is
an alternative to Grafana for observations of Elasticsearch documents. SWAN
offers an interactive data analysis.

1.2 MONIT Technologies

In this section, we will describe some of the used technologies in the MONIT,
that are relevant to the scope of this work and are used in the Anomaly
Detection Pipeline.

1.2.1 Collectd

Collectd is a lightweight Unix daemon introduced in 2005 that collects, stores,
and transfers performance data [17]. It is a modular solution based on plugins.
The output of a single plugin can consist of multiple parameters. There is a
variety of out-of-the-box plugins, mostly for OS metrics, but also for some
application metrics. Custom plugins can be made for specific use cases as
long as they follow the required output structure.

7

1. Monitoring Infrastructure

1.2.2 Spark

Apache Spark is a multi-language engine for executing data engineering, data
science, and machine learning on single-node machines or clusters [18].

Spark application consists of two main components:

• driver – converts the user’s code into multiple tasks that can be dis-
tributed across worker nodes

• executor – executes the assigned tasks

1.2.3 HDFS

Hadoop Distributed File System (HDFS) is a distributed file system, which
is highly fault-tolerant and is designed to be deployed on low-cost hardware.
It provides high throughput access to application data and is suitable for
applications that operate with large datasets [19].

1.2.4 ELK Stack

ELK Stack is a set of tools for centralized logging, optimized for fast search.
ELK is an acronym for three open source projects: Elasticsearch, Logstash,
and Kibana.

Logstash is a tool to collect, process, and forward events/log messages. When
the input plugin collects data, it can be processed by multiple filters, which
modify and annotate the data. Then Logstash transports data to output
plugins, which can forward them to various external programs, for example,
Elasticsearch.

Elasticsearch is a distributed, scalable, and highly available search and
analytics engine, excelling at full-text search in near-real-time (meaning docu-
ment is indexed and searchable within seconds) built on top of Apache Lucene.
Elasticsearch is considered a NoSQL database.

Kibana is a browser-based data visualization dashboard for Elasticsearch.
It is used for searching, viewing, visualizing, and analyzing the data from
Elasticsearch [20].

1.2.5 Grafana

Grafana is web-based visualization and analytics software introduced in 2014.
It is capable to query multiple data sources, creating dashboards and alerts
based on some evaluation criteria.

Supported data sources are for example InfluxDB, Elasticsearch, and Prometheus.

8

1.2. MONIT Technologies

1.2.6 SWAN

Service for Web based Analysis (SWAN) is a CERN web-based platform to
perform interactive data analysis with a Jupyter notebook interface and shell
access without the need to install any software. Data can be stored in the
personal or shared part of the cloud storage, which makes sharing easy. SWAN
is capable of offloading big data computations to Spark [21].

9

Chapter 2

Problem Formulation

In this chapter, we will define some of the essential terms and formulate the
problem of Anomaly Detection on monitoring data time series.

2.1 Definitions

Let’s start with the definition of generic terms, that are further important for
the specific problem formulation.

2.1.1 Time Series

A time series is an ordered sequence of numerical data points measured over
successive times. It is defined as {Xt}, t ∈ T . Set T = {t0, t1, . . .} represents
time of measurement and variable Xt is a time-dependent random variable.

A time series having a single time-dependent variable is called univariate.
Time series containing multiple time-dependent variables is called multivari-
ate.

Time series can be continuous or discrete. Continuous time series represent
a data point for every point in time. On the other hand, discrete time series
consist of discrete points in time, usually, the consecutive observations are
spaced by fixed time intervals.

2.1.2 Metric

Metric is a discrete univariate time series, which represents the behavior of a
single parameter collected by collectd plugin.

Figure 2.1 displays one week of long-term load metric reported by collectd
Load plugin for HVs in a single Hostgroup (HG).

11

2. Problem Formulation

Figure 2.1: Long-term load metric for multiple HVs

2.1.3 Hostgroup

A Hostgroup is a set of HVs having the same configuration and hardware
resources. In this work, we observe Hostgroups called shared – a set of HVs
shared by service servers. These HGs are considered as most complex and most
difficult to monitor with threshold-based alerting due to the high variability.

2.1.4 Anomaly

In spoken language, an anomaly is something different, abnormal, peculiar, or
not easily classified. Something which deviates from the common rule [22].

In terms of data science, anomalies are rare patterns in data that sig-
nificantly differ from normal behavior. They might be present in the data
for many reasons, for example, due to malicious activity (credit card fraud,
cyber-intrusion, terrorist activity, breakdown of a system, etc.) [23]. To be
able to declare what normal behavior is we need a dataset, thus anomalies are
dataset-dependant deviations.

In general, we can’t say anomalies are exclusively good or bad. They are
just deviations from the expected behavior at a given point in time.

The consequences of deviant behavior are the driving force of Anomaly
Detection (AD).

2.1.5 Anomaly Detection

Anomaly Detection is a data processing technique to detect anomalies in the
dataset. In terms of machine learning, it can be supervised, semi-supervised
or unsupervised. Most of the time it is applied to unlabeled datasets, which
makes it unsupervised AD.

The goal of unsupervised AD is to detect deviating patterns without any
prior knowledge about what is or isn’t anomalous. The assumption is that

12

2.2. Anomaly Detection on the monitoring data

the percentage of anomalies in the dataset is small (usually less than 1%)
and they are significantly different from what can be considered normal be-
havior. In most cases, this means modeling normal data distribution and
defining measurements in this space to be able to classify samples as normal
or anomalous [24].

2.2 Anomaly Detection on the monitoring data

We define a data centre as a set of computer clusters. Cluster C is composed of
N HVs having the same hardware equipment and software configuration (for
example HVs from the same HG). Each specific HV in the cluster is denoted
by hi with i = 1, . . . , N and generates M metrics, such as the usage of CPU,
memory, disk, network, etc. We denote with

mj
i = {mj

i (t), t = T1, T2, . . .} (2.1)

the jth metric for the HV hi measured at the timestamps t, where t is arbi-
trarily numbered from 1 to infinite.

All the metrics {mj
i , i = 1, . . . , N, j = 1, . . . ,M} might be measured at

different times T1, T2, . . ., possibly with different sampling frequencies (e.g.,
Disk IO Time is being acquired at a frequency in the order of seconds, while
CPU Load in the order of minutes). However, we assume that all these are
synchronized, namely that they refer to an identical reference clock.

We assume that in normal operating conditions, all metrics are being gen-
erated by a normal (non-anomalous) process PN which is unknown. If at
time τ an anomaly occurs in the data centre, the metrics are generated by an
anomalous process PA, which is also unknown and different from PN . The
anomalous behavior might affect only a few HVs or a few metrics, thus we
model our metrics as follows:

mj
i (t) ∼

{
PN if t < τ ∀ i, j,

PA if t ≥ τ for at least some i, j,
(2.2)

where we assume that the metrics mj
i that are not affected remain generated

by PN even if t ≥ τ . Even though (2.2) describes a change-detection problem,
we refer to Anomaly Detection in this work since the process PA is typically
triggered by a HV following an anomalous behavior.

Our goal is to design a model that steadily monitors all metrics {mj
i , i =

1, . . . , N, j = 1, . . . ,M} and that promptly reports any anomaly. For this
purpose, we assume that a training set TR, containing a portion of the time
series from all the N HVs of the cluster C, is given to configure our model. TR
is not guaranteed to be free from anomalies. However, from empiric evidence,
we assume that the vast majority of TR is generated by PN , and anomalies – if
any – are very rare. TR is unlabeled, therefore we operate in an unsupervised
Anomaly Detection scenario.

13

2. Problem Formulation

2.2.1 Anomaly in data centre context

One of the biggest issues in a virtualized environment is a situation when
the state of HV negatively affects the performance of hosted VMs. This can
be caused by hardware failures, misconfigurations, or by the noisy neighbor
problem.

A noisy neighbor [25] is a VM that over-consumes HV resources and leaves
other VMs with resource deficit, which will affect the performance. This can
be related to the CPU, RAM, network, storage, etc.

14

Chapter 3

Anomaly Detection Pipeline

Proof of Concept of the Anomaly Detection Pipeline and Library was devel-
oped in the previous work [5]. This work is an extension to it, introducing
new features, modifications and further optimizations. Our GitLab repository
containing the source code is publicly available 3.

The architecture of the system is displayed in Figure 3.1 and the workflow
consists of the following steps:

1. Input preparation – read the collectd data from HDFS, prepare it using
Spark and move the prepared data to EOS,

2. Training – train the models on training data,

3. Inference – produce anomaly scores on inference data,

4. Publishing – prepare the results and send them to Elasticsearch,

5. Presentation – visualize results using Grafana dashboards.

At the end of the chapter we describe how the production pipeline is deployed.

It is also important to mention that HDFS does not contain online data.
All the collectd data for a given day are available on the HDFS the next day,
usually around 4 AM. In the current state, we present an offline AD system,
which produces anomaly scores for the data of the previous day and presents
them to service managers in the morning of the next day.

3.1 Input preparation

This section covers the preparation of the input data for the AD system.
Algorithm 1 presents the pseudocode of this procedure.

3https://gitlab.cern.ch/cloud-infrastructure/data-analytics/

15

3. Anomaly Detection Pipeline

Filtering

Data source

Aggregation Normalization Windowing

Input preparation

Training
dataset

Inference
dataset

Training Inference

Tr
ai

ne
d

m
od

el
s

Monitoring
Dashboards

IFOR

GRU-AE

LSTM-AE

IFOR

GRU-AE

LSTM-AE En
se

m
bl

e Presentation

P
ub

lis
hi

ng
Figure 3.1: Anomaly Detection System architecture

Algorithm 1: Input Preparation Pseudocode

Data: time start, time end, aggr period, window length, metrics,
hostgroups

Result: multivariate time windows
1 collectd plugins = get plugins(metrics) // get plugin names from

metrics definition

2 collectd data = hdfs read(collectd plugins, time start, time end)
// load plugins for specified time period

3 filtered data = filter data(collectd data, metrics, hostgroups) // get

data for specified metrics and HGs

4 aggregated data = aggregate(filtered data, aggr period) // aggregate

data with given aggregation period

5 norm metrics = empty list // prepare list for normalized metrics

// iterate over each metric

6 for each metric m in aggregated data do
7 stdev = get stdev(m) // calculate standard deviation for metric m

8 mean = get mean(m) // calculate mean for metric m

9 norm metric = normalize(m, stdev, mean) // normalize metric m

10 norm metrics.append(norm metric) // save normalized metric

11 end
12 multivariate time windows = windowing(norm metrics,

window length) // prepare normalized time windows

13 return multivariate time windows

16

3.1. Input preparation

3.1.1 Filtering

Every HV h produces M (order of hundreds) real-valued metrics m, but only
K of them are used for the purpose of AD.

HDFS contains original (unaggregated) Collectd metrics for all hosts and
plugins. Filtering process is applied to obtain data in given time period only
for selected metrics and N HVs forming the cluster C = (h1, h2, . . . , hN).

3.1.2 Aggregation

Metrics are collected at different times for each HV hi and with different
frequencies depending on the definition of the plugins. In order to provide
consistent measurements, the aggregation has to be applied to the original
metrics. The aggregation period must not be lower than the lowest collecting
frequency of all observed plugins.

Given jth metric mj
i = {mj

i (t0),mj
i (t1), . . .} for a HV hi the aggregated metric

is produced by averaging mj
i values in disjoint consecutive intervals with size

of aggregation period forming new metric dj
i = {dj

i (t0), dj
i (t1), . . .}. Formally:

dj
i (tk) = mean(mj

i (t) ∈ mj
i | tk − aggregation period < t ≤ tk). (3.1)

3.1.3 Normalization

To make all the metrics equally important in the AD problem, we normalize
each of them relatively to the cluster C. We assume that HVs in the same
cluster have the same distribution of the same jth metric. For each metric dj

we compute the mean and standard deviation over the cluster:

µj(C) =

∑
i∈N

∑
t0<t≤tT

dj
i (t)

N · T
, (3.2)

σj(G) =

√∑
i∈N

∑
t0<t≤tT

(dj
i (t) − µj(C))2

N · T
, (3.3)

where t0 and tT are respectively the start and end timestamp of the training
period, T is the total number of time steps in the training period, and N
is the number of HVs in cluster C. We compute µj(C) and σj(C) for all
j ∈ {1, . . . ,K}. Then for each HV hi of cluster C and metric j we compute a
normalized metric nj

i = {nj
i (t0), nj

i (t1), . . .} where:

nj
i (tk) =

dj
i (tk) − µj(C)

σj(C)
. (3.4)

This normalization is computed over the training period and then it is
applied to the training and the inference data.

17

3. Anomaly Detection Pipeline

3.1.4 Windowing

Each of normalized metrics nj
i for HV hi is divided into consecutive non-

overlapping sub-series of length L ∈ R. Metric window is formed by merging
all K metrics starting from time tk – where k mod L = 0. The metric window
can be represented as a matrix Wi,j ∈ R

K×L:

Wi,j =

n1
i (tk) n1

i (tk+1) · · · n1
i (tk+L−1)

n2
i (tk) n2

i (tk+1) · · · n2
i (tk+L−1)

...
...

. . .
...

nK
i (tk) nK

i (tk+1) · · · nK
i (tk+L−1)

(3.5)

3.2 Training

In the training part, we prepare all models as described in the configuration
file. Each of the models is initialized, built, and trained on the training data.
Additionally, anomaly score predictions are generated on the training data to
obtain the standard deviation and mean of the scores. These values are later
used in the inference part to normalize scores, which helps models produce
anomaly scores in a similar range centered around zero. In the end, models
are saved to the file system and can be later used (repeatedly) in the inference
part without re-training.

This procedure is described in Algorithm 2.

Algorithm 2: Training Procedure

Data: training data, model config
Result: trained models
// iterate over defined models

1 for each model in model conf do
2 model = init model(model.params) // initialize the model with

specified parameters

3 model.build() // build the model

4 model.train(training data) // train the model on training data

5 scores = model.predict(training data) // produce anomaly scores

over training data

6 model.tr stdev = get stdev(scores) // obtain standard deviation of

anomaly scores

7 model.tr mean = get mean(scores) // obtain mean of anomaly

scores

8 model.save() // save the model

9 end

18

3.3. Inference

3.3 Inference

In the inference part models are initialized and then the trained models are
loaded. Each model goes through all time windows in the inference dataset
and produces an anomaly score. The anomaly score is then normalized with
the coefficients of training standard deviation and mean. Both original and
normalized anomaly scores along with additional information about the win-
dow are then saved to the file system.

This procedure is described in Algorithm 3.

Algorithm 3: Inference Procedure

Data: inference data, model config
Result: Anomaly scores for all windows
// iterate over defined models

1 for each model in model conf do
2 model = init model(model.params) // initialize the model with

specified parameters

3 model.load() // load the trained model

// iterate over windows in inference data

4 for each window w in inference data do
5 score = model.predict(w) // produce anomaly score for given

window

6 normalized score = normalize(score,tr stdev, tr mean)
// normalize the score with training coefficients

7 save(score, normalized score, model.info, window.info) // save

the result

8 end

9 end

3.4 Publish

This step covers the processing of anomaly scores obtained from the Inference
part.

Saved scores are divided per time window range and per model. The publisher
goes through all time windows in a specified time range and iterates over each
of the model results to read the scores and decides what time windows to
publish based on publishing strategy (TOP K, above the threshold, etc.).

The time windows, which satisfy the publishing criteria, are processed to
produce JSON documents containing very detailed information about the time
window – timestamps, HV name, HG name, name of the model, used metrics,

19

3. Anomaly Detection Pipeline

Figure 3.2: Example of Grafana dashboard with anomaly scores

anomaly score and normalized anomaly score, coefficients used to normalize
the score, rank of the score, etc. These documents are then sent by Fluentd
to Elasticsearch.

3.5 Presentation

Presentation is a step in which results can be visualized and observed.

Presentation consists of multiple sets of Grafana dashboards. Grafana sup-
ports Elasticsearch as a data source, which allows us to directly visualize
the results prepared by Publish step. Additional aggregation or filtering is
supported by Grafana variables and/or queries to obtain only specific entries
based on the use case. For each dashboard, there is a possibility to set up
alerts to notify cloud operators.

In Figure 3.2 we show an example of a Grafana dashboard displaying sum
of normalized anomaly scores above the threshold for three individual models.

3.6 Production deployment

In this section, we will discuss some technologies, which help us to achieve
a fully automated AD system and ease the deployment of new features or
changes.

3.6.1 Airflow

As an orchestrator, we use Apache Airflow for all the steps of the pipeline. It
is an open-source workflow management platform that is configured through

20

3.6. Production deployment

Figure 3.3: Airflow DAG for the pipeline

a Directed Acyclic Graph (DAG). Each node of the DAG represents a step in
the pipeline. In Figure 3.3 we show our DAG for the AD pipeline.

Note that green means success, pink skipped, and red failure. Failure does
not always mean failure of the pipeline – based on the DAG definition suc-
cess/failure can be used as a condition to direct the flow of steps.

The DAG is divided into four logical parts:

• TRN – check the presence of prepared training data on EOS, if not
present then prepare it (Sec. 3.1) and save it to EOS,

• TRN – train the models on training data (Sec. 3.2),

• INF – check the presence of prepared inference data on EOS, if not
present then prepare it and save it to EOS,

• INF – produce the anomaly scores over inference data (Sec. 3.3) and
publish them (Sec. 3.4).

Airflow handles automated scheduling in specified time intervals. In our case,
we repeat the pipeline three times a day for the data of the previous day,
which is shown in Figure 3.4.

Every step of the pipeline is executed in a Docker container based on im-
ages containing all necessary libraries. Docker images are prepared by GitLab
Continuous Integration / Continuous Delivery (CI/CD).

21

3. Anomaly Detection Pipeline

Figure 3.4: Airflow scheduling over multiple days

Figure 3.5: GitLab CI/CD pipeline

3.6.2 GitLab CI/CD

We don’t use GitLab just to manage the codebase, but we also leverage the
usage of the GitLab CI/CD.

When change is applied to specified branches GitLab CI/CD job (Fig. 3.5)
is automatically executed. This job is responsible for the preparation of var-
ious Docker images and testing of the code changes with a predefined set of
test rules to ensure the validity and functionality of the change.

Jobs are also triggered every week even under no changes to ensure no new
issues have appeared (for example incompatibilities with upstream libraries).

22

Chapter 4

Anomaly Detection Models

We elaborate on the detection of HVs having an anomalous behavior in (2.2)
by learning an anomaly score function A that takes a metric window Wi,k

(defined in Sec. 3.1.4) as input and returns low scores for Wi,j generated by
normal process PN , and higher scores for Wi,j containing values generated by
anomalous process PA. The anomaly score function is a mapping of this type:

A(·) : RK×L → R
+, (4.1)

that analyzes the collective behavior of all N HVs in the cluster C and is
trained on the whole training set TR. We detect anomalies by simply com-
paring A(Wi,k) against a threshold Γ as follows:

AD(Wi,k,Γ) =

{
1 if A(Wi,k) > Γ,

0 otherwise.
(4.2)

The threshold Γ is typically set to control the false positive rate. In par-
ticular, Γ can be selected as a quantile of the anomaly score from a subset of
windows from TR that have not been used for learning A.

Based on the results of previous work [5], the best performing model of
Traditional Machine Learning was Isolation Forest (IFOR) and from the Deep
Learning Long-Short Term Memory Autoencoder (LSTM-AE). This work ex-
tends the study and implements the Deep Learning model Gated Recurrent
Unit Autoencoder (GRU-AE).

We have implemented three unsupervised methods (IFOR, LSTM-AE,
GRU-AE) to model three different anomaly score functions Aλ (λ = 1, 2, 3).

4.1 Traditional Machine Learning

Traditional Machine Learning is a subset of Machine Learning algorithms
that utilizes a simple structure such as linear regression or decision trees (as
opposed to Deep Learning).

23

4. Anomaly Detection Models

Traditional Machine Learning models can be used to solve problems of
classification, regression, clustering, dimensionality reduction, and Anomaly
Detection.

Examples of Traditional algorithms: Linear Regression, Logistic Regres-
sion, Naive Bayes, K-means, Random Forest, Isolation Forest [26].

4.1.1 Isolation Forest

IFOR [27] is an Anomaly Detection algorithm that builds an ensemble of n
Isolation Trees. It identifies anomalous samples based on ”how early” they
can be isolated from the rest of the dataset.

Isolation means the separation of the sample from the rest. It leverages
the assumption that anomalies are presented in low numbers and are very
different from the normal samples, which allows easier/sooner isolation under
random partitioning.

An Isolation Tree (iTree) is a Binary Search Tree (BST), where each node
has exactly zero or 2 children nodes, that learns to isolate samples. Each of
the n trees is given a dataset X = {x1, . . . , xm} and it recursively divides X
by randomly selected feature q and split value p until either the tree reaches
limit height, X can be no longer divided (|X| = 1) or samples in X are equal.

Path Length h(x) of a sample x is defined as the number of edges x has
to traverse in an iTree from the root of the tree to the terminal node (node
with no child nodes).

Anomaly score can’t be easily computed just by the average of h(x) from n
trees, because the maximum possible height of iTree grows in the order of m,
but the average height grows in the order of logm. Original work [27] exploits
the same structure of iTree and BST to define the average path length of iTree
as of the BST based on [28] as follows:

c(m) = 2H(m− 1) − 2(m− 1)/m, (4.3)

where H(i) is the harmonic number estimated by ln i+ 0.5772156649 (Euler’s
constant). The final anomaly score s of sample x is then defined as:

s(x,m) = 2
−

E(h(x))
c(m) , (4.4)

where E(h(x)) is the average h(x) over n iTrees. Using the anomaly score s
final assumptions are set as:

• if sample returns s very close to 1, then it is definitely anomalous,

• if sample returns s much smaller than 0.5, then it can be safely consid-
ered as normal,

• if all samples return s close to 0.5, then X does not contain any anoma-
lous data.

24

4.2. Deep Learning

Figure 4.1 shows the difference of Path Length in single iTree for anomalous
and normal samples.

Figure 4.1: Partitioning of the 2D feature space and Path Length in Isolation
Tree for anomalous and normal sample; individual cuts required to isolate
given sample are numbered [2]

Implementation

IFOR is not designed to model the temporal behavior of a multivariate time
series. We solve this by concatenating the rows of each window Wi,k ∈ R

K×L

into a vector ~wi,k ∈ R
V where V = K · L, and use this as an input to IFOR.

This work uses the off-the-shelf implementation of PyOD Isolation Forest.

4.2 Deep Learning

Deep Learning is a subset of Machine Learning using a layered structure of
artificial neural networks (ANN). This allows a process of learning that’s far
more capable than traditional machine learning models.

Compared to Traditional Machine Learning it usually requires significantly
more computing power and a larger amount of data to be trained [29].

Popular Deep Learning architecture for the purpose of Anomaly Detection is
an Autoencoder [30].

25

4. Anomaly Detection Models

Autoencoder

Autoencoder [31] is a type of neural network, that learns to reconstruct the
input to its output. It consists of the encoder function φ that maps the
original input X to the latent space F , and then reconstructs X by mapping
the decoder function ψ to the latent space F :

φ : X → F , (4.5)

ψ : F → X . (4.6)

The training process of the Autoencoder is determined as minimizing the
loss function L(x, ψ(φ(x))) that penalizes dissimilarity between the input and
reconstructed output, such as the mean squared error [32].

Most typical architecture of the Autoencoder is undercomplete, meaning
the dimensionality of a latent space is significantly smaller than that of the
input space. During the training process, the model is ”forced” to learn the
most salient features of the input data, i.e. regular patterns, generalizing over
the train set. By definition anomalies are considered an irregularity, therefore
undercomplete Autoencoders fail to reconstruct anomalous data with the same
level of precision as compared to normal data.

Generally, an Autoencoder for Anomaly Detection can be built using any
type of neural network layers (i.e. feed-forward linear layers [30], convolutional
layers [33], etc.). Because this work is focused on the Anomaly Detection per-
formed on the time-series data, it is profitable to use recurrent data behavior
in order to reach higher performance.

Unlike previously published undercomplete autoencoder [5] used for the
same application, in the present work we use a different approach. The imple-
mented model has no regular bottleneck, the latent space F has the same di-
mensionality as the input X , at the same time the information loss is achieved
by using the Dropout layer on the output of encoder φ, which randomly sets
input units to 0 with given dropout rate. Another Dropout layer is then applied
to the output of decoder ψ, before the final reconstruction. Such architecture
is mostly similar to Sparse Autoencoder [34].

We implemented two types of Autoencoders using recurrent neural network
layers: Long Short-Term Memory (LSTM) cells and Gated Recurrent Unit
(GRU) cells.

4.2.1 LSTM Autoencoder

Long Short-Term Memory (LSTM) Autoencoder uses layers composed of LSTM
cells [35] in the encoder-decoder architecture.

26

4.2. Deep Learning

LSTM Cell

LSTM cell is a type of gated Recurrent Neural Network (RNN) that allows
learning the information selectively, i.e. retaining ”important” features, and
forgetting ”less important”. It consists of an input gate, memory cell, forget
gate, and output gate, as shown in Figure 4.2.

The forget gate decides if the network should keep the information from
the previous time step or forget it. This is decided by forget vector ft, which
is obtained by passing the current state Xt and previously hidden state ht−1

into the first sigmoid function.

The input gate performs two operations to update the cell state. First, the
current state Xt and previously hidden state ht−1 are passed into the second
sigmoid function to produce it which quantifies the importance of the new
information carried by the current state, ranging from 0 (important) and 1
(not important). Second, the same information of the hidden state ht−1 and
current state Xt are passed through the tanh function, which creates a vector
C̃t with values ranging from -1 to 1. The output values it and C̃t generated
from the activation functions are then multiplied forming the output of the
Input gate.

The previous cell state Ct−1 gets multiplied with forget vector ft. If the
outcome is 0, then values will get dropped from the cell state. The network
then takes this output value and output of the Input gate and performs addi-
tion, which updates the cell state giving the network a new cell state Ct.

The output gate decides the value of the new hidden state ht. This state
contains information about previous inputs. First, the values of the current
state Xt and previous hidden state ht−1 are passed into the third sigmoid
function. Then the new cell state Ct is passed through the tanh function.
Both these outputs are then multiplied. Based on the final value, the network
decides which information the hidden state ht should carry. This hidden state
is used for prediction. Finally, the new cell state Ct and new hidden state ht

are carried over to the next time step [3, 36].

Implementation

LSTM Autoencoder is implemented using TensorFlow and the model is sum-
marized in Algorithm 4.

The first LSTM layer with n units processes the input window Wi,k in a
sequential way, one metric with L time steps at a time, which corresponds
to processing the window one row at a time. The output forms a matrix
X1 ∈ R

n units×L (line 2).

Matrix X1 is then passed through the Dropout layer, which randomly sets
input units to 0 with a ratio of dropout rate forming matrix X2 (line 3).

27

4. Anomaly Detection Models

Figure 4.2: LSTM Cell [3]

Another LSTM layer with n units processes the previous output X2 in the
same way as first LSTM layer, creating a matrix X3 ∈ R

n units×L (line 4).

Matrix X3 is then passed through another Dropout layer with the same
dropout rate (line 5).

Finally, K Dense output layers are applied to each metric matrix X4 inde-
pendently, which correspond to the rows of X3, obtaining a final reconstructed
window W̃ ∈ R

K×L (line 6).

In the end, the Anomaly score is computed by the DIST function (line 7).

Algorithm 4: LSTM-Autoencoder

Data: Wi,k

Result: Anomaly score for the window Wi,k

1 W = Wi,k

2 X1 = LSTM(n units)(W)
3 X2 = DROPOUT (dropout rate)(X1)
4 X3 = LSTM(n units)(X2)
5 X4 = DROPOUT (dropout rate)(X3)

6 W̃ = TIME DISTR(DENSE(n neurons = K))(X4)

7 DIST (W, W̃)

28

4.2. Deep Learning

Training Phase

In the beginning, the whole training set TR undergoes another normalization.
For each of the K metrics, min and max values are obtained across the whole
set. These values are then used for the min−max normalization of metrics in
all windows resulting in values ranging from 0 to 1. Vectors min and max of
length K are then stored as part of the model and later used in the Inference
Phase.

Then the network is trained on the reconstruction objective with a mean
squared error loss, using the Adam optimizer.

Inference Phase

Each metric window under study Wi,k undergoes min − max normalization
as described in Training Phase.

Then the network processes the normalized window and produces a recon-
structed window W̃i,k. The final anomaly score is the mean squared error of
the reconstructed window, which can also be written as:

A(Wi,k) = ||Wi,k − W̃i,k||F , (4.7)

where ||X||F denotes the Frobenius norm of a matrix, namely the ℓ2 norm of
the vector ~x of the unfolded rows. This function is implemented by PyOD
pairwise distances no broadcast.

4.2.2 GRU Autoencoder

Gated Recurrent Unit (GRU) Autoencoder uses layers composed of GRU
cells [37] in the encoder-decoder architecture.

GRU Cell

GRU is an artificial recurrent neural network (RNN) that shares many prop-
erties with LSTM. Both algorithms use gating mechanisms to control the
memorization process. GRU is less complex than LSTM and is significantly
faster to compute because it combines the Input and Forget gate into a single
Update gate. GRU consists of an Update gate and Reset gate, as shown in
Figure 4.3.

Even though GRU has simpler architecture it exposes the complete mem-
ory (as opposed to LSTM). This allows the GRU-based models to often out-
perform LSTM-based models while being computationally simpler [38, 39].

The reset gate is responsible for the short-term memory of the network. It
decides if information from the previous time step is kept or forgotten. First
it adds the current state Xt with previous hidden state ht−1. Second, it passes
the sum through the second sigmoid function forming reset vector rt ranging
from 0 to 1.

29

4. Anomaly Detection Models

Figure 4.3: GRU Cell [4]

Reset vector rt is then multiplied by previous hidden state ht−1 , then
product is added to the current state Xt and passed through tanh function
forming hidden state candidate h′

t.

Update gate forms update vector ut the same way as Reset gate does with
reset vector rt – first, it does the addition of the current state Xt and previous
hidden state ht−1 and passes the sum through sigmoid function.

In the production of final hidden state ht update vector ut comes into
the picture. It will determine which information to collect from hidden state
candidate h′

t and previous hidden state ht−1.

Multiplication is applied to the update vector ut and previous hidden state
ht−1. This product is then added to the multiplication of 1 − ut and hidden
state candidate h′

t. This sum forms the final hidden state ht [4, 40].

Implementation

GRU-AE utilizes the same implementation as described in Section 4.2.1, re-
placing LSTM layers with GRU layers.

4.3 Ensemble

Different machine learning models are able to learn different patterns char-
acterizing normal windows. Based on this we decided to aggregate the three
anomaly score functions Aλ in an ensemble.

We define the detection output of each ensemble (ENSe) by aggregating
the individual outcomes through voting strategies, to overcome issues arising
from different ranges of anomaly scores produced by Aλ of each model, i.e.
by counting how many individuals trigger a detection, thus satisfy:

30

4.3. Ensemble

ADλ(Wi,k,Γλ) = 1 for a given metric window Wi,k:

ENSe(Wi,k) =
∑

λ

ADλ(Wi,k,Γλ) ≥ e, e = 1, 2, 3. (4.8)

These ensembles correspond to the implementation of the voting strategies
”OR”, ”MAJ”, and ”AND” for e = 1, 2, 3 respectively.

31

Chapter 5

Labeled Dataset

In this chapter, we describe the labeled dataset and its preparation.

The main use of the labeled dataset is to benchmark the Anomaly Detection
methods under study for the CERN use case. This benchmark gives a fast and
objective way to evaluate the Anomaly Detection System performance com-
pared to qualitative feedback from service managers after months of extensive
usage of our proposed Anomaly Detection System.

The dataset is based on a shared hostgroup, which contains 40 hypervisors.
We have annotated 2 months of data from September 1st to October 31st 2021.
The choice of this specific HG was based on the relatively small number of
HVs (some shared HGs contain around 200 HVs) and a reasonable number of
anomalous samples, where some of them could have been spotted at the first
glance.

The annotation process was mainly done by 2 independent annotators and
guided by the CERN cloud service managers that have shared their experience
to identify critical anomalies and exclude harmless behaviors not affecting the
cloud service level objectives. In case of disagreement between the annotators,
the final decision included the opinion of additional expert service managers.

The final dataset contains labels for 32 HVs and is composed of 11712 4-hours
long time windows, from which 228 are anomalous and 11484 are normal.
The percentage of anomalies in the whole dataset is therefore equal to 2%.
Figure 5.1 shows a visualization of the dataset.

33

5. Labeled Dataset

i7
33

68
05

01
21

96
2

i7
33

68
05

02
69

09
3

i7
33

68
05

02
96

02
1

i7
33

68
05

07
11

71
0

i7
33

68
05

15
01

38
9

i7
33

68
05

24
56

34
5

i7
33

68
05

27
98

37
0

i7
33

68
05

28
92

71
1

i7
33

68
05

39
65

39
5

i7
33

68
05

44
77

50
2

i7
33

68
05

53
05

67
7

i7
33

68
05

53
88

69
8

i7
33

68
05

56
45

87
2

i7
33

68
05

63
51

43
2

i7
33

68
05

66
92

07
6

i7
33

68
05

67
16

70
4

i7
33

68
05

71
00

54
1

i7
33

68
05

74
30

99
7

i7
33

68
05

77
03

09
7

i7
33

68
05

86
77

53
0

i7
33

68
05

92
15

70
9

i7
33

68
05

79
97

31
5

i7
33

68
05

94
79

96
2

i7
33

68
05

01
32

96
8

i7
33

68
05

13
49

70
6

i7
33

68
05

17
70

35
9

i7
33

68
05

34
04

16
2

i7
33

68
05

38
30

29
0

i7
33

68
05

42
01

40
5

i7
33

68
05

86
82

47
4

i7
33

68
05

50
28

05
3

i7
33

68
05

78
85

62
1

Hypervisors

2021-09-01 00:00:00
2021-09-01 16:00:00
2021-09-02 08:00:00
2021-09-03 00:00:00
2021-09-03 16:00:00
2021-09-04 08:00:00
2021-09-05 00:00:00
2021-09-05 16:00:00
2021-09-06 08:00:00
2021-09-07 00:00:00
2021-09-07 16:00:00
2021-09-08 08:00:00
2021-09-09 00:00:00
2021-09-09 16:00:00
2021-09-10 08:00:00
2021-09-11 00:00:00
2021-09-11 16:00:00
2021-09-12 08:00:00
2021-09-13 00:00:00
2021-09-13 16:00:00
2021-09-14 08:00:00
2021-09-15 00:00:00
2021-09-15 16:00:00
2021-09-16 08:00:00
2021-09-17 00:00:00
2021-09-17 16:00:00
2021-09-18 08:00:00
2021-09-19 00:00:00
2021-09-19 16:00:00
2021-09-20 08:00:00
2021-09-21 00:00:00
2021-09-21 16:00:00
2021-09-22 08:00:00
2021-09-23 00:00:00
2021-09-23 16:00:00
2021-09-24 08:00:00
2021-09-25 00:00:00
2021-09-25 16:00:00
2021-09-26 08:00:00
2021-09-27 00:00:00
2021-09-27 16:00:00
2021-09-28 08:00:00
2021-09-29 00:00:00
2021-09-29 16:00:00
2021-09-30 08:00:00
2021-10-01 00:00:00
2021-10-01 16:00:00
2021-10-02 08:00:00
2021-10-03 00:00:00
2021-10-03 16:00:00
2021-10-04 08:00:00
2021-10-05 00:00:00
2021-10-05 16:00:00
2021-10-06 08:00:00
2021-10-07 00:00:00
2021-10-07 16:00:00
2021-10-08 08:00:00
2021-10-09 00:00:00
2021-10-09 16:00:00
2021-10-10 08:00:00
2021-10-11 00:00:00
2021-10-11 16:00:00
2021-10-12 08:00:00
2021-10-13 00:00:00
2021-10-13 16:00:00
2021-10-14 08:00:00
2021-10-15 00:00:00
2021-10-15 16:00:00
2021-10-16 08:00:00
2021-10-17 00:00:00
2021-10-17 16:00:00
2021-10-18 08:00:00
2021-10-19 00:00:00
2021-10-19 16:00:00
2021-10-20 08:00:00
2021-10-21 00:00:00
2021-10-21 16:00:00
2021-10-22 08:00:00
2021-10-23 00:00:00
2021-10-23 16:00:00
2021-10-24 08:00:00
2021-10-25 00:00:00
2021-10-25 16:00:00
2021-10-26 08:00:00
2021-10-27 00:00:00
2021-10-27 16:00:00
2021-10-28 08:00:00
2021-10-29 00:00:00
2021-10-29 16:00:00
2021-10-30 08:00:00
2021-10-31 00:00:00
2021-10-31 16:00:00

Ti
m

e

Final Evaluation Dataset Labels

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5.1: Labeled Dataset based on a Shared Hostgroup: blue = normal,
orange = anomaly

34

Chapter 6

Experiments and Results

In this chapter, we will:

• introduce used performance metrics,

• define the figure of merit,

• evaluate the performance of individual models,

• discuss the choice of parameters,

• introduce the Current Alarming System,

• compare the Current Alarming System with respect to our proposed
solution.

We present two different sets used for the training of the models and inference
of the scores:

• first approach is to train the models on a single HG of gva shared 019
containing 40 HVs and infer anomaly scores for the same set of HVs,

• second approach is to train the models on the whole cloud, meaning mul-
tiple HGs gva shared * containing 1700 HVs in total and infer anomaly
scores for the same set of HVs.

All of the experiments are done using the first approach (if not stated oth-
erwise) with metrics introduced in 6.2, evaluated on the labeled dataset pre-
sented in Chapter 5, and based on time windows of 4 hours with an aggregation
period of 30 minutes.

35

6. Experiments and Results

6.1 Used Resources

All experiments have been done on a Centos 7 VM in the CERN OpenStack
cloud, which consists of 16 CPU cores, 32GB of RAM, 160GB of local storage,
and access to EOS distributed storage.

The somewhat surprising paradox is that the HV hosting this VM has
been flagged as anomalous multiple times by the AD System (itself), due to
heavy load during excessive experiments.

6.2 Input metrics

Based on the expert experience, previous work [5], and our previous experi-
ments, we have chosen 6 performance metrics, which are described in Table 6.1
including the thresholds used by the Current Alarming system, which will be
introduced later (Sec. 6.5).

Metric’s name Description Threshold of
the current
system

Context
Switches

Frequency of involuntary context switches,
which occur when a process consumes more
CPU time than what it was allocated by
the kernel

> 50 kHz

CPU Load Number of processes using CPU, waiting
to use CPU, or waiting for input/output
access averaged over 5 minutes divided by
number of CPU cores

> 2

CPU System Percentage of CPU time used by the kernel > 35%

Disk IO Time Portion of time spent every 1 second doing
input/output operations

> 900 ms

Disk Pending
Operations

Queue size of pending input/output oper-
ations

> 25

Memory Free Memory not being used < 500 MB

Table 6.1: Monitoring metrics used by the proposed solution and used by the
current alerting system.

36

6.3. Figure of Merit

6.3 Figure of Merit

All of the models under study produce an anomaly score. By applying a
threshold as explained in 4.1models label a time window in two possible classes
– anomalous or normal. We define the following four metrics:

• True Positives (TP): number of time windows labeled as anomalous in
the dataset that the algorithm correctly identifies as anomalies,

• True Negatives (TN): number of time windows labeled as normal in the
dataset that the algorithm correctly identifies as normal,

• False Positives (FP): number of time windows labeled as normal in the
dataset that the algorithm incorrectly identifies as anomalies,

• False Negatives (TN): number of time windows labeled as anomalous in
the dataset that the algorithm incorrectly identifies as normal.

Those four metrics form a Confusion Matrix, which is shown in Figure 6.1

P
re

di
ct

ed
 c

la
ss

True class

True Positive (TP)

False Negative (FN)

False Positive (FP)

True Negative (TN)

Anomalous Normal

A
no

m
al

ou
s

N
or

m
al

Figure 6.1: Confusion Matrix

6.3.1 AUC-ROC

Area Under the Curve of Receiver Operating Characteristic (AUC-ROC) is a
performance measurement for binary 4 classification problems using various
threshold settings. ROC is a probability curve and AUC represents the degree
of separability. It describes the model’s capacity of dividing between the two
classes. The higher the AUC, the better the model is at predicting normal
samples as normal, and vice versa.

4it can be also used for multi-class classifications

37

6. Experiments and Results

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Receiver operating characteristic

ROC curve (area = 0.62)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Receiver operating characteristic

ROC curve (area = 0.97)

Figure 6.2: ROC and AUC of poorly performing model (left) and well-
performing model (right)

ROC is based on the True Positive Rate (TPR) and False Positive Rate
(FPR):

TPR =
TP

TP + FN
=
TP

P
, (6.1)

FPR =
FP

FP + TN
=
FP

N
, (6.2)

where N denotes the total number of normal samples in the dataset and P
the total number of anomalous samples.

The ROC curve is plotted with TPR against the FPR where TPR is on the
y-axis and FPR is on the x-axis for multiple threshold values of the anomaly
scores. Each point in the plot of ROC corresponds to a threshold of a different
value.

A great model has an AUC near 1 – it is capable of separating the scores
very well. A model with an AUC near 0 has a very poor measure of sepa-
rability. In fact, model with an AUC of 0 is inverting the classes. A model
with an AUC of 0.5 does not have any separation capacity (random binary
classifier). Figure 6.2 shows an example of the ROC and AUC for both poorly
and well-performing models.

The main reason for using the AUC-ROC in our case is that we can compare
models without the need to explicitly set a threshold, but we can compare their
performance with various threshold values. This performance measurement
was also used in the previous work [5].

6.3.2 Training and Inference time

Another important aspect of a model is its training and inference time. Note
that, in our case, the time of training is not so critical due to the re-use of

38

6.4. Performance of the Individual Models

saved models.

6.4 Performance of the Individual Models

In this section, we present experiments to compare the performance of indi-
vidual models with different parameters and periods of the training.

6.4.1 Isolation Forest

We use IFOR with the default parameters introduced by PyOD. The only
changed parameter is the number of trees, which has a default value of 100.

Experiments with different numbers of trees are presented in Table 6.2. Re-
sults are averaged over 12 experiments – 4 different training periods of 1 week
using 3 different random seeds to initialize the model. Even though there is
not a significant improvement, we decided to use 200 iTrees as the final
value due to the highest AUC-ROC and lowest standard deviation making
the model more stable (less dependent on the choice of the training week and
random seed).

Num. of iTrees AUC-ROC Train time (s) Infer time (s)

50 0.953 ± 0.007 0.85 ± 0.48 59.9 ± 15.4
100 0.955 ± 0.007 0.88 ± 0.04 68.4 ± 12.4
150 0.956 ± 0.005 1.18 ± 0.05 87.1± 16.9
200 0.957 ± 0.004 1.56 ± 0.09 100.3 ± 19.6

Table 6.2: AUC-ROC, training and inference time of IFOR with different
numbers of iTrees

Another experiment to test the effect of different training periods is presented
in Table 6.3. Two lengths of training periods are evaluated – 1 week and 1
month. Results for 1 week are averaged over 45 experiments – 15 different
training periods of 1 week using 3 different seeds. Results for 1 month are
averaged over 12 experiments – 4 different training periods of 1 month using
3 different seeds. A longer training period provides a little improvement re-
garding the AUC-ROC with a lower value of standard deviation compared to
the shorter period. Even though a week of training is enough for the model
(based on the AUC-ROC), it further benefits from the longer training period
of a month.

39

6. Experiments and Results

Training Length AUC-ROC Train time (s) Infer time (s)

Week 0.954 ± 0.006 1.64 ± 0.29 94.9 ± 16.8
Month 0.959 ± 0.004 2.91 ± 0.05 95.1 ± 13.1

Table 6.3: AUC-ROC, training and inference time of IFOR with different
lengths of the training period

6.4.2 Autoencoders

In this section, we evaluate the proposed architecture for Autoencoders. Ex-
periments are based on using different parameters (namely dropout rate and
the number of units as described in Section 4.2.1), different training periods,
reasons for some of the architectural decisions, and comparison with architec-
ture proposed in previous work [5].

For all of the experiments models were trained for 50 epochs without early
stopping, as we found this approach the most suitable for the unsupervised
technique. Based on the observations of training/validation loss, most models
reached a plateau around 30 to 40 epochs in.

Choice of Parameters

In earlier experiments with a different set of input metrics dropout rates of the
following values were observed: 0, 0.1, 0.2, 0.3. The best results were obtained
for dropout rates of 0.2 and 0.3 and the final chosen value of dropout rate
is 0.25. Due to time limitations, experiments of the same scale regarding
dropout rate on Input metrics presented in 6.2 won’t be included in this work.

Experiments with a different number of units and 2 values of dropout rate are
presented in Table 6.4 for the LSTM-AE and in Table 6.5 for the GRU-AE.
Results are averaged over 12 experiments – 4 different training periods of 1
week using 3 different seeds.

Parameters AUC-ROC Train time (s) Infer time (s)

1 Unit, 0.25 Dropout 0.971 ± 0.004 62.3 ± 9.1 114.2 ± 13.1
1 Unit, 0 Dropout 0.917 ± 0.045 63.8 ± 3.1 105.4 ± 17.6

3 Units, 0.25 Dropout 0.956 ± 0.016 64.5 ± 6.2 95.3 ± 14.1
3 Units, 0 Dropout 0.892 ± 0.026 69.2 ± 5.3 113.8 ± 24.9

5 Units, 0.25 Dropout 0.960 ± 0.007 64.9 ± 2.6 100.3 ± 17.1
5 Units, 0 Dropout 0.877 ± 0.034 63.9 ± 6.3 113.3 ± 16.2

Table 6.4: AUC-ROC, training, and inference time of LSTM-AE with different
parameters

40

6.4. Performance of the Individual Models

Parameters AUC-ROC Train time (s) Infer time (s)

1 Unit, 0.25 Dropout 0.967 ± 0.007 81.6 ± 11.9 111.9 ± 29.1
1 Unit, 0 Dropout 0.859 ± 0.097 109.9 ± 17.6 89.5 ± 10.0

3 Units, 0.25 Dropout 0.964 ± 0.007 76.6 ± 7.1 102.2 ± 17.7
3 Units, 0 Dropout 0.794 ± 0.099 80.8 ± 7.2 98.4 ± 17.5

5 Units, 0.25 Dropout 0.961 ± 0.008 76.3 ± 5.6 94.5 ± 11.9
5 Units, 0 Dropout 0.805 ± 0.079 79.9 ± 3.8 98.8 ± 15.9

Table 6.5: AUC-ROC, training, and inference time of GRU-AE with different
parameters

Figure 6.3 shows training and validation loss of the worst-performing GRU
model (5 Units, 0 Dropout) with an AUC-ROC of 0.617. Figure 6.4 shows the
same for the well-performing GRU model (1 Unit, 0.25 Dropout) on the same
training week and random seed with an AUC-ROC of 0.967. With a Dropout
rate of 0 models learn to mimic the input data too precisely (demonstrated
by Model loss in Fig 6.3), which makes the detection of anomalies based on
reconstruction error unusable since the model is not able to separate the scores
(as shown by Distribution of scores in Fig. 6.3).

0 10 20 30 40 50
Epoch

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

Lo
ss

Model loss
Train
Val

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Anomaly Scores

0

2

4

6

8

De
ns

ity

Distribution of scores
Anomalous Hosts
Normal Hosts

Figure 6.3: Training/validation loss and distribution of the scores of poorly
performing GRU model (5 Units, 0 Dropout) with AUC-ROC of 0.617

41

6. Experiments and Results

0 10 20 30 40 50
Epoch

0.005

0.010

0.015

0.020

0.025

Lo
ss

Model loss
Train
Val

0 1 2 3 4 5
Anomaly Scores

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

De
ns

ity

Distribution of scores
Anomalous Hosts
Normal Hosts

Figure 6.4: Training/validation loss and distribution of the scores of well-
performing GRU model (1 Unit, 0.25 Dropout) with AUC-ROC of 0.967

All experiments with the dropout rate of 0.25 show very similar results
regarding the AUC-ROC. However, 1 Unit performs the best with the lowest
value of standard deviation while keeping the complexity of the model lower
compared to the higher number of units. Therefore it is chosen as the final
value.

Note that in experiments with the dropout rate of 0 we can no longer label
the models as Autoencoders since there is no bottleneck in any form meaning
no encoding/decoding is happening. However, the presented experiments are
to demonstrate why we decided to use dropout in the final architecture.

Training Period

In this experiment, we test the effect of different training periods with param-
eters of 1 Unit and 0.25 Dropout rate. Two lengths of training periods
are evaluated – 1 week and 1 month. Results for 1 week are averaged over 45
experiments – 15 different training periods of 1 week using 3 different seeds.
Results for 1 month are averaged over 12 experiments – 4 different training
periods of 1 month using 3 different seeds.

Table 6.6 shows the results for LSTM-AE, and Table 6.7 for GRU-AE.
Based on the results LSTM-AE does not benefit from the longer training
period since the AUC-ROC and its standard deviation are exactly the same.
On the other hand, the better performance of the GRU-AE in terms of AUC-
ROC and its standard deviation with a longer period of training shows GRU-
AE benefits from more training samples compared to LSTM-AE.

42

6.4. Performance of the Individual Models

Training Length AUC-ROC Train time (s) Infer time (s)

Week 0.964 ± 0.010 64.6 ± 9.6 107.8 ± 19.4
Month 0.964 ± 0.010 106.1 ± 6.9 103.6 ± 15.5

Table 6.6: AUC-ROC, training and inference time of LSTM-AE with different
lengths of the training period

Training Length AUC-ROC Train time (s) Infer time (s)

Week 0.962 ± 0.010 83.2 ± 9.8 100.1 ± 22.8
Month 0.971 ± 0.005 146.4 ± 26.5 97.8 ± 13.6

Table 6.7: AUC-ROC, training and inference time of GRU-AE with different
lengths of the training period

Architectural Decisions

Usage of the 2 Dropout Layers (as we present in Sec. 4.2.1) might be unusual,
however in this experiment, where the second Dropout Layer is not present,
we show a reason for doing so. Table 6.8 presents results averaged over 12
experiments – 4 different training periods of 1 week and 3 different seeds.
The choice of parameters is the same as in previous experiments – 1 Unit,
0.25 Dropout rate. Compared to the ”Week” in Table 6.6 and Table 6.7
we see both models benefit in terms of average AUC-ROC and its standard
deviation from a stronger form of regularization achieved by using 2 Dropout
layers, especially the GRU-AE.

Model AUC-ROC

LSTM-AE 0.949 ± 0.016
GRU-AE 0.925 ± 0.033

Table 6.8: AUC-ROC of LSTM-AE and GRU-AE with a single Dropout layer

Comparison with previous architecture

As mentioned before, previous work presented an Undercomplete LSTM-
AE [5]. In this experiment, we compare its performance with our proposed
architecture of LSTM-AE using selected parameters. Table 6.9 displays re-
sults based on 3 different values of Units. Each of the results is averaged over
12 experiments – 4 different training periods of 1 week and 3 different seeds.

Compared to Table 6.6 we show that our proposed architecture signifi-
cantly outperforms the previous architecture in terms of AUC-ROC and its
standard deviation in all cases.

43

6. Experiments and Results

Parameters AUC-ROC

1 Unit 0.877 ± 0.059
3 Units 0.839 ± 0.047
5 Units 0.812 ± 0.039

Table 6.9: AUC-ROC of LSTM-AE proposed in previous work [5]

6.4.3 Summary

To summarize the results of individual models, we present Table 6.10 which
shows the performance of all 3 models (IFOR, LSTM-AE, GRU-AE) for 2
lengths of training periods. The final chosen parameters are 200 iTrees in the
case of IFOR, and 1 Unit with a 0.25 Dropout rate for both LSTM-AE and
GRU-AE.

Model AUC-ROC Week AUC-ROC Month

IFOR 0.954 ± 0.006 0.959 ± 0.004
LSTM-AE 0.964 ± 0.010 0.964 ± 0.010
GRU-AE 0.962 ± 0.010 0.971 ± 0.005

Table 6.10: Stability of model performance based on the average and stan-
dard deviation of the AUC-ROC for one week-long (AUC-ROC week) and one
month-long (AUC-ROC Month) training periods

Each of the proposed models performs very well in terms of AUC-ROC
and the low value of its standard deviation shows that the choice of specific
training period does not play a big role. This confirms that the presented
models are robust.

In our use case, IFOR performs on the same level of performance in terms
of AUC-ROC as both LSTM-AE and GRU-AE with much simpler architecture
and requires a small amount of time to train. On the other hand, inference
time is on the same scale as for Autoencoders. If training time and simple
architecture were a big concern for us, IFOR alone would be a great solution.

Even though GRU-AE should be significantly faster than LSTM-AE in
the training and inference due to simpler architecture, in the case of Tensor-
Flow layers implementation this does not happen. Comparing Table 6.6 and
Table 6.7 we see GRU-AE is slower in the training and insignificantly faster
in inference.

44

6.5. Comparison with Current Alarming System

6.5 Comparison with Current Alarming System

The main goal of this work is to develop an AD system, which outperforms the
Current Alarming System based on static threshold alarming implemented in
the CERN cloud. In this section, we introduce the Current Alarming System
and compare its performance with respect to our proposed AD system.

6.5.1 Current Alarming System

The current Alarming System is based on collectd metrics and Grafana alerts.
It is composed of 6 performance metrics selected by service managers. The
metrics were selected because they are popular indicators for the computing
performance of HVs and are often used in post-mortem analysis. Table 6.1
displays a short description of each metric with its critical value (threshold)
from which the system starts to notify about anomalies. This system ex-
amines each monitoring metric independently from the others and triggers
alarms when any metric of any HV exceeds its threshold value. In order to
reduce the alarming rate due to fluctuating metrics that temporarily exceed
the threshold, the metrics are analyzed in windows of 12 hours. The service
managers consider this potential delay of reaction caused by the longer win-
dow time resolution as a reasonable trade-off between effectively identifying
real operational issues and the number of false positives. This approach is
built on the fact that computing systems in large data centres use a number
of self-healing strategies to recover from issues. Figure 6.5 shows an example
of Grafana alerts in the Current Alarming System for the CPU Load metric.

In the current system, the alarm thresholds are set very high compared to
the normal metric distribution of a cluster to achieve a very low value of FPR.
It should be noticed that in a data centre of several thousands of servers, a
FPR of just 1% would result in tens of servers being uselessly inspected every
day.

45

6. Experiments and Results

Figure 6.5: CPU Load alerts in the Current Alarming System: horizontal red
line = threshold, vertical red arrow = alert triggered, vertical green arrow =
previous alert no longer triggered

6.5.2 Evaluation and Comparison

In this experiment, we compare the performance of our (individual and ensem-
ble) models with respect to the performance of the Current Alarming System.
Our models were trained on the whole cloud (1700 HVs) with a training period
of 1 month.

A fair comparison is guaranteed by configuring the current system to an-
alyze each metric in windows of 4 hours (instead of 12 hours). For each
window of each metric, we compute the average value and compare it against
its threshold. Thresholds are manually adjusted to achieve different target
values of FPR in the following experiments. The predictions of each model
were evaluated on the labeled dataset (Chap. 5), to compute the TPR and
FPR. The performance is compared on the achieved TPR value at a given
value of FPR. For each model, we have identified the value of the threshold
(in the case of Ensemble multiple thresholds) Γλ that produce the same value
of FPR. The same approach is also applied to the alarming thresholds of the
current system.

In Table 6.11 the TPR values are reported for all approaches, evaluated
at four different values of FPR, ranging from 0.1% to 4%. The reason for
so small values of FPR has been already discussed: given a large number of
servers in the cloud infrastructure, a small FPR is mandatory to avoid that
false notifications overwhelm the service managers. The FPR of the current
system is 0.1% based on the evaluation on the labeled dataset.

All of our proposed models outperform the Current Alarming System in
terms of achieved TPR for any given FPR. Between the individual models,
the Autoencoders have the best performance on the whole range of studied

46

6.5. Comparison with Current Alarming System

True Positive Rates

FPR Current System Individual Ensemble

IFOR LSTM-AE GRU-AE ENS1 ENS2 ENS3

0.001 0.08 0.09 0.45 0.43 0.47 0.45 0.21
0.01 0.14 0.29 0.56 0.58 0.53 0.58 0.59
0.02 0.19 0.57 0.66 0.79 0.61 0.69 0.71
0.04 0.26 0.81 0.81 0.93 0.92 0.89 0.92

Table 6.11: True positive rate (TPR) measured at different values of the False
Positive Rate (FPR) for the predictions of the Current Alarming System, the
proposed individual models, and the proposed ensemble methods ENSe for
e = 1, 2, 3

FPR, with the GRU-AE that achieves the largest TPR value for 4% of FPR.
The performance of the IFOR at the lowest FPR is comparable with the one
of the current system, whereas it becomes comparable with the LSTM-AE at
4% of FPR.

ENS1 and ENS2 give the best performance at the lowest FPR, but the
inefficacy of IFOR penalizes ENS3. At the largest considered FPR (4%), the
three ensemble methods have similar performance. We remind that the three
ensemble methods ENSe are implemented with the voting strategies ”OR”,
”MAJ” and ”AND” for e = 1, 2, 3 respectively (Sec. 4.3).

Based on the presented results, our proposed models have been integrated
into the data analytic infrastructure that processes the CERN cloud monitor-
ing data. The predictions of the ensemble method ENS3 are now part of the
Grafana dashboards used by the cloud service managers to identify disturbing
events (Fig. 6.6).

We regard as a great achievement the satisfactory experience reported by
the service managers, which also qualitatively confirms the effectiveness of our
solution.

47

6. Experiments and Results

Figure 6.6: Grafana Dashboard containing anomaly scores from ensemble
method ENS3 and individual models for the time period of 7 days

48

Chapter 7

Future Work

The biggest downside of this work is the absence of online data. It has been
discussed with the MONIT team that in the future they could offer an API
that can offer unaggregated data for ”any” time period. This could be achieved
by reading the raw collectd data for T − 1 days from HDFS and online data
directly from Kafka, or by querying specific InfluxDB backends based on the
defined metrics. If this feature is not provided, another option could be change
in the policy of how the HDFS exposes data – data for T − 1 are available to
the users, but newer data remain inaccessible to users until the next day when
the data undergo compaction. If this is also not an option, the support for
querying multiple storage backends has to be implemented in our libraries.

When access to online data is provided, the next logical step is to do
research about forecasting, to predict potential future anomalies.

The last future goal is to completely switch to the proposed Machine Learn-
ing Anomaly Detection System replacing the Current Alarming System and
integrating it into the Daily Operations of all service managers.

49

Conclusion

The main goal of this work was to develop an Anomaly Detection System,
which outperforms the Current Alarming System based on static threshold
alarming implemented in the CERN cloud. We modified and extended the
existing Proof of Concept [5], implemented new algorithms, and created a
labeled dataset. The proposed solution, composed of Isolation Forest, LSTM
Autoencoder, GRU Autoencoder, and Ensemble methods, outperforms the
Current Alarming System in terms of obtained True Positive Rate for any
given False Positive Rate. The performance of our solution is further confirmed
by the satisfactory experience reported by the service managers. This solution
was integrated into the data analytic infrastructure that processes the CERN
cloud monitoring data.

In Chapter 1 we described the structure and used technologies of CERN
Monitoring Infrastructure. In Chapter 2 we defined the important terms for
the scope of this work and introduced the problem formulation. In Chapter 3
we described the Architecture of the Anomaly Detection Pipeline with the de-
scription of individual steps and explained how the Productional Deployment
is done. In Chapter 4 we introduced the individual models and defined the
ensemble methods. In Chapter 5 we emphasize the importance of a labeled
dataset, how we created it, and statistics about the dataset. In Chapter 6
we did experiments and evaluations regarding the performance in terms of
AUC-ROC for all 3 of the individual models, the ensemble, and comparison
of the Proposed solution with respect to the Current Alarming System based
on the obtained True Positive Rate with a given False Positive Rate.

Results of this work were presented at the (Virtual) Computing in High
Energy Physics 2021 (vCHEP2021) conference on track of Networks and fa-
cilities 5 and on HEPiX Spring 2022 online Workshop on track of Computing
& Batch Services, Grid, Cloud & Virtualisation 6.

5https://indico.cern.ch/event/948465/contributions/4323967
6https://indico.cern.ch/event/1123214/contributions/4809938

51

Bibliography

[1] Nikolay Tsvetkov. Building scalable & reliable monitoring system [on-
line]. [cit. 2022-02-21]. Available from: https://indico.cern.ch/event/

930896/contributions/3938294/attachments/2071885/3478355/

2020-07-09_OPENLAB-MONIT.pdf

[2] Hariri, S.; Kind, M. C.; et al. Extended Isolation Forest. IEEE Transac-
tions on Knowledge and Data Engineering, volume 33, no. 4, 2021: pp.
1479–1489, doi:10.1109/TKDE.2019.2947676.

[3] Singhal, G. Introduction to LSTM Units in RNN [online]. [cit.
2022-04-18]. Available from: https://www.pluralsight.com/guides/

introduction-to-lstm-units-in-rnn

[4] Singhal, G. LSTM versus GRU Units in RNN [online]. [cit. 2022-04-18].
Available from: https://www.pluralsight.com/guides/lstm-versus-

gru-units-in-rnn

[5] Paltenghi, M. Time Series Anomaly Detection for CERN Large-Scale
Computing Infrastructure. Oct 2020, presented 02 Oct 2020. Available
from: http://cds.cern.ch/record/2752641

[6] CERN. The matter-antimatter asymmetry problem [online]. [cit. 2022-
02-17]. Available from: https://home.cern/science/physics/matter-

antimatter-asymmetry-problem

[7] CERN. Welcome to the Worldwide LHC Computing Grid [online]. [cit.
2022-02-17]. Available from: https://wlcg.web.cern.ch/

[8] Openstack. What is OpenStack? [online]. [cit. 2022-02-19]. Available
from: https://www.openstack.org/software/

[9] Red Hat. What is a hypervisor? [online]. [cit. 2022-02-17].
Available from: https://www.redhat.com/en/topics/virtualization/

what-is-a-hypervisor

53

https://indico.cern.ch/event/930896/contributions/3938294/attachments/2071885/3478355/2020-07-09_OPENLAB-MONIT.pdf
https://indico.cern.ch/event/930896/contributions/3938294/attachments/2071885/3478355/2020-07-09_OPENLAB-MONIT.pdf
https://indico.cern.ch/event/930896/contributions/3938294/attachments/2071885/3478355/2020-07-09_OPENLAB-MONIT.pdf
https://www.pluralsight.com/guides/introduction-to-lstm-units-in-rnn
https://www.pluralsight.com/guides/introduction-to-lstm-units-in-rnn
https://www.pluralsight.com/guides/lstm-versus-gru-units-in-rnn
https://www.pluralsight.com/guides/lstm-versus-gru-units-in-rnn
http://cds.cern.ch/record/2752641
https://home.cern/science/physics/matter-antimatter-asymmetry-problem
https://home.cern/science/physics/matter-antimatter-asymmetry-problem
https://wlcg.web.cern.ch/
https://www.openstack.org/software/
https://www.redhat.com/en/topics/virtualization/what-is-a-hypervisor
https://www.redhat.com/en/topics/virtualization/what-is-a-hypervisor

Bibliography

[10] Red Hat. What is a virtual machine (VM)? [online]. [cit. 2022-02-17].
Available from: https://www.redhat.com/en/topics/virtualization/

what-is-a-virtual-machine

[11] Openstack. How Ironic Delivers Abstraction and Automation using Open
Source Infrastructure [online]. [cit. 2022-02-17]. Available from: https://

www.openstack.org/use-cases/bare-metal/how-ironic-delivers-

abstraction-and-automation-using-open-source-infrastructure

[12] Luis Fernández Álvarez. CERN Report: Batch farm worker nodes [on-
line]. [cit. 2022-02-19]. Available from: https://indico.cern.ch/event/

876806/contributions/4400263/attachments/2280883/3875388/

CERN.pdf

[13] Aimar, A.; Corman, A.; et al. Unified Monitoring Architecture for IT
and Grid Services. Journal of Physics: Conference Series, volume 898,
10 2017: p. 092033, doi:10.1088/1742-6596/898/9/092033.

[14] Nikolay Tsvetkov. Monitoring with no limits [online]. [cit. 2022-
02-21]. Available from: https://twiki.cern.ch/twiki/pub/CMgroup/

ExternalPresentationsIn2019/2019-10-07_MONIT_SPHERE_IT.pptx

[15] Aimar, A.; Corman, A.; et al. MONIT: Monitoring the CERN Data
Centres and the WLCG Infrastructure. EPJ Web of Conferences, volume
214, 01 2019: p. 08031, doi:10.1051/epjconf/201921408031.

[16] Ariza Porras, C.; Kuznetsov, V.; et al. The CMS monitoring infrastruc-
ture and applications. Computing and Software for Big Science, volume 5,
12 2021, doi:10.1007/s41781-020-00051-x.

[17] collectd. collectd – The system statistics collection daemon [online]. [cit.
2022-02-25]. Available from: https://collectd.org/

[18] Apache Spark. Unified engine for large-scale data analytics [online]. [cit.
2022-02-27]. Available from: https://spark.apache.org/

[19] Hadoop. HDFS Architecture Guide [online]. [cit. 2022-02-27]. Available
from: https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html

[20] Antońın Dvořák. ELK Stack [online]. [cit. 2022-02-27]. Available from:
https://cloudinfrastack.com/blog/monitoring/elk_stack/

[21] CERN. The Swan Service [online]. [cit. 2022-02-27]. Available from:
https://swan.web.cern.ch/swan/

[22] Merriam-Webster. anomaly [online]. [cit. 2022-03-03]. Available from:
https://www.merriam-webster.com/dictionary/anomaly

54

https://www.redhat.com/en/topics/virtualization/what-is-a-virtual-machine
https://www.redhat.com/en/topics/virtualization/what-is-a-virtual-machine
https://www.openstack.org/use-cases/bare-metal/how-ironic-delivers-abstraction-and-automation-using-open-source-infrastructure
https://www.openstack.org/use-cases/bare-metal/how-ironic-delivers-abstraction-and-automation-using-open-source-infrastructure
https://www.openstack.org/use-cases/bare-metal/how-ironic-delivers-abstraction-and-automation-using-open-source-infrastructure
https://indico.cern.ch/event/876806/contributions/4400263/attachments/2280883/3875388/CERN.pdf
https://indico.cern.ch/event/876806/contributions/4400263/attachments/2280883/3875388/CERN.pdf
https://indico.cern.ch/event/876806/contributions/4400263/attachments/2280883/3875388/CERN.pdf
https://twiki.cern.ch/twiki/pub/CMgroup/ExternalPresentationsIn2019/2019-10-07_MONIT_SPHERE_IT.pptx
https://twiki.cern.ch/twiki/pub/CMgroup/ExternalPresentationsIn2019/2019-10-07_MONIT_SPHERE_IT.pptx
https://collectd.org/
https://spark.apache.org/
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://cloudinfrastack.com/blog/monitoring/elk_stack/
https://swan.web.cern.ch/swan/
https://www.merriam-webster.com/dictionary/anomaly

Bibliography

[23] Chandola, V.; Banerjee, A.; et al. Anomaly Detection: A Survey. ACM
Comput. Surv., volume 41, 07 2009, doi:10.1145/1541880.1541882.

[24] Berg, A.; Ahlberg, J.; et al. Unsupervised Learning of Anomaly Detection
from Contaminated Image Data using Simultaneous Encoder Training.
ArXiv, volume abs/1905.11034, 2019.

[25] ControlUp. What’s a “Noisy Neighbor,” and How Can Con-
trolUp Shut Them Up? [online]. [cit. 2022-03-15]. Available
from: https://www.controlup.com/resources/blog/entry/whats-a-

noisy-neighbor-and-how-can-controlup-shut-them-up/

[26] Sai. Traditional and Representational Machine Learning [on-
line]. [cit. 2022-04-18]. Available from: https://medium.com/

@saiprakash513/traditional-and-representational-machine-

learning-317495b74c1b

[27] Liu, F. T.; Ting, K.; et al. Isolation Forest. 01 2009, pp. 413 – 422,
doi:10.1109/ICDM.2008.17.

[28] Preiss, B. Data Structures and Algorithms with Object-Oriented Design
Patterns in Java. 01 2000.

[29] MathWorks. What Is Deep Learning? [online]. [cit. 2022-04-18]. Available
from: https://www.mathworks.com/discovery/deep-learning.html

[30] Sakurada, M.; Yairi, T. Anomaly Detection Using Autoencoders with
Nonlinear Dimensionality Reduction. In Proceedings of the MLSDA
2014 2nd Workshop on Machine Learning for Sensory Data Analysis,
MLSDA’14, New York, NY, USA: Association for Computing Machin-
ery, 2014, ISBN 9781450331593, p. 4–11, doi:10.1145/2689746.2689747.
Available from: https://doi.org/10.1145/2689746.2689747

[31] Rumelhart, D. E.; Hinton, G. E.; et al. Learning Internal Representations
by Error Propagation. Cambridge, MA, USA: MIT Press, 1986, ISBN
026268053X, p. 318–362.

[32] Goodfellow, I.; Bengio, Y.; et al. Deep Learning. MIT Press, 2016, http:

//www.deeplearningbook.org.

[33] Seyfioğlu, M.; Ozbayoglu, M.; et al. Deep Convolutional Autoencoder
for Radar-Based Classification of Similar Aided and Unaided Human Ac-
tivities. IEEE Transactions on Aerospace and Electronic Systems, vol-
ume PP, 02 2018: pp. 1–1, doi:10.1109/TAES.2018.2799758.

[34] Koike-Akino, T.; Wang, Y. Stochastic Bottleneck: Rateless
Auto-Encoder for Flexible Dimensionality Reduction. 2020, doi:
10.48550/ARXIV.2005.02870. Available from: https://arxiv.org/abs/

2005.02870

55

https://www.controlup.com/resources/blog/entry/whats-a-noisy-neighbor-and-how-can-controlup-shut-them-up/
https://www.controlup.com/resources/blog/entry/whats-a-noisy-neighbor-and-how-can-controlup-shut-them-up/
https://medium.com/@saiprakash513/traditional-and-representational-machine-learning-317495b74c1b
https://medium.com/@saiprakash513/traditional-and-representational-machine-learning-317495b74c1b
https://medium.com/@saiprakash513/traditional-and-representational-machine-learning-317495b74c1b
https://www.mathworks.com/discovery/deep-learning.html
https://doi.org/10.1145/2689746.2689747
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://arxiv.org/abs/2005.02870
https://arxiv.org/abs/2005.02870

Bibliography

[35] Hochreiter, S.; Schmidhuber, J. Long Short-term Memory. Neural compu-
tation, volume 9, 12 1997: pp. 1735–80, doi:10.1162/neco.1997.9.8.1735.

[36] shipra saxena. Introduction to Long Short Term Memory
(LSTM) [online]. [cit. 2022-04-18]. Available from: https:

//www.analyticsvidhya.com/blog/2021/03/introduction-to-long-

short-term-memory-lstm

[37] Chung, J.; Gulcehre, C.; et al. Empirical Evaluation of Gated Re-
current Neural Networks on Sequence Modeling. 2014, doi:10.48550/
ARXIV.1412.3555. Available from: https://arxiv.org/abs/1412.3555

[38] Yin, W.; Kann, K.; et al. Comparative Study of CNN and RNN for Nat-
ural Language Processing. 2017, doi:10.48550/ARXIV.1702.01923. Avail-
able from: https://arxiv.org/abs/1702.01923

[39] Jozefowicz, R.; Zaremba, W.; et al. An empirical exploration of recurrent
network architectures. Journal of Machine Learning Research, 2015.

[40] shipra saxena. Introduction to Gated Recurrent Unit (GRU) [online]. [cit.
2022-04-18]. Available from: https://www.analyticsvidhya.com/blog/

2021/03/introduction-to-gated-recurrent-unit-gru

56

https://www.analyticsvidhya.com/blog/2021/03/introduction-to-long-short-term-memory-lstm
https://www.analyticsvidhya.com/blog/2021/03/introduction-to-long-short-term-memory-lstm
https://www.analyticsvidhya.com/blog/2021/03/introduction-to-long-short-term-memory-lstm
https://arxiv.org/abs/1412.3555
https://arxiv.org/abs/1702.01923
https://www.analyticsvidhya.com/blog/2021/03/introduction-to-gated-recurrent-unit-gru
https://www.analyticsvidhya.com/blog/2021/03/introduction-to-gated-recurrent-unit-gru

Acronyms

AD Anomaly Detection 12, 15, 17, 20

API Application Programming Interface 2, 49

AUC-ROC Area Under the Curve of Receiver Operating Characteristic 37

BST Binary Search Tree 24

CI/CD Continuous Integration / Continuous Delivery 21

CPU Central Processing Unit 2, 14

DAG Directed Acyclic Graph 21

FPR False Positive Rate 38

GRU-AE Gated Recurrent Unit Autoencoder 23, 40, 43

HDFS Hadoop Distributed File System 8

HG Hostgroup 11, 13, 16, 19, 35

HV Hypervisor 2, 11–14, 17, 19

IFOR Isolation Forest 23, 24

iTree Isolation Tree 24

JSON JavaScript Object Notation 6, 7, 19

LHC Large Hadron Collider 1

57

Acronyms

LSTM-AE Long-Short Term Memory Autoencoder 23, 40

OS Operating System 6, 7

RAM Random-Access Memory 2, 14

SWAN Service for Web based Analysis 9

TPR True Positive Rate 38

VM Virtual Machine 2, 14

WLCG Worldwide LHC Computing Grid 1, 2, 5

58

Appendix A

Contents of enclosed CD

readme.txt the file with CD contents description
src.......................................the directory of source codes

implementation implementation sources
thesis..............the directory of LATEX source codes of the thesis

text..the thesis text directory
thesis.pdf...........................the thesis text in PDF format

59

	Introduction
	CERN Data Centre
	Thesis Outline

	Monitoring Infrastructure
	MONIT Architecture
	Collection
	Ingestion
	Transport/Processing
	Storage
	Presentation

	MONIT Technologies
	Collectd
	Spark
	HDFS
	ELK Stack
	Grafana
	SWAN

	Problem Formulation
	Definitions
	Time Series
	Metric
	Hostgroup
	Anomaly
	Anomaly Detection

	Anomaly Detection on the monitoring data
	Anomaly in data centre context

	Anomaly Detection Pipeline
	Input preparation
	Filtering
	Aggregation
	Normalization
	Windowing

	Training
	Inference
	Publish
	Presentation
	Production deployment
	Airflow
	GitLab CI/CD

	Anomaly Detection Models
	Traditional Machine Learning
	Isolation Forest

	Deep Learning
	LSTM Autoencoder
	GRU Autoencoder

	Ensemble

	Labeled Dataset
	Experiments and Results
	Used Resources
	Input metrics
	Figure of Merit
	AUC-ROC
	Training and Inference time

	Performance of the Individual Models
	Isolation Forest
	Autoencoders
	Summary

	Comparison with Current Alarming System
	Current Alarming System
	Evaluation and Comparison

	Future Work
	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed CD

